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Abstract

The complexes rra/zj-[Fe(H)2(T|^-dppm)2] 1 and fra/ij-[FeH(q^-H2)( fl"- 

dppm)2][BF4] 2  were synthesized by improved methods involving anhydrous conditions 

and *H and ^‘P{ 'H} NMR spectra of 1 have been recorded for the first time. Substitution 

reactions of complex 2 using different types of ligands were investigated. A series of 

derivatives was obtained and characterized, and these include rranj-[FeH(CH3CN)( "H"- 

dppm)2][BF4] 3, rronj-[FeH(N2)('n^-dppm)2][BF4] 9, rranr-[FeH(T|'-NCCH2CH2CN)(T|^- 

dppm)2][BF4] 6, rranr-[FeH(CO)('n^-dppm)2][BF4] 8, fnznj-[FeH(T|̂ -CH2=CH2)(T|'- 

dppm)2][BF4] 10 and rrwzr-[FeH(pyridine)(T|^-dppm)2] [BF4] 7. These derivatives, except 

7, were also obtained by the direct reactions of complex 1 with the corresponding 

substitution ligands in the presence of an excess of HBF4 »Et2 0  (molar ratio Fe:HBF4 1:5).

At room temperature, the reaction of complex I , CH3CN and an excess of 

HBF4«Et2 0  (molar ratio Fe:HBF4 1:5) was found to produce rranr-[Fe(CH3CN)2(T|"- 

dppm)2][BF4]2*2 CH2Cl2 which was characterized by NMR and X-ray diffraction studies. 

Convincing evidence indicates that the first reported bis-dihydrogen complex of iron, 

rranj-[Fe(H2)2(Tl^-dppm)2][BF4]2 , is present in solution and is possibly a key intermediate 

in the formation of the bis-acetonitrile product. A stepwise protonation mechanism based 

upon the experimental evidence is suggested to explain these results.

Using spectroscopic data for the new complexes synthesized in this work as a 

basis, the electronic interactions between iron and different types of substituents, including 

H2, were discussed.
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Introduction

Since the first report of a molecular hydrogen complex of tungsten by Kubas^" in 

1984, considerable attention has been given to dihydrogen complexes of transition metals 

because of their relevance to homogeneous and heterogeneous catalysis. The study of 

these dihydrogen complexes has opened a new branch of coordination chemistry, resulting 

in the discovery of several hundred stable complexes of this type and the current better 

understanding of this unusual coordination chemistry process^^ ‘*l

Most o f the known dihydrogen complexes have been synthesized with phosphine 

ligands as the supporting scaffold. However, only a few^  ̂®“’ o f these contain the very 

versatile ligand bis(diphenylphosphino)methane (dppm), which has been shown to play an 

important role in coordination chemistry. In this context, a very useful one step route for 

the formation o f the metal (I) and (O)-carbonyl-dppm complexes^ has been developed in 

this laboratory. This procedure involves reductions of the +2 states o f several metal salts, 

e.g., Cô *̂  and Ni ’̂', by NaBHt in the presence of CO and dppm. However, when this 

reductive procedure was applied to iron (HI) in the absence of CO, the reduction of iron 

stopped at the + 2  state to give a dihydride complex, rranj-[Fe(H)2(dppm)2], which can be 

further protonated to form the corresponding molecular dihydrogen complex̂ ®***. As will be 

seen later in this thesis, similar results have been obtained for Fe(III) reductions using the 

more powerful reducing agent LiAlHt
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This thesis reports an extension of the Fe work noted above and is concerned 

mainly with the synthesis, characterization, structure and reactivity of the dihydride and 

dihydrogen complexes of iron(II) with dppm as the supporting ligand. The following 

sections o f this chapter outline the background chemistry and current approaches in the 

field of dihydrogen complex chemistry upon which the research reported in the Results 

and Discussion section was based.

I. M olecular Hydrogen Complexes o f Transition Metals

(I) Synthetic methods

Two general methods are often used to prepare dihydrogen complexes'll One, 

which was used by Kubas to synthesize the first dihydrogen complex'*^ and, later, for the 

neutral complexes MLnfHz), is the reaction of a  coordinatively unsaturated metal 

fragment with hydrogen gas. This method was also employed by Morris and other workers 

in the synthesis o f the compounds, [MH(H2)(L2 )2]^. where M= Fe, Ru, Os and L2 is a 

variety of chelating diphosphines. Details of dihydrogen complexes synthesized by this 

method can be found in a review by Morris'^'.

Another widely used method of preparation is the protonation of hydride 

complexes by acid to give cationic dihydrogen complexes as shown below; HBF4 Et2 0  is 

the preferred source of protons.'^'
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L.MH + IT ->  [MLn(Hz)]"

Other methods'll including preparations of dihydrogen complexes under reducing 

conditions or by modifying existing dihydrogen complexes, are less common and rarely 

employed now.

(II) Electronic structure of dihydrogen complexes of transition metals

The known molecular hydrogen complexes can be roughly divided into two 

groups. One is the neutral complexes with the form of MLn(Hz) while the others are 

cationic and take the form of [MLnL (Hz)]^ Complexes w i±  more than one dihydrogen 

ligand are rare and will be discussed later in this chapter.

There are two main aspects to the electronic interactions in such complexes:

1. Bonding between Hz and the transition metal (M)

The metal-dihydrogen bonding is usually described as a a-ic interaction"°l A 

three-membered ring model (Figure 1) was suggested"®' to represent the metal-H? 

interaction, which is widely accepted as the general structural feature of dihydrogen 

complexes'" '^ '. The H-H ct bond donates electron density to an empty metal d-orbital in 

such a way that the resulting bonding molecular orbital is spread over the three atoms 

(Figure 1). This necessarily results in a weakening of the H-H bond since the two electrons
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originally in this bond are now spread over 3 atoms. In addition, k  back-bonding from a 

filled d-orbital of the M to the a*  orbital of Hz is possible and therefore the a-donation 

and the k  back-donation will reduce the interaction of the two hydrogen atoms causing an 

elongation, or eventually, splitting of the H-H bond. For a dihydrogen complex, the a - 7C 

interaction must be in a delicate equilibrium in order to keep the Hz unit intact. It is 

possible for the Hz ligand to rotate in a plane perpendicular to the M-Hz axis. The extent 

of the rotation will depend on the extent of any 7C-backbonding since this has directional 

properties whereas the a  component to the bonding does not. In other words, the weaker 

the 7C-backbonding, the shorter the H-H distance and the lower the barrier to rotation. 

There is considerable discussion on this topic in the literature'^’̂  '® " '.

H

L n M (

H

Figure 1 The three-membered ring structure of ti^-Hz complexes

Recent experimental evidence"^’*'*' has shown that Hz is a very weak cr-donor 

ligand but a strong Tc-acid ligand. Though the least amount of k backbonding would
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ensure the strongest H-H bond, the coordination of Hz to transition metals also needs a 

relatively strong M-Hz interaction which will inevitably increase the K backbonding. All 

these suggest that the degree of tc backbonding from M will determine the stabilities o f 

both the dihydrogen ligand with respect to the ligand’s splitting and the dihydrogen 

complex with respect to dihydrogen loss.

2. Bonding between M and the supporting ligand L

Here L is specified as a phosphine ligand . The bonding between M and 

phosphorus can be also viewed as a result of of-jc interaction"^', i.e., electron donation 

from the phosphorus lone pair orbital to an empty metal d orbital and back-donation from 

a filled metal orbital to vacant ligand orbitals (which were suggested to be the hybrid 

orbitals contributed from phosphorus 3d and 3p orbitals and the P-R a*  orbitals"®' ). 

Theoretical studies indicate that the balance between the a  and k interactions depends on 

the electronegativity of the substituents (R) bonded to the phosphorus atoms"^. This 

balance will affect the net electron density at M and thus change the amount of k back- 

donation from MLn to Hz.

(EŒ) Factors affecting the stability of the dihydrogen ligand

1. The effects of the phosphine ligand
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Depending upon the substituents bonded to the phosphorus atoms, the phosphine 

ligand can modulate the electron density at the metal and thus affect the tc back-bonding 

from M to the Hz ligand. These factors are crucial to the stability of Hz complexes and 

have been fully confirmed by systematic studies on dihydrogen complexes. For example, 

Kubas showed firom investigations on complexes of the type Mo(CO)3(PR3)z(Hz)"*' and 

Mo(CO)(Hz)(R2CHzCHzRz)z"^' that when R was changed from Ph to alkyl (Et or i-B u), 

the dihydrogen complex changed to its corresponding dihydride form. However, the 

degree to which phosphines affect the stability of the dihydrogen ligand depends largely on 

the nature o f the metal and the ligand trans to the dihydrogen ligand. For example, in 

systematic studies on the complexes rranj-fMHfHzXRzCHzCHzRz)]'^!^'] (M=Fe, Ru; 

X=BPh4 or BF4)'^°’̂ ", no H-H cleavage was observed and the H-H distance changed little 

when R was changed firom Ph to the same alkyl as was used in studies on the complexes 

Mo(CO)(Hz)(R2CH2CH2R2)2 " ’ 1  The dihydrogen-dihydride intercoversion will be 

discussed later in this chapter.

In addition to the electronic effect noted above, it has been found that geometrical 

changes in the phosphine also can affect the nature o f tj^-Hz complexes. Recently, 

Morokuma and coworkers'“ ' reported that [(diphosphine)zRu(H3)] [BF4] complexes can 

adopt three different forms, i.e., rron^-hydrido-dihydrogen, classical trihydride (for 

definition, see section IV. 1 of this chapter) and cfr-hydrido-dihydrogen depending upon 

the bite angle of the diphosphine'^l Kranenburg has also reported that the structure and
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stability of certain ruthenium dihydrogen complexes dramatically changes with increasing 

bite angle of the diphosphines'^'. However, it should be noted that these geometrical 

changes may affect the nature of the dihydrogen complexes indirectly through the 

electronic effect because diphosphines with different bite angles could cause different 

splitting of the levels of the d-orbitals and thus affect the k back donation from the metal 

to the dihydrogen ligand.

2. The effect of transition metals M

The transition metals in most of the synthesized dihydrogen complexes prefer an 

octahedral structure. There is clear evidence to show that the energy levels of the d 

electrons will affect the nature of the dihydrogen ligand. For example, 

Mo(CO)H2(R2CH2Œ 2R2 )2  has been confirmed to be a molecular hydrogen complex"®' 

but its tungsten analogue, W(CO)H2(R2CH2CH2R2)2, adopts a typical dihydride form' . 

It appears from experimental evidence'^ that increasing the energy of the d-electrons 

(down the group) will increase the k  backbonding from M and thus cause the splitting or 

elongation of the dihydrogen ligand. For example, in the complexes, [M(H)(H2)(L2)][BF4] 

( M=Fe, Ru, Os, L=dppe or dtfpe ), dw-H increases from Fe to O s '^ . Theoretical 

studies'^' have also shown that a dihydrogen ligand prefers contracted metal d orbitals, 

i.e., the dihydrogen complexes o f the first-row transition metals are more preferred than 

those of the second- and third-row transition metals.
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3. The effect of ligands trans to H-H

It is well known that trans ligands in transition metal complexes can strongly 

interfere with each other. For dihydrogen complexes, investigations on the system trans- 

[OsL('n^-H2)(en)2]'”‘ have s h o w n ' t h a t  the rranr-ligand L (with different 

donor/acceptor abilities) can deeply affect the properties of the dihydrogen ligand. For 

example, it was found that when L is a TC-acid ligand, rro«r-[OsL('n'-X2)(en)2]’' (X=H2 , 

HD) has a high Jhd value, i.e., such ligands result in a short H-H distance. When L is a 

very strong TC-acid ligand such as PhCH2NC, the H2 of the corresponding dihydrogen 

complex is very easily lost'^^. When L was changed to the strong a-donor ligand CH3CO2' 

(acetate), a long H-H distance of 1.34(2) A° was determined by neutron diffraction 

studies'"'. Theoretical studies on the complexes rronr-ML(H2)(CO)4 '^ ' also indicate that 

the M—>L back-donation competes with the M—>H2 back-donation if L is a n: acceptor 

ligand. It is apparent from the above evidence that the ligand trans to dihydrogen can 

modulate the net electron density of the metal center and thus the amount of k  back 

donation to H2 .

It appears that for a stable dihydrogen complex, an electron-poor metal center 

requires a good CT-donor trans to the dihydrogen whereas a more electron-rich center 

requires a good 7t acid ligand. This is consistent with the results'^®' of theoretical 

calculations on the three membered ring structure (Figure 1) which indicated that the
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electron density within the three membered ring should be no more than two electrons. 

This point can also be illustrated by considering the corresponding dinitrogen complexes. 

Morris suggested^^^ that the Vn. n of a dinitrogen complex with an electron-poor metal 

center will exceed 2150 cm'* and that with an electron-rich center wül be less than 2060

-Icm .

4. The effect of counter anions

A large number of dihydrogen complexes exist as cations in solution and the solid 

forms require suitable counter-ions. The o- k interaction in dihydrogen complexes is so 

delicate that different types of counter-ions may affect the stability of the H-H ligand. An 

example of this has been provided by Bianchini and coworkers^^®^ who reported that the 

different counter-ions used to crystallize a cationic cobalt complex, [CoPPafHa)]'^, 

influence the structure observed. When PFe” is used as the counter-ion, the Hz complex is 

formed but when the counter-ion is changed to BPIl»", the complex is in the dihydride 

form. In solution the Hz complex is always formed whatever the counter-ion is. 

Furthermore, [Fe(T|^-H2)(H)(dppe)2] [BF4] reacts with NaBPlu^” ' to form [Fe(T|^- 

H2)(H)(dppe)2][BPlu] in which the BPh4~ anion has been found to be significantly 

distorted from tetrahedral geometry. This reflects that there is a significant interaction 

between the anion and cation and this interaction can affect the H-H bonding.

