INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

f In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

|

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Real Time Three-Dimensional Robotics Simulation.

Masters Thesis
by

Dan Lingman(t)
850658618

May, 1996

Department of Mathematics
Lakehead University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre rédférence

Our file Notra référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-33409-0

Canada

Reprod‘uced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This project would not have been possible without the guidance and encouragement of my
thesis supervisors - Dr. X. Li and Dr. M. Meng. Thanks also go to Dr. W.S. Lu for acting
as an external examiner and to Dr. L.D. Black for acting as an internal examiner. Thanks
most of all to my wife, May.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis is concerned with the design and implementation of a real-time robotics
simulator with three-dimensional graphics. The simulator allows for internal or external
control of a number of robotic manipulators with revolute or prismatic joints. These
manipulators may interact with each other and other objects in the simulated environment.
All objects in the simulation will have physical properties such as mass and fragility, and
can exert forces upon each other. An external program is planned to allow easy
construction of models from an assortment of pre-designed pieces.

This thesis describes four areas of the simulation in detail. The first of these is the
modelling scheme used to represent objects in the simulation. The second is the actual
simulation design. The third is a discussion on the use of external programs to control the
simulation. Last is a summary of the programming environment and how it relates to the

simulation.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acceptance Sheet . e ii
Acknowledgements e i
ADS TGt v
Table of ComtentS e v

LSt Of FagUEeS e Vi
1. IntrodUCH ON, e 1
1.1 Thesis Organisation 3
2. Related WOTKS. 5
3. Three-Dimensional Modelling and Motion, 7
3.1. Representation of Objects ... 8
32, Typesof MOtOD .) 9

3.3. Collision Detection. . . 13

3.4, Kinematics e, 16

3.4.1. Determining Joint Positions 16

3.42. PathGeneration 19

3.5, SUMMATY e 21

4 Specifying Robotic Manipulators and Other Objects,_ .. 22

4.1. Main Simulator File Formats 23

4.2. Creating the Simulator Data Files_________....._ 26

4.3, SUMMAIY. e 28

5 Operation of the Robotics Simulator. ... 29

5.1. MainScreenand Menus.. 30

5.2. Usingthe Simulator 33

5.2.1. Event Entry. 34

5.2.2. CameraPositioning 36

5.2.3. Running a Simulation 37

5.2.4. Saving a SimulationRun_____ 38

5.2.5. Capturing Frames in High Resolution . . 38

5.2.6. Generating a Sequence of Frames . 39

5.3. RealTime Simulation .40

5.4, ObSerVatIONS 42

5.5, SUMMATY 44

6 External Control of the Simulator 45

6.1. Types of External Control Programs . 46

6.2. Pre-programmed Kinematics 48

6.3. Interactive Control of the Simulation 49

6.4. Feedback Based Control 51

6.5, SUMMAIY. 53

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

7. Simulator Internals e 54
7.1. Objectsinthe Simulation . .. 55
7.2. Eventsand Messages] 62
7.3, SUMNATY. e 65
8. Programming Environment . 66
8.1. Projeci Manager. e 67
82. Imterface Builder 68
8.3, ObJectiVe-C e 69
84. RenderMan 71
8.5. Inter-application Communications 72
8.6. NeXTStep and the NeXT Hardware Specifications . 73
8.7, SUMINAIY.] 74
9. Conclusions and Future Work 75
RO OIS 78
List of Figures
3.2-1 Translational MOtON 10
3.2-2 Rotational MOtiON. ... 11
3.3-1 Planarrobot withbounding circles____ 14
3.4.1-1 Planar robot with joints highlighted ... 17
3.4.2-1Planar robot followingapath . . . 20
5.0-1 MaIn diSPIAY. e 31
52.1-1Event entry are€a ... s 34
5.2.2-1Cameracontrol area 36
5.2.3-1Simulation control area. i, 37
7-1 Object relationships 54
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

Testing a control algorithm or studying the dynamic properties of a robotic system
requires either experimental implementation or computer simulation. Experimental
implementation is not always available, as in the use of robotics in space applications.

When experimental implementation is possible, it might be too expensive to allow its use.

Computer simulation with animation offers an alternative that gives the feel of a
physical experiment, with the benefit of low cost, easy reconfiguration, and a quick
turnaround time for development of new control algorithms.

This simulation is a discrete event simulation system. By this I mean one in which
a phenomenon of interest changes value or state at discrete moments of time rather than
continuously with time. Discrete event simulation was chosen over continuous simulation
for this project for a number of -reasons. The first is that animation is inherently a discrete
process. Animation is a sequence of still pictures, or frames, displayed at discrete
moments of time. Continuous simulation could be used, but discrete simulation maps iii a
natural way to the process of rendering and displaying frames of animation. The second
reason is the object-oriented nature of the simulation. Messages moving from one object

to another are discrete events themselves, and fit nicely into a discrete event simulation.

