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ABSTRACT

Dong, Y. 1996. Genetic variation of wood properties in tamarack (U nix laricina). 
93pp. Advisor: Dr. R. E. Farmer.
Key Words: Larix laricina, Broad-sense heritability, genetic correlation, genetic 

variation, height growth, latewood percentage, ring width, wood specific gravity, 

tracheid length.

Genetic variation of tracheid length, specific gravity, latewood percentage, 
height growth, and ring width among and within four provenances of tamarack (Larix 

laricina (Du Roi) K. Koch) was investigated in a ten-year-old provenance test that 

was planted in Thunder Bay, Ontario. Significant genetic variation of tracheid length, 

height growth, and ring width was found among provenances and among clones 

within provenances. A south-north trend of decreasing provenance means with 

increasing latitude was found for tracheid length, height growth, and ring width. Fast- 

growing provenances generally had longer tracheids than slow-growing provenances. 
Variation of specific gravity and latewood percentage was not significant among 

provenances or among clones within provenances. Variance components and broad- 

sense heritabilities of wood properties due to clones within provenances were larger 
than those due to provenances. However, variance components and broad-sense 
heritabilities of growth characteristics due to clones within provenances were smaller 
than those due to provenances. Positive genetic correlations (r=0.03 to 0.88) between 

wood properties and growth characteristics were detected, and the possibility of 

improvement of both wood properties and wood volume in tamarack was discussed.
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INTRODUCTION

Tamarack (Larix laricina (Du Roi) K  Koch) is one of the few native North American 

conifers that have a transcontinental distribution. Its main range extends from the Atlantic 

coast of Maine, Nova Scotia and Newfoundland through the Lake States and central Canada 

to the Mackenzie River drainage (Johnston 1990). Northwest Ontario is in the center of 

tamarack’s natural range. Tamarack grows under a wide variety of environmental conditions 

and exhibits rapid juvenile growth on well-drained sites (Fowells 1965).

The most common commercial use of tamarack in the United States and Canada is 

for making pulp products (Johnston 1990), and many study results have shown that tamarack 

wood chips not only can be pulped successfully, but its paper making characteristics are 

comparable or even superior to that of Picea mariana (Isebrands et al. 1982; Einspahr et al. 

1983; Hansmann and Sugden 1983; Holder 1983). Also, tamarack timbers can be used as 

lumber, railway ties and mine timbers and other wood products ( MacGillivray 1969; 

Johnston 1990 ).

Studies on tamarack in Canada and the United States have revealed a variety of 

patterns in phenotypic and genetic variation in height growth, radial growth, leaf cone and 

seed morphology, syllepsis, rooting, allozyme and spatial genetic structure (Fanner and 

Reinholt 1986; Farmer et al. 1986; Park and Fowler 1987; Dickinson et al. 1988; Parker and 

Dickinson 1990; Peggy et al. 1991; Liu and Knowles. 1991; Ying and Morgenstem 1991; 

Farmer et al. 1992; Farmer et cd. 1993). Field tests in the Lake States and northwest Ontario
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have shown that provenances from the south have better height and radial growth rate than 

northern provenances (Rehfeldt 1970; Riemenschneider and Jeffers 1980; Fanner et al. 

1993). However, wood quality characteristics (e.g., specific gravity, tracheid length) generally 

are not included in the objectives of the many tree improvement programs, and few studies 

have been done of genetic variation in wood properties of tamarack.

Although the primary goal of most tree breeding programs is to obtain fester- 

growing, better-formed, well-adapted, and pest-resistant trees, wood properties may also be 

improved from the same tree improvement programs (Zobel and van Buijtenen 1989). 

Research on conifers has shown that selection can improve not only growth characteristics, 

but can also wood quality characteristics. Wood properties affect the quality and yield of 

wood products, and are inherited strongly enough to obtain rapid, economically important 

gains through genetic manipulation (Artuz-Siegel et al. 1968; Higgins et al. 1973; Barker 

1974; Zobel et al. 1983; Megraw 1985). Generally, the wood quality characteristics in forest 

trees are more highly inherited and less influenced by the environment than growth 

characteristics (Zobel and Talbert 1984). Therefore genetic variation of wood properties 

should be considered in tree improvement programs.

In this study, I investigated genetic variation in growth and wood property 

characteristics of juvenile tamarack (10 years) using 32 clones from four provenances in 

northwest Ontario. The objectives of this study were to explore phenotypic and genetic 

variation in specific gravity, tracheid length, height growth rate, radial growth rate and 

latewood percentage, among provenances and clones within provenances. Heritability of each 

trait was estimated as a guide to the breeding value. Phenotypic and genetic correlations
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among specific gravity, tracheid length, latewood percentage and growth rate were also 

evaluated.
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4

LITERATURE REVIEW 

WOOD PROPERTY VARIATION

Wood is the most important forest product. Wood properties, the cause of wood 

property variation, and how best to modify wood properties for desired products must be 

understood by the tree breeder. There are many wood properties, but generally specific 

gravity and tracheid length are two of the most important characteristics. Paper properties are 

in some degree dependent on specific gravity and tracheid length (Zobel and van Buijtenen 

1989; Panshin and de Zeeuw 1980). Many other wood property characteristics, such as wall 

thickness, lumen diameter, cell diameter, length-width ratio of the cells, fibril angle are 

generally strongly correlated with specific gravity and tracheid length, and much less 

important in a juvenile wood study (Dinwoodie 1965; Barefoot et al. 1966; Zobel and van 

Buijtenen 1989). Latewood percentage is related to both specific gravity and tree growth 

rate, so normally it is included in wood property studies (Panshin and de Zeeuw 1980).

Specific Gravity Variation

Specific gravity ( relative density) is the amount of wood substance present in a given 

volume of wood. Although there are many different definitions, wood specific gravity is
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usually defined as the ratio of the weight of a given volume of wood to the weight of an equal 

volume of water at 4 °C (grams of wood /grams of cubic centimeter of water) (Zobel and van 

Buijtenen 1989). It is one of the most important characteristics to tree improvement, because 

it not only has a major effect on both yield and quality of the final product (Dinwoodie 1965; 

Barefoot et al. 1966), but also it is strongly inherited (Zobel 1961; van Buijtenen 1962; Smith 

1967; Matziris and Zobel 1973; Nicholls etaL 1980).

Li most situations, specific gravity is one of the most significant properties affecting 

the end use of wood. Specific gravity affects the yield and quality of pulp and paper 

products. It is considered as the best index for predicting the strength properties of wood 

(Panshin and de Zeeuw 1980). Most wood product characteristics (e.g., pulp and paper 

flexibility, tensile strength, tear, burst, printability, bendability, and many mechanical 

properties of wood) are strongly controlled by wood specific gravity (Panshin and de Zeeuw 

1980; Zobel and van Buijtenen 1989).

