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Abstract

A detailed simulation based analysis of different frequency response and transfer func-
tion identification techniques are performed and critically studied. Standard closed loop
and open loop recursive least squares system identification techniques are studied along
with methods based on Laguerre filter, frequency sampling filter and bandpass filter.
Based on this critical study, the bandpass filter approach is shown to have relatively more
advantages than disadvantages over the other techniques of system identification. Meth-
ods for PID controller tuning using finite and discrete set of frequency response points
are developed for SISO systems and extended to MIMO systems. The controller tuning
methods are supported with simulations and experiments on a temperature control sys-
tem and a distillation column. Based on the results obtained, it is concluded that these
methods are practical and capable of being used in industrial process control.
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Chapter 1

A Comparative Study of Some
System Identification Methods

1.1 Introduction

System identification is the obtaining of parsimonious quantitative data about a process
which can be used to predict closed loop (or open loop) behaviour due to setpoint change,
disturbance and noise. Almost all methods of identification involve changing some input
and measuring the output response. Due to the presence of disturbances and noise,
repetitive changes to the input are often always required to separate the process response
from disturbance and noise effects. Three configurations of system identification are
possible: closed loop, open loop and true open loop. In closed loop identification changes
from the setpoint to the closed loop process output are used to identify the closed loop
system from which the known controller dynamics are factored out to obtain process
information. In open loop identification, with the controller in automatic mode, the
changes in the manipulated variable and process output are used to identify the process
dynamics. In this case the loop is still closed and setpoint changes are applied to effect
changes in manipulated variable and process response. In true open loop identification,
the controller is put on manual and changes are applied directly to the manipulated
variable and process response is used to identify the dynamics of the process.

From the point of view of process regulation at an operating point, the process is
identified assuming linear time invariance. However in such cases too, small and symmetric
repetitive changes of the input are needed to separate the effect of disturbances and noise
and to average the process response on the up and down bumps of the manipulated
variable. For example, in a temperature control system, active heating behaviour is
different from passive cooling behaviour even in a small signal model. In this chapter as
in most previous work, it is the small signal process behaviour that is identified. Classically
this is carried out by using parametric transfer function model such as gain + first order
time constant + dead-time or in a non-parametric form such as Bode plots to which
subsequently a transfer function is fitted.
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The parametric form often requires the knowledge of at least the order of the pro-
cess and is usually faster to identify. Process identification can be carried out in the
true open loop form, open loop form or closed loop form. However, in any closed loop
(continuous time) scheme, since dead-time enters into the numerator and denominator of
the Laplace domain transfer function separating time constant(s) from deadtime is not
easily accomplished if they are close to each other. If a closed loop scheme with process
transfer function in the sampled data domain (z-domain) (of known order and unknown
coeflicients) is used with recursive least squares (RLS) [1] to identify the coefficients, it is
often the case that the regression vector has low signal to noise ratio and the estimation
procedure is unreliable. The regression vector in this case often involves the difference
between successive process outputs/inputs which causes the low signal to noise ratio. For
closed loop identification of the process, however, one can assume a closed loop transfer
function with unknown coefficients in the z-domain and identify its coefficients directly
using recursive least squares. Following this stage of identification, using the known con-
troller transfer function, the loop can be opened to obtain the transfer function of the
process. ,

In the non-parametric form, closed loop schemes are easier to use as the closed loop
(continuous-time) frequency response can be obtained and the controller frequency re-
sponse used to calculate the process frequency response. The traditional methods of
applying sinusoids of different known frequencies at the input and measuring the output
sinusoid amplitude and phase shift to obtain Bode plots is a well known technique in this
category. While this approach can be speeded up by using Fourier analysis (fast Fourier
transforms (2, 8]), the non-parametric approach is often slower than parametric system
identification.

True open loop identification as well as non-parametric approaches such as frequency
response schemes are often batch type identification schemes rather than on-line recur-
sive schemes. The main disadvantage of batch schemes is often that one finds out the
identification experiment did not reveal the information sought until after the experiment
is terminated. If the lack of information is detected while the experiment is in progress,
it would enable corrective efforts to be applied immediately (such as amplitude of the
bumps/ frequency of the bumps etc.). Also, from the point of the use of the identification
results in adaptive control, fault-diagnosis and intelligent control, it is often desired to
have on-line recursive identification schemes. In this chapter therefore only the recursive
system identification based on open loop or closed loop schemes is considered.

As mentioned earlier, in their most commonly used form, recursive identification pro-
cedures involve a parametric transfer function in the z-domain of known order whose
parameters are estimated recursively using least squares [1]. The order of the transfer
function has to be known apriori requiring preliminary identification. While combined
parameter and order estimation are possible (3], these recursive algorithms are necessarily
high dimensional. It is almost always impossible to relate the z-domain transfer function
to the continuous-time transfer function of the process. The z-domain identification can
be carried out in closed loop or open loop fashion. Since this method of identification is
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the standard against which all other schemes are compared, in the next section we con-
sider the performance of recursive least squares estimation of z-domain transfer functions.
It is argued there that closed loop schemes are preferable to open loop schemes in this
case.

A fundamental argument advocating careful use of this approach is that in the z-
domain approach it is usually assumed that the controller is a sampled-data controller
with a zero-order hold at its output and that the identification experiment is carried out
at the same rate in synchrony with the control loop. In industrial process control, the
controller is usually implemented in a distributed control system (DCS) where control
calculations take place at a high sampling rate. The controller for each loop appears to
be operating in a continuous-time manner in relation to process dynamics. The facility
to add real-time identification code into a particular controller is often limited. Data
logged into a database by a central (higher) DCS processor is usually at a slower rate
than the control rate. If this logged data is used for identification then the zero-order hold
assumption of the identification experiment is not valid. If the identification is carried out
on a separate (portable) computer different from the control computer, synchronization
to the control computer is next to impossible and again the identification of discrete-
time transfer functions as set out [1] is not possible. If facility was available to add the
identification code into the control processor, then due tc the high sampling rate of this
processor and the variable dead-time of processes, the order of the parameterized transfer
function is high leading to a high dimensional and time consuming least squares. Some
form of averaging of inputs and outputs is necessary to reduce the order of the transfer
function. If a closed loop scheme of identification is used in this manner, then it is not
directly possible to open the loop to compute the process transfer function due to the
implicit presence of two rates - controller update and RLS update. Open loop schemes
are therefore preferable in this case. However in this case as discussed in the next section
the RLS algorithms have to be used carefully.

The organization of this chapter is as follows: In the next section, the standard RLS
algorithm for process identification of transfer functions is discussed by simulations. In
the three sections following three relatively new identification methods, Laguerre filter
method (7, 9, 6, 12|, frequency sampling filter method [5, 4, 10, 11] and bandpass filter
methods [15] are studied through the same simulations. Section 7 concludes the chapter.

1.2 Transfer Function Estimation

Standard RLS schemes parameterize the transfer function in the z-domain. To illustrate
some of the various possibilities in the use of RLS schemes a process is simulated. The
simulated process consists of a continuous time process with transfer function given in
Equation (1.1) along with a PI controller (Equation (1.2)). The PI controller calculates
manipulated variable updates every 50 ms. The manipulated variable is held at its last
value until the next controller update (zero-order hold). The PI controller transfer func-
tion in the z-domain is given in Equation (1.2) where T denotes the sampling period and
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Kp and K are the PI gains. The process parameter variations and their nominal values
are assumed to be given by Equation (1.3). The nominal value of the PI gains are also
given in Equation (1.3).

Gls) = K=
(s) = T or (1.1)
KT
C(z) =Kp+ﬁ (1.2)
0.5<K<2 04<T14<08, 05<1<?2
Knom = L, Tdnom = 0.6, Thom =1
Kp=02 K; =05 (1.3)

Load disturbances are assumed to act on the process output additively and have a dy-
namics given by
d(t) = Adise—tlrd" COS(quist) (14)

In Equation (1.4) Agis, Tais and wg;s are the amplitude of the disturbance, the decay rate
of the disturbance and the frequency of the disturbance in rad/s respectively. Time ¢ in
Equation (1.4) is measured from the start of the disturbance (and not from the start of
the simulation). A cosine form is used as setting the wgy;, to zero, it is possible to generate
exponentials and by setting large value for 74, relative to total simulation time, one can
generate step disturbances.

The process is simulated in a digital computer with a fine time step of 1 ms and
all time constant/time delay (changes are made to) have a minimum resolution of the
same 1 ms. For both open loop and closed loop schemes, the setpoint is excited by a
square waveform with amplitude +1 and a period of 30 s. The period selected ensures
that the closed loop system comprised of the process operating with nominal parameters
and the PI controller tracks the setpoint before the next bump is applied i.e. steady
state is achieved. Simulations are run for a duration of 5 periods of the excitation. To
study the effects of disturbance, it is applied halfway through the simulation. Unless
otherwise specified disturbance is a decaying exponential with amplitude of 1 and decay
time constant of 400 s in Equation (1.4). Process output measurements are assumed
to be corrupted by Gaussian random noise with standard deviation of 0.025. Setpoint
waveforms have no noise added. Unless otherwise specified all simulations reported in
this chapter are carried out in this manner.

To illustrate the accuracy of RLS when model is matched to the process, a matched
z-domain transfer function obtained by discretizing the first order + dead-time process
with nominal parameters is considered in Equation (1.5)

_ Lo
Glz) = 213 (1 — az 1) (15)

The true values of yg and a are 0.0488 and 0.9512 respectively. When RLS is run in an
open loop scheme with initial diagonal covariance of 100 and forgetting factor of 0.999

4
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Figure 1.1: Frequency responses of nominal process and matched discrete-time transfer

function identified by open loop RLS scheme.

after 3000 samples (5 periods of excitation) at a sampling period of 50 ms, the estimated
values of 19 and a are 0.05693 and 0.9424 respectively. A plot of the frequency response
of the discrete transfer function G(z) and the the continuous time process transfer func-
tion up to about 6 rad/s is shown in Figure 1.1. The solid line in Figure 1.1 is the true
continuous time process frequency response while the dashed line is the (discrete-time)
frequency response computed from the estimates. Note that the frequency of 6 rad/s is
approximately 0.05 (1/20) of the sampling frequency (20Hz) in rad/s. It indicates rea-
sonably good match between the discrete-time and continous time frequency responses.
Next, a simulation is carried out to include the effect of load disturbance on the above
estimates. The estimates from RLS after one period (of the setpoint waveform) after the
load disturbance hits the process are now po = 0.0097 and o = 0.9901 respectively. Now
the estimated frequency response is off in the same frequency range by a significant margin
as shown in Figure 1.2. Once again the solid line in Figure 1.2 is the true continuous-time
process frequency response and the dashed line represents the (discrete-time) response
computed from the estimates. The poor performance is due to the development of a
significant bias in the manipulated variable due to the load disturbance. Asymptotically
as the disturbance vanishes this frequency response matches the true response as be-
fore. However if the biased estimates are used in (adaptive) controller design then robust
performance cannot be achieved in this case.

Next, consider the process operating at the lowest set of parameters K = 0.5,7; =
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Figure 1.2: Frequency responses of nominal process and matched discrete-time transfer
function identified by open loop RLS scheme in the presence of disturbance.

0.4, = 0.5. The matched model for this case is given by Equation (1.6).

Ho
G’(z) = ;(T—.—(;?’-l—) (16)
With this process model, the PI controller as before and with no load disturbance, the
open loop RLS scheme after 3000 samples estimates were yo = 0.0785 and o = 0.8419.
The (discrete-time) frequency response of the estimated transfer function (dashed line)
and the true continuous time transfer function (solid line) is shown in Figure 1.3. One
immediately sees the poor fit of the estimated frequency response to the actual frequency
response of the continuous time process in this case. Consider now the same identification
experiment with a controller with an I gain of 2 in Equation (1.2) instead of the nominal
value of 0.5. This leads to estimated values of py = 0.0537 and o = 0.8921. The values of
Lo and a in the latter case are closer to the ideal values of 0.0476 and 0.9048 respectively
than the former values. The frequency response fit for the latter case is shown in Figure
1.4 and the improvement of the fit is visible.
For the case of the process operating at its high parameter values (K = 2,754 = 0.8, 7 =
2) and the PI controller with nominal values of gains as per Equation (1.3), the controller
is very aggressive and the output response and process input is highly oscillatory. A good
match is obtained between the frequency response of the estimated transfer function and
the actual continuous time frequency response of the process up to 6 rad/s.
From these simulations it is seen that the more aggressive PI controller supplies a richer
excitation to the process enabling better identification in the higher frequencies than a
less aggressive controller. However the use of such an aggressive controller would not

6
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be practical if the process exhibits significant and sudden gain and dead time variations.
Finally, determining apriori, the correct controller gains in a practical identification ex-
periment is an issue. This is often the purpose of determining the transfer function. Thus
from a practical stand point open loop identification has to be used carefully when the
process is controlled with PI controllers. Lack of richness of excitation of the process due
to a (detuned) controller or the presence of load disturbances can produced significantly
biased results.

