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ABSTRACT

Theories of density-dependent habitat selection predict pronounced gradients of 

population density near habitat edges. Population density in high-quality habitats 

should decline toward edges with lower-quality habitats, and population density in 

low-quality habitats should increase toward boundaries with higher-quality habitats. 

This pattern should be more obvious near abrupt boundaries than near ecotones where 

habitats gradually grade one into the other. 1 tested the predictions using the density 

of red-backed voles IClethrionomvs gapneri) along eight belt transects crossing edges 

between natural and anthropogenic boreal forest habitats in northwestern Ontario. 

Transects were classified as having either a gradual (70 m to 90 m ecotone) or abrupt 

edge (:^0  m ecotone). Vole density varied consistently between pairs of habitats, but 

there was no detectable gradient in density at either abrupt or gradual edges. The 

absence of an edge effect may be related to errors in the assessment of habitat quality 

by individuals confi^onted with a matrix of patch types near edges separating similar 

habitats. Another possibility is that an, as yet, unidentified agent or process alters the 

quality of red-backed vole habitats near boreal-forest edges.

Key Words: Clethrionomvs. conservation, population density, ecotone, edge effect, 

forest boundaries, habitat selection, landscape, Ontario, spatial scale.
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INTRODUCTION

A founding principle of wildlife ecology and management states that habitat 

edges are "beneficial" because individuals have access to more than one habitat or a 

greater diversity and supply of resources (Leopold 1933). The resulting increase in 

population density or species richness near edges (the edge effect) has become part of 

the folklore of conservation and applied ecology (e.g., Harris 1988, Yahner 1988, 

Odum 1993). Though few ecologists would promulgate Leopold's view, there remains 

a dogma associated with edge effects as exemplified by terms such as "negative" edge 

effects (Mills 1995) for situations where small mammal density declines near habitat 

boundaries (e.g., Walters 1991, Hansson 1994, Mills 1995). Similar negative effects 

are implied by observations that avian nest parasitism and predation increase near 

habitat edges (review by Paton 1994).

The polar interpretations of edge effects may originate because studies of 

habitat edges have seldom addressed, explicitly, the ecological processes that create 

spatial patterns in density. 1 find it curious that such an important feature o f landscape 

composition influencing the spatial distribution and abundance of species lacks a 

formal theoretical framework. I begin to build the fimnework by applying and 

expanding theories of patch use and density-dependent habitat selection (Fretwell and 

Lucas 1970, Rosenzweig 1974, 1979, 1981, 1991, Chamov 1976, Morris 1988, 1992, 

Pulliam and Danielson 1991) to q»atial gradients crossing habitat edges. I phrase the 

predictions in the context o f abrupt versus gradual edges and simultaneously develop
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field and analytical protocols necessary to test the predictions. I provide examples of 

the protocols, and of the tests, with data on red-backed voles f Clethrionomvs gapperO 

occupying areas near ecotones between undisturbed conifer forest and adjacent habitats 

either dominated by deciduous trees or recovering from clearcut harvesting. Red- 

backed voles occupy virtually all terrestrial boreal-forest habitats and are suitable 

subjects for tests of edge effects that may otherwise be biased if a species with more 

restrictive habitat tolerances is used (e.g., a forest interior species may exploit only one 

side of the edge).

Habitat selection across abrupt and gradual boundaries

Theories of density-dependent habitat selection assume that per capita fitness 

declines with increased population density (Fretwell and Lucas 1970; Fretwell 1972; 

Rosenzweig 1974, 1979, 1981, 1991) and that individuals preferentially occupy 

habitats in a way that maximizes their evolutionary fitness. Consider the situation 

where a high-quality habitat (A ) shares an abrupt boundary with a low-quality habitat 

(3) and individuals adopt an evolutionarily stable strategy (ESS) that maximizes mean 

fimess (i.e., an ideal free distribution). Habitat B  will not be selected until a threshold 

density (f) in habitat A reduces the fimess o f individuals to the maximum obtainable in 

habitat B (Figure 1). For population densities greater than the threshold, the density in 

each habitat will be adjusted such that the fimess is the same in both habitats (Fretwell 

and Lucas 1970, Rosenzweig 1974, 1981). It should be possible to use the ESS of 

habitat selection to predict the pattern of density across abrupt and gradual boundaries.

8
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Figure 1: Fitness-density graph showing the threshold density (/) in the high-quality 

habitat (A) where per capita fitness has been decreased to the maximum fitness 

obtainable in the low-quality habitat (B).
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Imagine that each habitat (A and B) is composed of homogeneous patches (a 

and b respectively). The a patches are more valuable to foraging individuals (e.g., 

higher resource renewal rates, higher-quality resources, lower risks of predation) than b 

patches. If  individuals forage in a way that maximizes their net energy gain and if 

energy obtained from foraging is strongly associated with fitness, the ratio of a to 6 

patches in an area will effect spatial variation in population density. To see this, note 

that an individual should forage in both a and b only when

InW. < lnW,(l + i J Q  (1)

where InW, is the net fitness while foraging in patch i, is the time spent searching 

for foraging patches, and is the time spent harvesting resources in patches of a 

(Rosenzweig 1974, 1981, 1985). The relative abundance of the patches will influence 

and whether both should be foraged in. The proportions of a to h will depend on 

the nature of the habitat boundary and on the location of an individual's foraging range 

(Figure 2). If  patch quality within habitats and population density between habitats are 

constant, average fitness will be higher for individuals whose foraging ranges are 

located in areas with a large proportion of a patches (e.g., on the habitat A side of the 

boundary) than for individuals foraging in areas with a lower proportion of a patches 

(habitat B). Some individuals will be less likely to use both patches than will others. 

But if  net fitness declines with increasing density and habitat selection is an ESS, the 

occupation of both patches depends not only on their quality, but also on the

10
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Figure 2: Diagrammatic representation of variation in high-quality (shaded outlines) 

and low-quality (unshaded outlines) patches near abrupt (top) and gradual (bottom) 

habitat boundaries. Circles represent equal sample areas. Foraging ranges centred on 

the habitat /ecotone interface will have a larger proportion of high-quality patches 

than ranges centred on the abrupt habitat boundary. Foraging ranges centred on the 

habitat 5/ecotone interface will have a smaller proportion of high-quality patches. The 

schematics assume that the density, size distribution, and quality of patches do not 

vary near edges or between gradual and abrupt boundaries.