Variation of specific gravity within a species is divided into geographic variation 

(provenance variation), variation among individual trees and variation within individual trees 

(Zobel and van Buijtenen 1989). Although results on many provenance and specific gravity 

studies are controversial, the idea that geographic variation is controlled by both environment 

and genetic factors is widely accepted. Provenance variation is normally considered to be 

result of evolutionary selection related to different environments, especially the temperature 

and photoperiod (Callaham 1964; Aastveit 1983; Heide 1983). Many studies indicate that 

provenance variation exists widely in tree species. For example, tamarack grown in natural 

stands in northwest Ontario exhibits significant specific gravity differences among
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provenances, and has a weak trend of increasing specific gravity with increasing latitude 

(Yang and Hazenberg 1987). Holst (1960) found large differences in specific gravity among 

Piceaglauca sources in Canada. Taylor et al. (1982) reported wide specific gravity variation 

among Picea glauca sources in Alberta. Harris (1965) reported that specific gravity of Pinus 

radiata in New Zealand decreases about 0.1 with each increase in degree of latitude, and 

increases by about 0.01 with each 100 m increase in altitude. Populus balsamifera grown in 

the north generally have a little higher specific gravity than those growth in south, and 

southern provenances normally have longer fibers than northern provenances in Ontario 

(Balatinecz and Peng 1984). Effects of provenance upon wood properties of trees in 

plantations are different. In some studies, the provenance has an effect on the wood of a 

plantation (Echols and Conkle 1971; Kennedy 1971), but in many others the environment in 

which the plantation has been established exerts a very strong effect, and provenance 

differences tend to be masked (Gilmore et al. 1966). Populus balsamifera provenance tests in 

northwest Ontario indicated that specific gravity variation among provenances was not 

significant (Ivkovich 1995). However, a test on 29 sources of Pinus banksiana showed that 

a number of phenological and xylem characteristics had significant variation and strong 

relationships with provenance (Kennedy 1971).

Generally, tree-to-tree variation in wood properties within a provenance is large. 

Yang et a l (1987) found that tamarack juvenile wood specific gravity, tracheid length, and 

latewood percentage varied significantly among individual trees. Similar variation of specific 

gravity in tamarack was found by Alemdag (1984). Variation in specific gravity between 

dominant and suppressed tamarack trees was reported by Wong (1987). He stated that
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dominant trees have a higher specific gravity than suppressed trees. Isebrands and Hunt 

(1975) and Loo et al. (1982) demonstrated that there were large specific gravity differences 

among trees of Larix leptolepis. hi many other conifers specific gravity variation among trees 

is significant (Grigal and Sucoff 1966; Taylor et al. 1982; Roddy 1983). However, specific 

gravity variation within a clone is much smaller than the variation between clones (Kennedy 

1966) in Picea abies, and specific gravity variation was not significant within clones in a 

Populus balsamifera provenance test (Ivkovich 1995).

The variation of specific gravity within a tree can be subdivided into radial variation 

(variation within a ring, variation from the pith to the bark), and axial variation (variation 

associated with different heights in a tree) (Panshin and de Zeeuw 1980; Zobel and van 

Buijtenen 1989). Generally, eariywood specific gravity in conifers is much lower than that of 

latewood (Lutz 1964; Echols and Conkle 1971; Megraw 1985). Specific gravity in larch and 

many other species increases from the pith outward, then becomes basically constant after a 

certain ring age (when the tree is mature) (Panshin and de Zeeuw 1980; Yang et al. 1986). 

Specific gravity either decreases or increases from the stem base upward to the crown 

depending on species. There is a clear decrease in specific gravity with increasing height in 

larch and most conifers ( Panshin and de Zeeuw 1980; Yang et al. 1986; Wong 1987; Zobel 

and van Buijtenen 1989).
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8

Tracheid Length Variation

Tracheid length is determined primarily by the length of the cambial initials, and 

secondly by cell elongation after the division ( Bannan 1964, 1965). Coniferous tracheid 

length exhibits great variability and is strongly inheritable (Wheeler et al. 1965; Smith 1967). 

Tracheid length sometimes has a marked effect on product quality and the use of wood. 

There are positive relationships between the pulp and paper quality and the tracheid length, 

and tracheid length is usually used as one of the criterions to determine the final paper 

product value (Zobel and van Buijtenen 1989). Studies have shown that tracheids shorter 

than 2 mm are responsible for deficiencies in certain paper properties and other wood 

products (Panshin and de Zeeuw 1980). It is generally assumed that tensile strength (break 

length) and burst strength of paper are determined primarily by tracheid length or fiber length 

(Horn 1978). Usually short fiber wood (e.g., hardwood and juvenile wood in conifers) is not 

good enough to produce paper, unless some long tracheids or fibers are added to increase its 

strength. In this situation, tree improvement methods used to increase tracheid length in 

certain long fiber hardwoods and in juvenile conifer wood become important and valuable 

(Panshin and de Zeeuw 1980; Zobel and Buijtenen 1989).

Previous studies indicted that tracheid length varied greatly both within and among 

trees and was under strong genetic control (Wheeler et al. 1965; Zobel and van Buijtenen 

1989). Correlations of tracheid length with latitude in conifers are reported by Zobel et al. 

(1960), Taylor et al. (1982), Megraw (1985), and Yang and Hazenberg (1987), however, the 

results are controversial. In tamarack, a weak increasing trend of tracheid length with
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increasing latitude from 46 to 54 °N was found; and tracheid lengths are significantly different 

among trees, stands and locations in northwest Ontario (Yang and Hazenberg 1987). Pinus 

taeda studies in the United States showed that inland and northern sources had shorter 

tracheids than southern and coastal sources (Zobel et al. 1960; Jackson and Strickland 1962). 

Echols (1973) reported that Pinus ponderosa at high elevations, near the timberline, 

produced wood with short fiber and low specific gravity as a result of short growing season, 

little summer rain, and cool springs and summers. He generalized that the relationship of thin 

cell walls with higher elevation or higher latitude is common to forest trees. A provenance 

test on Populus balsamifera demonstrated that fiber length variation among provenances was 

significant at 0.05 level of probability. Fibers are longer in Populus balsamifera originally 

from south than those from north (Ivkovich 1995).

Tree-to-tree variation in tracheid length or fiber length is normally large. Yang and 

Hazenberg (1987) found that tamarack tracheid lengths were significantly different among 

trees within a stand. Difference in tracheid length between tamarack mature wood of 

dominant trees and suppressed trees is significantly different (Yang et al. 1986; Wong 1987). 