10
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(IV) Characteristics of dihydrogen complexes

1. The H-H distance

It has been found that the H-H bond in dihydrogen complexes can adopt different 

distances from a minimum of 0.82A to the much longer distance of 1.357 A°

Investigations on the change of bond energy of H-H with the different distances showed^^’ 

that a  relatively high bond energy can still be kept at long distances (e.g., about 50% of 

the maximum at 1.35 A ). This possibly explains why H-H ligands in dihydrogen 

complexes can remain intact at a distance longer than that in free Hz (0.76 A°). For a stable 

three-membered ring system (Figure 1), there appears to exist an optimum H-H distance 

to ensure both a reliable M-Hz interaction and strong H-H bonding. This is perhaps why 

the stabilities of [M(H)(Hz)(Lz)] [BF4] (M=Fe, Ru, Os, L=dppe or dtfpe) with respect to 

the Hz loss is in the order Os > Fe > Ru and the dn-H sequence in their corresponding 

complexes is Fe >Ru>Os

Coordination of hydrogen in the form of M-(Hz) is often referred to as nonclassical 

while the corresponding dihydride form is referred to as classical. Dihydrogen complexes 

can be divided into two groups according to the H-H distances^^L The first contains 

typical dihydrogen complexes (0.82 A° to 1.0 A ) and the second collects together 

intermediate or elongated dihydrogen complexes M(H H) (1.1 A° to 1.6A ). Distances 

greater than 1.6 A° are found in classical dihydride complexes, as illustrated in Figure 2.

11
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d(H-H) 0.82A to 1.0A 1.1 A to 1.6A° > 1.6 A°

H— H H H H H

M M M

Figure 2 Structure of M(Hz), M (H H) and M(H)z

2. Spectroscopic properties

Because of difGculties in accurately locating H atoms close to metal atoms by X- 

ray diffraction, and because of the (often impractical) requirement of large crystals for 

neutron diffraction, IR and NMR properties of dihydrogen complexes are normally used 

to authenticate their presence. The dihydrogen vibrational mode t)(H-H) is, as would be 

expected from its symmetrical nature, very weak. It occurs in the range of 2300 cm * to 

27(X) cm'* and can only be occasionally observed^*"^  ̂by IR methods. Most dihydrogen 

complexes are characterized by NMR methods.

*H NMR spectra of Hz complexes usually display a broad singlet in the negative 

region due to rapidly relaxing protons in the Hz ligand^^^. When one hydrogen of the H-H 

ligand is replaced by D, the HD complexes usually give large values for Jhd- This is a very 

useful criterion for establishing dihydrogen coordination because Jhd for classical HD 

complexes is usually very small (<lHz). For nonclassical HD complexes, Jhd is often 

found within the range of 12 to 34 Hẑ '*̂  although a value as low as 1.6Hz has been found

12
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in the cationic complex [Os(en)z(H2 )(X)]"^ . As would be expected, the magnitude of

Jhd is directly related to dn-n- Recently, a linear relationship between Jhd and dn-H has been 

established both experimentally^^’ and theoretically’̂ ®’: 

d(H-H) = 1.42 -0 .0167  (Jhd)

For dihydrogen complexes, the Ti (proton relaxation time) values are usually 

found to be very short because o f the dipole-dipole interaction of two very close protons 

and this has made Ti measurements another efficient criterion for the examination of 

complexes. This method was first suggested by Crabtree’̂ ’̂and the idea has undergone 

some subsequent modifications’*̂ ’. For typical dihydrogen complexes M(H% )-, T , was 

suggested to be less than 40 ms at 250 MHz whereas for hydrides, T , is usually >100 ms. 

Ti measurements cannot be used to evaluate elongated dihydrogen complexes’**’. For 

deductions to be reliable, the T , method requires that dipole-dipole relaxations from other 

sources be eliminated and this requirement is often difficult to meet in NMR experiments. 

Relatively large measurement errors may exist and this sometimes makes the T i method 

less useful in some cases.

Currently, the best proof for the existence of a dihydrogen complex in solution is 

the observation of a large H-D coupling for the corresponding HD complex.’̂ ’

13
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3. Equilibrium between dihydrogen and dihydride complexes

It is generally accepted that there exists an equilibrium between a dihydrogen 

complex and the corresponding dihydride complex in solution’̂ ’ as shown below:

H

The equilibrium is normally observed by the changes in the broad dihydrogen peak 

with variation of temperature in *H NMR spectra. Normally, the characteristic broad 

singlet will change to a multiplet with appropriate change of temperature.

Though there are many experimental reports’*'*’’̂® '”^^' of this phenomenon, it is a 

fact that this equilibrium is normally found among complexes with the form of MLn(Hz) 

or [MLnCHz) T  and is not often observed in dihydrogen complexes which contain more 

than two hydrogen atoms’*̂ ’. The reason for this is still under investigation. It is apparently 

unreasonable to relate this phenomenon to the H-H distance since it has been found in the 

first reported dihydrogen complex W(CO)3(PPr3)z(H2) with the short H-H distance 

(0.82A°)’̂ ’̂ but has not been observed for the apparently elongated dihydrogen complex 

ReH?{P(p-tolyl)3 which contains one dihydrogen ligand shown by neutron diffraction to 

have an H-H distance of 1.357 A° Since dihydrogen complexes prefer octahedral

14
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geometry (six coordinate) and a change to the dihydride form (seven coordinate) would 

require rearrangement of the supporting phosphine ligands, the energy barrier for this 

rearrangement may play the dominant role on whether or not the equilibrium can be 

observed.

4. Intramolecular H atom exchange between dihydrogen and hydride ligands 

There is strong evidence’̂ ’ to indicate that exchange of H atoms between 

dihydrogen and other hydrogen-donor ligands can occur in dihydrogen complexes. An 

associative mechanism with the Tj^-Hs intermediate has been suggested’̂  *” (Scheme 1) to 

explain this phenomenon and there is clear evidence” *’ to confirm the existence of this 

type of intermediate:

H*

H

M----

H  ;.H

M ......

"H

H M H

H

Scheme 1

For complexes where the hydride ligand is trans to the H z, the formation of such a 

Ti^-H] intermediate apparently needs the migration of the trans hydride. This would 

require site exchange of the hydride with the supporting ligands. This site exchange could

15
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be temporary and dynamic and not require the rearrangement of the phosphine ligands. 

The energy barrier could then be much less than that needed for the dihydrogen/dihydride 

equilibrium. This possibly explains why only intramolecular H atom exchange can be 

observed in some systems with no observable equilibrium between dihydrogen and the 

corresponding dihydride complexes.

The rate of H atom exchange can be established from an observation of changes in 

the variable temperature ‘H NMR spectra in the hydride region and is normally 

determined quantitatively by the line shape analysis method’l l

5. The acidity of dihydrogen complexes

Dihydrogen complexes have been found to be more acidic than their dihydride 

counterparts’̂ ’ and they can transfer a proton to a base more rapidly :

M(Hz)Lx + B ^  [M(H)Lx ]~ + BIT

The factors which affect the stability of dihydrogen ligands also affect their acidity. 

The effects are very complicated and still under investigation, but it appears from current 

experimental evidence that the acidity has some relation to the H-H distance. Normally, 

dihydrogen complexes with shorter dn-H are more acidic than those with longer dH-H- For 

example, in the complexes [CpRufHzlfRzCHzCHzRz)][BF4], when R is changed from

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CôHtCFs to Me the complexes change from the dihydrogen forms to the dihydride 

complexes (i.e., H-H distances become longer) and values of pKa change from 4.5 to 

10[42d] However, there seems to exist an optimum H-H distance at which the dihydrogen 

complex has the most acidity. Recently, what is currently the most acidic but stable H2 

complex known, trans- [Os(H2)(CH3CN)(dppe)2] [BF4], has been synthesized with an H- 

H distance of 1.1 A° and it can be deprotonated by treatment with a very weak base such 

as ether’'*®’.

[Os(H2)(CH3CN)(dppe)2][BF4]2 + EtzO [Os(H)(CH3CN)(dppe)2][BF4] +[HOEt2][BF4]

(V) The reactions of dihydrogen complexes

By far the most observed and studied reactions for dihydrogen complexes are 

substitution reactions. Thus, the usually labile Hz ligand can be replaced by other small 

ligands, which may include CO, phosphines, amines, nitriles, Nz , O2, D z , water, alkynes 

and alkenes’®’. When the substitution reactions occur with unsaturated reagents, e.g., 

alkynes, RNN*, COz and CSz, the substitution is often followed by insertion of the 

unsaturate into the M-H bond’'*̂ ’. It is rare for alkenes to enter into further insertion 

reactions.

Substitution reactions also appear to be a unique property of dihydrogen 

complexes since no such reactions have been found for dihydride complexes. Different

17
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dihydrogen complexes can show different reactivities toward substitution, probably 

depending upon dn-H in the dihydrogen complexes. For example, [ R e H ,^ )  {PPh(CHz 

CHzCHzPCyz)!} with an H-H distance of 1.08 A° cannot be displaced by CO, Nz and i- 

BuNC’'*®’. This inertness of dihydrogen ligands toward substitution has also been found for 

[ReH^CHz) {PPh(CHzCHzCHzPPhz)z} which contains an elongated Hz ligand.

(VI) Bis-dihydrogen complexes of transition metals

Compared with the large number of studies on mono-dihydrogen complexes, 

studies on bis-dihydrogen complexes are more limited since only a few have yet been 

characterized. Most such complexes have been prepared by protonation of their 

corresponding polyhydride complexes. To the knowledge of this author, only three 

thermally stable bis-dihydrogen complexes have been found and only two of them, cis- 

RuHz(Hz)z(PCy3)z’'*̂ , 1, and cis-LRuH(Hz)z. {L=HB(3,5-Mez-pz), HB(3-*Pr,4-Br- 

pz) 2, have been isolated. Other bis-dihydrogen complexes have been characterized 

either in a matrix”’’ or in solution at very low temperature’®”’.

Bis-dihydrogen complexes appear to be highly labile even in the solid state and no 

crystal structures have yet been reported. The structures of 1 and 2 were deduced from 

their IR and NMR characteristics. The third bis-dihydrogen complex, cis- 

[IrHz(Hz)z(PCy3)z], 3, is stable only at -80°C although the structure can be maintained at 

room temperature under a dihydrogen atmosphere ’®*’.

18
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PCy3 H '
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Ru-

PCy3
H

N-
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-N

LU-

HN
H

H

1 RuH2(H2)2(PCy3)2  2 LRuH(H2)2 , {L=HB(3 ,5 -Mc2-pz), HB(3-*Pr,4-Br-pz)}

Studies on the reactivity of these complexes showed that the two dihydrogen 

ligands have almost the same reactivities. For example, the dihydrogen ligands in 1 can be 

replaced by N2 or CO to give the corresponding RuH2(L)2(PCy3)z, L= Nz or CO and 3 

reacts with MeCN to give a cationic species [IrH2(MeCN)z(PCy3)z]‘̂ ’®*’. Complex 3 also 

shows high acidity and can be deprotonated by NEt3 to return to its poly hydride form’®*’.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n . The Current Situation Concerning Dihydrogen Complexes of Iron

Since the new work described later in this thesis concerns the chemistry o f an iron- 

dppm-dihydrogen complex, a brief survey of what has so far been published on Fe-(Hz) 

complexes in general is given here.

(I) Characteristics of dihydrogen complexes of iron

The currently known Fe-(Hz) complexes and their characteristics are summarized 

in Table 1. The listed complexes display apparently different properties (see below) from 

those of ruthenium and osmium analogues. Such properties, including dw-H and Jhd, 

acidities, intramolecular exchange of H atoms between dihydrogen and hydride ligands, 

equilibrium between dihydrogen and hydride complexes and reactivities toward Hz 

substitution, will be discussed in the following subsections.

1 . The magnitudes of dn-n , Jhd and T i

The available dn-n data for dihydrogen complexes of iron show quite short H-H 

distances despite widely differing phosphine ligands and different measuring methods. The 

Jhd values are also very similar at around 30 Hz. If we apply the Jhd and dn-n relation’®’®®’ 

mentioned earlier, the listed Fe complexes (Table 1) all have dn-n smaller than 1 A°. AJl the
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Table 1 Dihydrogen complexes of iron and their main spectroscopic properties

Cationic Complexes 6(*H)' Vpe.H Jhd ** dH.H T, ref

ppm ppm cm' Hz A° ms

[FeH(Hz)(dppe)zr -12.9 -8.0 1919 32 0.89" 8.5(200) 21a

[FeH(H2)(depe)2T -14.6 -10.5 29.5 0.86 12(200) 21b

[FeH(H2)(dmpe)2T -17.4 -11.6 1856 31 0.86* 52

[FeH(H2)(dedppe)2T -13.6 -9.2 32 7(200) 21c

[FeHCHzXdbpelzT -14.4 -10.1 6a

[FeH(Hz)(meso-tet-1 )]* -16.7 -9.8 32 0.88 32(200) 6a ,53

[FeH(H2)(dppm)2r -7.2 -4.0 6a

[FeH(Hz)(d(i-Pr)pe)zT 54

[FeH(H2){PPh(OEt)2}4f -10.34 -7.2 1715 3(80) 55

[FeH(H2){P(OEt)3}4f -10.4 -9.6 1720 4(80) 55

[FeH(H2)(dtfpe)2T -12.55 -7.7 32 0.86 15(400) 22

[FeH(H2)(dtpe)2T -12.5 -8.2 0.84 15(400) 22

Fe(H)z(Hz)(PEtPh2)3 -11.7 0.821" 24(250) 31,56

Fe(Hz)(CO)2(C4H4) 57

Fe(NO)2(CO)(H2) 58

[FeCp*(H2)(dppe)f -12.39 27 7(300) 59

[FeCp(H2)(dppe)r -12.5 30.7 5(300) 60

[FeCp(Hz)(dppp)]^ -12 29 7(300) 60

[Cp(CO)(PEt3)Fe(H2)l* -11.8 31.6 61

[Cp(CO)(PPh3)Fe(H2)]^ -10.8 31.7 61

[FeH(H2)(pp3>r 28.3 3

[Fe(H2)(CO)(dppe)2]®̂ -6.8 33.1 0.86 11.1(300) 62

X-ray and neutron diffraction data are indicated by x orn , respectively. 
“ Center values of the multiplet ** For the H-D analogues
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complexes also have T, values less than 40 ms.

