
Key Duplicating Software

Using Digital Image Processing

by

Naeem Nematollahi

A Thesis

Presented to Lakehead University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electrical and Computer Engineering

Thunder Bay, Ontario, Canada

20 September 2011

ii

Abstract

In order to cut a key duplicate, it is necessary to measure the original key very precisely. There is a great
variety in the key measuring devices currently in use; however, they follow the common basic principle
of using a known light source of some kind and measuring the features of the light reflected off the key.
In some variations of these systems, only a small part of the key can be measured at one time, and
therefore some part of the system needs to be physically mobile to measure the entire key; be it the key
itself, the light source or the camera measuring the reflected light. Most of the systems also require the
key to be positioned exactly straight in the device in order to be measured, and even a slight deviation
means that the blank key will be cut wrong and will be unusable.

In this thesis, I propose a new key measuring system based on digital image processing methods. This
system will be able to measure a key based on an image scanned using a regular desktop scanner, rather
than an expensive and dedicated key measuring machine. A user will be able to place the key on the
scanner in any angle; the system will detect the key’s orientation from the image and account for it in
the measures. Finding the correct key blank is one of the two important tasks in this project. I need to
compare parts of the keys that are the same on all keys of the same model. Key heads of the same
model, unlike the shanks, remain unchangeable and are good for comparison. By comparing the results
in the database, I will find the closest model to the modeled original head image and retrieve the
corresponding key blank and its necessary information like size and number.

After the system finds the correct key blank, it will measure the cuts and depth of dents on the original
shank image. Using Canny Edge Detection technique, I will get a contour that only contains a connected
shape of the edges of the shank with only one pixel width. Measuring the cut and dents in pixels is too
jagged so using sub-pixel interpolation I will interpolate more precise coordinates for the points
observed in the image as edge pixels. At the end, I will save the positions of each sub-pixel point in an
array.

iii

Acknowledgement

I would like to thank my supervisor Dr. Richard Khoury for his guidance and patience throughout while

completing this thesis. Without his common-sense, knowledge and perceptiveness I would never have

finished my thesis.

I am grateful to all my professors at Lakehead University specially Dr. Carlos Christoffersen, Dr. Hassan

Naser, Dr. Maurice Benson and Dr. Rachid Benlamri for giving me helpful advice to my study and

research.

I would also like to extend my thanks to my family. My parents have provided me with countless

opportunities for which I am eternally grateful. My wife is my source of strength and without her

support, encouragements and love, this thesis would never have started much less finished.

iv

Table of Contents
Abstract ... ii

Acknowledgement ... iii

Table of Contents ... iv

List of Figures ... vi

List of Tables .. ix

1 Introduction .. 1

1.1 Background and Motivation ... 1

1.2 Definitions ... 1

1.3 Thesis Contribution ... 2

1.4 Thesis Outline .. 3

2 Past Works .. 4

2.1 Introduction .. 4

2.2 Backlight-based systems ... 6

2.3 Laser-based systems ... 10

3 Image Processing Algorithm ... 15

3.1 Introduction .. 15

3.2 filledBinary .. 16

3.2.1 Converting the color or grayscale image into a binary image .. 16

3.2.2 Hole and Noise Elimination ... 18

3.3 cutHead ... 19

3.3.1 Properties of the image .. 20

3.3.2 Adjusting the angle of the key image ... 22

3.3.3 Adding zero pad array to the image ... 22

3.3.4 Cutting head from the key image ... 24

3.4 findKey .. 29

3.4.1 Eliminating useless space of the image .. 29

3.4.2 Moment Invariants for modelling the head of the key image .. 29

3.4.3 Distance of moment invariants between two images .. 32

3.4.4 Database and finding correct key blank .. 32

3.5 Shank ... 40

3.5.1 Cutting the shank from the key image and detecting the edges and dents of the shank .. 40

v

3.5.2 Detecting edges and dents of the shank ... 42

3.5.3 Sub-pixel Interpolation ... 45

3.5.4 3.5.4 Determining the positions of cuts and converting them to physical measures 48

3.6 Another example of the software procedures on a sample key image 49

4 Experimental Results .. 61

4.1 Introduction .. 61

4.2 Identify the correct key blank ... 61

4.2.1 Sample Keys .. 63

4.2.2 Results on 21 Keys ... 67

4.2.3 Results with Database ... 69

4.3 Finding precise measures of the edges ... 74

4.3.1 Image to Key ... 74

4.3.2 Image to Image ... 78

4.3.3 Image to Cut Key to Original Key .. 79

5 Conclusions and Future Research ... 81

5.1 Contributions .. 81

5.2 Summary of the Results .. 81

5.3 Future work ... 82

Bibliography .. 83

vi

List of Figures
Figure 1.1 The parts of a key ... 2

Figure 2.1 The backlight system using horizontal light generator [1] .. 6

Figure 2.2 Transparent section of the backlight system [1] ... 6

Figure 2.3 Intersection of the light beam line with the key surface [30].. 7

Figure 2.4 Intersection of the light beam line with the key surface [30].. 8

Figure 2.5 Source of the uniform light [3] ... 9

Figure 2.6 The lens of the second receiver is flush with the second surface [3] .. 9

Figure 2.7 Capturing two parts of the key using two receivers [3] ... 10

Figure 2.8 The measuring device (the laser and photo detector array) [29] .. 11

Figure 2.9 Determination of the position of the points on the key [29] .. 11

Figure 2.10 Measuring side of the key [29] .. 12

Figure 2.11 video measurement systems [29] .. 12

Figure 2.12 Image of the key when light rays are reflected back directly into a camera or scanner [32] . 13

Figure 2.13 A beam emitter emits a beam of light into a series of mirrors and beam splitter [24] 14

Figure 2.14 Two laser light sources symmetrical about the plane [25] .. 14

Figure 3.1 scanning the key using an open lid scanner .. 15

Figure 3.2 Pseudo-code of the algorithms .. 16

Figure 3.3 A sample color key image .. 17

Figure 3.4 The sample key converted to binary image ... 17

Figure 3.5 The inverted binary key image ... 17

Figure 3.6 Binary image filled with white pixels ... 18

Figure 3.7 Incomplete gaps after filling the image ... 18

Figure 3.8 The 4-connected filter for covering holes .. 18

Figure 3.9 Binary key image without any gaps and noise ... 19

Figure 3.10 Ellipse superimposed over a sample image (taken from the Matlab documentation) 21

Figure 3.11 Superimposed ellipse and the centroid over the image .. 22

Figure 3.12 Covered and uncovered parts of the key when the key is at the corner................................. 23

Figure 3.13 Parts of the key image that cannot be detected and is not accessible from y-axis................. 23

Figure 3.14 Adding zero pad arrays to the image ... 24

Figure 3.15 Major axis line and superimposed ellipse over the key ... 25

Figure 3.16 Top, bottom and centre points of the key image .. 25

Figure 3.17 Start and end points for finding joint of the key .. 26

Figure 3.18 Image cut from 1/12th of the distance before and after the centre point of the key 26

Figure 3.19 Cut-line that cuts the head from the key ... 28

Figure 3.20 Head of the key cut from the key image .. 28

Figure 3.21 Head of the key after applying boundingbox function .. 29

Figure 3.22 (a) Original image. (b) Translated image. (c) Half-size image. (d) Mirrored image. (e) Image

rotated 45°. (f) Image rotated 90° .. 31

Figure 3.23 (a) Key number 67. (b) Key number 77. They both have two joints inside their divisions. (c)

and (d) are close-ups of (a) and (b), respectively ... 33

vii

Figure 3.24 (a) Key head No.67 cut from the top blue line. (b) Key head No.77 cut from the bottom blue

line. (c)Key head No.77 cut from the bottom blue line. (d) Key head No.77 cut from the top blue line. .. 34

Figure 3.25 Sets of images in database ... 36

Figure 3.26 A gap not covered by the filter .. 37

Figure 3.27 Filled and unfilled head images of two key types .. 38

Figure 3.28 is the original head image that is compared with , and . is filled original image

that is compared with , and 39

Figure 3.29 Obtained key blank with the information .. 40

Figure 3.30 (a) Original color image. (b) Binary image after using filledBinary function 41

Figure 3.31 The shank cut from the key image ... 42

Figure 3.32 Edge detector masks, (a) Image neighbourhood. (b) Sobel. (c) Prewitt. (d) Roberts. 43

Figure 3.33 Connected contour of the shank using canny edge detection .. 44

Figure 3.34 Finding the contour of the shank without the line that separates head and shank 45

Figure 3.35 (a) Edge pixel and its neighbourhood in binary contour of the shank. (b) Retrieved

neighbourhood from the grayscale key image. .. 46

Figure 3.36 Vandermonde matrix for solving the polynomial equation... 47

Figure 3.37 The interpolating polynomial of nine points ... 47

Figure 3.38 sub-pixel points representing more precise edge points than edge pixels 48

Figure 3.39 Original grayscale key (2nd key) .. 49

Figure 3.40 Inverted binary key image (2nd key) ... 50

Figure 3.41 Binary key image without gaps, holes and noise (2nd key) ... 50

Figure 3.42 Division of key image (2nd key) ... 51

Figure 3.43 The line that separates the head and shank of the key image (2nd key) 52

Figure 3.44 The head cut from the body of key image (2nd key) ... 52

Figure 3.45 Head of the key in bounding box (2nd key) ... 53

Figure 3.46 Filled Original key head (2nd key) .. 53

Figure 3.47 Three head images of key type number 77 ... 54

Figure 3.48 Three head images of key type number 77 (second joint) .. 54

Figure 3.49 Three head images of key type number 8 ... 54

Figure 3.50 Three head images of key type number 96 ... 55

Figure 3.51 Three head images of key type number 69 ... 55

Figure 3.52 Three head images of key type number 66 ... 56

Figure 3.53 Three head images of key type number 67 ... 56

Figure 3.54 Three head images of key type number 67 (second joint) .. 57

Figure 3.55 Three head images of key type number 68 ... 57

Figure 3.56 Obtained key blank from database using the function findKey(2nd key) 58

Figure 3.57 Shank cut from the original key image (2nd key) .. 58

Figure 3.58 Connected contour of the shank (2nd key) ... 59

Figure 3.59 Sub-pixel points over the shank (2nd key) ... 59

Figure 3.60 Edge points superimposed over the edge pixels ... 60

Figure 4.1 Three sets of seven types of key .. 62

Figure 4.2 21 Binary key heads ... 62

viii

Figure 4.3 Sub-pixel edge points of the key shanks .. 75

Figure 4.4 Selected points on the key shank (Figure 4.5(a)) ... 76

Figure 4.5 Selected green points on the key shank (Figure 4.5(b)) .. 77

Figure 4.6 Two images of a key. .. 78

Figure 4.7 Selected points on two scans of the key. ... 78

ix

List of Tables
Table 2.1 Similarities and differences between selections of reviewed patents ... 5

Table 3.1 Number of pixels in each row of the division .. 27

Table 3.2 Seven moment invariants of the images in Figure 3.21 .. 32

Table 3.3 Comparing moment invariants of two-joint key heads .. 35

Table 3.4 Distances of filled and unfilled head images of two key types ... 38

Table 3.5 Number of pixels in each row (2nd key) ... 51

Table 3.6 Distances of key type number 77 .. 54

Table 3.7 Distances of key type number 77 (second joint) ... 54

Table 3.8 Distances of key type number 8 .. 55

Table 3.9 Distances of key type number 96 .. 55

Table 3.10 Distances of key type number 69 .. 55

Table 3.11 Distances of key type number 66 .. 56

Table 3.12 Distances of key type number 67 .. 56

Table 3.13 Distances of key type number 67 (second joint) ... 57

Table 3.14 Distances of key type number 68 .. 57

Table 4.1 Moment invariants of binary head images ... 63

Table 4.2 Distances between three test keys and the other head images, using unfilled heads 64

Table 4.3 Distances between three test keys and the other head images, using filled heads 65

Table 4.4 Average of filled and unfilled distances between three test keys and the other head images .. 66

Table 4.5 Average of distances using the database of key images ... 67

Table 4.6 Errors occurred in each step with all 21 sample keys ... 67

Table 4.7 Ratio of number of pixels in head hole to number of head’s white pixels 69

Table 4.8 Distances of the moments between 21 sample keys and the database (unfilled key heads) 70

Table 4.9 Distances between 21 sample keys and the database (filled key heads) 71

Table 4.10 Average of distances of filled and unfilled key heads (first set) ... 71

Table 4.11 Average of distances of filled and unfilled key heads (second set) .. 72

Table 4.12 Average of distances between first and second sets .. 72

Table 4.13 Average of distances between three sets of the database ... 74

Table 4.14 Distances (in mm) of the green points in Figure 4.6 measured by software and calliper 76

Table 4.15 Distances in mm of the green points in Figure 4.7 measured by software and calliper 77

Table 4.16 Measures of the points on the two scans of the key by the software and calliper in mm 79

Table 4.17 measures of the points on the first original image in mm .. 79

Table 4.18 measures of the points on the second original image in mm ... 79

Table 4.19 measures of the points on the third original image in mm .. 80

1

1 Introduction

1.1 Background and Motivation
Key duplication is a profitable business, and the service is offered today in most hardware stores.
Consequently, there exists a large variety of key duplication systems. Older generations of these systems
had to physically touch the original key and transmit the measures mechanically to a blade that cuts the
new blank key. The blade moves along the length of the blank key and cuts the notches to the depth of
the corresponding location on the original key. In these devices there was no measuring system to
measure the depth and form of the notches, aside from the current location being cut. In addition, an
operator must pick the correct key blank among different types of keys. By contrast, in new patents of
key duplication systems, a measuring system is one of the main parts of the apparatus.

Key measuring systems obtain the information needed about the shape and size of the original key. The
cuts and indentations can be measured, transmitted, processed and saved in a computer and can be
sent to a cutting machine to duplicate the original key. As a result, the original key is only needed for the
first duplication. Furthermore, some key duplication systems are able to automatically determine the
original key type and to find the correct key blank.

The newer generation of key measuring systems centres on the innovative use of diverse light sources.
Some key measuring systems use backlights to generate an image of the object’s shadows and obtain
the outline of the key. Other systems employ laser technology and collimated lights to measure the
depth of the key shank. Others still use uniform light sources to evenly illuminate the surface of the
object. Some new developments make use of 3D cameras and high resolution cameras to capture the
cuts and edges of the key as precisely as possible.

Another important issue in key measuring systems is the use of moving parts. Some measuring systems
can only observe a single part of the key at one time. In order to observe and measure all parts of a key,
these systems need to have some component that moves physically. In some cases the system moves
the key in the device, in others the key is fixed while the light sources or the cameras move.

Adjusting the orientation of the key is another common problem in several kinds of key duplication
systems. Without having information about the position of the key in the system, it is impossible to
measure the details of the key precisely enough to duplicate it. In older designs the original key has to
be attached in an appropriate location and angle, and even a slight error could lead to generating the
wrong cuts and to a useless new key. Newer designs allow the system to automatically detect the
position of the key, and to move it using a combination of fixation device, rotation platter and stepping
motor to bring it to the correct orientation.

1.2 Definitions
It is worth formally defining the different parts of a key. As illustrated in Figure 1.1, there are three main
parts of any key: the head, shoulder, and shank. The head is a more decorative part, in the sense that it
is not needed to open a lock. It will often have key manufacturer information or directives such as “do
not duplicate” engraved on it, as well as a hole to put the key on a keychain. The shank is the part of the
key that is inserted in a lock, and which must match the lock in order to open it. There are two defining
features to the shank. The grooves are the length-wise regular indentations in the middle of the shank.

2

These are identical for all keys of a same type, and are used to ensure that only keys of that model can
be inserted into a lock. The notches, sometimes also called the biting, are the unique teeth pattern on
either one or both edges of the shank. They must exactly match the pattern of the pin tumblers inside
the lock in order to turn and unlock it. Finally, the shoulder of the key is a short connecter between the
head and the shank. The joint of the key is the exact border between the shoulder and the shank. In this
project I handle the head and the shoulder up to the joint as one piece.

Figure 1.1 The parts of a key

A lock has a unique pattern of cuts and edges built into its cylinder. A key can slide into the cylinder if it
has the right grooves in its shank, but it can only turn the cylinder to lock and unlock it if the notches
match the pattern built into the tumbler of the cylinder. This is to say that any key of a given type can
enter any lock of the same type, but not turn it. Consequently, key blanks of a given type come with
grooves already carved in, and only the notches need to be cut.

