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ABSTRACT

Osika, M. 1 .1997. Potential impacts of clearcut logging on lake trout (Satvelinus 
namaycush) reproduction in three small northwestern Ontario lakes.

Lake trout reproductive habitat was characterized in three small lakes, 250 km northwest 
of Thunder Bay, Ontario, by measuring the physical characteristics of preferred spawning 
habitat including 1) depth, 2) substrate size, 3) interstitial space depth, 4) organic material 
abundance, 5) embeddedness, 6) particulate debris, and 7) permeability. Principal 
Components Analysis indicated that periphyton, macrophyte, and particulate debris 
abundance all increased with shoal depth, while substrate size decreased. Hydraulic 
permeability, indexed by the erosion of gypsum cylinders, was higher in coarser substrates. 
Lake trout egg deposition density in egg traps averaged 70 eggs m'2, of which 45% were 
viable by late fa ll Lake trout embryo survival and emergence in enclosures varied with 
Fredle Index, and was highest (75%) in cobble/rubble mixtures. Fine sediment which was 
added to incubators in the fall was absent when the incubators were retrieved in the spring. 
At the single fine sediment dosage tested in this study (equivalent to a layer approximately
2.5 cm deep across the surface of each incubator), lake trout hatching success was not 
significantly affected. Although experimental nutrient enrichment CP and N) of a spawning 
shoal increased periphyton biomass by 2.5 times over the summer, the effects o f this on 
reproductive habitat are not known at present.
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INTRODUCTION

CONTEXT OF STUDY

Interactions between water, soil, and vegetation within a watershed are primarily 

responsible for allochthonous nutrient and sediment contributions to lake basins (Likens 

1984; Bormann and Likens 1985). Therefore, alteration of riparian communities by 

clearcut logging (and road construction and maintenance activities), may have significant 

impacts on a lake (Smol et al. 1983; Jaakko 1991). For example, sediment and nutrient 

loading have repeatedly been documented for both stream and lake systems following 

timber harvesting (Likens e ta l. 1970; Bums 1972; Posey 1973; Pennington 1981; 

Hombeck and Kropelin 1982; Vitousek;1983; Ward 1992). Based on the experimental 

work conducted in the Hubbard Brook Experimental Forest and other locations, Likens 

(1984) suggested that the changes which would typically occur in a watershed ecosystem 

following deforestation would include a) more erosion and transport o f particulates into a 

lake, b) increased concentrations o f phosphorus and suspended solids in water, and c) 

generally a more eutrophic (nutrient and organic material enriched) lake.

There is a growing concern regarding watershed disturbance and the subsequent 

habitat degradation threats to the lake-trout stocks throughout Ontario (Evans et al.

1991). Lake-trout lakes exhibit a narrow range of limnological characteristics (e.g. depth, 

temperature, dissolved oxygen and solids, nutrients, pH, and are thought to be vulnerable 

to even slight changes in water quality or land use (Ryder and Johnson 1972; Ryan and 

Marshall 1996). Lake trout in many small northern lakes typically spawn in shallow (<2m)
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nearshore areas with clean coarse substrate; locations which are in close proximity to any 

potential disturbances resulting from shoreline modifications (McAughey and Gunn 1995).

USE OF SPAWNING SHOALS BY LAKE TROUT

Lake trout reproductive habitat exhibits distinct characteristics required to 

facilitate development o f eggs through to early larval stages (Olver et al. 1991), and may 

have an ecological role far more important than suggested by shoal size alone (Steedman 

and Regier 1987). Lake trout have demonstrated their ability to respond rapidly to 

spawning habitat loss in Whitepine I-akft (Sudbury, Ontario) by selecting new sites when 

their preferred habitat has been altered (McAughey and Gunn 1995). However, egg 

deposition does not necessarily indicate that the fish have selected sites suitable for 

embryo incubation and emergence. Spawning habitat quality can be defined by both the 

intensity of use by spawners, and by the degree of successful incubation of deposited eggs 

to hatching, and survival o f fiy to emergence. Therefore, the evaluation of spawning and 

incubation habitat quality requires an understanding of the factors that affect adult choice, 

egg incubation and fiy survival (Marsden et al. 1995a).

In Ontario, lake trout spawn in the fall Gate September to mid-November), in 

water temperatures ranging from 8.9 to 13.9°C (Scott and Crossman 1973; Sly and 

Widmer 1984). These declining temperatures are usually accompanied by a reduced 

photoperiod and strong on-shore winds (Martin and Olver 1980). Lake trout are 

nocturnal spawners which makes observations o f spawning behaviour difficult (Gunn 

1995).
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Inland lake-trout usually spawn in shallow water (1-4 m) along shorelines, or 

shoals that are exposed to prevailing winds o f sufficient magnitude (wind fetch >0.5) to 

keep the area swept clean o f silt and particulate debris (Martin and Olver 1980; Palilionis 

1981; Sly 1984; Nester and Poe 1987; Evans e ta l. 1991; Gunn 1995). Unlike most 

salmonids, lake trout do not build nests or redds (M artin and Olver 1980; Moyle and Cech 

1988), but broadcast their eggs over scattered piles o f clean broken cobble (2 - 62 mm) 

and rubble (65 - 256 mm) substrate, interdispersed with larger boulders (Martin and Olver 

1980; Evans et al. 1991). Small patches (0.25 -5  m2 surface area) of gravel o r small 

rubble were the focus o f lake trout spawning activity in a 60 ha inland lake in north central 

Ontario (Gunn 1995).

The eggs usually fall into the substrate interstices (spaces between substrate 

pieces), where they absorb water, swell, and become wedged within the substrate. These 

interstices, (usually 20-30 cm deep) entrap the eggs, protecting them from physical 

disturbance and predators (Edsall et al. 1992). Substrate stability is important to embryo 

survival, and spawning habitat is usually not located on actively moving beach or gravel 

channels (Sly and Schneider 1984).

The growth, development, and survival o f lake trout eggs and larvae are influenced 

by the physical and chemical characteristics o f the surrounding environment. Lake trout 

embryos require an ample supply of oxygenated water which is free of toxic substances 

(McNeil and Ahnell 1964). Development and survival o f salmonid embryos are adversely 

affected if dissolved oxygen drops below 6 mg/L (Phillips 1971; OMNR 1984).

Salmonid embryo survival and fry emergence have a positive relationship with 

mean substrate particle size and permeability (intragravel water exchange) and a negative
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relationship with increasing abundance of fine sediment (McNeil and Ahnell 1964; 

Chapman 1988; Petticrew and Kalff 1991). Chronic or intense sediment loading can bury 

rock and gravel substrate making it unavailable to spawning fish (Francis et al. 1979). 

