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ABSTRACT

EXCITON OPERATORS - COMMUTATION RELATIONS AND

DYNAMICS

BY

DELENE J. NELSON

Master of Science
Lakehead University
Thunder Bay, Ont.

Canada, 1998

The electron-hole pair operator commutation relations for a semicon-
ductor are explicitly derived showing that the pairs are quasi-bosons
with statistics intermediate between bosons and fermions. These pair
operators are transformed into exciton operators, that incorporate the
intra-pair Coulomb interaction, and it is found that the commutation
relations remain quasi-bosonic. The exciton dynamics written in terms
of the exciton operators are derived in the Heisenberg picture and

compared with the traditionally used semiconductor Bloch equations.
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Chapter 1

Introduction

Excitons have been studied since the 1930’s. There are two types of excitons, the
tightly bound Frenkel exciton and weakly bound Wannier exciton. The Wannier
exciton is found in semiconductors and is the type of exciton this thesis will
deal with. Traditionally Wannier excitons have been treated as Bosons to a first
approximation. This turns out to be a good approximation when there is a low
density of excitons. However .it is now possible, due to the high intensity lasers
that are now more readily available, to easily create systems with high densities of
excitons . These high density systems lead to observed [1] deviations from boson
statistics for excitons. Consequently, it is necessary to understand the nature of
the exciton a little better.

Experiments with CuO have reignited the discussion as to whether Bose
condensation will occur for excitons [2]. This, combined with the suggestion that
no Bose condensation will occur for ideal gases with fractional exclusion statistics
[3], seems again to suggest that a closer look at the commutation relation of the
exciton is justified.

In his 1960 paper Usui, [4] used operators to deal with the electron gas model.

1
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The operators used approximated excitations as bosons. Usui pointed out that
this approximation, which was first made in 1957 by Sawada [5] and Wentzel [6],
greatly simplified the calculations involved in the electron gas problem and seemed
to give results that coincided with the Hartree-Fock treatment. Usui, however,
does not explicitly work out the commutation relations. This treatment of the
exciton as bosons led to question of whether the boson property of condensation
could be seen for excitons. Hanamura and Haug [7], in their 1976 summary paper
on condensation effects of excitons, take the fermionic expression of the exciton
and express it in terms of pair operators which they determine are bosons with a
correction factor that is small provided the average distance between the excitons
is much larger than the average size of the exciton. They then use Usui’s trans-
formation to describe the exciton Hamiltonian in terms of the exciton operators.
Haug and Koch [8] put forward the idea of exciton operators, that are approx-
imately bosonic, but do not transform the pair operators into exciton operators
and do not use these exciton operators in their Hamiltonian. Consequently, in
deriving the dynamics of the exciton, the electron and hole are treated separately
and the Coulomb interaction between the electron and the hole must be included
explicitly in the Hamiltonian. The semiconductor Bloch equation’s state filling
is still fermionic due to this use of electron and hole operators. Bassani et al [9]
also use pair operators, with the assumption that they are bosonic at low densi-

ties, to derive the Hamiltonian of the excitons interacting with an electromagnetic
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field. Jacobson et al [1], on finding deviations from Bose statistics for excitons at
higher excitations, propose a commutation relation that explicitly describes the
deviation from Bose statistics. However, this new commutation relation is not
explicitly derived and is a simple form of the commutation relations that will be
derived in this thesis. This commutation relation that is proposed in Jacobson
et al [1], like our commutation relation does not agree with the commutation re-

lations that have been derived [10| for particles with small violation of Fermi or

Bose statistics, often called quons.

This thesis is divided into two parts. The first part will explain the band
structure of a semiconductor leading to a description of the conduction band elec-
trons and valance band holes. This allows for the modelling of the exciton in a
semiconductor. The distinctions between fermions and bosons will be explicitly
described. The commutation relations are then derived in terms of the electron
and hole operators, clearly showing that excitons are not bosonic but rather in-
termediate between fermions and bosons. This result will be transformed into the
commutation relations in terms of exciton operators through the use of Usui’s [4]

transformation.

The second part of the thesis deals with exciton dynamics. The dynamics
of the exciton are traditionally described by the semiconductor Bloch equations.
However the derivation of these equations still treats the electron and hole as a
pair not as a bound entity or exciton. The semiconductor Bloch equations also

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



require the random phase approximation or Hartree-Fock approximation, which is

‘ ill-controlled. The result is that the range of validity of the semiconductor Bloch
equations is not clearly understood [11].

The second part of the thesis will also develop the physics of the excitons
leading to the Hamiltonian, including coupling with the electromagnetic field.
The transformation of the Hamiltonian will then allow it to be expressed in terms
of the exciton operators. The exciton dynamics in the Heisenberg picture are then
compared with the semiconductor Bloch equations.

The conclusion section will give a summary of the findings and a discussion
of how this approach can be of benefit to the uﬁdersta.nding of excitons, and
the explanation of the results of future experiments. The possibilities for future

studies will also be discussed.

3
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Part 1

Commutation Relations.
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Chapter 2

The Exciton in a Semiconductor.

Band Theory

The free electron model, which describes properties of a crystal through the
assumption that the valence electrons are essentially free, is successful at describ-
ing many of the properties of metals but fails td help distinguish metals from
semiconductors. If we think of a.ll crystals, semiconductors or otherwise, as being
created from free atoms brought close together, then it seems logical to assume
that the discrete energy level of the atom would somehow be reflected in the solid.
In fact, while crystals may have characteristic optical spectra which demonstrate
sharp resonance-like structures, a lot like atomic spectra, they also have other
electronic properties, e.g. insulators versus conductors, that are best explained in
terms of energy bands. These bands can be thought of as being derived from the
discrete energy states of the atom. The free electron model does not allow for the
formation of energy bands.

To allow for the bands we cannot neglect the periodic lattice of the solid. Thus
the Bloch theorem and the k- p model [8] will be used to explain band theory.
This theory then allows for the description of electrons in the conduction band

6
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and holes in the valance band giving rise to excitons.

Bloch Theorem.

Consider an ideal crystal for a moment. The ideal crystal is an array of
atoms periodically spaced from each other, there are no flaws in the lattice and
there are no impurities present. The ideal crystal needs to be infinite so that
boundary conditions are not a consideration. If we now consider that each of the
atoms has at least one valence electron which is less tightly bound than the inner
electrons (the electrons in closed shells), we can then treat the nucleus and the
inner electrons as a positive ion and the valence electrons as nearly free electrons.

The array of ions will therefore affect a positive, periodic potential on the

valence electrons which satisfies
Vo(r) =V, (r+Ra) (2.1)
where R, is a lattice vector joining two equivalent sites,
Ry, = Zmiae- (2-2)

Here m; are integers and a; are the basis vectors that span the unit cell of the
lattice. In general there can be more than one atom per unit cell.

The Hamiltonian for one of the valence electrons in the periodic potential is

o= -+, (1) (2.3)

~J
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where m, is the free electron mass and
HY®, (r) = E, ¥, (r) (2.4)

E, is the energy eigenvalue. Let us now introduce a translation operator T) such
that

Ty Ty, (r) = n (r + Rm) (2.5)

where ¥ (r) is the wave function. Now due to the symmetry of the crystal and

the periodic nature of the potential we can assert that
U, (r+Rpy) =69, (r) (2.6)

where t, is the phase factor and |t,|? = 1. Consequently the probability densities
|¥ (r + Ryp)|? and |¥ (r)|? at identical sites in the crystal will be the same as the
symmetry and periodicity the crystal demands.

