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Abstract

This thesis is concerned with the design and implementation o f a real-time robotics 

simulator with three-dimensional graphics. The simulator allows for internal or external 

control o f a number o f robotic manipulators with revolute or prismatic joints. These 

manipulators may interact with each other and other objects in the simulated environment. 

All objects in the simulation will have physical properties such as mass and fragility, and 

can exert forces upon each other. An external program is planned to allow easy 

construction o f models from an assortment o f pre-designed pieces.

This thesis describes four areas o f the simulation in detail The first o f these is the 

modelling scheme used to represent objects in the simulation. The second is the actual 

simulation design. The third is a discussion on the use o f external programs to control the 

simulation. Last is a summary of the programming environment and how it relates to the 

simulation.

IV
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1. Introduction

Testing a control algorithm or studying the dynamic properties o f a robotic system 

requires either experimental mq)lementation or computer simulation. Experimental 

in^lementation is not always available, as in the use o f robotics in space applications. 

When experimental implementation is possible, it might be too expensive to allow its use.

Conq)uter simulation with animation offers an alternative that gives the feel o f a 

physical experiment, with the benefit o f low cost, easy reconfiguration, and a quick 

turnaround time for development o f new control algorithms.

This simulation is a discrete event simulation system. By this I mean one in which 

a phenomenon o f interest changes value or state at discrete moments of time rather than 

continuously with time. Discrete event simulation was chosen over continuous simulation 

for this project for a number o f reasons. The first is that animation is inherently a discrete 

process. Animation is a sequence o f still pictures, or fiâmes, displayed at discrete 

moments o f time. Continuous simulation could be used, but discrete simulation maps in a 

natural way to the process o f rendering and displaying frames of animation. The second 

reason is the object-oriented nature o f the simulation. Messages moving firom one object 

to another are discrete events themselves, and fit nicely into a discrete event simulation.

An object-oriented approach was used in the design and implementation o f this 

simulation. Object-oriented means that data in the corr^uter is represented as a collection 

o f objects that communicate with each other by sending messages to one another 

[BUDD91]. This approach was chosen over traditional structured programming for a 

number of reasons. First, modelling the physical components as objects within the 

simulation allows for easy understanding o f their relationships. For example, a joint is a 

physical object that can move manipulator components upon receiving a signal to do so. 

In the simulation, the Joint object can accept a command to change angle or position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When this message arrives, it will move the appropriate structure to simulate the same 

joint motion that would have taken place in the physical components.

The second reason comes from the hardware we used. The simulation hardware 

environment is a NeXT workstation. The NeXT was designed to work with objects. Its 

operating system and development environment are aimed at creating object-oriented 

programs.

The simulator that was constructed can model any manipulator that can be viewed 

as a collection o f convex polyhedra and either revolute or prismatic joints. It allows for 

pre-programmed or interactive control o f all joints within the simulation. The 

manipulators can interact with each other and other objects in the environment. 

Simulations o f moderate complexity (under 200 polyhedra) can be run with frame rates o f 

approximately 10 frames per second on the NeXT TurboStation. Simulations o f greater 

complexity will still run, but with a lower frame rate on the NeXT TurboStation.
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1.1. Thesis Organisation

Chapter 2 discusses the details o f how the simulator models the physical objects 

that are to be simulated- The objects are made up o f rigid collections o f convex 

polyhedra, connected by joints. These joints can be either prismatic or revolute. Collision 

detection is performed by process o f elimination using bounding spheres, then polyhedra 

to polyhedra intersection. Kinematics is discussed as a means o f determining joint 

positions and tool paths.

Chapter 3 covers the process o f defining the models. The simulator is designed to 

use simple ASCII formatted files for input. A possible translator fi*om AutoCAD is 

discussed. The groundwork is laid for a custom design package for robotic system design 

using off the shelf parts.

Chapter 4 is an introduction to the simulator and how it can be used. Detailed 

instructions are given for each aspect o f preparing for and executing a simulation run. The 

simulator allows for detailed time triggered joint motion and dynamic camera control It 

also can be used to generate a sequence o f scene description snapshots. These snapshots 

can be photorealistically rendered using RenderMan to produce an animation of the 

simulation run for later viewing.

Chapter 5 covers the use o f external programs to control the simulator, or to 

prepare command sequences for it to execute. The different types of control programs 

(pre-programmed, interactive, and feedback based) are discussed and compared.

Chapter 6 gives an in-depth look at the internal working o f the simulator. There 

are fourteen basic object types that make up the simulation. What each o f these does, and 

how they communicate with each other using messages are discussed. The timed event
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processing that makes this a discrete event simulation is detailed, along with the sequence 

o f events that occurs once the "Play" button has been pressed to start a  simulation run.

Chapter 7 discusses the programming enviromnent and why the NeXT was chosen 

as a base for the simulator. Development tools such as Project Nfenager and Inter&ce 

Builder are given. A brief outline o f the advantages o f Objective-C over other languages 

is presented, along with sançle code. RenderMan is a powerful three dimensional 

rendering tool, and its availability was the main reason for choosing the NeXT. NeXT 

also has a good collection o f inter-application communication tools, which allow for easy 

integration o f external control programs. Finalfy, the operating system and hardware 

specifications are given.

Chapter 8 is the conclusion o f the entire project. The problems and results o f the 

project are discussed. Future directions and possible enhancements are given. One of 

these, the Robot Construction Kit, would greatly enhance the usefulness o f the simulation 

by allowing the user to simulate robotic systems that use readily available components.
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2. Related Works

There are many other robotics simulators available, both commercial^ and publicly 

accessible. This section gives a  brief overview o f some o f these simulators. It is by no 

means an exhaustive list.

Commercial Simulators

ADAMS: Mechanical Dynamics Inc. ADAMS is a general purpose dynamics 

simulator for UNIX. You can use this package to simulate any type o f mechanism, 

including but not limited to robotics systems. Given a model o f the system, ADAMS 

builds a set o f equations and solves it through time. It can handle static, quasi-static, 

dynamic and kinematics simulations. It uses its own windowing system, and has a strong 

inter&ce. It is difficult to leam, and at times requires FORTRAN programming to take 

full advantage of the features.

Workspace: Robotics Simulations Ltd. Workspace is an industrial robot simulator 

that runs on the IBM PC. It is designed to allow for the off-line programming o f many 

different industrial and educational robots. It has a library o f standard robots, and allows 

for interactive design o f new robots. While a simulation is running, the user is able to 

view forces and torques generated as well as a graphical view o f the system being 

simulated. Motion commands can be feirly corqplex, and the operating parameters o f all 

mechanisms is fully specifiable.

Publicly Available Simulators

EROS: JPL, NASA. EROS (Erann's Robot Simulator) is designed to simulate 

mobile robots on the Macintosh. It uses a construction kit approach to building robots to 

be simulated. The user builds both the robot and the environment, and then programs the 

robot to perform tasks in this environment. It was inspired by a truck simulator by Hanks
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and Firby, but is designed to operate at a lower level than TruckWorld. This allows for a 

more realistic simulation.

Simderella: Simderella is a multipart simulator for UNIX. There is a display 

module, a simulation module, and a control program. The modules communicate using 

UNIX sockets, which allows a distributed simulation. The modular approach allows for 

easy upgrading and conversion. If  a kinematics controller is desired, that can be used. A 

neural net based controller with feedback from the simulator could be substituted and the 

results conçared. The program can also be used to simultaneously send control signals to 

the simulated robot and a real robot.

Other Simulators

MAGIK; NASA Johnson Space Center Automation Robotics and Simulation 

Division (JSC AR&SD). The Manipulator Analysis Graphic Interactive Kinematic is the 

primary tool used by AR&SD, Mission Operations Directorate and the International Space 

Station for manipulator task analysis. It allows the users to conduct kinematic analysis for 

robotic operations, in both pre-programmed and user controlled modes. It can handle 

multiple manipulators, multiple viewpoints. Simulated cameras can be inserted into the 

simulation space and manipulated to give a realistic point o f view to the simulation. The 

Canadian Space Agency has chosen to use MAGIK as the base for their Operations 

Kinematics Simulator and to train astronauts for mobile servicing of space vehicles.
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3. Three-Dimensional Modelling and Motion

A robotics system is a controlled interaction between moving objects. How the 

objects are represented is an important fecet o f the simulation. In this system, a 

hierarchical system is used to represent the objects being moved. Each object is broken 

down in the extreme into a collection o f joints and convex polyhedra. Bounding spheres 

are used for both main items and each subitem to allow for rapid collision detection.

The motion o f the objects in the simulation is time based. At regular intervals, the 

system updates the position o f each object. As a joint may be scheduled to move over a 

long time period, the current time is determined, and motion proportional to the elapsed 

time is performed.

Each time an object is moved, it must be checked for collision with other objects. 

The hierarchical nature o f the objects being moved makes a series o f bounding spheres a 

natural way to quickly eliminate most o f the objects involved. Any that are still suspected 

of collision are checked in detail

Programming motion on a joint by joint basis is tedious and difBcult at best. 

Because o f this, the system has been designed to interfece with other programs. These 

external programs can either be used to generate a file containing pre-programmed joint 

motions, or to interactively control the simulation by feeding it joint motions on the fly. In 

either case, the external program can get feedback firom the system to determine where 

objects are at a given time.
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3.1. Representation of Objects

There are two kinds o f objects referred to in this project. The first o f these is 

programming objects vfoich are discussed in section 6.1. The second is abstract things 

that are intended to represent physical objects. We discuss the second class o f objects in 

this section.

Objects in the simulation are made up o f an ordered collection o f items and joints. 

Each item is a rigid entity made up o f subitems that are fixed in position relative to each 

other. Items are connected to one another by joints.

Subitems are convex polyhedra. They are represented as a collection o f vertices 

and feces. To save space each vertex is stored only once and each fece is made up o f an 

ordered list o f vertex indices. The vertices that make up a fece are ordered in such a way 

that the outside can easily be determined.

Each subitem maintains a central point and normal vectors for each fece. Both are 

used for collision detection. A  radius o f a minimum bounding sphere, centred around the 

central point is stored. Physical properties o f the subobject, such as tensile strength, 

colour, and mass are included. Since the subitem is a convex polyhedron, the central point 

can be chosen to be the centre o f mass for the subitem to simplify calculations. (If the 

subitem were not a convex polyhedron, the centre o f mass might not be on the inside of 

the subitem.)