1.3 Thesis Contribution
In this thesis, I introduce a new key measuring software that uses image processing techniques to
achieve two main objectives: to identify the correct key blank and to find precise measures of the
notches of the key shank. Given these two pieces of information, a cutting machine should be able to
replicate the key. All the algorithms proposed in this thesis have been implemented and tested in
Matlab.

One advantage of the system we are proposing is that it eliminates the need for dedicated key
measuring devices and the use of sophisticated lighting systems and cameras. Instead, a common and
commercially-available flatbed scanner is used to capture the image of the key. This image is then
transmitted to a computer for processing. This furthermore eliminates the need for the key to be at the
same place as the rest of the system: in our case, the key could be scanned at one location, the image
emailed to a second location for processing, and the measures detected emailed to a third location for
cutting.

 Head Shoulder Shank

Grooves

Notches

3

A crucial challenge in our system will be to automatically discover the orientation of the key in the
image. Indeed, our system will allow the original key to be located anywhere on the surface of the
scanner with any angle and orientation. The software will have to detect and account for the orientation
of the key during processing. This is one more advantage of the system: the operator does not need to
take care to position the key properly, nor does the system need a setup to physically move the key to
the correct place. Given this fact, and since the system can use any digital scanner of any brand and
model to capture the image, it could be used by anybody.

1.4 Thesis Outline
The rest of this thesis is divided into four chapters. In Chapter 2 (Past Works), I describe the current
state of patented technology for key measurement systems. For ease of presentation, I decided to
categorize the patents into two families based on the light source they use to capture the image of the
keys. Consequently, backlight-based systems are studied in section 2.2 and laser-based systems are
presented in section 2.3.

My original image processing algorithm is detailed in Chapter 3. It is in that chapter that I give my main
contributions, and that I explain the algorithms and methods I developed. After a brief overview in
section 3.1, I present in section 3.2 the first processing steps needed to standardize the image and to
eliminate the holes and noise it may contain. Next, I explain how the algorithm separates the head and
the shank of the key precisely on the joint in section 3.3. In section 3.4 I show how the key head image is
used to find the correct key blank in a database I designed. The procedure I use to find and measure the
edges and notches of the key shank with subpixel accuracy are explained in section 3.5. First the shank is
separated from the key image. Finally by combining the database information with the interpolated
notch measures, I can convert the computed distances from pixels to millimetres.

The software has been thoroughly studied and tested, and the experimental results are analysed in
Chapter 4. As I mentioned previously, the algorithm has two main objectives: to identify the correct
blank, and to find precise measures of the notches of the key. The experimental results show
conclusively that these goals have been achieved. In the first part, some tests are designed to show how
the software processes the original image in order to find the correct match.distance. I tested 21 sample
images of 7 different key types to expose problems I encountered and the procedures I used to solve
them. In the second part of the experimental results, I show how precisely the software can find the
edges of the key. I do so by comparing the depths of some selected points on a sample key with the
same points on the image as measured by the software and on a professionally-made duplicate of the
key.

Finally, I give some concluding remarks in Chapter 5. In this chapter I will recap the final results and
show that we met the requirements presented in the contribution and goals of the project.
Furthermore, I will propose directions for future work that can be considered to improve the quality of
the results, and share some ideas for additions to this work that could expand the software.

4

2 Past Works

2.1 Introduction
There are three main parts of any key: the head, shoulder and shank. The head is a more decorative
part, in the sense that it is not needed to open a lock. It will often have key manufacturer information or
directives such as “do not duplicate” engraved on it. The shank is a part of the key that is inserted in a
lock. There are two defining features to the shank. The grooves are the length-wise regular indentations
in the middle of the shank. The notches, sometimes also called the biting, are the unique teeth pattern
on either one or both edges of the shank.

While there is a great variety in key measuring devices, modern techniques follow a common basic
principle, which consists in aiming a known light source of some kind at the key and measuring the
light’s features after it hits the key using a camera. Some parts of the system need s to be mobile, the
key, the light source or the camera, in order to measure the entire key. Moreover, the key must often be
properly oriented in the system in order to get correct measurement, which means that a part of the
system is dedicated to physically moving the key to the correct position.

The two main types of light sources that are used in key measuring systems are laser and backlight.
Laser-based systems basically work by projecting a laser line on each side of the key and measuring the
deflection angle to know the shape of the key at each point. Meanwhile, backlight systems get the
outline of the key and measure the notches. We categorized the patents based on which of these two
main light sources they use, in order to be able to compare them with each other.

Table 2.1 introduces an overview of the patented systems that I will be presenting.

5

Table 2.1 Similarities and differences between selections of reviewed patents

U.S. Patent
Number

Number and
type of light

sources

Number of
cameras

Moving part Key orientation Featured measured

5807042
1 backlight

1 collimated
2

Key and light
stripe

generator
Rotation platter The shadows of key edges

6064747
1 LED backlight

1 Laser
1 CDD

camera
Laser

generator
Corrected by

software
backlit and intersection of
laser with side of the key

6175638 2 backlights 1 Key Fixation device
Shadow image of cross
sectional of the shank

6836553 2 uniform lights 1 or 2 Key
Corrected by

software

Profile from backlit image
and grooves from plain-light

image

6152662 1 laser
1 movable
or 2 fixed

Key and
camera

Rotating holder
or stepping

motor
Detected light

6449381 1 direct light 1 Key
Corrected by

software

Difference in brightness
between the flat parts and

the convoluted parts

6647308 1 laser 1 3D sensor
Key or system

of mirrors
Rotation Reflected laser beam

6895100
2 laser laminar

beam
2 Key

Clamp move the
key

Laser beam profile on the
shank

6

2.2 Backlight-based systems
Patent number 5807042, “Method and apparatus for automatically making keys” in Figure 2.1 utilizes a
horizontal light generator (38) and horizontal light receiver (39) positioned immediately above the
pedestal (28) that allows light to be transmitted and received under the shank [1].

Figure 2.1 The backlight system using horizontal light generator [1]

If the shank of the object key is not positioned flatly on the blade section (25 in Figure 2.2), horizontal
light above a minimum threshold will be received and the vertical elevation of the handle section (26 in
Figure 2.2) of the transparent section will be incrementally lowered in relation to the output signal
(Figure 2.2). Then the backlight (48 in Figure 2.1) is turned on and some pictures are taken. The number
of pictures taken will obviously depend on the quality and capability of the camera used, but the
system’s patent recommends five pictures be taken. The camera is moved in three-quarter-inch
increments across a distance of about four inches and more pictures are taken at each location. These
pictures are then digitalized and electronically merged together to generate one silhouette of the key
and its corresponding output signal. Information about the shape, depth of cut, location of cuts, and
location of the shoulder, are extracted and stored in memory [1].

Figure 2.2 Transparent section of the backlight system [1]

7

Although there is no need to confine and fixture the key in a holder in this patent, it uses a source light
and a receiver to mechanically adjust the key to an appropriate place.

In patent number 6064747 “Method and apparatus for using light to identify a key”, by using energized
LEDs and backlighting the master key we can identify the type of blank key from a set of more than
three hundred different types of blanks [30]. The key information is standardized to be comparable to
other keys in memory. The light beam is projected at the key, and reflected and scattered from the
surface. Referring to Figure 2.3, once the intersection of the light beam line with the key surface has
been found, these positions must be mapped into depth of a cut out. The light beam (LB) is inclined at
an angle . Less than 90 degrees, the point of intersection with the key surface will vary in the direction
of the length of the key (), which is a function of the depth () of the milling pattern at that point.
The angle is constant and is measured from the image. The depth is then calculated using the
Equation (2.1). These calculations result in depth of milling as measured every one thousandth of an
inch across the width of the key [2].

Figure 2.3 Intersection of the light beam line with the key surface [30]

 (2.1)

Another variation of this system uses the light beam system to record an entire three-dimensional
surface image of the key which is shown in Figure 2.4.The light beam LB can be swept or moved across
the length of the key to obtain multiple milling images so that the images can be averaged to improve
the accuracy of the data. This embodiment would also provide a three-dimensional representation of
the entire surface of the key [30].

8

Figure 2.4 Intersection of the light beam line with the key surface [30]

In the two patents we reviewed, light is directed at the tip and it may produce glare or side glints.
Patents 6175638 “Key imaging system and method” and 6406227 “Key measurement apparatus and
method” avoid this problem by instead using a device which acquires a shadow image of a cross-section
of a key by sending light rays along the groves and indentations of the key shank towards the screen.
The cross-sectional image will be picked up by a digital scanner and stored for further identification or
comparison. The computer matches the captured shadow images to the stored images [31], [28].

In one final example, in patent number 6836553 “Key identification system” which is close to the system
we will be developing in this work [3], the system has two sources of uniform light are fixed relative to
the housing and opposite of each other which can generate the image of the master key located
between them which is shown in Figure 2.5. The sources of uniform light are capable of evenly
illuminating the surface of an object. This even illumination can prevent the hot spots and glare that
come from using a single light source such as laser. The master key can be positioned on the first
luminous surface or a transparent support. When the power system is activated, the light emitted from
the first luminous surface will backlight master key. Viewed from the opposite side of the master key
from first surface, the backlighting of the master key outlines the profile of the master key (shape, size,
head...). This backlighting process reveals the biting part of the key. When the power source is activated
next, the second surface generates light that will illuminate the unsupported surface of the master key
including any grooves and indentations. This system includes a receiver to capture the image of the
master key that is generated by the first and second surfaces. The receiver can be a high resolution
camera (PixelCam or Vitana) or a non-digital camera which is connected to a digitizer. The further the
lens of the receiver moves away from the surface of the second luminous surface, the more the viewing
angle of the receiver is restricted. Thus, the largest viewing area is obtained when the lens of the
receiver is flush with the surface. The further the lens of the receiver moves away from the surface of
the second luminous surface, the more the viewing angle of the receiver is restricted. Thus, the largest
viewing area is obtained when the lens of the receiver is flush with the surface [3].

This final system is closest to the one I will be developing in this work. I use a digital desktop scanner
which, much like the reviewed patent, has a transparent surface that the original key is placed on it and
its light source is backlight. The source of light is a mobile uniform light that moves toward the length of
the scanner’s surface and evenly backlights the object positioned on the surface step by step. A system
in the scanner captures the objects on the scanner in line with the moves of the backlight system. The

9

data about the object like size, coordinates, color and shape are transmitted to a computer to process.
In this patent the light sources are one or two uniform static lights that illuminate the surface of the key
shank but in the project that I will explain, the light source of the scanner moves toward the length of
the surface that the key lies on it and scan each part of the object step by step. So anything which is
located on the surface of the scanner is illuminated and captured and the image is transmitted to a
processor.

Figure 2.5 Source of the uniform light [3]

An alternative embodiment of this method is the one that comprises of second receiver which is aligned
with a second opening in the second luminous surface shown in Figure 2.6.

Figure 2.6 The lens of the second receiver is flush with the second surface [3]

10

The lens of the second receiver is also flush with the second surface. One receiver will capture an image
of a first part of master key and the second receiver will capture the image of the second part of the
master key (Figure 2.7). The control system analyses the image to extract identifying information from
the original key.

Figure 2.7 Capturing two parts of the key using two receivers [3]

There are two main downsides to this system. First, in a compact setup following Figure 2.5, the camera
would be fairly close to the key and the key will not fit entirely in the camera’s visible area.
Consequently, we should make the key movable in the visible area, or make the camera and lights
themselves movable. The second downside of this system is its duplication of the hardware and
software: it uses two different lights and two different sets of algorithms to handle the front-lit and
back-lit image, in order to perform a complete key measuring operation which means this device is not
an efficient one.

2.3 Laser-based systems
Our first example of a system that employs laser as the light source is patent number 6152662, “Key
duplication apparatus and Method”. The measuring device employs a laser light beam which is
collimated by collimating lens. The measurement device includes collection optics for receiving a light
beam deflected by a target and a linear photo detector array that detects the light collected by the
collection optic shown in Figure 2.8. The laser and photo detector array are both coupled to an
electronic package that controls the output from the laser and receives the detected signal from the
array. By detecting the position on the photo detector array of the deflected light from the target, the
distance to the target may be estimated [29].

11

Figure 2.8 The measuring device (the laser and photo detector array) [29]

In this system, a light-based measuring device uses an optical interaction to produce an optical signal for
determining the position of the point on the key. As it is shown in Figure 2.9 the portions along the side
of key shank can be illuminated. The keyway is measured by positioning spots across the side of the key
shank at the nominal distance from the measuring device (figure 2.10).

Figure 2.9 Determination of the position of the points on the key [29]

12

Figure 2.10 Measuring side of the key [29]

One image is taken from the side of the key and the other one is taken of the key tip in a direction along
the axis of the key. The video measurement system requires the video camera and the key be movable
relative to each other to permit side-on and end-on views to be taken (Figure 2.11).

Figure 2.11 video measurement systems [29]

In patent number 6449381, “Key imaging system and method”, the goal is to improve the accuracy of
key identification by providing images of grooves and indentations as well as direct images of flat
portions (parts 5 and 11 of Figure 2.12) of the shank [32]. The key is placed on a wide surface positioned
facing up and toward light source which illuminates the key shank. The light rays will produce a direct
image of key and shadow images of the grooves and indentations of the shank. The direct images are

13

formed when the rays are reflected back directly into a camera or scanner. The convoluted surface will
not reflect the light rays directly into the camera as will a flat surface. The image will reveal a wide range
of data relative to the key. The sharp distinction between the black convoluted surface of the grooves
and indentations and the white flat surface of the key is distinguishable. The lateral surface of the shank
of the key shown as number 4 in Figure 2.12 is not necessary for the actual operation of the key and
therefore is not subjected to the wear and tear of regular use that may cause changes in the geometric
shape of the grooves and indentations. Therefore, the geometrical features of the grooves and
indentations on the shank which run throughout the whole length of the scanned lateral surfaces of the
key allow for a precise automated identification. The color contrast between direct images (white) and
those of the grooves and indentations (black) also provides for a precise automated identification.
Finally, the evaluation of the direct images of the wide surfaces of the key will allow for the evaluation
of additional characteristics of the key which were not previously available using prior art methods
which rely on the examination of the front cross-section of the key.

Figure 2.12 Image of the key when light rays are reflected back directly into a camera or scanner [32]

Providing a process using a database and CAD-Cam system for manufacturing original key is the goal of
patent number 6647308, “Key manufacturing method”. This system uses a holographic camera for
capturing the surface of the key. In Figure 2.13, a beam emitter (14) emits a beam of light onto a series
of mirrors and beam splitter (16). An incident beam of light is broken into two or more beams with at
least one transmitted beam being used as an illuminating beam for the key (10) and the other beam
being used as a reference beam. A signal beam is produced which is intercepted and read by the camera
(12) and converted into electric data [24].

14

Figure 2.13 A beam emitter emits a beam of light into a series of mirrors and beam splitter [24]

Another variation of this technique with a 3-D scanner system allows for the highly accurate three-
dimensional scanning of very detailed objects using “laser stripe scanning” techniques. The model-
maker uses a scanning principle known as laser triangulation, in which a beam of laser light is projected
as a stripe onto a three-dimensional object and viewed at an angle using a video camera. The image
seen on the screen reveals the contour of the object where the laser light intersects the surface of the
object [24].

Patent number 6895100, “Method to identify a key profile machine to implement the method and
apparatus for the duplication of keys utilizing the machine” comprises two laser light sources (18 in
Figure 2.14), which are facing each other and symmetrical about the plane in which the key is moved.
These lasers can illuminate both sides of the key shank. Two video cameras (20) are fixed relative to the
lasers and are inclined relative to the planes in which light beams lie. The illuminated profiles of the key
can be ready by the two cameras and the data is then transmitted to processor computer [25].

Figure 2.14 Two laser light sources symmetrical about the plane [25]

15

3 Image Processing Algorithm

3.1 Introduction
In this chapter I will introduce a function I designed that receives a scanned image of a key and finds the

correct key blank in the defined database of key images. Then the function measures the cuts and dents

of the original key shank. This information could then be sent to a cutting device to cut the measured

indentations on the extracted key blank and duplicate the original key.

Figure 3.1 scanning the key using an open lid scanner

My algorithm receives as input an ordinary scanned image of a key, such as the one in Figure 3.1. It is
worth noting that this image was scanned with the scanner’s lid open, to avoid having shadows from the
back of the lid that would blur the edges of the key in the picture. In the first step, I need to convert my
image to binary format. This makes it easier to measure the positions of cuts and different parts of the
key image. Moreover, it eliminates some problems, such as the local peaks in pixel intensities that are
due to glare on the key image. Using a function filledBinary, that I implemented in MATLAB using
MATLAB toolbox, I will have a solid binary image without any gaps and noise inside and outside the key
body to find the real contour and perimeter of the key image.