H and Ty commute and thus have simultaneous eigenfunctions. This leads to

Bloch’s theorem which states that the wavefunction must satisfy the relationship
e“Rm, (k,r) = ¥, (k,r +R,,). (2.7)

This relationship is satisfied by a normalized Bloch wavefunction which has the

form
ik-r

€
v, (k, l‘) = mu,, (k, r) (2.8)
where L2 is the volume of the crystal. Here u, (k,r), the Bloch function, has the

periodicity of the crystal lattice, that is

un (k,x) =un (k,r+R,,) (2.9)

8
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Substituting the Bloch wavefunction into the Schrddinger equation 2.4 results

in

(_ A’ 2y, ) (k1) = Ea(K)un(kr)  (210)
2m,

with use of the relationship

32 9 xkr 2u'n
Xj:—a-;?\pn = —kv,+2 Z iTa oz, lezz 3:172 (2.11)
eikvr 9

Remembering that p = AV this can be rewritten in the form

2
( 2moV2 + ik P+ Vs (r)) u, (k,r) = (En (k) — gnl:z

(]

)un(k, ) (212)

k-p Theory

There are different methods for deriving the energy bands of a semiconduc-
tor, such as the nearly free electron model and the linear combination of atomic
orbitals, but the k - p method will be used here. This is a perturbation method
where it is assumed that the band structure has been resolved at some point k,,
a high symmetry point (usually the I' point of the Brillouin zone), and that all
the energy eigenvalues F, (k,) and corresponding Bloch functions u, (k,,r) are
known. The desired Bloch functions u, (k,r) are then calculated by expanding in
terms of the complete set of functions u, (k,,r). This also allows for the calcu-
lation of the corresponding eigenenergies E,, (k,) which is achieved by rewriting

9
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equation 2.12 as a perturbed Hamiltonian

h —
(o + e p) 2 (1,7) = B (K) i (K, ) (2.13)
where
hz
H,=—3 V24V, (r) (2.14)
and
h2k2

E, (k) = E. (k) — (2.15)

2m,
For the nondegenerate case using second-order perturbation theory and with

the assumption that k, = 0 we get

= oy Rk (nlpl) k- (|p|n)

o

For a simple example assume two states |0) and |1) where the corresponding

energies Eg = E,; and FE; = 0 then the energy of the system is

h2k? Wik, 2p%p;
o * Y —L (2.17)

o1 (K) = B+ (0 —
0.1( ) EO,I( )+ i mg maEg

where p; = (0| p; |1) is a momentum matrix element. The positive solution of
equation 2.17 is the solution for Eo and the negative solution is for E, all other
solutions will be zero due to orthogonality. These results are shown by the solid
lines in Fig. 1. The form of the last two terms strongly suggests that an effective

mass tensor

1 1 2 p;
=— (8, + 52 .
Meff L (3J m°E9> (2 18)
10
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can be defined. This reduces to a scalar quantity for cubic symmetry, as in all

isotropic cases, and can thus be expressed as

Mo

= 207
1+ OimeE,

If the momentum matrix element is sufficiently large the effective mass for the
lower (valance, v) band is negative, while the effective mass of electrons in the

conduction (c) band is much smaller than the free electron mass. This effective

mass approximation is demonstrated by the dashed lines in Fig. 1.

Energy10~

\
\
(!'1

/

-10~

This picture, while giving an intuitive feeling for the band structure of crystals,
is not strictly correct as it ignores degeneracy of the valance band at the I" point.

11
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I However the band structure model is clear enough to form a picture of the exciton

in the semiconductor.
Electrons and Holes.

c-g.

\‘zrt

ABSORPYION COCFFICIENT

B S E R S S aa
PHOTON ENEAGY ARELATIVE TQ £,
Fic. 23. Comparnison of predi af ahsorptian cdge shapes for the folluwing
maditications of simplc band-tn-hand 1t (A) No Jiticati Coslomb
ion and ic ficld absent. (1) Coulumb interaction aaly (normal exaiton
spectrumy). °
L3
Eig. 2 | Fia 3

The basic band structure_of a semiconductor explains much of the optical
properties of the semiconductor, absorption will occur when a valence band elec-
tron is excited with energy larger than the band gap. The excitation of an electron
out of the valance band into the conduction band creates a vacant orbital in the
valence band. This vacant orbital is called a hole and responds to an electric
field as if it were a positively charged particle. The reasons for this are firstly
that the total wavevector of the electrons in a filled band is zero. This is due to
the geometrical symmetry of the Brillouin zone of a lattice, which has inversion
symmetry. If the band is filled all its k states (both positive and negative) are
filled, giving a total wavevector of zero. Thus if an electron with wavevector k. is
missing, then the valance band will have a wave vector —k., which we attribute
to the hole. The hole also has the opposite energy to the electron. This is once

12
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again due to inversion symmetry. If the energy of the electron is E, (k.), then
the energy of the hole is Ej (kx) = —FEe (—k.). The properties of the hole are

summarized in table 1 below.

Property Hole Removed electron (2:20)
electric charge -qe q ~ —1.6 x 10-1°C

wave vector -k, k.

angular momentum -0, Oe

effective mass -mp, >0 m,<0

particle statistic fermion fermion

Table 1. Properties of Holes in Valence Band ([12])

There is an expectation that the absorption spectra of the semiconductor
would begin at the band edge as seen in the solid line in figure 2. The semicon-
ductor will begin to absorb as soon as we are able to excite an electron across
the bandgap from the valance band to the conduction band (fig. 3). However the
optical spectra of good quality semiconductors, at low temperature, are found to
resemble the dotted line in figure 2 [13]. This is because the conduction band
electron and the hole experience a Coulomb interaction allowing them to become
bound together, thus allowing for absorption to occur at energies that are be-
low the energy of the bandgap (Fbandgap — Ebinding)(fig. 3). Semiconductors thus
absorb at energies below the bandgap due to the binding energy of the pair or

13
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exciton.

The exciton consists of a conduction band electron bound to a hole. Both
the hole and the electron are fermions. If one thinks of the primary property of
fermions being that they are antisymmetric under exchange of particles, then one
would expect the exciton to be a boson. The exciton will be symmetric under
exchange as this requires the interchange of both the electron and the hole. These
two exchanges are antisymmetric giving two negatives, this results in a positive
or symmetric exchange for the exciton, seeming to indicate that the exciton is a

boson [14].

14
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Chapter 3

Fermions and Bosons

In the previous chapter we described both electrons and holes as fermions and
anticipated that the exciton might be a boson. Before we attempt to determine
if the exciton is in fact a boson, a careful description of fermionic and bosonic
properties is required.

Both fermions and bosqns are indistinguishable particles but they obey dif-
ferent statistics. The primary difference between them being that fermions obey
the Pauli exclusion principle, which states that there can never be more than one
excitation in a particular state, whereas bosons are unrestricted in the number of
particles that can exist in a state. A second principle difference is that fermions
are antisymmetric while bosons are symmetric under exchange of particles. An-
tisymmetry dictates that the wave function of a system of fermions will obey the

Pauli exclusion principle for the exchange of any two particles or excitations
U (ry, ey Ty Ty ee™N) = =¥ (71, o, Ty ooy o TN) -

Here 7, 75... etc. refer to the position of the particles and their spin. However
this thesis will not deal with spin. Bosons on the other hand are symmetric under

15
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exchange of particles
U (ry, s Ty oTmy oo fN) = U (T1, eees Tmy o Tny TN -

A direct result of the symmetry of the two types of particle or excitation is that
boson creation and annihilation operators obey commutation relations whereas
fermion operators obey anticommutation relations.

In Fock space the wave function for a single particle fermion or boson system

can be written as

¥y (1) = (r1]11,02,03,..)

here the first state is occupied by one fermion or boson while the rest of the
states are empty. The annihilation and creation operators for both fermions and
bosons change the occupation numbers of the states on which they act. The
creation operator increases the occupation by one and the annihilation operator
decreases the occupation number by one. The difference between excitons and
fermions arising from the Pauli exclusion principle specifies that for fermions the
occupation number can only be zero or one. For both fermions and bosons, for

the unnormalized case,

a'ln) =vn+1jn+1)
aln) = vnln—1)

however for fermions the creation operator (af) can only act on a state where
n = 0 and the fermion annihilation operator (a) can only act on a staten =1. In

16
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both the fermion and boson cases
a'|0) = |1) and a|0) =0
but fermions must in addition also satisfy the condition that
a?|n) = 0 and a?|n) =0.
We can create fermions and boson in different states
aiaj |0) = |1k, 1e)
which for fermions translates [15] into
(ra,ral ala, 10) = == [ (r) B (ra) = e (ra) T (7).