11
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relationship between quality and population density. Individuals living in areas with a 

high proportion of a patches will exist at higher density than those in areas with a 

smaller proportion of the same high-quality patches (Morris 1992). The fitness that 

individuals can expect to gain from each patch will be the same and they should use 

patches of each type. Population density will vary gradually across the habitat 

boundary.

Now imagine that habitats A  and B are separated by a wide ecotone consisting 

of a mixture of the two patch types. Foraging ranges centred on the interface between 

habitat A and the ecotone will contain a higher proportion of a patches than ranges 

centred on the abrupt boundary (Figure 2). Average population density will be greater 

near the gradual habitat 'boimdary' than near the abrupt one. Note that the highest 

density will be in areas where foraging ranges consist of a patches only ^ u re  habitat 

A).

Similarly, foraging ranges centred on the interface between habitat B and the 

wide ecotone will contain a smaller proportion of a patches than ranges centred on an 

abrupt boundary (Figure 2). The corresponding population density will be lower than 

near an abrupt boundary. The lowest density will occur in areas where foraging 

ranges consist of b patches only (pure habitat B).

Note that the habitat selection theory predictions of population density may be 

different if  the density, size distribution, or quality of foraging patches changes near 

the boundary between habitats. In addition, the predictions assume that vole density 

responds to the mix of patches an individual encounters rather than the quality o f

12
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individual patches.

A design to test for edge effects

Does the density o f red-backed voles change near habitat edges? Recall that 

habitat selection theory predicts reduced vole density within the high-quality habitat 

and inflated vole density within the low-quality habitat near edges. The density 

pattern will also be more pronounced near abrupt compared to gradual boundaries. In 

an analysis of variance (ANOVA) design, the habitat selection predictions lead to a 

three-way interaction of habitat (high or low quality), distance (distance from the 

ecotone), and boundary type (abrupt or gradual). I provide a rigorous test of the 

predictions by: 1) estimating the ecotone location and width between adjacent boreal- 

forest habitats, 2) determining the high and low-quality habitat, 3) testing the 

assumption that vole density responds to the mix of patches an individual encounters, 

and 4) testing for distance related interactions of red-backed vole density along 

transects bisecting the abutting forest habitats.

13
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METHODS

Field sites and data collection

I established eight belt transects across habitat edges in boreal forest habitats 

near Raith, Ontario (48"55’N, 89“55’W) during the summers of 1994 and 1995. Four 

transects crossed edges between conifer forest and contiguous cutover habitats 

(approximately 15-years old). Conifer habitats consisted of mature jack pine (Pinus 

banksianal white spruce (Picea glauca). black spruce (P. marianal. a relatively open 

understory, and a ground cover dominated by mosses (e.g., Pleurozium shreberi. 

Ptilium crista-castrensis. Hvlacomnium snlendensl Cutover habitats ranged from 

dense to sparse jack pine with a grassy ground cover (especially Calamagrostis 

canadensisV The remaining  four transects crossed boundaries between conifer and 

deciduous forest. Deciduous forests were composed primarily of trembling aspen 

(Populus tremuloidesl balsam poplar (£. balsamiferal white birch fBetula papvriferal 

and a dense shrub understory dominated by alder fAlnus viridisl mountain maple 

(Acer spicatum). and beaked hazel fCorvlus comutal Deciduous and conifer forests 

shared a common history; both originated following a fire that burned the entire study 

area in 1911.

I set two parallel live-trapping lines 10 m apart perpendicular to, and centred 

on, apparent habitat edges for each transect Each trapping line consisted of forty 

stations set at 10 m intervals (Figure 3).

14
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Figure 3: Schematic of a belt transect used to assess rodent densities and habitat 

variation with respect to ecotones separating high-quality (A) and low-quality (5) 

boreal forest habitats in northwestern Ontario. Dashed lines represent ecotone 

boundaries and *X's correspond to live-trap and habitat sampling stations.

15
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I trapped each transect at two week intervals for at least four weeks between 

June 8 and August 12 in 1994 or between May 29 and September 8 in 1995. I set a 

single Sherman live-trap baited with oats, a slice of potato, and cotton nesting at each 

station and checked each trap for two consecutive morning and evening trap runs. All 

captured rodents were individually marked, measured (body length, mass), sexed, and 

released.

I quantified structural components of vegetation known to be important 

predictors o f small-mammal density (Rosenzweig and Winakur 1969, MCloskey and 

Fieldwick 1975, MCloskey and Lajoie 1975, Morris 1979, 1984, 1987, 1989, Adler 

1985, 1987, Wywialowski and Smith 1988) at each station (Table 1). I measured 

horizontal foliage profiles ( Q 1 - Q 5 )  by estimating the percentage cover by vegetation of 

a 10 cm by 20 cm 'board' located 3 m from the station at heights of 0.125, 025, 0.5, 

1.0, and 1.75 m above ground level (technique adapted from Rosenzweig and Winakur 

(1969) and Morris (1979)). Measurements were taken at the four cardinal directions 

relative to an initial random heading and the mean calculated to yield a single value 

for each station. I measured the depth of litter (structurally intact dead vegetation) at 

the four comers of a 4 m by 4 m randomly oriented plot, centred at the station. I 

estimated habitat composition by the percentage cover by shrubs, forbs, grass, wood, 

moss, litter, rock and soil, and fems and club mosses at each station within the 16 m  ̂

p lo t Finally, I recorded the number of stumps and fallen logs, and the diameter at 

breast height (dbh > 4 cm, converted to basal areas) for all tree species within a radius 

o f 3 m from each station.

16
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Table 1 : Variables used to quantify habitat structure and composition at 640 live-trap 
stations in boreal-forest habitats in northwestern Ontario.

Variable Description

Q.