Less intense sedimentation can fill interstitial spaces, preventing eggs from penetrating the 

substrate layers, and increasing the egg’s susceptibility to predation by fish and 

invertebrates. Increases in fine sediment, and a subsequent decline in substrate 

permeability, may impair the ability o f water currents to mix freely and deliver oxygen to, 

and remove waste products (i.e. NHt+, CO2) from incubating embryos (Chapman 1961; 

Phillips 1971; Ward 1992). Reiser and White (1988) confirmed that for steelhead and 

chinook salmon eggs, the smaller sediments (< 0.84 mm) were most detrimental to 

incubating eggs. Fall chinook-salmon eggs suffered as much as 85% mortality when 15- 

30% of the voids in the gravel beds, in Abernathy incubation channels, were filled with 

sediment (Shelton and Pollock 1966). Sediments can also form a barrier to fry emergence 

(Phillips 1971).

Cultural (anthropogenically accelerated) eutrophication has been identified as the 

causative factor of increased algae growth on lake-trout reproductive habitat in Lake 

Ontario (Ryder and Edwards 1985; Sly 1988). Plant and algae debris can be trapped and 

accumulate in the substrate o f spawning sites when there are high nutrient levels 

originating from shoreline disturbances (Evans et al. 1991). Algae and periphyton, like 

fine sediment, may impede an embryo’s ability to penetrate the interstices, and increase 

embryo susceptibility to predation. In addition to the clogging o f interstitial spaces, 

decomposition o f organic material could result in oxygen loss or elevated NEU+ within the
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incubating environment. In severe cases, oxygen can be depleted to a level insufficient for 

a developing embryo to survive (Sly 1988).

Spawning behavior and habitat of lake trout have been studied by mapping 

historical reproductive habitat, egg collections, visual assessment of spawning grounds, 

and substrate analysis. Most substrate surveys and analysis visually assess the uppermost 

layer of substrate to determine the particle-size distribution at a location of interest. These 

methods are not reliable for certain sediment mixtures, and significant information is often 

lost when only the dominant substrate is recorded (Bain et al. 1985). These substrate 

assessments do not adequately describe the material below the surface, the substrate which 

eventually becomes the incubating habitat for the lake-trout embryos.

Unfavorable weather conditions associated with fall spawning and early spring fiy 

emergence are most likely responsible for the lack of research regarding the incubation 

and emergence of lake-trout fiy. Many studies have attempted to investigate the 

relationship between the embryo incubating environment and fiy emergence. However, 

lake-trout fiy typically emerge when lakes are still ice covered, making quantitative 

measurements of fry production difficult, and researchers have often resorted to the 

deployment of a variety of egg-incubating devices in the fall. Manny et a/.(1989) placed 

fertilized lake-trout eggs in individual compartments o f Plexiglass incubators (25 x 12.5 x

1.5 cm) that were buried by SCUBA divers in rock rubble, and left over the winter. These 

incubators have since been used in a number of reproductive habitat quality studies 

(Eshenroder 1988; Edsall et a l.1992). However, upon burial of these and similar 

incubating devices, the embryos are not being subjected to an entirely natural incubating 

environm ent By creating an artificial microenvironment factors such as substrate
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permeability and subsequent water exchange no longer have a direct effect on the 

developing embryo. To measure the relationship between the physical nature o f the 

reproductive habitat, and embryo survival and emergence, experimental containers should 

accurately simulate a natural incubation environment.

STUDY OBJECTIVES

Figure 1 provides a conceptual framework of the land-water linkages relate to lake 

trout spawning shoal habitat and subsequent reproductive success. The goal of this study 

was to gain a further understanding of the characteristics of lake trout reproductive habitat 

and success by measuring or manipulating the elements highlighted in Figure 1.

This thesis attempts to identify and quantify the habitat variables that characterize 

undisturbed lake trout spawning shoals in three small lakes in north-western Ontario. It 

then attempts to determine how some of these habitat variables could be limiting or 

regulating lake trout reproductive success by testing the null hypothesis that embryo 

hatching success is not significantly effected by substrate size and composition. To 

investigate the potential impacts that timber harvesting practices may have on lake trout 

reproductive habitat (i.e. siltation and nutrient enrichment) and subsequent lake trout 

embryo survival, I tested two additional null hypotheses: a) the deposition of fine sediment 

has no significant effect on lake trout embryo hatching success, and b) increased P and N 

water concentrations have no significant effect on periphyton accumulation and abundance 

on lake trout spawning substrate.
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METHODS

STUDY AREA

This study was undertaken in Lakes 20,26, and 42 at the Coldwater Lakes 

experimental watersheds, located on the Canadian Shield about 200 km northwest of 

Thunder Bay, Ontario, Canada, in the transitional zone between the Great Lakes - St. 

Lawrence forest and the boreal forest (Figure 2). The Coldwater Lakes research project 

was initiated in 1990 to measure the effects of logging on lake ecosystems, and test the 

effectiveness of shoreline buffer strips in preventing those effects (OMNR 1996). The 

lakes are small, oligotrophic headwater basins characterized by sparse fish faunas (Table 1; 

France and Steedman 1996). Lakes 20,26, and 42, have similar fish community 

compositions. Lake trout and white sucker (Catostomus commersoni) are the only two 

large-fish species present (Table 1; Appendix I).

Lake trout spawning shoals were identified in the fall of 1993 and 1994, by OMNR 

staff using snorkeling gear, who placed permanent coloured markers in the areas where 

lake trout egg deposition was observed. These surveys resulted in the identification of one 

major spawning shoal within each study lake.
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Figure 2. Map of the study lakes 20,26, and 42.
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Table 1. Characteristics of the study lakes. Chlorophyll a, Secchi depth, and pH are 
1992-1993 averages. Littoral fish species are coded as follows: white 
suckers Catostomus commersoni, 1; northern redbeUy dace Phoxinus eos 
and finescale dace Phoxinus neogaeus, 2; common shiners Luxilus cornutus, 
3; blacknose shiners Notropis heterolepis. 4; fathead minnows Pimephales 
promelas, 5; pearl dace Margariscus margarita, 6; brook stickleback Culaea 
inconstans, 7; Iowa darters Etheostoma exile, 8; and slimy sculpins Cottus 

cogncaus, 9 (France and Steedman 1996).

Study Lake
Lake Characteristics 20 26 42

Lake area (ha) 57 27 28
Maximum lake depth (m) 32 37 19
Chlorophyll a (ug/L) 3.0 0.9 1.3
Secchi depth (m) 3.1 5.0 4.2
pH 6.8 7.1 6.7
Littoral fish species 
lake trout population

1-9 1.2,4-9 1.2,5-7,9

estimate1 196-218 256-369 129-177

1 Lake trout population estimates for the study lakes are based on fall gill netting data 
obtained in 1992-1993 for Lake 20.1992 and 1995 for Lake 26. and 1992-1994 
for Lake 42. (OMNR unpublished data)
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PHYSICAL ATTRIBUTES OF LAKE TROUT SPAWNING SHOALS 

Sample Sites

Random selection methods used throughout this study are summarized in 

Appendix IL The permanent markers used for the MNR egg deposition surveys were 

used to determine the outer perimeter o f each o f the three spawning shoals. W ithin each 

spawning shoal, 20 sampling sites were randomly selected and marked with a coloured 

and numbered rock. These markers established the center of a 42 cm diam eter plot for 

each o f the 20, 16, and 20 sample sites for the shoals in Lakes 20,26, and 42 respectively. 