The dH-H, Jhd and Ti values suggest that all the currently known Fe dihydrogen 

complexes possess typical structures with little elongation of the H-H distance, i.e., no 

elongated Fe-(Hz) complex has been found. This is quite different from the situation 

observed for complexes of ruthenium and osmium since there have been quite a few 

reports of elongated dihydrogen complexes for Ru’”®’ and Os’®® '*”’.

Considering *H chemical shift data, it is noteworthy that almost all dihydrogen 

complexes of iron show a broad singlet within the range S -4 to -13 which was concluded 

by Kubas’®”’ to be the type of signal characteristic of the dihydrogen ligand.

2. The acidity of dihydrogen complexes of iron

Systematic studies on the complexes [MH(H2)(L2)] [BF4], M=Fe , Ru, Os, L = 

diphosphines, have shown’®®’ that dihydrogen complexes of iron are slightly more acidic 

than their ruthenium and osmium analogues. The following pKa“  values cited from these 

studies’®®’ illustrate this:

Diphosphine pKa ( F e ) pKa (R u ) pKa

dtfpe 7.8 9.0 8.4

dppe 1 2 . 0 14 12.7

depe 16 16.5 16.3
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It appears from the experimental evidence^^^ that the changing of ± e  diphosphine 

ligand has a relatively large effect on the acidities of the iron complexes even though there 

is little change in the dn-H distances.

3. The intramolecular exchange of H atoms

The intramolecular exchange of H atoms between Hi and other hydrides has been 

observed̂ ®®̂ *®'̂ '*’’̂ "̂ '̂ '*’̂ '̂^  ̂for almost all the investigated dihydrogen complexes with more 

than two hydrogens, including the cationic complexes [FeH(H2)Li]^ {L=dppe, depe, 

dmpe, dedppe, d(i-Pr)pe, dtfpe, dtpe}, [FeH(Hi){PPh(OEt)i}4]* and 

[FeH(Hi){P(OEt)3 }4]‘̂ . However, it is not observed for the c/^-hydride-Tj^-dihydrogen 

complex [Fe(H)2(Hi)(PEtPh2)3 ]̂ ‘̂’̂®̂ or for fronj-[FeH(H2)(meso-tet-l)][BF4 ]̂®“̂ ^' which 

has a rather unusual phosphine environment (Figure 3).

H - HPh Fh

PhPh

\

Figure 3. trans-\F& H(Hi)(meso-tet-1 )]^ with four phenyl groups on the Hi side
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The barrier for this intramolecular exchange differs with different complexes. For 

example, the coalescence temperatures for rronj-[FeH(H2)(depe)2][BPh4 ], trans- 

[FeH(H2)(dppe)2][Bp4], rranf-[FeH(H2)(dmpe)2] [BPh»] and rronj-[FeH(H2)(dedppe)2] 

[BPtu] are 293 313 >273 and >325 respectively.

The ‘̂P{ ‘H} NMR spectrum of [FeH(H2){PPh(OEt):}4]^ varies with the 

temperature. At +35°C, only one singlet is observed which corresponds to the trans- 

structure. At -85 °C, however, the NMR signal changes to a singlet and a multiplet, 

consistent with the presence o f a mixture of cis and trans isomers (Scheme 2)^*‘̂

H— H

H

H

+ r  H— H 1

p p
/

+ ^e

p P
» Î

-85°C

Scheme 2

Since variable-temperature monitoring of ̂ ‘P {*H} NMR spectra is not the normal 

procedure in the investigation of dihydrogen complexes, it is likely that this phenomenon 

may exist for other systems, especially those which have a low barrier for the 

intramolecular exchange. The presence of the cis and trans isomers accompanying the 

intramolecular exchange^®’̂  noted above shows that site exchange of a phosphine with one
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hydride could occur in solution for dihydrogen complexes of iron with monodentate 

phosphine ligands. For complexes with chelating diphosphines, the site exchange probably 

requires a temporary dissociation o f one end of the diphosphine from the iron center. The 

possibility o f this fast opening of the chelating ring has been confirmed in mechanistic 

studies on rranj-[FeH(X)(L)2], X=C1 or Br, L=dppe or depe,^^^ and trans- 

[FeH(N2)(depe)2][BPh4 ]

For trans-[FeH(H2)(meso-tet-l)][BF4], both the steric and electronic barriers for 

this site exchange are large because of the special environment (Scheme 2). For the cis- 

hydride-Ti^-dihydrogen complex [Fe(H)2 (H2)(PEtPh2)3], a cis effect of hydride on H2 has 

been suggested as a factor which could retard the intramolecular exchange^^^*.

4. The equilibrium between dihydrogen and dihydride complexes

No such equilibria have been found for the iron dihydrogen complexes with the 

formula [FeH(H2)Ln] - This is perhaps due to the electronic nature of the iron center. As 

mentioned in the previous part, the electronic situation o f iron centers for dihydrogen 

complexes can be deduced from the Vn«n values of their corresponding dinitrogen 

complexes. The available Vn.n values^^^show that the metal fragments [FeHLn]^ are not 

very electron rich, even when most o f the dihydrogen complexes have the fronj-hydride, 

and the formation of the seven coordinated dihydride complexes is not favored^^\ The
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energy barrier for this rearrangement could be so high that it cannot be compensated by 

the formation of iron hydride bonds^^**’.

Experimental evidence appears to support this conclusion. For example, this 

equilibrium is not observed for the complex [FeCp(Hz)(dppe)] [BF4] but is observed for 

the ruthenium analogue [RuCp(Hz)(dppe)] [BF4] in which the Ru site is more electron 

rich. When Cp is changed to the more electron donating ligand Cp*, the expected 

equilibrium is found between (]Fe“Cp*(H2)(dppe)]^ and [Fe''"Cp*(H)2(dppe)]‘̂

5. The reactivity of the dihydrogen complexes toward replacement

It appears that H2 replacement reactions are relatively easy with dihydrogen 

complexes of iron although there are differences in reaction rates depending upon the 

different phosphine ligands. For example, [FeH(H2){PhP(OEt)2 }4]^ and 

[FeH(H2){P(OEt)3 }4]^  are relatively stable under N2  atmospheres^“ \  [FeH(H2)(dppe)2 ]̂  

reacts slowly with N2 and N2 substitution with [FeH(H2)(dmpe)2]^ is very fast^^ l̂ 

Substitution reactions offer another efficient route for the synthesis of some 

interesting complexes. However, comparatively little attention^^^^ has been paid to such 

syntheses compared with the huge effort devoted to the characterization of new 

dihydrogen complexes. Only the substitution reactions with rranj-[FeH(H2)(dmpe)2] 

[BPlu] have been fully investigated. These include reactions with N2 , CO, C2H4 , CS2 , 

MeCN, CO2, alkenes and alkynes from which the products were characterized.
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The characteristics of some important substitution derivatives of dihydrogen complexes of 

iron are described in the following section.

(H) Some substitution derivatives of iron dihydrogen complexes

1. Substitution by Nz

The replacement of Hz by Nz is the most observed reaction in dihydrogen 

complexes o f iron. It is also important to recognize that Nz complexes of Fe can also be 

made independently of the Fe-(Hz) complexes. In fact, the Vn*n of dinitrogen complexes 

can be used to assess the possibilities of synthesizing the corresponding Hz complexes. For 

example, it has been suggested^^' that when Vn»n falls in the range 2060 cm'* to 2150 cm'*, 

the existence of stable dihydrogen complexes might be expected. This assumption 

correlates very well with the experimental facts on iron complexes (Table

Table 2

Dihydrogen Cationic Complexes

[FeH(Hz)(dmpe)z]^ 

[FeH(Hz)(depe)z]" 

[FeH(Hz)(dppe)z]+ 

[FeH(Hz)(meso-tet-1 ) r  

[FeH(Hz)(pp3)]"

VNaN(cm' ) for the 

corresponding Nz complex 

2094 

2090 

2120 

2130 

2100
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However, the coordination mode of Nz to a transition metal is different from that 

of Hz. It always adopts the mono-nuclear end-on mode(M-N=N) and, furthermore, 

bridging dinitrogen complexes have never been found from Nz replacement of Hz although 

such compounds are known to exist and can be synthesized by other methods. Trans- 

[{FeCl(depe)z}2(M--Nz)][BPh4]2^̂’’ is typical of such a compound. Compared with Hz , the 

K accepting ability of Nz is weak^*^’*'*̂ and it can be very easily replaced by other neutral 

ligands such as CO or MeCN^°l Of course CO and MeCN are quite different coordinating 

ligands, the former being a good 7t-acceptor and a moderately good CT-donor while the 

later is a good a-donor and a poor Tt-acceptor^'^ *'* ’*’.

2. Substitution by CO

Replacement of Hz by CO occurs readily. The coordination of CO takes the end- 

on mode like Nz (M-CsO) and the corresponding substitution complexes show high 

stability. It has been found that the stabilities of the complexes [FeH(L )(L)][BPh4 ]

( L=CO, MeCN and CgHgCN; L= ppz, nps) follow the order CO » M eC N =  

CfiHsCN̂ ®*’^’^̂ although it is noteworthy that these complexes are not synthesized through 

the route of Hz displacement.

The bonding between metal and carbonyl is via ct-tc interaction. The a-donation of 

electrons come from a filled orbital centered on carbon and tc interaction is via the k*
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orbital o f CO. Consequently, CO is a relatively poor cr donor, but a strong n  acceptor. 

Thus, Vc-o in the complexes, [FeH(CO)(dmpe)2][BPh*] , [FeH(CO)(pp3)][BPh4 ]̂ ™' and 

[FeH(CO)(depe)z][BPI14] is greatly reduced (1926, 1930 and 1915 cm ') compared 

with that for free CO (Vc=o =2143cm*'). Here, only the complex [FeH(CO)(dmpe)z]

[BPht] was synthesized by a replacement reaction using the dihydrogen complex.

3. Substitutions by organonitriles

As relatively strong a-donor ligands, organonitriles generally use the lone pair of 

electrons on the nitrile nitrogen atom to coordinate to a transition metal. Thus, the value 

of Vc-N in the complex is usually ra ise d .H o w e v e r, when back donation from the metal 

to the nitrile is present, especially when the metal is in a low oxidation state, Vchn is 

generally lowered because of relatively strong Tt-back-bonding^^^.

Some organonitrile complexes of iron, together with their Von values are listed in 

Table 3 (Note that only [FeH(NCMe)(dmpe)2] [BPI14] was synthesized through the 

replacement of Hz of the dihydrogen complex by MeCN).

It is apparent that back donation from the d-orbitals of iron to nitriles occurs in the 

relevant iron complexes. It is an interesting fact that organonitrile complexes prefer the 

trans- coordination mode.
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Table 3

Cations (trans-)

[FeH(NCMe)(dmpe)2]^

[FeH(NCMe)(depe)2]"̂

[Fe(NCMe)2(depe)z]^^

[Fe(succn)2(depe)z]^^

[FeCl(NCPh)(depe)2]'"

[FeH(NCPh)(depe)2]^

Vc.N (Free Ligand, cm ') Vc«n (Complex, cm ' ) Reference

2254(s), 2293(w) 2231 52

2254

2254

2257

2231

2231

2228

2254

2236,2222 

2179 

2168

73

76

76

76

73

4. Substitution by CHz=CH2

The coordination of ethylene to transition metals is generally through the side-on 

(T|^-bonded) mode which is the same as that o f Ht in a dihydrogen complex. However, 

ethylene donates its 7C electrons to form the metal-ethylene bond and at the same time the 

filled d-orbital of the metal returns electrons to the 7t*-orbital of the ethylene. This 

interaction weakens the C=C bond and affects the properties of the coordinated ethylene 

(e.g., the chemical shift of the ethylene protons^^).

There are only a few studies^^^ ’®̂ on ethylene substitution reactions with 

dihydrogen complexes of iron. The chemical shift of the protons in coordinated ethylene
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has been found to be quite large and towards higher magnetic fields in both trans- 

[FeH(C2H4)(dmpe)2][BPh4 ]^''' and cw-[FeH(C2H4)(pp3)][BPh4 ]^*l These ethylene 

derivatives are unstable when exposed to air or moisture and no crystal structures of such 

iron complexes have been reported yet.
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m . Summary and Research Proposals

The synthesis and characterization of molecular hydrogen complexes of transition 

metals in general have been well developed. Compared with major efforts on the synthesis 

of new M-(Hz) complexes, relatively little work has concentrated on the chemistry of these 

complexes, especially on those of iron.

The synthesis and chemistry of both the dihydride and the dihydrogen complexes 

of iron with dppm as the supporting ligand have only been briefly touched upon^^l For 

example, no NMR information has been given on the dihydride complex trans-F&(K)2 

(dppm)2  because no suitable solvent could be found. The ‘H NMR spectrum of the 

dihydrogen complex [Fe(H)(H2)(dppm)2] [BF4 ] has been reported^®®' but the solid has not 

been characterized and there has been no discussion of this system in the literature. What 

is more, no reactivity studies have been carried out on this dihydrogen product. It is 

surprising that, considering the many derivatives of analogous compounds of Fe of the 

type [Fe(H)(H2)(phosphine)2]‘̂ [X~l with other phosphines, made either by substitution of 

H2 or by other methods, derivatives of the dppm-containing compound are very rare. For 

example, no iron-ethylene, iron thioformato or iron-dinitrogen complexes with dppm as 

the supporting ligand have been reported.