Qa

Qa

Q4

Q5

FHD

Mat

Numcon

Numdec

Areacon

Areadec

Stumps

Fallen

ShrubC

ForbC

GrassC

WoodC

MossC

LitterC

BarrenC

FemC

mean quantity of vegetation at 0.125 m above ground level

mean quantity of vegetation at 0.25 m above ground level

mean quantity of vegetation at 0.5 m above ground level

mean quantity of vegetation at 1.0 m above ground level

mean quantity of vegetation at 1.75 m above ground level

foliage height diversity, (1/EP;^; where Pj=Qi/ZQi)

mean depth of litter (mm of dead but structurally intact vegetative matter)

number of conifer trees within 3.0 m  radius

number of deciduous trees within 3.0 m radius

summed basal area of all conifer trees within 3.0 m radius

summed basal area o f all deciduous trees within 3.0 m radius

number of stumps within 3.0 m radius

number of fallen trees within 3.0 m radius

percentage cover by shrubs within 16 m^

percentage cover by forbs within 16 m^

percentage cover by grasses within 16 m^

percentage cover by wood within 16 m^

percentage cover by mosses within 16 m^

percentage cover by litter within 16 m^

percentage cover by rock and soil within 16 m^

percentage cover by ferns and club mosses within 16 m^

17
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Analysis

I began my analyses o f edge effects by developing a rigorous and objective 

assessment of the location and width of the ecotone between adjacent habitats (Table 

2). My protocol summarized habitat composition along each transect by principal 

components analysis (PCA). I excluded variables from each PCA with the lowest 

measure of sampling adequacy until the overall Kaiser-Meyer-Olkin measure of 

sampling adequacy was greater than 0.75 (Norusis 1994a: Procedure FACTOR). I 

retained principal components (PCs) with eigenvalues greater than 1.6, which 

corresponded, in each case, to a substantial change in the variance explained by 

successive PCs.

I tested for edge effects using relative densities of Clethrionomvs estimated by 

the minimum number of individuals known alive (MNA, Hilbom et al. 1976) during 

the final two weeks of trapping on each transect The final two weeks provided 

adequate sampling to acquire suitable density estimates for analysis and reduced 

complications caused by individuals moving their foraging ranges from one sample 

period to another. I would have preferred to analyze temporal measures of density in 

a repeated measures analysis, but low vole density on some transects would have 

produced an unbalanced design (a balanced design is necessary for repeated measures 

ANOVA). The MNA can produce biased density estimates (Efford 1992), but for 

several samples o f boreal-forest rodents it is highly correlated (r > 0.9) with mark- 

recapture estimates of population density Morris 1996). The densities of other species 

were too low for a reliable assessment of patterns in population density. I excluded

18
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Table 2: A protocol to determine the location and width o f habitat ecotones.

Step Action

Locate transects perpendicular to an apparent edge between adjacent and 

homogeneous habitats and quantify habitat at each sampling station. 

Ordinate the habitat data array for each transect to derive simplified and 

independent habitat variables (I used principal components analysis with 

varimax rotations (Norusis 1994a; Procedure FACTOR)).

Divide the transect in two at the apparent habitat edge and select 

stations in the homogeneous central portion of each segment (stations 5- 

12 and stations 29-36 in my study) to represent each habitat 

Use MANOVA (I chose discriminant function analysis (Norusis 1994a: 

Procedure DISCRIMINANT)) on the unrotated ordination scores of the 

selected stations to differentiate between the two habitats.

Choose one of the two habitats and, using the results of step 4, calculate 

the probability that each station belongs to that habitat (I used the 

discriminant function scores).

If  using belt transects, calculate the mean classification probabilities of 

stations on adjacent lines (this step forces the ecotone to 'cut' the 

transect at right angles; alternatively, merge the ordination scores before 

MANOVA).

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 2 continued

Step Action

Define ecotone boundaries to occur where the classification probabilities 

of consecutive stations fall below a level corresponding to a 

discontinuity in the data (I chose 0.67 and 0.33 to divide the probability 

into three equal groups (one for each habitat and one for the ecotone, 

P>Q.61, P<0.33, 0.67>P>33 respectively)).

Define ecotone width as the distance between ecotone boundaries.

20
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stations at the ends of each transect (stations 1 and 40 of both parallel trapping lines) 

to reduce biases associated with unequal rodent sampling by terminal traps (van Home 

1982). I created subplots consisting of two by two live-trap grids (10 m X 10 m) 

along each transect to calculate density.

I assumed that density, or the pattern of density, is a reliable indicator of 

average habitat quality at the scale of my habitat classifications (caused by density- 

dependent habitat selection). I identified a high and low-quality habitat for each 

transect using a t-test on densities estimated for stations paired across adjacent trap 

lines. I could not use my larger sub-plots for this analysis because sample sizes within 

transects would be too small to detect differences. I  confirmed, nevertheless, that 

mean densities at the 10 m X 10 m subplot scale were consistent with the results of 

each t-test. I excluded stations <60 m from calculated ecotone boundaries to minimize 

sampling the zone where densities should respond to the mix of patches at edges.

Sixty metres represents the approximate diameter of a circular red-backed vole home- 

range (028 hectares, Blair 1941, Morris 1955, Beer 1961, Tallmon and Mills 1994).

The predictions I test here assume that variation in population density at edges 

occurs primarily because the mix of patches varies rather than the quality of individual 

patches. I f  this assumption is valid, population density in different habitats is unlikely 

to be significantly correlated with small-scale variation in habitat If  the assumption is 

violated, patch quality and population density should covary and I would need to 

refine my predictions to compensate for differences in patch quality near habitat edges. 

I tested the assumption using a stepwise multiple regression (Morris 1987, 1989,

21
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Norusis 1994a: Procedure REGRESSION). I used the 10 m X 10 m subplot estimates 

of density and calculated the arithmetic means for each of the 21 habitat variables in 

each subplot to represent patch quality. The analysis implicitly assumes that my 

measurements correspond primarily to values for individual foraging patches rather 

than a mix of patch types. I pooled data from all transects, repeated the PCA to 

summarize small-scale variation in habitat, and analyzed for an association between 

patch quality and density using the linear model

N = ao + biPCi + bjPCî + ... + b„PC„ + b„+iD, + bg+̂ Dz + ... + b„.,„D„ + e (2)

where N is the predicted red-backed vole density, PCs are principal component scores 

summarizing the habitat variables, Ds are indicator variables coded 0 or 1 representing 

the three habitats (conifer forest, deciduous forest, cutover), and e is normally 

distributed error variation (Morris 1989). I omitted ecotone stations from this analysis 

because it is impossible to classify the habitat to which they belong. Prior to the 

regression, I verified that my measurements of habitat (principal component scores) 

were different among the three habitats using discriminant functions analysis (Norusis 

1994a: Procedure DISCRIMINANT). Otherwise, I would have no valid test of the 

assumption of homogeneous patches.