Assuming that the PI controller is satisfactory, a possible way out of the problem of
load disturbance, suggested in the standard RLS literature, is the use of transfer functions
between the backward difference in manipulated variable to backward difference in process
output (velocity mode RLS). This may help in processes where the bumps are applied
before the process settles. When the bump period is large and process input and output
settle before the next bump, then backward differencing may provide no excitation to
the least squares for considerable periods of time. This lack of excitation causes poor
parameter estimation and is not a good solution to the problem of disturbance.

An attempt using the backward difference approach in RLS for the simulation example
with process and PI controller operating with nominal parameters (Equation (1.3) and
process model transfer function as per Equation (1.5) leads to estimates of po = 0.3306
and a = —0.3575 respectively (after 3000 samples) which are considerably off from their
true values. :

The main conclusion from the previous simulation experiments is that open loop RLS
estimation of conventional transfer functions of processes controlled by PI (PID) con-
trollers, even in the matched transfer function case is fraught with the danger of lack of
persistency and richness of of the excitation at the input to the process.

An alternative is to perform closed loop identification with a parameterized transfer
function and then open the loop using the controller transfer function. If T'(z),C(z)
denote the closed loop transfer function and controller transfer function in a unity feedback
system, then the open loop transfer function is given by:

. T(2) 1
¢ = T=rmen

Turning now to closed loop RLS identification between setpoint and process output, the
first issue is parameterization of the transfer function. Two approaches are possible. In
the first assuming the parameterization of the the open loop process transfer function,
compute the structure of closed loop transfer function. For the nominal process model
represented by Equation (1.5) and the nominal PI controller, the closed loop transfer
function is:

(1.7)

T(z) = (Kp + K;T) z%— sz_(d+1)
TR = ) ez (1= 20 + o {(Kp + KiT) 22 — Kpz-@D]]
It is possible to set up a RLS formulation from Equation (1.8) to estimate the coeflicients

1o, and a. However as Equation (1.8) reveals, the regression vector involves (scaled) dif-
ferencing operations and usually, therefore, has low signal to noise ratio causing unreliable

(1.8)

8
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estimation of coefficients. This approach is therefore not very useful. A second approach
to parameterization of the closed loop transfer function is to over parameterize it as:

boz=¢ + byz~(d+1)
1+ X3 ez

T(z) = (1.9)

The choice of two coefficents in the numerator is motivated by the PI controller and
Equation (1.8). The denominator however is considerably over parameterized. It is no
longer possible to relate the estimated coefficients to the process parameters. However one
expects that the invariants of impulse response and equivalently of the frequency response
of the closed loop system will be well captured by Equation (1.9). To illustrate this, a
simulation of the nominal process and PI controller with no load disturbance and d = 13
and 7 in Equation (1.9) are carried out. The closed loop frequency response obtained from
the estimates after 3000 samples (at a sampling period of 50 ms) is illustrated in Figure
1.5 along with the closed loop continuous-time frequency response assuming a continuous-
time PI controller operating with the same gains as the sampled-data PI controller of the
simulation. In Figure 1.5 the solid line is the true continuous-time closed loop response
while the dashed line corresponds to the d = 13 case and the dotted line corresponds
to the d = 7 case respectively. In Figure 1.6 is shown the effect of disturbance applied
half way through the simulation on the frequency response of the estimated closed loop
transfer function 600 samples (one period of excitation at a sampling period of 50 ms)
after the disturbance hits the process for the two choices of d.
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Figure 1.5: Frequency responses of nominal process and discrete-time closed loop transfer
function identified by closed loop RLS scheme with d = 13 and d = 7 in Equation (1.9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-:1?)-2 —— ....lb.-l . P ..lb.o PP lbl

rad/s
0 v
-100} >
g“-zoo 5 4
-300} -
.4‘{%-2 2 2 1 ;...li)-l L g re ....lb.o 2 ' g .-..lbl

rad/s

Figure 1.6: Frequency responses of nominal process and discrete-time closed loop transfer
function identified by closed loop RLS scheme with d = 13 and d = 7 in Equation (1.9)
in the presence of disturbance.

While Figures 1.5, 1.6 indicate the improved results obtainable by closed loop identi-
fication visavis open loop identification, to make a fair comparison one should compute
the frequency response of the process using Equation (1.7) on the d = 13 results of these
two figures. In Figure 1.7, the frequency response of the process obtained in this manner
in comparison with the true process (continuous-time) frequency response is shown. One
immediately sees a problem in the low frequencies.

Since the period of the excitation is 30s at the setpoint, the lowest frequency at which
excitation is available to the RLS is approximately 0.2rad/s. Therefore at frequencies
lower than about 0.1 rad/s, the estimated model is suspect. To confirm this consider the
excitation of the setpoint by a square wave with period of 200s with no load disturbance.
The computed frequency response of the process from the closed loop identification results
at the end of the simulation (5 cycles of setpoint excitation) are shown in Figure 1.8 along
with the true process frequency response.

The improvements in Figure 1.8 of the computed process low frequency response is
clearly seen over Figure 1.7 as the lowest excitation (fundamental) frequency is now ap-
proximately 0.03rad/s. It is also seen that high frequency errors are higher in Figure 1.8
than Figure 1.7. This too is to be expected as the harmonic amplitudes of the excitation
drop as the inverse of the harmonic frequencies. Hence signal to noise ratio (SNR) is lower
at higher frequencies than that in Figure 1.7 where the fundamental of the excitation is
at 0.2 rad/s.

While the explanation offered above is based on excitation analysis, another explana-

10
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Figure 1.7: Frequency response of discrete-time proceés transfer function (G(z)) computed
from closed loop identification results of Figures 1.5 and 1.6 for d = 13 model.

tion is that the inverted controller transfer function contributes a (z — 1) factor to the
numerator of the computed G(z). In the absence of exact cancellation between denomi-
nator and this factor in the numerator, the low frequency response of G(z) asymptotically
tends to 0 as the frequency tends to zero. This explanation however does not show that
the computed G(z) will improve with frequency content of the excitation.

Finally the performance of a single parameterization such as Equation (1.9) with
d = 13 for the two limit sets of process parameter values and the nominal process are
shown in Figure 1.9. The good fit of the over parameterized model of Equation (1.9) to
process parameter variations is clearly evident.

Several conclusions can be drawn out of these simulation experiments about the use
of RLS for system identification:

1. closed loop identification with over parameterized transfer functions offers better
identification of the frequency response than open loop identification. This is be-
cause this method is not sensitive to the bias due to load disturbances that develops
at the process input (manipulated variable) and due to the richer excitation at the
setpoint than at the process input.

2. The fundamental frequency and a frequency up to which SNR in the excitation is
good are the range of frequencies over which the closed loop identification is rea-
sonably accurate, particularly when opening the loop to compute process frequency
response. This range is essentially imposed by the excitation period and the SNR
of the (measured output) signal spectrum visavis inherent noise.

11
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Figure 1.8: Frequency response of process transfer function (G(2)) computed from closed
loop identification results for d = 13 model with setpoint excitaticn of period = 200.

3. The over parameterized transfer function coefficients fluctuate considerably over a
simulation run. However the frequency response (equivalently impulse response,
step response etc..) computed from their values at a particular time instant are
quite invariant and therefore capture information about the system. The fluctua-
tions in the coefficients of the estimation do render the computation of controller
parameters for adaptive control from the coefficient values susceptible to fluctua-
tions and therefore may not be suitable. Using the frequency response estimate
directly in design along the lines of [15, 16, 13] may be a preferred alternative.

1.3 Closed loop identification with Laguerre func-
tions

The basis of identification of transfer functions using Laguerre or other series approach
such as series in z~! lies in Runge’s theorem in complex analysis [17] which assures con-
vergence to the true frequency response provided increased number of terms are used in
such series. In the Laguerre approach [7, 9, 12, 14| the transfer function of the closed loop

systems is approximated by
i=N

T(s) = Z ¢;Li(s) (1.10)

12
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Figure 1.9: Frequency response of closed loop ident;.iﬁcation of model of Equation (1.9)
with d = 13 for the nominal process parameter value set and the two limit sets.

where L;(s) is the Laguerre function of order i and is given by:

L) = a2 (1.1)

The main issues are deciding the order N and the Laguerre pole p. While Runge’s theorem
[17] guarantees that any p > 0 with a suitable order N will suffice to approximate T(s),
poor choice of p can lead to high /V increasing on line recursive computational complexity.
Several papers (9, 6] dealing with the optimum choice of p for known process transfer
functions have been developed in the literature to minimize N. While they provide
guidelines to the choice of p, these references often require apriori knowledge about the
process.

For a given choice of p and order N, the Laguerre function model of the closed loop
system can be expressed in a state space form with r as the setpoint waveform and y as
the closed loop process output measurement as [7, 14]:

£ = Az+ Br
y = C':z::[cl cp - G ce- cN]:z: (1.12)
where (' denotes transpose)
- 0 --- 0
A = —?p P
: : 0
—2p —2p TP Inxn
13
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B' = p[1 1 - 1 - (1.13)

Since the setpoint is sampled once every T seconds and the standard assumption of zero
order hold is made on setpoint excitation for intersampling behaviour, the above Equations
can be discretized to form the sampled data description of the system as:

ZTrsr = Fzp +Gry (1.14)
e = Cz (1.15)

with F =e4T, G =A"'[F - I]|B.

Using setpoint excitation measurements and an initial condition zo = 0 the successive
states of the Laguerre network can be computed from Equation (1.12). Using RLS [1],
process output measurement yx, the Laguerre coeflicients ¢; can be computed recursively
using the states of the Laguerre network as the regression vector.

In the simulations the closed loop process considered was the same as in the previous
section of this chapter (Equations (1.1, 1.2, 1.3)). For the RLS algorithm, the initial
covariance of the coefficients was set as before to 100 and a forgetting factor of 0.999 was
employed as before. For the nominal process and controller parameters with no noise
on setpoint measurements but a Gaussian noise level of standard deviation 0.025 on the
process output measurements and no disturbance, the closed loop frequency response of
the true T'(s) and the identified Laguerre approximation are presented in Figure 1.10
for three choices of p (0.8, 2, 5) for a given N = 10. These results were computed
from the estimates obtained after processing 3000 samples (5 periods of excitation) at a
sampling period of 50 ms as in the previous Section. In Figure 1.10, the true closed loop
response is the solid line. The Laguerre approximations are shown by dashed lines. The
dashed line with squiggles at the low frequency end is the p = 0.8 approximation. The
dashed line with a dip at about 5 rad/s (in the magnitude plot) is the p = 5 Laguerre
approximation and the third dashed line is the p = 2 Laguerre approximation. In Figure
1.11, the frequency response of the process computed using the closed loop Laguerre
results of Figure 1.11 are shown. The description of the dashed lines for the Laguerre
approximations is as given above for Figure 1.10 From these Figures, it is seen that with
p = 2, the Laguerre coefficient estimates provide the best fit to the closed loop and open
loop frequency response when compared with the other two values of p. The choice of p is
critical in this method of identification. Note that unlike standard RLS transfer function
estimation, for the correct choice of p the open loop process gain plots extend well below
the frequency of excitation in this method. However phase response at low frequencies
shows some errors even for the best choice of p.