Finding the correct key blank is one of the two important tasks in this project. I need to compare parts of
the keys that are the same on all keys of the same model. Key heads of the same model, unlike the
shanks, remain unchangeable and are good for comparison. I defined a function named cutHead in
MATLAB that separates the head of a key from its body. This function identifies the line dividing the
head and shank which is called the joint of the key and precisely cuts the head from the joint of the key
body. I will get the seven moment invariants of the cut head to model the object in my image and
calculate the distances between modelled head images. By comparing the results in the database, I will
find the closest model to the modeled original head image and retrieve the corresponding key blank and
its necessary information like size and number.

After the system finds the correct key blank, it will measure the cuts and depth of dents on the original
shank image. In order to focus on the shank’s dents I will apply the function that already identified the
line dividing the head and shank and separate the shank of the key image. Using Canny Edge Detection
technique, I will get a contour that only contains a connected shape of the edges of the shank with only
one pixel width. Measuring the cut and dents in pixels is too jagged so using sub-pixel interpolation I will
interpolate more precise coordinates for the points observed in the image as edge pixels. The sub-pixel

16

point will be the ones that will be converted to physical measures to know how to cut the key. At the
end, I will save the positions of each sub-pixel points in an array. Figure 3.2 shows the pseudo-code of
the algorithms developed in this project.

Input: Key Image, Key Head Database

1. Binary Image ← Convert Key Image to binary format

2. Binary Image ← Fill Binary Image with white pixels

3. Binary Image ← Eliminate noises and gaps from Binary Image

4. Head Image, Shank Image ← Cut Binary Image

5. Head Image Model ← Compute geometric invariants of Head Image

6. Key Model, Key Measure ← Match Head Image Model in Key Head Database

7. Shank Contour Image ← Obtain the connected contour of Shank Image

8. Shank Contour Image ← Sub-pixel interpolation of Shank Contour Image

9. Shank Measures ← Convert the positions of Shank Contour Image into millimeters using Key
 measure

Output: Key Model, Shank Measures

Figure 3.2 Pseudo-code of the algorithms

The rest of this chapter will describe in details each of these functions. In 3.2 I will explain an algorithm
which fills in the key image with white pixels, eliminates the noise and covers the gaps inside the body of
key image. In section 3.3 I introduce a function that can cut the head of the key image precisely, and, in
section 3.4 I will present the database of the key heads and the algorithm of finding the correct key
blank in the database. Next, in Section 3.5 I will explain the algorithm to get the edges of the shank of
the key and measure them precisely. Finally, while every part of the chapter will be illustrated by an
example, in section 3.6 I will give a second complete example of the functioning of the system.
Experimental results obtained using the system will be presented next in Chapter 4.

3.2 filledBinary
In this section I will explain the way I can convert the image’s format to binary. The function filledBinary
extracts the main object of the image and eliminates other small objects that are considered as noise.
The advantage of using this function is that it covers all gaps and holes inside the key image but the real
holes of the key head.

3.2.1 Converting the color or grayscale image into a binary image

The first step of the algorithm is to convert the grayscale or color image taken by the scanner into a
binary image. In order to convert an image to binary, this function sets all pixels with intensity greater
than a threshold to white and all other pixels to black. In this project, I found that even a pixel with a low
intensity could be an edge of the shank and must therefore be considered as a part of the binary image.
Consequently, I need to use a low threshold at this point. I experimented with different threshold values
to convert the images to binary format and found that a threshold 0.9 of the intensity of a white pixel
(i.e. 230 out of 255 in a grayscale image) generates a good image for the next steps of the algorithm
[27]. To illustrate, Figure 3.3 shows one of the color images I received from the scanner, while Figure 3.4

17

shows the resulting binary image, and Figure 3.5 is the same image with the values inverted to be a
white (1) key on a black (0) background. This inversion is made to simplify the rest of the algorithm.

Figure 3.3 A sample color key image

Figure 3.4 The sample key converted to binary image

Figure 3.5 The inverted binary key image

18

3.2.2 Hole and Noise Elimination

There are many small regions and individual pixels that are not connected to the main body of the key in
the image. These tiny components are considered noise in the image. Moreover, as can be seen in
Figure 3.5, there are a lot of gaps and holes inside the key. These are the result of lighter regions in the
original scanned image, and they could lead to problems later in the algorithm. I deal with both of these
problems in this step of the algorithm.

First, I need to eliminate all noise pixels and small regions that are apart from the key. Since the key is
the single largest object in the picture, I can simply keep the biggest connected component found in the
image and change the value of all other regions from 1 to 0 [14], [15].

Holes that are entirely surrounded by white pixels are assumed to be inside the key and are filled in.
Applying this simple rule to the image of Figure 3.5 generates the image of Figure 3.6. It can be seen
from a close-up of that image, shown in Figure 3.7 that although the key is more regular it is still not
complete since my filling method cannot correct gaps that are connected to the background.

Figure 3.6 Binary image filled with white pixels Figure 3.7 Incomplete gaps after filling the image

In order to fill in the gaps and keep the real holes inside the key head, I apply the 4-connected filter
shown in Figure 3.8 to the entire Figure 3.5. This filter is designed to turn all four neighbours of every
white pixel white. Although using this method leads to covering all gaps of the image, the key image will
be one pixel wider than its original size. To restore the actual size of the key, I change the value of white
pixels on the perimeter of the key image from 1 to 0, in essence eliminating the extra layer of white
pixels added by the 4-connected filter.

0 1 0

1 1 1

0 1 0

Figure 3.8 The 4-connected filter for covering holes

Another drawback of using this method is that it fills in the holes inside the key head. The holes inside

the head of the key will be important later in the algorithm, to compare the key with different types of

key blanks. Consequently, at this step I need to restore the holes of the key head. I start with a simple

assumption: that a real hole in the key’s head will be large when compared to a hole due to an artefact

19

of the scanning and binary conversion. So I begin by finding the biggest hole in the key, and when I fill in

all holes of the key image I skip the biggest hole that I just found. But moreover, in some types of keys

like the one in Figure 3.5, there is more than one hole inside the key head. So after finding the biggest

hole of the key, I get the number of pixels of the hole and retrieve other holes that are close in size to

that largest one and I also exempt them from getting filled in. Figure 3.9 shows the result after I applied

the algorithm on the Figure 3.5.

Figure 3.9 Binary key image without any gaps and noise

Using this method, I can get a binary image that has only one connected component and there is no gap
and hole inside the key body. Another advantage of this method is that it keeps the holes of the key
head. This feature helps me find the correct key blank more accurately. Totally, this image will help the
system to have a better understanding from the positions of head, shank and edges of the key.

3.3 cutHead
In this project, I need to find a correct key blank for the original key in order to duplicate it. This will be
done by comparing together the part of the keys which is identical on all keys of the same model;
namely the head of the key, since the shank can have unique cuts on it. I need to tell apart the head
from the body in the key image, and moreover the division between the two parts must be the same in
all pictures of the same key model. The line dividing the head and shank is called the joint of the key. In
this section I explain how I find it.

20

3.3.1 Properties of the image

An important challenge in this project is the ability to measure a key placed in any orientation. Indeed,
in many existing key measuring systems, the key must be positioned exactly right to take the measures,
and even a slight deviation results in the duplicate key having the wrong cuts and being unusable. This
weakness of existing systems is one that our system will compensate for. A user of our system should be
able to scan a key with any orientation, and our algorithm will automatically detect the orientation and
adjust the measures accordingly.

I used the “regionprops” function from the standard Matlab library to compute the orientation [27]. The
orientation of a region is the angle (in degrees) between the horizontal axis and the major axis of the
ellipse that has the same second moments as the region [27], [14], [15], [9].

An image moment is the weighted average of the image pixels' intensities. A lot of useful information
can be obtained from the moments of the objects. Simple properties of the image which are
found via image moments include area (or total intensity), its centroid, and information about its axis of
orientation [14], [15], [9].

0th moment of the image gives us the area of the image.

A =

(3.1)

The centroid is simply the center of mass of the region as illustrated in Figure 3.10. The Centre of mass is

given by the 1st moments. Equation (3.2) and (3.3) give us the x and y coordinates of the centre mass,

respectively.

 =

(3.2)

 =

(3.3)

The second central moments are given in Equations (3.4), (3.5) and (3.6).

(3.4)

(3.5)

(3.6)

http://en.wikipedia.org/wiki/Image_moment#Examples
http://en.wikipedia.org/wiki/Centroid
http://en.wikipedia.org/wiki/Image_moments#Examples_2
http://en.wikipedia.org/wiki/Image_moments#Examples_2

21

The orientation of an object is defined as the axis of the least second moment. The Orientation of the
object is obtained using Equation (3.7).

 (3.7)

The relevant properties measured by the function I used are ”Orientation” (the angle in degrees ranging
from -90 to 90 degrees between the x-axis and the major axis of the ellipse that has the same second-
moments as the region), “Major Axis Length”, “Minor Axis Length”, ”Eccentricity” and ”Centroid” [27],
[15]. These properties are illustrated with a sample image in Figure 3.10. The left side of the figure
shows an image region and its corresponding ellipse. The right side shows the same ellipse, with
features indicated graphically:

 The solid blue lines are the axes.

 The red dots are the foci.

 The orientation is the angle between the horizontal dotted line and the major axis.

Figure 3.10 Ellipse superimposed over a sample image (taken from the Matlab documentation
1
)

The Major Axis Length and the Minor Axis Length are the lengths (in pixels) of the major and minor axes,
respectively, of the ellipse with the same normalized second central moments as the region. This is the
ellipse shown in the example of Figure 3.10.

Figure 3.11 shows the ellipse that has the discussed properties of the sample image. This ellipse is
superimposed over the key image and its centre is centre mass of the key [7].

1
 http://www.mathworks.com/help/toolbox/images/ref/regionprops.html#bqkf8ji

http://www.mathworks.com/help/toolbox/images/ref/regionprops.html#bqkf8ji

22

Figure 3.11 Superimposed ellipse and the centroid over the image

3.3.2 Adjusting the angle of the key image

In this project, in order to move in correct direction and measure key image pixel by pixel I need to know
the orientation of the image. Next, the function changes the image orientation to a standard angle to
find the top and bottom pixels of the image located on the major axis line. This approach is essential
because in some angles and locations of the key image (for example exactly horizontal or vertical), it is
hard and risky to find the correct top and bottom of the key. I will talk about the sensitive locations in
next subsection.

This function rotates the orientation of the key image about the centre of the image to a defined angle.
Rotating an image is one of the geometric transformations. Rotating or transforming an image changes
the coordinate system of the original image and when we rotate it back to its original orientation, we
usually lose some values and edges. In this chapter, the goal is to cut the head from the body of key
image. I need to have the head of the key just for comparing among different key heads so it does not
matter if I face some changes in the coordinates and values. In addition, as I will explain in section 3.4, I
use geometric invariants to model the head of the key images so geometric transformations have no
impact on the final outcome.

3.3.3 Adding zero pad array to the image

After adjusting the orientation of the key image, the function starts measuring the edges of the key pixel
by pixel. It does so by moving along the Y-axis of the image in a direction perpendicular to the shank of
the key or parallel with minor axis line of the key image. The objective is to cover the image of the key
from top to bottom. Unfortunately, it is not always possible to do so this simply. In Figure 3.12 for
example, only part of the image is accessible using the measuring algorithm, and only a partial edge is
detected in red. Likewise, in Figure 3.13, most of the key shank, including the top end of the key, cannot
be detected.

23

Figure 3.12 Covered and uncovered parts of the key when the key is at the corner

Figure 3.13 Parts of the key image that cannot be detected and is not accessible from y-axis

In order to prevent these problems from occurring and to be able to detect all parts of the key image, I
first adjust the angle of the main object and change it to the standard orientation that I already defined
for my program. After that I add zero pad arrays to all four sides of the image to have my main object at
the centre of the image [15]. Then I double the length of the image using zero pad arrays. It is shown in
Figure 3.14 that by using this technique and adjusting the angle of key image, the key will be detected
completely by moving along the Y–axis and I can get the top and bottom of the key image. Finally, after
cutting the head from the body of the key image, the function returns the key to its original orientation
and dimensions.

24

Figure 3.14 Adding zero pad arrays to the image

3.3.4 Cutting head from the key image

Since I have previously computed the key’s properties, I can accurately find the line that cuts the head of
the key. First, I need to identify the coordinates of the top and bottom of the key. These coordinates are
somewhere on the major axis line, so it is simply a matter of following that line as I illustrate in Figure
3.15.

I already noted that after cutting the head from the body of the key image, the function returns the key
to its original orientation and dimensions. But In order to illustrate next operations on the image clearly,
in Figure 3.15 I present the points detected in Figure 3.14 superimposed on the key picture I’ve used in
the previous examples.

25

Figure 3.15 Major axis line and superimposed ellipse over the key

Following the processing of the previous section, I know the image only contains one connected white
component. The top and bottom of the key are identified as the first and last white pixels on the major
axis. These two coordinates in turn allow us to calculate the coordinates of the geometric centre and the
length of the key image (Figure 3.16).

Figure 3.16 Top, bottom and centre points of the key image

I reviewed different types of keys and found that the joint of the keys are located very near the
geometric centre. Specifically, in this project, I consider “very near” to be a neighbourhood of 1/6th the
key image’s length. Since I have the top and bottom of the image I can calculate the length using the
Euclidian distance between the points, as in Equation (3.8).

26

(3.8)

I search a neighbourhood of 1/6th of d around the geometric center, or 1/12th before the centre point to
1/12th after the centre point following the major axis. In Figure 3.17 the start and end point of that
interval are shown with dots, and Figure 3.18 gives a close-up view of that interval.

Figure 3.17 Start and end points for finding joint of the key

Figure 3.18 Image cut from 1/12th of the distance before and after the centre point of the key

Another observation, which is clearly evident on Figure 3.18, is that there is an important transition
between the head and shank of the key, marked by an important change in the key’s width. This division
is what I will find in order to pinpoint the joint. Focusing on this particular neighbourhood of the key is
useful to make the detection more accurate. There are variations of the key’s width both in the shank
(for the dents) and the head (for embellishments), but in this smaller neighbourhood the most
important change will be the joint.

27

I start scanning this neighbourhood of the key row by row. Rows are defined as having the same
orientation as the minor axis of the ellipse and are perpendicular to the shank (major axis) of the key.
For each row I count number of white pixels using Equation (3.8) and save this number in the
corresponding row of an array. This gives me an array where each element corresponds to the number
of white pixels in a row of the cut shown in Figure 3.18. Next, I compute the difference between each
two successive elements of the array. The highest difference value is the position of the joint I am
looking for.

Table 3.1 shows the array corresponding to Figure 3.18. The length of the array is 118 pixels, the same
as the distance between the start and end points. The 34th and 35th elements of the array (written in
bold) show the sharpest difference between each two successive elements of the array. Consequently,
the joint of the key is located between those two elements.

Table 3.1 Number of pixels in each row of the division

Column 1-24 Column 25-48 Column 49-72 Column 73-96 Column 97-118

140 130 82 84 76

140 128 83 84 76

138 128 84 84 74

138 129 83 84 74

137 129 83 85 73

135 129 83 84 73

135 127 83 83 72

134 127 83 83 72

132 126 83 83 71

132 119 84 83 72

131 109 83 83 72

131 101 83 82 72

131 92 84 82 72

130 88 83 81 71

129 88 83 81 72

130 84 84 81 72

130 84 83 79 72

129 85 83 80 73

129 83 84 80 72

130 83 83 78 72

130 84 83 78 72

128 82 83 77 72

129 83 84 77

129 82 84 76

To illustrate, the joint of the key in Figure 3.17 was found using this method and marked on Figure 3.19.

28

Figure 3.19 Cut-line that cuts the head from the key

A final observation is that the key is not balanced, meaning that the geometric center and the centroid
are not at the same point. The head contains more of the mass of the key, and consequently the
centroid will be further down the shank than the geometric center. I can use this fact to figure out on
which side of the joint the head is: from the geometric center and following the major axis, it is on the
side of the joint opposite to the centroid.

I can then finally separate the head and the shank. The head obtained for the sample key I have been
using in this section is shown in Figure 3.20.

Figure 3.20 Head of the key cut from the key image

29

3.4 findKey
In this section, I will introduce a function which receives the image of the head cut from the original key
and matches it to the correct key blank in a database. We can then retrieve information about the key
from the database, including its physical size, key number and an image of the corresponding key blank.
I use geometric invariants to model and compare the original key with other keys in the database. In this
thesis, the database contains information from seven different sample keys.