The depth o f the sample site from the water surface was measured to the nearest cm.

Periphyton

Relative periphyton abundance on shoal substrate (none, low, medium, high) was 

visually assessed using the criteria presented in Appendix HI, and included attached algae, 

organic detritus, and some fine sediment (Wetzel 1979).

Vegetation and Particulate Debris

Macrophyte (submerged aquatic vegetation), and particulate debris (i.e. sticks, 

bark, wood pieces, leaves) abundance were visually estimated as the percent o f the total 

sample plot area covered (Appendix IV).

F.m hftdrterinftss

Embeddedness describes the extent that the larger particles (boulders, rubble, or 

gravel) are covered by fine sediment (Platts et al. 1983). The relative embeddedness o f the
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substrate (none, low, medium, of high) was assessed using the criteria presented in 

Appendix V.

Interstitial Space Depth

At each sample plot, ten interstitial spaces were randomly selected. A suspended 

lead shot with a diameter of 4 mm (simulating that of a non-waterhardened lake trout egg) 

was lowered into each o f these spaces until the shot reached its maximum possible depth. 

With the line remaining taut, the penetrated depth was measured relative to the average 

surface level o f the substrate surrounding the interstitial space.

Substrate Size and Composition

Substrate size and composition were quantified using the technique described by 

Marsden and Krueger (1991). At each sampling site, divers removed 10 L o f substrate 

from the area beneath a 42 cm diameter circular frame. Efforts were made to include fines 

(sand) in the sample; however some loss was unavoidable. On shore, the substrate was 

washed through a series of sieves, dividing the material into five possible diameter size 

classes: fines (0-6.3 mm), gravel (6.4-75.9 mm), cobble (76.0-149.9 mm), rubble (150.0- 

303.9 mm), and small boulders (304.0-609.9 mm) (Platts et cd. 1983). For each sample 

site, the material within a size class was collected and placed in a plastic container with a 

known volume of water. Volumetric displacement was used to determine the volume of 

each size class.
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Substrate Permeability

Fredle Index

Fredle Index describes the particle size distribution in sediment mixtures, and is 

calculated as follows.

Fj = Fredle Index = D g 
So

where Dg = geometric mean particle size 
S0 = sorting coefficient = dzs

d25
The S0 is derived by taking the square root quotient o f the grain size at the 
VS"1 percentile divided by that at the 25th (Lotspeich and Everest 1981).

The Fredle numbers index both pore size and relative permeability, both of which increase 

as the index becomes larger. The Fredle Index was calculated for each sample site using 

volumetric substrate abundance described above. Fredle Indicies were divided into four 

index classes: Class 1 (0-50), Class 2 (51-100), Class 3 (101-150), and Class 4 (151-200) 

(Figure 3).

Indexing Water Circulation Above and Within Spawning Shoals

I used gypsum cylinders to measure the water turbulence occurring above each o f 

the three spawning shoals and within various substrate types.

Preparation of Gvpsum Cylinders

Blocks of hydrated calcium sulphate (gypsum or Plaster of Paris) have been used 

as qualitative and quantitative water turbulence (disturbance, flow) sensors in both marine 

and freshwater systems, and can be used as an inexpensive measure o f average current 

speeds. For this study gypsum cylinders were prepared and calibrated according to 

Petticrew and Kalff (1991), and R. Kushneriuk (pers. comm.). A mixture of Plaster of
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distribution for spawning shoal substrate samples analyzed 
in this study
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gypsum and water were poured into cylindrical molds (9.5 cm long x 2 cm diameter) and 

left to set at room temperature overnight. A 16 cm long nylon cable tie was inserted into 

each cylinder before the mixture hardened. The cylinders were removed from the molds 

and oven dried at 40°C for a minimum o f 3 hours. The ends of each cylinder were sealed 

with an oil-based paint to restrict erosion to the circumference o f the cylinder. Each 

cylinder was numbered on the protruding end of the nylon tie. All cylinders used in this 

study were made from the same batch o f gypsum.

Calibration o f Cylinder Diameter Loss to W ater Row

A 45 cm wide recirculating flume channel, with a water depth of 15 cm and a 

temperature of 16-18°C, was used to calibrate the cylinders. A paddle wheel, powered by 

an electric motor, created the water flow. W ater velocities in the flume were calculated as 

the mean velocity (n=5) of a small piece o f styrofoam as it traveled the length of the flume. 

W ater velocity was set between 0 and 12 cm sec'1. For each run, four to eight gypsum 

cylinders were vertically submerged mid-depth across the width of the channel. The 

cylinders were left in the flume for up to 36 hours, removed, oven dried at 40°C, and re- 

weighed. To avoid problems of saturating the flume water with gypsum, the flume was 

drained between runs.

Due to the number of cylinders required for field deployment, it was necessary to 

reuse partially eroded cylinders. Cylinders with a smaller radius and surface area have the 

potential to erode at a slower rate than larger cylinders. Therefore, cylinder diameter loss 

was explored as a possible index of water flow. The volume (measured using volumetric 

displacement) o f randomly selected cylinders of various weights was used to calculate the
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cylinders’ density. After confirming that there was no significant relationship between 

cylinder weight and density (Appendix VI), cylinder diameters were calculated as follows:

Diameter = 2 ( V /  (3.14 L)ia

where: V(volume) = mass /  density
L  = length o f cylinder

Linear regression indicated that there was no significant relationship between 

cylinder weight and diameter loss rate (r2 =0.00, p =0.91, n =286). Therefore cylinder 

diameter loss rate was used to resolve the cylinders’ response to water flow. Linear 

regression analysis o f the flume data indicated a positive linear relationship between 

cylinder diameter loss rate and water velocity (Figure 4). The position o f the cylinder in 

the flume did not appear to affect the diameter loss, as illustrated by the minimal variation 

exhibited by replicate cylinders.