In Figure 1.12 are the Laguerre closed loop identification results (after 3000 samples)
for the choice of p = 2 and three choices of N (8, 10, 12). Figure 1.13 shows the results of
computing the process frequency response from the Laguerre identification results of Fig-
ure 1.12. In Figures 1.12 and 1.13 the dashed lines represent the Laguerre approximation
while the solid line respresents the true frequency response. The N = 8 approximation
has a dip at 4 rad/s in the magnitude plot while the N = 12 approximation has squiggles

14
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Figure 1.10: Frequency response of closed loop identification of Laguerre model with
p=0.8,2,5and N =10.

in its low frequency response. From these Figures, it is seen that once the correct choice
of p is made, then the choice of N is critical too in that increasing it to a large number
causes measurement noise to affect the frequency response. Too low a value causes high
frequency errors and something in between provides reasonably good estimation.

In Figure 1.14 is shown the closed loop estimation for all 3 process parameter sets
with the PI controller with nominal gains (Equation (1.3)) and the performance of the
Laguerre estimator for the “best” choice of p =2 and N = 10 for the process identifica-
tion. The solid lines represent the true response while the dashed lines are the Laguerre
approximation. For the high gain, high delay and high time constant this choice of La-
guerre parameters is obviously inadequate. A complex Lagurre pole choice would be
needed as the closed loop system is considerably under damped. For the low gain, low
delay and low time constant process, high frequency squiggles are seen in the frequency
response estimated from the Laguerre approximation. However, this frequency response
estimate would probably be adequate in most controller designs. For wide variations of
process parameters, it becomes necessary therefore to adjust the Laguerre pole and/or
order to better fit the frequency response. The effect of disturbances in the Laguerre
closed loop estimation is next studied. The estimated frequency response after 600 sam-
ples (one period of setpoint excitation) after the disturbance enters the process is shown
in Figure 1.15. The solid line represents the true closed loop frequency response of the
nominal process with PI controller with nominal gains (Equation (1.3)) while the dashed
line represents the Laguerre approximation. The performance in this case is noticably
poorer than the case of closed loop transfer function estimation using over parameterized

15
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Figure 1.11: Frequency response of process computed from Laguerre identification of
closed loop with p = 0.8,2,5 and N = 10.

transfer functions as shown in Figure 1.6.
From these simulations, the following conclusions can be drawn:

1. for the right choice of p and N (2 and 10 for simulation with the nominal process),
the Laguerre approach fits the closed loop transfer function frequency response
well. The open loop process frequency response computed from the closed loop
measurements fit the process well in this case.

2. For increased N, noise transmission into the estimates affects the frequency response
as is seen in Figures 1.12 and 1.13. However lower N, while degrading higher
frequency performance does not radically change the frequency response. Hence
the minimum value of N satisfactory to the identification should be used and over
parameterization should be avoided.

3. The choice of p is quite important and estimates using [9, 6] should be used when
adequate data is available for their use particularly in the presence of process pa-
rameter variations.

4. Disturbance effects should be minimized by continuing the identification experiment
long enough before using the coefficients so that their effects are not felt.

5. Good filtering of the noise in the process measurements and on setpoint excitation
(to equalize delay and gain variations introduced by the filters) within the bandwidth
of the estimation sought is necessary.

16
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Figure 1.12: Frequency response of closed loop identification of Laguerre model with p = 2
and N =8,10,12.

1.4 Closed Loop Identification with Frequency Sam-
pling Filter
The frequency sampling filter [2| (FSF) can be used as an estimator of frequency response

[4, 5, 10, 11]. In this method the discrete-time closed loop transfer function T'(z) is written
as

N-L j2xk
T(z) = Y T(eF)Hi(2)

k=0
1 1—2z7W
Hk(Z) Nl _ e‘21rkz_1 (1.16)

where T (e”F") is the frequency response of the transfer function at the k£ (normalized)
frequency. The idea essentially has the notion that a process with finite impulse response
of order N can be described by its frequency response values at N points and interpolation
between the points with standard frequency domain functions. It consists of N parallel
narrow band-pass filters, each with centre frequency at one of IV equally spaced points on
the z-plane unit circle, acting on the setpoint waveform. The output of the closed loop
system is matched to the sum of the outputs of the individual narrow bandpass filters
by adjusting the frequency response weight at each narrow bandpass filter in a least
squares sense. A block diagram of the schematic is shown in Figure 1.16. The magnitude
frequency response of H; and Hj are shown in Figure 1.17.

17
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Figure 1.13: Frequency response of process computed from Laguerre identification of
closed loop with p =2 and N = 8,10, 12.

Considerable simplifications are possible from the general structure of Figure 1.16.
Firstly, since the impulse response of systems are real, the complex frequency response
has complex conjugate symmetry. Exploiting this reduces the number of filters in Figure
1.16 to about half the number shown. However, the filters involve complex numbers and
therefore the computational burden is still of order N for filtering the setpoint signal.
The class of the setpoint signal being applied is usually known such as square/trapezoidal
etc. waveform. Consequently the excitation’s period and harmonic content is known. For
example for a symmetric square waveform, odd harmonics are present and the harmonic
content goes down with the harmonic number. This leads to practical upper limit up
to which signal content is available after filtering through the FSF channels and it is
reasonable to use only the odd harmonics up to this order in computing the FSF channels.
In the simulations, with a 30s period square waveform and a sampling period of 50 ms
(20Hz), the N of the FSF is 600 (period x sampling frequency). Using odd harmonics
alone in the FSF and the complex conjugate symmetry, the number of channels within the
FSF reduces to 150 from 600. Furthermore, since we are only interested in the continuous
time frequency response of a process and this is reasonably well approximated by the
discrete-time frequency response up to about 6rad/s which is approximately 0.05 of the
sampling rate of 20Hz (125.7 rad/sec), computing up to the harmonic number k£ = 29
suffices to reach this frequency. While the signal content in the output and input have
higher harmonics present, their amplitudes would be smaller than 1/29 of the fundamental
and therefore possibly hidden in the noise in the process output. Neglecting these higher
harmonics should not introduce any significant errors in the RLS estimation which uses
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Figure 1.14: Frequency response of process computed from Laguerre identification of
closed loop with p =2 and N = 10 with the process parameters at nominal and the two
extreme sets of process parameters.

the summed outputs from the FSF channels to generate the predicted output of the
process (Figure 1.16).

Equation (1.16), like the Laguerre model (Equation (1.12)), allows for interpolation
between frequency samples using the filter functions (Hg, Equation (1.16)). However,
with the modifications introduced in the FSF, it is not possible to interpolate as the
frequency response at even harmonics are not available. Hence with the modifications
introduced, the frequency response estimates provided by this method are discrete and
finite in number. The estimates obtained on the nominal process and PI controller of
this chapter (Equations (1.1, 1.2, 1.3)) after 3000 samples (without disturbance), by the
FSF method subject to the modifications discussed above is shown in Figure 1.18. The
performance of the modified algorithm in the presence of disturbance is shown in Figure
1.19. The response shows the estimates after one period of excitation (600 samples at
50 ms sampling period) after the disturbance enters the process. From Figure 1.17, it is
seen that the magnitude response of each of the interpolating functions Hy(z) introduces
exact zeroes at the other centre frequencies and have significant non-zero magnitudes at
locations near these frequencies. An alternative way of looking at each Hg(z) is that it
introduces a pole-zero cancellation at its center frequency and blocks all other frequencies
by introducing exact zeros at the other harmonic frequencies. Such filters are usually
sensitive to the excitation frequency mismatch. In identification experiments in the pro-
cess control industries setpoint bumps (excitations) are usually applied from the operator
console and the time frame involved is often of the order of minutes to hours. Exact bump
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Figure 1.15: Frequency response of closed loop identification of Laguerre model of nominal
process in the presence of disturbance.

frequency matched to the FSF design for the identication is therefore almost always im-
possible. To study the effect of mismatch of excitation frequency on the FSF identification
scheme, a simulation was conducted with the nominal process and controller with no dis-
turbance. However, in this simulation the excitation was applied at a 32s period while
the FSF scheme was setup assuming that the excitation period was 30s. This constitutes
an approximately 7% mismatch in frequency. The performance of the FSF scheme in
this simulation after 5 cycles of the excitation is shown in Figure 1.20. The sensitivity
of the scheme to excitation frequency is seen in this Figure. The performance of the
FSF scheme in identifying closed loop frequency response at the boundaries of process
parameter variations and with the nominal process parameters along with the nominal
PI controller (Equation (1.3)) is shown in Figure 1.21.

When the FSF scheme performs well in estimating the closed loop, the finite fre-
quency response data of the process computed from closed loop data matches the process
frequency response accurately. Therefore no open loop process frequency response plots
are provided for this scheme. From these simulations the following conclusions can be
drawn:

1. The FSF scheme assumes a finite impulse response model of the process and esti-
mates it. In as much as this order is chosen large enough that the residual tail of
the closed loop infinite impulse response is negligible, the method can be applied
for process identification.

2. For periodic excitations the method can be modified as per the above to reduce its
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Figure 1.16: Closed loop identification scheme using frequency sampling filter.

computational complexity.
3. Disturbance effects must be averaged out before using the filter’s estimates.

4. Frequency of excitation must be well matched to the frequency of excitation assumed
in setting up the filter scheme. Otherwise the estimation significantly degrades.
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Figure 1.17: Magnitude frequency response of two channels (H;, H3) of the frequency
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Figure 1.18: Frequency response of closed loop identification using frequency sampling
filter to estimate odd harmonic response up to harmonic number 29.
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Figure 1.19: Frequency response of closed loop identification using frequency sampling
filter to estimate odd harmonic response up to harmonic number 29 in the presence of
disturbance.
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Figure 1.20: Frequency response of nominal process as identified by FSF scheme subject
to mismatch in excitation frequency from that assumed in F'SF design
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Figure 1.21: Closed loop frequency response of nominal process and process operating at
its extreme parameter values as identified by FSF scheme.
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1.5 Closed Loop Identification with Bandpass Filters

The bandpass filter based system identification scheme is studied in [15]. The schematic
(called one channel in [15]) of estimating the gain and phase shift on one harmonic fre-
quency betwen the excitation and the corresponding frequency in the output is shown in
Figure 1.22. The sampled setpoint and the sampled output are fed to a series of parallel
channels each peforming frequency response estimation at one frequency point. In every
channel, the sampled setpoint and output are fed to typically fourth order Butterworth
bandpass (digital) filters. The output of the input bandpass filter is phase-shifted by
90° through a quadrature filter (which is first order in [15]). The recursive least squares
algorithm adjusts the coefficients C;, C, until the output of the bandpass filter on the
output matches the sum of the weighted output of the input bandpass and quadrature
filters. The method also has gaurd bandpass filters which have their center frequencies
offset from the main bandpass filters on either side. These filters process a frequency
region hopefully devoid of excitation but which have noise components. They thus pro-
vide an estimate of noise entering around the channel’s excitation frequency and can be
used to develop a measure of signal to noise ratio (SNR) [15]. The method provides the
estimate of SNR recursively as the estimation proceeds as shown in the schematic. It has
generally been observed [15] that a SNR of at least 5 usually indicates convergence in the
estimate. Monitoring the SNR on the input and output in each channel guides one to
terminate the identification experiment when an appropriate number (usually upto 10 to
15) of the estimates have converged.

P! 68PF | ‘ @
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Figure 1.22: Identification Scheme using Bandpass Filters

The plot of the magnitude of fourth order digital butterworth filters centred at the
same first and third harmonic frequency as the FSF interpolation functions of Figure 1.17
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Figure 1.23: Magnitude frequency response of bandpass filters centred at the same fre-
quencies as in Figure 1.17

are shown in Figure 1.23. From this Figure it is seen that the bandpass filters have better
attenuation characteristics when one goes away from their center frequency than the FSF
interpolation functions.

The key parameters of the parallel bandpass identification scheme (and the values
used in simulations reported herein) are: The order of the bandpass filters (4), the center
frequency of each filter (odd harmonics of the excitation frequency of 1/30Hz), the -3dB
bandwidth of each filter (0.5 of the excitation frequency), the offset of the gaurd filters
from the main bandpass filters (0.5 on either side of the center frequency). The RLS
parameters for each channel are: initial diagonal covariance (100), forgetting factor for
each channel is computed from desired one cycle forgetting factor [15] (0.9) in a period
of the harmonic of the excitation passed by the particular channel’s filter and initial
parameter values (0).