Subitems are defined relative to the origin. When loaded in, all vertices can be 

multiplied by a transform matrix to define the initial position and orientation o f the 

subitem. Since this is only done at load time, the transform matrix does not need to be 

stored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An hem maintains a  linked list o f subhems. The subhems are considered to be 

rigidly positioned whh respect to each other within the hem. It also has an over all 

bounding sphere defined by a central point and a radius. The central point is picked to 

represent the centre o f mass. To speed calculations, the entire mass o f the object is stored 

here as w ell A transformation matrix is stored for the entire object. This transformation 

matrix is used whenever the object needs to be redrawn, and for collision detection. An 

hem also stores force vectors for each o f the major axis o f motion and rotation. These are 

used to resolve collisions.

A joint is made up o f an axis defined by two vertices, a poshion which is relative to 

hs original state, and pointers to all hems that are attached to the joint. If the joint is 

prismatic, the axis defines the movement vector that the attached parts will slide along. If 

the joint is revolute, the axis is the axis o f rotation. One o f the pointers is the base for the 

joint. It is considered to be a fixed object when the joint moves. The remainder o f the 

pointers indicate which hems and joints will have to be updated when the joint changes 

poshion. An example o f this is a wrist joint in a person. The arm would be the base, since 

moving the wrist does not affect the arm. The position o f the hand, fingers, and knuckles 

will be changed if the wrist joint moves.

The entire simulation is made up o f two arrays, one o f joints, and the other o f 

items. Together, these define all the physical objects that can interact in this simulation.
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3.2. Types of Motion

There are two main types o f motion, revolirte and prismatic. Each can be 

described as a simple co-ordinate transform matrix.

Translation is performed differently (as an addition o f vectors) from rotation (as 

multiplication o f a vector and a matrix). If points are expressed as homogeneous 

coordinates, both transformations can be treated as multiplications. For a point to be 

converted to homogenous coordinates, a fourth coordinate is added. Instead o f (X,Y,Z), 

we now have (X,Y,Z,W). Two sets o f homogeneous coordinates (X,Y,Z,W) and 

(X’,Y’,Z’,W’) represent the same point if and only if one is a multiple o f the other. Also, 

at least one o f the coordinates must not be zero: (0,0,0,0) is not allowed. Because we are 

now using four coordinates to represent a point, we must use four by four matrices for the 

transformations [FOLE90].

Prismatic motion is translational motion. It has no natural equivalent. It can be 

best described as two members sliding over one another. There is a sinq>le matrix 

describing the motion:

0  a  d x  

0  \  0  d y

0  0  \  d z

0 0 0 1

where dx, dy and dz give the change in position.

10
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Figure 3.2-1 : Example o f translational motion

Revolute motion is similar to joint motion in nature. It is the revolution o f a 

member around a pivotal axis. There are three main cases, each getting more specific, and 

each requiring a more complicated matrix to express it.

Figure 3.2-2: Exançle o f revolute motion

The first o f these is rotation around one o f the three primary axis. For the X-axis 

case, the resulting matrix is:

" 1 0  G O  
0  cos^ - s in ^  0 

0  sin(!) cos^ 0 

G O  G 1

where (j> is the angle o f rotation. The matrices are similar if either the Y-axis or Z- 

axis is the axis o f rotation.

The second is rotation is around a vector that passes through the origin. In this 

case, the procedure has four steps. First, a matrix A is determined that would bring the 

non-origin point to one o f the major axis. This matrix is made up o f the product o f the two

11
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matrices needed to align the object with an axis. (The first o f these, A l, will move the 

point into one o f the planes, and the second, A2, will move the point along a plane to an 

axis.) Once the rotational vector has been moved into the line with an axis, the desired 

rotational matrix, B, can be computed. The next step is to confute the matrix C needed 

to move the rotational vector back into position. This is done by usir^ a procedure similar 

to that for calculating the A matrix. The final step is to multipfy all three matrices. A, B, 

and C together to form a new matrix D. This matrix has the direct transform values for 

rotation by 0  degrees around the given vector.

The third case is for rotation around an arbitrary axis. This is again a four step 

procedure. The first step is to calculate a matrix A that translates one end o f the axis to 

the origin. This is done using the procedure for prismatic joint motion. Next is to 

calculate the rotational matrix B around the translated axis. Since the axis now passes 

through the origin, we can calculate B using the ahove method. Thirdly, we calculate a 

matrix C that will reverse the translation o f A using the prismatic method. The last step is 

to multiply the three matrices together to give a resulting transform matrix D, which will 

correctly rotate around an arbitrary axis [FOLE90].

In this project, matrices are available fi*om RenderMan for translation and rotation 

around an origin crossing axis [UPST90]. To simplify the programming, these were used 

as needed, and RenderMan routines for fest matrix multiplication were used. These matrix 

operations are all heavily optimised to take advantage o f the DSP chip in the NeXT. 

[NEXT92]

12
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3.3. Collision Detection

When a joint moves, a number o f items will move. Each joint has a list o f items 

that must be moved when the joint changes position. These items must be checked against 

all other items to determine if collision has taken place. Since the items that are moving 

can be considered to be fixed with respect to each other, there is no need to check to see 

if a collision occurred between any two moving items. As an example, consider a person 

moving one arm at the shoulder but keeping all the other joints in the arm in the same 

position. The hand may collide with the body, but it wül never collide with any portion of 

the arm that is moving.

Rapid collision detection is a major consideration. In a simulation that may have 

dozens o f items and hundreds o f subitems, it is impractical to check each subitem against 

each subitem. A better method has to be used if performance is not to drop to the level o f 

being useless.

The first level o f checking is a bounding sphere intersection check between items. 

This can be done quickly, and if the spheres do not intersect, then an entire item (made up 

o f a number o f subitems) can be eliminated as a possible collision victim. Figure 3.3-1 

shows a planar example o f this.

13
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Figure 3.3-1 Planar robot with bounding circles

Any items that are found to have bounding sphere overlap are then checked 

further. Each subitem has its own bounding sphere. These are checked against the other 

items sphere to quickly eliminate any subitems that could not possibly have collided with 

any o f the other item’s subitems. This results in two lists, one for each item involved, of 

subitems with bounding spheres that overlap the other items bounding sphere.

14
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These two lists are then compared to each other. Bounding spheres for each pair 

o f subitems are checked for overlap. If  this occurs, then the actual subitems must be 

checked for collision using geometric methods.

Since each subitem is a convex polyhedron, if the objects have collided then at 

least two o f the feces are intersecting. One o f the objects is chosen, and each fece is 

con^ared with all the feces o f the other object. An intersection line is computed for the 

two planes, and checked to see if this line fells within the polygons making up the two 

feces. If  it does, then we have a collision, and the result bubbles back up through the 

various levels. If  not, the comparisons continue.

Once a collision has been detected, something must be done about it. There are 

two main categories o f objects - those that are free to move, and those that are not. If the 

object is an object that cannot be moved, the motion o f the first object is reversed, and the 

attençted motion is placed back into the queue for a later attempt.

If  the object can be moved, then it has the joint motion applied to it as well After 

it is moved, it is checked for collision with any other object. If this occurs, motion is 

reversed for both the moved object, and the object moving it. The motion that caused the 

problem is then requeued for later.

It was originalfy intended that forces acting on each object would be stored, and 

periodically resolved. This proved to be to computationally intensive for this simulation, 

but is still under consideration for a fiiture enhancement o f the program.

15
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3.4. Kinematics

Kinematics as applied to robotics is the modelling o f a robotic manipulator ush% a 

Cartesian co-ordinate system instead o f a joint positioning system. It is &r easier to 

describe a task that a robot must complete using Cartesian co-ordinates. Exanq>les are 

positions that a welding tool must be moved to, or a path that must be followed by a paint 

sprayer. These are related but slightly different tasks.

3.4.1 Determining Joint Positions

Given that a tool must be moved to a specific co-ordinate (X,Y,Z), what positions 

should the joints o f the robot arm be at for this to occur? There may be a number o f 

solutions to this, but we will focus on determining one o f the solutions.

Figure 3.4.1-1 gives an example o f a planar robot with two joints and two arm 

segments. The tool&ce C is to be located at Xc,Yc. The problem is to solve for Qi and 

0 2 , the joint angles. Li and L2 are the lengths o f each arm segment, calculated from the 

centre o f the joints.

16
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. Xc'Yc

Q ,

_ -------^  Q ,

Figure 3.4.1-1 Planar robot with joints highlighted 

X c  =  L ^  cos(ô, ) + co ^g , + Ô2 )

Y c  = I ,  sin(g, ) + 12 sin(ô, + )

Squaring and adding the above equations gives us:

X c ^  + =  + 2 Z ,l2  003(0 2 )

cos(0 2 ) = (% c' + - 4 ' - 4 ' ) / ( 2 4 4 )

02 = cos-'((%c' + Y c -  4 '  -  4 " ) / ( 2 4 4 ) )

X c  = 4  cos(0 ,) + 12(003(0 , )co ^ 0 2 ) - s in (0 ,)sin(0 2 )) 

Yc = (4  + 4  003(02)) 00^0,)- 4  sin(02)sin(0,)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4  = 4  sin(0 ,)+  4 (sin(0 ,)cos(0 2 ) + cos(0 ,)sin(0 2 ))

4 = 4  sin(02  ) co^0 , ) + ( 4  + 4  cos(02 )) sin(0, )

Yc

4
4 + 4 cos(02 ) -  4 sin(02 ) Tcos(0, )

4 sin 02 4 + 4 cos(02 )J|_sin(0, )

Solving the matrix relation for cos(0, ) and sin(0, ) we get;

00^0,) 1 ( 4  + 4  ^0^ 6 2 )) 4 sin(02) Y c‘
sin(0,) ■ D - 4 sin(02) -(4 + 4 0 0 ^ 0 2 )) J c .

where D  is:

D = 4  ̂+ 4^ + 2 4 4  005(02)

From the above, 0 , is given by 0 , = .47L4#2(sin(0,),oos(0,)) [MEGA93]

Three dimensional oases, and oases with a large number of joints rapidly get more 

oomplioated, and are beyond the soope o f this thesis.
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3.4.2. Path Generation

For an application such as painting, a path must be defined for the robot to track. 

