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ABSTRACT

This thesis is concerned with the design and implementation of an object
oriented Simulation Engine capable of producing Knowledge Based simulations.
The Simulation Engine provides a high-level Lisp-like script language for
describing the process being simulated. As a detailed example, a Kaymr
continuous digester is simulated. The Simulation Engine is made up of four
distinct objects which have been implemented as individual programs in a
Windows operating system.

This thesis describes the Simulation Engine in detail. The first chapter
discusses the problem of complex knowledge based simulations in an industrial
environment. A detailed example of an industrial process is provided. The
second chapter provides an overview of the Sirmjlation Engine in its design. The
third chapter discusses the resources used to build the Simualtion Engine. The
fourth chapter outlines the process of building the Simulation Engine. Chapter
five demonstrates the Simulation Engine being used. The final chapter, chapter
six, concludes with a discussion of advantages, disadvantages and possible

enhancements for the Simulation Engine.
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CHAPTER 1 : INTRODUCTION

This paper discusses the production of a simulation development
environment, which can be used to develop case-specific simulations. Originally
| was planning on focusing my efforts to the creation of one simulation of a non-
trivial industrial process. In order to accomplish this goal | studied the pulping
process at a mill | was employed at as a Process MIS Specialist, during which
discussions with the Digester Process Engineer (the chemical engineer in charge
of improving the pulping process) led me to understand that simply applying the
known mathematical formulae would not be sufficient to create a realistic
digester simulation. Although proven methodologies exist for monitoring the
production rate, quality control was limited to testing the finished product.

Further conversations with the operating staff at this site made me realize
that the key to modeling any industrial process was to incorporate the knowledge
of the operating staff. As well, it was apparent that such a simulation could be a
useful tool for passing the experience of older operators on to younger ones
without endangering either the people or the product. A training simulation
would satisfy this goal.

By studying the pulping process | realized that the problem was that only
an experienced operator really knew what was happening in the process. A
computer programmer would never really be able to grasp the subtle nuances
that an operator gathers over several years. To solve this problem, a highly
flexible model would be required, one that easily allowed operator input.

Rather than focusing my efforts on a case-specific simulation only good
for modeling a single industrial process, | decided to create a simulation
development environment that could be used to build training models by
providing a simple, inexpensive tool for collecting and simulating the existing
operator experience.

To accomplish this goal | chose to work on a microcomputer ru.nning

Windows 3.1. Borland C++ was chosen as the development language to allow
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an object-oriented programming solution to this problem. In order to permit the
gathering of experience into the simulation generator | decided to use the
knowledge based simulation paradigm.

This chapter discusses industrial process simulations in general, the
continuous digester process, knowledge based simulations and finally presents a

motivation and outline for this paper.

Section 1.1: Industrial Process Simulation

Simulation for industrial type systems involve compiex chemical and
mechanical processes that cannot be modelled properly in controlled
environments. Although the science of the process may be understood and the
chemical reactions and mechanical processes can be reduced to formulae, the
human element adds a factor that is not easily measured. Despite this difficulty,
most simulation efforts revolve around producing a set of mathematical
equations that model the process. The ultimate goal of these is to produce a
model which can do one of two things.

First, the exact models can be manipulated to predict the results of
changing factors in the process. This type of simulation can then be used to
conduct tests which, if successful, can then be tried in the actual process. This
type of simulation needs to understand the complex equations and reactions
happening at the molecular level.

These models can then be integrated into advanced control models which
provide automated controls for the industrial process. Having accurate
automated controls can significantly reduce costs by fine tuning the use of
materials and optimizing production. As a result, the majority of simulations seem
to be about adding intelligence to the process.

The second use of these simulations is to train new operators in the
industry by providing a realistic interface to a modelled industrial process. It is
vital that operators receive training that does not put the process and the people
around the process at risk, and that extensive costs are not incurred during the
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training phase of an operator’s career. This type of simulation does not require a
complex type of understanding of the process - rather, it needs an intimate
understanding of the history of the process. The operator needs to learn what
has happened or could have happened.

The problem with simulations based purely on mathematical formulae is
that they generally try to reduce the industrial model to a scientific model. The
human element, the instincts and experience of the operators, is largely ignored.
That is, simulations generally do not take the operator in mind, and since the
operator is an intrinsic part of any industrial process the simulations have a
tendency to fail, produce sub-optimal results or be only correct in specific
conditions.