The performance of the bandpass filter identification scheme on the nominal process
and controller (Equation (1.3)) is shown in the closed loop frequency response in Figure
1.24. Only 10 points are estimated as the SNR of points beyond the tenth are lower than 3.
Consequently, these are deemed unreliable and rejected. The performance of the algorithm
when disturbance strikes the process is shown in Figure 1.25. Disturbance affects the
performance of the scheme but is of the same order of magnitude as the standard recursive
least squares with over parameterized closed loop transfer function (Equation (1.9)). The
performance of the algorithm under mismatch in excitation frequency (excitation period =
32s) and the assumed fundamental frequency of the excitation in designing the bandpass
filter (assumed period = 30s) is shown in Figure 1.26. The superior performance of the
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algorithm in this case to the F'SF filter approach is evident. The performance of the
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Figure 1.24: Frequency response of closed loop identification using bandpass filters to
estimate odd harmonic response upto harmonic number 19.

algorithm for process parameter variations (without disturbance) is shown in Figure 1.27.
The performance is akin to the FSF scheme without disturbance.
From these simulations the following conclusions can be drawn:

1. The performance of the bandpass filter identification scheme is comparable with the
over parameterized closed loop RLS scheme.

2. The SNR estimates albeit empirically developed in [15] help in establishing reliability
of the estimates. Particularly, the upper limit of frequencies upto which the process
has been reliably identified.

3. The sampling rate required by this method to adequately control quadrature filter
sensitivity errors in this method is shown in [15] to be 20 times the upper frequency
upto which identification is sought (assuming noise is smaller than signal strength
upto this upper limit harmonic frequency).

4. The main disadvantage of this method is the number of parameters that one needs
to set prior to the identification experiment. While real-time code is available in
a portable PC with mouse driven menus and graphics at Lakehead University to
change the parameters on the fly, bandpass filter order cannot be changed and filter
redesign is still not available in the code.
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Figure 1.25: Frequency response of closed loop identification using bandpass filters to
estimate odd harmonic response upto harmonic number 19 in the presence of disturbance.

1.6 Conclusion

From the simulation study of the various closed loop identification schemes considered in
this chapter, it is seen that the most satisfactory schemes of those studied are the over
parameterized standard RLS scheme and the bandpass filter scheme.

However, the standard RLS on opening the loop provides reliable estimation of the
process frequency response only in the range of frequencies over which the excitation is
essentially available. While the lower end of this range is clear for standard RLS, the upper
end is usually not explicit. While a similar comment is true for the bandpass scheme,
because of the discrete and finite data and the SNR estimation, it provides clearly defined
range over which the estimates are reliable. In particular, the upper limit of frequency
ranges. In the over parameterized RLS approach, there is still a necessity to estimate
the delay “reasonably” in parameterizing the transfer function for the closed loop. The
bandpass filter scheme does not use any model but since it measures frequency response
needs at least approximately periodic excitation.

In a very definite way, the information on the upper range of frequency upto which the
system can be or is identified has to be used in control design in specifying the bandwidth
of the desired closed ioop for controller tuning. This closed loop bandwidth specification,
has to be well within the upper range upto which frequency response data is available.
For robust stability, it is also necessary to apply stability margin requirements within this
frequency range upto which the estimated data is reliable. The upper range upto which
the process is identified imposes a fundamental performance limit. This can be improved
only if either the excitation (fundamental) frequency is increased and/or larger amplitude
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Figure 1.26: Frequency response of nominal process as identified by bandpass filter scheme
subject to mismatch in excitation frequency from that assumed in bandpass filter design

of excitation is applied to improve SNR. Large amplitude or high frequency excitations
are generally frowned upon in the process control industries where bumps are applied
from the operator’s console. For example for flow in a pulp mill at 17000 litres/min a
5% bump (100% = 20000 litres/min) implies a sudden flow diversion of 1000 litres/min
which usually induces a significant pressure drop in valves somewhere triggering alarms
in the process operator’s room. Practically, a 2% bump is the atmost that one can expect
in such situations. Higher frequency excitation is usually frowned upon as it forces the
operator to constantly monitor when to apply the bump and cuts down on his/her time
to monitor other points on their console.

In the light of the above, in the further chapters of this thesis the bandpass filter
(BPF) scheme is the preferred identification technique.
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F igure 1.27: Closed loop frequency response of nominal process and process operating at
its extreme parameter values as identified by bandpass filter scheme.
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Chapter 2

An Overview of Controller Tuning
and Design Methods

Controller tuning is the selection of controller parameters to meet a desired robust per-
formance and stability specifications. Controller design methods involve coming up with
the structure and the parameters of the controller to satisfy the robust performance and
robust stability requirements. In the process control industries most SISO loops are con-
trolled by PID controllers. The tuning of these controllers to effectively reject disturbances
under process parameter variations is a key requirement. Explicit MIMO loops are be-
ginning to appear in the process control industries and here too the dominant theme is
PID controllers with simple lead/lag or gain type loop decoupling controllers [25].

In this chapter and further chapters of this thesis, it is assumed that the process to be
controlled is stable. This is always the case in the process control industry as processes
are engineered to be stable. Instability arises usually due to poor controller tuning or
process parameter variations from that assumed when the controller was tuned.

There are two categories of controller tuning methods, model based and non-model
based. In the model based case, a transfer function of the process is estimated then the
controller parameters are obtained. In the non-model based case, the controller parame-
ters are directly obtained based on some minimization criterion and a desired closed loop
process response. The latter is more suited to adaptive control while the former is more
suited to robust controller designs.

In the sections of this chapter, a quick review of the methods available for controller
design and tuning is provided. Then, a particular method [15, 16] to use the finite set of
discrete frequency response points obtained from the bandpass filter based identification
scheme (Chapter 1, Section 1.5) directly for PID controller tuning for SISO systems is
studied. This method is extended for controller tuning to guarantee robust performance
over all operating points [21] for which frequency response data is available.

In this chapter the dominant thrust of the literature review is tuning for PID Con-
trollers for SISO systems. In the next chapter when considering MIMO extensions for
controller tuning a brief review of some other MIMO methods will be given.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Kharitonov Theorem Based Methods

In [29] Kharitonov theorem is stated as: “The interval polynomial p(s, q) = >, [q{ g ] st
is robustly stable if and only if the following four Kharitonov polynomials are stable”

ki = @ +as+@Es’+as®+qist +q5st (2.1)
k2 = @ +qs+as®+qs’+arst+qiss.. (2.2)
ks = @ +qis+¢s*+qis® +qfs* +q55°.... (2.3)
ks = g +qis+a@s+qsd+qrst+aist. (2.4)

In these Equations, g is the uncertainty vector, and p is the closed loop interval polynomial.
Using the sixteen plant theorem [29], the PI controller parameters guaranteeing robust
stability for an interval plant family is determined by constructing sixteen Routh tables,
that is, one for each Kharitonov plant with a P/ compensator given by

C(s) = K, + % (2.5)

The positivity requirement for stability leads to sixteen sets of inequalities, which are
given as a function of K, and K; . There exist a PI controller to robustly stabilize the
interval plant with a set of parameters K, and K; , if and only if, there exist a non empty
set of gains K, and Kj satisfying all the inequalities associated with the Routh tables.
The main criticism of the Kharitonov approaches to controller design is the assumption
that each of the plant’s transfer function coefficients can be anywhere in the interval spec-
ified by the uncertainty vector ¢. In practice, such a random behaviour does not occur,
instead the coefficients tend to move in some relations. The relations are not known apri-
ori. Consequently designs using Kharitonov approaches tend to be conservative. Notice
also that the thrust of the methods are robust stability rather than robust performance.

2.2 H,; and H,, Methods

The H, [32] and H,, [31, 30| controllers are robust controllers which minimize the 2-
norm or oo-norm for performance. Either an integral squared error criterion in which
disturbance, noise, and uncertainty effects are inherently taken into account is minimized
to design the controller, or disturbance, noise and uncertainty effects are taken into ac-
count in a linear fractional transformed transfer function matrix [30] and its oo norm is
minimized to synthesize the controller.

The main problems here are the amount of information needed to capture all the effects
into the performance index or the transfer function matrix and the high order controllers
that usually result after the design procedure is completed. These controllers are rarely
reducible to the standard PID form used in the industry.

While these methods are of tremendous value in the study of achievable performance
limits, their spread to the process control industry is not envisaged in the near future.
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The reasons being that the following issues (prioritized somewhat arbitrarily from high
to low importance) are yet to be considered for these controllers:

1. how to do bumpless transfers between manual and automatic and vice versa on
these controllers.

2. the role of these controller during start up.

3. the maintainability of the complex high order controllers by process control engineers
in industry (if and when they need tuning) or during a failure and subsequent
startup.

4. testing and verifying that the implemented controller works as per the design.

2.3 A-tuning

The objective in X tuning [34] is to choose a desired close loop response of a first or a
second order type with dead time. The method is based on pole-zero cancellation. The
following steps briefly explain the A tuning procedure for a first order processes with dead
time
o find the time constant of the system 7 and dead time 74
e estimate equivalent time constant 7 ,where 7 =7+ 2 andc=5—- %2
e Tune the PJ gains, where k. = ’1',—' and T, =7

The main criticism of this approach is that any method dependent on pole-zero cancel-
lation is sensitive to their variations. Pole-zero variations often occurs in process control
systems.

2.4 Ziegler-Nichols Tuning

The controller can be tuned using one of the two methods. In the first method (25|,
the process output curve shown below in Figure 2.1 can be obtained experimentally by
putting the process controller on manual and exciting the system with a bump.

~

Reifr

.
Sy,

Cy

Figure 2.1: Process step response

In this method, the controller parameters are based on a decay ratio of approximately
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Type of controller Optimum gain
P » =TI
PI kp, = }—ulg—,Tz = %
PID ky =42 T.=2LT, = .5L

Table 2.1: C(s) = Ky(1 + 73 + Tus), based on decay ratio of 0.25

0.25 and the parameters are listed in Table 2.1, for P, PI, and PID controllers.

In the second method, the controller parameters are based on driving the system until
it is marginally stable. In this case the controller is in the loop but the I and D gains are
set to zero. The proportional gain is increased until sustained but non-growing oscillations
are achieved and their period is measured as the ultimate period (P,). The proportional
gain at which these oscillations ensue is the ultimate gain (K,). The P,PI, and PID
parameters for controller tuning using this method [19] are shown in Table 2.2 below:
Practical implementations using relays of the second method are discussed in [28].

Type of controller Optimum gain
P k, =0.5K,
PI kp = 0.45K,,T; = 21Pu
PID Is:—061{,,,T—"—;1L,,,;=1';-;L

Table 2.2: C(s) = Ky(1 + 5—==—=), based on stability boundary

T8+T43

These methods are based on practical experience. Any recursive identification of
process dynamics in the process control industries is time consuming as processes respond
slowly. Consequently since the engineer responsible for tuning has to handle many loops
the first method takes far less time than full process dynamics identification. It therefore
allows many loops to be tuned in the time available for the engineer. For this reason
Shinskey [25] de-emphasizes identification of process dynamics. However these methods
are usually not robust to process parameter variations and require retuning when the
pracess is out of tune. During the tuning phase the controller is either on manual or
without an I-gain (and therefore cannot guarantee disturbance rejection). Tuning of the
controllers using the dynamics of the process always leads to better performance than
that obtained from Ziegler-Nichols tuning.

34

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 Dahlin Controller

In the Dahlin controller [33], dead-time compensation is implicitly provided. It is a model-
based control method where the desired closed loop response is a first order transfer
function with dead-time. The closed loop transfer function is given by

- 41—
G’d(z 1) =2z dl—_pzprl. (2.6)

The transfer function of the process is assumed to be

k
1—712"1

G(z7!) =z (2.7)

Now, by equating the closed-loop transfer function with the desired, the Dahlin controller
is obtained as

_ -1
C(Z—l) — (1 p)(l TZ ) (28)
k(1 —pz—!—(1—-p)z—¢
The key assumption involved in Equation (2.7) is usually not satisfied in practice and
therefore this controller under process parameter variations is not robust.