I tested for edge effects with a two by two by six repeated-measures analysis of 

variance on the minimum number of rodents known alive in each 10 m X 10 m 

subplot (Norusis 1994b: Procedure REPEATED MEASURES). Repeated-measures

22
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designs are most frequently used for the analysis of temporal data (e.g., von Ende 

1993), but are also suited to the analysis of spatial effects (Morris In Press). My 

design treated transects as subjects, boundary type (abrupt or gradual) as a between- 

transects factor, and habitat (high or low density) and distance from the ecotone (six 

classes) as within-transects factors. Positive or negative edge effects would be 

revealed by a significant distance effect on density (density is different away from the 

ecotone than it is near the habitat-ecotone interface). Differences in edge effects 

between abrupt and gradual boundaries would produce a significant interaction 

between boundary type and distance. Patterns in density consistent with density- 

dependent habitat selection would yield a significant habitat by distance interaction (if 

boundary type is not important) or a three-way habitat by boundary by distance 

interaction.

I was concerned that my emphasis on patterns of density near ecotone 

boundaries might reduce my chances of detecting edge effects. Population densities 

near gradual boundaries should be more similar to those in pure habitat than 

population densities near the abrupt boundaries. I repeated the ANOVA with distance 

classes calculated from the boundary between habitats. I estimated the habitat 

boundary as the midpoint between the first and last station where the classification 

probability was less than and greater than 0.5 respectively (the rule worked for even 

numbers of stations; when there was an odd number of stations in the ecotone the 

central one was grouped with the habitat corresponding to its classification 

probability). This protocol worked well for all transects except D4 and C4 where
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some stations were located near small openings in the interior o f the conifer forests 

(Appendix 1). I ignored such 'peculiar' stations when estimating the habitat boundary 

for transects D4 and C4.
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RESULTS

Ecotone location and width

Two to four principal components accounted for between 50 and 67 per cent of 

the habitat variation along each transect (Table 3). The first component generally 

revealed a gradient ranging from areas with a diverse foliage cover of tall shrubs to 

areas with a relatively open understory and low horizontal diversity. Additional 

components tended to describe dines between dense forests with a deep litter layer to 

open forests with a shallow litter layer (Appendix 2).

Two-group discriminant function analyses (DFA) demonstrated the ability of 

the extracted PCs to distinguish between habitats for every transect (Table 3). All 

DFAs were highly significant. Each DFA correctly classified the vast majority of 

paired stations (91 to 100% classification success. Table 3).

Calculated widths of ecotones represented two classes corresponding to abrupt 

( ^ 0  m) and gradual edges (70 m to 90 m. Table 3, Appendix 1). Three of the four 

cutover/conifer contrasts had the narrowest ecotone width that I could detect with my 

protocol (the minimum sampling distance of 10 m). Contrary to my original field 

design, one cutover/conifer boundary was far more gradual than intended (transect C4, 

70 m). Similarly, one conifer/deciduous boundary had a surprisingly abrupt boundary 

(transect D4, 20 m). The results from the two 'unusual' transects emphasize the 

importance of using objective criteria to identify the location of boundaries and the 

widths of ecotones.
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Table 3 : Principal component (PC) and discriminant function summaries and ecotone 

width for transects crossing deciduous-conifer (D) and cutover-conifer (C) boundaries 

in northwestern Ontario.

Transect

Number of 

PCs 

extracted®

Habitat variance 

explained' (%)

Classification 

success (%)’’

Estimated 

ecotone width 

(m)

D1 3 57.6 100 70

D2 2 50.6 100 70

D3 4 63.9 100 90

D4 4 66.9 93.75 20

Cl 3 63.4 100 <10

C2 3 60.9 100 <10

C3 3 61.5 93.75 <10

C4 3 60.0 90.63 70

* - eigenvalues greater than 1.6; based on discriminant scores, f <.0001 for all 

discriminant function analyses
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Patterns of density near habitat boundaries

Red-backed voles dominated the small-mammal community (Table 4) and their 

density was significantly higher in one habitat than in the other for seven of the eight 

transects (Table 5). Other species, including deer mice, were not abtmdant enough to 

test for edge effects. It is unlikely that any of these species seriously modify the 

density or habitat selection of red-backed voles (Appendix 3). Mean vole density was 

higher in deciduous habitat than in adjacent conifer forest (three of four comparisons). 

Habitat preference between conifer and adjacent cutover habitats (as indicated by 

density) was impredictable (higher mean density in conifer on two transects, higher in 

cutover on two transects).

Differences in vole density between the two years of the study could affect my 

ability to detect differences between boundary types. I was unable to include annual 

effects in my repeated measures analysis of edge effects (to do so would create an 

unbalanced design), so I used a t-test to search for annual differences in voles captured 

in each type of habitat Mean density in cutover habitat was significantly higher in 

1994 than in 1995 (t];=7.77, P<0.001). Only one cutover transect (C3, high vole 

density) was trapped in 1994 and may represent especially suitable vole habitat (Table 

5). There was no significant annual change in population density for either deciduous 

(t3o=1.36, P=0.19) or conifer habitats (tgg=0.69, P=0A9). The fire-origin deciduous and 

conifer forests are more comparable than cutovers which have slightly different ages 

and somewhat different harvest and silvicultural histories that could create apparent 

annual differences in density that actually represent differences in habitat. I find no
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Table 4: Small-mammal captures (number of individuals in parentheses) during the 

final two census periods on transects crossing deciduous-conifer (D) and cutover- 

conifer (C) habitat boundaries near Raith, Ontario, 1994-1995. Cg = Clethrionomvs 

gapperi. Pm = Peromvscus maniculatus. Ts = Tamias striatus. Tm = Tamias minimus. 

Ni = Nanaeozapus insignis. Zh = Zapus hudsonius. Mp = Microtus pennsvlvanicus.

Me = Microtus chrotorrhinus. There were negligible captures of six additional species 

(Svnaptomvs cooneri 16(14), Lenus americanus 6(®), Tamiasciurus hudsonicus 5(®), 

Sorex cinereus 6 0 , Mustela erminea 5 0 ,  and Glaucomvs sabrinus 1(1)).