The two fermions are indistinguishable and the Pauli exclusion principal demands
that the exchange of particles be antisymmetric. Bosons, while also being indis-

tinguishable, are symmetric under exchange suck that
1
(1’1, T2| a,Tca.,L IO) = 7§ [\Ilkr (Tl) ‘I’k (Tz) + \I/kl (Tz) "I’k (7'1)] -

If the system were created in the opposite order, the bosons would remain unaf-

fected
(r1,ralalial0) = —}EM (r1) ¥y (r2) + T (r2) T (r1)]
= (ry,ro|alal, |0)
but for the fermions
(rural el 0) = =5 (B (ra) Wy (r2) = B (r2) T (1)

= (r,7m| — aLaL |0)

17
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Thus we find that fermions satisfy
al.al + alal. |0y =0
so
al,a} +alal, =0.
This gives us one of the anticommutation relations
{a;, a;l} = a};azl + al,az = 0.

Whereas for the bosons

f

k:az -_ aza;; IO) = 0

a
giving the commutation relation
[a;, a.fc,] = alal, — alal = 0.
The hermitian conjugates are
{ag,ar} =0

for fermions and

[ak,ax] =0

for bosons. Thus these first two commutation relations are a direct result of the

exchange symmetry of the particles.

Also for k # %' in the fermionic case

{ak, a,,t,} =0

18
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and in the bosonic case

[G.k, a.,L] =0.

To solve the k = k' case we first need to consider the effect of acting on a state
@ |0k) + B |1x)
from which we can see that
(awak + afaw) (@|0x) + BILe)) = @10k} + B[Le)
for fermions and consequently
{a.k, a,Tc} =1.

For bosons

(apral — afar) (@0k) + B 1)) = &[0c) + B]1)

giving
[ak, az] = 1.
These results are summarized in the table below. These results show the

intimate connection between the statistics of a particle or excitation and its com-

mutation or anticommutation relations.

19
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Fermions I Bosons
|
{af,al.} =0 | laf.ai] =0
{ex,ap} =0 | [ax,ar] =0
{ar.al.} = bue | [ae. al)] = bue

|  condensation occurs

Now that the fermion and boson commutation relations have been looked at

we can use them to derive the exciton commutation relations.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Exciton Operators, A New

Approach.

The previous chapter described the difference between fermion and boson com-
mutation relations. This chapter will attempt to accurately describe the exciton
commutation relations. This will occur by first describing an operator that de-
scribes the exciton as an electron and hole pair. The commutation relations for
these pair operators will be derived. The pair operators will then be transformed
into exciton operators thereby allowing for the derivation of the exciton commu-
tation relations in terms of the exciton operators. Chapter 2 anticipated that
the exciton commutation relations might be bosonic but this is found to only be
approximately the case. The exciton commutation relations are usually expressed
[7]{8] as

[Ba, Bl = [BLBL] =0
[B'"" B:;'] = 5n,n' -0 ('qa,g)

where 7) is the exciton density present and ag is the size of the exciton with d as the
dimension of the system. These are approximately bosonic but with a correction

21
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factor that is small provided the density of the excitons is small compared to the

size of the exciton.

Here B, and B] are the operators that respectively annihilate and create an
exciton in a Hydrogen-like state nn. These operators are defined in terms of the
unbound exciton operator B] i (4.15) which is derived in this chapter. Given
the symmetry displayed by the first two relations it is surprising that the third
relationship reflects a partial exclusion principle. Consequently a closer look at
exactly how the commutation relations vary from bosonic is warranted.

The electron and hole annihilation operators are defined as ay = a.x and
B-x = a,t'k respectively. For an exciton to be formed an electron must be created
in the conduction band, after destroying an electron in the valence band, thereby
creating a hole in the valence band, with the opposite wavevector. In terms of
the electron-hole operators the pair operator would then be bL__k = a{ﬂik. This
operator as it stands is not general for it assumes that the exciton was formed
between the particular electron that was excited and the particular hole it left and
also that they have zero centre of mass momentum. This is not the only possible
pairing. Others pairs between exciting electrons in the conduction band and hole
in the valance band will result in a centre on mass momentum. Consequently a

more general expression of an pair operator is

bLK = a£+mnKﬂIk+mrhK (4.1)

where K is the center of mass (of the pair) wave vector, k is the relative wave
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vector and

K; = ke + kni, ki = mpnkei — mecKai. (4.2)
The electron, hole and total mass are m,, my, and M respectively and m,, = %;—
and m,; = T#. Where ever possible k; = {k:, K;} will be used to describe the i**
pair.

The fermion space in which the electron and holes exist does not allow for
unique pairing. That is to say that a fermion space with two electrons e;, ey and
two holes h;, hy does not correspond to a pair space with two pairs but rather to
one with two possible pairings. That is the pairing can occur in two different ways
(e1,h1), (e2, hs) and (e1, hy) , (€2, h1). As such there is a one-to-n! correspondence
between fermion space and pair space. However each pairing is unique in that
in each paired state the electron is only paired with one hole and as such has a
unique centre of mass motion. Thus we can have a one-to-one correspondence
between the fermion state and the pair state if the pair is restricted to maintain
these unique centre of mass motions. All other pairing require that an exchange
occurs.

Electrons are of course fermions and their operators consequently anticommute

(chapter 3, table 2)

(B Bl = [BLBL], = lox, o]y = [af, 0], =0 (4.3)
and
BB, = owial], = b (44)
23
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It is shown in appendix A that
[a,iam,a.la,] = m,ra:;as - 6n,sa'lam- (45)

Using relations 4.1 and 4.5 we find that the pair commutation relations

b ] = [t 8L,] = 0 (46)

and
(b bk, | = Bk, — Sinains ek, e — Breske Bin Bens (4.7)
The fermion anticommutation relation aial, = 6gxr — a,t,ak does not allow

the creation of a particle with quantum number &’ if the already existing particle
k has the same quantum numbers, ¥’ = k. Similarly the exciton commutation
relation will block the attempt to create the pair k; if either the electron k., or
hole kx; exists previously. This reinforces the idea that the pairs are quasi-bosons
and raises the question about their symmetry properties.

It would be beneficial to be able to express the pair commutation relation in
terms of an exciton operator, this can be achieved using Usui’s [4] transformation.

Usui defines the operator

U=Prexp| Y_ B} i.brks | P (4.8)

kekn
where Pr and Pg are projection operators onto the fermion and pair vacuums,
|0) - and |0) respectively. This operator U acts in the fermion, quasi-bosonic

product space and acts on a fermion state converting it into a quasi-bosonic state,
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that is a linear combination of the possible pairs. He obtains

M
U TT 6. 0) = 3= (=1)° P I1 Bluen 10 (49)

=1 =1
where P is a permutation of k.; and is due to the exchange of the holes, which due
to their fermionic nature are antisymmetric. Thus the one-to-n! correspondence
between the two spaces is evident. However if an ordering operator O, is intro-
duced, which results in a zero eigenvalue if the permutation P is not in compliance
with the ordering prescription and is one otherwise, a one-to-one correspondence

between the two spaces is ensured. Consequently
Mol 4 . 1
ou Hake‘-ﬂkh‘v |0) = H Bke.-kh.- |0) .
i=1 =1

The ordering operator is a projection operator and as such

0%2=0
The hermitian conjugate of U is
(ﬁ = PBexp (Z Bkekhb;:gkh) Pp (4.10)
kekn

which transforms the boson state back to the corresponding fermion state

M M
OU™ [T Blesn 10y = I odke, B, 10 -
=1 =1

Thus U'OU is necessarily unity and OU ArUTO transforms any fermion operator
AF to a boson operator Ag. Also the operator expectation value should remain
unchanged

F (¥ Ar|®) =F (¥| U0 (OUAFU'0) OU |®)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The transformation of zero being zero we initially find that
[Bny, Bno] = [BY,. BL| =0.