An object-oriented approach was used in the design and implementation of this
simulation. Object-oriented means that data in the computer is represented as a collection
of objects that communicate with each other by sending messages to one another
[BUDD91]. This approach was chosen over traditional structured programming for a
number of reasons. First, modelling the physical components as objects within the
simulation allows for easy understanding of their relationships. For example, a joint is a
physical object that can move manipulator components upon receiving a signal to do so.
In the simulation, the Joint object can accept a command to change angle or position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When this message arrives, it will move the appropriate structure to simulate the same
joint motion that would have taken place in the physical components.

The second reason comes from the hardware we used. The simulation hardware
environment is a NeXT workstation. The NeXT was designed to work with objects. Its

operating system and development environment are aimed at creating object-oriented

programs.

The simulator that was constructed can model any manipulator that can be viewed
as a collection of convex polyhedra and either revolute or prismatic joints. It allows for
pre-programmed or interactive control of all joints within the simulation. The
manipulators can interact with each other and other objects in the environment.
Simulations of moderate complexity (under 200 polyhedra) can be run with frame rates of
approximately 10 frames per second on the NeXT TurboStation. Simulations of greater
complexity will still run, but with a lower frame rate on the NeXT TurboStation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1. Thesis Organisation

Chapter 2 discusses the details of how the simulator models the physical objects
that are to be simulated. The objects are made up of rigid collections of convex
polyhedra, connected by joints. These joints can be either prismatic or revolute. Collision
detection is performed by process of elimination using bounding spheres, then polyhedra
to polyhedra intersection. Kinematics is discussed as a means of determining joint
positions and tool paths.

Chapter 3 covers the process of defining the models. The simulator is designed to
use simple ASCII formatted files for input. A possible translator from AutoCAD is
discussed. The groundwork is laid for a custom design package for robotic system design
using off the shelf parts.

Chapter 4 is an introduction to the simulator and how it can be used. Detailed
instructions are given for each aspect of preparing for and executing a simulation run. The
simulator allows for detailed time triggered joint motion and dynamic camera control. It
also can be used to generate a sequence of scene description snapshots. These snapshots
can be photorealistically rendered using RenderMan to produce an animation of the

simulation run for later viewing.

Chapter S covers the use of external programs to control the simulator, or to
prepare command sequences for it to execute. The different types of control programs
(pre-programmed, interactive, and feedback based) are discussed and compared.

Chapter 6 gives an in-depth look at the internal working of the simulator. There

are fourteen basic object types that make up the simulation. What each of these does, and
how they communicate with each other using messages are discussed. The timed event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing that makes this a discrete event simulation is detailed, along with the sequence
of events that occurs once the "Play" button has been pressed to start a simulation run.

Chapter 7 discusses the programming environment and why the NeXT was chosen
as a base for the simulator. Development tools such as Project Manager and Interface
Builder are given. A brief outline of the advantages of Objective-C over other languages
is presented, along with sample code. RenderMan is a powerful three dimensional
rendering tool, and its availability was the main reason for choosing the NeXT. NeXT
also has a good collection of inter-application communication tools, which allow for easy
integration of external control programs. Finally, the operating system and hardware
specifications are given.

Chapter 8 is the conclusion of the entire project. The problems and results of the
project are discussed. Future directions and possible enhancements are given. One of
these, the Robot Construction Kit, would greatly enhance the usefulness of the simulation
by allowing the user to simulate robotic systems that use readily available components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Related Works

There are many other robotics simulators available, both commercially and publicly
accessible. This section gives a brief overview of some of these simulators. It is by no

means an exhaustive list.
Commercial Simulators

ADAMS: Mechanical Dynamics Inc. ADAMS is a general purpose dynamics
simulator for UNIX. You can use this package to simulate any type of mechanism,
including but not limited to robotics systems. Given a model of the system, ADAMS
builds a set of equations and solves it through time. It can handle static, quasi-static,
dynamic and kinematics simulations. It uses its own windowing system, and has a strong
interface. It is difficult to learn, and at times requires FORTRAN programming to take
full advantage of the features. -

Workspace: Robotics Simulations Ltd. Workspace is an industrial robot simulator
that runs on the IBM PC. It is designed to allow for the off-line programming of many _
different industrial and educational robots. It has a library of standard robots, and allows
for interactive design of new robots. While a simulation is running, the user is able to
view forces and torques generated as well as a graphical view of the system being
simulated. Motion commands can be fairly complex, and the operating parameters of all
mechanisms is fully specifiable.

Publicly Available Simulators
EROS: JPL, NASA. EROS (Erann’s Robot Simulator) is designed to simulate
mobile robots on the Macintosh. It uses a construction kit approach to building robots to

be simulated. The user builds both the robot and the environment, and then programs the
robot to perform tasks in this environment. It was inspired by a truck simulator by Hanks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Firby, but is designed to operate at a lower level than TruckWorld. This allows for a
more realistic simulation.

Simderella: Simderella is a multipart simulator for UNIX. There is a display
module, a simulation module, and a control program. The modules communicate using
UNIX sockets, which allows a distributed simulation. The modular approach allows for
easy upgrading and conversion. If a kinematics controller is desired, that can be used. A
neural net based controller with feedback from the simulator could be substituted and the
results compared. The program can also be used to simultaneously send control signals to
the simulated robot and a real robot.