As noted in the paper by Weymouth and Sztrimbely (1990) it is the
operators that can tell you how things are run. Their strategy was to incorporate
operators, computer staff and engineering together in a process they called
knowledge engineering. This knowledge was combined with artificial intelligence
(Al) techniques to create a decision making model, capable of scheduling
different events within the process. Weymouth and Sztrimbely also noted that a
primary concern was to get the experience of the older operators in a usable
form for the less experienced ones.

in order to simulate real-world processes | needed to understand the
process to be simulated. In order to accomplish this goal a non-trivial process

was selected for study.

Section 1.2: Continuous Digester Industrial Theory

The non-trivial process | selected to study was the Kamyr continuous
digester. The digester process was available at my work site. It is generally
accepted as a complex process. The following sub-sections discuss the kraft
pulping process and provides an outline of some of the simulation work done in
this field.
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Section 1.2.1 : The Continuous Digester Process

Kraft pulp is a porridge of wood fiber which has all the lignin (the bonding
agent of wood) removed through a chemical process called pulping. The
remaining fiber can be meshed together and bleached to make a very bright
white product. Kraft pulp is used in the production of paper products ranging
from tissue paper to Kodak picture backing. This process has been in existence
since the late 1800’s, and has grown out of a great deal of empirical study.

To leam about this process | first examined the general methodology
behind the process of making kraft pulp (Smook,1994). This process extracts the
lignin from wood using a highly caustic chemical cooking process which
combines pressure, chemical and heat. The chips are soaked in active alkali
chemical, called white liquor, and forced through a vessel called a digester. In
the Kamyr continuous digester this is a single unit - other kraft processes use
batch processing which involves multiple tanks.

As the chips move through the digester it passes through heating zones,
cooking zones, cleaning/washing zones and finally through a blow unit which
sends the de-ligined pulp to the next phase (diffusing). Each zone pushes the
cooking chemical through an internal tube out through a screen which permits
the chemical through but not the wood chips. The chemical is extracted out
through special drains, cleaned and returned to the process.

The amount of time that the chemical and temperature is exposed to chips
inside the digester determines the quality of the product. The quality of the
product is a measurement of lignin, called a K-number (in the European market a
kappa number is used ). This value cannot be measured inside the digester, so
other techniques have been developed; most modeling and simulation studies
with digesters focus on solving this problem (this is discussed more in section
1.2.2). A simple diagram of the chip to digester process is given in figure 1.1
(Smook,1994):
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Top Separator
Bin Activator
ChipMeter B B 00
P
Low Pressure Feeder (High Pressure Steam In)
5055 Heaters (Upper and Lower)
| Steaming Vesse!
Chip Chute Flash Tank #1
High Pressure Feeder Flash Tank #2
Digester (To Evaporators.)
(Steam & White Liquor)
(Low Pressure Steam IN)
Two Stage Filtrate Tank
Qutiet Device
Blow Unit

Figure 1.1 : Kamyr Continuous Digester System

The different components in the digester process are:

Chip Bin - This container stores chips from the wood yard, and insures
that chip supply during wood yard downtime.

Bin Activator - The activator assures a uniform flow of chips from the
chip bin.

Chip Meter - A rotating star feeder with seven pockets possessing a
measured volume of chips per revolution. The chip meter speed
determines the first factor of production (chip flow).

Low Pressure Feeder - A rotating star feeder that acts as a seal against
the pressure in the steaming vessel.

Steaming Vessel - A sealed screw conveyor, providing the initial steam
bath of the chips. Its purpose is to raise the chip temperature to
approximately 250 deg. F.

Chip Chute - The chute provides a passage from the steaming vessel to
the liquor pool in the high pressure feeder.
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High Pressure Feeder - The high pressure feeder combines the chips
with the steam/white liquor mixture and sluices the mixture to the top
separator.

Top Separator - A sealed screw conveyor, which evenly moves the
sluiced chips into the digester vessel. It includes a level indicator which
alarms if the digester is full (normally a digester runs between 60 - 80%
full).

Heaters - Heaters are used to increase the temperature of re-circulated
liquor. The wash heater takes liquor from the bottom of the digester, re-
heats it and injects the liquor at the top using low pressure steam. The
upper and lower heaters are similar, in that they reheat cold liquor, but
take the liquor from the middle areas of the digester.

Flash Tanks - These tanks reduce the steam/chemical temperature to
room temperature. Waste chemical extracted here is sent to the recovery
process.

Outlet Device - Provides a scraper at the bottom of the digester to
uniformly release cooked chips to the blow unit.

Blow Unit -The blow unit passes cooked chips to the high density storage
tank, ensuring temperature and pressure factors do not damage wood

fibers.