2.6 PID Tuning Using Finite Frequency Response
Data

These PID controller tuning methods in (15, 16, 21, 13| use the system frequency response
estimates directly (as provided by the BPF scheme or FSF scheme of process identification
discussed in the Chapter 1).

The methods of [15, 16, 21] are based on Fourier series and integral squared error
criterion. A desired closed loop second order transfer function with dead time is specified
for the performance of the closed loop system. It is assumed to be in the form

2 —s74

we€e
= = 2.9
Ta(s) 52 + 26wps + w? (29)

where £ and w2 are the design parameters to be specified by the operator to control
overshoot and to control speed of response respectively. The dead time in the desired
closed loop transfer function is estimated from time domain input-output waveforms ob-
tained during the identification experiment conducted to determine the process frequency
response.

The integral squared error criterion in the time domain over one period of excitation,
in the steady-state, can be written approximately using Parseval’s identity in Fourier
Series, as the first (sum) term in the cost function given in Equation (2.11). In Equation

(2.11), T; is the transfer function of the system evaluated at the itR harmonic of the
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excitation frequency. It is computed from the corresponding process frequency response
estimate G; and the current candidate PID controller gains. N in Equation (2.11) is the
number of reliable frequency response estimates of the process. A; in Equation (2.11 is

the amplitude of the iR harmonic for a conceptual trapezoidal waveform exciting the
set point with a period Tperise, an amplitude of +1 units and a slope of K units/sec. A
trapezoidal waveform is used instead of a square waveform to reduce the effect of the Gibbs
phenomenon in Fourier series of discontinuous waveforms [15, 16]. A; for the trapezoidal
waveform considered, is given by

2w .
= rraen () =1ese (210
The minimization of the sum of the finite number of terms of the squared error (first sum
term) in Equation (2.11) does not guarantee closed loop stability. Hence it is augmented
by explicit penalty functions for gain and phase margin violations from desired values.
The cost function to be minimized is thus given by

. |
Fop = Wg-z (14, ~ TiPA2) + Py + Py 2.11)

=1
The penalty functions are chosen as [16, 21]

Pom(#) = k1 [1 + tanh(kz(éa — ¢))] (2.12)

Ppn(m) = k3 [1 + tanh(ks(myg — m))] (2.13)

In Equation (2.12), ¢4, ¢ are the desired and interpolated phase margins respectively in
radians. In Equation (2.13) mq, m are the desired and interpolated gain margins respec-
tively in dB. k,, k2, k3, and k4 are positive constants that the designer may choose. W in
Equation (2.11) is a positive constant parameter to be chosen by the designer to weight
the errors in closed loop performance specifications visavis stability margin violations.
Experimental and simulation results of the optimization of this cost criterion by a poly-
tope search method [18] which does not use derivatives are available in [16, 21|. Since
the penalty functions are differentiable, optimizations by other techniques which require
derivatives are also possible. Experimental and simulation results in [15] use a gradient
optimization on the first sum term in Equation (2.11) along with graphical (visual) inspec-
tion of gain and phase margin at each iteration. Since the controller parameters enter into
T; (Equation (2.11)) in the numerator and denominator, the optimization is nonlinear.
In [13], from the desired closed loop transfer function an equivalent open loop transfer
function (GC) is computed by opening the loop. Next, since the controller parameters
enter linearly in the open loop function a least squares fit is carried out to obtain the
controller parameters.

To obtain a robust controller for a number of operating points, the cost function to be
minimized to obtain a single PID controller to provide “good” performance and “good”
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stability margins at all operating points can be taken as per Equation (2.14), where [ is
the number of operating points.

M
F =% WFg, (2.14)

=1

2.6.1 Experimental Results

The process considered is an experimental temperature control system whose major blocks
are shown in Figure 2.2. The speed of the fan blowing air on the heater is adjustable.
The process is noisy and is usually controlled by PI controllers. With a controller

C(s) = 4.1+ 2—:3 (2.15)

and the fan operating at mid-speed, the closed loop frequency response at 6 points was
identified by the bandpass filter method. As the process is noisy, only 6 points had
a SNR > 5 after 5 periods of excitation. During the identification phase a square wave
excitation was applied to the set point with a period of 50s and amplitude of 2.5° C (a 5%
bump). The sampling period used in this experiment was 1s. The process delay estimated
from the time domain response of the identification experiment was approximately ls.
The bandpass filter method of closed loop frequency response identification (Chapter 1,
Section 1.5) was used to identify the closed loop response. From the identified closed
loop frequency response, the open loop process frequency response was computed using
Equation (1.7). The experiment was repeated with the fan operating at low speed and
high speed. The frequency response estimates of the open loop process at the three
operating points are shown in Figure 2.3.

1 “g‘f“‘m

-

Figure 2.2: Schematic of the temperature control process

Since the controller used in the identification experiment had poor performance at
the low fan speed (100% overshoot), the controller was tuned using the technique of [16].
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Figure 2.3: Frequency Response Estimates for the open loop temperature process: + = G,
(fan at low speed), o = Gy (fan at mid-speed), * = Gy (fan at high speed)

The 6 frequency response estimates G shown in Figure 2.3 were used. The desired
gain and phase margins were 6dB and 35° . The desired closed loop transfer function
(Equation (2.9)) was specified with £ = 0.707,w, = 0.9rad/s and delay = 1s. The
periodic trapezoidal waveform exciting the set point was assumed to have an amplitude
of +1 units, a slope of 0.2 units/s and a period of 50s. The optimization using the
search method [18] to minimize Fg, (Equation 2.11)) was carried out to obtain a tuned
controller given in Equation (2.16). The values of W of Equation in 2.11 was 1 and the
k;, 1=1,2,3,4 in the penalty functions of Equations (2.12, 2.13) were set to 50 for this
optimization.

1.25
Cruneda = 2.35 + -s— (2.16)

The time domain performance of the closed loop system with this tuned controller and
the process operating with the fan at low speed is shown in Figure 2.4. The tuning has
successfully lowered the overshoot.

A robust PI controller to optimize the performance over all three operating points
of the process is designed next. The three desired closed loop transfer functions for the
three operating points have a delay of 1s and a w, of 0.9rad/s. The desired gain and
phase margins for each operating point was taken as 6dB and 35° . The damping factor
for the closed loop transfer functions (§) was taken as 0.9 for G, 0.707 for Gps and 0.6
for Gy. The periodic excitation of the set point and the parameters for the cost function
(Equation (2.11)) are the same as above. The controller obtained by minimization of the
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Figure 2.4: Sampled closed loop tuned temperature control system response to a square
wave set point excitation with fan at low speed setting

function F in Equation (2.14) is

1.9
Crobust = 24 + -S_ (217)

The response obtained when this controller was implemented is shown in Figure 2.5.
Attempts to decrease the overshoot at low fan speed makes the response at the high

fan speed sluggish. The damping factor specification for each operating point’s desired

closed loop transfer function has been used to balance these counter effects in this design.

2.7 Conclusion

An overview of controller design methods with emphasis on SISO systems was considered
in this chapter. The tuning of controllers using several methods was briefly presented.
An extension of the tuning method in [16] to develop a single robust PID controller over
many operating points was given and experimental results of the method were provided.
The design choices in this method for a SISO system are 4 parameters: the desired closed
loop second order transfer function’s damping factor to control overshoot, desired natural
frequency to control speed of response and desired gain and phase margins for the loop. It
is hoped that a designer can intelligently iterate using specifications of these 4 parameters
and the tuning technique to arrive at a satisfactory PID controller.
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Figure 2.5: Sampled closed loop tuned temperature control system response to a square
wave set point excitation with fan at low (top), mid and high(bottom) speed settings
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Chapter 3

MIMO PID Controller Design Using
Finite Frequency Response
Estimates

3.1 Introduction

The SISO PID controller tuning method [16], [21] using finite frequency response esti-
mates for stable systems summarized in the previous chapter uses the phase and gain
margin constraints to guarantee stability of the closed loop system. The penalty func-
tions on gain and phase margins (Equations (2.12) and (2.13) respectively) on the process
frequency response are differentiable, therefore the controller coefficients can be optimized
using any of the optimization techniques such as those requiring differentiability (gradi-
ent, conjugate gradient) or non-differentiable such as polytope search (Nelder-Mead [18]).
The initial guess for the gains needed by any of the optimization techniques are obtained
by either the Ziegler-Nichols rule or from the values used during the closed-loop identi-
fication experiment conducted to obtain the open loop process frequency response. The
optimization method is used to minimize the weighted least squares error between the de-
sired and actual closed loop responses subject to constraints on gain and phase margins.
The desired closed loop response is expressed as the output of a second order + dead time
transfer function excited by a periodic wave-form at the set point. The error, at a finite
number of harmonics between the desired and the closed loop process frequency responses
due to the same excitation are minimized in a least square sense along with penalties for
phase and gain margin violations. The number of finite frequencies at which the errors
are computed is usually small (5 to 20 harmonics) for typical process control applications.
The dead time in the desired closed loop transfer function is obtained from the time do-
main signals used for estimating process frequency response. The desired second order
closed loop transfer function is pragmatically specified by its damping factor and natural
frequency. Gain and phase margin requirements for the loop can be specified by rules of
thumb.
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In MIMO the plant has more than one input and/or more than one output. In general
the system will have ! inputs and m outputs, however in most feedback systems the
number of inputs is equal to the number of outputs. Because there is more than one
manipulated variable and more than one controlled variable, interaction among control
loops can arise when each manipulated variable affects more than one control variable.
Moreover configuring the system i.e. deciding on which input should control what output
is no longer simple. The classical relative gain array procedure (RGA) provides the
designer with quick means for configuring the system. The steady state gains for each
controlled variable relative to each manipulated variable is obtained through differential
equations describing the system or experimentally. The elements of the RGA can be
arranged in a matrix format and calculated using the steady state gains. Pairing of
manipulated variables and controlled variables should be done on those elements of the
RGA which are positive and close to one in value. The RGA analysis is based only on the
DC gains among different loops in a MIMO system, therefore it does not give the designer
a total picture of the system because the plant dynamics are not considered. The modified
RGA method described in [25] overcomes the limitations of DC gain analysis and provides
the control engineer with means of accommodating the plant dynamics. A brief discussion
of the RGA is provided in Section 3.2 of this chapter.

The Inverse Nyquist Array (INA) method is another technique that can be used to
analyze a MIMO system for interaction and control design. It is a multivariable frequency
response technique that can accommodate plant dynamics for interaction analysis and
control design. The objective of the INA technique is to achieve a diagonally dominant
system in which the off-diagonal elements of the open-loop plant G are of less important
than the diagonal elements. Once a diagonally dominant system is achieved the designer
can treat the design of each controller as a single loop problem. a discussion of the INA
method is provided in Section 3.2 of this chapter.

The SISO PID tuning technique using finite frequency response described in the previ-
ous chapter is extended to MIMO systems in this chapter. The MIMO process is assumed
to be stable, linear and time-invariant. The controller is a gain matrix K and a diagonal
PID matrix C. The error between setpoints and measurements is fed to the diagonal
PID matrix C whose outputs are coupled to the process through the gain matrix K. The
frequency response open-loop transfer function matrix of the plant G is identified using
any of the identification techniques described in Chapter 1. A penalty function is imposed
on the |I + GKC| using the multivariable Nyquist criterion to guarantee stability of the
closed loop system. Also minimum singular values of (I + GKC), (I + (GKC)™!) and
(I + (KCG)™!) can be constrained. Since the numerator zeros of the | + GKC]| are
amongst the closed-loop poles of the system, they must lie in the left half plane for the
system to be stable. The Nyquist criterion is used to determine the stability of the system.
The PID controller gains and the decoupling matrix gains are designed simultaneously.
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3.2 PID Tuning for MIMO Systems

In MIMO systems, the dimensionality of the tuning problem expands significantly with
the number of inputs and outputs to the system. The tuning problem becomes complex,
because of the interactions among different loops. Moreover configuring the system is
no longer an obvious task for the designer hence, with the increased number of inputs
and outputs the question of which manipulated variable should control what output is no
longer a simple one. An aid in this analysis is the relative gain method.