Other Simulators

MAGIK: NASA Johnson Space Center Automation Robotics and Simulation
Division (JSC AR&SD). The Manipulator Analysis Graphic Interactive Kinematic is the
primary tool used by AR&SD, Mission Operations Directorate and the International Space
Station for manipulator task analysis. It allows the users to conduct kinematic analysis for
robotic operations, in both pre-programmed and user controlled modes. It can handle
multiple manipulators, multiple viewpoints. Simulated cameras can be inserted into the
simulation space and manipulated to give a realistic point of view to the simulation. The
Canadian Space Agency has chosen to use MAGIK as the base for their Operations

Kinematics Simulator and to train astronauts for mobile servicing of space vehicles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Three-Dimensional Modelling and Motion

A robotics system is a controlled interaction between moving objects. How the
objects are represented is an important facet of the simulation. In this system, a
hierarchical system is used to represent the objects being moved. Each object is broken
down in the extreme into a collection of joints and convex polyhedra. Bounding spheres

are used for both main items and each subitem to allow for rapid collision detection.

The motion of the objects in the simulation is time based. At regular intervals, the
system updates the position of each object. As a joint may be scheduled to move over a
long time period, the current time is determined, and motion proportional to the elapsed
time is performed.

Each time an object is moved, it must be checked for collision with other objects.
The hierarchical nature of the objects being moved makes a series of bounding spheres a
natural way to quickly eliminate most of the objects involved. Any that are still suspected
of collision are checked in detail.

Programming motion on a joint by joint basis is tedious and difficult at best.
Because of this, the system has been designed to interface with other programs. These
external programs can either be used to generate a file containing pre-programmed joint
motions, or to interactively control the simulation by feeding it joint motions on the fly. In
either case, the external program can get feedback from the system to determine where

objects are at a given time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1. Representation of Objects

There are two kinds of objects referred to in this project. The first of these is
programming objects which are discussed in section 6.1. The second is abstract things
that are intended to represent physical objects. We discuss the second class of objects in

this section.

Objects in the simulation are made up of an ordered collection of items and joints.
Each item is a rigid entity made up of subitems that are fixed in position relative to each

other. Items are connected to one another by joints.

Subitems are convex polyhedra. They are represented as a collection of vertices
and faces. To save space each vertex is stored only once and each face is made up of an
ordered list of vertex indices. The vertices that make up a face are ordered in such a way
that the outside can easily be determined.

Each subitem maintains a central point and normal vectors for each face. Both are
used for collision detection. A radius of a minimum bounding sphere, centred around the
central point is stored. Physical properties of the subobject, such as tensile strength,
colour, and mass are included. Since the subitem is a convex polyhedron, the central point
can be chosen to be the centre of mass for the subitem to simplify calculations. (If the
subitem were not a convex polyhedron, the centre of mass might not be on the inside of

the subitem.)

Subitems are defined relative to the origin. When loaded in, all vertices can be
multiplied by a transform matrix to define the initial position and orientation of the
subitem. Since this is only done at load time, the transform matrix does not need to be

stored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An item maintains a linked list of subitems. The subitems are considered to be
rigidly positioned with respect to each other within the item. It also has an over all
bounding sphere defined by a central point and a radius. The central point is picked to
represent the centre of mass. To speed calculations, the entire mass of the object is stored
here as well. A transformation matrix is stored for the entire object. This transformation
matrix is used whenever the object needs to be redrawn, and for collision detection. An
item also stores force vectors for each of the major axis of motion and rotation. These are

used to resolve collisions.

A joint is made up of an axis defined by two vertices, a position which is relative to
its original state, and pointers to all items that are attached to the joint. If the joint is
prismatic, the axis defines the movement vector that the attached parts will slide along. If
the joint is revolute, the axis is the axis of rotation. One of the pointers is the base for the
joint. It is considered to be a fixed object when the joint moves. The remainder of the
pointers indicate which items and joints will have to be updated when the joint changes
position. An example of this is a wrist joint in a person. The arm would be the base, since
moving the wrist does not affect the arm. The position of the hand, fingers, and knuckles
will be changed if the wrist joint moves.

The entire simulation is made up of two arrays, one of joints, and the other of
items. Together, these define all the physical objects that can interact in this simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2. Types of Motion

There are two main types of motion, revolute and prismatic. Each can be

described as a simple co-ordinate transform matrix.

Translation is performed differently (as an addition of vectors) from rotation (as
multiplication of a vector and a matrix). If points are expressed as homogeneous
coordinates, both transformations can be treated as multiplications. For a point to be
converted to homogenous coordinates, a fourth coordinate is added. Instead of (X,Y,Z),
we now have (X,Y,Z,W). Two sets of homogeneous coordinates (X,Y,Z,W) and
X*,Y’,2’,W’) represent the same point if and only if one is a multiple of the other. Also,
at least one of the coordinates must not be zero: (0,0,0,0) is not allowed. Because we are
now using four coordinates to represent a point, we must use four by four matrices for the

transformations [FOLE90].