Transect Year

Small-mammal species

Cg Pm Ts Tm Ni Zh Mp Me

D1 1994 141(38) 20(12) 17(8) 0(0) 2(2) 1(1) 2(2) 2(2)

D2 1994 115(29) 34(16) 17(10) 2(2) 0(0) 1(1) 4(4) 0(0)

D3 1995 143(42) 24(13) 23(9) 0(0) 9(8) 5(4) 0(0) 34(16)

D4 1995 82(31) 16(10) 7 0 0 2(2) 2(2) 0(0) 0(0) 0(0)

Cl 1995 76(28) 20(9) 1 6 0 2(2) 0(0) 1(1) 6(5) 3(2)

C2 1995 52(18) 24(13) 5 0 9(5) 0(0) 3(2) 9(4) 3(1)

C3 1994 148(35) 20(9) 7(4) 8(5) 1(1) 6(5) 11(2) 0(0)

C4 1995 38(12) 21(11) 18(6) 17(12) 0(0) 4(2) 0(0) 0(0)

* - number of individuals unknown because some rarely captured or large species were 

unmarked

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 5: Density of Clethrionomvs gapperi between habitats for transects crossing 

deciduous-conifer (D) and cutover-conifer (C) habitat boundaries in northwestern 

Ontario.

Transect Habitat mean N® Habitat mean N t P

D1 deciduous 4.13 conifer 1.73 2.98 .008

D2 deciduous 2.00 conifer 0.88 2.43 .026

D3 deciduous 422 conifer 1.75 3.00 .009

D4 deciduous 1.88 conifer 1.64 0.39 .703

Cl cutover 0.08 conifer 2.29 6.05 <.001

C2 cutover 0.62 conifer 1.62 2.35 .031

C3 cutover 2.83 conifer 1.38 2.23 .036

C4 cutover 1.50 conifer 0.31 2.64 .017

* - minimum number of individuals known alive at pairs of capture stations in two 

adjacent trap lines
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compelling evidence of interannual differences in population density that would bias 

my conifer-dominated analyses.

The PCA summarizing habitat variability within subplots (data pooled from all 

transects) extracted four PCs that accounted for 68% of the common variation in 

habitat structure and composition (Appendix 4). The first component described a dine 

from subplots with thick and diverse shrub cover to those with a deep mat of mosses. 

The second component characterised a gradient from deciduous to conifer forest. The 

third represented a dine from dense grass in cutovers to an open understory in mature 

forests. The fourth component described subplots ranging from those in mature 

conifer forests with fallen trees to those in standing cutover and deciduous forests.

The three habitats (conifer forest, dedduous forest, cutover) were distindly 

different (DFA, %^39628, df=8, f<0.0001). All cutover subplots were correctly 

classified as belonging to the cutover habitat. Only two forest subplots were 

misclassified as cutover (one of 32 deciduous subplots and one of 68 conifer subplots). 

The distinct differences in habitat reinforce my selection of sample sites for each 

transect. At some point, there must be boundaries between one habitat and the other.

The stepwise multiple regression evaluating variation in patch quality was also 

highly significant. Habitat type was the only statistically significant predictor of vole 

density (higher density in deciduous forest than elsewhere. Table 6). No other 

indicator variable or PC came close to statistically explaining residual vole density 

after the deciduous habitat indicator variable was entered into the model (f>0.13 in all 

cases). This result is consistent with my assumption that vole density responds to the
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Table 6: Stepwise multiple regression assessing the assumption that population 

density responds primarily to the mix of patches rather than small-scale variation in 

habitat. The dummy variable representing deciduous forest was the only variable 

included by the analysis. None o f the small-scale habitat variables represented by 

principal component scores was significantly related to the substantial residual 

variation in vole density.

Regression Summary

Step Variable b r

1 Density in deciduous 

forest

2.09 .42

Analysis of variance

Source df Mean Square P

Regression 1 106.31 <.0001

Residual 131 3.87
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mix of patches in a habitat rather than to the quality of individual patches.

Vole density varied significantly between habitats (repeated measures ANOVA, 

F,^=18.87, P=0.005). No other main effect or interaction was close to statistical 

significance (Table 7). The significant habitat effect was inevitable given that I 

defined habitats on the basis of density. I was concerned that the analysis could be 

biased by the two 'unusual' transects (i.e., the abrupt boundary between coniferous and 

deciduous forest; the gradual boundary between conifer forest and cutover. Appendix 

1). I deleted both transects and repeated the analysis. The results were unchanged. 

Habitat was the only significant effect (F, 4= 18.67, i^O.012). There was a slight 

although nonsignificant trend for transects with gradual boundaries to have a higher 

mean density than transects with abrupt boundaries (7^0.13), but none of the main 

effects or interactions which tested for an edge effect was close to statistical 

significance (f>0.40). The results were also unchanged when I calculated distance 

from the habitat boundary (seven distance classes) rather than distance from the 

ecotone. No main effect other than habitat (F,^=11.85, P=0.014) and no interaction 

was close to statistical significance (i^O.43). The absence of significant interactions 

occurred because population densities showed more or less consistent declines toward 

low-density habitat across some ecotones but mimicked the high within-habitat 

variability in density across others (Appendix 1). There was no edge effect.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 7: Repeated measures ANOVA rejecting edge effects in red-backed vole 

density relative to distance from ecotone, type of habitat (high or low density), and 

type of habitat boundary (abrupt or gradual).

Between-transects

Source SS df

Boundary (B) 14.26 0.81 .402

Error 105.15

Within-transects

Source SS df

Habitat (H) 

Distance (D)

68.34

11.68

18.87

0.83

.005

.541

Habitat x Distance 10.59 0.64 .670

Boundary x Habitat 

Boundary x Distance

0.84

4.18

023

0.30

.646

.911

B X H X D 10.84 0.66 .659
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DISCUSSION

Despite significant differences in density between clearly-defined habitats on 

my transects, I was unable to detect an edge effect of any kind for red-backed voles. 

The absence of an edge effect rejects Leopold's maxim that edges tend to increase 

population density and provides, in the case of red-backed voles, no support for 

hypotheses of complementary resources or increased resource density near edges. The 

lack of an edge effect also rejects the emerging alternative view that density often 

declines near edges.

My results are unsettling, however, because I failed to detect dines in density 

predicted by theories of patch use and habitat selection, and because such dines are 

readily apparent in other ecotystems (Morris 1992, In Press). Similar dines are 

implied by the frequent observation of differences in small mammal density near 

habitat borders (e.g., Walters 1991, Hansson 1994, Mills 1995, Sekgororoane and 

Dilworth 1995). Could my inability to detect dines in density be caused by 

insufficient sampling with low statistical power? There were, after all, only eight 

transects, and two of these yielded unexpectedly narrow or wide ecotones. Recall, 

however, that I had little difficulty documenting significant differences in density 

between habitats on either side of the edge. I should have also been able to detect 

consistent spatial trends in density if they existed. It appears that I need to look 

elsewhere to explain the absence of edge effects.
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One possibility is that high- and low-density habitats have discrete red-backed 

vole populations whose members simply do not cross habitat boundaries (e.g.,

Kirkland et al. 1985). I tested the 'discrete population' hypothesis by examining the 

habitat use of voles adjacent ( ^ 0  m) to ecotone boundaries. Twelve of the 28 (43%) 

recaptured individuals were captured on both sides of the boundary. The nature of the 

boundary also had no effect on the proportion of animals crossing ecotones (three of 

seven individuals crossed abrupt boundaries, nine of twenty-one individuals crossed 

gradual boundaries).