3.2.1 Relative Gain Array (RGA)

In [25] a procedure is developed to guide the designer in configuring the system using
the RGA method. The relative gain of each controlled variable in a process to each
manipulated variable is defined as

(28),,
Aij = T (3.1)

(Bu,- )‘-' ‘
where i, j are indices to the controlled variable y and the manipulated variable u respec-
tively. Note that A is the ratio of the change in y; due to a change in u; in an open
loop effect to that due to a perfect closed loop effect. The numerator and denominator of
the above equation are evaluated when all considered loops are on manual (numerator)
and when all other loops but the considered loop are on automatic (denominator). The
relative gain terms can be arranged in an array as following

Uy Uz --- Uy
L) /\11 /\12 - /\1j
Y2 | Aoy A2 oo Agj

A= : o e = oo
wo | M M o g

R . . . . "‘J

Relative gain is a dimensionless number therefore it is insensitive to scales, ranges and
nonlinearities. One important property of the RGA is that the sum of all terms in a
column or a row must add up to unity ( a proof of this property is given in [23|).Therefore,
the number of terms which must be evaluated is reduced, for example in a 3 by 3 array
only four relative gain elements must be evaluated the other elements can be calculated
by difference using the above property. The relative gain terms can have a positive or
negative value. The relative gain terms can be calculated from a set of steady state gains
with all loops open [25]. The open loop steady state gains can be obtained by perturbing
each input and measuring the change for all outputs and can be written in matrix form

Y = KU (3.3)
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Now,with H = K~! the relative gain terms are calculated as per

where hj; and k;; are the corresponding elements in the K and H matrices. Note that
pairing on negative RGA elements should be avoided if possible as such pairing result in
unstable system. A detailed discussion of negative RGA elements pairing is given in [23].
The pairing should be done on those elements of A that are positive and close to 1 in
value.

3.2.2 Inverse Nyquist Array (INA) Technique for Controller De-
sign

The INA technique [22] considers the system shown in Figure 3.1 below, in which G(s)

is an m x [ plant transfer function matrix, and K(s) is an ! X k matrix representing the

input compensator, and L(s) is a k X m matrix representing the output compensator. A

feedback gain matrix F is inserted in the return path, and is assumed to be a diagonal
k x k matrix and is designed so that the closed loop has “good” properties. The transfer

" | !
- K D G [ L -

F

Figure 3.1: INA multivariable closed loop system
function matrix H(s) relating the outputs y(s) to inputs r(s) is given by
H=(I+LGKF)'LGK (3.5)

If we write @ = LGK for the transfer function matrix in the input path, then H(s) can
be written as

H=(I+QF)"Q (3.6)

Now, with Q! = Q*, H~! = H", the closed loop transfer function matrix can be written
in a simpler form as

H =Q"+F (3.7)
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The determinant of (I + LGKF’) can be written as

[ + LOKF| = rr%,—%ig—:g—j) (3.8)

where f3; are the closed loop poles of the MIMO system, and a; are the open loop poles
(multivariable) of the system arising from the matrices L,G, K and F. The stability
problem of the MIMO system can be defined in the frequency domain using the INA
criterion. Writing the determinant of the return difference matrix as
|H"|

|+ QF o7 (3.9)
The following theorem given in [22] determine the stability of MIMO systems: Let the
open loop system have p, poles in the right half plane: that is, let L, G, K, F' have p, poles
(multivariable) there. Then the closed loop system shown in Figure 3.1 is asymptotically
stable if and only if

Where Ny is the number of clockwise encirclements of Q* around the origin and N} is
the number of clockwise encirclements of H* around the origin.

If the matrix @ and F are diagonal then the MIMO system becomes a number of SISO
loops in which interaction does not exist among the loops, however this situation is limited
and too extreme for general cases. The criterion of diagonal dominance overcomes the
above limitation and enable the designer to treat a MIMO system as a number of SISO

systems. Given a rational k X k matrix, Z(s), and a contour D in s-plane, if for each

se€D
2

lza(s)l = D 251 >0 1=1,2---k (3.11)
J=lj#i
then Z(s) is row diagonally dominant. Diagonal column dominance is defined similarly

for each s € D by
k

[z,-,-(s)[ t Z [Zj{l >0 1= 1,2' --k (312)
J=1lg#i
If each row or column of z(s) is row or column dominant then Z(s) is diagonally dominant.
The Gershgorin bands can be used to check the dominance of a rational function Z(s) as
following: F'irst, for each s € D compute

k

di(s) = Y lzi(s)] (3.13)

J=1j#i

second, for each z;(s) plot a circle with radius d;. Third, if each of the Gershgorin bands
excludes the origin, for i = 1,2,-- -k, then Z is row dominant on D. To check for column
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dominance one should compute the Gershgorin bands given by

k

di(s) = 3 [zu(s)l (3.14)

j=1g#i

and follow the same procedure described above. The stability of a dominant transfer
function matrix for a MIMO system car: be determined by checking the diagonal elements
only as given in the following theorem [22]:

Let each of the Gershgorin bands based on the diagonal elements ¢ of a diagonally
dominant Q" exclude the origin and the point (—f;,0). Let these bands encircle the
origin N times and encircle the point(—f;,0), Nj; times. Then the closed loop system is
asymptotically stable if and only if

k k
D NG = Nii=p (3.15)

=1 t=1

Now, the question remaining is how diagonal dominance can be achieved? Assuming
K (s) is a stable precompensator applied before the process inputs, and the determinant
of K(s) has zeros in the left half plane, one can use K* and G" to make Q" = K"G"
diagonally dominant. One way of achieving diagonal dominance is to consider the j** row
of Q* = K"G" at some frequency w.

Gr(w) =Y kighGw) =3 k) (oux + 7B:) (3.16)
i=1
the k} for i = 1,2,---m can be chosen such that

m

> lghGw)? (3.17)

k=1.j#k

is minimized subject to the constraint that

YokN =1 (3.18)

t=1

is satisfied.

3.2.3 Singular Value Analysis

The singular value analysis attempts to develop Bode plots for MIMO systems through the
use of matrix norms. They describe the magnitude of the loop gain in sensitive directions
at each frequency. Given a complex matrix A, the maximum and minimum singular value

of A are defined by
TlA] = \/Mmaz(A*A) (3.19)
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a[A] = \/Amin(A*A) (3.20)

where A[| are the eigenvalues, and * refer to conjugate transpose. The matrix A*A is
Hermitian with eigenvalues that are real and positive. The singular values of A are the
square roots of the eigenvalues of A*A. The matrix A can be written as

A=UY V" (3.21)

U and V are an n X n unitary matrix, and Y is an n X n diagonal matrix whose elements
are the singular values of A.

The feedback requirement for the design of MIMO unity feedback control systems with
a plant G(s) and controller K(s) using singular values [20] is to make

al(I + Gjw)K (jw))™'] (3.22)

as large as possible to guarantee robustness to multivariable uncertanties on the output
and/or

al(I + (K (jw)G(jw)) 7] (3.23)

as large as possible to guarantee robustness to multivariable uncertainties on the input
over the required range of frequencies. The g(I + GK) function is a complementary
function to Equation (3.22) [26],-and gives the minimum return difference magnitude of
the closed loop system. In [26], this singular value function is used to derive concepts of
MIMO gain margin.

While in [20] it is shown that performance robustness can also be imposed by singular
value analysis, it is not used in this thesis as we specify the desired closed loop transfer
function matrix with a specific controller structure for performance robustness as will be
discussed in Section 3.3 below.

The singular value analysis enables the designer to analyze a MIMO system in its
true multivariable sense without (SISO) loop by loop analysis. The singular values are
“equivalent” measures of SISO concepts for the MIMO case. For singular value analysis of
robustness to have meaning, stability has to be ensured for the nominal feedback
system [20, 26].

3.2.4 INA Disadvantage

In the INA method the MIMO problem is reduced to a sequence of SISO problems that are
manipulated independently using classical techniques. In [20] it is shown that while the
INA set of SISO systems might have a good robustness properties, the resulting closed
loop MIMO system may have poor stability robustness properties when analyzed with
singular values. The PID tuning using finite frequency response technique described in
Section 3.3 overcomes the disadvantages of the INA by taking the singular values of the
system in to account in the design and the decoupling gain matrix K and the diagonal
PID controller gains are simultanously designed.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 PID Tuning for MIMO Systems using Finite Fre-
quency Response

The block diagram for the described closed loop system is shown in Figure 3.2 below. The
number of outputs, number of inputs, and number of setpoints are assumed to be equal.
The PID controller C is assumed to be a diagonal matrix. The decoupling gain matrix

+

- C B K PG

Figure 3.2: MIMO PID + gain control system configuration

K is imposed between the PID controller output and the process input. The controller
configuration and connections to INA is obvious. This configuration ensures that the
setpoints tracks the measured process outputs.

The plant is assumed to be stable, linear and time-invariant. The finite number
of frequency response points of the process required for tuning the MIMO controller
are assumed to be spaced at harmonics of a periodic waveform exciting the setpoint
of the closed loop system. These points maybe directly obtained by frequency domain
identification methods described in Chapter 1 such as the bandpass filter approach, the
FSF method etc.. The system is closed with a unity feedback. For tuning purposes, the
system is assumed to be excited by a periodic trapezoidal setpoint (vector) waveform
with a period of Tperioq, & swing of +1, and a slope of K units per sec. The Fourier
series coefficients for an odd symmetric trapezoidal waveform at harmonic number 7 of
the fundamental frequency f = =—!— for an input k are given by

Tpcricd
4K Theriod 211
k o p 3 y — PR
A = o sin <KT - ) 1=1,3,5, (3.24)

The error between a desired closed loop output response to the input waveform and the
obtainable closed loop response for the process is minimized in a least squares sense in the
frequency domain to tune the multivariable controller. The desired closed loop response
is specified as a diagonal matrix with diagonal elements being second order + dead time
transfer function acting on the input setpoint waveform. The matrices K and C are si-
multaneously designed using the frequency response estimates of the process at a finite
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number of frequencies, to nudge the closed loop transfer function towards the desired
closed loop with penalties on deviation from stability margins. These penalties are im-
posed on singular value deviations from desired singular values of appropriate frequency
response matrices [20], in addition to imposing stability requirements assessed using the
multivariable Nyquist criterion on an equivalent open loop SISO transfer function com-
puted as |I + GKC| — 1 subject to modifications discussed in Section 3.3.1. While gain
margin and phase margin requirements may be imposed on |/ + GK C|— 1, examples such
as in [26], show that they may not have significance and therefore singular value analysis
must be always carried out after guaranteeing stability for the closed loop. The function
to be minimized in the MIMO case at a particular operating point is thus given by

N .
Fg, = W%ZZ [Z (1T - 1}""]2{A{‘}2)} + Poy + Pryquist (3.25)
£ j Li=1

where the j, k superscripts are indices addressing the outputs and inputs respectively and
i refers to the 7 harmonic frequency of the (k**) set point excitation. Pyyquist is the
penalty function on stability violations and is discussed in Sections 3.3.1, 3.3.2 and 3.3.3.
Dsv is the penalty function on singular values and is discussed in Section 3.3.3. The desired
closed loop transfer function matrix T, is a diagonal matrix chosen by the designer in
order to satisfy a desired performance.For a 2-input 2-output system it can be written as.

w% c-rdl s 0
'
Td(s) — 8!+2(1U 1 +wn1 w'z‘ e-?d'z‘ (3.26)
0 s!+2(2w,,2 +w,,52

The desired second order transfer function for each diagonal element is selected according
to desired specifications such as bandwidth, overshoot, rise time (and disturbance rejec-
tion). The off diagonal elements are chosen to be zero to eliminate interaction among
different loops in the MIMO system. Tij"c is the complex number describing the frequency
response of the actual closed loop system matrix at the frequency —— for the j, k element

of T given by

Tpeﬂ‘ od

T = (I + GKC)"(GKC) (3.27)

3.3.1 Modification of Integrator Poles

The PID controller for each loop introduces an integrator in | + GKC|, i.e. each integral
action in a loop will introduce a pole at the origin. For a MIMO system this implies that
for a stable closed loop system the |/ + GKC| will have at least 2 or more poles at the
origin and is therefore open loop unstable. The stability of the MIMO system can be
determined using the MIMO Nyquist criterion. Let the Nyquist contour D be indented
to the left half plane to include all imaginary poles and let the open loop system have
Do poles in the closed right half plane then the following corollary in [27] describe the
stability of a MIMO system. The closed-loop system is asymptotically stable if and only
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if the map of D by |I + GKC] encircles the origin —p, times clockwise. where D is large
enough to enclose all finite poles and zeros of |I + GKC| lying in the closed right half-
plane. For closed loop stability, therefore in our case, the numerator of | + GKC| must
be stable as the process G is assumed to be stable. When using optimization techniques
it is difficult to compute the number of encirclements using finite frequency response to
determine stability. Moreover on line computing is almost impossible due to the infinite
arc of the map of the contour D by |/ + GKC]| poles at the origin due to the integrators.
To overcome this problem the | + GKC| is multiplied by a weighting function to cancel
the open loop poles at the origin as per Equation (3.28).