Ledig et al. (1975) found that 28-71% of the total variation of specific gravity and tracheid 

length in Pinus caribaea was due to trees within stands. The large tree-to-tree differences in 

fiber length accounted for 49% of the variation at 11 years and 90% at 31 years in 

Liriodendron tulipifera (Thorbjomsen 1961). Vegetative propagation can produce trees with 

similar tracheid length within clones, but clonal differences are very large(Kennedy 1966; 

Ivkovich 1995).
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There are several variation patterns for tracheid length within trees. The first is radial 

variation (within-ring variation, and the variation from the pith of the tree to the bark), and 

the second is axial variation (the differences associated with different heights in the tree) 

(Panshin and de Zeeuw 1980). hi most conifer species, including larch, eariywood tracheid 

length is shorter than latewood tracheid length. Tracheid length of tamarack juvenile wood is 

normally much shorter than the tracheid length of mature wood. From the pith to the baric 

tracheid length normally increases (Yang et al. 1986). There is complex variation with 

changing height. However, in most conifers including larch, tracheid length decreases from 

the bottom to the top of the tree (Spurr and Hyvarinen 1954; Welhvood 1960; Dinwoodie 

1961; Yang etal. 1986).

Latewood Percentage Variation

Latewood percentage is defined as latewood width divided by the whole ring width 

(Panshin and de Zeeuw 1980). Generally eariywood is formed in spring and early summer, 

and latewood is formed in late summer and fall after height growth has stopped (Zobel and 

van Buijtenen 1989). Latewood has longer tracheid (fiber) lengths, thicker cell walls and 

higher specific gravity than eariywood (Panshin and de Zeeuw 1980). The formation of 

latewood is influenced by environmental factors (such as temperature, rain), fertilization and 

cultivation. Some studies show that latewood percent in some species appears to under fairly 

strong genetic control (Rees and Brown 1954; Kennedy 1971; Worrall 1975). Many studies 

indicate that latewood percentage is strongly correlated with specific gravity, but literature on
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assessments of the inheritance of the latewood percentage is rare (Zobel and Talbert 1984). 

Variation of specific gravity within rings is mainly due to the variation in the latewood 

percentage. A higher latewood percentage generally results in higher specific gravity because 

latewood has a higher specific gravity than eariywood (Goggans 1964; Kennedy 1966; Zobel 

and van Buijtenen 1989). Eariywood and latewood have quite different wood properties. 

Biblis (1969) found that specific stress and specific stiffness of latewood are more than 50 and 

60% higher than corresponding values for eariywood. In most cases, latewood has a major 

influence on the quality of finished wood products. Paul and Smith (1950), and Wilson 

(1964) indicated that eariywood and latewood gave great differences in pulp quality. 

Gladstone et al. (1970) found that Pirtus taeda had higher holocellulose, alpha-cellulose, and 

glucan contents in latewood than in eariywood, and latewood had 2-7% higher pulp yield 

from a given weight of dry wood than eariywood. Brazier (1983) found that eariywood and 

latewood zones showed a different coarse texture in both softwood and hardwood. This leads 

to the deflection of nails, splitting, and distortion on drying, and eariywood makes wood 

difficult to finish.

The latewood percentage of tamarack is significantly different among locations 

(provenances), and a weak trend of increasing tamarack wood specific gravity and latewood 

percentage with increasing latitude was found in northwest Ontario by Yang and Hazenberg 

(1987). Some researchers found that latewood percentage was negatively related to the 

growth rate in Pirtus banksiana (Kennedy 1971) and in Pirtus radiata (Nicholls et al. 1980). 

The Pirtus taeda latewood percent increased from southern sources to northern sources 

(Rees and Brown 1954). However, many studies indicate that differences in the earlywood-
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latewood percentage among seed sources, when trees are planted in the same location, 

appear to be slight (Rees and Brown 1954; Saucier and Taras 1967; Kennedy 1971; Worrall 

1975). Results of a Pirns banksiana provenance test demonstrated that there was no 

systematic trend in the latewood percentage related to provenance (Kennedy 1971), and most 

of the variation was considered to result from an interaction between the test location and the 

provenance. He explained that some provenances developed significantly higher latewood 

percentage largely because their eariywood formation was retarded and caused most of the 

wood to be formed during the summer or early fell.

Latewood percentage variation among trees was significant within natural stands of 

tamarack in northwest Ontario (Yang and Hazenberg 1987). Wong (1987) noted that in 

tamarack juvenile wood, latewood percentage in suppressed trees was significantly higher 

than that in dominant trees, but the difference was not significant in mature wood. No 

literature is available about clonal latewood variation in tamarack clones. Results from a 

Picea abies clonal test reported by Kennedy (1966) and Worrall (1975) showed that variation 

in latewood percentage within clones was not significant, although variation among clones 

was highly significant.

Within a tamarack tree latewood percentage generally increases with ring age from 

the pith outward in juvenile wood, and becomes more uniform in mature wood (Yang et al. 

1986; Wong 1987). Latewood percentage decreases with height in both juvenile and mature 

wood in most conifers and larch (Larson 1957; Koch 1972; Megraw 1985; Yang et al. 1986; 

Wong 1987). Megraw (1985) reported that latewood percentage increased fester with ring 

age at the lower height levels than it did at higher levels. He found that within the same rings,
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latewood percentage was normally greater at stem base than at the upper levels of the same 

stem.

VARIATION IN GROWTH RATE AND OTHER CHARACTERISTICS

Most tree improvement programs focus on characteristics that directly affect forest 

productivity, such as improved volume growth. The most common traits considered in forest 

tree improvement studies are tree radial growth rate and tree height growth rate, because 

there is substantial genetic variation in those traits (Wright 1976). Variation among diameter 

and height growth rates has been studied in tamarack by a few researchers.

A study on 24 tamarack seed sources in northern Wisconsin demonstrated significant 

differences in height growth among provenances (Jeffers 1975; Cech et al. 1977). 

Riemenschneider and Jeffers (1980) demonstrated that variation in both height growth and 

radial growth were significant in a tamarack seed source test in northern Wisconsin. A 

significant negative correlation of height and radial growth with latitude and longitude of the 

source origins was found. The study on genecology of tamarack by Rehfeldt (1970) 

demonstrated clinal patterns of variation for 2-year height, date of bud set, and patterns of 

root development. He explained that clinal variation in these variables was due to the 

significant correlation between the date of bud set and frost-free period of the seed origin. 

Results on a tamarack provenance test in northwest Ontario showed that variation in height 

growth among provenances and among clones within provenance was significant, and height
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growth was negatively correlated with latitude (Farmer et al. 1993). The authors interpreted 

the effect of latitude as a photoperiod controlled adaptation to environmental gradients.