Another possibility is that individual red-backed voles are incapable of 

recognizing and responding to habitat quality. The hypothesis is inconsistent with 

numerous studies noting clear habitat preferences, at least in terms o f density, by red- 

backed voles (e.g. Kirkland and Griffin 1974, Vickery 1981, Morris 1984, 1987, 1989, 

Wywialowski and Smith 1988, Knight and Morris 1996). The hypothesis is also 

incompatible with my observation of consistently higher vole density in deciduous than 

in conifer forest. But I observed, nevertheless, major inconsistencies in comparisons 

between conifer and cutover habitats. Voles were most abundant in cutovers on two 

transects, they were most abundant in conifer forest on the other two. The differences 

in relative vole density in cutovers, as well as the interaimual differences in density 

observed only for cutovers, suggest that cutovers vary in composition and in their 

ability to support red-backed voles. I tested the hypothesis by discriminant function 

analysis between the two sets of cutover habitats. The two sets were dramatically 

different (%^38.53, dfN , P<0.0001) confirming my earlier suspicion that the high
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1994 density in cutover was caused by differences in habitat. The DFA result is also 

consistent with a similar study by Knight and Morris (1996) that documented the 

ability of red-backed voles to recognize a finer distinction of habitats than those 

typically used by field ecologists. Different densities in different habitats can arise in 

many ways and do not, in and of themselves, constitute reliable evidence of density- 

dependent habitat selection. The balance of data, however, is heavily tilted toward the 

ability of voles to recognize and respond in a density dependent manner to differences 

in habitat quality, at least at relatively large spatial scales.

A related possibility is that individual voles exposed to a mixture of different 

habitats near edges have difficultly assessing the average quality of their home ranges. 

An animal occupying a home range composed mainly of deciduous forest may, for 

example, value its home range the same as an individual whose entire home range 

occurs within deciduous forest. An animal whose home range is composed partly of 

conifers and mainly of cutover habitat may value its home range similar to one living 

exclusively in cutover habitat Inaccurate assessments of home-range quality would 

alter density-dependent decisions of habitat selection (e.g., individuals on the high- 

density side of the boundary may continue to occupy a sub-optimal habitat because 

they perceive that their expected fïmess is higher than it actually is, few individuals 

may move toward the low-density side because they perceive it to be of even lower 

quality than it actually is).

Alternatively, assessment errors may create a high variance in density across 

ecotones that destroys the consistent dine predicted by theory. Assessment errors at
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this scale should be related to the degree of difference between habitats. Large 

differences with conspicuous boundaries provide a sharper contrast than small 

differences and should improve the ability of animals to assess patch or home-range 

quality (Schmidt and Brown 1996). Fox squirrels, for example, are more capable of 

optimizing their foraging among patches with large differences in resource density and 

with distinct boundaries, than when the differences are small or when the boundaries 

are vague (Schmidt and Brown 1996). In general, foragers appear more capable of 

correctly assessing patch quality, at a variety of scales, when there are distinct 

boundaries or landmarks that they can use to determine the edges of patches (reviewed 

in Schmidt and Brown 1996). Should the same not also be true of the much larger 

scales of habitat variation that I address here? Assessment errors at any scale will 

influence spatial variation in fimess and the equilibrium densities produced by 

evolutionarily stable strategies of density-dependent habitat selection.

All habitats exploited by voles in my study represent forests (albeit of different 

types and different ages) and may be so similar that voles at the boundary between 

them are incapable of accurately assessing habitat quality. By way of comparison, 

obvious dines in deer mouse density across prairie-badland boundaries (Morris 1992, 

In Press) are associated with sharp discontinuities in topography, micro-climate, 

substrate, plant density, and plant community composition.

Did my design violate the assumptions of constant quality, density, and size 

distribution of foraging patches? Variation in the quality of patches at edges seems 

unlikely because I was unable to detect any correspondence between vole density and
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local variation in my measures of habitat, even though vole density was consistently 

higher on one side of the edge than on the other. Similarly, I can tentatively reject 

variation in the density of patches of similar quality because such variation should 

normally produce either inflated or depressed population density near the edge. I 

observed neither.

I can not exclude differences in the size distribution of patches or the 

possibility of complementary changes in habitat quality on opposite sides of the 

boundary that would destroy dines in density. Any consistent trend in size 

distribution should, nevertheless, consistently change the relative occupation of each 

type of patch, modify fimess, and thereby create predictable and detectable spatial 

patterns in density at habitat edges. I detected none. Complementary changes in 

quality are more difficult to dispel. Complementary changes could occur, for example, 

if edge-specializing predators (e.g., long-tailed weasels, coyotes, red foxes (Heske 

1995)) reduce the quality of patches in cutovers while the absence of 'interior" 

predators near edges (e.g., goshawks (Widen 1989)) inflate the quality of patches in 

forests. It is difficult to imagine, however, that such an effect applies to my gradual 

transitions between conifer and deciduous forests of the same age. If complementary 

differences in quality obscure dines in density, I suspect that they do so in conjunction 

with assessment errors between similar habitats.

Regardless, four points are worth re-emphasizing. First, inflated population 

densities at habitat boundaries should not occur unless the quality, size distribution, or 

density of patches also increases at edges. Second, the patterns predicted by density-
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dependent habitat selection may be obscured by complementary changes in the quality 

and density of patches or by errors in habitat assessment. Third, despite the absence 

of an edge effect or clinal variation in density, my protocol for identifying ecotones 

and habitat boundaries worked exceptionally well. Fourth, studies of so-called edge 

effects are likely to be far more profitable if  they concentrate on processes that effect 

changes in population density across edges rather than if they simply observe patterns 

in density at edges.
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APPENDIX 1

Habitat classification probability^ and popnlation density of red-backed voles along 

eight transects sampled in northwestern Ontario
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Figure A l.l; The probability o f paired stations belonging to deciduous habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect Dl. 