Cylinder Deployment

At each shoal, at least five sites were randomly chosen from among the previously 

established sample sites. At each site, one cylinder was suspended 20 cm above the 

substrate (with a weight and float system) and another cylinder was buried under one layer 

o f substrate (Figure 5). Between July 24 and September 7,1995, cylinders were deployed 

for at least two sampling intervals of up to 72 hours. Diameter loss rate was estimated 

from weight loss for each deployment interval. To estimate sampling variation in various 

substrate sizes, three cylinders were buried together for 24 hours at five sites on the Lake 

26 shoal on August 7,1996. The permeability of the substrate was indexed as follows:

Permeability (%) = cylinder diameter loss rate within the substrate x 100 
cylinder diameter loss rate above the substrate
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Figure 4. Relationship between cylinder diameter loss rate and water velocity for
cylinders calibrated in recirculating flume. The linear relationship is significant 
(r2=0.86,p=0.000, n=32).
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EGG DEPOSITION
Egg traps (615 cm2 surface area) were constructed of 5 cm-wide rings cut from

20 L plastic containers. The top of each trap was covered with 6 mm (internal width)

galvanized steel mesh. The bottom o f each ring was covered with plastic fly-screen

material (1 mm internal width). The steel mesh was large enough to pass non-

waterhardened eggs into the trap, but small enough to trap waterhardened eggs and

exclude predators. A small amount o f gravel was used as a ballast to prevent dislocation

or overturning of the trap after deploym ent On October 5,1995 (prior to lake trout

spawning), 20 egg traps were randomly placed throughout the area o f each o f the three

spawning shoals. The traps were left out on the substrate surface o f the shoals on October

31,1995, at which time the trapped eggs were counted and their condition (viable, non-

viable or opaque white, and fungus covered) assessed

EMBRYO HATCHING SUCCESS BIOASSAYS

Egg incubators were constructed o f 30.2 x 36.5 x 26.5 cm plastic milk crates, lined 

with galvanized steel mesh. A mesh size of 3.0-3.5 mm (internal width) was selected 

because a) the average waterhardened lake-trout egg has a diameter o f 5-6 mm, and b) 

Balon and Noakes (1990) estimated the dorsal-ventral depth of a free lake-trout embryo 

(141 days , 4.4°C) as 3.25 mm. The incubators were designed to retain eggs and larvae, 

while maximizing water circulation and excluding predators. Thirty-five incubator sites 

were randomly selected on the three shoals throughout September 1995 (Appendix II).

At each sampling site, substrate was removed and an incubator was placed into the 

excavated area. The removed substrate was then placed into the incubator (Figure 6).
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incubator

shoal substrate

Figure 6. Incubator installation in shoal substrate
of Lakes 20,26, and 42. Diagram is not to scale.
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Throughout the spawning season (October 7 - October 29,1995) (between 

sundown and midnight), gill nets (3.8 - 5.0 cm mesh) were set for 15-minute intervals on 

and around the spawning shoals. Several female lake trout were stripped, and their eggs 

pooled and fertilized (in water) with m ilt from several males. The eggs were left overnight 

to waterharden in a 20 L pail, partially submerged in the lake to maintain a cool 

temperature. The next day, non-viable eggs (opaque white) were removed, and two 

hundred eggs were scattered over the substrate enclosed within each incubator.

Platts et al. (1983) distinguish two classes o f fine sediment: large fine sediment 

(0.83 -4.71 mm), and small fine sediment (< 0.83). The reason for the separation is that 

large fine particles can form a physical barrier to fry emergence, while small fine particles 

tend to decrease water permeability through spawning substrate (Platts et al. 1983).

To observe the effect of a single sedimentation event on embryo survival, hatching 

success was assessed on the Lake 20 shoal where 700 cm3 of sand (diameter < 0.425 mm) 

had been added to the incubators, equivalent to a layer approximately 2.5 cm deep across 

the surface of the incubator. Incubators (up to a maximum of 3 if  available) were placed 

in randomly selected sample sites. Approximately 75 % of the fine sediment was 

distributed across the surface of the substrate in the incubator, followed by the 200 eggs, 

followed by the remainder of the fine sediment. All of the incubators were covered with 

galvanized steel mesh secured with elastic cords. The incubators were retrieved May 21- 

24, 1996. Hatching success was assessed by counting the number of unhatched eggs.
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MID-WINTER DISSOLVED OXYGEN

Interstitial water on Lake 20 was sampled using apparatus similar to that described 

by Gunn and Keller (1984). Known lengths of tygon tubing (5 mm internal diameter) 

were buried under one layer of substrate enclosed in five incubators. These incubators 

were not randomly chosen as they needed to be in close proximity to each other to 

facilitate easier winter access. On February 15, 1996, water was drawn through the tubing 

using a peristaltic pump. The water entered a plastic chamber which enclosed an oxygen 

meter probe. The water passed over the probe membrane and exited the chamber via a 

second tube (Figure 7). Once the water initially sitting the tubing was flushed out, 

readings were recorded for a subsequent 500 mL. The primitive design o f the 

experimental setup had the oxygen probe’s pressure compensating membrane outside of 

the sampling chamber. Therefore, it was necessary to pump the water very slowly to 

avoid increasing water pressure within the measurement chamber which causes erroneous 

dissolved oxygen readings. Ambient water oxygen concentrations were measured from 

water sampled at approximately 40 cm above the substrate. Samples for water chemistry 

were also collected, but were not analyzed due to laboratory service disruption arising 

from a public service strike.

NUTRIENT ENRICHMENT OF THE SHOAL ENVIRONMENT

The spawning shoal o f Lake 20 is divided into a north and south section by a large 

rock outcrop (Figure 8). Six sampling sites were randomly selected in each of these 

sections. To test the response of periphyton to increased nutrient inputs, the north section 

o f the shoal received inputs o f both P and N in the form of P 2 O 5 -  and N2- containing
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Figure"7. Sampling apparatus used to measure oxygen concentrations
o f water above and within die shoal substrate o f Lake 20 during 
egg incubation. Diagram is not to scale.
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fertilizers. Six plastic mesh cylinders (945 cm3) were constructed and filled with 

fertilizer, and one cylinder was placed at each o f the sampling sites in the north section 

(Figure 9). The cylinders were filled weekly (June 19 - July 25,1996), with a total of 

1042 g P and 4734 g N being released over the entire sampling period. The south section 

was used as a control area (Figure 8).

Granite-tile artificial substrates were chosen to measure the response of periphyton 

abundance to the point sources of N and P. These tiles were convenient and flexible 

regarding replication and sample location, and provided a standardized area (225 cm2 

upper surface area) to measure periphyton biomass.

On June 19,1996, one tile was placed at each of the six sampling sites in both the 

north and south sections of the spawning shoal. On August 7,1996 all o f the tiles were 

carefully removed and placed in plastic bags for transport. To determine whether the 

nutrient sources were successful in raising the ambient N and P concentrations in the 

enriched areas, water samples were taken at each of three of the sample sites and at one 

and two meters from the sites parallel to the shoreline (Figure 9). This was repeated for 

the control area.

In the lab, the tiles were scraped and rinsed with distilled water, to remove all the 

accumulated periphyton from the surface. The material and water were put into plastic 

jars, sealed, and refrigerated (<-4°C) to allow suspended material to settle out. After two 

days the water above the settled material was drawn off with a pipette connected to a 

vacuum line. The remaining material was placed into preweighed aluminum dishes and 

oven-dried at 105°C until a constant dry weight was obtained. The dishes were ashed at
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Nutrient Source

Figure 9. Spatial relationship o f water sample sites for nutrient enrichment 
experiment on Lake 20. Nutrient sources in enriched area were 
placed adjacent to tiles. Water samples (X) were taken at 1 and 2 
meters from the sample sites in both the control and enriched areas.
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500°C for one hour and reweighed. For each sample the final ashed weight was 

subtracted from the dry weight to determine the weight of organic material.