This challenge is similar to that encountered in face-recognition systems, which try to match a person’s
face to a database of images of known individuals. Some typical approaches used in that area include
Illumination invariant face recognition using Discrete Cosine Transform (DCT) and Principal Component
Analysis (PCA) that uses low frequency components of DCT to normalize the illuminated image [26]. This
approach uses PCA for recognition of images but the presented method in this thesis will use moment
invariants to model the images. Another approach in face recognition pattern analysis area is Line Edge
Map (LEM) that is generated for face coding and recognition [12]. This concept is robust to lighting
condition changes and size variation which is similar to Hu’s seven moment invariants which are
invariant under size and scale.

3.4.1 Eliminating useless space of the image

As can be seen in the example of Figure 3.20, the images of the cut head are surrounded by large empty
areas. These areas have no effect on the next steps of the algorithm, aside from increasing computation
time, memory space and the database size. In order to have smaller images with the main objects, I used
a function named Draw Bounding Box from MATLAB Central website and developed another function
named boundingbox that eliminates the black area that surrounds the key head [27], [15], [21]. Figure
3.21 shows the result after applying boundingbox function over Figure 3.20.

Figure 3.21 Head of the key after applying boundingbox function

3.4.2 Moment Invariants for modelling the head of the key image

Now that I can get the image of the head cut from the key, I need to extract some information and
factors from the image in order to compare the head of the original key image with other heads cut
from different key types. The extracted information should be unique for each type of key image

30

because I will look for the corresponding key blank in my database that has the same information as the
original key.

I use image moment and moment invariants to model the image of the heads. Using the Hu set of
moment invariants I can calculate moments which are invariant under translation, changes in scale, and
also rotation [19].

If the size of my image is M * N, the 2-D moment of order (p + q) is defined as Equation (3.9) [14], [15],
[19]:

(3.9)

where p and q are integers.

 The corresponding central moment of order (p +q) is defined as Equation (3.10):

(3.10)

for p = 0, 1, 2, ... and q = 0, 1, 2, ..., where

 and

And the normalized central moment of order (p + q) is defined as Equation (3.11).

(3.11)

where

 + 1

for p + q = 2, 3, ...

The Hu set of seven 2-D moment invariants can be derived from the set of Equations (3.12) [14].

http://en.wikipedia.org/wiki/Translation_(geometry)
http://en.wikipedia.org/wiki/Scale_(ratio)
http://en.wikipedia.org/wiki/Rotation

31

(3.12)

I used a custom M-function called invmoments [15] that implements these seven Equations. This
function gets an image as an input and the result is a seven-element row vector containing the moment
invariants of the input image. These seven moment invariants are insensitive to translation, scale
change, mirroring and rotation [27], [15], [19], [11]. To demonstrate, I applied these geometric changes
to Figure 3.21 to obtain the new images of Figure 3.22, and I compared the seven 2-D moment
invariants of each of these images in Table 3.2. The results are almost identical in all cases, aside from a
sign difference.

 a b c
 d e f
Figure 3.22 (a) Original image. (b) Translated image. (c) Half-size image. (d) Mirrored image. (e) Image rotated 45°. (f) Image

rotated 90°

32

Table 3.2 Seven moment invariants of the images in Figure 3.21

Moment
Invariant

Original
Image

Translated Half Size Mirrored Rotated 45 Rotated 90

 0.6832 0.6832 0.6833 0.6832 0.6833 0.6832

 3.7572 3.7572 3.7608 3.7572 3.7509 3.7572

 5.3004 5.3004 5.2968 5.3004 5.3024 5.3004

 3.6459 3.6459 3.6468 3.6459 3.6470 3.6459

 8.1330 8.1330 8.1341 8.1330 8.1360 8.1330

 5.5247 5.5247 5.5274 5.5247 5.5226 5.5247

 8.7231 8.7231 8.6998 -8.7231 8.7187 8.7231

3.4.3 Distance of moment invariants between two images

In order to compare the seven moment invariants of two images, I implemented a function called
varmoments. In Equation (3.12), show the seven 2-D moment invariants of an
image. Using Equation (3.13) I can compute the distance between seven moment invariants in two
images.

(3.13)

For example, the difference between the original key image in Figure 3.22(a) and the half-size key image
in Figure 3.22(c) computed by my function is 0.0241

Now, I can compare the outputs from different comparisons. The smallest result shows the closest
model to the modeled original image.

3.4.4 Database and finding correct key blank

I created a database of key images and information for my project. Initially, it contains the information
from seven different keys I’ve worked with. I scan these seven keys three times each using a digital
desktop scanner, and I applied the procedure of Sections 3.3 and 3.4 to extract the heads from the key
images. The reason I make three different copies of the keys is that the glare and light reflection on each
one is different, and these differences create variations in the moment invariants that confuse the
identification of the correct blank. Indeed, when I computed the distances of their moment invariants, I
found that, in some cases, the distance between two keys of different types is smaller than the distance
of two pictures of the same key, and this would lead to recognition errors. To compensate for that
problem, I decide to compare the original key’s head with several different images of the blanks’ head
and get the average of the distances. The group that got the smallest average was the correct key blank.
In general, the result is a lot better than by comparing with just one key. After testing and comparing
key heads, I found that getting the average of two images of the head reduced the rate of
misidentifications from 6.3% or 5.2% to 3.1%, and getting the average of three images eliminates almost

33

all errors, so that there are only minimal benefits to using four images or more. Later on in this section, I
will explain the source of this last error and an additional algorithm I used to deal with the last
remaining errors.

In Figure 3.18 I already illustrated the division which is a neighbourhood of 1/6th of the length of the key
image around the geometric center in order to pinpoint the joint. I consider the joint of a key as the
point I can cut the head from the body of the key image. In some key types there are two joints in the
division. Figure 3.23 shows two samples of these types of keys.

 a b
 c d

Figure 3.23 (a) Key number 67. (b) Key number 77. They both have two joints inside their divisions. (c) and (d) are close-ups
of (a) and (b), respectively

I already explained that I find the joint by obtaining the maximum difference between two successive
numbers of white pixels in each row perpendicular to the shank. However, small differences arising
between different images of one key make it possible that the function finds the maximum on the first
or second joint. To illustrate, I scanned each key of figure 3.23 twice and found the joint of each image.
As figure 3.24 shows, two possible joints were identified for each key.

34

 a b
 c d

Figure 3.24 (a) Key head No.67 cut from the top blue line. (b) Key head No.77 cut from the bottom blue line. (c)Key head
No.77 cut from the bottom blue line. (d) Key head No.77 cut from the top blue line.

Figure 3.24 shows the difference between two heads cut from the same key image. Now, I want to
compute moment invariants of these four images and show their distances in a Table 3.3.

As it was explained in sub-section 3.4.3, in order to find the difference between two images, I use the
function varmoments. I expect that the distance between the head images in Figure 3.24 (a) and (b)
gives me the smallest distance because the head images are taken from the same key patent.
Unfortunately the results shows that the distance between images in Figure 3.24 (b) and (d) are the
smallest one. It means it is possible that the function matches the key in Figure 3.24(b) to Figure 3.24(d)
which is absolutely incorrect. I have the same scenario for Figure 3.24 (c) and (d). The distance between
Figure 3.24 (a) and (c) are smaller than the distance between Figure 3.24 (c) and (d).). It is clear, then,
that the extra part of the joint has a major impact on the values of the invariants.

35

Table 3.3 Comparing moment invariants of two-joint key heads

Moment
Invariants

Figure
3.24 (a)

Figure
3.24 (b)

Figure
3.24 (c)

Figure
3.24 (d)

Varmom
((a), (b))

Varmom
((c), (d))

Varmom
((a), (c))

Varmom
((b), (d))

 0.7504 0.7512 0.7680 0.7660

 4.7026 4.5647 4.2290 3.5128 1.4404 2.5414 1.8250 1.3876

 5.3907 4.4814 6.6022 4.7584

 4.3326 4.3494 4.6487 4.7037

 -9.1947 -8.7707 10.2776 -9.4728

 -6.7009 6.6719 6.7695 6.4627

 10.5732 9.5494 11.1741 9.8319

I explained that in the database I place three heads of the key images for each key type. In order to solve
the problem of recognizing the wrong key blank because of a cut at the wrong joint, I created two sets
of images for keys that have two joint divisions. One set has three head images taken from the top joint
and the other one has three head images taken from the bottom joint. Both of these sets refer to one
key blank in the database. The database of the project is shown in Figure 3.25 and the added sets are
shown in last two sets in Figure 3.25.

D1

D2

D22

36

D3

D4

D5

D55

D6

D7

Figure 3.25 Sets of images in database

I explained earlier that there remains a small misidentification error after comparing the original key
head with three blank key heads. In 3.2.2 I explained that in order to keep the holes of the key head, I do

37

not use the algorithm that covers all the holes of the image. Instead, I run the 4-connected filter over
the image to fill in small holes and gaps while keeping the main holes of the key head. But in some cases,
bright spots in the image due to glare and reflected scanner light create holes and gaps that are too
large to be covered by the filter (Figure 3.26).

Figure 3.26 A gap not covered by the filter

The errors mentioned before are because of these false holes in the key heads that remain unfilled.
They cause variations in the moment invariants of the head, and in some cases these variations lead to
the system misrecognising the key. In order to deal with this problem, I completely fill in the three key
heads in each key set and locate these filled key heads beside the first three unfilled key heads [27].
Now in each group I have six key heads of one key type that three of them are filled with white pixels.

The other reason that I compare the filled heads as well as unfilled heads is that I add new information
to the first comparison method. In Figure 3.27 and Table 3.4 I show an example where the distances
between two different key heads are close and the possibility of error exists. But when I compare the
filled key heads, the distance is sharp enough to recognize that these are two different key heads.This
example shows how the filled-head comparison can complement the previous test. By using the average
of all six comparisons (the three not-filled heads and the three filled heads) I can increase the chance of
picking the correct match in my database.

38

 a b
 c d

Figure 3.27 Filled and unfilled head images of two key types

Table 3.4 Distances of filled and unfilled head images of two key types

Var(Figure 3.27 (a), (b)) 1.4208

Var(Figure 3.27 (c), (d)) 4.3395

The function that I defined for the database picks the original key head image and one of the sets in the
database (as shown in Figure 3.25, each set contains three head images of the same key type) and gets
the distances of moment invariants between the original image and the three head images existing in
each set of the database. Then, the function fills in the original head image and the head images in the
set with white pixels. Again, the function gets the distances of moment invariants between the filled
original head image and the filled head images in the set. Finally, there will be six distances for each set.
Figure 3.28 shows a sample of original head image and a set of head images that will be compared with.

39

Figure 3.28 is the original head image that is compared with , and . is filled original image that is compared
with , and .

The average of these six distances is preserved as a double-precision constant. Images in Figure 3.28 ()
and 3.28 () will compare to all other sets and the function will keep their average of distances, too.
The reason that I compare the original key head with three different heads of the same type of key is to
decrease the possibility of error in finding the correct key blank. The reason that I used filled heads three
times (like the unfilled head images) is that, I want to keep the balance between the effect of filled and
unfilled distances of moments in average and final result. Comparing the filled binary head images is an
algorithm to compare the moment invariants of the complete patterns of the keys. Finally, the set which
got the lowest average is considered as the closest set of images to the original head image. The
corresponding color key blank image of the selected set, plus the physical length of the key blank (in
millimetres) and the key’s patent number and pixel length are all displayed on the screen as the outputs
of the function. Pixel length is the ratio between the physical length of the key blank in millimetres and
the length of the original key computed from top and bottom points of the key image in pixels. Using
pixel length, I can get the real and physical size of each pixel in my original key image. Figure 3.29 shows
the sample key blank image with the information I can get after finding the correct key blank.

40

Figure 3.29 Obtained key blank with the information

In addition to the moment invariants, I developed a second function that works as a supplement in
order to enhance the accuracy of the key blank detection. That function counts the number of pixels in
head’s holes and number of head’s white pixels. The output of the function is the ratio of these two
numbers. The ratio is unique for each key head image within a margin of error, and can thus be used as
another factor to compare different key heads and get the right key blank. I use this function to resolve
ambiguous cases where the difference between moment invariants of two different keys is too small to
be confident the algorithm picked the correct one.

3.5 Shank
In this section, I introduce the algorithms and procedures that allow me to find the edges and to
measure the depths of the dents and indentations of the original key image in physical measures.

In order to find and measure the dents of the shank, I begin by focusing on the shank of the key image
and detecting the edges of the image. Then I interpolate more precise sub-pixel coordinates for the
points observed in the image as edges. At the end, I will convert the sub-pixel measures into physical
measures.

3.5.1 Cutting the shank from the key image and detecting the edges and dents of the shank

I change my original color key image, to a binary image filled in with white pixels. Then I eliminate noise,
holes and gaps that exist inside the key image. I explained the details of the algorithms in 3.2. Using the
function filledBinary, I got a binary image of the key without any noise and holes inside the shank of the
key. Figure 3.30 shows the original color image and the binary one.

41

 a b
Figure 3.30 (a) Original color image. (b) Binary image after using filledBinary function

I illustrated the details about properties of the image in 3.3.1, adjusting the angle of the key image in
3.3.2 and adding zero pad arrays to the image in 3.3.3. I repeat all these algorithms and find the
geometric centre, top and bottom of the key (Figure 3.17), and the division which is cut from 1/12th of
the distance before and after the geometric centre of the key (Figure 3.18). Using the technique I
explained in 3.3.4, I find the joint of the key and the line that separates the key head and the shank
(Figure 3.19).

Because the weights of the pixels are not the same at all parts the key image [27], [7]; the centroid
(centre mass) is closer to the head of the key. I can use this fact to know that the head and the shank are
located at which side of the cut line. I separate the shank from the body of key image and restore it in
another image shown in figure 3.31.

42

Figure 3.31 The shank cut from the key image

3.5.2 Detecting edges and dents of the shank

I need to have an image which only shows me the white pixels that are representative of the dents of
the key. The goal is to obtain the connected contour of the image with one pixel width. Other white
pixels that are inside the shank should be eliminated from the ideal contour.

Edge detectors are tools in image processing that identifies points in a digital image. These operators
recognise the points in an image in which brightness changes sharply or has discontinuities [2]. The basic
goal in image processing is to find places in an image where the intensity changes rapidly [14], [15], [2].
There are two general criteria:

1. The places where the first derivative of the intensity is greater in magnitude than a specified
threshold.

2. The places where the second derivative of the intensity has a zero crossing.

In this project I use Canny Edge Detector which is one of the most powerful edge detectors [14], [18].
First, this detector employs Gaussian filter with a specified standard deviation to smooth the image and
reduce the noise [4]. There are three techniques (Sobel, Prewitt, Roberts) shown in Figure 3.32 that can

be used to compute the derivatives. Then the edge detector computes the local gradient,

and edge direction at each point of the image [14], [2]. The definition of an edge point is

a point which locally has the maximum strength in the direction of the gradient [14], [4]. The edge
points bring about the ridges in the gradient magnitude image. The algorithm tracks along the top of
these ridges and change the value of all pixels that are not on the ridge top. Then based on two
thresholds, T1 and T2 that T1 < T2, ridge pixels are thresholded. Ridge pixels with values greater than T2
are said to be “strong” edge pixels and ridge pixels with values between T1 and T2 are said to be “weak”
edge pixels. Finally, the algorithm performs edge linking by adding the weak pixels that are 8-connected
to the strong pixels [4].

43

Canny Edge Detector results are superior to the results from other edge detectors. It detects the details
of the image clearly and produces the cleanest edge map.

Image neighbourhood

 a

 b

 c

 d

Figure 3.32 Edge detector masks, (a) Image neighbourhood. (b) Sobel. (c) Prewitt. (d) Roberts.

-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

0 -1

1 0

-1 0

0 1

44

Figure 3.33 shows the result after I apply canny edge detector on Figure 3.31. The width of the
connected contour in the image is ideally one pixel.

Figure 3.33 Connected contour of the shank using canny edge detection

In Figure 3.33 each pixel presents a point of the ridges that will be measured accurately for cutting a
new key blank. In this image, some pixels are not part of the shank edges. The pixels of the line that cuts
the border of head and shank of the key and connects two sides of the key shank are not actual
elements of the edges that should be transferred to the system as the information for cutting device.
This line appeared in Figure 3.33 because it was a part of the perimeter of the shank in Figure 3.31. In
order to get rid of this line at the joint of the key and have an image with real dents of the key image,
first I fill in the binary image of the key shown in Figure 3.30(b) with white pixels (Figure 3.34(a)) and
using canny edge detector I get the connected contour of the whole key image (Figure 3.34(b)). Using
cutHead function that I explained in 3.3 I have the head of the key image. I fill in its holes and obtain the
connected contour of the head (Figure 3.34(c)). The difference between connected contours of the
whole key image and head of the key image lead me to find the connected contour of the shank without
the line that connects two sides of the key shank (Figure 3.34(d)).