Filtrate Tank - As part of the cleaning process, dilution and filtrate are
added to the chips. The washed out chemicals/chip solution is filtered out
and passed onto the diffusion washer, and onto the high density storage
tank.

The chemical reactions that take place in the digester are a result of the
active alkali chemical, usually referred to as white liquor. This chemical is a
combination of sodium hydroxide (NaOH) and sodium suifide (Na,S)
(Smook,1994). As the chips travel through the digester the chemical digests the
wooad lignin, leaving the wood fibers necessary to make paper products. The
chips flow from the top of the digester (top separator) to the bottom (outlet
device). Through this flow is a water/liquor wash which breaks down the lignin.

Spent (used) liquor is removed via the flash tanks and the filtrate tank.. This
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spent (or black) liquor is sent to the evaporators, where the recovery of re-usable
chemical can be done.

An interesting note in the behaviour of the digester is that the flow of chips
is controlled through pressure and the rotation per minute of the chip feeder. The
flow of cooking chemical is through the chips - the chemical washes around the
chips. Gravity and pressure forces the heavier, chemical filled chips down to the
outlet device. The chips are forced up against screens along the sides of the
digester, squeezing out the chemical. An extraction screen is a fine mesh (5 mm
holes) that the chips are pushed against. The chips, except for some very small
particles, cannot pass through the screen. The extracted chemical can be

cleaned and reused. An extraction screen is given below:

Side View Top View
Cooking Chemical
Screen Chips
Chip Plug
Screen \
. i
Pressure e
Pressure -/
<—
/ \ Recovered
Chemical
Recovered
Chemical

Figure 1.2 : Digester Extraction Screens

The importance of the screens cannot be overlooked. If a screen
becomes plugged in the digester both temperature and pressure will be
impossible to control. This will result in poor quality product and low

productivity. Excess screen plugging will stop the liquid flow through the chips
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from the center to the outside of the chips plug, reducing the cooking (or washing
in the case of extraction or washing zone) of the exterior region and destroying

the interior chips.
By discussing the digester operation with the operators and supervisors of

a typical disgester, an approximate timeline was developed:

TIME EVENT NOTES
(hours)
0:00 chip bin Storage of chips to insure steady supply.
0:01 agitator Shakes chips into chip meter for uniform distribution.
0:02 chip meter Pressure seal.
RPM determines production.
7 compartments which rotate and deposit chips.
0:03 low pressure feeder Steam injected into chips.
Pressure raised to 40-60 #.
0:04 steaming vessel Gases/air forced out of chips.
Temperature raised to 240-250 deg. F.
Moisture uniformly distributed.
0:08 high pressure feeder | Adds cooking fiquar to chips.
Increases pressure to 180# at top separator.
0:10 top seperator Pressure at 180#. (sealed in)
Temperature 250 deg F.
Screen used to extract liquor.
1:00 impregnation zone Chips soak up liquor.
Pressure at 165#.
Temperature at 240 deg F.
3.00 upper cooking Screens extract liquor for re-heating.
Temperature at 310 deg F.
Cooking (lignin breakdown) begins.
4:00 lower cooking As upper, but temp 330 deg F.

K-number based on temperature here.
+ 1 deg F == -0.5 K-number.

5.00 cooking zone chips left to cook (temperatur_eﬂcteases +8 deg)
7:00 extraction Temp cooled to 280-300 deg F.

Liquor (chemical) extracted.

Chemical sent to flash tanks, recovery.
7:30 washing zone Chips rinsed with filtrate (dirty water).

Pressure 240#

Temperature 265 deg F
Overflow filtrate extracted using screens.

8:00 scraper Breaks up chips for uniform distribution.
8:01 outlet device Cool wash (temperature 170-190 deg F.).
Pressure lowered - 240 drops to 90 rapidly. (called blow
_ effect).
8:05 diffuser washer Washing continues.
_ Pressure : 40 #
8:15 atmospheric diffuser Washing, pressure reduced to atmosphere.
8:30 blow tank Provides storage/feed for bleaching process.