Control commands may occur at given points along this path. (These might turn the paint 

spray on or of^. There are two mam methods o f determining the path that should be 

followed. The path may be determined algorithmically or by using a teaching device.

In an algorithmic path definition, a fimction is defined that gives the motion o f the 

arm. This fimction is usualfy defined as a sequence o f line segments and curves that are 

connected together to define the overall path. This type o f path is usually generated by a 

conçuter to deal with the current situation.

A teaching device is a human mangulated object that is used to simulate the task 

that the robot is performing. In a painting situation, the operator would actually move a 

spray gun to perform the task, and the resulting motion and actions would be recorded ft)r 

playback by the robotic system at a later time. This allows an easy way fi>r a complex task 

to be modelled. It also has the advantage that although it may appear to be using a 

Cartesian system, the actual joint co-ordinates can be recorded as the task is performed. 

In this way, the task has been broken down into a number of very small joint motions 

allowing easy simulation.

If  a tme path was generated, it is relatively simple to build a sequence o f joint 

movements. At discrete time intervals, the position o f the tool is determined. This is 

translated into a set of joint positions, which are compared with the current positions. The 

difference is calculated grving the desired motion for this time interval. Figure 3.4.2-1 

gives an illustration of a path in the plane, and how a robot arm is oriented at several 

points along the path.
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Path

Time 2

Time 1

Figure 3.4.2-1 - Planar robot following a path
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3.5. Summary

In this chapter, we discussed a variety o f reasons for using collections o f convex 

polyhedra as a  base for modelling objects. The first was that objects can be grouped 

together in any way to give an approximation o f any shape, convex or concave. This 

allows us to simulate any rigid manÿulator segment. From this, we can directly get to an 

arbitrarily given configuration o f manipulators. The second was that collision detection is 

much easier and fester with convex objects. Optimised con^utational geometry 

algorithms exist if  it can be guaranteed that all polyhedra are convex [PREP85]. The third 

reason was that RenderMan is much fester at rendering collections o f convex polyhedra 

than at rendering single conq>licated and possibly concave objects. RenderNfen also gave 

the advantage o f hiding most o f the messy details o f how motion worked. Its primitives 

for translation and rotation o f objects before rendering meant that most of the tedious 

math did not have to be coded in.

A choice was made to have the simulator use joint positioning rather than toolfece 

positioning. The first reason was that this simulator was to be completely general. By 

allowing the positions o f the joints to be the main fector, robots with an arbitrary amount 

of conçlexity, or multiple arms could be modelled.

The simulation allows the user to test models o f arbitrary complexity. Sequences 

of concurrent joint motion commands can be given, and the net results viewed. The 

simulation can be paused at any time during a run and new commands can be inserted to 

try out different motions. This allows for maximum flexibility and complete control over 

the simulation.
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4. Specifying Robotic Manipulators and Other Objects

In this situation, the time taken to enter in a representation o f the robot is a small 

amount o f the overall project time. This project allows for general simulation, rather than 

restricting the user to a specific robotic system. Because o f this, it is likely that a wide 

range o f robotics systems wfll be simulated. The need for a quick way o f defining a 

system, and reusing it later is important. Most projects will probably be completed with 

ofT the shelf conqwnents. Having a toolkit that can hold common components makes 

designing a system much easier.

It was this need that led to the development o f the Robot Construction Kit 

(R-C.K.) as a quick way o f plugging together pre-defined components. Engineering 

design software such as AutoCAD is in wide use. Because o f this, a conversion utility 

was devised that will allow inqx)rtation from this popular CAD program. Conversion is 

not automatic, but requires a minimum o f user intervention. AutoCAD’s DXF format was 

chosen to allow importation from a wide range o f design tools, such as AutoCAD, 3D 

Studio, and MicroStation.
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4.1. Main Simulator File Formats

There are two mam files used in the simulation. These are the event file, and the 

robot description file. Both o f these are ASCII text files, and can easily be edited.

The event file is straightforward. It is merely a list o f joint motions along with the 

time these motions are to take place. The format is as follows:

Numberjo^Events

EventNumber JointNum ber Action

StartM in Start_Sec Start_CentiSec

Finish_Min Finish_Sec Finish_CentiSec

The number o f events is an integer, and it indicates how many entries there are in 

this file. When it is read in, the program knows how many events to allocate room for, 

and it is also used for a consistency check when end o f file is reached. The event number 

is an integer, and is used to indicate the position o f this event into the list. When the entire 

event has been read in from disk, it is copied into the block with this number. The joint 

number is an integer, and indicates which joint is being affected by this event. Action is a 

floating point, and gives the amount o f change that the joint should take. This is in 

degrees for revolute motion. Start and finish times refer to the time the event is supposed 

to begin and end. Motion will be scaled so that it completes on schedule. All time entries 

are integers. Min refers to minutes, sec to seconds, and centisec to lOOths o f a second. 

There is currently a limit o f 1000 event entries at any given time. This is hard coded into 

the program, but could be changed at a later date.

The syntactic form o f the robot description file is somewhat more complicated, as 

it has to deal with a three-level hierarchy (Item, Subitem and vertices), each o f which may 

have an arbitrary number o f elements. It can be viewed as a multiway tree which has been

23
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traversed in preorder format. Preorder traversal visits the root o f a tree, then all children 

o f the tree processing each child completely before moving to the next child. Here is the 

format for it:

Number o f Items 

Number o f Joints 

(Robot item #l)

Mobile

Red Green Blue 

Initial Transform Nfetrix

Bound Radius 

Bound X 

Bound Y 

BoundZ

(Robot sub-item #1) 

Number o f points 

Bound Radius

Bound X 

Bound Y 

Bound Z 

(Point #1)

X Y Z  

(Point #2...)

Number o f Polygons 

#1 #2...

(Polygon #1)

(Integer)

(Integer)

(1 (Yes) or 0 (No))

(Floats between 0.0 and 1.0)

( 4 x 4  matrix o f floats - this gives

the starting transform for the 

object.)

(Float - Radius o f item bound sphere) 

(Float - X Co-ordinate o f bound sphere) 

(Float - Y Co-ordinate o f bound sphere) 

(Float - Z Co-ordinate o f bound sphere)

(Integer)

(Float - Radius o f sub-item bound 

sphere)

(Float - X Co-ordinate o f bound sphere) 

(Float - Y Co-ordinate o f bound sphere) 

(Float - Z Co-ordinate ofbound sphere)

(Floats - co-ordinates o f point)

(Integer - number o f faces o f sub-item) 

(Integers - number o f vertices in each 

polygon)
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#1 #2...

(Polygon #2...)

(Robot sub-item #2...) 

(Robot item #2...) 

(Joint #1)

JointType

Endl_X

Endl_Y

E n d l Z

End2_X

End2_Y

End2_Z

Minimum

Maximum

Current 

Base Item

Number o f Attached Items

Attached Items

(Joint #2...)

(Integers - list o f vertices that make up 

this pofygon)

(Integer - 1 = Revo lute, 2 = Prismatic) 

(Float - X Co-ordinate o f end one o f joint) 

(Float - Y Co-ordinate o f end one o f joint) 

(Float - Z Co-ordinate o f end one o f joint) 

(Float - X Co-ordinate o f end two o f joint) 

(Float - Y Co-ordinate o f end two o f joint) 

(Float - Z Co-ordinate o f end two o f joint) 

(Float - Minimum value o f joint)

(Float - Maximum value o f joint)

(If Min and Max both equal -1.0, then 

the joint can rotate freely)

(Float - Current joint position)

(Integer - This is what the joint is 

attached to)

(Integer - how many items have

to be moved if the joint position 

changes)

(List o f Integers - These are the actual

items that have to be moved when 

the joint position changes)
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4.2. Creating the Simulator Data Files

The current system uses ASCII files that allow the user to manually enter in co­

ordinate form. This is slow, and does not lead to easy re-use o f items that have been 

defined. If a commercially available robot arm is to be simulated, the user wül have to 

estimate the co-ordinates that make up the arm, enter them in, and run the simulator to see 

if this matches reality. This leads to errors, frustration, and to the user only running simple 

simulations on the system. There are several approaches to this problem.

While it is possible to enter object definitions manually, this soon becomes a very 

tedious and error prone task. As well, modem CAD systems are commonly used to 

represent items. It would be convenient to be able to use these tools to define a robotics 

system. This led to the design o f the AutoCAD conversion program. A conversion from 

AutoCAD was chosen because AutoCAD is popular and widely compatible with a large 

number o f other CAD tools [GESN93]. Because this program was left for future work, it 

is discussed in chapter 9.

The Robotics Construction Kit (R.C.K.) was planned to provide an integrated 

solution for this problem. It would have a palette of popular robotics pieces that the user 

could combine together using a GUI to build the scene piece by piece. This gives instant 

feedback, and solves any problems o f inconsistent data. Pieces can be scaled, rotated, and 

attached to one another. Scenes can be saved, and then loaded in to act as a whole like 

any other piece. This allows the definition o f complex objects that can be re-used. When 

a scene is complete, a menu option would be used to save the scene in the main simulator 

file format.
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4.3. Summary

A simple ASCII file format was chosen over other ways o f representing objects 

and command data. Since no software was available to define the structures, a text editor 

was the easiest way to generate input files for testing.

Later, the idea o f importing data firom CAD programs arose, and it made sense to 

remain with ASCII, since most programs can export their data to a text file. A translator 

might need to be built, but it is for easier to parse single text files.

Not everyone has easy access to a CAD package, or wants to design their robots 

conçletely firom scratch, so something else was needed. The Robot Construction Kit was 

designed to have a library o f commercially available robotic subsystems that could be 

joined together. This would allow the user to test designs before purchases o f expensive 

equipment were made. The system would also be flexible enough to build user designed 

subsystems for later reuse out o f basic geometric building blocks. Due to time constraints, 

the Robot Construction Kit has been left as future work.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. The Robotics Simulator

The robotics simulator allows the user to simulate the actions o f a number o f 

robotic arms. The arms can be controlled by a pre-determined set o f joint motions, or by 

external program control As the arms move around, they can interact with other objects 

that have been placed into the simulation. The viewpoint o f the simulation can be changed 

at any time during the simulation. A  simulation run can be saved as a set o f commands to 

repeat the simulation later, or as a series o f snapshots for playback like a movie. 