45

 a b c d

Figure 3.34 Finding the contour of the shank without the line that separates head and shank

3.5.3 Sub-pixel Interpolation

In last part I found the way I can keep the pixels of the shank that present the edges and dents of the
original key image. Each pixel in Figure 3.34(d) is representative of a position of cut but measuring the
positions of cuts in pixels is too rough and is not accurate and appropriate enough for a cutting machine
to know how to cut a new key blank. In this part the goal is to interpolate more precise coordinates for
the points observed in the image as white pixels. The sub-pixel point will be the ones that will be
converted to the suitable scale to know how to cut the key.

In this step I get an edge pixel of the shank and its coordinates from Figure 3.34(d) and find the
coordinates of the eight pixels around the edge pixel. Now I got a 3 by 3 neighbourhood of the binary
image that the middle element is the edge pixel. I retrieve the corresponding 3 by 3 neighbourhood
from original grayscale key image with the same coordinates that I just found from binary image. In
Figure 3.35(a) the middle star denotes the selected edge pixel and the stars around it show the 3 by 3
neighbourhood of pixels. In Figure 3.35(b) the retrieved 3 by 3 neighbourhood from the original
grayscale key image is denoted. The star in the middle of the neighbourhood in Figure 3.35(b) shows the
coordinates of selected edge pixel from Figure 3.35(a).

46

 a b

Figure 3.35 (a) Edge pixel and its neighbourhood in binary contour of the shank. (b) Retrieved neighbourhood from the
grayscale key image.

Now in the neighbourhood shown in grayscale image I need to find the coordinates of the point of the
edge among these nine pixels as precisely as possible. I will use the Vandermonde method to interpolate
multivariate real-valued functions [17].

I have nine pixels in a neghbourhood. Each pixel has its coordinates and intensity in gray scale measures.

In another words, I have a polynomial which has nine terms and two variables so it is a two degree

polynomial. Equation (3.14) shows my polynomial which passes through all of the considered points.

(3.14)

I will simply write down the problem in the form that
 is the vector of values that keeps the intensities of the pixels in the 3 by 3 neighbourhood. is the

vector of coefficients and is the Vandermonde matrix [17].

The Vandermonde matrix is an n × n matrix where the first row is the first point evaluated at each of
the n monomials, the second row is the second point evaluated at each of the n monomials, and so on.
Figure 3.36 shows the Vandermonde matrix I used to solve the Equation [17].

47

Figure 3.36 Vandermonde matrix for solving the polynomial equation

In the problem is the vector of coefficients and is unknown so by dividing by , I can simply
find the coefficients of the equation.

Now I got a polynomial that passes through all the nine points in the neighbourhood. The goal is to find
a more precise edge in this neighbourhood so I have to obtain the coordinates of a point in the
polynomial that gives me the darkest point in the grid because the darkest point is the real position of
edge located in that 3 by 3 neighbourhood. A sample grid that covers nine points is shown in Figure
3.37. The darkest point of the grid has the minimum point value in the polynomial [17].

Figure 3.37 The interpolating polynomial of nine points
2

2
 http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

48

In order to find the coordinates of the more precise edge in the grid, I will find the coordinates of the
point that gives me the minimum result in the polynomial Equation (3.12). I used a function called
fmincon3 from MATLAB optimization toolbox to compute the polymonial function based on Sequential
quadratic programming (SQP) and find the coordinates of the real edge [15]. I defined a set of lower and
upper bounds (lb = [-0.5,-0.5] and ub = [+2.5,+2.5]) on the design variables so the solution is always in
the range lb ≤ x & y ≤ ub.

After I got the coordinates of the minimum value in the polynomial, I determined the coordinates of the
real edge point in the binary image of the shank (3.31(d)). The binary image of the shank denoted with
the coordinates of more precise edge points are shown in Figure 3.38. The blue line is the major axis line
of the key image.

Figure 3.38 sub-pixel points representing more precise edge points than edge pixels

3.5.4 3.5.4 Determining the positions of cuts and converting them to physical measures

Sub-pixel points are the real dents that the blade of the cutting machine will cut a new key blank. In
order to find and store the locations of each sub-pixel points I compute the shortest distance between
each edge point and the major axis line of the key image shown in Figure 3.37 [13]. In order to be able to
compute the shortest distance of two sided keys’ edges, I do not measure the distance between each
edge point and total width of the key.

The distance between the point () and the line is given by the formula shown in
Equation (3.15) [13].

(3.15)

3
 http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

49

The calculated distance in my image is in pixels. In 3.4.4 I explained the way I can find the correct key
blank and determine the pixel length in physical measures (millimetres) for the corresponding original
key image. Using that technique I can convert the distance between the edge points and the major axis
line to millimetres and store the distances in an array. The array keeps all the coordinates of the edge
points and their distance to the major axis line in millimetre.

3.6 Another example of the software procedures on a sample key image
In this section I illustrate the algorithms and their performance on a sample key and show the results
step by step. Figure 3.39 shows the grayscale key image that we want to work on it.

Figure 3.39 Original grayscale key (2nd key)

The first function is filledBinary (explained in 3.2) that has two steps. The first step is converting the
grayscale image into a binary image. Figure 3.40 shows the inverted binary key image.

50

Figure 3.40 Inverted binary key image (2nd key)

Then I eliminate gaps, holes and noise of the binary image shown in Figure 3.41.

Figure 3.41 Binary key image without gaps, holes and noise (2nd key)

51

According to section 3.3, the image is ready to cut the head from the body of the key image. The first
step of the function cutHead is to obtain the division of the key that is the neighbourhood of 1/6th
around the geometric center shown in Figure 3.42.

Figure 3.42 Division of key image (2nd key)

Next I start counting number of white pixels in each row of the division and save the numbers in
elements of an array shown in Table 3.5. The sharpest difference in each two successive elements
represent s the position of joint and the place I can cut the head from the shank of the key image.

Table 3.5 Number of pixels in each row (2
nd

 key)

Column 1-10 Column 11-20 Column 21-30 Column 31-40 Column 41-50 Column 51-60 Column 61-64

63 49 40 39 38 33 35

63 46 39 39 37 33 35

62 43 40 40 36 33 34

63 41 40 39 36 33 34

59 40 40 39 36 34

57 40 41 39 35 33

55 40 39 40 34 34

53 40 39 39 33 34

53 40 40 39 33 35

53 40 39 38 33 36

52

The 4th and 5th elements of the array (in bold) show the sharpest difference and lead me to find the
coordinates of the joint. In Figure 3.43 I show the line that pass the joint of the key and separates head
and shank of the key image.

Figure 3.43 The line that separates the head and shank of the key image (2nd key)

In last part of the function cutHead I restore the head of the key image illustrated in Figure 3.44.

Figure 3.44 The head cut from the body of key image (2nd key)

53

According to the function findKey (section 3.4), the image of the head in Figure 3.44 is surrounded by
large empty areas and using the function boundingbox, I eliminate the black areas around the main
object (Figure 3.45).

Figure 3.45 Head of the key in bounding box (2nd key)

In Figure 3.46 I show the filled original head images and using the Equations (3.12) and (3.13) I compute
the distance of moment invariants between the filled and unfilled head images shown in Figures 3.45
and 3.46.

Figure 3.46 Filled Original key head (2nd key)

The result shows the distance between moment invariants of filled and unfilled original key head images
is 2.1564 which is a reasonable difference between their moment invariants. This distinction between
these two images helps me use the filled original key head image (Figure 3.46) as another feature for
comparison between filled head images.

In Figures 3.47 – 3.55, I showed the keys in each set and in Tables 3.6 – 3.14 I computed the result of
distances between moment invariants of original head image and the key head images in each set.

54

Figure 3.47 Three head images of key type number 77

Table 3.6 Distances of key type number 77

Figure 3.48 Three head images of key type number 77 (second joint)

Table 3.7 Distances of key type number 77 (second joint)

Figure 3.49 Three head images of key type number 8

 Unfilled head images Filled head images Average

Var(4.7, 4.9(a)) 4.9506 4.4813

Var(4.7, 4.9(b)) 4.6538 4.8143 4.7372

Var(4.7, 4.9(c)) 4.9439 4.5797

 Unfilled head images Filled head images Average

Var(4.7, 4.10(a)) 2.4622 6.8755

Var(4.7, 4.10(b)) 2.7309 6.9442 4.6655

Var(4.7, 4.10(c)) 2.6066 6.3739

55

Table 3.8 Distances of key type number 8

Figure 3.50 Three head images of key type number 96

Table 3.9 Distances of key type number 96

Figure 3.51 Three head images of key type number 69

Table 3.10 Distances of key type number 69

 Unfilled head images Filled head images Average

Var(4.7, 4.11(a)) 2.3892 8.5499

Var(4.7, 4.11(b)) 2.5146 14.2171 7.1800

Var(4.7, 4.11(c)) 3.0144 12.3949

 Unfilled head images Filled head images Average

Var(4.7, 4.12(a)) 0.4673 0.4241

Var(4.7, 4.12(b)) 0.1895 0.4062 0.4750

Var(4.7, 4.12(c)) 0.6456 0.7174

 Unfilled head images Filled head images Average

Var(4.7, 4.13(a)) 1.5527 1.8618

Var(4.7, 4.13(b)) 1.5815 1.5506 1.6081

Var(4.7, 4.13(c)) 1.6248 1.4774

56

Figure 3.52 Three head images of key type number 66

Table 3.11 Distances of key type number 66

Figure 3.53 Three head images of key type number 67

Table 3.12 Distances of key type number 67

 Unfilled head images Filled head images Average

Var(4.7, 4.14(a)) 2.7897 9.2944

Var(4.7, 4.14(b)) 2.4611 10.0186 6.7555

Var(4.7, 4.14(c)) 3.1982 12.7712

 Unfilled head images Filled head images Average

Var(4.7, 4.15(a)) 3.7834 9.9060

Var(4.7, 4.15(b)) 3.6274 10.2183 6.9732

Var(4.7, 4.15(c)) 3.3000 11.0042

57

Figure 3.54 Three head images of key type number 67 (second joint)

Table 3.13 Distances of key type number 67 (second joint)

Figure 3.55 Three head images of key type number 68

Table 3.14 Distances of key type number 68

Table 3.9 has the lowest average of distances among moment invariants so it introduces the information
about the key type for further uses. Besides, Figure 3.56 is popped up on the screen to show us the key
blank that is found by the function findKey.

 Unfilled head images Filled head images Average

Var(4.7, 4.16(a)) 2.5001 7.8831

Var(4.7, 4.16(b)) 2.4524 7.3097 5.0631

Var(4.7, 4.16(c)) 2.4943 7.7394

 Unfilled head images Filled head images Average

Var(4.7, 4.17(a)) 1.4208 4.3395

Var(4.7, 4.17(b)) 1.4575 4.1395 2.7449

Var(4.7, 4.17(c)) 1.3828 3.7297

58

Figure 3.56 Obtained key blank from database using the function findKey(2nd key)

After finding the correct key match in the database, I have the information about the physical length,
key number and pixel size of the original key. In part 3.5.1 I explained the way I cut the shank from the
key image. Figure 3.57 shows the shank of the original key image.

Figure 3.57 Shank cut from the original key image (2nd key)

Using canny edge detection and the method that I explained in 3.5.2 I obtain Figure 3.58 that is the
connected contour of the shank which has the pixels showing the position of cuts and dents. I showed
the major axis line in blue.

59

Figure 3.58 Connected contour of the shank (2nd key)

Sub-section 3.5.3 talks about the method I use to measure the position of cuts and indentations in
physical measures not in pixels. Vandermone sub-pixel interpolation is the method I use to find more
precise edges in the connected contour of the shank. Figure 3.59 shows the connected contour denoted
with sub-pixel points representing more precise edge point s than the edge pixels.

Figure 3.59 Sub-pixel points over the shank (2nd key)

60

According to sub-section 3.5.4 and Equation (3.15) in Table 4.32 I illustrate the real position of cuts in
Figure 3.60.

Figure 3.60 Edge points superimposed over the edge pixels

The coordinates of sub-pixel points and their distance to the major axis line (in pixels) are saved in an
array. The information in the array alone with the key number will be transferred to a cutting machine
to pick the correct key blank and cut the dents and edges on it.

61

4 Experimental Results

4.1 Introduction
In this chapter I will present and analyse the experimental results I obtained with my key measuring
system. I will test the two major goals of the project, which are finding the correct match for the original
key image and measuring the depth of the cuts and edges of the original key shank. In the first set of
tests in Section 4.2, I will study the performance of the procedures I used to find the correct key blank in
the database and will discuss about the errors and how I deal with them. The second set of tests in
Section 4.3 is designed to study the measures of the key dents. The relative errors in finding the position
of cuts will be computed and I will explain the factors that can affect them.

4.2 Identify the correct key blank
In Chapter 3, I explained that I compare a key’s head to six images in the database, three images of the
head with its holes intact and three with the holes filled up. My first experiment is meant to
demonstrate the necessity of doing this number of comparisons. I will study 21 different images of my
test keys, presented in Figure 4.1. Their heads were extracted using the “cutHead” function of section
3.3 and shown in Figure 4.2.

62

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7

c1 c2 c3 c4 c5 c6 c7

Figure 4.1 Three sets of seven types of key

A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6 B7

C1 C2 C3 C4 C5 C6 C7

Figure 4.2 21 Binary key heads

63

Next, I computed the seven moment invariants of each binary key head image in Figure 4.2 using
Equation (3.12). The results are presented in Table 4.1.

Table 4.1 Moment invariants of binary head images

 1 2 3 4 5 6 7

A1 0.7059 3.6129 3.5105 3.8507 7.5449 5.7185 8.1389

B1 0.7069 3.6779 3.4909 3.8458 -7.5185 7.7555 8.3607

C1 0.7066 3.7279 3.5681 3.8376 -7.5543 5.7403 8.1454

A2 0.7674 4.2222 6.2130 4.6118 10.0261 6.7238 11.0535

B2 0.7665 4.0093 5.8692 4.6024 -9.9674 6.6083 -10.0123

C2 0.7665 3.5745 4.9163 4.6991 -9.5664 6.4972 9.8165

A3 0.7199 3.8415 3.7438 4.1048 -8.0292 6.0261 -9.6492

B3 0.7188 3.8609 3.6606 4.1131 -8.0000 6.0455 -9.6104

C3 0.7163 3.8394 3.6788 4.1285 -8.0325 6.0512 -9.3779

A4 0.7137 2.9742 3.0025 4.2865 -7.9364 5.7743 -8.7334

B4 0.7127 2.7319 2.9537 4.5874 -8.3608 5.9534 -9.2992

C4 0.7169 2.9923 2.9882 4.4405 -8.1554 5.9367 -9.4909

A5 0.7509 4.5142 4.4405 4.3482 -8.7492 6.6330 9.5033

B5 0.7503 4.7816 5.5811 4.3293 -9.3759 -6.7221 9.5165

C5 0.7481 4.6421 5.6490 4.2922 -9.3194 -6.6159 9.5822

A6 0.6871 3.8747 5.0117 3.6703 8.0113 5.6092 9.8860

B6 0.6877 3.6804 5.2733 3.6756 8.1992 5.5164 8.4971

C6 0.6879 3.6490 5.4409 3.6734 8.2679 5.4980 8.6313

A7 0.7525 3.7572 5.4073 4.1865 8.9840 6.0723 10.2819

B7 0.7486 3.7254 5.4913 4.1071 8.9561 5.9709 9.2501

C7 0.7501 3.7428 5.8372 4.1172 9.8402 5.9896 -9.1016

4.2.1 Sample Keys

When comparing the moment invariants, I would ideally obtain the minimum distances between keys of
the same type. To check this in practice, I will begin by computing the distance of moment invariants
between some of the head images using Equation (3.13). I have selected three sample key heads to
explore this question: A5, A2 and A7. The distance results are presented in Table 4.2.