Based upon the above information, it was thought to be desirable to design a 

research program concerning the synthesis and chemistry of both the dihydride and the 

dihydrogen complexes of iron with dppm since dppm usually behaves quite differently
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from other bidentate phosphines. Because of time constraints, the proposed research

concentrates on the following areas:

1. Synthesis of the pure starting material rran5 -[Fe(H)2(Ti‘-dppm)2].

2. Synthesis of the pure dihydrogen complex rronj-[FeH('n^-H2)(T|^-dppm)2]‘̂ [X'].

3. Investigation of the intramolecular exchange between H2  and hydride.

4. Investigation of the equilibrium between trwzf-[Fe(H)2(T|^-dppm)2] and trans- 

[FeH(Ti^-H2 )(T|^-dppm)2]‘̂ [X‘] by monitoring both the ‘H and ‘̂P {‘H} NMR 

spectra over a range of temperatures.

5. Investigation of the chemistry of /ranj-[FeH('n^-H2 )(Tj^-dppm)2]‘̂ [X'], mainly with 

respect to substitution reactions. The H2-displacing ligands will include the small 

ligands used in the research on the related tronj-[FeH(T|^-H2 )(r|^-dmpe)2] [BPI14] 

for comparison purposes. Representative small ligands to be used initially for 

these studies are: N2 , CO, CH2=CH2 , MeCN. This preliminary list will be revised 

according to the experimental results.
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Experimental

Reagents and Solvents FeCls, dppm, LiAlHi and HBF^^EtzO were purchased from 

Aldrich and kept in a dry, Nz filled glove box at all times after their opening. THE and 

benzene were obtained from Aldrich; ether, pyridine, Œ 2Q 2 were obtained from BDH 

Inc.; succinonitrile was obtained from Kodak; hexane and acetonitrile were obtained from 

Caledon Laboratories, Ltd. Benzene, THF and ether were dried by distillation from 

sodium wire and kept in a glove box under dry Nz. It was usually necessary to use these 

within three days, especially during periods of high humidity. CHzClz and CH3CN were 

dried by distillation from P2O5 just before their use. Other reagents and solvents were 

reagent grade and were kept in the glove box without further purification. All the 

deuterated solvents used were dried over Linde type 4 A° molecular sieves activated for 

24 h before their use. In addition, all solvents were degassed prior to use by appropriate 

gases.

Physical Measurements Infrared spectra were recorded on a Bruker IFS- 6 6  F l'lR  

spectrometer as Nujol mulls between NaCl plates. ‘H and ^‘P{ ‘H} NMR spectra were 

recorded on a Bruker AC-E 200 spectrometer. *H chemical shifts were measured relative 

to tetramethylsilane (TMS) and the ^'P chemical shifts were reported relative to a
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reference of 85% H3PO4. For the ^‘P{ *H} NMR spectra, a coaxial D2O insert was used for 

frequency lock in the situations where undeuterated solvents were used. Micro-analyses 

for C, H and N were performed in our laboratories using a Control Equipment 

Corporation model 240XA analyzer with V2O5 as a combustion aid.

Synthesis o f the Compounds All the syntheses were performed in a glove box

filled with carefully dried (P2O5) inert gas at all times. N2 was normally used to control the 

atmosphere for syntheses except those specified. When a specific gas atmosphere was 

needed, the reactions were carried out in a 100 mL three-necked flask under a flow of the 

particular gas. When nitrogen-free conditions were required, the glove box was filled with 

Ar.

Synthesis of tra/ts-[Fe(H)2 ('n̂ “<ippm)2], 1

FeCl3 (0.45 g, 2.8 mmol) dissolved in THF (10 mL) and dppm (2.1 g, 5.5 mmol) in 

benzene (15mL) were mixed to form a dark green solution. A suspension of LiAlHt (0.19 

g, 5.0 mmol) in THF (5 mL) was added drop by drop to the stirred solution over a 2 min. 

period. The mixture was filtered immediately and the filtrate was kept in the glove box. 

Red crystals formed in the filtrate within 24 h. The product was filtered off and washed 

successively with ether, benzene and ether (10 mL each) and then dried under reduced 

pressure for about 1 h. Yield: 10-16%. Crystals of 1 produced in this manner were found
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to be suitable for a single crystal X-ray structure determination. Anal. Calcd for 1 

(FeP4CsoH46): C, 72.7%; H, 5.6%. Found: C, 72.9%; H, 5.6%. IR: VFe-H=1711 cm '.

^'P{ 'H} NMR (25°C, CDzOz): 6  24 (singlet). 'H  NMR (25°C, CDzOz): 6  -7 ( Fe-H, 

broad). Complex 1 decomposes quickly in the presence of water. However, it is stable for 

at least one week in the solid state if  kept in a dry, inert atmosphere. It has limited stability 

in dry CH2Q 2 and is either insoluble or decomposes quickly in other solvents.

Synthesis of /mns-[Fe(H)(T]^-H2)(Ti^-dppm)2][BF4], 2

Freshly prepared 1 (0.25 g, 0.30 mmol) was suspended under an atmosphere of H2 

in THF (10 mL) which had been degassed by Ar or H2 . To this stirred suspension, an 

excess of HBF4*Et2 0  (70-100 (iL, 0.48-0.68 mmol) was added dropwise. A pale yellow 

precipitate was produced either immediately or within 1-2 min. Ether (10 mL) was added 

immediately and this precipitated out the pure yellow solid. The product was filtered off 

and washed three times with ether (5 mL each) and then dried under reduced pressure. 

Yield: 95-100%. Anal. Calcd for 2 (FeF4P4BCsoH47): C, 65.7%; H, 5.2%. Found: C, 

65.5%; H, 5.5%. IR: VFe-H=1708 cm ' (very weak). ^'P{'H | NMR (25°C, CD2 0 2 ): 5 32.5 

(singlet). 'H  NMR (25°C, CD2Q 2): 5 -7.21 ( Fe-H, quintet, %H=44 Hz); 6  -4.0 ( Fe-H2, 

broad singlet). Complex 2 is very sensitive to traces of water but it is stable for at least 

one week in the solid state in a dry Ar atmosphere. In solution it decomposes quickly in 

acetone, benzene, ethanol and chloroform but is stable at least 6  hours in dry CH2Q 2 .
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Recrystallization of 2 is possible from CHzOz/hexane under a strictly anhydrous Ar 

atmosphere.

Synthesis of <raiis-[Fe(H)(CH3CN)('n^-dppm)2][BF4], 3

M ethod A Compound 2 (0.037 g) was dissolved in CH3CN ( 10 mL) to form an 

orange-red solution. After 10 min, ether (50 mL) was carefully layered over the solution 

and the crystalline product which was produced over a 24 h period was separated, washed 

with ether (10 mL) and dried under reduced pressure. Yield: >90%. Anal. Calcd for 3 

(FeF4P4BNC52H4s): C, 65.5%; H, 5.1%; N, 1.5%. Found: C, 65.5%; H, 4.9%; N, 1.3%. 

IR: VFe-H=1880 cm ' (w), Vcn=2250 cm '. ^'P{'H} NMR (25°C, CDzQ.): 6  29.8 (singlet). 

'H  NMR (25°C, CDzQz): 5 -13.7 ( Fe-H, quintet, Jph=44.0 Hz); S 4.31 and 4.79 

(PCH“H'F, poorly resolved); 5 1.44 ( Fe-NCCIL). Complex 3 is stable in air. It is soluble 

and stable in acetone, chloroform, methylene chloride and acetonitrile. Crystals of 3 for 

X-ray diffraction can very easily be obtained by slow diffusion from CHiClz/hexane.

M ethod B Compound 1 (0.21 g, 0.26 mmol) was suspended in CH3CN (10 mL) and 

stirred at -30°C (dry ice and acetone) for 20 min. An excess of HBF4«Et2 0  (200 |il, 1.36 

mmol) was added dropwise to the stirred solution to form an orange red solution. Ether 

(50 mL) was added to precipitate out the orange yellow solid which was filtered off and 

dried under reduced pressure. Yield: 8 6 %.
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Synthesis of /ra#is-[Fe(CH3CN)2(Tl^-dppm)2][BF4]2*2CH2Q2, 4

To a stirred suspension of compound 1 (0.19 g, 0.22 mmol) in CH3CN ( 6  mL), 

HBp4 »Et2 0  (150 pL, 1 mmol) was added dropwise. Compound 1 dissolved to give a 

clear deep-red solution. Ether (70 mL) was added immediately to precipitate out a peach 

colored solid (0.21 g) which was filtered off and washed with ether ( 10 mL) and dried 

under reduced pressure. ‘̂P{ ‘H} NMR (25°C, CD2CI2): Ô 29.8 (singlet); 5 14 (singlet); 5 

12.3 ( triplet ) and Ô 1.08 ( triplet ) (see discussion). The mixture of products (0.21 g) was 

redissolved in CH3CN ( 8  mL) and stirred overnight. Ether (70 mL) was then added to 

precipitate out a pink solid (0.14 g) which was collected and dried the same way as 

described above. CH2Q 2 (or CH3CN) (4 mL) was added to this mixture and the insoluble 

residue removed by filtration. Hexane (or ether) (16 mL) was carefully layered over the 

filtrate. The final crystalline product 4, suitable for the X-ray structure determination, was 

formed within 24 h. The crystals were filtered off and washed with ether (10 mL) and 

dried under reduced pressure. Yield : 31%. Anal. Calcd for 4 (FeB2N2FgP4Cs6H54Cl4 ): C, 

53.69%; H, 4.35%; N, 2.24%. Found: C, 53.07%; H, 4.77%; N, 2.23%. IR: Vcn = 2249, 

2269,2289,2317 cm '. ^*P{'H} NMR (25°C, CDzQz): 5 14.2 (singlet). *H NMR (25°C, 

CD2CI2): 5 2.37 {Fe-(CH3CN)2 }. Complex 4 is stable in air and is soluble and stable in 

methylene chloride, chloroform and acetonitrile.
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Preparation of trans-[Fe(T|^-H2)2(îl^-dppm)2][BF4]2 , 5

M ethod A To a stirred suspension of compound 1 (0.11 g, 0.13 mmol) in THF (10 

mL), HBF4«Et2 0  (150 )iL, 1 mmol) was added dropwise to give a clear yellow solution. 

^‘P{ ‘H} NMR (25°C): Ô 3.32 (singlet ).

M ethod B Compound 2 (10 mg, 0.01 mmol) was dissolved in CD2CI2 (0.6 mL) under 

an Ar atmosphere. HBF4«Et2 0  (15 |iL, 0.1 mmol) was added dropwise with shaking.

^‘P{ ’H} NMR (25°C, CDzQi): 5 3.32 (singlet ).

A pale yellow solid, 2, was obtained by adding ether or hexane (50 mL) to the 

solution noted above (see discussion). Attempts to obtain solid 5 were not successful (see 

discussion).

Synthesis o f frans-[Fe(H){NC(CH2)2CN}(Ti^-dppm)2][BF4], 6  

M ethod A A solution of succinonitrile (0.1 g, 1.25 mmol) in THF (4 mL) was added 

to a stirred suspension of compound 2 (0.13 g, 0.14 mmol) in THF (10 mL) and an orange 

red solution was formed immediately. After 40 min, ether (30 mL) was added to the 

solution and an orange solid precipitated out. The product was filtered off and washed 

twice with ether (10 mL each time) and dried under reduced pressure. Yield: 80%. Anal. 

Calcd for 6  (FeF4P4BN2Cs4H49): C, 65.35%; H, 4.94%; N, 2.82%. Found: C, 65.72%; H,
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5.16%; N, 2.64%. IR: VFe-H=1881 cm ' (w), Vcn=2228 (very weak), 2239 cm ' (weak). 

^'P{ 'H} NMR (25°C, CDzOz): S 30.3 (singlet). 'H  NMR (25°C, CD^Oz): ô -13.1 (Fe-H, 

quintet, Jph=47 Hz); 5 4.34 and 4.81 (PCH“H T , poorly resolved); 5 2.22, 1.93 (Fe- 

NCCH2CH2CN) (broad singlets, overlapped and poorly resolved). Complex 6 is stable in 

air. It is soluble and stable in methylene chloride and chloroform.

Compound 6 (0.11 g) was recrystalized from CH2CI2 (4 mL) /hexane (12 mL) by 

slow diffusion over 24 h. The orange crystals were filtered off, washed with ether (10 

mL), dried under reduced pressure and used for the X-ray structural determination.

M ethod B A solution of succinonitrile (0.055 g, 0.69 mmol) in THF (4 mL) was 

added to a stirred suspension of compound 1 (0.18 g, 0.22 mmol) in THF (10 mL). 

HBF^'EtzO (200 pL, 1.36 mmol) was added dropwise and 1 dissolved immediately to 

give a clear yellow solution which gradually became orange-red. After 20 min, ether (30 

mL) was added to stop the reaction and the orange solid which precipitated out was 

filtered off, washed twice with ether (10 mL each time) and dried under reduced pressure. 

Yield: 81%.

Synthesis of /raiis-[Fe(H)(pyridlne)(Ti^-dppm)2][BF4], 7

To a stirred suspension of compound 2 (0.11 g, 0.12 mmol) in THF (10 mL), 

pyridine (0.1 mL, 1.24 mmol) was added. A clear red solution was formed and after 50
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min, ether (30 mL) was added to precipitate out a blood-red solid which was washed 

twice with ether (10 mL each time) and dried under reduced pressure. Yield: 6 6 %. Anal. 

Calcd for 7 (FeF4P4BNC%H45): C, 66.99%; H, 4.56%; N, 1.42%. Found: C, 62.49%; H, 

5.35%; N, 1.97. IR: VFe-H=1853 cm ' (w). ^'P{'H} NMR (25°C, deuterated pyridine): 5 

22.67 (singlet). 'H NMR (25°C, deuterated pyridine): Ô -17 (Fe-H, quintet, %h=46 Hz). 