Figure 1.3 : Digester Process Timeline

The wood chips pass from zone to zone, first being impregnated with cooking
chemical (white liquor), then being heated, then allowed to cook, and finally the
chemical is removed and the wood pulp blown out the bottom of the digester. In
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order to understand the different zones in the digester process, examine the

following diagram illustrating the zones and time line events:

Typical Values Digester Zones Timeline
pressure: <180, temp: 250, chemical: <5.2
pressure: 180, temp: 250, chemical:<5.2 | Top Seperator  0:00
— —1 1:00
pressure: 165, tlemp: 250, chemical: 5.2 Impregnation Zone
pressure: 165, temp: 310, chemical: <5.2 ] - —1 3:00
AR ; Upper Heating Zone
- —1 4:00
pressure: 165, temp: 330, chemical: <5.2 Lower Heating Zone
- ' — 5:00
pressure: >165. temp: 338, chemical: <5.2
Cooking Zone
: >165, temp: <300, ical: 1.0 ] - —]7:00
pressure: >165. temp: <00. s Extraction Zone
: : ok T | i 1730
pressure: 240, lemp: 265, c 00 Washing Zone
. . ] : ~—1 8:00
pressure: <240, temp: <190, chemcal: 0.0 QOutlet Sevice 8
— 15
pressure: 90, temp: 170, chem:cal: 0.0 ‘ .

Figure 1.4 : The Digester Zones

The formulae and human elements of the digester process are discussed in
more detail in section 5.2. Even this preliminary work shows how a great deal of
operator experience is used to control the digester process. One of the top

concerns is that this experience is passed onto the next generation of operators.

Section 1.2.2 : Continuous Digester Simulations

Generally, digester simulations focus on mathematically modeling the
digester process. The Kamyr equations are available (see section 5.2) and can
be used to predict the quantity of production, but not the quality of production.

That is, the production rate can be determined by how fast wood chips are fed

i
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into the system, but the amount of lignin digestion that takes place is harder to
predict.

The first modeling method examined was by Allison, Dumont, Novak, and
Cheetham (1989) who examined the exposure time the wood chips experience
within the digester. A digester is a closed vessel, full of the cooking liquor. It is
very difficult to determine the actual level of the chips, and thus difficult to
determine how high the chips are (the size of the chip plug ). In this study Allison
et al used data collected from strain gauge meters to calculate the position of the
chip plug. These meters have a blade which sticks out at a right angle from the
digester’s internal wall. By measuring the pressure or strain put on these gauges
the position of the chip plug can be approximated. In this study the premise was
that the exposure time would determine the quality, and this time could be
determined by using strain gauges and a complex algorithm. This method does
work, assuming that all other factors can be kept constant. Human intervention
was still required when unusual instances occurred. The study gave the example
of a chip plug hang-up, when sections of the chip plug get stuck on the extraction
screens, thus never reaching the gauges and giving the false reading that no
chips are coming down. This type of instance is exactly why the human being
needs to be part of the solution.

Another interesting approach to modeling the digester was based on a
database of information. This study by Michaeisen, Christensen, Lunde,
Lundman,and Johansson (1992) focuses on a quality control variable (the kappa
number) which is a measure of the quality of pulp. The model tries to keep the
kappa number constant, allowing the other factors in the model to change. (This
is similar to the keeping the H-Factor constant in section 5.2. The premise is that
since production is governed by chip flow the only issue is quality of product. The
kappa number is an European measurement of pulp quality.)

This study uses a complex linearization (a set of partial derivatives)

combined with feedback from the control system to model the digester - the

10
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algorithm uses older information to correct itself over time. The theory is that the
model will become more accurate over time.

This particular study was interesting because of the database of
information that was retained. The complexity of the mathematical model
restricted the model to the site being modelled, rather than being able to expand
to the general case. This approach of adapting with respect to history has a
major flaw. If the process changes significantly a new set of non-trivial equations
will be required. Complex processes such as the Kamyr continuous digester

require a more advanced type of solution in order to facilitate a correct model.

Section 1.3: Knowledge Base Simulation

After examining the environment to be modelled - an environment where
people are part of the simulation, where poorly understood chemical reactions
take place and there is a constant effort to improve the process to remain
competitive - | decided that the best solution to investigate would be the use of a
database of behaviours, combined with the simpler Kamyr equations all the while
keeping the operator in the process. This decision was influenced by Nielson
(1991) who discusses the three instances where a math model may fail:

1. A poorly understood decision process.
2. A human in the loop - an operator as a required part of the process.
3. Situations where experimenting with the decision making process are
made frequently.
All three of these apply to the complex digester process. To resolve this complex
problem a different sort of simulation is required; a knowledge-based simulation
is the answer.

The knowledge based event simulator requires that a database of
information about the process is used. This information can be stored in many
different formats. The most useful format encountered was the use a simple
programming language to describe the different behaviours in the model. Hu and
Rozenblit (1991) use a Lisp like language to describe their rule database. This

11
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technique should allow the most flexible rule database because anything should
be describable using a full language.