The transformation, as shown in appendix B, can be derived using the expansion

k
) o (Zkekn Bkckhb;gkh) (4.11)

=2 K! :

kekn k=0

exp (Z Bt knbi i,

in combination with the fact that quasi-bosonic operators commutes with fermionic

operators. The resulting transformation is
t _ t '
O, Oke; = D Bie, inBresin
kh

and
ﬂ;hjﬁkh" = z: B/Tce,kh‘-Bke,khj- (4.12)
ke

This allows us to rewrite equation 4.7 as

[Buws Bla) = 8rk, = Sinsyina 3 Ble,inBresen — Orerer O Bl pn Bren,-  (4.13)
kh ke

However there appears to be a problem with this result. In the situation
where, for example, we have an existing pair |k, ks;;...) and where k. # k.; and
kniy # kna then the RHS of equation 4.13 becomes — |ke, kro;...) . However, the
LHS becomes By, |ke, kn1; ke2, kn2; ---) which will be zero, making the expression
invalid unless k. = k.1. Consequently the summation will only select only the term
with k. = ke; (or k.2 as the delta function determines that the only non zero term
will have k.; = ke ). Substituting ke; (kny) and kg (kx2) for k and &’ the resulting
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transformations can thus be expressed as
al, o, = B} B
ke; ke kes kh; Dkes kh;

and

1 = RI
Bkh.jﬁkhe - Bke,-,k);,-Bke,-,khj-

Thus

[Bkv 3;2] = Oxy k, = 2 (Bkny kg + Okeyker) B, By (4.14)

A new exciton basis, which is a linear combination of the exciton operators,

can be expressed as
Blx=3 VBl (4.15)
k

where ¥, ;. is the k-space representation of the new basis and in our case will be
the hydrogen-like basis. The corresponding d—dimension wavefunction is

tk-r

Tn(r) =3 U (4.16)
K Lz

where L is the length and r is a vector from the hole to the electron. This
transformation does not change the center of mass motion of the pair. The inverse

transformation is

Bla=3U1.Blx- (417)
n

The commutation relation in this basis gives

[Bny, BL,] = 3 s, Yrnak, [Brs, Bl (4.18)

kika
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where n; = {n;, K;} and using equation 4.14 and the inverse transformation 4.17

can be expressed as

[Buy, BL,] = 8nims =2 Y X Bloy Bomy (4.19)

mam;

where m; = {m;, K;} and

mLm2 Z ‘I/ n1, k‘I’ﬂz k\pmz k‘pml k- (4.20)

an 72

The resulting exciton operators are approximately bosonic. They are symmetric
under exchange, however we see that there is a.lsq an exclusion principle at work.
The derivation of the exciton commutation relations not only explicitly describes
the deviation of these commutation relations from bosonic but also allows for the

introduction of the physically more intuitive hydrogen-like exciton basis.
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Chapter 5

Hydrogen-like Basis for the

Exciton.

To better understand how the exciton commutation relations vary from bosonic
behavior we need to look at the x factor. Thié requires that a set of basis func-
tions {¥,} be selected. The exciton strongly resembles a hydrogen atom, with a
positive and a negative particle bound together by Coulombic forces, consequently
a three dimensional hydrogen-like basis is chosen, giving a good match with the
physics of the system. While this system can be worked out in one, two or three
dimensions, the below example is worked out in three dimensions. The hydrogen
like wavefunction is derived in the usual manner by separation of the function into

the radial and spherical components {16}, giving
‘I’nlm(r: 0, ¢) = Rnl(r)),lm (61 ¢)

and the eigenenergies of the system are

m*et 1
E,=—
(2 (41re)2> hn2
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and the Bohr radius is

4meh?
mre2’

A, =

Here n,l, and m are quantum numbers, ¢ is the effective dielectric constant, m®
is the effective mass and e is the elementary charge. The Fourier transform of

the wavefunction is needed (equation 4.16) this transform was done using the

spherical wave expansion of a plane wave,

oo l
e T =dm 3 iji(kr) 3 Vi (6,4) Yim (¢, )
=0

m=-1

as described in Jackson [17]. This gives the general expression
Vnimx = ﬂyzm @, ¢ / ~ 25y (kr) Ry (7) dr.
vV 0

Absorption of light is proportional to the square of the wave function evaluated
at r = 0 which is non-zero for s-states only [8]. Thus the s-hydrogen-like states
will be calculated. The evaluation of the Fourier transform of the wavefunction

using the spherical transformation, for s-states, gives

P, (nka,)
1+ (nka,)”)

n+1l

3
Yoo = En/7 (732"
LA
where P, (z) is a sequence of polynomials of order n

10
P, (z) = {1,:::2 -1,1- ?:ﬁ +z% 1 -7z + Tz* — =°, } .

The Bohr radius a, must be calculated using the effective mass and the effective
dielectric constant of the crystal.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The probability distribution of these wavefunctions in k-space give an indica-

tion of the number of k-states available to each exciton.

Probability Density

0.6-

-t

0.5+

0.2-

o
~h

. -r—-—t——]v—Q— | I T ST

o

0.4 05 06

The number of k-states that the ls-exciton can occupy is seen to be much
larger than the number of k-states that the 5-s exciton can occupy. Consequently
we can create more ls-excitons than a 5s-excitons. Also due to the phase space
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filling properties of excitons the existence of any exciton will decrease the number
of k-states available for the creation of any other exciton. The graph also indicates
that existence of a 3s-exciton, for example, should have a more prohibitive effect

on the creation of a 5s-exciton than the existence of a ls-exciton or 2s-exciton

would have.

The calculated x parameters verify these trends. They are calculated by
converting the sum in equation 4.20 to an integral, introducing a factor of (ﬁ)s
A factor of a;? is also introduced when d>k is converted to d* (a,k) and as a result
the x parameter goes as (9;:*)3 This is the ratio of the size of the exciton to the

size of the crystal. A new parameter 7 is defined, to extract this dependence, thus

The first few 7 parameters are given in Table 3. We have not shown the interfer-
ence parameters (e.g. x1:) but have rather concentrated on the effects between the
excitons themselves, for example between the 1s-exciton and a 2s-exciton (x33) or
with itself (x11).
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nl=51.84 | 7} =14481 | n}} =165.13 | n;3 =17640 | n3 =183.13
| n2=1898 | nZ=3176 | 103 =308 | =n2=4279
| | n¥=11832 | nx33 =17070 | 03 = 20400
| | | nit =40916 | n¥ =354420

| l I | 788 = 105050

The n parameter goes approximately as n® which gives the order of magnitude
trends in the table. The table also verifies the trends seen in the probability
distribution graphs (Fig. 4). In fact the overlap of the exciton’s k-space has
the effect of reducing the probability of creating a new exciton (v;) by a factor
of 1 -2 (%)3 Yz Mt BI B, plus interference effects. Here BB, counts the
number of u excitons. All existing excitons affect the creation of this new exciton,
the extent of their contribution being indicated by the 7 factor. This contribution
increases much faster than the size of the exciton (size of the exciton being o
(na,)’ ) indicating that it is the state filling properties of the excitons not the
size of the excitons which determine the number of excitons that can exist in a
crystal.

The number of states available for the creation of 1s-excitons can be calculated
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using the density of states, in k-space [18] and is

|4

d3k.
(2m)®

dN =

Roughly speaking the k-space radius of a 1s-exciton is a;!, consequently we can

.
(2m)*
v
(672) a3’

-3
(-]

2ra
3

Thus

1 3 '

3
a
~ 592,

|4
this is approximately xj! (which equals ~ 52%,2) leading us to conclude that for
the 1s-exciton
1.
NTX

Another way to think about x is to look at is original definition, for example

Xnn = ZI‘]E'nJcI4
%

= YU Tl T
k
this can be interpreted as the average of |¥nx|?, which is the probability distri-
bution or occupancy probability, thus x can be thought of as the average of the
occupancy probability, or the average probability that the state is occupied.
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The first part of this thesis has explicitly derived the commutation relations
of the exciton, using the exciton operator. This relationship will be used in the

second part of the thesis to determine the exciton dynamics.
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Part 11

Dynamics.

36
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Chapter 6

Semiconductor Bloch Equations.

The second part of this thesis will use the Usui [4] transformation to write the
interaction Hamiltonian in terms of the exciton operators. This will allow for the
dynamics of the exciton to be calculated in the Heisenberg picture. These new

dynamics will be compared with the semiconductor Bloch equations.

Excitons, the Coulomb Effect.

The semiconductor Bloch equations are traditionally used to describe exciton
dynamics. To derive these equations we first need the Hamiltonian. In general

the energy for an electron in a semiconductor can be expressed as

H= Z Ei,kaz' KQik = Z Ei xftix (6.1)

ki k.

where E;; is the energy of the particle and 7, = I'ka,-'k is the number operator.

Here 7 is the band index and k is the crystal momentum.