Lines between symbols are included to enhance interpretation. Distance is calculated 

from the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A1.2: The probability of paired stations belonging to deciduous habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect D2. 

Lines between symbols are included to enhance interpretation. Distance is calculated 

from the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A1.3: The probability of paired stations belonging to deciduous habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect D3. 

Lines between tymbols are included to enhance interpretation. Distance is calculated 

from the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A l.4: The probability of paired stations belonging to decidnons habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect D4. 

Lines between ^m bols are included to enhance interpretation. Distance is calculated 

&om the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A1.5: The probability of paired stations belonging to cutover habitat (solid 

triangles) and red-backed vole dcnsit>' in subplots (solid squares) along transect Cl. 

Lines between ^m bols are included to enhance interpretation. Distance is calculated 

from the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A1.6: The probability of paired stations belonging to cutover habitat (solid 

triangles) and red-backed vole densit}' in subplots (solid squares) along transect C2. 

Lines between symbols are included to enhance interpretation. Distance is calculated 

firom the eentre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A 1.7: The probability of paired stations belonging to cutover habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect C3. 

Lines between ^m bols are included to enhance interpretation. Distance is calculated 

firom the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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Figure A l.8: The probability of paired stations belonging to cutover habitat (solid 

triangles) and red-backed vole density in subplots (solid squares) along transect C4. 

Lines between ^m bols are included to enhance interpretation. Distance is calculated 

firom the centre of the ecotone. Stations with low habitat classification probabilities 

belong to conifer habitat
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APPENDIX 2

Principal component loadings of eight transects crossing boreal forest habitat 

boundaries in northwestern Ontario
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Table A2.1: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect Dl.

Variable PCI PC2 PC3

PHD 0.88 0.12 -0.03

Q4 0.85 0.13 0.01

Qs 0.82 023 -0.12

02 -0.57 0.04 0.11

Mat -0.57 -0.55 0.19

BarrenC 0.52 0.09 0.09

Numcon -0.15 -0.88 0.08

Areacon -0.05 -0.85 0.00

ShrubC 0.54 0.68 -0.18

FemC 0.49 0.63 0.24

LitterC 0.53 0.54 -039

Stumps -0.04 -0.40 -0.02

WoodC 0.00 0.19 0.71

Numdec -0.02 0.37 -0.68

Fallen -026 0.00 0.66

Areadec 0.17 0.36 -0.62

GrassC 0.07 028 0.50

ForbC -0.08 0.40 -0.48
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Table A2.2: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect D2.

Variable PCI PC2

PHD 0.87 0.03

ShrubC 0.86 -0.08

Areacon -0.80 -0.04

Q4 0.79 0.02

Numcon -0.78 0.08

Qs 0.78 -0.01

MossC -0.64 0.58

Areadec 0.63 -0.46

03 0.63 0.07

Numdec 0.58 -0.40

Stumps -0.41 0.15

02 0.40 -0.03

WoodC -0.05 0.75

ForbC -0.03 -0.73

LitterC 0.61 -0.70

Mat -0.49 0.55

Fallen -0.01 0.49

BarrenC 0.14 0.42

GrassC -0.03 0.30
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Table A2.3: Varimax-rotated principal component (PC) loadings (standardized
regression coefficients) of habitat variables (Table 1) for transect D3.

Variable PCI PC2 PC3 PC4

LitterC 0.85 025 -0.05 -0.01

Numcon -0.82 -025 -0.11 020

SbrubC 0.81 0.16 -0.10 0.30

PHD 0.78 -0.10 0.07 0.45

Q4 0.77 0.09 0.00 0.37

03 0.75 -0.11 0.02 0.20

Qs 0.73 -0.12 -0.01 0.40

Areacon -0.71 -0.30 -0.15 0.15

FemC 0.71 022 -021 0.19

Qi 0.64 0.13 -0.11 020

02 0.53 0.14 0.11 -0.25

Areadec 028 0.86 -0.01 0.03

Numdec 026 0.85 0.05 0.00

BarrenC -0.01 -0.42 0.31 -020

WoodC 0.18 0.10 0.90 0.00

Fallen -0.06 -0.09 0.87 0.16

Stumps -0.36 -024 0.48 0.14

Forb -0.10 -0.03 -024 -0.65

Mat 0.11 0.07 0.03 0.64

GrassC 0.14 -0.46 0.15 -0.51
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Table A2.4: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect D4.

Variable PCI PC2 PC3 PC4

PHD 0.84 0.33 -0.12 0.14

03 0.75 0.30 0.04 -0.05

02 0.75 -0.01 0.04 -0.20

O4 0.70 023 -027 027

O5 0.59 0.18 -0.48 0.08

Numcon -027 -0.79 025 -0.13

Areacon -024 -0.76 0.06 -0.18

ShrubC 0.32 0.74 -0.42 0.06

ForbC -0.08 -0.65 -0.11 -0.09

FemC -0.44 0.50 -0.12 -0.38

Fallen -0.07 -026 0.85 -0.08

WoodC 0.12 -0.02 0.79 -020

Stumps -0.13 0.11 0.66 028

LitterC 029 0.50 -0.63 0.15

Numdec 0.01 0.06 0.02 0.81

Areadec -0.09 020 -0.04 0.72

Mat -0.36 -0.06 0.40 -0.57
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Table A2.5: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect Cl.

Variable PCI PC2 PC3

03 0.89 -0.04 -0.06

04 0.85 -0.06 0.02

FHD 0.84 -0.06 0.03

ShrubC 0.84 -0.31 0.13

O2 0.81 -0.15 -0.10

O3 0.72 -0.16 -0.10

GrassC 0.72 -0.18 -0.43

MossC -0.71 0.46 0.33

Areacon -0.71 0.12 0.02

0 , 0.64 -0.19 -0.14

Fallen -027 0.83 0.04

WoodC -0.18 0.81 0.10

BarrenC 0.03 0.65 -0.14

LitterC 0.48 -0.56 -024

ForbC 0.05 -0.06 0.73

FemC -0.03 -029 0.71

Mat -0.46 0.37 0.65

Numcon -027 -0.45 -0.58

Stumps -0.17 0.10 0.37
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Table A2.6: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect C2.