Photoperiod is a stable environmental factor. It is generally considered as the 

most important factor in controlling forest trees’ height growth cessation, winter bud 

formation, leaf abscission and, in some situations, bud break, flower initiation and seed 

germination (Ekberg et al. 1976). Height growth cessation or bud set in response to 

photoperiod allows trees to enter the dormant stage before the occurrence of the first 

autumn frost (Heide 1983). In higher latitude areas the first frost occurs earlier than in 

lower latitude areas. Thus, provenances in high latitudes normally cease height growth or 

set buds earlier than southern provenances (Pollard and Logan 1976). On the other hand, 

daylength in high latitude areas is longer, and night is shorter than low latitude areas in 

summer and early autumn. Thus the northern provenances have longer critical 

photoperiods for apical growth cessation and winter bud formation than southern 

provenances (Heide 1983). When the northern provenances are planted in south, they 

may stop growth very early, when the photoperiods are same as those in their original 

areas. Sylven (1940) found when the northern provenances of Populus tremula were 

planted at a southern location, they stopped growing in height earlier than those planted 

in the north. In contrast to the reduction or cessation of growth induced by short 

photoperiods at low latitudes, growth was prolonged by planting southern provenances 

at higher latitudes with longer photoperiods. When southern provenances were planted 

at a northern location, they had a longer growth period than northern provenances and 

also longer than when planted in their original areas. Sylven (1940) also found that when
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southern provenances were planted in the far north, they were damaged by autumn frost. 

However, hybrids from crosses between parents from northern and southern 

provenances demonstrated fast growth and great frost resistance. These results 

demonstrated the strong inheritance of the photoperiodic response in the forest trees.

Variation in tamarack populations has been detected through allozyme variation 

analysis. Park and Fowler (1987) showed that genetic variation due to clones within families 

was large for both height growth and survival. Variation in allozymes of western larch (Larix 

occidentalis Nutt.) was reported within rather than between the populations groups (Fins and 

Seed 1986). However, in a study of allozyme variation in populations of eastern tamarack 

across northwest Ontario, Knowles and Perry (1987) did not found obvious heterogeneity 

among the populations.

Phenotypic and genetic variation has also been found in other characteristics. In a test 

of tamarack population structure and genetic diversity, Cheliak et al. (1988) reported that 

clonal variation in isozymes was large. Considerable phenotypic variation in stem form and 

branch habit was also reported by Fowler (1986). Significant provenance variation in syllepsis 

was noted by Farmer et al. (1993). Phenotypic variation in cone and seed characters of 

tamarack is significant among stands and trees within stands, but not significant among 

provenances in northwest Ontario (O’Reilly and Farmer 1991). A range-wide study on 

morphological and anatomical phenotypic variation in tamarack cones and needles shows that 

provenance variation has a weak geographic trend; the greatest variance components existed 

among trees within stands and within trees (Parker and Dickinson 1990).
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CORRELATION AMONG TRAITS

A tree improvement program is generally designed to improve several traits at the 

same time. Thus, relationships among traits should be considered.

Genetic correlation measures the genetic similarity between two characteristics. It is 

expressed as the ratio of the two characters’ genetic covariance to the product of the two 

characters’ genetic standard deviations (Falconer 1981). Pleiotropic effects are the main 

reason for genetic correlation. However, pleiotropy does not always cause a detectable 

correlation, because some genes may increase both characters, while others may increase one 

and reduce the other. The former tends to cause a positive correlation, and the latter causes a 

negative correlation (Namkoong et al. 1988; Falconer 1981). Thus, even if we cannot find 

phenotypic correlation between two traits, genetic correlation between them may be 

estimated.

Correlation among wood properties has been widely studied. However, most of 

studies only report the phenotypic correlation between the traits. Results on some species 

demonstrated that wood properties, especially specific gravity and tracheid length, are only 

slightly correlated phenotypically and are sometimes genetically independent from one 

another. For example, Zobel et al. (1960) found that specific gravity was slightly correlated 

with tracheid length (r = -0.16). However, many studies show significant phenotypic and 

genetic correlations between tracheid length and fibril angle, between specific gravity and cell 

wall thickness, specific gravity and moisture content, latewood percentage and specific 

gravity (Zobel etal. 1960; Bunn 1981; Megraw 1985; Ivkovich 1995). A provenance test in
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Popuhis balsamifera indicated that both phenotypic and genetic correlations between fiber 

length and specific gravity were significant (Ivkovick 1995).

Correlation of growth rate with wood properties has been widely investigated. 

Because many complex factors influence the tree growth rate, results of the studies are 

controversial. Paul (1932) demonstrated that fast grown southern pines could produce wood 

that has characteristics unsuitable for high quality products. Many studies have shown that 

there is an increase in the proportion of juvenile wood and eariywood percent in rapidly 

grown trees, and that properties of wide-ring wood are poor in comparison with the slow- 

growing trees (Bendsten 1978; Zobel 1981; Zobel and Talbert 1984; Megraw 1985). 

However, Allen (1977) reported a positive correlation of height and radial growth with 

specific gravity in Pirtus elliottii. Smith et al. (1966) demonstrated that in Pseudotsuga 

menziesii specific gravity was negatively correlated with growth rate. Zobel (1964) found that 

fast growth did not affect the wood density on the several Mexican pines he tested, and a 

similar result was reported by Smith (1962) for Pirtus menziesii. In a Populus balsamifera 

provenance test in Thunder Bay, Ontario, a slight negative correlation between radial growth 

rate and relative density was found by Ivkovich (1995).

A strong phenotypic correlation between height and radial growth (0.93 to 0.98) was 

found by Riemenschneider and Jeffers (1980) in a tamarack provenance test. Genetic 

correlations among growth traits are similar to phenotypic correlations in tamarack, and a 

strong correlation between the number of syllepsis and height growth was found by Deng 

(1990) and Farmer et al. (1993). Correlation between clonal means for rooting per cent and
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clonal means for the number of roots per cutting was moderate to strong in a tamarack 

rooting test (Farmer et al. 1992).

Some studies have examined genetic correlations at different ages to determine the 

possibility of trait selection in juvenile trees. Wakeley (1971) found that in Pirns palustris 

juvenile growth (before age 15) was not strongly correlated with the same trait at age 30. 

However, juvenile-mature correlations in Pinaceae exist, and early selection in Pinaceae of 

superior progenies appears to feasible (Lambeth 1980). A similar conclusion was reported by 

Ying and Morgenstem (1979) in Picea glauca. Juvenile and mature wood specific gravity 

and tracheid length are generally very well correlated with each other in Pirtus taeda 

(Stonecypher and Zobel 1966; Zobel 1970). Patterns of change in tamarack tracheid length, 

specific gravity, and latewood percentage (Yang et al. 1986; Yang and Hazenberg 1987; 

Wong 1987), suggested that this juvenile-mature relationship exists.

HERTTABILITY

Heritability is the proportion of the phenotypic variation in a population that is due to 

the average effects of genes. It is a ratio indicating the probability with which parent trees 

transmit their characteristics to their offspring (Falconer 1981; Zobel and Talbert 1984). 

Heritability also indicates the reliability of the total phenotypic values as a guide to the 

breeding value. However, its value will change for certain characteristics of given species, 

because heritability is the ratio between genetic variances and phenotypic variances. 