A possible implementation of a knowledge based simulation would include
the traditional simulation modules: event processing, a user interface and a
simulation state. Additionally a knowledge base, a processor dedicated to
implementing the rules in the knowledge database would be required to evaluate
any general rules, probabilities or dynamic formulae that occur. An information
flow diagram illustrates how information would be passed to the different parts of

the simulation:

EVENT
PROCESSOR
EVENT QUEUE
INPUT
MODULE
KNOWLEDGE DISPLAY
BASE MODULE

Figure 1.5 : An Event Driven Simulation with a Knowledge Base

As every quantum of time passes, the event processor examines the
queue. Events that are scheduled to be executed (to a maximum number, to
ensure the user input module does not spend too much time suspended) are
removed from the queue and processed. At this time the event processor will
read and write to the variables stored in the simulation state to reflect any
changes. Once the simulation state has been updated, the event processor will

add any new events that are created by the event currently being processed.

12
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After the event processor has completed, the rules processor will evaluate
the simulation state using a knowledge database. This process is implemented
by taking values stored in the simulation state, checking if particular conditions
exist and creating an event for each condition that requires it. The knowledge
database should be dynamic, to allow run-time adjustments, using a simple
internal language capable of primitive Boolean and mathematical operations.

Each module or processor should be discrete both in concept and design.
If practical, each component should be implemented as a separate task in a
multitasking operating system. The interaction that does take place between
components uses an object message passing system with clearly defined
responsibilities. The final result of the knowledge based simulation should be a

database capable of working with experienced operators.

Section 1.4: Motivation and Thesis Outline

After examining the industry process of creating kraft pulp | decided that |
could either build a complex simulation of a particular digester or develop an
engine that could be used to produce knowledge based simulations. | felt that a
simulation engine would be more useful both to industry and to the development
of my computer science skills. | call this simulation development environment the
Simulation Engine.

My goal was to create a graphic, PC based, simulation development
environment capable of supporting knowledge based simulations. The focus of
these simulations should be trainer oriented instead of predictive, since these
simulations will be used to assist in the educating of new operators. The
simulation should be capable of supporting simple math models/fformulae, but
contain enough intelligence that it can demonstrate qualitative behavior of
complex processes as well. |

The development environment must support dynamically configurable
simulations allowing experienced operators to reconfigure simulations guickly

and easily. The design should allow room to develop concepts more in depth as
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more information becomes available. The environment should allow
simplifications so that work can focus on the known factors and not be halted on
the unknowns.

The Simulation Engine takes full advantage of the Windows 3.1 operating
system, utilizing its limited multitasking ability to breakdown the simulation
engine design. It implements inter-process communication using native
Windows protocols and interfaces with other programs not a part of the
simulation. The engine provides a simple developer's graphical interface, which
is configurable by non-computer oriented personnel. Since it was designed to run
on a PC platform, it is cost effective. In order to test the knowledge based
simulation generator simple digester simulations were developed.

The Simulation Engine conceptualization is described in chapter 2. Here
the concept of a knowledge based simulation development environment is
molded into an object-oriented message passing model. Chapter 3 discusses the
various programming tools used to build the actual program such as Borland
C++, the DDE(Dynamic Data Exchange) protocol and the Windows operating
system.

Chapter 4 explains some of the more in depth implementation details of
the Simulation Engine. The key concepts include the language the knowledge
database is implemented in, the graphic tags that interface to the operator, the
variable handler used to store the simulation data and the DDE client/server
class developed to allow inter-process communication.

Actual simulations are presented in chapter 5, including the development
of a simple pump simulation used to explain the development process. This
chapter also discusses interfacing to other Windows applications and gives an
example of how this might be done.

The final chapter discusses the problems with the Simulation Engine, the
desirable enhancements and the possible future applications of the Simulation

Engine.
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Chapter 2: OVERVIEW OF THE SIMULATION ENGINE

This chapter examines the simulation engine model. It defines the roles
and responsibilities of each of the major components required in the design
phase. It also introduces the message passing mechanism required between the

different tasks. This chapter is meant to give an overall understanding of the

simulation engine.
Section 2.1: The Object-Oriented Model
The simulation engine breaks down the process of simulating into four

objects. Each of the entities can be classified according to the different classes
defined by Budd (1991). The simulation model is illustrated in figure 2.1.

message

message

states (I/0)

Figure 2.1: The Simulation Engine Model

The first object in the model is the Simulation State. This entity is a

storage object or data manager. It keeps track of the values or states that
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represent the simulation. Other programs, including tasks not a part of the
simulation engine, can request specific simulation states. These tasks can send
assignment messages to the simulation state to change stored values.