STATISTICAL ANALYSES

Principal Components Analysis (PCA) (SPSS 1993) was used to explore how the 

seven habitat variables (depth, embeddedness, periphyton abundance, particulate debris 

abundance, percent vegetation, Fredle Index, and interstitial space depth) interacted with 

each other. The PCA maximizes the variance in the data which is explained by linear 

combinations o f variables, in which successive components are constructed to be 

uncorrelated with previous ones. It often results in the summarization o f the variance into 

only a few components, so that multidimensional data can be displayed effectively on a 

two- or three- dimensional graph that uses the PCA components as axes (James and 

McCulloch 1990).

Parametric statistics were used on data the exhibited both normal distribution and 

homogeneous variance. The hypothesis that substrate permeability was not significantly 

different between lakes was tested using ANOVA. Linear regression analysis was used to 

determine if there was a significant relationship between Fredle Index and substrate 

permeability.

Data made up of small sample sizes and/or non-normal data distributions violate 

the assumptions of the ANOVA. Therefore, non-parametric statistics were used to test 

for inter-lake differences in egg deposition, embryo condition, and hatching success data. 

Non-parametric statistics were also used to test for a significant effect o f Fredle Index and
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fine sediment on hatching success, and nutrient enrichment on periphyton abundance on 

the artificial tiles.
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RESULTS

PHYSICAL ATTRIBUTES OF THE LAKE TROUT SPAWNING SHOALS

Lake 42

The spawning shoal on Lake 42 was approximately 156 m2. This was the deepest 

o f the three shoals and was composed of rounded smooth gravel and cobble substrate 

interspersed with large boulders (Figure 10). The substrate had relatively low Fredle 

Indexes and shallow interstitial spaces, with a moderate amount o f periphyton and 

macrophyte growth, and little particulate debris on the shoal (Table 2, Figure 11). 

Although there was fine material located beneath the gravel and cobble, the surficial 

substrate was relatively unembedded by fine materials. Dead eggs and egg cases from the 

previous year were observed in ten sample plots during substrate sampling.

Lake 20

The spawning shoal on Lake 20 was approximately 100 m2. The shoal was 

composed o f smooth and very angular cobble and rubble (Figure 10). The substrate on 

this shoal had higher Fredle Indexes and deep interstitial spaces, relative to Lakes 42 and 

26 (Table 2). The shoal sites exhibited no substrate embeddedness, no particulate debris 

or macrophytic growth, and low amounts o f periphyton (Table 2; Figure 11). Dead eggs 

were observed in two sample plots.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

Is
’o>
o
■p.

VI

2
£

|
Ok

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Lake 20

Lake 26

Lake 42

Fines Gravel Cobble Rubble 
(0-6.39) (6.4-76.0) (76.1-149.9)(150.0-303.9)

Substrate Size (mm)

Figure 10. Boxplots displaying the percent o f total sample volume by
substrate class for the sampling sites on Lakes 20 (n=20), 26 (n=16), 
and 42 (n=20). The statistics conveyed by a boxplot are illustrated 
in Appendix VII.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

Table 2. Mean ±  S.D. o f habitat variables on spawning
shoals in Lakes 20 (n=20), 26 (n=16), and 42 (n=20).

Habitat Variable

Study Lake

20 26 42

Depth (m) 55 ± 1 7 41 ± 1 2 158 ± 8
Fredle Index 105 ± 3 4 87 ± 29 37 ± 1 2
Interstitial Space Depth (cm) 1 0 ± 6 6 ±  3 3 ±  1
Vegetation Cover (%) 0 ± 0 0 ± 0 4 ±  8
Particulate Debris Cover (%) 0 ± 0 1 ± 1 0 ± 0
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Figure 11. Histograms displaying the number of sites falling into each
grading category for periphyton abundance and embeddedness.
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Lake 26

Spawning shoal material in Lake 26 had been previously identified in various 

locations around the perimeter of the lake, but seemed to be concentrated in a 97 m2 area 

located on the west shoreline. The shoal was comprised of round gravel, cobble and 

rubble interspersed with larger boulders (Figure 10). The Fredle Indexes and interstitial 

space depths o f Lake 26 were generally higher than those of Lake 42 and smaller than 

those of Lake 20 (Table 2). The shoal had low embeddedness and little periphyton and 

particulate debris abundance. There were no macrophytes, and little periphyton (Table 2; 

Figure 11).

MULTIVARIATE ANALYSIS OF SPAWNING HABITAT

Each o f the variables (Table 3) in the PCA appeared to be providing distinct 

information, and therefore all were considered as unique descriptors of the spawning 

shoals. The PCA reduced the seven dimensions of the fifty-six sites into two main 

variables (linear combinations of the original variables, or principal components). The first 

principal component (PCI), accounting for 45% of the variance, indicated a contrast 

between a) deeper sites with more vegetation, and periphyton on smaller sized substrate, 

and b) shallower sites with less periphyton on larger sized substrate. The second principal 

component (PC2), accounting for 20% of the variance, contrasted sites having a greater 

degree o f particulate debris and embeddedness with cleaner non-embedded sites. A 

scatterplot o f the fifty-six sites, using the two new linear combinations (PCI and PC2), 

(Figure 12), shows that periphyton, particulate debris, and macrophyte abundance 

increased with increasing depth, while Fredle Index and interstitial space depth decreased
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Table 3. Factor loadings1 for the PCA on the physical features 
of fifty-six sites located on the spawning shoals within 
Lakes 20,26, and 42.

Variable PCI PC2

Depth o f Site 0.91 -0.28
Depth of Embeddedness 0.10 0.80
Fredle Index -0.84 -0.11
Interstitial Space Depth -0.75 -026
Particulate Debris Abundance-0.46 0.75
Periphyton Abundance 0.77 0.17
Vegetation Abundance 0.50 0.20

% Variance 44.9 20.4

fa c to r loadings represent of the correlation between the 
principal components and the original habitat variables.
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with increasing depth. Figure 12 also shows that each shoal exhibits distinct 

combinations of physical features, causing the sample sites from each shoal to cluster 

together in PCA space

WATER FLOW MEASUREMENTS ABOVE AND WITHIN THE SHOAL

The water velocity above the shoal in Lake 42 was slightly greater than that of 

Lakes 20 and 26 (Figure 13). However, the water velocity within the substrate 

demonstrated little variation among lakes (Figure 13).