In solution, complex 7 only has limited stability in pyridine and it decomposes quickly in 

acetone or methylene chloride. This makes analyses difficult and recrystallization 

impossible.

Synthesis of/rans-[Fe(H)(CO)(Ti^-dppni)2][BF4] , 8

Method The procedure is the same as that used for 2 except that the reaction was 

carried out under CO. The final product is a pale yellow solid. Yield: =100%. Anal. Calcd 

for 8  (FeF4P4BOC5 iH45): C, 65.1%; H, 4.8%; Found: C, 65.4%; H, 4.4%. IR: VFe-H=1710 

cm '(w), Vco=1944 cm ' (s), 1904 cm '(w, sh). ^'P{ 'H} NMR (25°C, acetone-dg): 5 3 1.6 

(singlet). 'H  NMR (25°C, acetone-dg): 6  -2.03 ( Fe-H, quintet, %H=44.4 Hz); 5 5.05 and 

4.69 (PCH“H'T, poorly resolved). Complex 8  is stable in air and is soluble and stable in 

acetone, acetonitrile, chloroform and methylene chloride. Crystals o f 8  can be easily 

obtained by recrystallization from CHzClz/hexane.
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M ethod B Compound 1 (0.13 g, 0.15 mmol ) was suspended in THF (20 mL). An 

excess of HBF4«Et20 (100 jiL, 0.68 mmol) was added dropwise with stirring to form a 

yellow solution. CO was passed through the solution for one hour after which ether or 

hexane (20 mL) was added to precipitate out a  pale yellow product. It was washed twice 

with ether (10 mL each time) and dried under reduced pressure. Yield: 83%.

Synthesis of h-a#is-[Fe(H)(N2)(T|^-dppm)2][BF4], 9

M ethod A Into a suspension of compound 2 (0.12 g, 0.13 mmol) in THF (20 mL), N2 

was passed at a rate of 3-5 bubbles/second for 5 h. Ether (20 mL) was then added to 

precipitate out a yellow solid which was washed twice with ether (10 mL each time) and 

dried under reduced pressure. Yield: 77%. Anal. Calcd for 9 (FeF4P4BN2C5oH4s): C, 

63.91%; H, 4.79%; N, 2.98%. Found: C, 64.0%; H, 4.99%; N, 2.52%. IR: Vfc.h=1713 

cm ' (w), Vnn=21 16 cm '. ^'P{ 'H} NMR (25°C, CD2a 2): 6 24.2 (singlet). 'H NMR (25°C, 

CD2CI2): 5 -9.38 ( Fe-H, quintet, %H=43.6 Hz). Complex 9 gradually changes its colour 

in air. In solution 9 is only stable in dry CH2Q 2 . It decomposes very quickly in acetone or 

chloroform. Recrystallization of 9 is possible from CH2Cl2/hexane under a strictly 

anhydrous N2 atmosphere.

M ethod B Freshly prepared compound 1 (0.11 g, 0.13 mmol) was suspended in THF 

(10 mL) and HBF4«Et20 (100 pL, 0.68 mmol) was added dropwise with stirring.
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Compound 1 dissolved to form a clear yellow solution into which N2  was then passed at a 

rate of 3-5 bubbles/second for 5 h. During this time a yellow precipitate was formed. 

Addition of ether (20 mL) completed the precipitation of the yellow product which was 

filtered off and washed twice w i±  ether (10 mL) and dried under reduced pressure. Yield: 

>60%.

Synthesis of trans-[Fe(H)('n^-CH2=CH2)(‘n^-dppni)2][BF4]«0.5CH2Cl2,10 

Method A Ethylene was passed into a stirred suspension o f 2 (0.091 g, 0.10 mmol) in 

THF (20 mL) at a rate o f 3 bubbles/second for three hours. Ether (20 mL) was added to 

precipitate out an orange red product which was filtered off, washed with ether ( 10 mL) 

and dried under reduced pressure. Yield: 89%. Crystals of 10 were obtained by 

recrystallization from CH2Cl2/hexane under a dry Ar atmosphere. Anal. Calcd for 10 

(FeF4P4BCs2.5H5oCl): C, 64.52%; H, 5.15%. Found: C, 64.70%; H, 5.12%. IR: Vfc-h=1714  

cm ' (w, sh). ^‘P{'H} NMR (25°C, CDCI3): 6  32.8 (singlet). 'H  NMR (25°C, CDCI3): 5 - 

1.78 (Fe-H, quintet, = 50.6 Hz); 5 5.29 and 4.39 (PCH*H'T*, poorly resolved); 5 3.18 

{Fe-(Ti^-CH2=CH2) }. Complex 10 is very sensitive to moisture. It is stable in dry acetone, 

chloroform and methylene chloride.

Method B Compound 1 (0.11 g, 0.137 mmol) was suspended in THF (10 mL) under 

ethylene. An excess of HBF4 «Et2 0  (100 pL, 0.68 mmol) was added dropwise with stirring
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to form a yellow solution through which ethylene was passed at a rate of 3 bubbles/second 

for three hours. An orange precipitate slowly formed and precipitation was completed by 

addition of ether (20 mL). The orange red solid was filtered off, washed twice with ether 

( 10 mL each time) and dried under reduced pressure. Yield: 72%.

The reactivity of compound 2 toward propene (CHsCHsCHi)

The procedure was almost the same as Method A for the synthesis of compound 

10 ( starting with 2 and ethylene) except that propene was used instead of ethylene. No 

evidence that 2 reacted with the propene was detected from NMR measurements.

The reactivity of compound 2 toward c is -2 -b u te n e  (cw-2-CH3CH=CH2CH3)

The procedure was almost the same as Method A for compound 10 except that 

c/r-2-butene was used instead of ethylene. No evidence that 2 reacted with the cis-2- 

butene was detected from NMR measurements.

The reactivity of compound 2 toward serene (C6HsCH=CH2)

To a stirred suspension of compound 2 (0.13 g, 0.14 mmol) in THF (10 mL), a 

large excess of styrene (1.62 mL, 14 mmol) was added under Ar. The mixture was stirred 

for 3 h. No evidence that 2 reacted with the olefin was observed from ^‘P NMR 

measurements.
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Results and Discussion

This chapter is an account of the approaches used for the synthesis of Fe-dppm 

hydride and dihydrogen complexes and also the Hi displacement reactions of the 

dihydrogen complex. Stability, electronic, geometrical and mechanistic considerations are 

also discussed.

I. Syntheses and Characteristics of the Complexes

I .l . rrans-[Fe(H)2(Tl^-dppm)2], 1

While several preparative approaches to dihydrogen complexes are known (see the 

introduction chapter of this thesis), hydride complexes of transition metals are perhaps the 

most widely used starting materials for the synthesis of such complexes. Accordingly, a 

convenient synthesis of compound 1 had to be devised. Compound 1 was first synthesized 

in 1988 by Bautistâ ®®' from FeCl? and dppm using NaBHt as the source of H*. The only 

spectroscopic information reported was Vpe-H (1710 cm ') and the low frequency of Vfc-h 

was explained by ± e  high trans effect of two trans hydrogens.

Since the above Fe(II)-NaBH4 -dppm reactions apparently lead to no reduced Fe 

compounds, in contrast to the production of many low valent complexes of Co, Ni, Pd and 

Ft under similar conditions^, work was started in this laboratory on reactions between 

Fe(n) /  (in) - dppm and the stronger reducing agent LiAlH». In the course of this work^®"\
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it was found that the FeCla/dppm/LiAlHt reaction is a very convenient source of 

compound 1  which can be produced as outlined in reaction ( 1 ) and in the previous chapter 

by controlling the molar ratio of FeClgzdppmzLiAlH» at 1:2:2.

FeCls + 2 dppm + 2 L1A1H4 —> [Fe(H)2(V-dppm)2] ( 1 )

A crystal structure of 1 has been obtained and this confirmed a trans arrangement 

of the two hydrogens^®*'. Compound 1 is highly sensitive to traces of water and its 

successful use in the synthesis of [FeH(H2)(dppm)2][BF4], 2, depends greatly upon the 

purity of 1. Thus, all the solvents used in the synthesis and examination of 1 were carefully 

dried and, under these conditions, 1  is both soluble and stable in dry dichloromethane for 

at least one hour. This solution shows a sharp singlet at 5 24 in the ^‘P {‘H} NMR 

spectrum which is consistent with the trans geometry^®®' shown by X-ray data. A broad 

unresolved singlet, attributed to the hydride ligand, occurs at Ô -7 in the 'H  NMR 

spectrum. The value for Vpe-H of 1 was found to be 1711 cm '. Tronr-[Fe(H)2(T|^-dppm)2] 

is either insoluble or unstable in solvents other than dichloromethane.

It is noteworthy that dihydride complexes of iron with different chelating di- 

phosphines assume different geometries and quite a few adopt a cis structure'®®', including 

CIS- [Fe(H)2(Tl^-dppe)2].
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1.2. rronr-[Fe(H)('n^-H2)(Ti‘-dppm)2][BF4], 2

Under an atmosphere o f either Ar or dihydrogen, complex 1 reacts according to 

reaction (2 ) with HBF4*Et2 0  to produce rrunr-[Fe(H)(T|^-H2)(T|^-dppm)2][BF4] 2 .

H2 or Ar
[Fe(H)2(Tl^-dppm)2] + HBF4«Et20 ► [Fe(H)(T|^-H2)(Tl^-dppm)2][BF4] (2)

Once again, complex 2 was first synthesized by Bautista'®®' in 1988 by the same 

reaction, but the complex was not fully characterized. Only the ‘H spectrum with a broad 

singlet (5 -4) and a quintet (Ô -7.2 ) was reported. The two peaks were assigned to the 

dihydrogen and the hydride ligands respectively. Further investigations on substitution 

reactions o f compound 2  were precluded because of its apparent instability.

The initial attempts to repeat or modify the published method'®®' in this laboratory 

were frustrated by the non-reproducibility of the reactions, low yields and the apparent 

lability of the final product

In the work reported herein, by monitoring the {*H} NMR spectra of 2 under 

different conditions, we found that 2  is, like 1 , very sensitive to traces of water in solution, 

especially during its formation. The procedure was therefore further modified by ensuring 

that all the solvents used were strictly anhydrous. Pure product 2 was then obtained and 

characterized by IR, NMR and elemental analytical data. The solid 2 is stable under
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reduced pressure and can be kept in a dry inert atmosphere for at least one week. Also, in 

the solid form, replacement o f the dihydrogen ligand by Nz (see later discussion) is very 

slow. In solution, 2 is stable only in dry CH2Q 2 .

The complex exhibits a sharp singlet at 5 32.5 in the { ‘H} NMR spectrum 

which is consistent with a rronj-arrangement of H/H2 and the chelating dppm ligand. The 

'H  NMR spectrum of complex 2 agrees with the published data'®®', with 5 -4 (broad 

singlet) due to Hz and the 6  -7 (quintet) signal due to the hydride split by 4 equivalent P 

atoms. These signals are at lower field than those exhibited by the dppe analogue (5 -8 , 

-12.9, respectively)'®*'. This can be explained in terms of the somewhat different donor 

character of dppe relative to dppm. The corresponding H-D complex was prepared by 

another worker in this laboratory and Jhd was found to be 30.0 Hz'®®'. From this, an H-H 

distance of 0.92 A° was calculated by an empirical correlation'^'.

A weak and sharp peak at 1708 cm ', not at 1645 cm ' as previously reported'®®', in 

the IR spectrum of 2 was assigned to Vpe-H- Compared with 1, Vfc-h is only very slightly 

reduced. This reflects a similar electronic environment of the hydride in the two 

complexes.

Though samples of complex 2 are pure enough for further reactions, most samples 

exhibited a small additional peak ( 6  24) in ^'P {'H} NMR spectra. This is most probably 

due to contamination by rranr-[Fe(H)2('n^-dppm)2]. The reason for this is not clear since
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no equilibrium between [Fe(H)2(Ti^-dppm)2] and [Fe(H)(T|"-H2)(T]^-dppm)2][BF4] has been 

found (see later discussion). However, it was found in these experiments that the presence 

of traces o f water will cause splitting of the dihydrogen ligand to give the dihydride form. 

Thus, a trace of water in either the THF or the ether may be responsible for this 

contamination. It is also possible that this additional signal is caused by the presence of the 

dinitrogen complex (5 24.2 in the {'H} NMR spectrum). If that is the case, this 

contamination must have been introduced during the formation of complex 1  since the 1  to 

2 conversion occurs in the absence of Nz. It is also possible that [FeHCl(dppm)2] is an 

intermediate in the synthesis of 1  and if  so, it is reasonable to assume that it may react with 

Nz to give the dinitrogen complex because such reactions of its dppe and depe analogues 

have already been well established'®^'.

Complex 2 can undergo Hz displacement reactions with a variety of molecules and 

these will be discussed in the following sections. Reactions will be discussed where the Hz 

in 2  is replaced directly by other ligands and where substitution products are made directly 

from 2  generated in situ by reacting 1  with HBF4 *EtzO in the presence of the additional 

ligands.

1.3. Tronr-[Fe(H)(CH3CN)(T|^-dppm)2] [BF4], 3

Complex 2 can be very easily and irreversibly converted into complex 3 by 

treatment with CH3CN according to reaction (3).
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[Fe(H)(Ti"-H2)(Tl^-dppin)2][BF4] + CH3CN [Fe(H)(CH3CN)(Ti"-dppm)2][BF4] + Hz (3)

Complex 3 is very stable to both moisture and air. It is also soluble and stable in a 

variety o f polar solvents and both 'H  and ^‘P{ 'H} NMR spectra can be obtained in several 

deuterated solvents, including acetone, chloroform, methylene chloride and acetonitrile. 