The next object is the Input/Output handler. This program is responsible
interacting with the user. It provides output onto a view screen in response to /O
messages received from other tasks. Input is provided using mouse and
keyboard by interfacing with Window’s messaging system (this is covered in
more detail in section 3.1). This entity is a combination of source and viewer
object. The reasons for this hybrid are covered in section 2.4.

Most of the I/O messages come from the Knowledge Base. This object is
responsible for processing the rules that specify the simulation. It receives
messages from other tasks which trigger it to load, parse and execute different
script files. These scripts can then generate more communication among the
different entities. This class can viewed as a storage class (it stores the different
scripts) or a facilitator as it interfaces between the other tasks.

Some script files need to be run on regular intervals. This is
accomplished using the Event Handler. The Event Handler message'’s are called
events. As each event is received this object stores them in a queue of script
files to be executed. When a timed interval occurs, it checks each item in its
queue and executes them by sending a message to the Knowledge Base as
required. This class generates information and can be viewed as another source
object.

By working together these entities can simulate both simple and complex
processes. The aspects of storage, interface, process and automation have

been taken into account. The result is a highly flexible simulation engine.

Section 2.2: Message Passing System
The simulation engine uses a standardized messaging system between
its object-tasks. To understand how the simulation engine works, we need to

understand the different types of messages that are passed from task to task.
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Exactly how the messages are passed will be discussed in more detail in section
4.5. Each message consists of two text strings (normally referred to as the topic
and item). This section covers the structure and purpose of those strings.

The simplest message in the simulation engine is the sfafe. This
message comes from the Simulation State and consists of a variable name and
a floating point value (stored in a text string). It is sent out in response to a
request; the client process sends a request in the form of a variable name to the
Simulation State and the Simulation State responds with a state message.

The state message is complemented by the assignment message. This
message sends the variable name in the first string and a floating point value in
the second. The Simulation State can then store the new value and make it
available for the other tasks in the simulation.

The Event Handler and /O Handler exchange messages with the
Knowledge Base. If the first string is a message the Knowledge Base will queue
the contents of the second string (which should be a script filename) to be
executed. If the first string is anything else, we assume a state has arrived. The
name is derived for the first string and the data from the second. Note that the
string “message” can never be a variable name because of this.

The message event is the first non-trivial message. Valid messages are

shown in figure 2.2.

First String | Second String

queue <ID string>, <script name>, <iteration count>
pulse nil

remove <ID string>

Figure 2.2: The Event Message

When an event message has a first string of queue, the Event Handler updates
or adds a job to the queue list, based on the unique ID string. If the first string is
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remove, the job with the corresponding ID string will be removed from the job
queue. Finally, if the string is pulse, the Event Handler will process its job queue.

The most complex communications in this model is to the I/O Handler.
State messages arrive and are matched with the first string with any tags storing
that variable. The value will be updated to the contents of the second string and
the user display is refreshed. More complex I/O messages, usually received
from the Knowledge Base as part of a script executing, force changes in the
screen'’s display by altering display elements called tags (discussed in section
4.2). Figure 2.3 shows what the messages look like:

First String Second String

refresh <tag ID> or refresh

smartgraphic <tag description>

simplegraphic <tag description>

simpletext <tag description>
simpleregion <tag description>
niltag <tag ID>
flushtags nil

smarttext <tag description>
smartpopuptext <tag description>
simplepopuptext <tag description>

changeregion

<tag ID><new x,y,dx,dy>

changeregioncolor

<tag ID>,<color>

changegraphic <tag ID>, <bitmap filename>

<data to be displayed>
The Tag /O Message

<defauit>

Figure 2.3 :

For more information on the various tag descriptions see appendix lll. Most of

the first string possibilities create different tags. The exceptions are refresh,
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which forces the I/O Handler to request a state message for a particular tag;
niltag, which removes a tag; flushtags, performs a niftag on all display elements;
changegraphic, allows us to update/animate a graphic image; and the default, if
none of the others apply the first string is assumed to be a tag ID and the second
is assumed to be data to be displayed by that display element.

The messaging system is critical to the function of the simulation engine.
In order for the simulation to run, protocols must be agreed between the different

tasks in the simulation.

Section 2.3: The Details of the Model’s Objects

Section 2.3.1: The Simulation State

The Simulation State is an object which manipulates the values or states
of the simulation. Other tasks in the simulation send requests for states to this
program, which looks up the value and returns it. This object also accepts
assignments, which it uses to alter its stored variables. How the simulation works

is described in figure 2.4.

assignments

assign/load state

state request

get state

transmit state

Figure 2.4 : The Simulation State
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The core of the simulation state is a variable handler which maintains simuiation
variables. States can be assigned (to existing) or loaded (new states). These
values can be retrieved using a get message. This entity is discussed in more
detail in section 4.3.