P
modified(( + GKC|) = |I + GKCl- > (3.28)

s+ 1)

In Equation (3.28) p is the power that is needed to cancel the poles at the origin of
[ + GKC| and is equal to the number of inputs or outputs. 7 is the power in the
denominator of the weighting function with » > p. The parameter 7 in Equation (3.28)
can be chosen beyond the bandwidth of interest. The denominator (7s+1)" is introduced
to ensure that the Nyquist plot is proper. '

The modified determinant can be used by subtracting 1, to generate the equivalent
transfer function whose traditional open loop finite frequency response should not encircle
the -1 point. Note that this does not change the closed loop poles which are amongst
the roots of the numerator of |/ + GKC|. Now counting the number of encirclements to
determine the stability of the MIMO system is simplified. If the finite frequency response
of the modified |[[+ GKC|—1 encircle the -1 point then the system is not stable, and if the
finite frequency response of the modified | + GKC| — 1 do not encircle the -1 point then
the system is stable. It is assumed that the finite frequency response data of the process
is available to ascertain this. Therefore, in our approach for a stable system, the stability
of |I + GKC]| can be easily obtained by verifying that the finite frequency response points
within the above modification does not encircle the -1 point.

3.3.2 Nyquist Plot Penalty Function

To guarantee stability of the closed loop MIMO system, the Nyquist plot of the modified
I + GKC| — 1, must not encircle the -1 point, therefore a penalty function is applied
to the finite frequency response data of the modified |/ + GKC| — 1 and any attempt to
encircle the -1 point will be penalized. A wedge shaped area is defined on the Nyquist
plot and the finite frequency response points of the modified [I + GKC|—1 are forbidden
from entering the wedge area. The wedge area boundaries can be defined by two lines
(I, I,) passing through a vertex (—Gn,) as given in Figure 3.3. Note that the wedge does
not extend to the right of the vertex but is only to its left.

A measure of “gain margin” constraint is directly specified in this plot by the choice
of the vertex at —Gy,,. As will be seen later in Chapter 4 this does not have much
significance as specifying points such as -0.6 may be impossible to attain with the control
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Figure 3.3: Wedge in Nyquist plot

configuration considered herein for practical systems. Also the example in [26] shows
such specifications do not guarantee much for MIMO systems unlike SISO systems. A
measure of phase margin P,, is indirectly specified on the plot through the slope m of the
boundaries of the wedge. The line equations governing the boundaries are specified by
the slope m and the intercept b with the imaginary axis as per Equation (3.29).

sin(Prp)

= 3.29
™ = os(Pn) — Cm (3-29)
b = mG,

It is assumed that G, and P,, are chosen so that m and b are meaningful. In order for
the MIMO system to be stable the frequency response of the modified |(I + GKC)| — 1
should not cross the region bounded by the straight lines forming the wedge. To check if
the Nyquist plot of the modified |(/ + GKC)|—1 passes through the wedge, the imaginary
axis points Ip, I,, on the wedge boundaries for each candidate negative real value of the
frequency response (< —G,,) of the modified |( + GKC)| — 1 are computed. The actual
imaginary values for the coresponding frequency points should not lie between the two
limit points. I,(7) and I,(z) are given in Equation (3.30)

(i) = —mRe(modified((I + GKC)—1)—b (3.30)
(i) = mRe(modified(( + GKC)—1) +b

where Re denotes real part.

Note that if the frequency response points are widely separated then two points can
lie on either side of the wedge and the testing will not reveal that the plot actually goes
through the wedge. In this case, linear interpolation between the points would catch the
situation.

In most applications instead of using the Gy, Pn specifications, it suffices to choose
the wedge with a vertex (just) to the right of the -1 point and wedge half angle at 1 or
2° rather than through the formal procedure outlined in this subsection. The equivalent
G and P,, can be reverse computed, but in the light of their poor value as indicators of
stability robustness are of little use.
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3.3.3 Penalty functions

The Nelder-Mead polytope search method [18] is used in our work to solve the optimiza-
tion problem. This search method is a downhill simplex method requiring only function
evaluations (no derivative evaluations), therefore the penalty functions need not be differ-
entiable. The Nyquist plot penalty function guarantee the stability of the MIMO system
by penalizing the finite frequency response of the modified|/ + GKC| — 1 if they attempt
to encircle the -1 point as given in the Equations below:

Pxyquist =0 (3.31)

For each finite frequency response point with negative real part (< —G,,) for the modified
|I + GKC| -1,

IFI, < Im(modified(|]I + GKC|—1)) < I, THEN Pyyguist = Pnyquist + 100000
(3.32)
The singular value penalty function guarantee good robustness for the MIMO system.
Let the minimum singular values of I + (GKC)™! and I + (KCG)™! at each frequency
point be denoted SV;(i) and SV,(7) respectively. Now the singular value penalty function

P,, can be written as
P,=0 (3.33)

For each finite frequency point
IF (SVi(?) < ¢;) OR (SVa(d) <c;) THEN P, = P, + 100000 (3.34)

c¢; and ¢, are constants to be specified by the designer. Usually c¢; and ¢, are chosen as
values between 0 and 1 with values closer to 1 for greater robustness.

3.3.4 Example

To illustrate the MIMO tuning technique described in this chapter, an example is provided
here without singular value penalization. Consider the 2-input, 2-output process transfer
function of a compressor [22] and desired closed loop transfer function matrices given

below
0.1133e—9-715 .9222
G(s) = [ K S T ] (3.35)
0.36132+1.00s+1 0.104s2+2.4635+1
8-0‘8" 0
T4(s) = [ $2+2s+1 16e-* ] (3.36)
0 =5
The gain matrix K can be written as
1 =97k, 0
K= k22 11 3.37
=T[5 ] @
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By lumping k;; and ks; with the diagonal PID controller, only the ratios of the off
diagonal columns to the main diagonal elements need to be estimated. Therefore, in our
example only eight gains need to be designed three for each PID controller and two gain
ratios for the decoupling gain matrix K. The system is assumed to be excited at its set
points by periodic trapezoidal waveforms with a period of 75s, unit amplitude and slope
of 0.1 units/s. 20 odd harmonics of the input excitation and process frequency response
are used for minimizing the function in Equation (3.25). For this example the stability
margin violation constraints are applied on the modified|(/ + GKC)| — 1 with a “gain
margin” (é) requirement of 6 db and “phase margin” P, of 5°. No constraints on
singular values were applied in this example. The Nelder-Mead optimization technique is
used to arrive at the results given in Equation (3.38) and Equation (3.39). As is typical of
many parameter non-linear optimization problems, the optimal solution depends on the
initial conditions and therefore iterations are needed to arrive at a satisfactory design.

_ | 0.40 + 922 4 0.025s 0
Cs) = [ 0 0.25 + 22 4 0.00s } (3.38)
1 896
K= [ (14 } (3.39)

A plot of the achieved frequency response compared with the desired transfer function
is shown in Figure 3.4. The minimum singular values of (I + GKC), (I + (GKC)™1)
and (I + (KCG)™!) for this design are 0.64 , 1.00 and 0.84 respectively indicative of the
good stability margins for this design. To assess stability by a different approach, the
time delays in Equation (3.37) are approximated by a first order Pade approximation.
The transfer function of |(/ + GKC)| is calculated and the roots of its numerator and
denominator are computed and listed in Table 3.1. From this Table, since the denominator
retains its two unstable roots at s = 0 and all other roots are stable, it is easily seen that
closed loop characteristic polynomial of the MIMO system is stable.

Roots of Numerator of [I + GKC| | Roots of Denominator of [/ + GKC] ||

-23.3090 0
-7.4193 0
-2.7979 -23.2695

-0.8541 +j1.5079 -6.6890
-2.8390 -2.7972 + j0.0003

-2.1694 + j0.0720 -2.2650, -2.1276

! -0.4142 + j0.1995 -1.5097 £ j0.7006
-0.2917 + j0.1259 -0.4132, -0.2476

Table 3.1: Roots of numerator and denominator of |/ + GKC|
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Figure 3.4: Desired and achievable closed loop frequency response for MIMO example:
diagonal elements (top) and off-diagonal elements (bottom)

3.4 Practical Issues

In practice sometimes some loops are put on manual while other loops operate on auto-
matic. However doing so could upset a system which is maintained stable by a “true”
multivariable controller. Shinskey [25]explains and describes such situations. The penalty
function approach described in this section enable the possibility of each main loop be-
ing on automatic while the rest of the loops are on manual while maintaining stability
(and viceversa). In a 2-input, 2-output system there are two main loops to be considered
the first loop on automatic and the second loop on manual and viceversa. If the second
loop is on manual and the first loop is on automatic one can calculate the corresponding
|I + GKC| — 1 and then impose stability margins on its finite frequency response data.
Similarly the |{I + GKC| — 1 can be calculated when the second loop is on automatic
and the first loop is put on manual, and stability margins can be imposed on its finite
frequency response data. The functions given below describe the |I + GKC| —1 for each
possible case.

loop(1) automatic = (gu1ku + gr2ka1)en (3.40)
100p(2) gutomatic = (g22k22 + ga1ki2)cz (3.41)

Note that in this case loop(1) and loop(2) have only one integrator pole at the origin and
are SISO transfer functions and therefore we impose gain and phase margin constraints on
the finite frequency response points along the lines of Chapter 2, Equations (2.12, 2.13).
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The following function can now be optimized
Fp = F'Ioopl + Floop2 + FG,,, (342)

where Fioop; and Fl,op2 are given below. Note that Fi, incorporates true MIMO operation
plus the case of one loop being on manual and viceversa.

Floop1 = Fomy + Pym, (3.43)

Fioop2 = Ppmy + Pym, (3.44)

In Equations (3.43, 3.44), Pym,, Pym; are the penalty functions described in Chapter 2,
Equations (2.12, 2.13), made specific for phase and gain margin violations respectively
using the transfer functions loop(1)automatic and 100p(2)automatic- Fc., 15 given by Equa-
tion (3.25). Note that Equation (3.43) and Equation (3.44) are additional constraints to
the MIMO problem.

3.4.1 Example

To illustrate the approach of this section, the same example given in the previous sec-
tion was used with the addition of the constraints given in Equations (3.43, 3.44). The
additional constraints of Equation (3.43) and Equation (3.44) are used with a desired
gain margin of 12dB and a desired phase margin of 75° for both possible cases. All other
MIMO desired characteristics were the same as in the previous example. The Nelder-
Mead optimization technique [18] is used starting with the previous controller parameters
(Equations (3.38), (3.39)) as initial guess, to arrive at the results given in Equations (3.45,

3.46).
_ [ 0.49 + 22 4+ 0.02s 0
Cls) = [ 0 0.26 + 22 + 0.03s (3.45)
1 891
K= [ 119 —1 ] (3.46)

A plot of the achieved frequency response compared with the desired transfer function
is shown in Figure 3.5. The minimum singular values of (I + GKC), (I + (GKC)™!)
and (I + (KCG)™!) for this design are 0.71, 1.00 and 0.96 respectively indicative of the
good stability margins for this design. In comparison with Figure 3.4, Figure 3.5 reveals
that the off-diagonal elements have risen up in the new optimization and that the 2,2
diagonal element of the closed loop (’+’ points) now do not match the desired as well as
before. This is intuitively correct as stringent individual loop stability margins have been
imposed in this example. Notice also that this is borne out by the improvement in the
robustness measures using singular values in this examples when compared with those of
the previous example.
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Figure 3.5: Desired and achievable closed loop frequency response for MIMO example
with practical constraints: diagonal elements (top) and off-diagonal elements (bottom)

3.5 Conclusion

In this chapter the SISO PID controller tuning using finite, discrete frequency response
data has been extended to the MIMO case. A stability constraint and stability margin
checking or penalization through singular values are the penalty terms replacing the SISO
penalty functions on gain and phase margins. Examples indicating the successful tuning
possible for MIMO systems using this technique have been shown in this chapter.
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Chapter 4
MIMO Experiments

In this chapter, the PID controller tuning technique developed in the last chapter is applied
to an experimental system in the laboratory. The experimental study is the first attempt
at applying this technique to a real-world problem as opposed to a “nice” conveniently
available transfer function as was done in the examples of the previous chapter. At the
point of writing this chapter, the experimental study is not thorough, however it indicates
the potential of the method.