Furthermore, estimates of heritability always have errors. Thus, heritability should only be
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considered as the estimated value that gives a general idea about the ability of inheritance. 

They change with age, environment, trait, and even test design and plantation (Zobel and 

Talbert 1984).

There are two types of heritability normally used in a tree improvement program. The 

first is broad-sense heritability (H2). It is defined as the ratio of total genetic variation in a 

population to phenotypic variatioa The second is narrow-sense heritability (h2). It is defined 

as the ratio of additive genetic variance to total variance (Falconer 1981). Broad-sense 

heritability is normally greater or equal to the narrow-sense heritability. This is because total 

genetic variation includes both additive and non-additive variatioa In special conditions when 

non-additive genetic variation is zero, broad-sense heritability is equal to narrow-sense 

heritability. Forest tree improvement programs are generally aimed at improving combining 

ability and only the additive genetic variation will be used. Therefore, narrow-sense 

heritability is more widely used than broad-sense heritability in tree improvement (Zobel 

1984; Falconer 1981; Namkoong et al. 1988). It is assumed that in clonal tests both the 

additive and non-additive variance can be transferred from parent to offspring it is impossible 

to separate non-additive variance and additive variance. So clonal tests can only estimate 

broad-sense heritability (Wright 1976; Falconer 1981; Zobel and Talbert 1984).

Different characteristics have quite different heritabilities. Wood specific gravity and 

tracheid length are considered as two ideal characteristics to manipulate genetically. This is 

because they have large tree-to-tree variation, strong heritability, low genetic and 

environment interaction, and these characteristics are important characteristics affecting wood 

yield and wood quality (Zobel and van Buijtenen 1989). Previous studies indicated that both
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in softwoods and hardwoods, heritability of specific gravity is high, normally in a range of h2=

0.3 to 0.7 (Stonecypher and Zobel 1966; Einspahr et al. 1967; McKinnery and Nicholas 

1971; Nicholls et al. 1980; Land and Lee 1981). Research has demonstrated that there is 

good potential for wood property improvement in Larix leptolepsis (Isebrands and Hunt 

1975). Heritability of lalewood-eariywood ratio varies greatly (Goggans 1964; Kennedy 

1966), but differences in the latewood percentage among seed sources, when planted in the 

same location, appear to be slight (Rees and Brown 1954; Saucier and Taras 1967; Kennedy 

1971; Worrall 1975). Broad-sense heritability of tamarack height growth rate was 

investigated by Farmer et al.(1993). The value varied from 0.11 to 0.23. However, 

heritability (0.47) in sylleptic branching is much higher than that for height growth rate. Park 

and Fowler (1987) found that tamarack clonal heritability for height growth rate of different 

populations range from 0.04 to 0.18, slightly larger than heritability for survival. Heritability 

of Picea glauca varies greatly from age to age for the same traits had been reported by Ying 

and Morgenstem (1979).
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MATERIALS AND METHODS

MATERIALS

Materials from four provenances (Thunder Bay, North Bay, Kenogami River, and 

Sandy Lake, Figure 1.), two stands within each provenance, 4 clones within each stand 

and four ramets within each clone were included in this study. All were sampled from a 

provenance test established in Thunder Bay by Lakehead University. Provenance 

selection for this study was according to the latitude and longitude distribution. Some 

provenances in the test were not considered in this selection because of their low growth 

rate and survival rate. Materials from four blocks and eight randomly selected clones in 

each provenance were used in this study. A total of 128(4x4x2x4x1) trees were sampled 

from the four blocks.

The provenance test has a three level nested design with a fixed block 

arrangement. Each block includes all of the provenances, and the provenances were 

randomly arranged in the blocks. Each provenance has a plot, and the 20 clones within 

each provenance were randomly arranged within provenance plots. Each clone has three 

ramets in each plot (Deng 1990).

The test plantation was established between fall 1984 and spring 1985 using 

uniform age ramets. In total, eleven provenances were included in the test, all of which
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were collected from northwest Ontario within Longitude 80° to 95° and Latitude 46° 

to 54°. There are two stands in each provenance, and each stand is presented by ten 

clones. The ortets were sampled from wildings with ages ranging from 3 to 10, and the 

ramets were cut from them and rooted in Spencer-Lemaire containers (750 ml). Ramet 

rooting and plantation establishment have been described by Farmer et al. (1986) and 

Deng (1990).

S^idy Lake

.enogami

Thi : r B ;

North Ba'

Figure 1. The locations in Ontario of the four tamarack provenances used in the study
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The test includes four blocks. They have similar topography, but different soil 

conditions. Blocks 1 and 2 have a deep, sandy loam soil; the soil of blocks 3 and 4 is a 

stony, sandy loam relatively shallow and with occasional boulder outcrops (Farmer et al. 

1993). Block 3 and block 4 are better drained than block 1 and block 2.

METHODS

DATA COLLECTION

Three wood properties (tracheid length, specific gravity and latewood 

percentage), two growth traits (annual height growth, annual radial growth) were 

included in this study. Only 1991 and 1994 were sampled and evaluated because of the 

limited time and other resources. Trees that were damaged, forked or dead were not 

used. Before the trees were cut down, the south side of the stems were marked. The 

field sampling began on September 21, 1995 after the tree height growth stopped, and 

ended on October 20, 1994. The laboratory work was finished within three months after 

the field work.

Height Growth Rate Measurement and Disks Collection

After trees were cut, height increment for 1991 and 1994 was measured using a 

tape in the field. This investigation was done in a young plantation where many live 

branches occur below the DBH. In order to avoid branch knots influence measurement, a
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3 cm thick disk was cut from each tree at the base, 10 cm above the ground, where the 

bole was clear. Before cutting the disk, North-South directions were marked on the disk, 

and the tree identification number was marked on the reverse side of the disk. Disks 

were placed in a plastic bag and sealed. All the disks were brought to the laboratory 

within 24 hours and kept in a refrigerator at about 5 °C until examined. The average of 

North - South and East - West specimens were used for each measurement.

Radial Growth Rate (Ring Width) Measurement

Radial growth rate is expressed as the width (cm) of a growth ring. Before the 

disk was used to measure ring width, the cross-section was smoothed by fine sandpaper. 

Growth ring width was determined by a TRIM(Tree Ring Increment Measurer) provided 

by the Ontario Ministry of Natural Resources. The average of the North - South ring 

width and East -West ring width in a year was considered the disk’s “ring width”. The 

accuracy of the TRIM is around 0.001 cm. The measurement of ring width starts from 

the cambium towards to the pith, and the eariywood and latewood were measured 

separately. The sum of eariywood width and latewood width comprised the whole ring 

width.