The ^‘P{ ‘H} spectrum of compound 3 in CD2Q 2 shows a sharp singlet at Ô 29.8 which 

clearly indicates that the compound possesses a fronr-phosphine stereochemistry. This 

geometry has been confirmed by another worker in our laboratories using X-ray 

crystallography'^^'. The hydride signal in the 'H  NMR spectrum is a quintet at 6  -13.7 

which is much more downfield than that shown by the dmpe analogue (Ô -24). Since dmpe 

is a much stronger electron-donating ligand than dppm, it appears that the electron-density 

on the iron site in the dmpe compound is higher than that for the dppm analogue. This also 

probably affects both the a-donor and rc-acceptor character of the CH3CN ligand. This is 

reflected in the Von values in the two IR spectra. Thus, Vcn (2231 cm  ') for 

[Fe(H)(CH3CN)(Ti^-dmpe)2][BPh4] is lower than that of [Fe(H)(CH3CN )(ti^- 

dppm)2][BF4] (2250 cm ') and the latter value is only slightly lower than that of free 

CH3CN (2254 cm '). This suggests a weak back-bonding from iron to CH3CN which is 

also consistent with the slight upfield shift of the signal ( 6  1.44) due to the methyl 

hydrogens of the coordinated CH3CN in the 'H  NMR spectrum.
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The increase o f Vfc-h (1880 cm ') for 3 relative to both 1 and 2 shows a relatively 

stronger Fe-H interaction which will be further discussed in a later section.

Complex 3 can also be synthesized directly from [Fe(H)2(T|^-dppm)2] in the 

presence of acetonitrile and a large excess of HBF^aEtzO (molar ratio 1:5) at low 

temperature.

HBF4»Et20 (1:5)
[Fe(H)2(n^-dppm)2 ]   ̂ [ Fe(H)(CH3CN)(Ti''-dppm)2][BF4] (4)

- 30 °C, CH3CN

At room temperature, this reaction also produces the complex trans- 

[Fe(CH3CN)2( Tl^-dppm)2][BF4 ]2  which will be further discussed in the following section.

1.4. rranr-[Fe(CH3CN)2(Tl^-dppm)2][BF4]2*2CH2a2,4

The reaction outlined in reaction (4), at room temperature, was monitored by 

NMR methods and it was found that after 2 to 3 hours only a sharp singlet at 5 14, which 

was later determined to be the signal due to 4, was present in the ^‘P{ 'H} NMR spectrum.

HBF4«Et2 0  (molar ratio 1:5)
[Fe(H)2(Ti^-dppm)2]---------------------------------- ► rranr-[Fe(CH3CN)2(Tl‘-dppm)2][BF4]2, (5)

CH3CN, room temperature
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However, it was difficult to isolate the pure product in the presence of an excess 

of acid. A method with several steps was, therefore, developed to obtain the complex. 

First, the reaction (5) was stopped quickly (by precipitating the reaction products from 

solution) after adding the HBF4*Et2 0  and the product obtained was found to contain three 

components. One showed a singlet (S 29.8), a second appeared as two triplets ( 6  12.3, 

1.08) and the third also exhibited a singlet (5 14) in the ^‘P{ *H} NMR spectrum 

(Spectrum 1). The singlet at 5 29.8 was identified as being due to complex 3 while the two 

triplets and the other singlet were tentatively assigned to the signals of cis- and trans- 

[Fe(CH3CN)2(T|^-dppm)2][BF4]2 . The mixture was redissolved in CH3CN and after 24 

hours, ether was added to precipitate out another mixture. More than 50% of this mixture 

is soluble in CH2Q 2 from which 4 was recrystallized as a dichloromethane solvate by 

layering hexane or ether over the solution. Complex 4 gives a sharp singlet (Ô 14) in the 

^'P{ ‘H} NMR spectrum (Spectrum 2). The insoluble residue was not characterized in this 

work.

No hydride peak was observed in the ‘H NMR spectrum of the final product. One 

broad singlet at Ô 2.37 in this spectrum was identified as being due to the hydrogens o f the 

coordinated CH3CN. This reflects the equivalent electronic situation of the two CH3CN 

ligands in this complex. The downfield shift of the signal due to the methyl hydrogens of
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Spectrum 1 ^'P{ ‘H} NMR spectrum (CD2CI2, room temperature) of the
three component mixture obtained initially from reactions of 1  with an excess o f 
HBF4*Et2 0  and CH3CN
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Spectrum 2 ^*P(*H} NMR spectrum o f 4 in CD2CI2  at room temperature
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the acetonitrile ligands relative to that o f the free ligand, together with the large 

chemical shift upfield relative to complex 3, probably indicates that o-donation dominates 

the iron-nitrile interaction in this complex and that the donor character of the nitrile 

ligands appears to have more effect upon the cir-phosphorus than on the trans ligand.

The highly symmetrical /ronr-arrangement o f the two CH3CN ligands in 4 was also 

confirmed by a crystal structure (Figure 4) and its bonding parameters (Table 4).

The Fe-N bond length is shorter in 4 than 3 (Figure 5 and Table 4) because of the 

strong trans effect o f the H“ in 3. The four weak peaks in the v&n region of the IR 

spectrum of 4 (Figure 6 ) are probably caused by the different vibrational modes'

Again, the higher Vcmn values compared with that o f the free ligand supports that g -  

donation from the coordinated CH3CN to Fe dominates the iron and acetonitrile 

interaction. Only one very weak vibrational mode due to Von was observed in the IR 

spectrum of complex 3.

1.5. rronr-[Fe(T|“-H2)2(T|^-dppm)2][BF4]2,5

The unexpected production of complex 4 from the procedure outlined in reaction 

(5) prompted this author to investigate further what happens when an excess of 

HBF4«Et2 0  is added to a suspension of complex 1 in the absence of CH3CN.
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Figure 4a ORTEP drawing of the cation of 4
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Figure 4b Structure of the disordered anions BF4 of 4
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Figure 5 ORTEP drawing of the cation of 3(791
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Table 4 Selected bond lengths (A°) and angles (°) for 4 and 3̂ ’*̂ 

For 4

F e - ^  1.909 (4) N—f e —N  180°

Fe— P(2) 2.2715(14)

Fe— PCD 2.2841(13)

C— N 1.133(7)

For 3

F e - ^ 1.927 (4)

Ffr— P(l) 2.206(2)

Fe— P(2) 2.214(2)

Fe— P(3) 2.203(2)

Fe— P(4) 2.203(2)

Fe— H 1.35(6)

G— N 1.133(7)

F W e - f l  172(3)°
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Figure 6  FTIR o f  4 in Nujol
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It was found that when a suspension of complex 1 in THF or CH2CI2 was mixed 

with an excess of HBp4*Et20 (molar ratio 1:5) (M ethod A), a clear yellow solution was 

obtained which showed only a sharp singlet (5 3.32 ) in the ^‘P{ *H} NMR spectrum. The 

same singlet also occurs in the ^‘P{ 'H} NMR spectrum upon adding a slight excess of 

HBp4»Et2 0  to a solution of complex 2 in CD2CI2 (molar ratio 1:1) (M ethod B). The ‘H 

NMR spectra of the solution offer no useful information because of the presence in the 

spectra of two very strong signals, probably from HBp4 *Et2 0 .

Since the presence of CH3CN in M ethod A leads ultimately to the formation of 

tronj-[Pe(CH3CN)2('n^-dppm)2][Bp4]2 , it is not unreasonable to believe that the singlet at 

5 3.32 is due to tronf-[Pe(T|^-H2)2(T|^-dppm)2][Bp4]2 , 5, formed in solution in both 

Method A [reaction (6)] and M ethod B [reaction (7)].

HBp4«Et20 (1:5)
tra«j-[Fe(H)2(Ti^-dppm)2] ►tranj-[Pe('n*-H2)2(Tl -̂dppm)2][Bp4]2 (6)

HBP4'E t2 0 (l: l)
rra/2j-[Fe(H)(Ti^-H2)(Ti^-dppm)2]'^ _________  ̂ troAW-[Pe(Tî -H2)2(Tl“-dppm)2][BF4]2 (7)

What is thought to be solutions of complex 5 are very stable in THF or CH2Q 2 in 

the presence of an excess of HBF4«Et20. Also in the presence of a very large excess of
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HBF4»Et20 (molar ratio 1:10), the replacement of a dihydrogen ligand in complex 5 by 

CH3CN is very slow and, furthermore, the ^‘P{ ‘H} NMR spectrum of the solution shows 

that it contains, initially, complex 5 and a mixture o f cis- and rranj-[Fe(CH3CN)2(T)'- 

dppm)2][BF4 ]2  (Spectrum 3). The formation of the cis-isomer is discussed in section VI of 

this chapter.

Based upon the above evidence, it is reasonable to conclude that a bis-dihydrogen 

complex of Fe(n) (complex 5) is formed under these conditions. An extensive literature 

search indicates that no bis-dihydrogen complexes o f iron have ever been reported.

Since protonation o f dihydride complexes by HBF4«Et20 is the normal method for 

the preparation of the corresponding dihydrogen complexes of transition metals and the 

use of a small excess o f HBF4«Et2 0  was emphasized in almost each synthesis, it occurred 

to this author that bis-dihydrogen complexes may be found (at least to some degree) in 

other analogous systems when the protonating acid is present in a large excess. It is 

noteworthy that ctf-[Ru(CH3CN)2 (dppm)2] [Bp4 ] 2  has been characterized in this 

laboratory^®’̂  as being formed under the same conditions as reaction (6) and that cis- 

[Ru(H2)2(dppm)2][BF4 ]2  was suggested to be the possible intermediate.

Attempts were made to isolate pure 5 in the solid state. However, when a large 

amount o f ether or hexane was added to the solutions obtained under the conditions of 

reaction (6), the main solid product obtained is complex 2. The ^‘P{ *H} NMR spectrum of
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Spectrum 3 NM R (CD3CN) spectrum o f the mixture obtained initially from
the reaction o f 1 with large excess o f  HBp4»Et2 0  (molar ratio 1:10) at room temperature

I  M i  i
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the product also showed a small residual peak at Ô 24. The reasons why deprotonation 

occurs during the precipitation process are not clear at this time. Efforts to obtain crystals 

of 5 in the presence of a large excess of acid were also unsuccessful. It appears that 5 is 

only stable in solution in the presence of acid.

1.6. rrfl«j-[Fe(H){Ti'-NC(CH2)2CN}(Ti"-dppm)2l[BF4], 6

The dihydrogen ligand of complex 2 can be easily replaced by succinonitrile under 

almost the same conditions as those used for acetonitrile in reaction (3).

succn

tranj-[Fe(H)(Tl^-H2)(Ti^-dppm)2][BF4] ------ ► tranir-[Fe(H)(succn)('n“-dppm)2][BF4] (8)

Complex 6 is very stable towards moisture and air. It is soluble in acetone, 

chloroform and methylene chloride to form stable solutions. The 'H  NMR spectrum of 

compound 6 shows the hydride quintet at 5-13.1 while the ^‘P{ ‘H} NMR spectrum 

shows a sharp singlet at 5 30.3 which confirms a trans geometry for the hydride and 

NC(CH2)2CN ligands. Two broad unresolved peaks (5 2.22, 1.93) due to the methylene 

hydrogens of the succinonitrile ligand located in the ‘H spectrum suggest monodentate 

coordination and this has been confirmed by X-ray diffraction (Figure 7). The data set for 

the structure was very poor due to the fact that 6 crystallizes in exceptionally thin plates
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Figure 7 Stmcture o f 6

N(6)
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and therefore, while the overall structure is valid, high R values mean that no accurate 

bond lengths and angles are available.

The coordinated succinonitrile shows a single, weak, broad and unsymmetrical 

signal in the IR spectrum which appears to be made up of at least two peaks at 2239 cm ' 

and 2228 cm ' due to Vo n - The Vc. n values are considerably reduced from that of the free 

ligand (2257 cm ') and also compared with the acetonitrile analogue. This suggests that 

there is relatively more tc back-bonding from the iron fragment to the succinonitrile ligand. 

However, the fact that 3 and 6 show almost the same chemical shifts for the Fe-H 

multiplet in 'H  NMR spectra and for the singlets in ^'P { 'H} NMR spectra, together with 

their very similar Vfc-h values, probably indicates the o-donation also dominates the iron- 

succinonitrile interaction in 6.

Compound 6 can also be obtained directly from [Fe(H)2('n^-dppm)2] in the 

presence of succinonitrile and an excess of HBF^^EtzO at room temperature.

HBF4«Et20 (1:3)
rranj-[Fe(H)2(Ti^-dppm)2] -------------------------- ► /ronj-[Fe(H)(succn)(T|'-dppm)2][BF4 ] (9)

succinonitrile

The initial purpose of employing succinonitrile instead of acetonitrile in this 

reaction was to attempt to trap out a cis complex with a chelating nitrile since there was 

clear evidence to suggest that c/r-[Fe(CH3CN)2(Ti^-dppm)2][BF4 ]2  was formed early in
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reaction (5), Possible reasons for the absence of a  cis product will be discussed in a later 

section.

1.7. rronj-[Fe(H)(py)(Ti^-dppm)2][BF4], 7

Replacement o f the dihydrogen ligand of complex 2 by pyridine [reaction ( 10)] is 

slower than that for the corresponding acetonitrile and succinonitrile reactions, possibly 

for steric reasons. The ‘H NMR spectrum of complex 7 shows a quintet (Fe-H) at 5 -17 

while the ^'P[ ‘H} NMR spectrum shows a sharp singlet at 5 20.3 which again reflects a 

trans arrangement of the hydride and pyridine.

franj-[Fe(H)(Ti^-H2)(T|^-dppm)2] [BF4] + py—>trans-[Fe(H)(py)(Ti^-dppm)2] [BF4] 4-H2 (10)

Unlike the nitrile complexes described above, product 7 is very labile and the 

pyridine ligand can quickly be replaced by CH3CN. It was also found that, surprisingly, 

dinitrogen can compete with pyridine for the coordination site if the reaction is carried out 

under a N2 atmosphere and for this reason, the synthesis of 7 must be carried out under 

Ar. Complex 7 is stable in pyridine for about 40 minutes after which replacement of the 

dppm ligand occurs. Good elemental analyses of 7 were not obtained because of its 

lability.
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The much higher field location of the hydride peak relative to that o f complexes 3 

and 6  in the ‘H spectrum of 7 possibly indicates that CT-donation dominates the iron- 

pyridine interaction in this complex. In addition, because the chemical shift o f the 

phosphorus singlet in the ^‘P{ ‘H} NMR spectrum was also found to move upfield relative 

to those of the CH3CN and succinonitrile analogues, it can be concluded that pyridine is a 

stronger a  donor than nitrile ligands where the N atom is sp rather than sp^ hybridized. 