Individual screen shots can also be taken from any viewing point.
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5.1 Main Screen and Menus

The simulator is made up o f a menu area, and a main screen.

The menu is a standard pulldown menu. Its options are:

Load Scene: This allows the user to load in a scene description.

Load Events: This loads in a saved list o f joint motion commands.

Save Events: This saves the current list o f joint motion commands for later replay.

Display WheFrame: This changes the display mode to WireFrame. In this mode, 

the simulation runs at a much higher frame rate, but the display quality is lower. This is 

best for initial testing o f simulation parameters

Display Solid: This changes the display mode to solid modelling. This is slower 

than WireFrame, but allows a more realistic view o f the scene. This is commonly used 

when the simulation is paused to allow a detailed snapshot to be taken.

Take Snapshot: This produces a RIB file for later display or printing via 

RenderMan.

Start Capturing: This starts the simulation capturing a sequence o f movie fi-ames. 

Each time the display is redrawn, the clock is paused, and a second copy o f the display is 

dumped to a file. This allows the user to capture the entire simulation run for playback 

with an external program.

Stop Capturing: This stops the program from capturing display firames.

Quit. This is used to quit the application.

The main screen is shown in figure 5.1-1.
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Figure 5.1-1 Main display

The main screen is broken into a number o f areas. These are:

The main display area. This is the large box in the upper left hand side where the 

actual simulation is displayed. Both wire frame and solid modelling (shown above) are 

supported.

The camera positioning area. This is in the upper right hand comer o f the main 

screen. From there, the viewpoint and viewing direction may be adjusted. Zooming in or 

out is possible if either the eye or view co-ordinates are scaled.
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The simulation control panel is just below the camera positioning area. The 

buttons in here are similar in operation to those on a compact disc player.

The simulation clock is below the simulation control panel As the simulation 

progresses, it advances. This is used to determine when a joint command should be 

programmed to start.

At the bottom o f the screen is the joint event entry area. When the simulation is 

being run in a pre-programmed mode, the joint motion commands can be edited using this 

area.
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5.2. Using the Simulator

When the simulation is started up, the first thing the user will do is to load in a 

simulation file. When this is done, the initial positions of the objects in the scene are 

displayed. Events can either be loaded firom a file, or entered in using the event entry 

section o f the screen.

Next is camera positioning. This can be adjusted to allow the user to view the 

portion o f the scene that is o f interest. This can also be changed during the simulation, 

although pausing the simulation first is suggested to allow for accurate viewing.

Once all o f this is completed, the simulation is ready to run. There are three main 

buttons that operate the simulation. These are labelled Play, Pause, and Stop. The 

buttons work in a feshion that is familiar to anyone who has used a compact disc player.

The Play button starts the simulation running. Events are executed resulting in 

joint motion. An on-screen clock keeps pace with the events as they execute.

The Pause button fireezes the action. It allows the user to reposition the camera, 

produce a snapshot o f the current scene, or enter additional events into the event list. 

Pressing Play will start the motion again.

The Stop button stops the simulation, and resets everything back to the initial 

conditions. The scene is viewed as if it had just been loaded, and all events are restored in 

the event list. If  events have been entered satisfectorfly, the user can save them to a file 

for later playback. At this point, the user can reload the scene or event lists, edit the event 

list, re-run the simulation, or quit the application.
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5.2.1. Event Entry

Event entry is done in two ways. The first o f these is through external program 

control, which wül be discussed in a later section. The second, which is talked about here, 

is by using the Event Programming Control Panel This takes up the bottom portion of 

the main simulator screen (See Figure 5.2.1-1). The control panel allows manual entry of 

joint level commands into an event list.

Figure 5.2.1-1 - Event entry area

An event list can be loaded firom disk, or saved to disk by using the event 

submenu. Selecting "Open..." wül produce a file browser that wül let the user select an 

event file to be loaded. Selecting "Save..." will aUow the user to specify a directory and 

file to save the current event list to.

There are nine text entry areas and five buttons making up this control panel. The 

text entry areas are broken into three main sections: Action, Start Time, and Finish Time.

The Action area contains the Joint Number, Event Number, and Action. The Joint 

Number holds an integer value, which refers to the absolute joint number being moved in 

the simulation. Joint numbering starts at zero, and is highly dependent on the input data 

files. The Event Number is not normally entered by the user. It is generated automatically 

by the addition o f new events, or by moving forward or backward in the existing list. The 

user can enter a value here, which will then display the event records that match that event
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number. Action is a floating point number that is interpreted based on the action to be 

taken. If  the joint in question is a  revolute joint, then it refers to the amount o f rotation to 

be applied to the joint in degrees. If the joint is a  prismatic joint, then this gives the 

distance o f translation in standard units.

The Start Time and Finish Time areas are almost identical Each holds three 

integer values. These are minutes, seconds, and hundredths of a second. Start Time 

refers to the beginning time for the event, and Finish Time to the ending time o f the event. 

Combined with the amount o f the Action variable, they determine the rate o f motion for 

this joint. If this exceeds the parameters for the joint, a warning will appear, and the finish 

time will be scaled to the minimum time for the motion to be completed.

The first o f the buttons is labelled "Add". It checks the currently entered event 

record for validity. I f  everything is valid, it adds the record to the master event list, then 

moves to a blank record at the end o f the list to wait for more input.

The second button is labelled "Delete". This will delete the currently displayed 

event record firom the event list. AU the event records that were after this one wiU have 

their event numbers decreased by one. The next event record (or the previous one is this 

had been the last) wiU be displayed on the screen.

The third and fourth buttons are labeUed "Next" and "Prev.". They wiU move to 

the next or previous record in the event list after saving the current event.

The last button is labeUed "Revert". It wfll overwrite any changes that have been 

made to this event record with the values that are currently stored in the event record.
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5.2.2. Camera Positioning

Camera positioning is done using the Camera Position Control Panel, situated in 

the top right hand comer o f the main simulator screen (See Figure 5.2.2-1). This control 

panel allows the user to modify the location and viewpoint o f the camera at any time. It is 

suggested that the simulation be paused before the camera is moved. This will allow the 

user to select the best possible viewing position.

Figure 5.2.2-1 - Camera position area

The Camera Position Control Panel consists o f six text entry boxes and two 

buttons. Any floating point number may be entered into the text entry areas. The first set 

o f these buttons is labelled "Eye", and gives the co-ordinates o f the actual viewing 

position. The second set is labelled "View", and gives the direction o f viewing. They 

combine to give a camera direction vector. How large the image is depends only on the 

Eye position relative to the objects being viewed. The View position is onfy used to give a 

viewing vector.

The first button, labelled "Change", copies the values fi'om the Eye and View 

positions into main memory, and updates the simulation viewing window. The second
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button, labelled "Revert", overwrites the text entry areas with the values already stored. It 

can be used in case o f a data entry error.

Hitting the return key in any o f the text entry areas moves the cursor to the next 

area. When the Z position o f the Eye has been entered the cursor will move to the X 

position o f View. I f  return is pressed when the cursor is in the Z position o f the View, it 

has the same effect as if the Change button had been pushed. This allows rapid entry of 

camera position values.

5.23  Running a Simulation

The simulation control area is used to run the actual simulation. There are three 

buttons in this area; Play, Pause and Stop. These work in a similar fashion to those on a 

compact disc player. This model was chosen due to its femiliarity. Figure 5.2.3-1 shows 

the simulation control area.

Figure 5.2.3-1 - Simulation control area

Pressing the Play button will do one of two things. If  the simulation has been 

paused, execution o f the simulation will take off from where it had been paused. If this is 

the first time the simulation has been run since being loaded in, or if the Stop button had 

been used to halt execution o f the simulation then this will start a new simulation run. The
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clock will be reset to zero. All objects in the simulation will return to their initial 

positions. Once things have been reset, the joint commands will start to execute.

Pressing the Pause button will freeze the simulation. At this point, the clock will 

halt, and all motion will stop. This is commonly used to get a single frame snapshot o f the 

simulation, add new events to the event list, or to adjust the camera position. (Note that 

the camera can be adjusted while the simulation is running, but it is usualfy simpler to 

determine the correct position when things are not moving.)

Pressing the Stop button will also freeze the simulation, but will also indicate that 

this run is over. The scene does not reset in case the user wants to capture the current 

display. Like pressing the stop button on a conqiact disc player, this will lose the current 

position in the simulation, and the simulation must be run from the beginning again.

5.2.4 Saving a Simulation Run

The Save and Load Event menu items allow the user to keep a set of joint 

commands for later playback. When the Save Events menu option is selected, the user is 

prompted for a filename and directory using a standard NeXTStep save dialog to save the 

current event list under. When Load Events is selected, the user is given a file browser to 

select an event file to be loaded. This will replace the current event list.

5.2.5. Capturing Frames in High Resolution

Individual fixâmes o f the simulation can be saved for later display. The firames are 

saved in RenderMan’s RIB format. This allows the viewing angle to be manipulated using 

an external program, or for the scene to be re-rendered at high resolution. This permits 

high quality printed output of individual scenes from any viewing position.
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The best time to take a snapshot is when the simulation is paused. This allows the 

user to position the camera to obtain the desired viewpoint. When the camera is properly 

positioned, the Take Snapshot menu option is selected. This will bring up a standard 

NeXTStep save dialog that allows the user to chose a directory and filename to save this 

screen shot in.

The RenderMan manual gives detailed instructions on how to display a RIB file. 

The utility RIBViewer provides a simple interfece for displaying a single RIB file.