Of all the tasks in the Simulation engine the Simulation State is the
simplest. Like all simulation tasks it is capable of peer-to-peer type of
communications, but the nature of state storage allows it to behave as a pure
server type entity. Future enhancements to the simulation entity will require the
task to take a more active, peer-to-peer type role.

Section 2.3.2: The /O Handler

The user interface is made up of two important components, the output
section and the input section. These two sections are combined by the end user
to create the Input/Output Handler. The user is the source/sink object which
takes messages from the Output Section and generates messages to the Input

Section. Figure 2.5 illustrates the /O Handler model.

niltag/flushtags

transmit Message
transmit Events
transmit Assignments

Figure 2.5 : The I/0 Handler
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The original simulation model separated the /O Handler into two tasks, the Input
Handler and the Output Handler. Although this is a reasonable idea, the
restrictions of Windows programming required that the display screen and input
routines be contained in the same program, thus the input and output was
combined to create the I/O Handler - a hybrid object that both facilitates and
views information.

The 1/0 Handler interacts with users via an object called a Tag (discussed
in detail in section 4.2). A tag is an entity which can be displayed (as a value or
picture) and utilised to get user input. A list of tags is maintained by the I/O
Handler. This list represents the current state of the user’s interaction with the
simulation. The Output section will refer to this list to re-draw the screen and to
generate state requests. By selecting a tag the user can generate messages,
events, and assignments. These are communicated with the other tasks in the
simulation using the DDE OUT section.

The other processes in the simulation communicate with the 1/0 Handler
by sending i/o to the DDE IN section. This information is passed to the Process
Data section, which deciphers the type of i/o. The I/O Handler receives two
types of communications. The first type of i/o is a requested state. This
information is passed to the-Update Tag section, which searches and updates
the correct tag in the tag list. The second type is specific instruction from the
Knowledge Base. For instance, a refresh instruction will force the /O Handler to
request a state or states. This request will cause a requested state to arrive,
which will cause an update. Generally, the instructions will make the Input

section add, update, and remove tags in the list.

Section 2.3.3: The Event Handler
The Event Handler is designed to repeat regular, timed events in the

simulation. The idea was to offload the Knowledge Base by automating the
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execution of routine or iterative tasks. These tasks would need to happen via a

pulse type message. The Event Handler is modelled in figure 2.6.

add/remove
event

Event Queue

add/remove

script files

Figure 2.6 : The Event Handler

The Event Handler receives two types of instructions. The first is an event to be
either scheduled for execution or to be removed. Based on this, the event is
either added to the event queue or removed. The other type of instruction, pulse,
tells the event handler to process the event queue. The execute section reads
the next event to be processed, transmits a message to the Knowledge Base if

required, and either re-submits the event to the queue or removes it.

Section 2.3.4: The Knowledge Base Script Language.

A knowledge base is a set of rules (or knowledge) stored in a format
capable of being interpreted by the computer(Oren,1991). In the simulation
engine, the Knowledge Base entity is the task associated with interpreting the

rules that represent the process being simulated. It communicates with the other
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tasks in the simulation using the DDE IN and DDE OUT entities. The Knowledge

Base model is shown in figure 2.7.

Job Queue

filename

requested State

transmit [/O
transmit Events
transmit Assignments

request State

Figure 2.7 : The Knowledge Base

The heart of the Knowledge Base is a job queue which stores jobs until they can
be executed. As messages arrive via the DDE IN section they are converted to
jobs and stored in this queue. A timer regularly sends a “wakeup” signal which
causes the “update simulation” section to read jobs from the queue and pass
them on as script filenames to the loader/parser section. The loader/parser
section reads the file, creates a parsed object called a codecell, and invokes the
interpreter. The interpreter executes each command. By running each
command the rules of the simulation being modelled are executed. Some of the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



high level commands can request and transmit information via the DDE OUT
section which communicates with the rest of the simulation engine. Other
commands can call more scripts, allowing models to be built from the top down -
less knowledge to more knowledge. The script language is covered in more
detail in section 4.1.

The Knowledge Base is meant to be used as an discrete event (message)
driven model. The messages that arrive from other simulation tasks represent
events (such as user i/o, or value change) that affect the simulation. The
Knowledge Base runs the appropriate script - it applies the correct rule for the
situation.