Prismatic motion is translational motion. It has no natural equivalent. It can be
best described as two members sliding over one another. There is a simple matrix

describing the motion:

1 0 0 a
010 a&
001 d
000 1

where dx, dy and dz give the change in position.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN
7/

Figure 3.2-1: Example of translational motion

Revolute motion is similar to joint motion in nature. It is the revolution of a
member around a pivotal axis. There are three main cases, each getting more specific, and

each requiring a more complicated matrix to express it.

A4

Figure 3.2-2: Example of revolute motion

The first of these is rotation around one of the three primary axis. For the X-axis

case, the resulting matrix is:
1 0 0 0
0 cosg -sing O
0 sing cosg O
0 0 0 1

where ¢ is the angle of rotation. The matrices are similar if either the Y-axis or Z-

axis is the axis of rotation.

The second is rotation is around a vector that passes through the origin. In this
case, the procedure has four steps. First, a matrix A is determined that would bring the
non-origin point to one of the major axis. This matrix is made up of the product of the two

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrices needed to align the object with an axis. (The first of these, Al, will move the
point into one of the planes, and the second, A2, will move the point along a plane to an
axis.) Once the rotational vector has been moved into the line with an axis, the desired
rotational matrix, B, can be computed. The next step is to compute the matrix C needed
to move the rotational vector back into position. This is done by using a procedure similar
to that for calculating the A matrix. The final step is to multiply all three matrices, A, B,
and C together to form a new matrix D. This matrix has the direct transform values for

rotation by & degrees around the given vector.

The third case is for rotation around an arbitrary axis. This is again a four step
procedure. The first step is to calculate a matrix A that translates one end of the axis to
the origin. This is done using the procedure for prismatic joint motion. Next is to
calculate the rotational matrix B around the translated axis. Since the axis now passes
through the origin, we can calculate B using the above method. Thirdly, we calculate a
matrix C that will reverse the translation of A using the prismatic method. The last step is
to multiply the three matrices together to give a resulting transform matrix D, which will
correctly rotate around an arbitrary axis [FOLE90].

In this project, matrices are available from RenderMan for translation and rotation

around an origin crossing axis [UPST90]. To simplify the programming, these were used
as needed, and RenderMan routines for fast matrix multiplication were used. These matrix
operations are all heavily optimised to take advantage of the DSP chip in the NeXT.

[NEXT92]

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3. Collision Detection

When a joint moves, a number of items will move. Each joint has a list of items
that must be moved when the joint changes position. These items must be checked against
all other items to determine if collision has taken place. Since the items that are moving
can be considered to be fixed with respect to each other, there is no need to check to see
if a collision occurred between any two moving items. As an example, consider a person
moving one arm at the shoulder but keeping all the other joints in the arm in the same
position. The hand may collide with the body, but it will never collide with any portion of

the arm that is moving.

Rapid collision detection is a major consideration. In a simulation that may have
dozens of items and hundreds of subitems, it is impractical to check each subitem against
each subitem. A better method has to be used if performance is not to drop to the level of

being useless.

The first level of checking is a bounding sphere intersection check between items.
This can be done quickly, and if the spheres do not intersect, then an entire item (made up
of a number of subitems) can be eliminated as a possible collision victim. Figure 3.3-1
shows a planar example of this.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3-1 Planar robot with bounding circles

Any items that are found to have bounding sphere overlap are then checked
further. Each subitem has its own bounding sphere. These are checked against the other
items sphere to quickly eliminate any subitems that could not possibly have collided with
any of the other item’s subitems. This results in two lists, one for each item involved, of
subitems with bounding spheres that overlap the other items bounding sphere.

14

1
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These two lists are then compared to each other. Bounding spheres for each pair
of subitems are checked for overlap. If this occurs, then the actual subitems must be

checked for collision using geometric methods.

Since each subitem is a convex polyhedron, if the objects have collided then at
least two of the faces are intersecting. One of the objects is chosen, and each face is
compared with all the faces of the other object. An intersection line is computed for the
two planes, and checked to see if this line falls within the polygons making up the two
faces. If it does, then we have a collision, and the result bubbles back up through the

various levels. If not, the comparisons continue.

Once a collision has been detected, something must be done about it. There are
two main categories of objects - those that are free to move, and those that are not. If the
object is an object that cannot be moved, the motion of the first object is reversed, and the

attempted motion is placed back into the queue for a later attempt.

If the object can be moved, then it has the joint motion applied to it as well. After
it is moved, it is checked for collision with any other object. If this occurs, motion is
reversed for both the moved object, and the object moving it. The motion that caused the

problem is then requeued for later.
It was originally intended that forces acting on each object would be stored, and

periodically resolved. This proved to be to computationally intensive for this simulation,
but is still under consideration for a future enhancement of the program.

15

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4. Kinematics

Kinematics as applied to robotics is the modelling of a robotic manipulator using a
Cartesian co-ordinate system instead of a joint positioning system. It is far easier to
describe a task that a robot musi complete using Cartesian co-ordinates. Examples are
positions that a welding tool must be moved to, or a path that must be followed by a paint
sprayer. These are related but slightly different tasks.

3.4.1 Determining Joint Positions

Given that a tool must be moved to a specific co-ordinate (X,Y,Z), what positions
should the joints of the robot arm be at for this to occur? There may be a number of
solutions to this, but we will focus on determining one of the solutions.