5.2.6. Generating a Sequence of Frames

It is possible to save a con^lete simulation run as a sequence o f RIB files that can 

be rapidfy displayed by an external program. Once you are satisfied with how a simulation 

run looks, stop the simulation. Select Sequence o f Frames fi’om the main menu. The file 

browser will allow you to choose a directory and a base filename for the RIB files to be 

stored under. The next time that you press the Play button, as the simulation runs, as each 

fi’ame is displayed, a copy wfll also be made to a new RIB file. When you press the Stop 

button to end the run, a message will be displayed to confirm to you that the entire 

simulation run has been saved.
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5 3 . Real Time Simulation

This simulation is running in real time. By this I mean that one second o f real 

clock time corresponds to one second o f simulated time. If the robot being simulated 

would take thirty seconds to conqilete an action, thirty seconds will elapse before that 

action has finished. The alternative is a  simulator that either takes less time or more time 

to run than the system that is being simulated. Extreme examples would be a simulation o f 

the solar system, or the motion o f electrons around an atom. There are advantages and 

disadvantages to having a simulator that runs in real time. These are discussed below.

One disadvantage of a real time simulator is that it is inqiractical to simulate long 

tasks. A user wishing to view the ending sequence o f a series o f commands must wait for 

the previous commands to run. This can be partially bypassed by saving the simulation 

state at points along the run, and using the current state o f the robot as a starting position. 

With a system that has a variable time control, it is possible to fest forward through certain 

sections o f the command sequence, and slow things down for detailed examination at 

other times.

The limitation o f system conqîlexity due to finite conqjuter speed is the main 

disadvantage. A system that can simulate 200 polygons at 10 firames per second will be 

reduced to a jerky display when given 20,000 polygons. This simulator attempts to run as 

fest as possible on whatever hardware it is given. It will adapt the discrete time steps to 

adjust to the system load based on real elapsed time. Given fester and fester computers to 

run on, each step wfll be shorter, and the display cycle will show an increasii^y smoother 

display. With a non-real time simulation, the time steps can be rigidly controlled, and set 

to whatever time scale is desired [BURG89].

The primary advantage o f a real time simulation is that the user gets immediate 

feedback, and interaction is possible. It is possible to link the simulation to a real robot, 

and combine simulated and real position data and commands on the main display. The
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user could use a teachii^ wand to control the simulation dhectfy, and see the effects of 

their actions as they give new commands to the robot. New joint motions can be entered 

in, and their effect can be seen immediately.

In all o f these cases, the key is immediate control and feedback. The simulation 

becomes far more meaningful if the user can do something and see the effect. A non-real 

time system might give fer more accurate data, but a real time system is more intuitive to 

use.
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5.4 Observations

The simulator software allows for a number o f different observations to be made. 

The user can obtain individual snapshots in time, or a movie like sequence o f frames for 

later playback. The effect o f different manipulator configurations and different control 

sequences is for easier to see than in a real robotics lab. Experimental conditions such as 

space or underwater are possible, where in a real lab it may be either inçossible, or 

extremely expensive to run a real robot.

The ability to freeze time allows for detailed examination o f how the simulation is 

progressing. Combined with the ability to edit control sequences that are current^ 

running, this gives the user a degree o f control over the simulation that would be 

impossible with a real robotics system. Each point in time can be viewed from any number 

o f viewing positions.

An individual snapshot gives a precise view o f the simulation at a given point in 

time, but fiiU understanding comes with watching the simulation progress. By saving the 

simulation run as a sequence of RIB files, it is possible to build a three dimensional 

“movie”. Because the data is still stored in a three dimensional format, it is possible to 

view the scene from different points. The playback o f the simulation can be repeated to 

illustrate points about the motion o f manipulators.

It is simple to adjust the manipulator configuration and control sequences. In a 

real laboratory, equipment might not be available or might be difGcult to reconfigure. This 

simulation allows different designs to be tested in an economical and efScient manner. 

The experimenter can quickly determine if a sequence o f commands will perform the 

desired task without fear of damaging the manipulator or the objects being manipulated. 

If  the commands do not execute as planned, it is simple to adjust them to achieve the 

desired results.
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Having access to a zero gravity laboratory is something that is beyond the reach of 

most robotics centres. Underwater conditions may be difGcult to achieve as well in the 

real world. Much o f the robotics equipment that is currently available is not designed to 

work in an underwater environment, so the effects o f water dr%  can not be seen in a  lab. 

The simulator allows “access” to both o f these environments, with no added cost and no 

concerns about machine durability under adverse conditions.
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5.5 Summary

The layout and elements o f the simulator screen and menus came about gradually. 

Inter&ce Builder allowed the screen elements to be moved around, added, or removed as 

the program grew. The original design had only the main display area and the simulator 

control panel with just a play and a stop button. From the similarity to a Conq>act Disc 

player, a pause button was added. Event entry was next to be added, and the format 

changed several times, until it arrived at the current layout. This format was chosen to 

allow precise control o f all joints in the simulation.

The use o f RenderMan as a modelling base led to experimentation to determine lighting 

conditions and an ideal camera position. Lights placed at each comer allow for uniform 

lighting o f the simulation, but the camera position was difGcult to decide on. Eventually, 

the camera position was left up to the user via the camera control section. This had the 

added benefit o f allowing the user to pause the simulation, and reposition the camera to 

allow a better view o f what is going on during the simulation run.

A real-time simulation offers immediate feedback and allows interactivity between 

the user and the simulation. It gives a very intuitive feel for what is happening in the 

system as variables change. A non-real-time system can be used to model events with 

timescales that are not usefully modellable in real time. System speed is not a limfting 

factor for non-real-time simulations because they can spend any amount o f time that is 

needed to simulate the effect o f one time step.

The simulator allows the user to make a number o f useful observations about the 

manipulators and objects they are simulating. Conditions and equipment that are out of 

reach o f the user can be easily simulated, expanding the range o f possible research.
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6. External Control of the Simulator

The simulator as it stands forces the user to decide on each joint movement, and 

enter each one individually. For a conçlicated system o f manipulators, or a complex set 

o f movements, this is difGcult at best. External control programs allow for easier control 

o f the simulation. They allow advances in robot programming techniques, as well as 

updated situations to be easily programmed. There are a number o f high quality robotic 

programming languages available. Exangles would be the Cambridge University Robot 

Language (CURL), the University o f Chicago’s RAP System and Unimation’s VAL 11. 

Using the ability o f the simulator to accept external control, we can utilise these 

programming languages to make the simulator a more useful tooL

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1. Types o f External Control Programs

There are two main classes o f external control programs. The first o f these is 

predetermined control In this case an external control program is used to build a 

sequence o f joint movements that will complete the task needed. This is then read in by 

the simulation, and a run can be made. The second class is real-time control By real-time 

we mean that the joint movements are being determined at the time that the simulation is 

being run. These commands could be coming from direct user commands, an external 

program, input from an external device, or a combination o f any o f these three. It allows 

for two directional data flow, and a direct link must be made between the simulation and 

the controller. This is useful for hands on simulation, or feedback controlled simulations.

Predetermined, or pre-programmed control is mainly used for repetitive jobs, such 

as assembly line work. It gives the user a guarantee that each run will have the same 

results. The joint motion can either be manually calculated or be determined by a 

kinematics program that will produce a command file. In either case, an external file is 

created, then loaded into the simulator for a run. Based on the results o f this, the 

command file may be modified to get slightly different results.

Real-time programs can be broken down into two main categories. These are user 

controlled, and feedback controlled.

User control means that the user o f the software has an interfece that is allowing 

him to decide where to position the arm using interactive controls while the simulation is 

beii% run. The results o f this could be stored to create a command file, for later pre­

programmed operation. This mode is used commonly to "teach" industrial robots how to 

perform routine tasks, such as painting.

Feedback control is more congUcated. In this case, there is an actual robot that is 

interacting with the program as it runs. The control program has a programmed set of
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goals, and is trying to simulate them, and control a real robot at the same time. ^\Gth this 

type o f program, actual position data from the robot would be used to correct the 

simulation representation whenever the simulation deviates from the real robot. This 

could also be used to enhance user control o f a simulation.
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6.2. Pre-programmed Kinematics

Pre-programmed kinematics allow for an algorithmic breakdown of a task into a 

sequence o f joint motions needed to carry out the task. This can result in an input file that 

can be run automatical^ by the system, and then used for control o f a real robotics system 

at a later date.

A path is created for the tool&ce to follow. This may be made up o f a sequence of 

straight or curved lines, and may have designated speeds for the tool&ce for certain 

sections o f the path.

The next step is a breakdown o f the path into a set o f closefy sampled points along 

the path. This gives a set o f discrete toolfoce positions at designated time periods.

Each o f these toolfo.ce positions is then used to determine a set o f joint positions 

that will allow that position to be reached. When choosing joint positions there can be 

multiple solutions to the equations. Ideally, the best solution requires minimum joint 

motion.

One o f the problems with this type o f programming is that care needs to be taken 

not to exceed joint parameters. Kinematics allows motions which are dynamically 

ingractical. In some cases, a rapid flip o f multiple joints might be the only way to follow a 

path. While the simulator permits this, if this happened in the real world we would run 

into problems with acceleration limits and inertia.
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6.3. Interactive Control of the Simulation

Interactive control is when the actions o f the user have an immediate effect on the 

simulation. This could be through entering a new destination point for the toolfoce, or by 

having the simulation track the users motion in some way.

This can be done in several ways. The first is through a teaching system, which is 

commonly used in industrial applications. Another way is to use a custom controller such 

as a  Spaceball to move the toolfoce around. A control program is needed to determine the 

correct joint positions to follow the toolfoce. A third way is to have a congletefy 

software driven solution, with sliders representing the desired joint positions. The user 

could move the sliders, and this would cause the simulation to update the positions of the 

arm. In all cases, the results can be saved for later pre-programmed runs.

In all cases a program would be in place that would take the commands, either 

from a teaching unit, or from a control program, and convert them into a sequence of joint 

motion commands. These would be inserted into the event queue as if they had been 

entered in manually, and would affect the currently running simulation. Because of this, 

once a sequence has been recorded, it can be written out to a file for alter playback, or 

manually modified.