64

Table 4.2 Distances between three test keys and the other head images, using unfilled heads

 A5 A2 A7

A1 2.4648 4.8909 3.2439

B1 2.3336 4.7721 3.1203

C1 2.3896 4.8349 3.1978

A2 2.7090 0 1.7755

B2 2.0260 1.1245 1.3331

C2 1.4203 1.9752 1.1286

A3 1.3807 3.5983 2.0239

B3 1.4175 3.6802 2.1185

C3 1.3974 3.7469 2.1730

A4 2.5368 4.7566 3.1610

B4 2.4698 4.3923 2.9329

C4 2.2962 4.3017 2.7988

A5 0 2.7090 1.5842

B5 1.3318 1.8914 1.5039

C5 1.3459 1.8090 1.3229

A6 1.7141 3.0202 1.3261

B6 2.0992 3.6592 2.0975

C6 2.1187 3.5032 1.9614

A7 1.5842 1.7755 0

B7 1.5263 2.4468 1.0440

C7 2.0892 2.2360 1.5241

The results with head A5 does show the minimum distance when compared to B5 and C5, the two other
keys of the same type. However, some of the other distances are very close to that minimum value as
well; model 3 is a good example of this problem. This creates the potential for confusion in the system.
The test with A2 further illustrates this problem. While B2 does give the minimal distance, three other
keys, B5, C5 and A7, incorrectly show a lower distance than C2. The test with A7 gives even worse
results: after the correct match with B7, five heads show a lower distance than C7. This demonstrates
that the distance between these pairs of key heads is not sufficient to pinpoint the correct match. A
system that used C2 and C7 as its database head, for example, would not correctly recognise keys A2
and A7.

As I explained in Chapter 3, I deal with this problem by also computing the moment invariants and the
distance of filled versions of the key heads. To illustrate the impact of this change, the same set of
comparisons of Table 4.2 was repeated using filled heads, and the results are shown in Table 4.3. We
can see from this table that there are still errors present – but they are different from those in Table 4.2.

Previously, A2 was misclassified to B5, C5 and A7 before C2. In these new results, those three keys give a
much higher distance, but C3 gives a new error. Likewise, A7 had falsely low distances with B2, C2, B5,
C5 and A6 in Table 4.2. Now, four of these five have higher distance; only B5 remains an error, along
with B6 And while A5 had the minimum distances when compared to keys B5 and C5, in Table 4.3 four

65

new errors come up: C2, B6, C6 and C7 have lower distances than B5 and C5. However, the three keys of
model 3, which were nearly matches in Table 4.2, show a much higher distance now.

Table 4.3 Distances between three test keys and the other head images, using filled heads

 A5 A2 A7

A1 5.9733 3.9479 9.2432

B1 5.7708 3.6977 9.0026

C1 5.6605 3.7018 8.9675

A2 3.0470 0 5.4493

B2 2.8008 1.4078 6.1385

C2 1.4494 1.9058 4.7843

A3 3.7288 2.4278 7.2117

B3 3.8065 2.1936 7.1373

C3 3.5142 1.5503 6.5974

A4 7.1180 5.1856 10.3886

B4 7.8020 5.6390 10.9205

C4 6.8113 4.6303 9.8869

A5 0 3.0470 4.0654

B5 2.4089 4.9842 2.7318

C5 2.4560 5.1465 3.0383

A6 3.8461 6.2251 3.4573

B6 1.5740 4.1904 2.9139

C6 1.4408 4.1194 3.0365

A7 4.0654 5.4493 0

B7 4.0183 6.6276 3.0034

C7 2.0344 4.5969 2.5890

Clearly, neither the comparison between unfilled heads nor filled heads is sufficient by itself to pair the
heads without errors. However, as we mentioned in Section 3.4, the errors are mostly different between
the two comparisons. Table 4.4 shows the results of averaging out the distance values of tables 4.2 and
4.3. As can be seen, the low values of the correct matches in each of these tables average out to a
similarly low value, while the erroneous matches that had a low value in one table and a high value in
the other average out to a higher distance than the correct matches. Indeed, no erroneous matches
remain in Table 4.4.

Of particular interest is B5, which was an erroneous match compared to A7 in both tests. Using unfilled
heads, it showed a distance of 1.5039 compared to A7, lower than 1.5241 for C7 but higher than 1.0440
for B7. Using filled heads, it had a distance of 2.7318, this time lower than B7 at 3.0034 but higher than
C7 at 2.5890. That is to say, B5 was always an erroneous low-distance match, but compared to a
different one of the two correct keys. When averaging out, B5 gets a distance of 2.1178 compared to A7,
higher than both B7 at 2.0237 and C7 at 2.0565.

66

Table 4.4 Average of filled and unfilled distances between three test keys and the other head images

 A5 A2 A7

A1 4.2190 4.4194 6.2435

B1 4.0522 4.2349 6.0614

C1 4.02505 4.2683 6.0826

A2 2.8780 0 3.6124

B2 2.4134 1.2661 3.7358

C2 1.4348 1.9405 2.9564

A3 2.5547 3.0130 4.6178

B3 2.6120 2.9369 4.6279

C3 2.4558 2.6486 4.3852

A4 4.8274 4.9711 6.7748

B4 5.1359 5.0156 6.9267

C4 4.5537 4.4660 6.3428

A5 0 2.878 2.8248

B5 1.8703 3.4378 2.1178

C5 1.9009 3.4777 2.1806

A6 2.7801 4.6226 2.3917

B6 1.8366 3.9248 2.5057

C6 1.7797 3.8113 2.4989

A7 2.8248 3.6124 0

B7 2.7723 4.5372 2.0237

C7 2.0618 3.4164 2.0565

Computing the average of a filled and unfilled version of the same image yields the desire results for A2

and A7, but in some cases the between A5 and the two other keys of its model are not the minimum.

Indeed, C2, B6 and C6 have the lowest averages with A5. Moreover, in some correctly-classified cases I

find that the average distance of a wrong key is not sharply higher than that of the same key type. In

fact, the difference can be as low as 0.06 (or 3% of the distance value), in the case of the A7-C7 match

compared to A7-B5. Clearly the potential for errors still exists.

As I explained in 3.4.4, in order to increase the chance of finding the correct match, I compute the

distances between the original head image and three different images of a key head of each type stored

in the database and shown in Figure 3.25. As we can see in Table 4.5, averaging the distance of three

images gives results that are much more robust and resilient to noise. In all three sample cases, the test

keys show the lowest average distance with keys of the same type. In addition, the difference between

the distance of a correct and incorrect match becomes more significant. In the specific case of our

previous example, the difference between A7-tpye 7 and A7-type 5 is five times higher, at 0.3 or 15% of

the distance value.

67

Table 4.5 Average of distances using the database of key images

 A5 A2 A7

Key type No. 1 4.0987 4.3075 6.1291

Key type No. 2 2.2420 2.2364 3.4348

Key type No. 3 2.5408 2.8661 4.5436

Key type No. 4 4.8390 4.8175 6.6814

Key type No. 5 1.8856 3.2645 2.3744

Key type No. 6 2.1321 4.1195 2.4654

Key type No. 7 2.5529 3.8553 2.0401

4.2.2 Results on 21 Keys

The experiment described in the previous subsection was run with all 21 keys, not just the three
presented previously. The results, shown in Table 4.6, confirm that the comparison becomes more
accurate when we average more sample images together.

Table 4.6 Errors occurred in each step with all 21 sample keys

 Errors
compared to
one unfilled

key

Errors
compared to
one filled key

Errors when
averaging the

filled and
unfilled key

Errors when
averaging two

keys

Errors when
averaging
three keys

A1 0 0 0 0 0

B1 0 0 0 0 0

C1 0 0 0 0 0

A2 3 1 0 0 0

B2 1 3 0 0 0

C2 6 1 1 0 0

A3 0 0 0 0 0

B3 0 0 0 0 0

C3 0 0 0 0 0

A4 0 0 0 0 0

B4 0 0 0 0 0

C4 0 0 0 0 0

A5 0 4 3 1 0

B5 1 4 4 0 0

C5 4 4 4 0 0

A6 3 0 0 0 0

B6 1 4 4 0 0

C6 1 4 4 0 0

A7 5 2 0 0 0

B7 0 5 4 1 0

C7 4 6 4 4 2

System
Average

29 errors
10 keys failed

38 errors
11 keys failed

28 errors
8 keys failed

6 errors
3 keys failed

2 errors
1 key failed

68

The results of Table 4.6 are obtained by comparing each of the 21 keys of Figure 4.2 with the other 20

keys. This gives a total of 420 comparisons. When using one unfilled head image only, 10 keys are

recognized incorrectly. Moreover, there are 29 distances that are wrongly higher than the correct key

distance, which is to say that 6.9% of distances are erroneous. Using only one filled head image gives

even worse results: 11 keys are misclassified, and 38 of the distances, or 9%, are erroneous.

Averaging the filled and unfilled key head images gives a small improvement in the results. 28 of the
distance averages (6.7%) are erroneous and 8 out of 21 keys are not identified correctly. Although the
improvement is small, it confirms that averaging both images is more accurate than using either image
separately. Next, I average the distances of two different key heads for each key. With three different
heads per key model, there are three different pairs of key heads or 19comparisons for each of the 21
keys and 378 average distances in total. As we can see in Table 4.6, the number of errors drops sharply
in this case: only 3 of the 21 keys are misclassified, and only 6 of the distances, or 1.5%, are erroneous.

Finally, I tested by taking the average of the distances between the original key and the three keys in
each set (two keys in the set of the same key type). The results are now nearly perfect: only one key is
misclassified. In this experiment I computed 7 average distances for each of the 21 keys, and I find that
only 2 of these averages, or 1.4%, are erroneous.

This test shows why I need to have three keys of the same key type in each key set. Only one
misclassified key remains after averaging three images, and the proportion of erroneous distance
averages has remained roughly the same as with two averages. This seems to be the best result we can
get by averaging images of the head. But errors do remain, and looking at Table 4.6 shows that key C7 is
the single most difficult key to classify using comparisons.

I tested different key head images of this type and found out there is only one specific key type that
might be selected incorrectly by the system as the match for original keys from key type number 7 and
that is key type number 5. I reviewed the keys and tried to define another factor for comparison in
addition to the moment invariants. Looking at the images of Figure 4.2, one clear difference between
those two models and other key models as well, is the size of the main hole in the key’s head. I can take
that parameter into account easily enough, by computing the ratio of white and black pixels inside the
key head. As we can see in Table 4.7, the difference between the ratios of these two types is a good
enough to identify the correct key blank among key type number 5 and number 7. This factor is a kind of
supplement only for identifying key type number 7. When the system classifies a key as type number 5
using the distances, this second test checks specifically the ratio of number of pixels in the hole to
number of pixels of the head. If the ratio is closer to the average of the ratios in key type number 5, this
key type is the correct key blank; otherwise, key type number 7 is the match for the original key image.
As we can see in Table 4.7, there is a clear difference in the hole-to-head ratio of those two key models.
The average ratio for model 7 is 0.1254, while for model 5 it is 0.0983. This feature is not useful for all
other classifications and cannot be used as a reliable factor among all key types to identify the correct
key blank. There are some overlaps among different ratios of other key types. Indeed, while the ratios
between key type number 5 and 7 have a reasonable difference, the ratio of model 7 is close to that of
model 3 and the ratio of model 5 is close to model 4. This method would thus not be able to tell apart
these keys.

69

Table 4.7 Ratio of number of pixels in head hole to number of head’s white pixels

 No. of hole black pixels No. of head white pixels Ratio (hole pix/head pix)

A1 7395 42648 0.1734

B1 7518 43062 0.1746

C1 7438 43066 0.1727

A2 4381 66414 0.0660

B2 4409 66375 0.0664

C2 4312 68409 0.0630

A3 5652 48107 0.1175

B3 5687 48605 0.1170

C3 5872 48202 0.1218

A4 5632 53738 0.1048

B4 5150 56677 0.0909

C4 5137 54789 0.0938

A5 5623 58748 0.0957

B5 5583 57094 0.0978

C5 5775 57002 0.1013

A6 11380 49424 0.2303

B6 11304 49701 0.2274

C6 11314 49823 0.2271

A7 5876 49528 0.1186

B7 6200 48258 0.1285

C7 6252 48397 0.1292

When I studied the first two tests of Table 4.6 further, I found that out of the 67 erroneous distances in
the set of 840 distances of filled and unfilled key heads, almost half (32 errors) are related to key type
number 2 and 5. Looking at Figure 4.2, we can see that these are the two key models for which there are
two possible joints that my software can find. I discussed this problem in Section 3.4.4, and I explained
that in these cases, the moment invariants will be different depending on whether the software cut the
head from the first or second joint of the key. The resulting high error rate that I’ve shown here is why I
decided it was necessary to have two sets of three images in the database for these keys, one set with
each possible joint division.

4.2.3 Results with Database

For a final test, I decided to study the classification results using the 21 sample keys of Figure 4.2 and the
27 keys from seven types in my database4 shown in Figure 3.24 I will first demonstrate the impact of
having three key images of each key type in the database by comparing with different scenarios, and I
will check that the results are comparable to those I obtained in the previous subsection. Finally I will
compare the achieved results and check to see if the software can meet the requirements.

I began by computing the distance in moments invariants the 21 keys of Figure 4.2 compared with one
unfilled key head image of each type in the database (plus a duplicate for types 2 and 5). Of the 189
distances presented in Table 4.8, 13 are erroneous. That gives an erroneous rate of 6.8%, not far off the

4
 Two extra sets are related to the key types which have 2 joints on their shoulders.

70

6.9% obtained in the same test in Table 4.8. However, these errors all occur with only two keys, B6 and
C6.

Table 4.8 Distances of the moments between 21 sample keys and the database (unfilled key heads)

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.0286 5.3258 3.3187 1.6186 1.4107 3.8171 2.5497 1.7471 2.4466

B1 0.2298 5.2142 3.2204 1.4173 1.3447 3.6738 2.4174 1.7289 2.3625

C1 0.1127 5.2693 3.2865 1.5957 1.4814 3.7452 2.4732 1.6877 2.3884

A2 4.8698 0.4824 1.8537 3.6807 4.5511 1.3812 2.6506 3.6706 2.5259

B2 4.0359 1.4351 1.1045 3.0781 3.7786 1.3049 1.9872 2.8512 1.7050

C2 3.1768 2.3866 0.1710 2.1528 2.6892 1.5442 1.4238 2.3646 1.2385

A3 1.6531 4.0683 2.1608 0.1060 1.4321 2.4848 1.4508 1.8157 1.6429

B3 1.6084 4.1514 2.2310 0.0867 1.3838 2.5563 1.4887 1.8659 1.7217

C3 1.4135 4.2135 2.2405 0.2517 1.2607 2.6306 1.4764 1.7387 1.6704

A4 1.1747 5.2052 3.0234 1.4024 0.3631 3.8106 2.6248 2.3099 2.5897

B4 1.9234 4.8388 2.6387 1.4338 0.5573 3.5729 2.5491 2.6527 2.5759

C4 1.8031 4.7609 2.6190 1.1084 0.6286 3.3978 2.3736 2.5345 2.4653

A5 2.4723 2.8188 1.4562 1.3805 2.5624 1.1862 0.1314 2.2554 1.7327

B5 3.4869 1.7640 1.5697 2.6084 3.6829 0.4283 1.3773 2.6239 1.4111

C5 3.4494 1.6923 1.4793 2.5639 3.6373 0.2945 1.4066 2.4736 1.2305

A6 2.3955 3.1816 2.0609 1.5644 2.6296 1.8863 1.7886 1.1351 1.5156

B6 1.9390 3.5612 2.4210 1.9989 2.4438 2.2316 2.1576 2.5524 1.4668

C6 2.1460 3.4000 2.3479 2.1003 2.6039 2.1384 2.1857 2.4521 1.3088

A7 3.2674 1.9631 1.0914 2.1995 3.2410 1.0867 1.7025 1.4585 0.9821

B7 2.7157 2.3590 1.3237 2.0842 2.8654 1.1678 1.6326 2.1410 0.2995

C7 3.4429 1.9458 1.4994 2.8772 3.5311 1.3636 2.1888 2.8339 0.8098

Next, I computed the distance of the moments using the filled version of the head image I used in Table
4.8. The results are shown in Table 4.9. There are 14 erroneous distances, or 7.4%, a small increase
compared to Table 4.8. More importantly, we see the errors changed somewhat: five problem cases in
Table 4.8 are correct in Table 4.9, while six new problem comparisons arose. A total of four keys are
misclassified, including B6 and C6.

The advantage of defining two sets for the key types which have two joints is clear in Table 4.8 and Table
4.9. We do not see any error in key type number 2 and 5 in either of these tables, while they accounted
for half the errors in the previous subsection.

Next, I compute the average of the filled and unfilled distances (the average of Table 4.8 and Table 4.9).
The results are shown in Table 4.10. In the experiment of Table 4.6, this average led to a modest
improvement of the results. Here, the results are not much improved: there are again 12 erroneous
distances and 4 misclassified keys, the same result as with the filled head images.