The diameter loss rate o f the three replicate cylinders placed in the sites on the 

Lake 26 spawning shoal demonstrated homogeneous variance across a variety of Fredle 

Index classes, confirming that the cylinder measurements can be compared over a variety 

of substrate sizes (Figure 14). Lake 42 had a significantly less-permeable substrate than 

Lakes 20 and 26 (Tukey - HSD multiple contrast, p<0.05, Figure 15). Permeability 

(diameter loss above/ diameter loss below) data for Lakes 20,26, and 42 were combined 

to determine the effect of Fredle Index on substrate permeability. Permeability had a 

significant positive linear relationship with Fredle Index, indicating that the interstitial 

water of larger substrate can more freely mix with ambient water compared to that of 

smaller substrate (Figure 16).

EGG DEPOSITION

Two hundred and seventeen eggs were trapped on the three shoals. The maximum 

number o f eggs found in one trap was 55 in Lake 42. The mean (± SX>) egg deposition 

density (n=20) was 77 ±  209 eggs m'2, 61 ±  101 eggs m'2, and 70 ±  123 eggs m'2 for
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Figure 14. Box plots displaying the diameter loss rate for (n=3) cylinders placed 
in sites o f varying Fredle Indexes on the Lake 26 shoaL The Levene 
test for homogeneity o f variance shows that there is no significant 
difference in  the variance of the diameter loss rate for the different 
Fredle Index numbers (p = 0.112). This indicates that the turbulence 
measured by the cylinders in  various substrate sizes exhibit homogenous 
variance and can be can be compared for differences.
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Lakes 42,20, and 26 respectively. Forty five percent o f all the eggs trapped in the three 

lakes appeared to be viable, and 32% appeared non-viable or opaque white in appearance. 

Nine percent of eggs appeared to be covered with fungus (Table 4). There were no 

significant differences in the total number of viable eggs (K-W, p=0.8706), non viable 

eggs (K-W, p=0.8392), or egg density among the three lakes (K-W, p=0.7353). There 

were significant differences among the lakes in the number of fungus covered eggs trapped 

(K-W, p=0.0158), with Lake 20 having the highest number o f fungus covered eggs.

EMBRYO HATCHING SUCCESS BIOASSAYS

When the incubators were retrieved it was apparent that the mesh covering the 

incubators had not prevented free-swimming embryos from escaping. Therefore hatching 

success was estimated as 200 minus the number of remaining eggs in each incubator.

After determining that there were no significant differences in hatching success between 

Lakes within Fredle Indexes classes 1 ,2 ,3 , and 4 (K-W, p<0.05), I combined the hatching 

success data from the three lakes. Hatching success was not the same for all four Fredle 

Index classes (K-W, p=0.0487). Mann-Whitney U tests on two Fredle Index classes at a 

time were used as post hoc multiple contrast tests and confirmed that Fredle Index Class 3 

had a significantly higher hatching success (75%) than Fredle Index Classes 1 (44%), 2 

(45%), and 4 (35%), (M-W U, p<0.1, Figure 17). The fine sediment which was added to 

incubators in the fall was absent upon spring incubator assessment. There was no 

significant effect of added fine sediment on embryo hatching success (t-test, p=0.305, 

n=21, Figure 18).
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Table 4. Number of total viable, noa-viable, and fungus covered eggs trapped 
on the shoals of Lakes 20 (n=20), 26 (n=20), and 42 (n=20). Mean 
egg density ±  S.D. is calculated using all the eggs trapped on each shoaL

Study Lake

Egg status 20 26 42 Lakes
combined

Viable 19 45 51 115
Non-viable 26 19 35 80
Fungus covered 21 1 0 22

Total eggs trapped 66 65 86 217

Density eggs n r2 61 ±  101 70 ±123 77 ±209 69 ±146
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Figure 17. Box plots displaying the hatching success for Fredle Index classes 
1 ,2 ,3 , and 4 for Lakes 20, 26, and 42 combined.
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MID-WINTER DISSOLVED OXYGEN

On February 15,1196 the temperature and oxygen concentration of the water 

below the ice surface were 1.5°C and 9.7 mg L4 respectively. The oxygen concentration 

for incubator sites with Fredle Index numbers of 45 ,99 ,141,155, and 193 were 9.0 ,9 .1, 

8 .9 ,9 .5 , and 9.5 and mg L4 respectively. Although further sampling is required to confirm 

any significant relationship, there does appear to be an higher O2 concentration in the 

substrates with larger Fredle Index numbers.

NUTRIENT ENRICHMENT OF SHOAL ENVIRONMENT

Concentrations o f both P and N were significantly different in the control and 

enriched areas at 0 ,1 , and 2 m away from the sampling site (M-W U, p<0.05, Table 5), 

indicating that the nutrient sources were successful in increasing the ambient P and N 

concentrations. Tiles from the Lake 20 control (n=3) and nutrient enriched area (n=6) had 

a mean organic mass 0.02g and 0.05 g respectively. There was a significant effect of 

nutrient concentration on the abundance of organic material on the tiles (M-W U, p 

=0 .0201).
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Table 5. The p  values of a pari wise comparison using the Mann-Whitney U test as a 
multiple contrast of mean embryo hatching success between substrates 
different Fredle Index classes. A Bonferroni correction factor1, 
was used to determine significance (n=35).

Fredle Index G ass 1 2 3 4

1 --- --- — _

2 0.9762 --- — ---

3 0.0161 0.0201 — ---

4 0.5175 0.5940 0.0662 “ “ “

1 Bonferroni Correction Factor 
The p  values presented in the above table are those resulting from individuals pairwise 
comparisons using the Mann-Whitney U test. For all comparisons to be valid as a 
group, the alpha level chosen must be divided by the number of comparisons made, 
in this case six. Therefore, if an alpha level o f 0.05 was chosen, any significant 
p  values would have to be less than 0.008.
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DISCUSSION

SPAWNING SHOAL CHARACTERISTICS 

Substrate Size and Composition

The substrate analyses for Lakes 20,26, and 42 were in general agreement with 

other studies o f inland lake-trout reproductive habitat Spawning substrate on the three 

shoals ranged from gravel (0-6 mm), to small boulders (150-303 mm), at depths between 

0.2 and 1.6 m. Similar spawning shoal material has been described as clean rubble, 20-200 

mm in diameter, located in water depths between 0.1-5.0 m (Martin and Olver 1980;

Evans et al. 1991). Lake-trout surveys report that spawning takes place mostly on cobble 

(64-256 mm) and boulders (>256 mm) (Hansen et al. 1995). The interstitial space depths 

on the three shoals ranged from 10 to 40 cm, which are consistent with interstices (>10 

and < 50 cm) measured of substrates in 1- 4 meters of water (Kelso et al. 1995).

Trends exhibited by Substrate Size. Periphyton. Macrophvtes and Particulate Debris 

The Lake 42 spawning shoal was deeper, with smaller substrate and a greater 

amount o f periphyton and vegetation than the Lake 20 and 26 shoals which were 

shallower, cleaner sites with relatively larger substrate. Higher organic material 

abundance may be explained by the higher nutrient values o f Lake 42 compared to those 

o f Lake 20. However, wind-caused currents and waves are known to play a key role in
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keeping the shoal areas swept clean o f silt and particulate debris (Sly 1984; Nester and 

Poe 1987; Gunn 1995).