There are a few possible problems with interactive control The first is that a feir 

bit o f processor time must be used to deal with the user input. A rapid sampling rate is 

needed, and this will tend to steal cycles from the simulation. This can be dealt with by 

having an external system act as a pre-processor for the user input. The second is that it 

can be prone to errors. Since aU user motion is being tracked, inadvertent motion, pauses 

and so forth, will show up in the recorded sequence o f joint motions. As well, there will 

be a large amount o f data, which will be dependent on the rate o f sampling. This will 

result in a data set that will be difGcult to edit to remove errors. The user will have to 

rerun the simulation, again attempting to duplicate a sequence o f tasks.
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6.4. Feedback Based Control

In a feedback based control system, a real robotics system is coupled with the 

simulated system. Data is transmitted from the actual robot to update the simulation. 

Data from the simulation can be used to move the real robot, resulting in a feedback loop 

o f correction and counter correction.

This could be used to provide remote monitoring and control o f a robotics system. 

It can also be used to simulate the addition o f a new piece o f hardware to an existing 

system at a low cost. The entire system, both real and imaginary, can be entered into the 

simulation. This would allow the user to try out a new piece o f robotics equipment to see 

how congatible it would be with existing system components. Designs for add on pieces 

can be formulated, and flaws can be found before costly prototyping.

Joint positioning can be obtained through a number o f different means, such as 

optical tracking, or motor positioning. In any case, the set o f joints positions would be 

passed to the simulation to allow it to update the on screen display.

A translator would be needed to convert between the joint positioning values of 

the simulation and \\diatever method is used by the robotics system. Hardware would be 

needed to send control commands to the robotics system from the translator. Depending 

on how complicated the control and translation units are, it may be best to move them 

onto an separate system from the simulator, to avoid degradation o f performance.

There will be synchronisation problems between the simulation and the actual 

robotics system. There are lags in processing o f commands, and joint motion will not be 

instantaneous. For exangle, when the simulation sends a command to the robotics system 

to move to an angle o f 30 degrees, this will take time. Whatever program is giving 

feedback to the simulation must be written in such a way as to compensate for this lag. If
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this is not done, feedback from the arm may cause the simulation to believe that a collision 

has taken place, and it will assume that the motion was not performed.

As the simulation progresses, periodic corrections to the simulation image o f the 

real system must be made. This will deal with round off errors, ingrecision in position 

readings, and the time lag problem. The simplest way to do this is to pause the robot, 

determine the true positions o f the joints, and have the simulator apply these joint 

positions from the starting values.
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6.5. Summary

The simulator's method o f specifying individual joints motions allows for precise 

control o f the robot arms. It also makes it very easy to interface the simulator to external 

control programs. This allows a great deal o f flexibility in controlling the simulation 

dynamically.

Real-time controllers, such as a program using a Spaceball to move the toolfoce 

around, or a graphic interfoce wiU use processor cycles that could be better used to give a 

smoother simulation. For this reason, it would be more efficient to have the control 

programs running on a separate machine.

Off-line programs can be interleaved with the simulator via the pause and play 

buttons on the main control panel This would allow the user to see the progression o f the 

off-line program, and correct it if needed as errors occur.
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7. Simulator Internals

The simulator can be seen as a collection o f loosely coupled objects that get things 

done by sending messages to one another.
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Figure 7-1. Object relationships.
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7.1. Objects in the Simulation

There are a large number of objects in the smiulation. What each object does, as 

well as how it operates, will be discussed in this section.

The objects described are: Camera Position, Robot View, Menu, Application, 

Initialisation, Simulation, Robot, Event Record, Event List, Event Queue, Robot Item, 

Robot Sub-Item, Joint, and Clock.

The Robot, Robot Item, Robot Sub-Item, and Joint objects are contained in the 

bubble labelled Robot in figure 7-1. This allows for an in^lementation independent 

overview o f the simulation. It is possible to remove these items, and replace them with 

others that would directly control a real arm, and get real feed back firom that arm. The 

main simulation code is the same.

The Application Object is created when the program begins. It is given a delegate, 

in this case the Initialisation object, whom it sends an mit message to. There is no user- 

defined data stored in this object.

This is the standard way o f initialising applications under NeXTStep. It can also 

be used to control what happens when the operating system decides that an application 

should be passed a document to process. An example is double clicking a document to 

open it. In this case, the Application object would pass parameters to its delegate to tell it 

a  document must be opened.

The Camera Position object allows the user to control the virtual camera that is 

viewing the simulation. It stores the current X, Y, and Z co-ordinates for where the 

camera is located. It also stores the location that is being looked at in X, Y, Z format.
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This object is tightfy coupled with the section o f the interfece that controls it. It is 

designed to grab the co-ordinates that were entered into the screen, and pass them along 

to the RobotView object to be used when a screen update is performed.

The Event Record object holds information about a joint movement command. It 

keeps track o f the joint to be moved, the start and end times o f the motion, and the 

amount the joint is to be moved.

This object is essentially a container, and has the usual methods for accessing it's 

data elements. It also lets the user see if the event takes place before a given time. This is 

used by the Event Queue object to check if this event is scheduled for execution yet.

The Event List is where event records are stored for processing. It has controls 

that allow the user to browse through it, deleting or adding entries as needed. It can sort 

itself on a request from the simulation, in which case it will be sorted by starting time of 

the event records stored in it. It can also store or retrieve a set o f events to disk.

The Event List can store one thousand event records in it. This is an arbitrary 

limit, and could easily be changed to support a larger number o f events, or a dynamically 

changing list size.

When an Event Record is added to the Event List, it is checked for consistency 

against the currently loaded Robot. It wiU not allow the user to enter in joint motion 

commands for non-existent joints.

Once the user presses the Play button, a timer event periodically polls the Event 

List for events that have a start point after the current time. All events that are found that 

meet this criteria are moved from the Event List onto the Event Queue.
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The Event Queue is where event records that are being executed are stored. This 

includes both the joint motion event records and a display event. It has the standard 

methods for a queue - add an event record to the queue and remove an event record from 

the queue.

As the simulation progresses, a timer event will send a signal to the Event Queue 

object. The first event on the queue is removed for processing. I f  it is a display event, 

then the Robot object is sent a signal requesting that the display be refireshed. The display 

event is then placed back onto the end o f the queue. This allows for periodic refi-eshing of 

the display, while ensuring that aU joint movement events are at least partially processed 

during a time slice.

If  the event that was removed from the queue was a joint movement event, the 

clock is consulted to determine how much time has passed since the last time this joint 

movement was processed. The amount o f joint movement is scaled to match this time that 

has passed, and the resulting partial joint movement is passed to the robot item to be 

processed. If the end time for the joint movement event has not arrived yet, the starting 

time is updated to the current time, and the joint movement event is requeued. This 

allows for processing o f joint motions as rapidly as possible, with the maximum refresh 

rate possible.

The Initialisation Object is the delegate for the Application Object. It receives only 

one message, init, from the Application Object. Its role is to send initialisation messages 

to most o f the other objects. The objects it initialises are: Camera Position, RobotView, 

Simulation, Robot, Event List, Event Queue, and Clock.

An Initialisation Object is a common type o f object in most NeXTStep 

applications. It provides a simple way to initialise the program. When a data file for the 

application is used to start the program, the Application object will pass the relevant
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information to the Initialisation object acting as its delegate. This allows the application to 

open data files automatically.

The Joint Object handles all o f the motion commands for the simulation. It 

consists of two points defining an axis o f motion, maximum and minimum values, a 

current position value, the base Robot Item, and a list o f attached Robot Items. The base 

robot item is the Robot item that will not move when the joint position changes.

When a command is received asking the joint object to change it's position, the 

transformation matrix needed for the amount o f change is calculated using RenderMan 

routines. This is applied to all o f the Robot Items that are attached to this joint, and all the 

joint objects that are involved have their endpoints updated.

The joint object then asks each o f the Robot Items that moved if they hit anything. 

If a collision occurs, the joint attempts to apply the motion to the hit object. If this results 

in a collision as well, aU of the motion is reversed, and the joint informs the timer event 

that the motion foiled. This will result in the event being re-queued in the hopes that other 

pending motions wül clear the obstruction.

The Robot Object contains all the data stored in the simulation It has pointers to 

arrays o f Joints and Robot Items, and the number of Joints and Robot Items. When events 

are added to the event list, the Robot item is queried to determine if the joint in question 

exists. It receives load messages fi’om the Menu object to read a robot simulation fi-om a 

file.

Another major task that the Robot Object performs is to update the RenderMan 

world shape when requested. To do this, it clears the current world shape, and asks each 

Robot Item to add its current shape to the world shape. This request is propagated down 

the hierarchy until the entire structure has been updated.
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The Robot Object also acts as a broker for joint motion commands. It receives 

these from a simulation timer event, and passes them on to the appropriate Joint Object.

The Robot Item object represents a rigid collection o f Robot Sub-Items. It 

contains the number o f sub-items, an array o f pointers to the sub-items, a master 

transformation matrix for placing the sub-items, a bounding sphere radius, and a bounding 

sphere centre point.

When a Robot Item moves, all that happens is that the master transformation 

matrix is updated. The bounding sphere for the entire Robot Item is used to speed up 

collision detection, since the sub-items o f the Robot Item being checked for collision can 

be rejected if they do not fell within this boundii^ sphere.

The Robot Item also receives requests from the Robot Object to add its shape to 

the world shape. It does this by setting the global transformation to its master 

transformation matrix, and then asking each o f its sub-items to add their pofyhedra to the 

world shape.

The Robot Sub-Item object is used to model a convex polyhedron. This is the 

lowest level that is represented in the hierarchy. It is made up o f the number o f points, an 

array o f points, the bounding sphere radius, the bounding sphere centre point, and a 

pointer to a block o f memory containing the physical properties o f the Sub-Item. This 

currently only holds the colour o f the block, but could be used to hold mass, fragility etc.

When collision detection is being performed, the Robot Sub-Item will check its 

bounding sphere against other spheres, and if necessary, do a polyhedra intersection check 

against other Robot Sub-Items.

A Sub-Item will also receive requests to add their shape to the world shape. Since 

the proper transformations have already been added, they call a RenderMan routine to add
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a convex pofyhedron to the world shape. The data structure that the Sub-Item uses was 

chosen to allow direct use by RenderMan without translation.