Latewood Percentage Measurement

Latewood percentage is defined as the ratio of the width of the latewood zone to 

total width of the growth ring. The measurement of latewood percentage was finished
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using TRIM during measurement of ring width. Latewood and eariywood were 

determined based on wood color within the ring and smoothness of the wood surface. 

Eariywood color is usually lighter than latewood , and latewood surface is smoother 

than eariywood surface.

Specific Gravity Measurement

Specific gravity was determined by the maximum moisture content method 

(Smith 1954). Wood specific gravity can be categorized as extracted specific gravity and 

unextracted specific gravity. Specific gravity after extraction is the specific gravity after 

the resinous and phenolic deposits and sugars in wood have been extracted with alcohol 

- benzene and with hot or cold water. The difference between extracted and unextracted 

specific gravity of most resin-rich pine and fir is substantial, especially for heartwood and 

reaction wood, if the trees are old enough (generally older than 25-year-old) (Posey et 

al. 1970; Panshin and Zeeuw 1980). In juvenile wood the differences between extracted 

and unextracted wood specific gravity are very small; there is no significant effect on the 

specific gravity of alcohol-benzene extraction (Posey et al. 1970; Megraw 1985). In this 

study only unextracted specific gravity is measured. There are two reasons. First, the 

trees are only 10 years old, so amount of the extraction will not significantly change 

wood specific gravity. Second, unextracted specific gravity will be a little higher than 

the extracted specific gravity, but all the specimen values are inflated by about the same 

rate.
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After measuring ring width and latewood percentage, the core was divided into 

individual rings which were numbered from the cambium towards the pith. Then the 

small ring chips were placed into a test tube with distilled water. To ensure that these 

chips reached the point of maximum moisture content; they were submerged until the 

last two measurements of moisture content weight were constant. The agreement 

between the last two weightings was within 0.5%. Usually, it took 2 to 3 weeks to reach 

maximum moisture content after complete submersion of the specimen. In order that 

maximum moisture could be reached faster, a vacuum was used in this study, and the 

actual time used to reach the maximum moisture was about two weeks.

After reaching maximum moisture content, the specimen was taken out, and 

weighted after its surface water was removed by paper. The specimens were replaced in 

water after weighing, and when all specimens were weighed once, the whole procedure 

was repeated for a second weighing after two days. According to previous experience, 

the agreement between the two weighings should be within 0.5%. The average weight of 

the specimen was the maximum moisture content weight (Wm). After weighing, the 

specimens were dried in an oven at 105° C for about 24 hours, and the oven dry weight 

was determined (Wo). The saturated and oven dry weights were recorded to the nearest 

milligram. The following equation was used to calculate specific gravity:

1
Specific gravity = -----------------------------------------------

Wm - Wo 1
  +  ------------------

Wo Go
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where:

Wm = specimen weight at maximum moisture content

Wo = oven dry weight

Go = the density of wood substance = 1.53

Tracheid Length Measurement

After specific gravity determination, each individual ring chip was further split 

into eariywood and latewood splints for measurement of tracheid length (in this study 

refers eariywood tracheid length). Only eariywood tracheid was used to measure tracheid 

length in this study. Individual eariywood splints were macerated according to Franklin's 

(1945) method. Each of the early wood chips was soaked in a 1:1 mixture of glacial 

acetic acid and hydrogen peroxide(30%) in a test tube. The test tubes were kept at 80° 

C for about 24 hours until the wood chips’ color turned to white. Then distilled water 

was used to wash the chips three times. The tubes were then shaken until the chips 

disintegrated into individual tracheids. The tracheids were finally used to make a 

microscopic slide, and covered with a cover slip. The edge of the cover slip was sealed 

with cover bound. Each slide contained at least 100 tracheids. According to previous 

experience, at least 25 tracheids were randomly selected and their lengths were 

measured(Yang et al. 1987). The least number of tracheids that must be measured was 

determined according to the empirical formula:
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N = t2 x s2 / E2

Where:

t - student's t value at the probability level (here 0.05) 

s2- the variance of preliminary samples 

E - the allowable error set at 10% of the mean tracheid length 

Finally, the image of a tracheid magnified 100* was projected through a 

microscope onto a HIP AD digitizer connected to an Apple He microcomputer. The 

mean length of 25 tracheids from eariywood was used as the tracheid length for each 

individual growth ring.

DATA ANALYSIS

There are four sources of variance in this study: block, provenance, stand, and 

clone. Each tree trait was analyzed through all the following steps. Differences were 

considered to statistically significant if the probability of rejecting the null hypothesis of 

no difference was 0.05 or less. Analysis of variance of each individual provenance was 

used in this study for further analysis of variation.
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Analysis of Variance

The linear model in this study was expressed as :

Yijklm = H + B{+ 5(i)+ Pj + BPy+ <D(ij)+ S(j)k+ BSi(j)k+ C^pF BCi(jk)1 + E(ijld)m [L]

Where:

Yjjkim = the mth response within (tracheid length, specific gravity, annual height 

growth, ring width, and latewood percentage) the Ith clone within kth stand within jth  

provenance in ith block 

p = overall mean;

Bj = fixed ith block effects, i = 1,2,3,4;

= the first restriction due to blocking;

Pj = the jth  provenance random effect, j = 1,2,3,4;

BPy= block and provenance interaction effect (random);

Q(ij)= second restriction error due to provenances within blocks;

S(j)k = rand°m effect of kth stand within the jth  provenance region, k= 1, 2;

BSi(j)k= interaction of ith block with kth stand within jth  provenance;

C(jk)i = the random effect of the Ith clone within kth stand within jth  provenance, 

1=1,2,3,4;

BCi(jk)l = the random effect of the Ith within kth stand within jth  provenance in 

ith block;

E(ijid)m = the random effect error, m = 1;
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(all the random effects are assume to fit HD N(0, a^)).

The Expected Mean Square (EMS) table and test of the hypotheses are listed in 

Table 1, and Table 2, respectively.

Table 1. Expected mean square associated with the linear model [1]

Source DF Expected Mean Square

Bi 3 cr2 +  c^ b c  +  4a2bs + 8  o2Q +  8cr2Bp + 32a2§ + 32<J)(B)

5(D 0 cr2 +  o 1b c  +  4c2bs + 8a 2q j+  80^  + 32 a 25

Pi
3 a2 +  A c f c  +  16o2s+  8 'o2(D+  32o2p

BPij 9 a 2 +  o2b c +  4o2bs +  8cr2(0+ 8a 2Bp

G>(ij) 0 a 2 +  o2b c +  4ct2bs +  Sa2̂

s (j)k 4 a 2 +  4a2c +  16o2s

BSi(j)k 12 o 2  + o 2b c  4a2bs

C(jk)l 24 a 2+ 4 ^ 0

BCi(jk)l 72 o 2 +  (^BC

B(ijkl)m 0 a 2

Total 127

In this study I use MS(P)/MS(S) to test the null hypotheses of = 0. Table 1 

shows that this is the correct test so long as a2* = 0. In order to discover whether Hoi: 

o2̂  = 0 is true. I first test H02: o2® + a^p = 0 using MS(BP)/MS(BS). If H02 is accepted 

at a  = 0.25, then I know that both a 2* = 0 and o^p = 0 and I can proceed to test Hoi as 

outlined above. In this study, H02 was accepted for most traits. The exceptions were
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diameter growth in 1991,1994; latewood percentage in 1991; and height growth in 1991 

(Appendix HI). So, for those characteristics, apparent provenance effects may actually 

reflect, in whole or part, the restriction error effect.