Figure 3.4.1-1 gives an example of a planar robot with two joints and two arm
segments. The toolface C is to be located at Xc,Yc. The problem is to solve for Q; and
Q2, the joint angles. L and L are the lengths of each arm segment, calculated from the

centre of the joints.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o XeYe

\/

Figure 3.4.1-1 Planar robot with joints highlighted
Xc = Licos{Q,)+ L, cos(Q, + Q)

Y, = L, sin(Q,) + L, sin(Q, + Q,)
Squaring and adding the above equations gives us:

K et - £ 1 020 o)

cof(Q,) = (X + ¥ ~ L - L,?) /(2L L,)
0, =cos™((X>2 + ¥ - L2 - L,?)/ (2L L,))

Xc=1L, cos(Ql) + L, (cos(Ql)cos(Qz) - sin(Ql)sin(Q2))
X =(L, + L, cod(Q,))cod(@,) - L, sin(Q,)sin(0,)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y. = Lsin(Q,) + L(sin(Q,)cos(0,) + cos(0,)sin(@,))
Y. = L, sin(Q,)cod@,) + (L, + L, cod @,))sin(@))

[XC] _ [[’1 +Lycos(Q,) -—L,sin(Q,) COS(QI)]
¥ B L,sinQ, L, + L, cos(Q,) | sin(Q,)

Solving the matrix relation for cos(Ql) and sin(Ql) we get:
[COS(Q[)] _1|-(n+Loda)) Lsilo) }[X]
sin(@) |~ D] -Lsin(Q,) —(L+Leodo))| X
where D is:
D=L?+L}*+2L L codQ,)

From the above, Q, is given by O, = ATAN2(sin(Q,),cos(Q,)) [MEGA93]

Three dimensional cases, and cases with a large number of joints rapidly get more
complicated, and are beyond the scope of this thesis.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2. Path Generation

For an application such as painting, a path must be defined for the robot to track.
Control commands may occur at given points along this path. (These might turn the paint
spray on or off). There are two main methods of determining the path that should be
followed. The path may be determined algorithmically or by using a teaching device.

In an algorithmic path definition, a function is defined that gives the motion of the
arm. This function is usually defined as a sequence of line segments and curves that are
connected together to define the overall path. This type of path is usually generated by a
computer to deal with the current situation.

A teaching device is a human manipulated object that is used to simulate the task
that the robot is performing. In a painting situation, the operator would actually move a
spray gun to perform the task, and the resulting motion and actions would be recorded for
playback by the robotic system at a later time. This allows an easy way for a complex task
to be modelled. It also has the advantage that although it may appear to be using a
Cartesian system, the actual joint co-ordinates can be recorded as the task is performed.
In this way, the task has been broken down into a number of very small joint motions
allowing easy simulation.

If a true path was generated, it is relatively simple to build a sequence of joint
movements. At discrete time intervals, the position of the tool is determined. This is
translated into a set of joint positions, which are compared with the current positions. The
difference is calculated giving the desired motion for this time interval. Figure 3.4.2-1
gives an illustration of a path in the plane, and how a robot arm is oriented at several
points along the path.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-
~ Time |
T

Figure 3.4.2-1 - Planar robot following a path

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5. Summary

In this chapter, we discussed a variety of reasons for using collections of convex
polyhedra as a base for modelling objects. The first was that objects can be grouped
together in any way to give an approximation of any shape, convex or concave. This
allows us to simulate any rigid manipulator segment. From this, we can directly get to an
arbitrarily given configuration of manipulators. The second was that collision detection is
much easier and faster with convex objects. Optimised computational geometry
algorithms exist if it can be guaranteed that all polyhedra are convex [PREP85]. The third
reason was that RenderMan is much faster at rendering collections of convex polyhedra
than at rendering single complicated and possibly concave objects. RenderMan also gave
the advantage of hiding most of the messy details of how motion worked. Its primitives
for translation and rotation of objects before rendering meant that most of the tedious
math did not have to be coded in.

A choice was made to have the simulator use joint positioning rather than toolface
positioning. The first reason was that this simulator was to be completely general. By
allowing the positions of the joints to be the main factor, robots with an arbitrary amount
of complexity, or multiple arms could be modelled.

The simulation allows the user to test models of arbitrary complexity. Sequences
of concurrent joint motion commands can be given, and the net results viewed. The
simulation can be paused at any time during a run and new commands can be inserted to
try out different motions. This allows for maximum flexibility and complete control over
the simulation.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Specifying Robotic Manipulators and Other Objects

In this situation, the time taken to enter in a representation of the robot is a small
amount of the overall project time. This project allows for general simulation, rather than
restricting the user to a specific robotic system. Because of this, it is likely that a wide
range of robotics systems will be simulated. The need for a quick way of defining a
system, and reusing it later is important. Most projects will probably be completed with
off the shelf components. Having a toolkit that can hold common components makes

designing a system much easier.