The Coulomb potential must now be added to the Hamiltonian. The Coulomb
potential can be written in general as an interaction W (r — r’) between two charge
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densities p; (r)
H. = % )y / W (r — t') pi (r) p; (r') d®rd®r'.
i7

Haug and Koch (pg. 115) [8] show that treating the ions as a uniform background
charge distribution eliminates the ¢ = 0 term. Transforming this result into

Fourier space g, the Coulomb Hamiltonian becomes

1
H.=3 >~ W, (pe—apea — €N) (6.2)
q#0

where W) is the Fourier transform of W (r — r’') and

N
— 2}: —-iq-r;
pc'q = —€ € a 7,
i=1

To get the second quantized form necessary for the operator method we introduce
the charge density operator p,  and the number operator N to replace the charge

density and N the total number of electrons. The charge density operator is
Pe(r) = —efi(r) = —e ) ¥ (r) ¥ (r) (6.3)
where the field operators (8], are
T (r) =3 aiul: (k,r) (6.4)
ki

where ¥; (k,r) are the Bloch functions. Inserting equation 6.4 into equation 6.3

and taking the Fourier transform results in

~ U
pe»q = —¢€ Z a’i,k—qai:k‘
4k
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which when substituted into equation 6.2, in its second quantized form gives

_1

1 = =
5 3> Vial,qokal_qax — 5 S NV, (6.5)

k.k',q#0 q#0

H.

with V, = e2W,. Rearranging the operators using the anti-commutation relations
and adding in the single particle energy (equation 6.1) we can get the Hamiltonian
for an electron in a semiconductor taking into account the Coulomb potential of

the other electrons in the material, giving

+ 1
He = Z Eivka;"kaivk + 5 Z an{k“’qa;,kl—qajvk’aivk' (6’6)
k,i k,k’,q#0,i,j
K G703,

It is shown in Klingshirn (pg. 50-54) [12] that the p-A in the minimal coupling
Hamiltonian can be replaced er-£(r,t) assuming that the energy difference between
the final an the initial state of the electron is equal to the photon frequency
multiplied by %. This then resembles a dipole in an electric field. This allows us
to write the interaction Hamiltonian, for the semiconductor in an external field,

in second quantized form as
H = / & (r) [er] - £(r,t) T (r) dr-.
Assuming that the space and time parts of the electromagnetic field are separable
L1 -
E(r,t) =& (t) 3 [e““' + e"“’]

then using the expansion 6.4, the dipole approximation (lim,_.¢) and the two-band
approximation ({z # j} = {¢,v}), where c,v are the conduction and valence band
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respectively, we get
Hi~ -3 E(t) (ol ouxdes + acalids,) . (6.7)
Kk

Here d_, is defined as the projection of the dipole d., in the direction of the field

£ or (¥ |er|¥,). Thus the total Hamiltonian for the two-band approximation is

~ -~ ~t =~
He = Z [Ec,ka'z'kac.k + Ev.kau,kau,k] (6.8)
k
1 1 gt f gt tt
+—2- Z Vq [ac'k+qac,k’—'qactk'ac1k + av,k+qau,k’—qa”'k'a‘",k + za'c,k-i—qav,k’—qavyk'ac,k]
k.k',q#0

-2 E(t) (az,kav.kdcu + acgaf,kd;,) i
x

In the effective mass approximation

h2k?
Ecx-= e = Eg + py (6.9)
and
h2k2
Ev,k = ﬁofu,k = omn (6.10)

m, and m, are the electron and hole effective mass respectively.

Exciton Dynamics - The Semiconductor Bloch Equations.

To derive the semiconductor Bloch equations the Hamiltonian is converted to

one in the basis of electron and hole operators, where the electron operator is
of =al, (6.11)

and the hole operator is

.Bik = 0yk- (6.12)
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The expectation values of the counting operators for electrons and holes can be

expressed as
(odow) = nex (1), (6.13)

(BLiBkc) = Tnsc (t) (6.14)

where the expectation value is defined as
(A4) = / T* (k) AT (k) dk.
The k** component of the interband polarization is defined as
(B-xon) = Pen (k,t) = P (t) . (6.15)
Using this representation the Hamiltonian, equation 6.8, becomes

He = Z: [Ee,kal'kac,k + Eh.kﬂl'_kﬂv,—k]

k

t t 1 t
ac'k.{.qac'k'_qac.k'ac,k + .Bu,kq-qﬁu,k'—qﬂv,k'ﬂv,k

1 [
3 2 Va
k.k’,q#0 +201,k+q ﬂz.k'— ﬂv,k' ac,k]
- Z £(t) (al,kﬂl._kdw + ackﬂu.-kd:u) (6.16)
k
where we define the energies as
Ee,k = Ec,k = ﬁée‘k
and Coulomb exchange energy is included in the energy term for the hole as

Eh,k = "Eu,k -+ Z ‘/q = ﬁéh'k.
q#0
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Thus the interband transition energy is

| AEy = Beg — By + Y V.
q#0

The calculation of the equations of motion using equations 6.13,6.14 and 6.15 give
.d
h [ 2 (e — fh,k)} Pe(t) = [nex(t)+nax(t) — 1] de€ (2)

+ Z %[<a£'+qﬂk—qak'ak> + <ﬂk’+qﬁk—qﬂ£’ak>
k',q#0

+ <0£L+qﬁk—qak'ak> + (ﬂk'+qﬂk—qﬁl'ak>] (6.17)

for polarization, and

ﬁ-%ne,k (t) = —2Im [do& (t) F]
+iy %[(alal,_qak_qak:> - <a£ +qa{,_qagak:>
k'.q#0
+(ador-aBl_obir) = (ohsatuBl_oficr)) (6.18)
a
hamne(t) = —2Im [def () B

+i 3 Vil(BtBl-aBr-aber) — (Bl xsafi-aB-ibr:)

k',q7#0
+(0frrqeBl cBscra) — (ohsqubli_of)l  (619)
for the electron and hole counting operators respectively.

In the semiconductor Bloch equations the random phase approximation is used
to reduce the four operator expectation values into the product of two relevant
two operator expectation values, usually the density and interband polarization.
It is assumed that these two terms dominate the properties of the system. The
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justification being that the polarization expectation value P,. = <af, 'ka.,_.'k:> has a

dominant time dependence when k = k' as

<a1,kac,k'> o< et e —wyr )}
which will oscillate rapidly thereby averaging to zero when k # k'. Thus
(aT al ooy ) > P, 6
ck'+q%v.k—qPck’@ck ) = Lyc k' Te,kOk—q,k’-

However to keep the expression more general the correction terms to the ran-
dom phase approximation can, at least formally;, be kept. Using techniques as

described by Haug and Koch [8] the semiconductor Bloch equations can be ex-

pressed as follows

0 ) .
B (t) = —t(ecr + enp) P — 1 [Mex (t) + nng (t) — 1 wry + 'a'at-Pklcol (6.20)

ot

a o O

Ene'k (t)=—21Im [wR,kPk] + ane,klm (6.21)

a o 0

&nh.k (t) = -2 Im [wriPZ] + anh,klcol (6.22)

where we have introduced the renormalized frequencies
€k = €k + Ewc,i (k) (6.23)
with the exchange self-energy being
P ezes (k) = = 3 Vic-aimia (6.24)
q#k
43
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as derived in Koch and Haug (pg. 161-163)(8]. The last terms are the collision
terms which are the result of a correction term to the derivation of the semi-
conductor Bloch equations. We have also defined the generalized Rabi frequency

as

1
wrk =3 |deE (8) + 3 Vic-aiPa (6.25)
q#k

indicating that the system does not respond to the applied field but rather to the
effective field which is the sum of the applied field and the Coulomb interactions
due to the pairs. All the momentum states of the semiconductor Bloch equations
while not appearing coupled in the equation are in fact coupled through the gen-
eralized Rabi frequency (6.25) and through the exchange energy (6.23 and 6.24).
The —2 Im [wgPg] terms in- equations 6.21 and 6.22 describe the generation
of electron and hole pairs by the absorption of light. The rate of change of the
electron population is the same as the rate of change of the hole population if

scattering, due to the correction terms, is ignored.
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Chapter 7

The Exciton Hamiltonian and its

Dynamics.