71

Table 4.9 Distances between 21 sample keys and the database (filled key heads)

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.1245 3.0375 5.5188 2.3665 1.3320 8.8413 6.4870 8.5927 12.9331

B1 0.2849 2.8196 5.2977 2.1363 1.5491 8.6340 6.2835 8.3731 12.7225

C1 0.2471 2.7367 5.2285 2.0823 1.5899 8.5289 6.1744 8.2923 12.6292

A2 3.9329 1.4972 2.1879 1.8265 5.1763 5.5854 3.4618 5.0568 9.5787

B2 3.2631 0.4009 2.2261 1.2277 4.5671 5.6849 3.3018 5.2895 9.8501

C2 4.8104 1.8875 0.7413 2.6627 6.0852 4.2682 1.8886 3.7658 8.3937

A3 2.2092 1.0872 3.4822 0.7715 3.3957 6.5966 4.2408 6.4441 10.6874

B3 2.1412 1.0152 3.4735 0.4246 3.3467 6.6555 4.3163 6.4662 10.7303

C3 2.6113 0.7770 3.0459 0.3027 3.8219 6.3168 4.0110 6.0494 10.3571

A4 1.3580 4.2729 6.7516 3.5381 0.0600 9.9597 7.6287 9.8039 13.9646

B4 1.9673 4.8867 7.3261 4.1319 0.8819 10.6534 8.3126 10.4174 14.6437

C4 1.1375 3.9004 6.3522 3.1129 0.7733 9.6351 7.3194 9.4185 13.6215

A5 5.9947 2.9784 1.5138 3.3852 6.9958 3.9772 0.0810 5.8260 5.3729

B5 8.2642 5.1244 3.7876 5.4981 9.2286 1.8293 2.4493 4.6712 3.3033

C5 8.3114 5.2442 3.8845 5.6136 9.2591 2.0442 2.4936 4.7368 3.4429

A6 9.5960 6.3992 4.6648 6.9357 10.6761 2.8131 3.9226 2.0678 3.4857

B6 7.5220 4.3154 2.7487 4.7639 8.5478 2.5736 1.6413 4.4470 3.9414

C6 7.4037 4.2230 2.6404 4.6678 8.4241 2.7133 1.5089 4.5507 4.0644

A7 9.3166 5.9063 4.8278 6.2503 10.3344 1.7301 4.1136 4.5667 2.3394

B7 9.8587 6.7830 5.2700 7.1160 10.7648 2.2491 4.0697 4.2905 2.2216

C7 7.9127 4.7431 3.1949 5.1220 8.8881 2.3943 2.0949 4.4948 3.4228

Table 4.10 Average of distances of filled and unfilled key heads (first set)

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.07655 4.18165 4.41875 1.99255 1.37135 6.3292 4.51835 5.1699 7.68985

B1 0.25735 4.0169 4.25905 1.7768 1.4469 6.1539 4.35045 5.051 7.5425

C1 0.1799 4.003 4.2575 1.839 1.53565 6.13705 4.3238 4.99 7.5088

A2 4.40135 0.9898 2.0208 2.7536 4.8637 3.4833 3.0562 4.3637 6.0523

B2 3.6495 0.918 1.6653 2.1529 4.17285 3.4949 2.6445 4.07035 5.77755

C2 3.9936 2.13705 0.45615 2.40775 4.3872 2.9062 1.6562 3.0652 4.8161

A3 1.93115 2.57775 2.8215 0.43875 2.4139 4.5407 2.8458 4.1299 6.16515

B3 1.8748 2.5833 2.85225 0.25565 2.36525 4.6059 2.9025 4.16605 6.226

C3 2.0124 2.49525 2.6432 0.2772 2.5413 4.4737 2.7437 3.89405 6.01375

A4 1.26635 4.73905 4.8875 2.47025 0.21155 6.88515 5.12675 6.0569 8.27715

B4 1.94535 4.86275 4.9824 2.78285 0.7196 7.11315 5.43085 6.53505 8.6098

C4 1.4703 4.33065 4.4856 2.11065 0.70095 6.51645 4.8465 5.9765 8.0434

A5 4.2335 2.8986 1.485 2.38285 4.7791 2.5817 0.1062 4.0407 3.5528

B5 5.87555 3.4442 2.67865 4.05325 6.45575 1.1288 1.9133 3.64755 2.3572

C5 5.8804 3.46825 2.6819 4.08875 6.4482 1.16935 1.9501 3.6052 2.3367

A6 5.99575 4.7904 3.36285 4.25005 6.65285 2.3497 2.8556 1.60145 2.50065

B6 4.7305 3.9383 2.58485 3.3814 5.4958 2.4026 1.89945 3.4997 2.7041

C6 4.77485 3.8115 2.49415 3.38405 5.514 2.42585 1.8473 3.5014 2.6866

A7 6.292 3.9347 2.9596 4.2249 6.7877 1.4084 2.90805 3.0126 1.66075

B7 6.2872 4.571 3.29685 4.6001 6.8151 1.70845 2.85115 3.21575 1.26055

C7 5.6778 3.34445 2.34715 3.9996 6.2096 1.87895 2.14185 3.66435 2.1163

72

I double-check the results; I computed the average distances of the 21 keys with a second set of filled
and unfilled key heads from my database. The results are shown in Table 4.11. In this case three keys are
misclassified, two of which, A7 and C7, were misclassified in Table 4.10 as well. 10 distances (5.2%) are
erroneous. This is comparable to the results in Table 4.10.

Table 4.11 Average of distances of filled and unfilled key heads (second set)

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.1160 4.1701 4.0702 2.2270 1.1799 6.4917 4.1876 7.3111 7.0321

B1 0.3293 4.0041 3.9176 2.0046 1.2830 6.3273 4.0203 7.1164 6.8899

C1 0.2279 4.0041 3.9074 2.0769 1.3352 6.3055 3.9916 7.1453 6.8595

A2 4.4779 0.7088 2.0097 2.4418 5.0062 3.8771 2.9018 5.3252 4.8663

B2 3.7163 0.8355 1.4352 2.1083 4.2587 3.7418 2.4376 5.3787 4.6591

C2 4.0620 1.9152 0.1925 2.2488 4.4900 3.1289 1.4848 4.4813 3.8746

A3 1.9970 2.7656 2.4751 0.8570 2.4337 4.8953 2.5387 5.6250 5.5824

B3 1.9462 2.7082 2.5265 0.6836 2.3998 4.9239 2.5926 5.6923 5.6225

C3 2.0890 2.4381 2.3561 0.2901 2.5791 4.6984 2.4372 5.5791 5.3746

A4 1.2455 4.7724 4.5303 2.7877 0.2593 7.1194 4.8083 7.9117 7.6469

B4 1.9331 4.8831 4.6430 3.1230 1.0899 7.3617 5.1287 8.1304 7.9228

C4 1.4827 4.3506 4.1591 2.4560 1.0171 6.7793 4.5425 7.5222 7.3766

A5 4.1739 3.0820 1.4389 2.5978 4.7475 2.2278 0.3031 2.4019 4.1565

B5 5.8155 3.7566 2.4365 4.3036 6.4341 0.8753 1.6079 2.0499 3.1396

C5 5.8206 3.7570 2.4632 4.3154 6.4324 0.8336 1.6416 2.0922 3.0669

A6 5.9309 5.0017 3.1491 4.4428 6.6849 2.2464 2.5726 1.3840 3.1254

B6 4.6706 4.2417 2.3979 3.6467 5.6142 2.2353 1.6206 0.7920 3.5223

C6 4.7142 4.1030 2.3172 3.6324 5.6200 2.2308 1.5578 0.9412 3.5342

A7 6.2148 4.2720 2.6268 4.4979 6.7040 1.9971 2.6403 2.1908 2.8539

B7 6.2224 4.8661 3.1104 4.8189 6.8307 1.8105 2.5412 1.9114 1.8948

C7 5.6133 3.7012 2.1257 4.2303 6.2028 1.7910 1.8274 1.7634 3.2634

The next step of the experiment is to compute the average distance between each of the 21 sample keys
and two sets of key heads in the database. The results of that experiment are shown in Table 4.12. We
find that the rate of erroneous distances decreases noticeably, from 6.3% or 5.2% to 3.1% (6 erroneous
distances). This shows that the average of distances computed here is more reliable than the individual
distances, and is the same observation we made in the results of Table 4.6. However, despite the fact
that the number of errors in distances decreased, there are still four misclassified keys.

It seems discouraging that the number of misclassified keys is not decreasing. However, we should note
first that this number is holding constant at 4 keys, while over the same tests in Table 4.6 it decreased
from 11 to 3 keys. In other words, it is holding constant near the best result of Table 4.6. Moreover,
most of the errors in Table 4.12 are due to only one of the key types in the database. That is type 5 (D5
and D55), which is responsible for 5 of the 6 erroneous distances. This means that we are dealing with a
problem related to some specific key types, which hopefully we can deal with by adding one more
average or by using an extra test like the head-to-hole ratio we used before.

Table 4.12 Average of distances between first and second sets

73

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.09627 4.17587 4.24447 2.109775 1.27562 6.4104 4.352975 6.2405 7.360975

B1 0.29332 4.0105 4.08832 1.8907 1.36495 6.2406 4.185375 6.0837 7.2162

C1 0.2039 4.00355 4.08245 1.95795 1.43542 6.22127 4.1577 6.06765 7.18415

A2 4.43962 0.8493 2.01525 2.5977 4.93495 3.6802 2.979 4.84445 5.4593

B2 3.6829 0.87675 1.55025 2.1306 4.21577 3.6183 2.54105 4.724525 5.218325

C2 4.0278 2.02612 0.32432 2.328275 4.4386 3.0175 1.5705 3.77325 4.34535

A3 1.96407 2.67167 2.6483 0.647875 2.4238 4.718 2.69225 4.87745 5.873775

B3 1.9105 2.64575 2.68937 0.469625 2.38252 4.7649 2.74755 4.929175 5.92425

C3 2.0507 2.46667 2.49965 0.28365 2.5602 4.5860 2.59045 4.736575 5.694175

A4 1.25592 4.75572 4.7089 2.628975 0.23542 7.0022 4.967525 6.9843 7.962025

B4 1.93922 4.87292 4.8127 2.952925 0.90475 7.23742 5.279775 7.332725 8.2663

C4 1.4765 4.34062 4.32235 2.283325 0.85902 6.64787 4.6945 6.74935 7.71

A5 4.2037 2.9903 1.46195 2.490325 4.7633 2.40475 0.20465 3.2213 3.85465

B5 5.84552 3.6004 2.55757 4.178425 6.44492 1.00205 1.7606 2.848725 2.7484

C5 5.8505 3.61262 2.57255 4.202075 6.4403 1.00147 1.79585 2.8487 2.7018

A6 5.96332 4.8960 3.25597 4.346425 6.66887 2.29805 2.7141 1.492725 2.813025

B6 4.70055 4.09 2.49137 3.51405 5.555 2.31895 1.760025 2.14585 3.1132

C6 4.74452 3.9572 2.40567 3.508225 5.567 2.32832 1.70255 2.2213 3.1104

A7 6.2534 4.10335 2.7932 4.3614 6.74585 1.70275 2.774175 2.6017 2.257325

B7 6.2548 4.71855 3.20362 4.7095 6.8229 1.75947 2.696175 2.563575 1.577675

C7 5.64555 3.52282 2.23642 4.11495 6.2062 1.83497 1.984625 2.713875 2.68985

The final test is to compute the distances of the 21 keys with all three sample keys in the database.
Table 4.13 shows the results of this comparison. The error rate is halved compared to using only two
key images: two keys are misclassified instead of four, and 3 distances are erroneous instead of 6 (1.5%
instead of 3.1%). Both this decrease and the final values are in line with the results from the experiment
of Table 4.6.

In Table 4.13, A7 and C7 are matched incorrectly to D5 and D55. That is the same misclassification that
remained in Table 4.6. Again, using the technique that computes the ratio between white pixels of the
head and black pixels of the hole of the key head, we will see that eventually, A7 and C7 go to D7 and all
sample keys in this test will be linked to the correct key blank information.

74

Table 4.13 Average of distances between three sets of the database

 D1 D2 D22 D3 D4 D5 D55 D6 D7

A1 0.164083 4.17885 4.24985 2.122417 1.26685 6.323 4.3764 5.8646 6.518483

B1 0.242217 4.018067 4.09435 1.904067 1.3529 6.1576 4.2116 5.7136 6.368067

C1 0.2151 4.004733 4.087667 1.967533 1.430683 6.1308 4.1807 5.6889 6.341267

A2 4.346783 0.954933 2.087667 2.598667 4.9379 3.6138 3.0167 4.5046 4.745333

B2 3.609633 0.8399 1.617 2.095567 4.226917 3.5136 2.5637 4.3249 4.475183

C2 3.9554 2.036117 0.348283 2.30015 4.4516 2.9537 1.5967 3.3846 3.5688

A3 1.89275 2.67445 2.650433 0.630817 2.422733 4.6520 2.7284 4.5168 4.977217

B3 1.828633 2.656867 2.69375 0.460717 2.379217 4.7012 2.7860 4.5722 5.035367

C3 1.958867 2.489617 2.5053 0.2386 2.555967 4.5235 2.6296 4.3733 4.82575

A4 1.314683 4.76375 4.7093 2.650983 0.167983 6.9315 4.9928 6.6196 7.104117

B4 1.981083 4.890483 4.816567 2.983717 0.8858 7.1818 5.3093 6.9891 7.408233

C4 1.492167 4.36435 4.326867 2.315017 0.83335 6.5958 4.7280 6.4094 6.844433

A5 4.135 3.009533 1.4032 2.44855 4.7777 2.2974 0.2358 2.8007 3.023767

B5 5.77765 3.612767 2.528783 4.142283 6.461017 0.7852 1.7339 2.4614 2.343667

C5 5.784033 3.623217 2.5434 4.165183 6.456067 0.8279 1.7648 2.4610 2.304233

A6 5.882917 4.925367 3.206517 4.31805 6.66415 2.3556 2.7093 1.4777 2.574583

B6 4.6348 4.0906 2.433217 3.4815 5.5582 2.2241 1.7449 1.6274 2.508367

C6 4.67815 3.955967 2.349317 3.47545 5.570133 2.2314 1.6870 1.6725 2.482567

A7 6.163633 4.153667 2.781167 4.3455 6.7469 1.8379 2.7863 2.4443 2.150583

B7 6.187867 4.7217 3.15885 4.678567 6.8332 1.7822 2.6693 2.295 1.617583

C7 5.5803 3.501717 2.20375 4.084733 6.219667 1.7319 1.9626 2.2504 2.2035

4.3 Finding precise measures of the edges

4.3.1 Image to Key

After finding the minimum distance of the seven moment invarients and the correct key blank, I can get
the relevant information about the length of the key. This will help me convert the measures from pixels
into millimetre. In this second test I will show how precisely the software can find the edges of the key. I
will compare the results obtained by the software and the results I measure by a calliper with respect to
the major axis line. Then I will show the error rate of the distances computed between the edges and
major axis line of the key. The keys I will use for the experiments in this section are B2 and B7 from
Figure 4.2.

The images are converted into binary format and the shanks are separated from the key images. The
contour is found using canny edge detection and then refined using sub-pixel interpolation, as I
explained in 3.5.3. Figure 4.5 shows the sub-pixel interpolation points of the shanks.

75

 a b

Figure 4.3 Sub-pixel edge points of the key shanks

One of the outputs of the operation that is done on an image by the software is an array that contains
the coordinates of the all sub-pixel edge points (red dots) and their distance (in millimetre) to the major
axis line which is the blue line shown in Figure 4.5. The distance between the points and the line can be
a good criterion to see if the measured edge points in the key image are close to real measurement of
the key using a calliper.

Figure 4.6 shows five different edge points that are selected on the key shank image (Figure 4.5(a)) for
the test. The points are shown in circles. The measured distances computed by the software and the
calliper are illustrated in Table 4.14.

76

Figure 4.4 Selected points on the key shank (Figure 4.5(a))

Table 4.14 Distances (in mm) of the green points in Figure 4.6 measured by software and calliper

Coordinates Distance (software) Distance (calliper) Relative error %

2.0035 1.5955 4.1 4.06 0.99

1.9475 1.5845 1.7 1.77 -3.95

1.9265 1.5285 4.1 4.19 -2.14

1.8805 1.5156 2.4 2.54 -5.51

1.8235 1.4336 4.4 4.57 -3.72

The relative error in that table was computed using Equation (4-1). The average relative error of the five
sample points in this example is 3.2%.

 (4-1)

The same experiment was conducted with the second selected image. The five edge points are shown in
green in Figure 4.7. Table 4.15 shows the distances of the points measured by software and the calliper.