Variable PCI PC2 PC3

Qz 0.88 0.15 0.12

Q. 0.82 0.38 -0.10

GrassC 0.82 -0.14 -0.09

ShrubC 0.79 -0.11 0.33

Areacon -0.66 026 -0.14

WoodC 0.31 026 0.08

MossC -0.18 0.82 -0.41

Numcon 0.02 -0.75 025

Mat -0.48 0.69 -022

LitterC -0.09 -0.69 0.37

BarrenC -0.01 -0.67 -0.02

Stumps 0.09 0.50 0.03

FHD 0.06 -026 0.91

Qa 0.11 -0.13 0.84

Qs 0.20 0.11 0.74

03 0.48 -0.18 0.68

FemC 0.06 0.09 -021

APPENDIX 2 PAGE 7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table A2.7: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect C3.

Variable PCI - PC2 PC3

FHD 0.84 0.35 -0.13

ForbC -0.82 -0.06 -0.02

LitterC 0.80 0.06 -0.08

Numcon 0.80 -020 -0.32

05 0.79 027 -0.13

04 0.79 022 -0.17

0 , -0.55 0.50 -0.03

BarrenC 0.51 -0.16 0.16

Oz -029 0.75 -0.10

ShrubC 021 0.74 0.07

Areacon 0.01 -0.72 0.08

O3 0.40 0.67 -0.18

MossC -0.44 -0.47 0.09

WoodC 0.00 -0.08 0.89

Fallen -022 -0.14 0.84

Mat -0.46 -0.16 0.53

Stumps 0.18 0.34 0.39
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Table A2.8: Varimax-rotated principal component (PC) loadings (standardized

regression coefficients) of habitat variables (Table 1) for transect C4.

Variable PCI PC2 PC3

MossC -0.90 -0.07 0.04

LitterC 0.88 -0.12 0.02

FHD 0.83 0.12 0.06

Mat -0.79 0.04 0.12

Q4 0.79 023 -0.01

Qs 0.78 0.07 -0.01

ShrubC 0.74 0.42 0.05

03 0.60 0.40 0.15

Areacon -0.59 -027 0.18

Stumps -0.54 -0.05 0.08

BarrenC 0.42 0.02 -020

Q . 0.03 0.84 0.02

Qz 0.18 0.81 -0.05

GrassC 0.51 0.59 -0.19

ForbC -0.09 0.58 -0.17

Numcon -0.12 -0.54 -0.19

WoodC -020 -0.02 0.90

Fallen -0.48 0.03 0.75

Numdec 024 -0.05 0.69
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APPENDIX 3

Complications associated with using only red-backed voles to detect edge effects
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A potential problem associated with several small-mammal species in the study 

area is that interspecific competition may affect Q. ganperi density or habitat use. 

Red-backed voles dominated the small-mammal communities, representing 

approximately 60% of all captures and 49% of all marked individuals (Table 4). The 

deer mouse fPeromvscus maniculatusl is a potential competitor with red-backed voles 

and was the second most firequently captured species representing approximately 13% 

of all captures (20% of all marked individuals). If  red-backed voles and deer mice 

compete and their populations are near equilibrium, then high densities of one species 

should increase interspecific competition and thereby be associated with low densities 

of the other species. I tested for competition using a regression analysis predicting 

red-backed vole density from deer mouse density. The non-significant regression 

(^1.133=2.32, 7^0.13) suggests no competition between these two forest species at my 

study site in northwestern Ontario. Several other studies that searched for competition 

between deer mice and red-backed voles were unable to document competition in 

either laboratory experiments (Getz 1969, Grant 1970, Wolff and Dueser 1986) or field 

tests M orris 1983, Wolff and Dueser 1986, Stewart 1991, but see Crowell and Pimm 

1976). According to Wolff and Dueser (1986), the prohability of competition between 

deer mice and red-backed voles is likely reduced because of two conspicuous 

differences in resource use. First, deer mice make extensive use of trees for foraging 

and nesting while red-backed voles remain on the ground. Second, the two species 

differ substantially in diet, with deer mice foraging mostly on arthropods (berries and
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seeds being seasonally important) and red-backed voles foraging mainly on lichens,

green plants, and fungi.

Two chipmunk species (Tamias striatus and T. minimus') and two zapodids 

(Napaeozapus insignis and Zapus hudsonius') make up a combined 19% of all captures 

(20% of all marked individuals, Table 4). These species are not expected to compete 

with red-backed voles because voles have vastly different diets. Chipmunk diets 

consist mainly of a wide range of seeds, berries, nuts, invertebrates, and even animal 

material, while green vegetation is rarely eaten (Banfield 1977). Zapodids are mainly 

granivorous and supplement their diet with fruit and insects (Banfield 1977).

Microtus chrotorrhinus. whose diet may be similar to that of Clethrionomvs. 

was abundant on only one transect (D3), but even here comprised only 14% of 

captures (24% red-backed vole captures) and 17% of individuals (38% red-backed vole 

individuals). The remaining small mammals represent less than 6% of all captures 

(Table 4) and, thus, should have little effect on the densities of red-backed voles or 

their use of habitat
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APPENDIX 4

Principal component loadings for habitat data pooled across eight transects crossing 

boreal forest habitat boundaries in northwestern Ontario
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Table A4.1; Varimax-rotated principal component (PC) loadings (standardized
regression coefficients) o f habitat variables (Table 1) for data pooled across all eight
transects.

Variable PCI PC2 PC3 PC4

FHD 0.93 -0.06 -0.01 -0.07

Q4 0.89 -0.10 0.14 -0.11

05 0.87 0.04 0.01 -0.05

MossC -0.82 -029 0.07 0.26

Q] 0.75 -0.15 0.43 -0.07

ShrubC 0.75 0.51 0.12 -0.14

Areacon -0.74 -0.30 -0.11 0.03

LitterC 0.65 029 0.06 -0.36

Mat -0.55 025 0.33 025

Numcon 0.07 -0.79 -0.17 -0.23

ForbC -0.14 0.73 0.01 -0.02

Areadec 0.33 0.73 -021 -0.11

Numdec 0.37 0.62 -022 0.05

FemC 0.07 0.51 0.19 0.01

Q, 0.09 022 0.83 0.01

Qz 0.35 0.01 0.82 -0.06

GrassC 026 -0.36 0.71 -0.11

BarrenC 028 -0.10 -0.51 0.13

WoodC -0.03 0.14 0.06 0.87

Fallen -028 0.14 -0.09 0.84

Stumps -0.14 -0.12 -0.19 0.64
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