The Hamiltonian._

In the previous chapter the Hamiltonian for the exciton and the exciton dy-
namics were derived using electron and hole operators. In this picture the semi-
conductor Bloch equations are used and the excitons are still treated as pairs;
electrons and holes that experience a Coulomb attraction. These operators are
fermionic. In this chapter the Hamiltonian is rewritten by transforming these
fermionic operators into quasi-bosonic exciton operators which allows for the de-
scription of the Hamiltonian and the dynamics of excitons while treating them as
hydrogen-like particles rather than pairs.

The Hamilton in terms of the electron and hole operators,

He = Z [Ee,kaz,kac.k + Eh,kﬂl,—kﬂu,—k]

k

+_ E V [ O k+q c k' —qac.k’ Cek + ﬁu,k+qﬂu,k'—q.30,k' ﬂv k — 2a1,k+qﬁl,k._qﬂv,k:ac,k]
k,k’m&o

—ZS(t) ( Cex l,—kd + ey, ~kdzy ) (7.1)
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is transformed using Usui’s transformation as described in chapter 4. The details
of the transformation are given in appendix C. The transformation results in the

first two terms when combined giving
HO = Z EZIB;]B,CI
ky

where Ef, = E.; + Enx and ki = {ke, kn;}. The electric field interaction term is

transformed to
Hr = =Y £(t) (Blde + Budy,) -
k1

The first of the potential terms, the hole-hole interaction, is transformed giving

1
2 A Z v. |Bi 1 — B! 1
1= k1,k2 q [Bkm.k¢1+quuz.ke2—qu2B"1 Bkhlvke!‘quhmkel+quszl] :
q;'éO

The second potential term, the electron-electron interaction, gives

1
—_ - t t t T
Hy = 2 Z Ve [Bkm+q,k=1 Bkhz-q'kgz BisBir — Bklﬂ—qykcl Bkh1+91ke2 B"2B"1] :

k1,k2,
q#0

While the third potential term, the electron-hole interaction, gives four terms

_ t _ pt t _ nt T
Hys klzl;z VQ[B’CM ~g.ke +qB kn1,ker B kh.2-q:kel+quh.hkc2 Bi2Bi — B kn2,ker +¢IB’=;.1 ~g,ke2 Bi2Br
q#0

1 t
+Bku1,ke1+q Bkuz —qike2

By By,
This transformed Hamiltonian matches the Hamiltonian derived in Hanamura and
Haug [7], except for the electromagnetic field term which was not included in their
derivation. Rewriting this expression in terms of the direct terms and exchange
terms gives

H=H,+H;+ Hp + Hg.

46
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Here

H, = Z EI:IBEIB’CI + z V?B’:mx—q,k¢1+quM'k="
k; k1,q#0

describes the independent motion of the excitons and the Coulomb attraction
between the electron and the hole of the exciton and the H; term remains the
unchanged. The Coulomb attraction between excitons comes from the third term.
The direct Coulomb interaction terms refer to the terms where the exciton electron

or hole either gains or losses momentum but the electron and hole remain paired

_1

Hp 5

t t t t t t
Z Ve [B kny .kex+qum,ke2~q +2B kh1kel+q B kna—ake2 T Bkm+q,ke1 B kh?'?vkd] Bi2 B -
K1k2 .
q#0
The Coulomb exchange terms refer to the terms in which the electrons or holes are

exchanged between two excitons as well as possible gaining or losing of momentum

1 t
= = t t T T t
He = 2 klzlgz V‘I[Bklu.kez—qB kn2,ke1+q +B kn2_gike1 B kn1tg.ke2 +2B ku-q,k=1+qB kn1.ke2
q#0

+2B!

-
!
kn2ike1+9 " kny —q,ke2

]Bk2Bkl-

The Hamiltonian is now rewritten in terms of the relative and center of mass
wave vectors (see Appendix D). The direct center of mass and relative wave vectors
remain as defined by equation 4.2 in Chapter 4. However after exchange the

relative and center of mass wave vectors become
kg1 = k; + mepkie, Ky = K + ki, kege = ke — mpnka, Kg2 = Ky — ko

where
ka1 = m,. (K2 — K;) + ko + k;.
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The Hamiltonian then becomes

H,= Z EﬁxB?mBkl + Z V‘IBIT:1+q.K1 By,
k; q#0

H] = - Zg (t) (dchkl.Kx + h.C)
k1l

+ t t t
HD = Z Vq[Bl'n—mreq,Kx+quz+m.-eq,K1—q +2B kx+m,-uq,K1+qB k2+mreq,K2—¢q
kiko

t T
+Bk1+mrn¢I.K1 +qB k2 -mrhq,Kz—qJ B2 B

1
- E T 1 : 1 T
He = 9 Vq[Bkgg—m.-:.q,Km—qumwmhq.Kaﬁq + Bkz-:z-!—mreq,Ksz-qB ke —ﬂueq,l‘Zrz)
ki,k2
q7#0

t t 1 T
+2Bkt-:2+q,Ka'2 B kg1 + 2.B kmmeq,Kez—qB kg1 +menq,Kpr +q] Bia Br.

Referring back to equations 6.9 and 6.10 the single pair energy is Eg,
o2

d
% + ":—A’? and the Fourier transform of the Coulomb potential is V;, = (?f") =-
Here 4 is effective mass, € is the dielectric constant, d is the dimension and L is the

length of the system. The Hamiltonian is now transformed into an exciton basis

using equation 4.15. This transformation is worked out in appendix E, giving
H, = ZEngszlel
1

Hp=~3 £(t) (dow¥ra (r =0) 7% By g, + hoc)
vl

1 Wwrlnza gt t Wwrlnza gt t
H. = 5 Z [ n3.'f?4 anl.K1+qBﬂ2.K2-q — YWn3,n4 Bﬂl-KEI‘an2yKE2+Q] BBy
vl,v2

a0
(7.3)
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where H. is the combined direct and exchange Coulomb interactions, v; = {n:, K;}

and

Wisme? = 3 Vy[Fisn® (ki + meng, ke — meng) (7.4)

ky k2
q#0

+Frme? (K1 — Meeg, Ko + Myeq) + Frzng? (Ki + meag, Kz + mreq)]
is the exciton pair potential, with
Fizna® (a,b) = T3, (a) U5y (b) T (Ka) Tra (1) -

The exciton energy now includes the band gap energy, E,, the energy of the new

basis, Ey,, and the center of mass energy

R’ K?
2M

E;=E;,+ E, +

This Hamiltonian is once again quite similar to the total Hamiltonian in boson
space as derived by Hanamura and Haug (7], without the external field, and is
the same as that derived by Hawton and Nelson [19], which includes the external

field.

Exciton Dynamics.

The Hamiltonian now allows for the calculation of the exciton dynamics using

the Heisenberg equation

L dA
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For excitons operators that satisfy the commutation relations in chapter 4, equa-

tion 4.18 the above Hamiltonian, as derived in [19], gives

L a _ e
_‘I.ﬁaB‘E = E'SBI, - ; (8 (t) dcuq’nl (0) L % + h.C.) (601,1; -9 Z Xmll'mxl KB;B#I)

mlm

il Ki—K2 pt t
+ Z VasniQ ? Bryx,+QBnax,-qBu + Xo. (7.5)
v1,n3,n4,Q

The effective exciton-exciton Coulomb interaction term is simply the exciton pair
potential with a phase space filling correction to the exciton energy which is
defined as

A7 Widy -K2 _ 178y -K nd,n,K;—
Wisma = Wamia 8 +26Q0EnXnami -
There is also a small phase space filling correction term that affects the Coulomb

term, which is defined as

Xo= T WO Bl ol i-a (BuBlaBu+ BlaB,Bu).
v1,n3,74,Q,
v2mlm

So the first line of equation 7.5 includes the zero order terms and an external
driving term that has been corrected for phase space filling. The second line in-
cludes all exciton-exciton interactions. These phase space filling effects, x, are not
included in the Hanamura and Haug (7] dynamics and are of a similar magnitude
to the Coulomb term X,.

To make the boson approximation, so often used for excitons, x is set to
zero. The origin of the phase space filling properties of the exciton are a result of
the fermionic properties of the free electrons and hole. This can be understood

in terms of an simple analogy used in Jacobson et al [1], which points out that

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



individual two state atoms, like the free electrons and holes, are fermionic in that
they can only accept a single quanta of energy. That is to say the Pauli exclusion
principle is at work. However a large ensemble of these atoms can be viewed as
bosonic in the sense that the system, at low excitations, will easily accept another
quanta of energy. This is true until it begins to reach the 50 % excited level at
which time the excitation is as likely to de-excite one of the fermions as it is to
excite another fermion.