It was this need that led to the development of the Robot Construction Kit
(R.CK.) as a quick way of plugging together pre-defined components. Engineering
design software such as AutoCAD is in wide use. Because of this, a conversion utility
was devised that will allow importation from this popular CAD program. Conversion is
not automatic, but requires a minimum of user intervention. AutoCAD’s DXF format was
chosen to allow importation from a wide range of design tools, such as AutoCAD, 3D
Studio, and MicroStation.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1. Main Simulator File Formats

There are two main files used in the simulation. These are the event file, and the
robot description file. Both of these are ASCII text files, and can easily be edited.

The event file is straightforward. It is merely a list of joint motions along with the

time these motions are to take place. The format is as follows:

Number_of Events

Event_Number Joint_Number Action
Start Min Start_Sec Start_CentiSec
Finish Min Finish _Sec Finish CentiSec

The number of events is an integer, and it indicates how many entries there are in
this file. When it is read in, the program knows how many events to allocate room for,
and it is also used for a consisténcy check when end of file is reached. The event number
is an integer, and is used to indicate the position of this event into the list. When the entire
event has been read in from disk, it is copied into the block with this number. The joint
number is an integer, and indicates which joint is being affected by this event. Actionisa
floating point, and gives the amount of change that the joint should take. This is in
degrees for revolute motion. Start and finish times refer to the time the event is supposed
to begin and end. Motion will be scaled so that it completes on schedule. All time entries
are integers. Min refers to minutes, sec to seconds, and centisec to 100ths of a second.
There is currently a limit of 1000 event entries at any given time. This is hard coded into
the program, but could be changed at a later date.

The syntactic form of the robot description file is somewhat more complicated, as
it has to deal with a three-level hierarchy (Item, Subitem and vertices), each of which may
have an arbitrary number of elements. It can be viewed as a multiway tree which has been

23

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traversed in preorder format. Preorder traversal visits the root of a tree, then all children

of the tree processing each child completely before moving to the next child. Here is the

format for it:

Number of Items
Number of Joints
(Robot item #1)

Mobile

Red Green Blue

Initial Transform Matrix

Bound Radius
Bound X

Bound Y

Bound Z

(Robot sub-item #1)
Number of points
Bound Radius

Bound X

Bound Y

Bound Z

(Point #1)

XYZ

(Point #2...)
Number of Polygons
#1 #2...

(Polygon #1)

!

(Integer)
(Integer)

(1 (Yes) or 0 (No))
(Floats between 0.0 and 1.0)
(4 x 4 matrix of floats - this gives
the starting transform for the
object.)
(Float - Radius of item bound sphere)
(Float - X Co-ordinate of bound sphere)
(Float - Y Co-ordinate of bound sphere)
(Float - Z Co-ordinate of bound sphere)

(Integer)

(Float - Radius of sub-item bound
sphere)

(Float - X Co-ordinate of bound sphere)

(Float - Y Co-ordinate of bound sphere)

(Float - Z Co-ordinate of bound sphere)

(Floats - co-ordinates of point)

(Integer - number of faces of sub-item)

(Integers - number of vertices in each

polygon)

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#1#2...

(Polygon #2...)
(Robot sub-item #2...)

(Robot item #2...)
(Joint #1)
Joint_Type
Endl_X
Endl_Y
Endl Z
End2 X
End2 Y
End2 Z
Minimum
Maximum

Current

Base Item

Number of Attached Items

Attached Items

(Joint #2...)

(Integers - list of vertices that make up
this polygon)

(Integer - 1 = Revolute, 2 = Prismatic)
(Float - X Co-ordinate of end one of joint)
(Float - Y Co-ordinate of end one of joint)
(Float - Z Co-ordinate of end one of joint)
(Float - X Co-ordinate of end two of joint)
(Float - Y Co-ordinate of end two of joint)
(Float - Z Co-ordinate of end two of joint)
(Float - Minimum value of joint)
(Float - Maximum value of joint)
(If Min and Max both equal -1.0, then
the joint can rotate freely)
(Float - Current joint position)
(Integer - This is what the joint is
attached to)
(Integer - how many items have
to be moved if the joint position
changes)
(List of Integers - These are the actual
items that have to be moved when

the joint position changes)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2. Creating the Simulator Data Files

The current system uses ASCII files that allow the user to manually enter m co-
ordinate form. This is slow, and does not lead to easy re-use of items that have been
defined. If a commercially available robot arm is to be simulated, the user will have to
estimate the co-ordinates that make up the arm, enter them in, and run the simulator to see
if this matches reality. This leads to errors, frustration, and to the user only running simple

simulations on the system. There are several approaches to this problem.

While it is possible to enter object definitions manually, this soon becomes a very
tedious and error prone task. As well, modern CAD systems are commonly used to
represent items. [t would be convenient to be able to use these tools to define a robotics
system. This led to the design of the AutoCAD conversion program. A conversion from
AutoCAD was chosen because AutoCAD is popular and widely compatible with a large
number of other CAD tools [GESN93]. Because this program was left for future work, it
is discussed in chapter 9.