The PCA illustrated an increasing abundance o f periphyton, macrophyte 

vegetation, particulate debris and smaller substrate with depth. Sedimentation o f small 

nutrient-rich particles, as a result o f periodic wave actions, usually increases with 

increasing water depth and wind fetch (Hakanson 1977; Hannson 1992). Periodic wave 

energy usually occurs in the form o f orbital circulation o f water particles, and peripheral 

wave action (waves breaking on the shore) (Hilton 1985), with both actions dissipating 

with depth. Orbital water movements often extend to the sediments, causing the 

disturbance and erosion of the sediment bed (Lick 1982). Peripheral wave action is the 

dominant mode o f resuspension of sediment which is subsequently deposited in the central 

portions o f the lake (Larsen and MacDonald 1993).

Macrophyte and periphyton growth may be enhanced by the nutrients associated 

with the fine sediments, which tend to accumulate in deeper lower energy environments. 

There is also a negative relationship between periphyton and vegetation abundance, and 

the increasing mechanical force of wind-induced water motion (which increases the 

probability o f biomass removal, seeding displacement and propagule displacement) (Keddy 

1983; Chambers 1987).

There is a dearth of research on the relationship between shoreline 

vegetation and the wind energy acting on a lake basin. However, the basic effect o f trees 

in agricultural wind breaks is to reduce windspeed on the downside of the barrier (Frank 

and W illis 1972; Sturrock 1972; Tomari et al. 1980; DOC 1984;). Therefore, shoreline 

deforestation may alter the local patterns of wave approach or current flow which are
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responsible for the accumulation of fine particulate and organic material in the area (Evans 

eta l. 1991).

The physical and bathymetric characteristics o f individual spawning shoals may 

result in site-specific responses to terrestrial disturbances associated with timber 

harvesting. These varying responses may be beneficial or deleterious to lake trout embryo 

survival and reproductive success (Evans et al. 1991). Therefore, as recommended for the 

Great Lakes (Marsden et al. 1995a), site specific measurements of wave energy and 

hydrodynamic patterns should be included in lake trout reproductive habitat and embryo 

survival studies.

EGG DEPOSITION

Egg deposition densities for Lakes 20,26, and 42 (69 ±  146 (SJD.) eggs m'2) were 

similar to the 0-370 eggs m*2 measured in waters less than 4.5m deep in the Great Lakes 

(Kelso et al. 1995). Egg densities have been measured up to 1500 eggs m'2 in Ontario 

inland lakes (Martin and Olver 1980). Recently, in Whitepine Lake, Sudbury, Ontario, 

egg densities were recorded as high as 1224 and 3136 eggs m'2 (McAughey and Gunn 

1995).

EMBRYO HATCHING SUCCESS BIOASSAYS

Survival of lake trout embryos average 14-59 % in cobble and rubble substrate 

(Casselman 1995; Eshenroder et al. 1995; Marsden et al. 1995b). I observed increased 

hatching success (75%) in the substrates in Fredle Index class 3 (40 % cobble and 60% 

rubble) compared to classes 1 and 2 (44%, 45%), which is consistent with the positive
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relationship determined between Fredle Index and emergence o f salmonid embryos from 

natural gravel mixtures (Lotspeich and Everest 1981; Chapman 1988). Embryos 

incubating in substrate with larger Fredle Indexes, and higher permeability, are most likely 

benefiting from increased oxygen delivery to, and waste removal from the incubating 

habitat

Decreased hatching success (35%) in Fredle Index class 4 (20% cobble and 80% 

rubble) substrate, may be due to physical shock or suffocadon. Physical shock or trauma 

during time o f early embryonic development (i.e. epiboly, germ ring closure) can cause 

mortality of lake trout embryos (Casselman 1995; Manny et al. 1995; Perkins and Krueger 

1995). All of the incubators with substrate in Fredle Index class 4 were located on the 

shoreline shoals o f Lakes 20 and 26. The relatively higher water flow through larger 

substrates, in addition to peripheral wind and wave energy (prior to ice cover), may have 

shocked eggs sufficiently to increase embryo mortality. Too much wave action can also 

damage eggs by scouring them with suspended sediments, or by dislodging them from the 

substrate (Marsden et al. 1995a). In the Great Lakes, eggs incubating in deeper water 

were found to be less vulnerable to wave-induced damage or displacement than those in 

the shallows (Marsden et al. 1995b). Any effect o f physical trauma in this study may have 

been exaggerated because the eggs were scattered over the substrate after they had 

waterhardened. This would prevent them from swelling and entrapping themselves more 

securely in  the interstices, thus leaving them more vulnerable to disturbance and 

displacement.

Decreased hatching success observations in Fredle Index class 4  substrate may also 

could also be an effect of increased embryo suffocation mortality (Soderberg and Krise
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1986). Although the interstitial depth increases with Fredle Index, the number o f available 

interstices declines with larger substrate (Marsden et al. 1995a). This may result in “egg 

crowding” and impaired water circulation.

INCUBATION ASSESSMENT

The incubators used for the hatching bioassay were designed to expose the 

embryos to a natural incubating environment. However, free-swimming embryos could 

escape through the mesh once their yolk sac was absorbed and no longer restricting their 

exit. My inability to account for all 200 embryos upon incubator retrieval introduced the 

potential to overestimate hatching success.

Disappearance of eggs from incubators where the escape of free swimming 

embryos was not possible, has been observed in both field and laboratory studies 

(Casselman 1995; Perkins and Krueger 1995; Manny et al. 1995; Marsden et al. 1995b). 

Marsden et al. (1995b) documented that no eggs disappeared from the incubators held in 

laboratory conditions, and thus attributed the disappearance of 'in situ ' eggs to 

invertebrate predation. In contrast Manny et al. (1995) and Casselman (1995) 

documented egg disappearance from laboratory incubators. Upon microscopic 

examination of the incubator cells, Casselman (1995) concluded that the incubator cells 

contained highly decomposed early-hatched fry.

Although further investigation is required to address this phenomenon o f embryo 

disappearance, it is likely that my hatching success results (intended to be a measure of 

embryo survival) included prematurely hatched eggs which were then lost to predation or 

decomposition. Nevertheless, this exaggeration should have been consistent throughout
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the incubation trials within each lake for two reasons. First, premature development and 

hatching is stimulated by early accumulation of thermal units (early fertilization at 

relatively high temperatures) (Casselman 1995). Since incubators within each lake were 

supplied with embryos from the same source, at the same time, they should all have been 

exposed to the same temperature regime. Secondly, uniform screen size subjects 

incubator, and its contents, equally to invertebrate predation. In addition, retrieval of 

incubators with numerous unhatched eggs, and a visible abundance of invertebrate fauna, 

suggest that hatched embryos, if any, may be more vulnerable to invertebrate predation. 