As defined in the previous chapter, equation 6.15, the k** component of the
polarization is Py (t) = (B_xay) ,which is identified with (Byg), thus the polariza-
tion semiconductor Bloch equation can be derived by taking the expectation value
of equation 7.5. While Hawton and Nelson [19] show that decay due to dephasing
should be taken into account for comparisons with experiment we will use their
result but will ignore dephasing. Given this Hawton and Nelson show that the

expectation value is
—ine (Bl) = E2(BJ)
_ 21: (€ () dey®m1 (0) L% + h.c.) (a,,l,,, =23 xpwanK (B;B“,))

mlm

+ 3 Wanmla 7 (Bliki+qBlax,-qBu) + 0 (R°). (7.6)

vl,n3,n4,Q

where R = £ (t) dey ¥n1 (0) L—;g- This can be re-expressed in the free pair basis as

(zﬁ.— +E ) (Bl) = £(t)de(1-2 (B, Bx,)) (7.7)

+ Z a ((Bl,) — 2(Bl4qBiBx) + 2 (BLBl,qBriq)) + O (R?).
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If < B +qB;Bk> and <B;B,T‘ +qu+q> are factorized to the fourth order in the field,
which is possible if damping is ignored [19], into the polarization and number op-
erator parts giving <B; +q> <B,T‘Bk> and <B;> (B{ +qu+q> respectively then for
zero center of mass momentum, equation 7.8 compares favorably to the polariza-
tion semiconductor Bloch équation 6.20, derived in the previous chapter. Here
the collision term is the Coulomb interaction term in equation 7.5 which is incor-
porated into the O (R®) term, and which would involve a change in the center of
mass momentum.

Consequently we see that the semiconductor Bloch equations can be derived
from the new commutation relations using exciton operators in the hydrogen-like
basis. This derivation is advanté.geous as it clearly distinguishes the assumptions
necessary to attain the above equation and also allows for the dynamics of non-
zero center of mass momentum excitons to be explored.

As shown in [19] the linear approximation to equation 7.8 is identical to the
equation of motion derived in Axt et al [11]. In these papers Axt et al cite many
experiments where the semiconductor Bloch equations are too limited to explain
the experimental results. The Axt ef al equations of motions, like the above

derived equations of motion, allow for higher order field effects, resulting in better

agreement with experiment.
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Chapter 8

Conclusion.

This thesis began with the use of electron and hole operators to describe the exci-
tation of a semiconductor, these operators are fermionic. Pair operators were then
defined using these hole and electron operators. These pair operators were found
to be quasi-bosonic. A transformation was used to convert these pair operators
to exciton operators. The commutation relations of these exciton operators were
also found to obey statistics intermediate between fermions and bosons. The ex-
citon operators were then transformed to a hydrogen-like basis that incorporated
the intra-pair Coloumb interactions. The manner in which the exciton operators

statistics vary from bosonic to fermionic was discussed in more detail.

The Hamiltonian for an excited semiconductor in an external electromagnetic
field was derived and transformed so that it was expressed in terms of the exciton
operators and reflected the quasi-boson statistics of the exciton operators. The
dynamics of the system was calculated in the Heisenberg picture. The Hawton
and Nelson derivation in [19] of the expectation values of these dynamic equations
agreed with the semiconductor Bloch equations, provided the new equations were

terminated at the fourth order. This derivation clearly showed that the semi-
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conductor Bloch equations primarily deal with excitons with zero center of mass
momentum, where the collision terms deal with the interactions which change the

center of mass momentum.

Future Studies.

The nature of the exciton statistics might with further study might lead to
greater understanding of the exciton, it has been speculated that it might give
an insight into the phase space size of the exciton and also throw some more
light on the condensation of excitons discussions. The exciton operator approach
allows for the introduction of the exciton hydrogen-like basis which gives a better
connection between the theory and the physics of the system.

This approach will make it easier to calculate nonlinear optical effects such
as the optical Stark effect, pump-probe effects and higher order responses to an
external field. These findings also allow for the explanation of, and possible pre-
diction of higher intensity optical phenomena, such as those discussed in Jacobson
et al [1). High intensity lasers are now more readily available and consequently
the old assumption of excitons as bosons becomes very restrictive for experimental

explanations, thus demanding that the statistics of excitons be further explored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendices

A. Appendix A.

Commutation Relations of Four Fermion Operators.

We know that fermions obey the anti commutation relations specified in chap-
ter 3, table 2. So if a] and a; are the fermion creation and annihilation operators

respectively then

[aj’.a,, aZam] = ala,ala, —alanala,
—_ afpn ol —al (.. —aT
= Q,050 0m — O | Oy — Q. .Qyp } Qs
= alaaazam - achb.mras + a,talamas
= ala.alam — almras + (0 - ala;) Qs
= ala,alan — albnra, — alalama,
_ 1 1 A | é. BRSO | 0—
= @ala;a0m, — 0 0mras — alay (0 — asam)
= ala,alan ~ albnra, +alala.am
= CLI (631: - a]taa) am — a-/tdmraa + aialaaavn

9%
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= al6xam — alala,am — a}bm.a, + alala,am

- +
= @l 6sk@m — 0;.0mrQs.

To summarize

[a1a,, a}am| = al6skam — albmeas.

B. Appendix B.

Usui’s Transformation for the Commutation Relations.

The fermion operator a}cys can be transformed into a boson operator using
the Usui transformation (equation 4.8). In the below expression r; and R; are the

electron and hole subscripts respectively.

t t t T
[(Br1 Ry Brior, BrzRng"2 R, "‘BrNRN'B"NaRN) (akak')

1
OUNaZak:U,{,, = ( ')20 Z
TORARY (Brymyoky Bl Brryohy BlaBrr oy B )]
(B.1)
The boson operators commute with the fermion operators, and electrons and

hole operators will be antisymmetric under exchange. Consequently, the RHS of

equation B.1 can be rewritten as

0] Z ( l)Pri ( l)PRi""' [(BzxR;szﬂgn.BrNRNBr;le B"‘QRQB?;M) (ﬁ"’llB‘l’z"-.Bry)
2 —_ p—

(VM) . Twen t to 3
"=1':., N (ﬂ:;v.nﬂzl2ﬂri) (aRl 032 ...aRNakak'a;zk...aTRéaRi)].
Evaluation of the electron and hole operators, using the fermion commutation

relations, acting on the fermion vacuum results in the various permutations of the
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new boson operators, which can be expressed as

1 . .

= 1 20 Z (_I)Pr' (—]-)pﬂ"klt Pr-'PRikk' [(BfT'xRx B‘I?Rz"'BINICB"N':"“B"'2R2B"IRI)] -
(N') ri=lto N

R;=1to (N-1)

There are N! equivalent permutations of the pairs leaving only permutations of
the electrons. Equating these gives
Pg it
=—=0 Z (_1) Rykk PRekk' [(B;RtBIsz"‘B:NkaNk’"'BrzﬂzBﬁRx)J .

N! ri=lto N
Ri=1to (N-1)

The ordering operator ensures that only the pair or pairs involved in the exchange

can be altered, the remaining dummy variables (r; R;) must remain unchanged.

The Boson operators commute with themselves allowing us to write

1
=N _;o N (_I)P“' P [(BIN"'"BI2R2B‘IIRX B"lRlesz"-BrNk’)] .

Ri=1%w (N-1)
There are V possible permutations of the B, i ’s and the remaining arrangements
of boson operators will simply count the number of excitons not involved in the

interaction, (/N — 1) excitons in this case, leaving us with

a,tak: = Z (BINkBTNk’) .
e

Similarly we find that

ﬂ;ﬂk' = Z (BIIRNB'C'RN) .
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C. Appendix C.

Usui Transformation of the Hamiltonian.
The electron-electron interaction a,tz_qaz.l +qCtk1 k2 is transformed using the
Usui transformation (equation 4.8) allowing us to write it in terms of the exciton
operators. Here r; and R; are the electron and hole subscripts respectively and

the exciton operators are always written in the form Bie .