Table 2. Tests for the null hypotheses associated with the linear model [1]

Hypotheses Test Statistic Reference Distribution

<J)b =  0 
c^s = 0  
c? p  =  0

no test 
no test
No test, see the explanation of preliminary test procedures below.

CJ2 0 
(J2o> = 0°v°

no test 
no test
MS(S)/MS(C) F(4, 24)

a 2 = 0  

°fc= °
MS(BS)/MS(BC) F(12, 72)
MS(C)/MS(BC)* F(24, 72)
no test

* This is a “consevative test” based on the assumption that ct2bc= 0.

The Duncan’s new multiple range method (Milliken and Johnson 1984) was used 

in this study to compare each pair of provenance means.

In this study, each provenance was considered as a randomized complete block 

design and individual provenances were analyzed separately using the following model:

Yijk = +Bi + 5(i) + cj + BCij +E(ij)k...................................................... [2]

The EMS Table associated with this model was in Table 3.
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Source DF Expected Mean Square

»i 3 a 2* cr^c + 8a2§ + 8 4 ^

8(i) 0 az + ^ bc + ScPs

Ci 7 o2 + 4o2c

BCy* 21 o2 + cj2bc

E(ij)k 0 a 2

* °  Bc is assumed to equal to zero.

Since only one ramet in each block was used in this study, the degrees of freedom 

for error is zero. Thus we could not estimate the mean square for error. In this study it is 

assumed that ^ b c  = o  and use SSQC/72( o^g) as the error to test clone effects. 

Furthermore, there are sampling errors included in the So, some effects that

really exist may not be found (Brown 1994).

Heritability Measurement

Broad-sense heritability is defined as the ratio of total genetic variation in a 

population to the phenotypic variation (Falconer 1981), or

CT2  C7 2  +  q 2
G A NA

H2 =

ct 2 a 2 + ct2 + a 2
p A MA e

In this study broad-sense heritability of provenances and clones is expressed 

respectively as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

H2p = O^P / (o2P + CT2c  +  CT2B S +  CT2S +  CT2BP+ C^e )  

H2c=  o ^ / ^ c  + o2*)

Table 4. Analysis of variance, variance components and heritability

Source of 
variance

Sum of DF 
square

MS Variance
components

Heritability

Bi S S B
3 SSb/3 SSJ96 - SS /288(cr 2 )

B BP B

PJ ssp 3 SSp/3 ss^ -ss/m i^ p a 2 p/ ( a 2 p + a 2 Bp + a 2 s +

<t2Bs+ cy2c+ )
BPy

S S BP
9 SSBp/9 s s j n - s s j x i J j

SG)k S S s
4 SS/4 SSs/64 - SSJISMp 2s)

BSiO')k S S BS
12 SS/12BS SSbs/48-SSB(̂ 88(o2bs)

C0k)l ssc 24 SSc/24 SSc/96 - SS£/288(ct 2c) a 2 c, ^ 2c+ a2t)

BCi(jk)l S S BC
72 SSbC/72SSbc/72( ct2e)

B(ijkl)m S S B
0

Total 127

Table 5. Calculation of clonal variance components and heritability of individual
provenance

Source of Sum of DF Variance Heritability
variance square components

Bi SSBi 1 SS.724 - SS_r„/168Bi B(ij)k

Cj ssc 7 Ss 728 - SS__ J S 4  a2cJ (a*c+ c?c)Cj E(ij)lc

21 SS /21E(ij)k
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Variance components and heritability were derived from the overall ANOVA and 

the ANOVA of individual provenances. Methods of calculation for heritabilities of 

provenance and clones and heritabilities of clones based on individual provenance 

ANOVA are presented in Table 4 and Table 5, respectively.

Phenotypic and Genetic Correlation

Genetic correlation measures how strongly two characteristics (X and Y) are 

correlated genetically. It is defined as the ratio of the genetic covariance to the product 

of the two genetic standard deviations and is commonly used in determining the degree 

to which selection for one trait will be successful in improving another trait (Falconer 

1981). It can be expressed as:

rxY = COV(XY)/ ^VAK(XX)xVAR(YY)'

Where:

COV(XY)= Provenance or clonal genetic covariance for trait X and Y 

V(XX)= Provenance or clonal variance of trait X 

V(YY)= Provenance or clonal variance of trait Y

Covariance components analysis used in above formula were obtained by 

methods similar to those used to estimate variances (Becker 1984); and the procedures 

of calculation are presented in Table 4. Because the degrees of freedom for error is zero, 

tests were based on the assumption that a ^Bc = 0.
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Table 6. Calculation of covariance components

Source of 
covariance

sums of 
covariance

DF MSCP Covariance
components

Bi scpb 3 SCP„/3D SCP0/96 - SCPBp/288

Pi SCPp 3 SCPp/3 SCPp/96 - SCP/128

BPy SCPBP 9 SCPBp/9 SCPBp/72-SCPBS/96

s0*)k SCPS 4 SCPg/4 SCP/64 - SCPc/384

BSi®k SCPbs 12 SCPbs/12 SCPbs/48 - SCPbc/288

C(jk)l SCPc 24 SCPc/24 S C P ^e - SCPbc/288

BCi(jk)l SCPD„BC 72 SCPbc/72 SCPbc/72

B(ijkl)m SCPcE 0

Total 127

Both phenotypic and genetic correlation between following pairs of traits were 

estimated:

1. Tracheid length vs specific gravity, height growth rate, ring width and 

latewood percentage.

2. Specific gravity vs height growth rate, ring width and latewood percentage.

3. Height growth rate vs ring width and latewood percentage.

4. Ring width vs latewood percentage.
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RESULTS

Height growth

Height growth in 1991 differed considerably among provenances. Analysis of 

variance indicated that variation among provenances is significant (Table 7). The two 

southern provenances exhibited significantly higher height growth than the two northern 

provenances. However, differences between the two northern provenances and between 

the two southern provenances were not significant. The North Bay provenance had the 

highest annual height growth (0.74 m), and the Kenogami River provenance was the 

slowest (0.56 m) (Table 9).