The Robotics Construction Kit (R.C.K.) was planned to provide an integrated
solution for this problem. It would have a palette of popular robotics pieces that the user
could combine together using a GUI to build the scene piece by piece. This gives instant
feedback, and solves any problems of inconsistent data. Pieces can be scaled, rotated, and
attached to one another. Scenes can be saved, and then loaded in to act as a whole like
any other piece. This allows the definition of complex objects that can be re-used. When
a scene is complete, a menu option would be used to save the scene in the main simulator

file format.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3. Summary

A simple ASCII file format was chosen over other ways of representing objects
and command data. Since no software was available to define the structures, a text editor

was the easiest way to generate mput files for testing.

Later, the idea of importing data from CAD programs arose, and it made sense to
remain with ASCII, since most programs can export their data to a text file. A translator
might need to be built, but it is far easier to parse simple text files.

Not everyone has easy access to a CAD package, or wants to design their robots
completely from scratch, so something else was needed. The Robot Construction Kit was
designed to have a library of commercially available robotic subsystems that could be
joined together. This would allow the user to test designs before purchases of expensive
equipment were made. The system would also be flexible enough to build user designed
subsystems for later reuse out of basic geometric building blocks. Due to time constraints,
the Robot Construction Kit has been left as future work.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. The Robotics Simulator

The robotics simulator allows the user to simulate the actions of a number of
robotic arms. The arms can be controlled by a pre-determined set of joint motions, or by
external program control. As the arms move around, they can interact with other objects
that have been placed into the simulation. The viewpoint of the simulation can be changed
at any time during the simulation. A simulation run can be saved as a set of commands to
repeat the simulation later, or as a series of snapshots for playback like a movie.

Individual screen shots can also be taken from any viewing point.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Main Screen and Menus
The simulator is made up of a menu area, and a main screen.
The menu is a standard pufldown menu. Its options are:

Load Scene: This allows the user to load in a scene description.

Load Events: This loads in a saved list of joint motion commands.

Save Events: This saves the current list of joint motion commands for later replay.

Display WireFrame: This changes the display mode to WireFrame. In this mode,
the simulation runs at a much higher frame rate, but the display quality is lower. This is
best for initial testing of simulation parameters

Display Solid: This changes the display mode to solid modelling. This is slower
than WireFrame, but allows a more realistic view of the scene. This is commonly used
when the simulation is paused to allow a detailed snapshot to be taken.

Take Snapshot: This produces a RIB file for later display or printing via
RenderMan.

Start Capturing: This starts the simulation capturing a sequence of movie frames.
Each time the display is redrawn, the clock is paused, and a second copy of the display is
dumped to a file. This allows the user to capture the entire simulation run for playback
with an external program.

Stop Capturing: This stops the program from capturing display frames.

Quit. This is used to quit the application.

The main screen is shown in figure 5.1-1.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1-1 Main display

The main screen is broken into a number of areas. These are:

The main display area. This is the large box in the upper left hand side where the
actual simulation is displayed. Both wire frame and solid modelling (shown above) are
supported.

The camera positioning area. This is in the upper right hand corner of the main
screen. From there, the viewpoint and viewing direction may be adjusted. Zooming in or

out is possible if either the eye or view co-ordinates are scaled.

30

Il
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The simulation control panel is just below the camera positioning area. The
buttons in here are similar in operation to those on a compact disc player.

The simulation clock is below the simulation control panel. As the simulation

progresses, it advances. This is used to determine when a joint command should be

programmed to start.

At the bottom of the screen is the joint event entry area. When the simulation is
being run in a pre-programmed mode, the joint motion commands can be edited using this

arca.

31

t
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2. Using the Simulator

When the simulation is started up, the first thing the user will do is to load in a
simulation file. When this is done, the initial positions of the objects in the scene are
displayed. Events can either be loaded from a file, or entered in using the event entry

section of the screen.

Next is camera positioning. This can be adjusted to allow the user to view the
portion of the scene that is of interest. This can also be changed during the simulation,
although pausing the simulation first is suggested to allow for accurate viewing.

Once all of this is completed, the simulation is ready to run. There are three main
buttons that operate the simulation. These are labelled Play, Pause, and Stop. The
buttons work in a fashion that is familiar to anyone who has used a compact disc player.

The Play button starts the simulation running. Events are executed resulting in

joint motion. An on-screen clock keeps pace with the events as they execute.

The Pause button freezes the action. It allows the user to reposition the camera,
produce a snapshot of the current scene, or enter additional events into the event list.

Pressing Play will start the motion again.

The Stop button stops the simulation, and resets everything back to the initial
conditions. The scene is viewed as if it had just been loaded, and all events are restored in
the event list. If events have been entered satisfactorily, the user can save them to a file
for later playback. At this point, the user can reload the scene or event lists, edit the event
list, re-run the simulation, or quit the application.

32

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1. Event Entry

Event entry is done in two ways. The first of these is through external program
control, which will be discussed in a later section. The second, which is talked about here,
is by using the Event Programming Control Panel. This takes up the bottom portion of
the main simulator screen (See Figure 5.2.1-1). The control panel allows manual entry of

joint level commands into an event list.

oo

7
ot
S E
A

15

Yo

Figure 5.2.1-1 - Event entry area

An event list can be loaded from disk, or saved to disk by using the event
submenu. Selecting "Open..." will produce a file browser that will let the user select an
event file to be loaded. Selecting "Save..." will allow the user to specify a directory and

file to save the current event list to.