77

Figure 4.5 Selected green points on the key shank (Figure 4.5(b))

Table 4.15 Distances in mm of the green points in Figure 4.7 measured by software and calliper

Coordinates Distance (software) Distance (calliper) Relative error
%

2061.3 1018.5 3.2 3.30 -3.03

2032.5 1047.6 1.7 1.77 -3.95

2023.0 1119.5 3.0 3.04 -1.31

2005.6 1214.5 4.3 4.31 -0.23

1976.4 1291.5 4.1 4.31 -4.87

The average relative error of the five sample points in this example is 2.6%.

The errors in the edge points of Figure 4.6 and Figure 4.7 could be the result of several issues. One of the
problems could be the resolution of the picture I am working on. A high resolution scanner can take
better pictures so I could identify the edges and cuts more precisely. A better interpolation method
would also yield more accurate subpixel coordinates, and improve the final results. On the non-technical
side, the calliper I used to measure the length of the key for the database, the measure that was used as
a constant to convert my subpixel coordinates to millimetres, has a maximum accuracy of 1 millimetre
or 0.01 inch5. In this thesis I measured the distances with inch scale and converted them into millimetre.
The accuracy of the computed major axis line can be a source of error. The experimental results show
that these errors are negligible.

5
 The calliper I used in this test has two scales.

78

4.3.2 Image to Image

The purpose of this next test is to verify that two executions of my software using two scans of the same
key gives similar results.

For this test, I will use the two images of the same key shown in Figure 4.8. I selected five points on the
grooves of the keys and measured the distance between the points and the major axis line using
software. In Figure 4.9 I illustrate the key shanks along with the subpixel points and the selected points
to measure. Table 4.16 shows the results and error obtained between these two keys using Equation (4-
1), along with the results from the calliper for comparison.

 a b

Figure 4.6 Two images of a key.

 a b
Figure 4.7 Selected points on two scans of the key.

79

Table 4.16 Measures of the points on the two scans of the key by the software and calliper in mm

Coordinates
key a

Software
key a

Coordinates
Key b

Software
key b

Error a to
b %

Calliper Error
calliper to a

%

Error
calliper to b

%

769.8 1616.5 3.7 590.5 1695.5 3.6 -2.8 3.30 12.1 9.1
755.5 1540.7 4.6 628.5 1625.3 4.5 -2.2 4.31 6.7 4.4
782.5 1469.5 2.1 689.5 1591.5 2.0 -4.8 1.90 10.5 5.2
765.6 1424.5 3.3 707.5 1546.5 3.0 -9.1 3.04 8.5 1.3
749.5 1380.2 4.4 724.5 1499.5 4.1 -6.8 4.31 2.0 -4.9

As Table 4.16 shows, the average of error between two scans of the same key is 6.4% and is always
below 10%. By comparison, the error between calliper measures of the original key and those images is
on average 6.5%, and at most 12%. It thus seems that the results of my software are very accurate given
two different scans of the same key. The error rate between the two scans is comparable to the error
rate from the original key to each image.

4.3.3 Image to Cut Key to Original Key

In this test, I take the measures of both the original and duplicated keys shown in Figure 4.8, and
compare the error of five points between the original and duplicate key to the error between the
original and my software’s measures. This will tell us how precise the image processing measures are
compared to a traditional mechanical system. I performed this test three times using three scans of the
original key to generate reliable results.

Table 4.17 measures of the points on the first original image in mm

Calliper
Original

Calliper
Duplicated

Coordinates Software
Original

Error Original to
Duplicated %

Error Original to
Software %

3.30 3.17 769.8 1616.5 3.7 -3.9 12.1

4.31 4.06 755.5 1540.7 4.6 -5.8 6.7

1.90 1.77 782.5 1469.5 2.1 -6.8 10.5

3.04 2.79 765.6 1424.5 3.3 -8.2 8.5

4.31 4.31 749.5 1380.2 4.4 0.000 2.0

Table 4.18 measures of the points on the second original image in mm

Calliper
Original

Calliper
Duplicated

Coordinates Software
Original

Error Original to
Duplicated

Error Original to
Software %

3.30 3.17 1401.5 0584.5 3.5 -3.9 6.0

4.31 4.06 1431.5 0592.5 4.4 -5.8 2.0

1.90 1.77 1507.5 0683.2 1.9 -6.8 0

3.04 2.79 1550.0 0694.1 3.2 -8.2 5.2

4.31 4.31 1599.5 0710.7 4.4 0.000 2.0

80

Table 4.19 measures of the points on the third original image in mm

Calliper
Original

Calliper
Duplicated

Coordinates Software
Original

Error Original to
Duplicated %

Error Original to
Software %

3.30 3.17 1756.5 0856.5 3.3 -3.9 0

4.31 4.06 1899.5 0931.7 4.2 -5.8 -2.5

1.90 1.77 1973.5 1048.9 2.0 -6.8 5.2

3.04 2.79 2066.5 1081.5 3.1 -8.2 1.9

4.31 4.31 2158.5 1112.5 4.3 0.000 -0.2

On average, a traditional physical duplication of a key gives an average error of 4.9%. My system, on the
other hand, gives an average error of 7.9% with the first image, of 3% with the second image, and of
1.9% with the third image.

On average between these three original images the percentage of error is 4.2% which is comparable to
the traditional physical duplication of a key. The results of individual images show that it is possible that
the measures computed by the system can be up to 3% better or worse than the traditional
measurements, which in real terms corresponds to a negligible error of a few tenths of a millimetre
only. The main reason for this variation in the results is the quality of the scanned image, which is crucial
to measure the edges accurately.

Finally, we can consider the sign of the error throughout the tests of this section. The sign tells us in
whether the software detected the edge too far outside the key (if it is positive) or too far inside the key
(if it is negative). Considering tables 4.14 to 4.19, we find that there is not one dominant orientation for
the error, meaning that the edge detection and interpolation step is not biased in one orientation.
However, individual tables do show a bias, and can have mostly positive errors (such as for Table 4.17)
or mostly negative errors (Table 4.15). So the edges detected for an individual key can be entirely too far
inside or outside the key, and both types of error occur for different key images. Consequently, if it were
possible to detect which situation an individual image is in, it could be possible to correct the entire set
of edge points. This can be the focus of future development.

81

5 Conclusions and Future Research

5.1 Contributions
The contribution of this thesis has been the development of a new key-measuring algorithm instead of
using sophisticated cameras like existing systems; I only used a commercially-available flatbed scanner.
The software uses image processing techniques to compensate for the lack of accuracy in the key
images taken by the scanner. Given an image of an original key, this algorithm serves two main
functions:

1. To find the corresponding key blank type in a key model database;

2. To identify the coordinates of the edge points of the key’s dents and measure the depth of the
cuts of the original key in millimetres.

One important requirement was to have a software which can receive the key image with any
orientation of the key on the surface of the scanner and on any positions, to make the system easy to
use for a human operator. This has been accomplished by having the software find the largest object of
the image, the key image, and then compute the orientation of the key. All following steps are
accomplished taking into account the computed angle of the key.

The development of the key model database was also an important part of this work. This database
stores pictures, measures and information about different keys. In order to find the correct match of the
original key, the software compares the head of the original key with images of other heads in the
database.

Once the software knows the orientation and position of the key image, it separates the shank of the
key at the joint and keeps the pixels that are located at the edges of the cuts. An interpolation method is
employed by the software to find the sub-pixel coordinates of the points. Using the measures retrieved
from the database, the software can then convert these sub-pixel coordinates to actual physical
measures to duplicate a new key.

5.2 Summary of the Results
The results generated focused on thoroughly testing the realization of the two main objectives of the
algorithm, as highlighted above.

The results showed that the algorithm can accurately find the blank key corresponding to an original
scanned key. The results further confirmed that the optimal comparison uses three different heads
images of each key model and the average of filled and unfilled key heads. At less than three images we
still find errors. On the other hand, only one ambiguous case remains when using three images, and I
can deal with it by using some extra statistics, namely the size of the hole in the key head.

For the measures of the edges, I find on average 2% to 7% relative error in the depth of the cuts. This
corresponds only to a fraction of a millimetre. Using the traditional key duplication system, there is 4.9%
relative error on average between the original key and the duplicated one. By the new algorithm
proposed using the image of the original key and the proposed image processing techniques, there is on
average, 4.2% relative error which is 0.7% less than the error that traditional mechanical devices make

82

which is comparable to the traditional physical duplication of a key. This shows the quality of the
scanned image has crucial effects to measure the edges accurately.

5.3 Future work
The database I built in this thesis only defines 7 different key models in the database. They were
selected to be a representative sample, and included both single-sided and two-sided keys, keys with
double-joints, and some similar-looking key models. However, there are more than 200 key types on the
market today. One direction for future expansion of the software will be building a more complete
database. For sure, covering more key types has a lot more different challenges to solve. There are some
key types which are not symmetrical, which our software will need to deal with by adding a horizontal
offset to the major axis line. Some different key types have the same head shapes so moment invariants
alone will not be able to differentiate these types and extra information will be needed to disambiguate
these cases, such as the hole-to-head ratio I experimented with in this project. Another practical
expansion of my system will be connecting it to a means to actually duplicating keys. This could be a key-
cutting device modified to accept my software’s measures as input, or a 3D printer that would create an
entire new key.

In this thesis I used the seven moment invariants to model and compare the head of the keys, as
suggested by Hu [19]. While my experiments show that this measure is good and can allow me to find
matching head pictures, it is not the only possibility for that purpose. For example, J. Flusser and T. Suk
[11], [10] showed that the traditional Hu's invariant set is neither independent nor complete because on
the original Hu's set is missing the third order independent moment invariant. Consequently, future
work should explore the use of other invariant measures, such as the one proposed by Flusser and Suk.
It is possible that these new measures will simplify the system by requiring fewer database images to
average.

For the second objective of measuring the edges of the key, a crucial step is obtaining the boundary of
the contour of the key shank. Indeed, that step is the start of the process to measure the indentations of
the original key shank precisely. In this thesis I defined a constant threshold percentage to convert the
grayscale image into binary format. In the future, the threshold should be computed dynamically by the
software based on the illumination of the image; this would improve the accuracy of finding the edge
pixels on the contour.

Finally, using a more precise interpolation method will lead to measuring the sub-pixel points more
accurately, and thus reducing the error on the depth measures. A more traditional sub-pixel
interpolation method commonly used in image processing software is bicubic interpolation [22], which
should be the first improvement to try. More advanced methods have been proposed for applications
that require high accuracy [5], [6]. The linear kernel interpolation was recently discovered by Grevera
and Udapa is one of the most frequently mentioned methods in publications during recent years [16]. In
general, large kernel sizes were found to be superior to small interpolation masks. For example, using
quadratic 3 3 instead of cubic 2 2 interpolations, the interpolation error is decreased further [22],
[20], [8]. Another interpolation method that could be used is the B-spline interpolator presents one of
the best results in terms of similarity to the original image, and in comparison to other methods, it runs
the fastest [23].

83

Bibliography

[1] R. Almblad, J. Blin, P. Jurczak, “Method and apparatus for automatically making keys”, U.S. Patent 5 807
 042, September 1998.
[2] T. Bose, “Image Processing Fundamentals,” in Digital Signal and Image Processing, Wiley, Inc., Danvers,
 MA (2004).

[3] J. Campbell, G. Heredia, M. A. Mueller, “Key Identification System”, U.S. Patent 6 836 553, December
 2004.

[4] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans, Pattern Analysis and Machine
 Intelligence, vol. 8, no. 6, pp. 679-697, Nov. 1986.

[5] P. E. Danielsson and M. Hammerin, “High accuracy rotation of images”, Department of Electrical
 Engineering, Link¨oping University, Sweden, Tech. Rep. LiTH-ISY-I-11521990, 1992.

[6] P. E. Danielsson and M. Hammerin, “Note: High accuracy rotation of images,” CVGIP: Graph. Models
 Image Processing, vol. 54, no. 4, pp. 340–344, 1992.

[7] S. Eddins. (2010). Visualizing regionprops ellipse measurements, [online], Available:
 http://blogs.mathworks.com/steve/page/5/

[8] O. D. Evans and Y. Kim, “Efficient implementation of image warping on a multimedia processor,” Real
 Time Image, vol. 4, pp. 417–428, 1998.

[9] L. Fletcher. (2010). Binary Image Analysis [online], Available:
 http://users.cecs.anu.edu.au/~luke/cvcourse_files/online_notes/lectures_2D_2_binary_morph_6up.pdf

[10] J. Flusser, "On the Independence of Rotation Moment Invariants", Pattern Recognition, vol. 33, pp. 1405
 1410, 2000.

[11] J. Flusser, T.Suk, “Rotation Moment Invariants for Recognition of Symmetric Objects”, Inst. of Inf. Theor.
 Autom., Acad. of Sci. of the Czech Republic, pp. 3784 – 3790, December 2006.

[12] Y. Gao, M. K.H Leung, “Face Recognition Using Line Edge Map”, Pattern Analysis and Machine
 Intelligence, pp. 764 – 779, August 2002.

[13] W. Garner. (2011). Shortest Distance from a Point to a Line, [online]. Available:
 http://www.math.ucsd.edu/~wgarner/math4c/index.htm

[14] R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, Prentice Hall, Inc., 2nd ed. New Jersey (2002).

[15] R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Processing Using MATLAB,” Tata McGraw Hill
 Education Private Limited, New Delhi, India (2010).

[16] G. J. Grevera and J. K. Udapa, “An objective comparison of 3-D image interpolation methods,” IEEE Trans.
 Med. Imag., vol. 17, no. 4, pp. 642–652, 1998.

http://blogs.mathworks.com/steve/page/5/
http://users.cecs.anu.edu.au/~luke/cvcourse_files/online_notes/lectures_2D_2_binary_morph_6up.pdf
http://www.math.ucsd.edu/~wgarner/math4c/index.htm

84

[17] D. W. Harder, R. Khoury. (2010). Numerical Analysis for Engineering [online]. Available:
 https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/05Interpolation/

[18] M. Heath, S. Sarkar, T. Sanocki and K. Bowyer, “Comparison of Edge Detectors: A Methodology and Initial
 Study,” Proceedings CVPR '96, 1996 IEEE Computer Society Conference., pp. 143 – 148, 1996.

[19] M. K. Hu, “Visual pattern recognition by moment invariants”, Information Theory, IRE Transactions, pp.
 179-187 February 1962.

[20] R. Keys, “Cubic convolution interpolation for digital image processing”, Acoustics, Speech and Signal
 Processing, IEEE Transactions, pp. 1153 - 1160, December 1981.

[21] S. Khan. (2010). Draw Bounding Box [online], Available:
 http://www.mathworks.com/matlabcentral/fileexchange/26296-draw-bounding-box

[22] T.M. Lehmann, C. Gonner, K. Spitzer, “Survey: interpolation methods in medical image processing”, Inst.
 Of Med. Inf., Tech. Hochschule Aachen, Germany, pp. 1049 – 1075, November 1999.

[23] E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Med. Image., vol. MI-7, pp. 213
 217, 1988.

[24] R. M. Prejean, “Key Manufacturing Method” U.S. Patent 6 647 308, November 2003.

[25] S. Pacenzia, E. Casangrande, E. Foscan, “Method To Identify a Key Profile, Machine To Implement The
 Method and Apparatus for the Duplication of Keys Utilizing the Machine”, U. S. Patent 6 895 100, May
 2005.

[26] Shermina.J, “Illumination Invariants Face Recognition Using Discrete Cosine Transform And Principal
 Component Analysis”, Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 826
 830, May 2011.

[27] The MathWorks, Inc. (2010)., Image Processing Toolbox, [online]. Available:
 http://www.mathworks.com/products/image/index_b.html

[28] J. S. Titus, J. E. Bolkom, “Key Measurement Apparatus and Method”, U.S. Patent 6 406 227, June 2002.

[29] J. S. Titus, W. Laughlin, J. E. Bolkom, “Key Duplication Apparatus and Method”, U.S. Patent 6 152 662,
 November 2000.

[30] P. R. Wills, R. F. Kromann, N. N. Axelrod, W. A. Schroeder, J. A. Berilla, B. Burba, “Method andApparatus
 for Using Light to Identify a Key”, U.S. Patent 6 064 747, May 2000.

[31] V. Yanovsky, “Shadow image acquisition device”, U.S. Patent 6 175 638, January 2001

[32] V. Yanovsky, A. Sirota, “Key Imaging System and Method”, U.S. Patent 6 449 381, September 2002.

https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/05Interpolation/
http://www.mathworks.com/matlabcentral/fileexchange/26296-draw-bounding-box
http://www.mathworks.com/products/image/index_b.html