The Robot View Object provides the main interfece to RenderMan. It can receive 

messages from the Menu Object to toggle between wire frame and solid modelling, or 

from the Camera Position Object to change the viewpoint. It also gets requests from a 

timer event provided by the Simulation Object to update the display. When this happens, 

it prepares RenderMan to display an image, and asks the Robot Object to define the 

RenderMan world shape. Once this is conq)leted. Robot View calls RenderMan to display 

this world shape.

The Menu Object handles the menu interfece for the program. Through this, the 

display mode (WireFrame or Solid modelling) can be chosen, files loaded or saved, or the 

application exited.

The Simulation Object receives messages from the main control panel (Play, Stop 

and Pause). When it receives a Play message, it checks to see if the simulation is currently 

running. If  so, it ignores the message. If  the simulation is stopped or paused, the 

Simulation object launches three timer events.

The first o f these periodically sends a Display Time message to the Clock Object. 

This allows the running time to be constantfy updated.

The second checks the event list for pending events, (which are sorted by start 

time) and moves any events that are ready to be executed to the event queue.

The third polls the event queue for events that are running. If  it finds a display 

event, it sends a message to Robot View asking it to update the world shape. I f  a normal 

joint motion is found, it checks the clock to determine the distance the joint should have
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moved in that time, and then sends a move joint command to that joint. If  there is any 

remaining time for that event, it is placed back onto the queue.

The Clock Object is responsible for maintaining the current time. It periodically 

gets display messages from the Simulation Object. When this happens, it calculates the 

elapsed tinK, and passes this to three text fields for display. It can also be polled for the 

current time by the event list and the event queue. It can be paused or reset by requests 

from the Simulation Object.
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7.2. Events and Messages

Messages are a key part o f object oriented programming. In this simulation, 

messages are passed between the objects that relate to the real world. A message is an 

request from one object to another object to perform some action, or to return a value. 

Messages in the simulation are used primarify to move items and to check for collisions.

When a movement event is removed from the main event queue, a message is sent 

to the joint involved to update its location. The joint will determine what transformation 

will perform this motion, and pass that along to all o f the items that are attached to it. 

Each item in turn will appfy that transformation to update its internal location. This allows 

them to be drawn correctfy.

In the real world, sending a signal to a joint motor would result in the motor 

moving to a different position and anything that is attached to that joint would move along 

with it. Collisions can be dealt with sensors that determine if the motor moved the correct 

distance.

External programs can be used to generate messages to, or receive messages from 

the objects in the simulation. This can be used to allow a real robotic arm to be controlled 

by the simulation, and to pass feedback to the simulation about collisions with items not in 

its database. In these cases, movement messages would not only be sent to the simulated 

joint, but to the real one as welL Care would have to be taken to make sure that the 

resolution o f both are the same. Messages coming back from the real arm would be 

identical to those generated by the items when they detected a collision.

There are a number o f "real" events that are handled by the program. "Real" 

events are standard computer events, such as mouse clicks, key presses, or timer 

interrupts, as opposed to simulation events.
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All interfece events are handled automatical^ by Interfece Builder. The interfece 

runs in a separate thread, so rapid response to user generated events is possible.

Timer events are scheduled whenever the "Play" button has been pressed. The 

three timer events are really clock based interrupts that are designed to call a specified 

function after a certain interval has occurred. This is done with standard signal handling 

techniques, along with NeXTStep support for timed interrupts.

Once the "Play" button has begun, a number o f things take place. Three timer 

events are launched. One o f these updates the on-screen clock. The second moves events 

firom the event list to the event queue when they are ready to be executed. The third 

removes events firom the event queue, determines the proportion o f the event that should 

execute, and sends the amount o f motion to a joint for execution. If  the event that was 

removed was a command to update the screen, a message is sent to the display asking it to 

refiresh itself.

The on-screen clock is for display purposes only. As the simulation runs, this is 

updated to give the user a foel for when things are happening.

The event list is periodically polled to see if any events on it are ready to begin 

execution. If  their start time has passed, they are copied into the event queue, which will 

interleave them in a way aimed at giving a smooth animation.

The event queue is also being periodically polled. Whichever event is at the head 

o f the queue is removed, and the time that has elapsed since the start o f the event is 

calculated. The proportion o f elapsed time to total time is used to determine which 

finction o f the motion should be carried out. The amount of motion is multiplied by this 

fi-action, and passed on to the indicated joint for execution. If  there is any remaining time 

for the event, the start time is moved up to the current time, and the event is re-queued for 

later execution.
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This allows the simulation to adjust the motion o f its joints so that it appears to be 

smooth. If  there are a lot o f events happening simultaneously, then each joint will move a 

forther distance, and if there are few events, they will move a smaller distance. This gives 

a net effect as if the items in the simulation are moving at a fixed speed, with a variable 

firame rate. On a fester machine, this provides for smoother animation. On a slower 

machine, or when solid modelling is used, each firame will take longer to prepare, so a 

lower firame rate is needed.
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1 3 . Summary

An object-oriented approach was chosen for several reasons. Due to the nature o f 

Interfece Builder, objects would already be present to construct the interfece. It made 

sense to continue using objects for the rest o f the simulation to give a consistent feel to the 

program. Secondly, objects are a very intuitive way to view a simulation. This can best 

be seen in this program by the way that the Robot object asks each Joint object to move to 

the new angle, and asks each Robot Item object if it has hit anything.

The decision to use a polling system and a queue to handle the animation was an 

easy one to make. This gave a feirly consistent frame rate, and allowed for correctly 

scaled motion as the conq>lexity o f the simulation increased, or the processor power is 

increased.
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8. Programming Environment

The programming environment for this project greatly affected the way that it 

evolved. Not having to worry about details o f three dimensional rendering cut the 

complexity o f it down to a manageable size. The interfece development tools 

transparently take care o f details that are inçortant to the program itselfr but not to the 

actual simulation. These tools, along with the programming language support and the 

multi-tasking ability o f UNIX [KERN84] combined to make this project a  success.
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8.1. Project Manager

Project Manager is basically a high-powered make-utility combined with a file 

manager to keep track o f source code and auxiliary files. It allows the user quick access 

to all files associated with the project. From the main window, there are a number of 

options.

Run does a compile (if needed) o f the current project and then launches it. This 

places project builder into background.

Debug does a compile (if needed) o f the current project, then opens a terminal 

window with gdb launched in it. This allows the user to run a debugging session on the 

project. Gdb for the NeXT ties into the editor to provide a  special control panel for the 

debugger which allows the user to perform many functions at a button push.

Attributes allow the user to define a number o f project attributes. These include 

the target type (such as application), icon, main interfece file, where the application should 

be installed, and the main language that the project is designed to use.

Files provides a browser that provides easy access to all files associated with the 

project. Selecting one o f these files allows it to be opened up by its creating package, 

such as Interfece Builder or Edit.

Build brings the project up to date, reconq)iling and re-linking as needed.
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8.2. Interface Builder

Inter&ce Builder is a powerful tool for generating user and object interfeces. The 

user can define the type and location o f interfece objects, connect them to each other (and 

to non-interfece objects), and define actions to be taken when objects are activated. It 

includes a test mode where the interfece can be tested without the underlying program 

code being in place. User interfeces can be build by selecting interfece items from a 

customisable palette, and dragging them into a window. There is a wide range o f items 

available, such as text input boxes, buttons, and scrolling lists.

Once mterfece objects have been placed, the users connects them to other objects 

by control-dragging a line from one object to another. Depending on the type o f objects 

involved, the user can set up named relationships between objects, or define actions that 

one object can take on another. For example, a button could be linked to a calculator 

object, causing a method in the calculator object to be called when the button is pushed. 

Another exanq)Ie is linking the calculator object to a text field object. This would give the 

calculator object a reference to the text field object, allowing it to ask the text field object 

to change the value it is displaying.

In addition to the basic objects provided by the system, the object browser mode 

allows the user to define and link objects other than interfece objects. These items can be 

quickly defined in terms o f existing objects, as well as having additional outlets and 

actions. Outlets define relationships between this object and other objects, while actions 

are methods that are callable by other objects.

All these objects are stored in what is called a nib file. When the nib file is loaded, 

the objects are initialised, and any references to each other are resolved at that time. 

There is usually at least two nib files in use for each application - one for handling the 

information and help messages, and one for the main start-up for the application.
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8.3. Objective-C

Objective-C is an extension to the C programming language. It adds the ability to 

define, create, and destroy objects. It also allows for messages to be sent to objects. It 

does this in a straightforward way that is much simpler to read and understand than C-H-.

Objects in Objective C have two parts - the interfece and the implementation. The 

interfece is usually placed into a header file (file.h) and the implementation into a source 

file (file.m). This allows the construction o f libraries o f binary code, while allowing others 

to use this library via the header files.

There is a new type, id, added by Objective-C. It is a pointer to an object, a 

special case o f the null pointer, called nil, is defined as (id) 0.

Two special variables o f type id are defined for each object. These are self and 

super. Self is used to refer to the actual object itself and super is used to access any 

methods in the parent object that may have been overwritten. When a method returns, self 

is a common choice for a return value.

A new pre-processor directive is also added. Import is used in place o f include to 

avoid problems with multiply-included files. Import keeps track o f what files have been 

included in the current file, and will skip any that are already present.

The interfece file has a number o f parts. These are:

Class Definition - This is one line defining the class name and what object it is derived 

firom

Instance Variable Declarations - This is where the internal variables o f the object are 

defined. These are private to the object, and can only be accessed through the method of 

the object.
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Class Method Declarations - This defines the methods that can be used by the class itself. 

Instance Method Declarations - This defines the methods that the object can use.

The in^lementation file has a number o f parts. These are;

Class Definition - This is one line indicating which class this implementation is being 

defined for.

Class Method Code - This has the code executed by the Class Methods.

Instance Method Code - This has the code executed by the Instance Methods.

Messages are sent to objects to get them to execute methods. In C-h - message 

passing appears similar to a fimction calf making it difficult to tell them apart. Objective- 

C uses a Smalltalk like protocol for passing messages to objects.

A message looks like: [ receiver name 1:variable!]; In this case h asks the object 

called receiver to execute the method called namel, passing that method the parameter 

variable 1. There can be any number o f name-variable pairs. There must be at least one 

name, and each variable must be separated by a name followed by a colon, or just a colon. 