Despite the shortcomings o f these incubators for quantifying stages of embryo 

development and survival, these devices provided a relatively natural incubating 

environment, and were useful for comparison of relative survival among sites.

EFFECTS OF TIMBER HARVESTING PRACTICES ON LAKE TROUT 
REPRODUCTIVE HABITAT

The insignificant effect of fine sediment on embryo hatching success in 

Lake 20 was not consistent with previous studies (Phillips 1971; OMNR 1984), which 

indicated a positive relationship between increased fine material and embryo mortality. 

Almost none of the fine sediment that had been added was present when the incubators 

were recovered. The incubator screen would permit movement of fine material to deeper 

layers of substrate which, accompanied with any disturbance and removal of the fine 

sediment by fall wind and wave energy, may diminish the effect of fine sediment on 

hatching success.
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W ell established relationships exist between nutrient regimes and primary 

productivity (Dillon and Rigler 1974; O'Brien and DeNoyelles 1978; and Canfield and 

Bachmann 1981; Likens et al. 1972). The addition o f N  and P fertilizer to die 

experimental area stimulated growth (2.5 times that o f the control area), which suggests 

that periphyton abundance and accumulation is limited by P and/or N  availability. The 

N:P ratio in the enriched area was approximately 5:1. As a rule, an N:P ration lower than 

15 indicates nitrogen limitation (Levine and Schindler 1992). Although the results 

suggest that nutrient enrichment does increase periphyton abundance, comparatively, 

both the pre- and post-harvesting nitrate stream concentrations in the Hubbard Brook 

Forest were much higher (0-1 mg/L and 20-80 mg/L respectively).

One o f the biggest differences between shoals in Lakes 20 and 42 is the 

abundance o f fine sediment and periphyton. Therefore, embryos on sites with equal 

Fredle Index classes would be expected to have a decreased survival rate in Lake 42. 

However, embryos in substrates o f similar composition throughout all three lakes 

demonstrated no significant survival differences. It is possible that the degree o f fine 

material and organic material was not high enough to have a significant negative impact 

on embryo survival or hatching success. However, it is likely that substrate disturbance 

during a) substrate analysis, and b) incubator installation, was sufficient to remove the 

biomass and fine material from the incubating habitat, thus mim'miring the effect o f fine 

materials on hatching success.

Investigating the effects o f siltation and nutrient enrichment has played an 

essential role in understanding the threats o f unnatural disturbance to lakes, spawning
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shoals, and incubating embryos. However, studies o f lake-trout reproductive habitat are 

limited for two reasons. First, many studies have investigated the response of survival to 

only one variable {e.g. siltation). Secondly, much of our understanding o f lake-trout 

habitat degradation results from the extrapolation of findings from studies qf long-term 

shoreline disturbance {e.g. urbanization and development), instead o f the specific 

activities associated with timber harvesting. It is critical to treat the unique issues o f 

timber harvesting, and the dynamics o f this habitat, on a  much broader scale.

This study has provided a characterization o f the physical features o f the preferred 

lake trout reproductive habitat in three small undisturbed northwestern Ontario lakes.

The hydraulic measurements indicated that substrate permeability increases with 

substrate size which may have a direct effect on lake trout embryo hatching success. The 

fine sediment which was added to incubators in the fall was absent upon spring incubator 

assessment. At the single fine sediment dosage tested in this study (equivalent to a layer 

approximately 2.5 cm deep across the surface o f each incubator), lake trout hatching 

success was not significantly affected. Nutrient enrichment o f a shoal area indicated that 

periphyton abundance increased with nutrient addition (N and P) and is most likely 

nitrogen limited, although the effects o f this, on reproductive habitat, are not presently 

known.
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APPENDIX I

Lake trout age distribution in Lakes 20 (1992,1993), 26 (1992,1995), 
and 42 (1992-1994) as reflected by fall netting (OMNR unpublished data).
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APPENDIX E

RANDOM SELECTION OF:

Spawning shoal sample plots, egg traps locations, and nutrient enrichment sites

Each shoal was divided into 1 x 1 m squares, similar to the following grid. 
Each intersection point, representing a potential sample plot center or egg trap 
location, received a number. All the numbers were put on individual pieces of 
paper. Twenty numbers, were drawn and the corresponding points, located 
on the shoal using markers and ropes, were sampled. This process was repeated 
to determine the egg trap locations. This process was also used to establish the 
sample sites for the nutrient enrichment experiment.

Grid used for random selection

Interstitial spaces

A circular plastic grid (42 cm in diameter) was used to select interstitial spaces for 
sampling. Each square was numbered and represented a 4cm2 area. For each plot 
10 numbers were drawn. The grid was laid over the plot and the interstitial space in 
the plot’s corresponding 10 points were sampled. If there were more than one 
interstitial space in the area, the one closest to the center was measured. If there 
was no interstitial space, another number was selected.

Gypsum cylinder deployment and incubator sites

Sample plot numbers were drawn until, separately, a) at least five sites were selected 
for each shoal for substrate permeability measurements, b) five sites were selected 
for cylinder sampling variance measurements on the Lake 20 shoal, c) 35 incubator 
sites were drawn from all three shoals combined, and d) an additional 9 incubator sites 
were selected from the Lake 20 to receive added fines.
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APPENDIX m

PERIPHYTON ABUNDANCE

The criteria for determining the relative abundance of 
periphyton is presented in the following table.

Relative
abundance

Grading Criteria

none 0 -no visible periphyton

low 1 -> 50 % substrate surface visible 
-sparse periphyton abundance

medium 2 -50% substrate surface visible 
-periphyton easy to remove by 

creating moderate current 
with hand movement

high 3 -< 50 % substrate surface visible 
-periphyton difficult to remove 

by creating moderate current 
with hand movement
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APPENDIX IV

Percent cover charts used to visually estimate  vegetation and particulate 
debris abundance in sample plots. Revised from Ontario Institute o f 
Pedology (1985).
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APPENDIX V

RELATIVE EMBEDDEDNESS

The criteria for determining the relative embeddedness are 
presented in  the following table.

Relative
embeddedness

Grading Criteria

none 0 -no visible surficial fines in gravel, 
cobble, nibble or boulder material 

-minimum o f 2 layers clean surface

low 1 -no visible surficial fines in gravel, 
cobble, rubble or boulder material 

-only 1 layer clean surface

medium 2 -fines visible in larger surficial substrate 
-greater than 50 % o f substrate diameter 

exposed

high 3 -fines visible in larger substrate 
-less than 50 % o f substrate diameter 

exposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cy
lin

de
r 

De
ns

ity
 

(g 
cm 

3)

APPENDIX VI

Relationship between cylinder density and weight. The linear 
relationship is not significant (r2 = 0.09, p  = 0.0557, n = 40).
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APPENDIX VH
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