There are nine text entry areas and five buttons making up this control panel. The

text entry areas are broken into three main sections: Action, Start Time, and Finish Time.

The Action area contains the Joint Number, Event Number, and Action. The Joint
Number holds an integer value, which refers to the absolute joint number being moved in
the simulation. Joint numbering starts at zero, and is highly dependent on the input data
files. The Event Number is not normally entered by the user. It is generated automatically
by the addition of new events, or by moving forward or backward in the existing list. The
user can enter a value here, which will then display the event records that match that event

33

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number. Action is a floating point number that is interpreted based on the action to be
taken. Ifthe joint in question is a revolute joint, then it refers to the amount of rotation to
be applied to the joint in degrees. If the joint is a prismatic joint, then this gives the
distance of translation in standard units.

The Start Time and Finish Time areas are almost identical. Each holds three
integer values. These are minutes, seconds, and hundredths of a second. Start Time
refers to the beginning time for the event, and Finish Time to the ending time of the event.
Combined with the amount of the Action variable, they determine the rate of motion for
this joint. If this exceeds the parameters for the joint, a warning will appear, and the finish
time will be scaled to the minimum time for the motion to be completed.

The first of the buttons is labelled "Add". It checks the currently entered event
record for validity. If everything is valid, it adds the record to the master event list, then
moves to a blank record at the end of the list to wait for more input.

The second button is labelled "Delete”. This will delete the currently displayed
event record from the event list. All the event records that were after this one will have
their event numbers decreased by one. The next event record (or the previous one is this

had been the last) will be displayed on the screen.

The third and fourth buttons are labelled "Next" and "Prev.". They will move to

the next or previous record in the event list after saving the current event.

The last button is labelled "Revert". It will overwrite any changes that have been

made to this event record with the values that are currently stored in the event record.

34

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2. Camera Positioning

Camera positioning is done using the Camera Position Control Panel, situated in
the top right hand corner of the main simulator screen (See Figure 5.2.2-1). This control
panel allows the user to modify the location and viewpoint of the camera at any time. It is
suggested that the simulation be paused before the camera is moved. This will allow the
user to select the best possible viewing position.

Figure 5.2.2-1 - Camera position area

The Camera Position Control Panel consists of six text entry boxes and two
buttons. Any floating point number may be entered into the text entry areas. The first set
of these buttons is labelled "Eye", and gives the co-ordinates of the actual viewing
position. The second set is labelled "View", and gives the direction of viewing. They
combine to give a camera direction vector. How large the image is depends only on the
Eye position relative to the objects being viewed. The View position is only used to give a

viewing vector.

The first button, labelled "Change", copies the values from the Eye and View

positions into main memory, and updates the simulation viewing window. The second

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

button, labelled "Revert", overwrites the text entry areas with the values already stored. It
can be used in case of a data entry error.

Hitting the return key in any of the text entry areas moves the cursor to the next
area. When the Z position of the Eye has been entered the cursor will move to the X
position of View. If return is pressed when the cursor is in the Z position of the View, it
has the same effect as if the Change button had been pushed. This allows rapid entry of

camera position values.

5.2.3 Running a Simulation

The simulation control area is used to run the actual simulation. There are three

buttons in this area; Play, Pause and Stop. These work in a similar fashion to those on a
compact disc player. This model was chosen due to its familiarity. Figure 5.2.3-1 shows

the simulation control area.

Figure 5.2.3-1 - Simulation control area

Pressing the Play button will do one of two things. If the simulation has been
paused, execution of the simulation will take off from where it had been paused. If this is
the first time the simulation has been run since being loaded in, or if the Stop button had
been used to halt execution of the simulation then this will start a new simulation run. The

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock will be reset to zero. All objects in the simulation will return to their initial
positions. Once things have been reset, the joint commands will start to execute.

Pressing the Pause button will freeze the simulation. At this point, the clock will
halt, and all motion will stop. This is commonly used to get a single frame snapshot of the
simulation, add new events to the event list, or to adjust the camera position. (Note that
the camera can be adjusted while the simulation is running, but it is usually simpler to

determine the correct position when things are not moving.)

Pressing the Stop button will also freeze the simulation, but will also indicate that
this run is over. The scene does not reset in case the user wants to capture the current
display. Like pressing the stop button on a compact disc player, this will lose the current
position in the simulation, and the simulation must be run from the beginning again.

5.2.4 Saving a Simulation Run

The Save and Load Event menu items allow the user to keep a set of joint
commands for later playback. When the Save Events menu option is selected, the user is
prompted for a filename and directory using a standard NeXTStep save dialog to save the
current event list under. When Load Events is selected, the user is given a file browser to

select an event file to be loaded. This will replace the current event list.

5.2.5. Capturing Frames in High Resolution

Individual frames of the simulation can be saved for later display. The frames are
saved in RenderMan’s RIB format. This allows the viewing angle to be manipulated using
an external program, or for the scene to be re-rendered at high resolution. This permits
high quality printed output of individual scenes from any viewing position.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The best time to take a snapshot is whe