It is possible to do continuous modeling by utilizing the timer. By using a
timer the Knowledge Base can provide a quantum unit of time (based on a
constant number of wake-ups), which can be used by the Simulation Engine for
timed events. This quantum, or simulation heartbeat, can be used to create a
continuos simulation by sending out regular pulse messages to the other
simulation tasks. In order to facilitate this, a special script is always run when the
heartbeat is active. It is automatically queued to run at each heartbeat. All timed
events can be triggered from this script.

The high level language allows the simulation designer to develop a
simulation with complex rules that can represent quantitative and qualitative
events within the model. This allows us to build rules which represent the “soft”
concepts (Rothenberg,1991). These can be hard to define (e.g. getting warmer,
usually around 10%) and require the flexibility that a knowledge base can offer.
The Knowledge Base program provides the tools required to implement a set of
rules. Combined with the other simulation engine tasks, it is a key component to

the design of the entire simulation system.
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Chapter 3 : THE WINDOWS PROGRAMMING ENVIRONMENT

This chapter examines the influencing factors of the chosen programming
environment, Windows 3.1. It discusses how the actual operating system
influenced the Simulation Engine’s design. Programming libraries used in the
development of the simulation engine, OWL (Object Windows Library) and
CLASSLIB (class library), are described. Finally, the DDE (dynamic data
exchange) protocol used in the simulation engine is introduced. This chapter

provides the groundwork for understanding chapter 4.

Section 3.1: The Windows Operating System Environment.

The simulation engine was originally designed to work in a Windows 3.1
environment using the Win16 API. The completed project runs in Windows 95,
Windows for Workgroups or Windows 3.1, but still depends on the basic
principals found in Windows 3.1.

The Windows operating system is a non-preemptive muiti-tasking
operating system. This means that the operating system can not interrupt a
process to force a fair time slice. Instead, program design in Windows 3.1 is
based around voluntary release of system resources. The downside of this
approach is that if a process becomes locked up it will lock all of the operating
system. (It should be noted that Windows 3.1 will terminate such processes if a
CTRL-ALT-DELETE keyboard message is issued. Previous versions of Windows
could not even do this. The Windows NT platform uses true preemptive
behavior, finally bringing safe multitasking to the PC Windows).

To understand the Windows environment we must first understand the
relationship between the application and its window. The application interfaces
between the window and the operating system. The window links the user to the
application.

The window has associated with it a procedure which defines how the

window will react to the communications from the application. As the application
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receives and deciphers information tokens called messages from the operating
system, they are dispatched to the window procedure. This procedure then
reacts according to the program design.

Messages can be originated from hardware (mouse, keyboard) or other
applications. The messages are processed by the operating system, and passed
on to the program in one of two ways. First, the message may be posted. A
posted message is left in an application message queue to be read when the
program gets a chance. The second method is a send. A message which
arrives using a send goes directly to the window process, bypassing the
application. This is only used for high-priority communications. The message

passing process is modelled in figure 3.1. (Yao,1994).

POSTMESSAGE SENDMESSAGE

'

APPLICATION OBJECT WINDOW OBJECT

MOUSE & KEYBOARD

Figure 3.1 : Windows Message Passing System
The application’s GetMessage loop releases control to the operating system
after each message is processed. This loop is in every Windows program, and

typically looks like:

while (GetMessage(&msg, 0, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
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The GetMessage function will only return false when a quit message is received.
At this point the loop will end and the program will terminate.
The key to the process is the message. A message is a structure made up

of six parts. From the Borland C++ windows.h file we can see the structure:

typedef struct tagMSG

{
HWND hwnd;
UINT message;
WPARAM  wParam;
LPARAM  |Param;

DWORD time;
POINT pt:
} MSG;

The hwnd is a window handle. As explained earlier, a window handle identifies a
window uniquely. In this case it is the window targeted to receive this message.
The message is an unsigned integer (either 16 or 32 bit depending on which
applications programmer interface you are using) which identifies the type
message (the details of the different types of messages is out of scope for this
paper). The wParam and /Param variables are data - the type of data depends
on the type of message. The variables time and pt identify the time the message
was created and the position of the mouse at that time.

Because of a message driven, non-preemptive nature of the Windows
operating system the style of programming is a bit different. A windows program
amounts to a set of “traps” which capture different messages. Even when using
a timer messages are generated and responded to. The environment is very
easy to develop in, but the influence on the simulation engine is substantial. The
simulation engine is a reactive type program; it waits for user input, it waits for
timed events. This lends itself very nicely to event driven typed applications,

which in turn assists the simulation engine in creating event driven simulations.

27

Reproduced w