After describing the experimental apparatus, preliminary trials of identification of the
system at two extremes of operation, tuning is performed and the results discussed.

4.1 Experimental Apparatus

The PID tuning for MIMO systems using finite frequency response technique is tested on
a distillation column in the Chemical Engineering unit operations laboratory at Lakehead
University. The distillation column is a 10 cm diameter, 11 tray, Q.V.F.T™ pyrex column
supplied by Pegasus Ltd. of Agincourt, Ontario. The column usually runs on methanol-
water. The bottoms composition is regulated through temperature control at tray 2,
cascaded to the reboiler steam flow control. The temperature of the top tray (tray 11) is
controlled by varying the reflux ratio. The feed flow is controlled to prevent any upset in
the feed through out the experiment. A schematicis given in Figure 4.1 below. The control
equipment consist of Bailey Net907™ hardware, configured to provide accessible 4-20 mA
signals for setpoints, process measurements, and controller outputs. Data acquisition was
done through an RTI815F board with a 12 bit AtoD converter from Analog Devices Inc.
mounted in a DOLCHT¥ portable 486DX2/66MHz computer. Some analog preprocessing
was required to prevent information loss at the AtoD conversion. The 4-20 mA currents
were converted to voltages using 502 resistors, giving a range of 0.2-1 V as the available
signal range corresponding to 0-100 C span. For the typical 92-94 C variations of setpoint,
the corresponding voltage change across the resistor was typically 0.016V on an average
of 0.944V. If the voltage across the resistor were sampled directly then this 16mV signal of
interest would affect at most the bottom 5 bits of the AtoD converter (bipolar range). In
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Figure 4.1: Distillation column schematic diagram

addition, AtoD quantization noise usually reduces the available signal by another bit. No
amount of digital processing thereafter can improve this poor resolution. The situation
calls for analog preprocessing of the signals by an instrumentation amplifier to convert
the differential signal across the resistor in the 4-20 mA loop into a grounded voltage,
followed by a stage of bias removal and amplification of the remaining 16 mV to a desired
level before quantizing the same through the AtoD converter.

4.2 Closed Loop Band-Pass Filter Identification

The distillation column described above is modeled as a 2-input 2-output system. The
closed loop transfer function describing the system can be written as

ynottmn — Tll T12 rTbottorn (4. 1 )

YTeop T To TTiop
Where r,.,,...., TT.., are setpoints for lower tray temperature and upper tray temperature
respectively, and yr,,,,,.., YTz, are the lower tray temperature and upper tray tempera-
ture respectively. The BPF identification method (Chapter 1) was used to identify the

preliminary closed loop finite frequency response data for two cases of low and high feed
methanol concentrations. This is done to get a feel for the MIMO performance tuning
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to be done subsequently. The top and bottom temperature of the distillation column
were controlled with individual SISO PID controllers. The sampling period for this ex-
periment was 3s and the excitation was periodic temperature setpoint bumps between
92-94°C for bottom temperature loop and 64-66°C for top temperature loop, at an ap-
proximate period of 1800s for four cycles using a stop watch. The bottom temperature
setpoint and output, rr, .. and yz, ... respectively, and the top temperature setpoint
and output, rr,,, and yg,,, respectively, were sampled for identification of all the finite
frequency response elements of Equation (4.1) In the first step of identification, rr,_,,,
was excited with rr,,, being constant. In the second step, rr,,, was excited with rg, ,,_
being constant. In both steps all control loops are in closed loop operation. The sampled
data from the first step were used to identify the finite frequency response points for T1;
and T5;. Similarly the sampled data from the second step were used to identify the finite
frequency response points for To2 and T72. The total operational time to identify the finite
frequency response of all elements of the transfer function matrix T is 4 x 1800 x 2s (4
hours). From the closed loop frequency response matrix T'(jw;), estimated at frequencies
w; = 27 f,, and with diagonal PID controller C(jw;) the open loop process frequency
response characteristics from the tests can be found as:

G(jwi) = T(jwi)(I — T (jwi))™(C(jwi)) ™! (4-2)

In Figures 4.2, 4.3, a typical plot of the setpoint changes and the output signals of the
process for both top temperature and bottom temperature are shown, as sampled by the
computer after analog preprocessing discussed in Section 4.1. The noise on the setpoints is
inherent to our Bailey hardware and is unexpected of setpoint changes. The process out-
put response for both top and bottom temperature in Figures 4.2, 4.3 is clearly nonlinear
since the response in the up swing is different from the response in the down swing. For
presentation purposes in these Figures the off-diagonal response to the setpoint change
considered is shown offset by 0.2V. For the sake of preliminary analysis using transfer func-
tions the open loop transfer function matrix of the distillation column can be postulated
as

G= Gcoupling Gdiagana.l (43)

Where Gyiggona: given in Equation (4.5) is a diagonal transfer function matrix representing
the open loop transfer function for each main loop. Geoupiinggiven in Equation (4.4) is a
transfer function matrix representing the coupling between loops due to interaction.

— 1 Gcouplinyn
Gcouphng - l: Gcouplingm 1 (44)
_ | Gaiagonaty, 0
Gdiagona.l - [ 0 Gdiagonalzg (45)
59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[—]
h
-

etgt V)
&

0 1000 2000 3000 4000 5S000 6000 7000 8000
time (s)
03 v - v -

1000 2000 3000 4000 5000 6000 7000 8000
time (s)

bottom and top responses (V) bottom temp s

Figure 4.2: Typical change in rg,,,,,,, and response of yr,.,,... and yz,,, with SISO PID
controllers on column

4.2.1 Distillation Column Identification with Low Methanol Con-
centration

The finite frequency response for each element in the matrix G are shown in Figures 4.4,
4.5 A transfer function is fitted in to the finite frequency response data for each element
of G by trial and error assuming that the coupling elements are gain+delay. The fitted
open loop transfer function is given in Equation (4.6) below.

1 0.476-1303 0.0009¢ ~ 302 0
G(S) —_ l: —110s jl [ 1+55.58 ] (46)
01611 1 0 o

4.2.2 Distillation Column Identification with High Methanol
Concentration

The finite frequency response for each element in the matrix G are shown in Figures
4.6,4.7.

A transfer function is fitted to the finite frequency response data for each element of
G by trial and error assuming that the coupling elements are gain+delay. The fitted open
loop transfer function is given in Equation (4.7)

1 1.0e-20s 0.0015e~52 0
G(s) = [ Lise ] [ 1+40s . (4.7)
0.1334¢ 11 1 1111.1323-0275.133+1
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Figure 4.3: Typical change in r7,, and response of yr,,, and yg,,,.. with SISO PID
controllers on column

Note in the case of high methanol concentration the DC gains of the transfer function
matrix has increased which is to be expected. It is not yet quite clear why the delays in
G coupling between top and bottom temperatures are very different in this case.

4.3 DC Analysis of Controller Tuning

From the preliminary transfer function results obtained in Equation (4.6) and Equa-
tion (4.7), it was observed that the modified Nyquist plot (Section 3.3) crosses the real
axis at DC frequency close to the -1 point for the PID gains considered in the identifi-
cation experiment (where the decoupling matrix K is an identity matrix). To apply the
optimization technique a wedge with a vertex on the negative real axis has to be imposed
to ensure that the modified Nyquist plot during the optimization does not encircle the -1
point. The question is how to choose the vertex for this wedge. To see if it is realistic
to place the vertex at say -0.5 (corresponding & = of 6dB), we can do the following DC
gain analysis. The DC gain of the modlﬁedl(l ¥ GK C|]) — 1 (with s = 0) is given by
Equation (4.8).

In Equation (4.8), kj,,kr, are the integral gains of the PID controllers on the first and the
second loop respectively. One can now estimate the required [K| to achieve a vertex of
-0.5 for the modified|(/ + GKC)| — 1. The required [K| to move the DC point to a vertex
of -0.5 for both low and high methanol concentration are 12.5E3 and 6E3 respectively.
It is impossible in both cases of low and high methanol concentrations to achieve such a
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desired vertex as the decoupling gain are high and other frequency response points (other
than DC) encircle the -1 point of the modified|(/ + GK'C)|— 1. For this reason the vertex
chosen here for stability assessment was 0.99. The angle of the wedge was 2° (1 on each
side).

4.4 Identification and Tuning of the Distillation Col-
umn

The PID tuning technique using finite frequency response data is implemented on the
distillation column described above, after identifying it again on a different day with un-
known methanol concentrations. The closed loop frequency response points are identified
using the BPF method. The open loop frequency response data are calculated using
Equation (4.2). The open loop frequency response data for the diagonal and off-diagonal
elements of G are shown in Figures 4.8,4.9.

For tuning, the system is assumed to be excited at its set points by periodic trapezoidal
waveforms with a period of 1800s, amplitude of 1 and slope of 1/10. 10 odd harmonics of
the input excitation and process frequency response are used for minimizing the function
in Equation (3.25). The singular value penalty function (Equation (3.33)) is used in the
tuning with ¢, and ¢, values of 0.7. The desired transfer function matrix is given in
Equation (4.9) below. The dead time 74 is estimated using the open loop finite frequency
response data. The natural frequency wy, is estimated using the closed loop finite frequency
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response points. The damping factor for both loops is selected as 0.9 rad/s to decrease
the over shoot.

0.0001e—15¢ 0
Td(S) —_ |: s!+0.0188+0.m01 0.0001 ] (4.9)
0 700185100007

The Nelder-Mead optimization technique is used to arrive at the results given in Equa-
tions (4.10, 4.11)

40+32 0
1 -0.63
K= [ 0 3 ] (4.11)

The results given in Equations (4.10, 4.11) were implemented on the distillation column
for four hours, after which bumps were applied to record the time domain responses shown
in Figures 4.10, 4.11. In these Figures, the off-diagonal responses are offest by 0.2V for
presentation purposes.

4.4.1 Discussion

In the tuning of this experiment the off-diagonal terms in Equation (3.25) were weighted
with a weight of 1 relative to main diagonal errors. As a result coupling still exists
between the responses. If in a new tuning, the weighting on the off-diagonal elements
of Equation (3.25) are increased by a significant amount the coupling can be reduced
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Figure 4.6: Finite frequency response data of process G with high methanol concentration
in feed — gy; =0’ g2 ="+

further. In Figure 4.11 the time domain response in the second bump is unsatisfactory
due to flooding of the trays in the distillation column while recording the data. Such
flooding is usually uncommon behaviour in such systems and when it occurs usually
clears on its own.

Note that the gains K recommended in Equation (4.11) are kj; = —0.63 to decouple
the top to bottom response coupling while k2; = 0 indicating that the bottom to top
coupling is pretty much decoupled as is. These results are borne out when comparing
Figures 4.2, 4.3 with Figures 4.10, 4.11.
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Chapter 5

Suggestions for Future Work

More experimental work needs to be done on the distillation column for the new MIMO
PID technique using finite frequency response points. The off-diagonal elements of Equa-
tion (3.22) need to be weighted by a significant amount relative to the main diagonal errors
to reduce coupling between the loops.

The optimization technique used in this work for MIMO systems is sensitive to the
initial conditions and therefore needs improvement. A way out may be by the use of for
example simulated annealing [35].

To use this method in industry, it is required that the work be ported to an industrial
DCS. The SISO work has been ported to a Bailey DCS but the MIMO has yet to be done.

The work also shows potential for extension to adaptive control in the frequency
domain.
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