1
t 1 T = t ~ t t
OUNaI:2-qakl+qaklak2U T TV"_20 z [(Brlﬂlﬁrl SRy Brszﬂfzaﬁz'"BrNRNIBfNaRN)
( ’) ri=lto N
Ri=1to N

T
(akz_qaluqamakz)

(Bfivﬂ’p:a;;,,ﬁ:;v--'Braﬂaa;;ﬁlszr; R Bl )] (C.2)

In a identical manner to the transformations derived in appendix A, using the

ordering operator we find that

t 1 t t t t T
OUNakz_qaquaklaszN, = Z [Brl,kl+qBr2,k2—qBr2,kZBr1,kl - ,l'kg_qB,-g'kl.*.qBerﬁBrl,kl] .

rl,r2

Similarly for the hole-hole interaction

t gt t t t
- OUnBra-oBir4qPirBraUpn = [Bn+q,mBkz-q,mBkz.mBkl.m —Bl:2—q,RlBItH-q,mBk?.mBkl,Rl]‘
R1,R2

The transformation of electron-hole interaction by a similar process produces

four terms rather than two, giving

t T t — t 1 t
OUnayy_oBirigBrroxeUy: = 3 [By mBiiigra—gBriseBrimn — Bl m Blytgxo-oBer 1 Brija
rl,R1
_nt 1 t
r1,k2—-gBr1+q,m Brike Brim + Brl,k2—qu1;l+q,RlBkl,R1Brl,k2l'
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D. Appendix D.

Center of Mass and Relative Wave Vectors.

The center of mass and relative wave vector are specified as
K: = kei + kni (D.3)
and
ki = mypkei — myckn; (D-4)

respectively.

Direct Coulomb Terms.

To rewrite the direct term Blhl,ke1+qBIh2,ke2—quh2‘k€23kh1.k81 in terms of the

center of mass and relative wave vector we need to recognize that
ke — ke1 + q and kd-*kﬂ—q
while
kni — kn1 and kpa — kpo.
Thus
Ki = ka+q+kn
= Ki+g
Ky = ka—q+kn
= Ky—¢q
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and

ki = men(ka +q) — Myekm

= k; +mmg
ke = myp (ke — q) — Myekno
= ky — mpagq.

The term then becomes

+ t
ki1+meng, K1 +qB k2 —m-mq.Kz-qB k2 B ky-

The same process allows us to find the other terms
Binitgrer Binz—qre2 Binake2 Binker = B, — g K+ By +mreqKa-qBia Biey
and
Bchhl,kel+qBZ'hZ—q,ke2Bkh2ykeszhl.kel = BL+‘mrhq,Kx+qu2+mr¢q,K2—qu2Bkl' (DS)

The Exchange Terms.

The exchange terms can be rewritten using the relationships
kei = myoK; + k; and kn; = mpyK; — k; (D.6)

which are derived using the additional relationship

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The derivation of D.6 goes as follows. From equation D.3 we get
ks = Ki—kp
Myekei = Tee (Ki — kni)
= MK — Myekpi + Mepkei — Mepke:
= M. Ki+ Ki — mepke;
kei (Mre + mpn) = m K+ ki
ke = m.K;+ki:

and similarly for kp;.

The exchange term By, rer_ o Bina ke1+qBrn2.ke2 Ben1ker is converted by speci-
fying
K1 — ke — q+kn
equations D.6 are then used to substitute for k., and kp; gives
K; - m. Ks + ks — ¢+ mK; — Kk
remembering that m,, = 1 — m,. gives

K1 —*Tn,-c(Kz—Kl)'f‘kz—k] +K1—q.

We define

ky =m,. (Ko — K;) + ko — k

and
K =ko + K,
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therefore

Ki=Kg —gq.
Using a similar method we see that

ky, — mua (kez - q) — Myekny

—  Mypkey — Myckny — Meng
the substitution of equations D.6 gives

ki — mgy (ke + meKo) — mpe (MK — k) — meng
= MepMmye (Ko — Kl) + meeky + menka — meng
— ki +men [mee (Ko — K;) + ko — ki) — mng

— k; + ko1 — mppg.

We define
ke1 =k, + kg
therefore
ki — kg1 —muag.
Similarly we find
Ky =Kgy,+¢
where

Kz2 = K3 — ki) and kgy = ky — mprky
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This give
T T = B! T
B kh1~k=2—quhZ,kquB""?’kﬂB"“v"cl = Bkzx —mmq,st—qB kz-:z+mrnq.Ksz+qB k2 B, -

Through a similar procedure we find that
1 1 _ Bt 1
Bkh2—q,kel Bkm-;-q,lmzBkh2,ke23khl,kcl =B kB?“’”‘r:QvKB?’quEI -mreq.Kg1 +qB k2 B k;

t T —_ nt T
Bkh1,ke2+qB kh2—q,kel Biha ez Brniker = B ke1+meng, Kg1+9 B kp2+mreq,Kpa— qB k2 B,

and finally

T T — 1 T
Biha—q ke1+qBrn ke Binzke2 Bint ker = By gy i k0 Bicgy kg Bra Br -

E. Appendix E.

Transformation of the Hamiltonian to Exciton Basis.

Transformations to the exciton basis use the Fourier transform relation

BI.K = Z \I,;,kB:z,K° (E7)

The first term
H, = Z ( :l,KlBltl.Kl - ZVquuq,m) B x1
ELK1 a
is the trickiest to transform. Substituting equation E.7 we get
H, = Z (E&.m‘Pil,ule.m - Z ‘/Q\I’f‘zl,k1+qul,K1) ‘I’nz,k13n2.x1
a

k1,K1
nln2

= > (E;l,m DY V;I‘I’:zl.k1+q) Unaxc1 By k1 Bragr (E.8)
k1,K1 q
nln2
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We know that EY,; g, includes the energy of the gap term E;. So we define
E2; 1 = E¢y + Efy + E; ; the energy connected with the relative motion, cen-
ter of mass energy (E.,m) and energy of the gap respectively. Dealing with the

relative motion term first and remembering that
HY¥,=E¥, (E.9)

we get

k2

= o \Iy*
= Ealia -2 Valiiig

q

% Haw¥hp = D (Eﬂlfsu.kz - Vq‘5k1+q,kz) k2
q

then by equation E.9
> Haxe ¥y = Eb ¥ 4
k2

Thus equation E.8 can be written as

H, = Z (E$15k1,kz‘1’;1,u) ‘I’nz,le,T,l,xanzm + (Ecom + E,) terms
k1,K1.k2
nl,n2
= Z EleL,mBnl,m + (Eeom + Eg) terms (E.10)
Ki1lnl
since

Z 6k1.k2\p;1,k2‘1’n2.k1 = Op1n2- (E.11)
k1,k2

The center of mass and energy gap terms will give

Z (E!on + Ey) ‘I’r.tl,kl ‘Iln2,le:;1.K1 BnZ,Kl

k1,K1
nl,n2
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S (B + Eg) Y U1 Un2xa Bhy 1 Broxa
k1

K1
nl,n2
= Y (Bfa + Eg) bn1n2 Bl k1 Br2xa
n{(,rld
= Z (Eky + E;) Bly k1 Brixa-
Kinl
Thus
Ho = z ( k118 thl.KI - Z‘/':IBl1+q.K1) Brixi — Z 313313111
k1.K1 a vl
where
(-] [e] 0 o th2
Ej = Eq + By + By = By, +=r T Ee

The other terms are all straight forward conversions, a sample direct term is

t 1
kz:, Vqux—m-eq,KH-quzmeq,Kx—qB"?Bkl
1%K2

»

— t . T
kzk: 22 V‘I‘I’n,kl—mrqu n,Ki+q n2,k2+m.-qun2,K1 —q\pn3,k2Bn3,K2‘pn4,k1 BM,KI
12 n,n
n3,nd

= * = t
:L:, an Ve (‘I’n.kl—n»eq‘l’nz,kzm,q‘l’ns.kz‘l’n4.k1) B; k¢, +qBh2 1 - Bra k2 Baxa
1X2 N,

’

— N2 nt t
- Z W:3,MBn,K;+an2,K1—qBU2Bv1-

vl,u2

The other direct and exchange terms are found in a similar manner as is the field

term.
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