Messages can return objects, normal variables, or nothing. They can be nested, which is 

why it is preferred to return the variable self.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.4. RenderMan

RenderMan is a three-dimensional scene description program that is built by Pixar. 

It comes bundled with the NeXT, and is used by the simulation to provide rapid wireframe 

or solid modelling routines.

It is not really designed for an animation package - where RenderMan shines is as 

a tool for building photo-realistic images. The support that it does provide is fost enough 

for animation o f feirly simple objects.

As a side benefit, RenderMan can be configured to write its result to a RIB file 

instead o f rendering immediately. This allows screen shots to be captured for later 

viewing, or for a simulation that is too complicated to run in real time to be captured as a 

sequence o f images that can be played back later.

RenderMan was chosen for a three dimensional display program for a number o f 

reasons. Primarily, it saved a lot o f time that would have had to be spent designing, 

coding and debugging three dimensional graphics routines. The fact that it came bundled 

with the development workstation was another big plus.

Choosing RenderMan caused some radical design changes in the main data 

structures that are used by the simulation. RenderMan manuals were not available in the 

preliminary stages o f the design. This led to a design that was based on a corrqjletely 

different way o f looking at objects. When RenderMan was introduced, the basic way of 

holdup three dimensional objects, and o f moving them had to change.

RenderMan hid most o f the messy details o f the matrix manipulation needed for 

translation and rotation in three space. This allowed more focus on the actual simulation 

design, and on how collision detection and resolution would work.
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8.5. Inter-Application Communications

The programming environment on the NeXT provides for easy inter-application 

communications. Supplied objects (Listener and Speaker) allow for communications 

between programs, even those running on different systems.

Listeners are objects that are called remotely. The syntax for calling them is 

identical to that for any other object in the system The only difference is that the calling 

object must be a Speaker.

A Speaker is an object that can make calls to remote objects. Combined with the 

ability o f a Listener to receive these messages, inter-application communications are 

readily available for use by any program

Support is automatically included for both programs running on the same machine, 

and on networked systems. The program does not need to worry about routing messages, 

error correction, or retransmission requests. This is handled automatically by the 

operating system
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8.6. NeXTStep and the NeXT Hardware Specifications

This project was implemented under NeXTStep 3.0 on a monochrome Turbo 

NeXTStation. At this date NeXT has discontinued its hardware line and has ported its 

NeXTStep environment to the Intel line o f processors.

Workstation Specifications:

Turbo NeXTStation

33 Mhz 68040, 56001 DSP chip 

16 Megabytes main memory 

400 Megabyte hard drive 

CD-ROM player

Monochrome Megapixel Display (1024x768)

NeXTStep 3.0 (Developers Edition)

NeXTStep is the operating system on the NeXT. It is a fully featured version of 

UNIX, running on top of a Mach microkernel. This provides it with multithreading 

capabilities. NeXTStep is an object oriented operating system, that comes with a wide 

variety o f applications and toolkits. The main mode of operation is graphical, through the 

Workspace Manager (similar to the Macintosh Finder). The graphic display used Display 

Postscript as a rendering engine. A standard UNIX shell session is available inside o f a 

window under Workspace Manager

Since this is a version o f UNIX, multitasking is fully supported, and NeXTStep has 

strong support for interapplication communications, even between applications running on 

different machines. The Mach kernel provides support for multithreading within 

processes. This is used by most programs transparently in that their user interfeces are 

running in one thread, and the remainder o f the program is running under another. This 

gives a quick response time to user actions, such as mouse clicks.
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8.7 Summary

The NeXT turned out to be an excellent choice for the development o f the 

simulator. The system came with strong tools for developing a program with three 

dimensional graphics.

Interfece Builder and Objective-C, combined with the Project Manager and 

RenderMan made coding and testing easier than with any other toolset I have used before. 

On a different platform, this project would have taken several times longer to write.

The syntax o f Objective-C is much cleaner than C++. It is immediately obvious 

what is a message, and what is a regular fonction. Interfece Builder helps in this 

distinction as it allows the user to define how objects are related to each other. It also 

allows for a seamless interfece to be constructed with no programming needed. The 

interfece can be tested rapidly, and things changed quickly and simply if needed.

The real star is RenderMan. It took care o f a major amount o f the work by 

providing fest rendering, both o f wire frame and solids. Its support for matrix operations 

took care o f most o f the mathematical operations. RenderMan is also highly optimised 

for the NeXT, and takes full advantage o f the DSP chip for matrix operations.
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9. Conclusions and Future Work

A robotics simulator was an obvious choice for my thesis project. I have always 

been interested in robotics, although I never had the opportunity to build or use a "real" 

robotics system. I have also been playing with conçuter gr^hics on and off for several 

years. When given a chance to combine the two o f them my decision was already made.

Originally, I viewed this mainly as an exercise in three dimensional graphics. 

Building a graphics engine would take a feir amount of work, and if the engine was 

designed correctly, the robotics simulation would practically take care o f itself. This was 

before finding out that my platform would be a NeXT, and come complete with 

RenderMan to handle the graphics part o f things and Interfece builder to handle the user 

interfece details. Looking back, I realise that concerns about how to implement a three 

dimensional engine have been covered many times before. I should have focused on the 

details o f how the simulator would work, and what the look and feel o f the interfece 

should be.

There were some problems right firom the beginning. The first and most obvious 

was the feet that I was m a different city firom my thesis supervisors. Communication via 

E-mail and telephone was extremely useful, but I think I would have been able to do a 

better job under more direct supervision. While the tools on the NeXT are good, I ran 

into difficulty in getting access to people that were actually using the NeXT for 

programming work to ask questions. A lot o f time was spent digging through the manuals 

to look up syntax o f a calf only to discover that the documentation I needed was available 

only in third party manuals. Ordering these took time, and slowed things down. 

Objective-C is a very powerful and intuitive extension to the C programming language. I 

found it much easier to use than C-H-. It still took time to become proficient at using it 

and the other tools such as Interfece Builder and RenderMan.
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I think the hardest part o f the program was the collision detection routines. 

RenderMan does not have optimised routines to determine if a collision between convex 

polyhedra has occurred. It would have made my life much easier if it did. My first 

attempts at this just plain did not work, through an error in how I was using the 

transformation matrices. Later attempts worked, but were so slow as to be almost 

useless. Eventually, I extended the format to include a hierarchy o f bounding spheres, and 

elimination o f as many sections o f the scene as possible. This came about from reading 

about raytracing techniques which use similar techniques to speed up ray-object 

intersection checks.

Overall, I view the project as a success. I set out to develop a useful and powerful 

general purpose simulator, while learning more about robotics, computer graphics, and 

simulation in general along the way. The simulator that was developed, while not perfect, 

is powerful enough for most users needs. It is extendible, through either modifications to 

the program itself or through the use of external control programs. It can be used to 

simulate any robotics system without additional programming. It runs with a good frame 

rate, which allows real-time simulation. It is also general enough that it can be used to 

simulate any robotics system, which was a major goal. I learned a lot while building this 

project, and I hope that it helps others to learn more about robotics systems as well. The 

source and object code o f the simulator have been made freely available to enhance the 

learning process.

Tests were performed on two robots. The first o f these was the simple robot seen 

in the picture o f the main simulator display (Figure 5.1-1). This is made up o f five 

polyhedra (the four that make up the main robot, plus one detached cube which is 

obscured by the robot in this view) and three joints. With this simple configuration, the 

simulator was able to redraw the screens in either solid or wireframe mode with all joints 

moving simultaneously at twenty-five frames per second.
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Creating a more complex robot by band would have been both tedious and prone 

to errors. The simulator does not rule out intersection o f sub-items within items. To 

simulate a conq>lex robot, the subitems that made up the simple robot were duplicated a 

number o f times. Then, when a joint moved, it moved many objects instead o f one. The 

resulting robot had forty pol}diedra, and was able to produce solid mode animation at 

fifteen firames per second. When the display was changed to wireframe mode, twenty-ft)ur 

fi-ames per second were displayed.

It should be noted that these animation rates were being produced on a 33 M Hz 

68040 based computer. Real-time display o f several hundred solid polyhedra at twenty- 

five fi’ames per second should be possible if the program were ported to a modem system. 

I feel that these rates o f animation are sufficient for use both in teaching and research 

applications.

There are a number o f different projects that would be nice to work on to extend 

the usefulness o f the simulator

The first o f these is to move the simulator from the 68040 NeXTStep platform to 

an Intel based platform (DOS/Windows or OS/2). NeXT has discontinued it's hardware 

line, and the Intel based version o f NeXTStep is not widely available. Moving to an Intel 

platform, under a widely available operating system would greatly increase the number of 

potential users o f the simulator. This would be a major undertaking, since the RenderMan 

component would need to be rewritten, and the interfece converted over from the use of 

Interfece Builder to an equivalent for the PC. Objective-C could still be used, since this is 

available from a number o f vendors.

The second is to support printing of the main display area directly w ithin the 

application. On the NeXT, this would be a relatively simple matter, since the display is 

already using PostScript. On a PC based system, this would be a feir bit more involved, 

but still within a few weeks work.
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Multiple camera displays and arm mounted cameras are possible. Ideally, the 

command set would be expanded to allow the user to switch between cameras during the 

simulation in the same manner as selecting a joint motion.

Better resolution o f collisions is needed. The user should be able to specify 

sensors on the arms (and other objects) that would indicate when a collision has occurred. 

This could then be fed out to an external controller for proper handling.

The Robot Construction Kit needs to be moved off o f p^ier and into reality. Most 

o f the design work is completed for this project, and havir^ it available would greatly 

enhance the usefulness o f the simulator.

The AutoCAD translator is completely designed. It would read in an AutoCAD 

file and parse it to build a list o f sub-items. It would display these sub-items, and prompt 

the user to enter in an item number to join these items together. This would give the user 

the maximum flexibility in defining how objects relate to each other. It would also be 

possible to define a sub-item as a joint, and the major axis o f this sub-item would 

determine the axis o f the joint. The user would then enter in the item numbers that the 

joint would connect to. This method will require a feir bit o f entry from the user. It may 

be possible to program an AutoCAD extension using Lisp that would allow the definition 

o f valid scene files firom directly within AutoCAD.
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