The strong a-donor ability of pyridine apparently displaces electron density fi’om the iron 

center toward the P atoms of the chelating dppm ring. This, in turn, may cause first the 

dissociation of Fe-P linkages and, finally, replacement of the dppm ligand by pyridine as 

observed in this experiment

1.8. rrfl/ij-[Fe(H)(CO)('n^-dppm)2] [BF4], 8

The synthesis o f complex 8  by a direct substitution reaction [reaction (11)] was 

initially developed by another worker in these laboratories^**’̂ . It is a very easy reaction to 

carry out and the final product is very stable.

rra/iJ-[Fe(H)(T] -H2)(ti -dppm)2][Bp4] ------ ► rrwzj-[Fe(H)(CO)(T|^-dppm)2] [BF4] (11)
CO
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In complex 8, Vc.o is greatly reduced from 2143 cm ' (free ligand) to 1944 cm ' 

which reflects the strong 7C-backbonding from the iron site to CO. The 'H  NMR chemical 

shift of the hydride (5 -2.03) downfield compared with that of complex 1, together with 

the large downfield phosphorus shift (S 31.6) in the ^‘P{ *H} NMR spectrum, are also 

consistent with this effect However, Vpe-H (1710 cm ') in the IR spectrum of 8 remains at 

almost the same value as that of complex 1. It seems that the iron-hydride interaction has 

changed little when hydride is replaced by CO. Considering the apparently different 

characters of these two ligands, these phenomena are not easily explained (see Section n  

of this chapter).

It has been found by this author that complex 8 can also be synthesized by direct 

reaction of CO with 1 in the presence of an excess o f HBp4#Et20 [reaction (12)].

HBF4»Et20 (1:4)
rrwzf-[Fe(H)2(T]̂ -dppm)2] rranj-[Fe(H)(C0)(Tl^-dppm)2] [BF4] (12)

CO

There was also a small residual peak at 5 24 in the ^'P{ 'H ] NMR spectrum of the 

solution of the product, and contamination of this type has been discussed in section 1.2.

In spite of the presence of a large excess o f H^, it is interesting that only the mono­

carbonyl complex was obtained. The possible reasons for this result will be discussed in a 

later section.
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L9. rrans-[Fe(H)(N2)(Ti^-cippni)2][BF4], 9

Complex 9 was synthesized [reaction (13)] by the direct substitution of the 

dihydrogen ligand of complex 2 by N2 in solution.

fra/iJ-[Fe(H)(ii^-H2)(Tl^-dppm)2][BF4] ------ ► franj-[Fe(H)(N2)(il^-dppm)2][BF4] (13)
N 2

Complex 9 is very sensitive to moisture and decomposes in anhydrous acetone or 

chloroform to release dppm. It is stable for 24 hours in dry CH2CI2 solutions when kept 

under a dry N2 atmosphere. The expected hydride quintet for 9 is located at 5 -9.38 in the 

spectrum. The frawj-arrangement of the hydride and the dinitrogen ligand was 

confirmed by the presence of a singlet at 5 24.2 in the ^‘P{ 'H ] NMR spectrum.

Replacement of the H2 ligand by N2  shifts the signal due to the phosphorus atoms 

from 5 32.5 for 2 to 6 24.2 for 9 and shifts the hydride quintet in ‘H NMR spectra from 

5 -7 for 2 to 5 -9.38 for 9. It appears at first sight that N2 is a relatively strong a-donor 

and a poor rc-acceptor here. However, this is not consistent with the IR data. The Vx=x 

(2116 cm ') for 9 is greatly reduced relative to that of free N2 (2331 cm ') and this reflects 

the existence of considerable ti-backbonding from iron to dinitrogen since the a-donation 

from N2 can only cause the strengthening o f the N=N bond^^^l The Vfc-h (1713 cm ') for 9
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is close to that for 8 in which CO is an apparently strong tt-acceptor and this seems to 

support the strong rt-accepting ability of the N2 ligand in 9.

Complex 9 can also be obtained by the direct reaction of N2  with complex 1 in the 

presence of an excess of HBF4*Et20 [reaction (14)].

HBF4#Et20 (1:5)
[Fe(H)2(i1^-dppm)2] -----------------------► rranj-[Fe(H)(N2)(ri^-dppm)2][BF4] (14)

N2

Note again that there is a large excess of acid in this reaction, and even though the 

presence of complex 5 in the initial solution was confirmed, no evidence for the formation 

of a bis-(N2) product was obtained. The possible reasons for this are discussed in a later 

section.

1.10. Tranj-[Fe(H)(Ti^-CH2=CH2)(Tl^-dppm)2][BF4]«0.5CH2a2,10

As discussed in the introduction chapter o f this thesis, ethylene is a good electron 

donor for the displacement of H2 in dihydrogen complexes and several [FeH(C2H4)(bis- 

phosphine)2]^ cations are known. Thus, when complex 2 is exposed to an ethylene 

atmosphere, the dihydrogen ligand is replaced gradually by C2H4 to give [reaction ( 15)] 

the product 10 which was identified mainly by its *H and ^'P[ *H } NMR properties.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C 2H 4

rra/iJ-[Fe(H)(Ti^-H2)(T|^-dppin)2][BF4] —► fronj-[Fe(H)(T|̂ -C2H4)(Tl^-dppm)2][BF4] ( 15)

As with other substitution reactions involving 2, the successful formation of 10 

requires anhydrous conditions. The ethylene ligand of complex 10 can, in solution, be 

slowly replaced by N2 when it is exposed to a dinitrogen atmosphere and therefore its 

synthesis requires a pure ethylene atmosphere. In solution, complex 10 can be quickly and 

irreversibly converted into complex 3 when CH3CN is present even in trace amounts. The 

solid form of 10 is also very sensitive to moisture. Complex 10 also decomposes in 

undried deuterated solvents to release free dppm. However, it is soluble in dry solvents 

(acetone, methylene chloride and chloroform, for example), to form stable solutions. In 

methylene chloride, it was found to be stable for 24 hours when kept under a dry Ar 

atmosphere and crystals could be obtained by the layering of hexane over the solution. 

However, the needle shaped crystals obtained were too small for an X-ray crystallographic 

structure determination although good elemental analyses were obtained for the CH2Q 2- 

solvated crystalline product. Because of time constraints and because adequate structural 

information was available from spectroscopic studies, further efforts to obtain X-ray 

quality crystals were not made.

Considering now the spectroscopic information, the presence of a singlet at 5 3.18 

for the protons in the coordinated ethylene ligand in the *H NMR spectrum indicates that
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the coordination mode of ethylene in complex 1 0  is side-on which is analogous to the 

geometry of the dihydrogen complex 2. The signal due to the hydrogens in coordinated 

CH2=CHz is moved upfield relative to that o f the free ligand (5 5.3) and this may be due 

to the iron to C2H4 tr-backbonding and the consequent change in hybridization at the C 

atoms. It has been established by X-ray structural studies^“  ̂on, for example, related 

tetracyanoethylene complexes, that the C=C bond is weakened as the backbonding from 

the metal to olefin increases and the hybridization of the carbon atoms in the complex may 

approach an sp^ arrangement giving rise to the observed upfield shift of the ethylene 

protons in the ‘H NMR spectrum of 10. The signal due to the trans Fe-H multiplet in the 

‘H NMR spectrum is shifted significantly downfield compared with that of complex 2 (S - 

7.21 to Ô -1.78) and is also downfield relative to that o f 8 . This might also suggest that tc- 

backbonding is an important feature of the iron-ethyiene interaction. The Vpe.H (1714 cm ') 

for 10 in the IR spectrum, close to that for 8 , seems to support this deduction.

As expected, complex 10 can also be obtained by the direct reaction of ethylene 

[reaction (17)] with complex 1 in the presence of an excess of HBF4«Et2 0 .

HBF4*Et20 (1:5)
rranf-[Fe(H)2(Tl^-dppm)2]---------------------- ». rronj-[Fe(H)(C2H4)(T|^-dppm)2][BF4] (17)

C2H4
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A possible reason for the absence of a bis-ethylene product in this reaction will be 

discussed in a later section.

1.11. The reactivity of complex 2 toward propene, cis-2-butene and styrene

The Hz of 2 is not displaced by propene, cis-2-butene or styrene under the same 

reaction conditions as have been described for complex 1 0 .

It is thought likely that the inertness o f complex 2 towards propene, cis-2-butene 

and styrene is probably due to the steric interactions between these ligands and the phenyl 

groups on the dppm.

n. Electronic Interactions of Different Substituents with Iron

It is clear from experimental evidence that the iron-dppm fragment, [Fe(Ti^- 

dppm)z]^\ can accommodate different kinds of ligands and that the ligands prefer 

positions trans to each other. Two types of coordination mode of the trans ligands, side- 

on and end-on, were found in the new complexes. The complexes in which the trans 

ligands adopt the side-on mode are, as expected, rranj-[FeH(H2)(dppm)2][BF4] 2 , trans- 

[FeH(C2H4)(dppm)2][BF4] 10 and rranj-[Fe(H2)2(dppm)2 l [Bp4 ]2  S. The trans ligands in 

the remaining complexes were found to take the end-on mode.
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Attempts have been made in the earlier sections to account for the spectral 

properties for each compound. At this point it is worthwhile to summarize the spectral 

variations for the complexes with the form of rranj-[Fe(H)L(dppm)2l"  ̂(n= 0  or 1 ) and to 

include the closely related compound [Fe(H)(Cl)(dppm)2] from previous work. This is 

done in Table 5.

Table 5 Spectral data for rronj-[Fe(H)L(dppm)2]'’̂  (n=0 or 1 )

Complex 3 6 7 1 0 9 1 8 2

L MeCN succn py C2H4 N2 H* CO H2

Vfc-H** 1889 1880 1881 1853 1714 1713 1711 1710 1708

S'H(Fe-H) = -2 1 . 2 -13.0 -13.1 -17.0 - 1 . 8 -9.4 -7.0 -2 . 0 -7.2
53Ipc 24.2 29.8 30.3 22.7 32.8 24.2 24.0 31.6 32.5

[ '’ ref 6 b, c m ', " CD2Q 2 or CH2CI2, room temp]

As mentioned earlier in this thesis, there has been considerable discussion 

regarding the extent to which metal ions undergo 7C-backbonding to the dihydrogen ligand. 

It was hoped that the above series of compounds would allow changes in these spectral 

parameters to be related to changes in the iron-ligand bonding pattern. The above data 

(particularly concerning VpcHand ô 'H) fall into two groups. First, when the Fe is 

coordinated to any of the four a-donor ligands (Cl, MeCN, succn and py) with relatively 

weak trans effects, the trans hydride is both strongly bound (highest Vfc-h, 1853 - 1889
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cm ') and highly shielded (S most upfield). In the second group, containing either H’ or 

good jc-acceptor ligands (CO or C2H4) (all of which have a strong trans orientation 

ability), the Vf«:.h values indicate a weaker Fe-H bond. The weakening of the Fe-H bond in

1 is most probably the direct result of the trans effect o f the two hydrides^*”’. For example, 

the Fe-H bond length changes from 1.35(6) A° in 3̂ ” * to 1.56(8), 1.58(8) A° in 1̂ *** 

consistent with the difference in the trans effect between MeCN and H". The rt-acceptor 

ligands cause a significant deshielding of the trans hydride, relative to the hydrides o f the 

first group, consistent with the drain o f electron density from the iron. It appears from the 

Vfc.h values that the bonding o f N2 in 9 behaves in a similar fashion to CO and C2H4 and 

this is further supported by the significant weakening of the N2 bond (Vn.n reduced from 

2331 cm ' in free N2 to 2116 cm ' in 9) though the effects o f these ligands on the chemical 

shifts of the trans hydride and the phosphorus atoms are quite different. The Fe-H bond in

2 appears comparable in strength to others in this second group. This suggests a relatively 

strong 7C acceptor role o f H2 in this complex which is also consistent with a lengthening of 

the H-H bond, calculated to be 0.92 A° in 2 (see previous section). It appears from 

experimental evidence that the formation of the dihydrogen ligand in complex 2  has little 

effect relative to the dihydride complex upon the Fe-H bond and the 'H  chemical shift of 

the trans hydride. Thus, the electronic environment around this trans hydride is still 

suitable for further protonation. This probably explains why the first bis-dihydrogen
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complex reported for iron, 5, can be synthesized. The great stability of complex 5 in 

solution confirms again that Hz has little effect on its trans ligand. The large chemical 

shift for 5 upfield relative to that of 2 may suggest that dihydrogen ligands can have a 

significant effect upon the electronic environment of neighbouring phosphorus atoms 

although the nature of this effect remains unclear.

Comparing this work with previous work, the Fe-phosphine interaction is found to 

change markedly with different types (i.e., different a-donor and/or 7C-acceptor ability) of 

coordination ligand. For example, the Fe-P bond lengths decrease significantly from 

2.316(3) - 2.290(2) in rronj-[Fe(a)(CO)(Ti^-dppm)2][FeCl4 ] to 2.2841(13)- 

2.2715(14) A° in rranj-[Fe(CH3CN)2(Tl^-dppm)2][BF4 ]2  4 to 2.214(2)-2.203(1) in 

rranr-[Fe(H)(CH3CN)(Ti^-dppm)2][BF4] 3 to 2.172(2)-2.153(2) A° in rronr- 

[Fe(H)2(Tl^-dppm)2] 1 In this series the overall increase in the a-bonding capabilities of 

the trans ligands is accompanied by a corresponding decrease in the Fe-P bond length. 

This is probably due to the fact that trans ligands with strong a-donation ability (e.g., two 

H' in 1) make the iron-center more electron-rich than those with weak a-donor ligands 

(e.g., CO and Cl' in rranr-[Fe(Cl)(CO)(T|^-dppm)2][FeCl,] ). This could result in 

strengthened Fe-P d^d„ bonding arising from overlap of filled Fe 3d orbitals with vacant 

orbitals of the phosphorus atoms. The chemical shift of the P atoms in the same series is 

10.3, 14, 29.8 and 24 respectively, which at first sight suggests a reverse trend although
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the chemical shift o f 29.8 for 3 is anomalous. However, since many factors can affect the 

electronic and magnetic environment of phosphorus atoms, this probably illustrates the 

difficulties of attempting to correlate electronic factors with ^'P { ‘H} NMR data.

in. The Nature of the Hg Site and the Stability of Complexes Derived 

therefrom

The dinitrogen complex 9 shows V n .n  at 2116 cm '. This is within the limits of 

2060 to 2150 cm ' suggested by Morris^^* as an indication for the existence of a stable 

dihydrogen complex. Since Vn.n is close to the upper limit, it appears that the electron 

density at the iron site in the fragment [Fe(H)(T|^-dppm)2]* is somewhat poor.

Though a series of derivatives of the type [FeHL(dppm)2] [BF4] can be obtained 

through simple H2 replacement reactions, the resulting complexes exhibit quite different 

stabilities in solution. It was found in this work that the H2 coordination site has an 

exceptional preference for nitriles and for example, acetonitrile quickly and irreversibly 

displaces H2 , N2, C2H4 and pyridine from their corresponding complexes. The analogous 

substitution reactions of CO were not investigated in detail in this work but the complex 

[FeH(CO)(dppm)2] [BF4] is stable in CD3CN for several days. This suggests that it is even 

more stable than the acetonitrile analogue (see the introduction to this thesis).
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The relatively unstable ethylene complex (with respect to the replacement of 

ethylene by other ligands) suggests that side-on coordination may be sterically strained 

even with C2H4, and more bulky olefins do not coordinate at all.

IV. The Equilibrium between Complexes 1 and 2 and Intramolecular 

H Exchange between Dihydrogen and trans Hydride Ligands

Both hydride-dihydrogen equilibria and site exchange between hydride and 

dihydrogen have been discussed in the introduction to this thesis. In this context, the ‘H 

and ^‘P{ ‘H}NMR spectra of complex 2 in Œ 2Q 2 were monitored at various temperatures 

in this work. The ‘H NMR spectra showed an unchanged picture, with a broad singlet at 5 

-4 and a clear quintet at 5 -7.2, within the temperature range 220 K to 299 K (Spectrum 

4). There were also no changes observable in the ^‘P{ *H}NMR spectra. Thus, within the 

investigated temperature range, it appears that neither an equilibrium between dihydrogen 

and dihydride complexes is present nor does the intramolecular hydrogen exchange 

between dihydrogen and hydride ligands takes place in solution for 1  and 2 .

As mentioned in the early part of this thesis, no equilibria phenomena have been 

observed in iron-dihydrogen complexes with more than two hydrogen atoms and this is 

probably due to the high energy barrier to rearrangement of the phosphine ligands. 

However, intramolecular H exchange between H2 and hydride were observed in almost all
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Spectrum 4 The invariant *H NMR spectrum of 2 over the temperature range 

220 K to 299 K
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related systems, as mentioned before, including dppe, depe and dmpe complexes. The

reason that it was not observed for the dppm analogue is probably because the energy

barrier for this process is larger. A coalescence temperature of 340 K was reported in

Morris’ review^^  ̂for complex 2 which is higher than for the dppe analogue (313 K). 

However, in this work, it was found that complex 2 is only stable in CH2CI2 for which the

boiling point is 313 K. The coalescence temperature for this intramolecular H exchange

was not measured in our instrumental lab because such a measurement may impair the

equipment.

The high energy barrier to intramolecular H exchange in complex 2 probably 

indicates that chelation of the dppm ring to iron is more stable than for the dppe analogue. 

Considering the apparent strain of the four-membered dppm ring, it is reasonable to 

assume that the cis effect of the coordinated H2 , as discussed in Section n , should play an 

important role in stabilizing the ring through delocalizing the electron density on the 

phosphorus atoms.

V. The Mechanism for the Formation of Complexes 4 and 5

Experimental evidence acquired in this work seems to support the idea that the 

protonation of complex 1 to give complex 5 in the presence of an excess o f HBF4*Et2 0  is 

a stepwise process.
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The main evidence for this is (a) when the reaction outlined in reaction (4) is 

quickly stopped at the beginning, a mixture of products is obtained which includes trans- 

[FeH(CH3CN)(dppm)2][BF4], 3, and both cis- and rran^-[Fe(CH3CN)2(dppm)2][BF4 ]2  

(Spectrum 1); (b) the initially formed complex 3 was found to change gradually into 4 

(normally 2 to 3 hours under acid; 24 hours in the presence of an excess of CH3CN) and 

(c) at low temperature (-30 °C), only the mono-acetonitrile complex 3 was obtained from 

the process outlined in equation (4).

It appears that the protonation of the second hydride is an endothermie process 

and that the rate is a little slower than for the first hydride’s protonation. The probable 

mechanism for the formation of the cation complexes of 4 and 5 is outlined in Scheme 3.

IT IT
/ranj-[Fe(H)2(dppm)2] ----► frnnj-[FeH(H2)(dppm)2]^-----► tron -̂[Fe(H2)2(dppm)2]^^

1 relatively slow

CH3CN

rronj-[FeH(CH3CN)(dppm)2]

CH3CN (fast)

CH3CN
frnnj-[Fe(H2)(CH3CN)(dppm)2]-—► trans-[Fe(CH3CN)2(dppm)2] '̂^

fast 4

Scheme 3 (showing only the cations)
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It is worth noting that rro«j-[Os(H2)(CH3CN)(dppe)2][BF4 ]2  has been synthesized 

through the protonation of fnzns-[0 s(H)(CH3CN)(dppe)2][BF4 ] This seems to support

the proposed stepwise protonation and substitution mechanism.

VI. Explanation of the Formation of cw-[Fe(CH3CN)2(dppm)2][BF4]2

When the reaction outlined in reaction (4) was quickly stopped at the beginning, 

the resulting mixture, as noted earlier, also contained the unexpected complex cis- 

[Fe(CH3CN)2(dppm)2][BF4 ]2  which was found to change quickly to trans- 

[Fe(CH3CN)2(dppm)2] [Bp4 ]2  if it remained in the reaction solution or if the mixture of 

solid tetrafluoborate salts was redissolved in an excess of CH3CN. The same phenomenon 

was also observed when monitoring NMR spectra of the reaction solutions without 

isolation of any of the products. This complex is the only c/j-complex observed in all of 

the experiments described in this thesis though it appears to be a by-product with only 

limited life. Efforts to isolate the pure complex were not successful. However, it was 

found that when complex 1 was treated in an excess of CH3CN and a moderate excess 

(molar ratio 1:5) of HBF4*Et2 0 , a mixture of only cis- and trans- 

[Fe(CH3CN)2(dppm)2][BF4 ]2  was obtained and the percentage of the c/s-isomer was 

significantly greater than that obtained in other reactions (Spectrum 5).

The formation of the cis isomer apparently requires the opening and rearranging of 

the dppm ring. Although, as discussed earlier, dppm shows a strong affinity for iron in the
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spectrum 5 NMR (CD3CN) spectrum o f the mixture obtained initially 
from the reaction o f  1 with a moderate excess o f  HBF4«Et2 0  

(molar ratio 1:5) at room temperature
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investigated systems, opening of an Fe-P bond could be possible in the presence of an 

excess of acid because may promote or stabilize this opening by protonating one 

phosphorus atom in dppm. It is noteworthy that in the presence o f HX (X=C1 or Br), the 

rapid opening o f the chelating dppe ring with iron and further protonation of one pendant 

phosphorus atom have been observed during investigations of the complexes 

[FeHX(dppe)z] (X=CI or Br)^“ ^

One possible mechanism for the formation of cty-[Fe(CH3CN)2(dppm)2][BF4 ]2  is 

outlined in Scheme 4.

u /
+ ir PH^Fe

H

2+2+NCCH3

NCCH-

NCCH3 

Schem e 4

H
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Alternatively, ring opening and further rearrangement may occur after the first 

protonation forming the complex 2 (Scheme 5).

+ irFe
/
■n

H H
(L=Hz or MeCN)

Scheme 5

Both Schemes 4 and 5 can well explain why the yield of the cis product can be 

improved in the presence of a large excess of acid. Since, in solution, complex 1 only has 

limited stability and appears to be more readily able to release dppm compared with 

complex 2, the strain in complex 1 may be larger than that in complex 2. Scheme 4 is 

therefore probably more reasonable than Scheme 5.
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V n. Explanation of the Reactions of Complex I toward CO, N2 and 

Succinonitrile in the Presence of an Excess of HBF êEtzO

Under the same experimental conditions as those outlined in reaction (4) for the 

synthesis of complex 5, the reactions of complex 1 with L (L=CO, N2 and succinonitrile) 

only produced the mono-substituted complexes rraRy-[Fe(H)L(dppm)2][BF4]. This result 

is unexpected because the bis-dihydrogen complex 5 was clearly present in the reaction 

solution under these conditions. In addition, it has been predicted from studies of 

Mossbauer spectroscopic quadrupolar splitting patterns for a series of six-coordinate low- 

spin iron(II) complexes containing bidentate phosphine ligands^^^ that at least the two 

complexes, rranj-[Fe(CO)2(dppm)2][BF4 ]2  and nwzj-[Fe(N2)2(dppm)2] [Bp4]2, should be 

stable.

One possible explanation why the bis substituted products were not observed is 

that both the formation and the substitution of complex 5 are stepwise reactions. After the 

substitution of the first H2  ligand in 2 or 5 (see Scheme 3) by L (L=CO, N2 and 

succinonitrile), L was polarized because of Tt-backbonding (or, more likely, the effect of 

the trans hydride) and a further protonation or strong interaction with IT’ probably 

occurred at the more negative atom in L. Thus, the electronic situation of the site for trans 

hydride or dihydrogen ligands was changed to a more highly oxidized state and this made 

either the formation of the H2 on the trans side unfavored or encouraged the
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deprotonation of the trans Hz ligand resulting in the impossibility of a second substitution 

by L.

As an example of the first o f these explanations, it is known that protonation of 

coordinated dinitrogen occurs for several iron dinitrogen complexes^^^ * '̂* .̂ For example, 

rrans-[Fe(H)(N2)(dmpe)2][BPh4] (VhkN=2106 cm ') can react with HCl/alcohol to give 

ammonia^^^l The Vn.n (2116 cm ') for complex 9 is close to the dmpe analogue and so the 

protonation or at least the interaction between H^and N*'=N^- Fe is possible in the dppm 

case.

The protonation of nitrile ligands in the complex [ReCl(NCR)(dppe)2] (R=aryl) by 

HBF4*Et2 0  is preferred to protic attack on the metal center^®*'. Although there is no 

experimental evidence to show that the same protonation can also occur with these iron- 

nitrile complexes, it is not unreasonable in the succinonitrile complex since Vc*n for one of 

the two C^N bonds is 29 cm ' below that o f the free ligand and it possesses non-bonding 

electrons. At the very least, a relatively strong attraction between and the nitrile ligand 

may exist

Although there is no direct evidence for strong interaction with (or 

protonation) with the CO of 8 , this is again not unreasonable since CO behaves as a 

strong ic-acceptor and the Vco of 8  is greatly reduced compared with that o f free CO.
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Thus the interactions between and the substituent ligands may be responsible 

for the unexpected experimental results. This is also consistent with our current 

understanding that a proper electron density on the site is imperative for %  coordination.

It is noteworthy that although complexes 6 , 8  and 9, synthesized by the direct 

reactions with complex 1 in the presence of an excess of HBF4#EtzO, only show a singlet 

in their ^'P{ *H} NMR spectra, the carbon content in their corresponding elemental 

analytical results are always lower than the calculated values. The presence of protonated 

substitution ligands is possibly responsible for this error.
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Suggestions for Further Work

Although the dihydride and the dihydrogen complexes of iron with dppm as the 

supporting scaffold, and a series of their derivatives, have been synthesized and 

characterized in this work, attempts to elucidate details of the interactions between iron 

and some substituents (e.g. Hz and Nz) have not been successful. Some meaningful work 

was not continued because o f time constraints. Thus, the following points are suggested 

for further research work;

1. Further studies on Fe-L interactions (L= H z, Nz and C2H4)

It was found in this work that complexes 2 ,9  and 10 are stable for at least 24

hours in dry CHzClz under the appropriate gas atmosphere. It should be possible to obtain 

suitable crystals for X-ray diffraction studies. Details of some key bond lengths may help 

to clarify the interactions in these complexes.

2. Further efforts to obtain the solid form of complex 5

While solutions of complex 5 are very stable in the presence of an excess of

HBF4«EtzO, solid 5 was not isolated in this work. Additional crystallization methods, e.g..
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using different size anions or different protonation acids should be attempted in an effort 

to isolate this valuable product.

3. Characterization of the unknown residue during the synthesis of complex 4

As mentioned in the Results and Discussion chapter, a  filtration is needed during 

the synthesis of 4 to remove an uncharacterized peach-coloured product insoluble in 

CDzClz. Most of this dissolves in CD3CN to give 4. The unknown residue may be 

significant since it is produced during the formation and the further substitutions o f the 

dihydrogen ligands of complex 5. Characterization of this residue may help in the further 

understanding of the bis-dihydrogen complex of iron.
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