In 1994, the two southern provenances again had a much higher height growth 

rate than the two northern provenances, and variation among provenances was 

significant (Table 8). Height growth differences between the two southern provenances 

(Thunder Bay 0.82 m and North Bay 0.81m) and between the two northern 

provenances (0.64m and 0.66m) were also not significant. The highest annual growth 

was found in the Thunder Bay provenance, the slowest growing provenance was from 

the Kenogami River in 1994 (Table 10.).

Clonal variation in height growth was not statistically significant in 1991 (Table 

7), but the variation was significant in 1994 (Table 8). In 1991, the highest height growth 

for a clone was in the North Bay provenance, and the lowest was in the Kenogami River
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provenance (Table 9). However, in 1994, the highest height growth for a clone was in 

the Thunder Bay provenance, and the lowest clone mean was in the Sandy Lake 

provenance (Table 10). Analyses of variance for individual provenances showed that 

significant clonal variation in 1991 and 1994 existed only in the Kenogami River and the 

Sandy Lake provenances respectively (Table 9, 10). Variation of stands within 

provenance was not significant in either 1991 or 1994 (Table 7, 8).

The variance components of height growth due to provenances were larger than 

those for clones within provenances. From 1991 to 1994, the Percentage of the variance 

for height growth increased for both provenances (from 16% to 29% ) and clones (from 

0% to 7%)(Table 11). Both provenance and clonal annual height growth were increased 

from 1991 to 1994 (Table 9, 10).

Table 7. Analysis of variance for wood property and growth traits, 1991(l)

Mean Square

Source df Tracheid
Length

Specific
Gravity

Height
Growth

Ring
Width

Latewood
Percentage

BI 3 0.009ns a) 0.003ns 0.214* 0.027ns 0.006ns
PJ 3 0.010ns 0.006ns 0.229* 0.577** 0.002ns
BIPJ 9 0.006ns 0.002ns 0.051ns 0.116** 0.017*

Std 4 0.006ns 0.002ns 0.026ns 0.017ns 0.0021ns

BIStd 12 0.005ns 0.001ns 0.024ns 0.009ns 0.005ns
Cln 24 0.018** 0.006** 0.021ns 0.049ns 0.006ns
Error 72 0.006 0.002 0.024 0.033 0.007

(1) Separate ANOVA Tables are presented in Appendix HI
(2) * and ** : significant at 5% and 1% levels o f probability respectively; ns: not significant at a<  
0.05.
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Table 8. Analysis o f variance for wood property and growth traits, 1994(1)

Source df

Mean Square

Tracheid
Length

Specific
Gravity

Height
Growth

Ring
Width

Latewood
Percentage

BI 3 0.007 nsa) 0.004* 0.208** 1.332** 0.044ns

PJ 3 0.219 ** 0.002ns 0.289** 0.695* 0.004ns

BIPJ 9 0.011 ns 0.001ns 0.026ns 0.075ns 0.012ns

Std 4 0.008 ns 0.002ns 0.014ns 0.059ns 0.011ns
BIStd 12 0.014 ns 0.001ns 0.018ns 0.048ns 0.008ns

Cln 24 0.025 ** 0.004** 0.019* 0.086** 0.008ns
Error 72 0.012 0.001 0.010 0.041 0.005

(1) Separate ANOVA Tables are presented in Appendix m
(2) * and ** : significant at 5%  and 1% levels of probability respectively; ns: not significant at <x£ 0.0S.

Radial growth rate (Ring Width)

In 1991, significant ring width variation was found among the provenances 

(Table 7.). The North Bay provenance was significantly different from all other 

provenances, and the Thunder Bay provenance was significantly different from the 

Kenogami River provenance. Variation between the Thunder Bay provenance and the 

Sandy Lake provenance, and between Kenogami River provenance and the Sandy Lake 

provenance was not significant (Table 9.). Clonal effects within the Thunder Bay 

provenance were significantly different, but no significant clonal variation was found 

within other provenances( Table 9.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Table 9. Provenance means(M), clone means, the range o f clone means (underline), 
and the Duncan’s new multiple range test of the provenance means for 1991

growth and wood property traits

Provenances Tracheid Specific Height Ring Latewood
Length Gravity Growth width Percentage

Clones No. mm m cm/ring %

North Bay(M) 1.14 a a) 0.45a 0.74 a 0.97a 0.28a
10121 1.21 0.48 0.59 0.78 0.26
10132 1.14 0.48 0.69 1.07 0.29
10134 1.15 0.41 0.76 0.98 0.26
10137 1.07 0.47 0.77 1.10 0.30
10225 1.10 0.43 0.81 0.96 0.23
10229 1.12 0.50 0.72 0.92 0.26
10232 1.22 0.41 0.68 1.00 0.37
10235 1.08 0.43 0.86 0.97 0.26

Thunder Bay(M) 1.14 a *0) 0.43ab * 0.68a 0.84b * 0.26a
50127 1.19 0.45 0.68 0.94 0.27
50128 1.15 0.42 0.73 1.06 0.25
50131 1.12 0.47 0.61 0.73 0.21
50133 1.13 0.44 0.64 0.74 0.26
50226 1,10 0.38 0.58 0.75 0.27
50229 1.18 0.46 0.67 0.99 0.27
50232 1.23 0.42 0.77 0.87 0.25
50233 1.05 0.43 0.74 0.62 0.27

Kenogami River(M) 1.11a * 0.43ab * 0.56 b* 0.65c 0.26a
90125 1.15 0.39 0.60 0.75 0.32
90128 1.16 0.52 0.45 0.65 0.25
90140 1.09 0.38 0.63 0.77 0.25
90141 0.92 0.41 0.43 0.58 0.22
90231 1.19 0.45 0.64 0.58 0.20
90236 1.19 0.49 0.60 0.56 0.28
90240 1.08 0.39 0.55 0.65 0.28
90241 1.06 0.42 0.61 0.69 0.31

Sandy Lake (M) 1.12 a * 0.42b * 0.57b 0.75 b 0.27a
130121 1.08 0.46 0.70 0.84 0.27
130123 1.20 0.42 0.59 0.71 0.32
130129 1.10 0.38 0.53 0.74 0.31
130134 1.07 0.41 0.56 0.74 0.23
130221 1.10 0.43 0.62 0.65 0.23
130225 1.19 0.42 0.52 0.71 0.26
130227 1.10 0.41 0.52 0.79 0.24
130228 1.10 0.41 0.51 0.85 0.30

(1) Provenance means in a same column, with different letters are significantly different at the 0.05 level 
of probability. (2) *: Clonal variation within the provenance is significant at the 0.05 levlel of 
probability. Individual provenances’ ANOVA tables are listed on appendix V.
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Table 10. Provenance means(M), clone means, the range of clone means 
(underline), and the Duncan’s new multiple range test of the provenance means for 
1994 growth and wood property traits

Provenances 

Clones No.

Tracheid
Length
mm

Specific
Gravity

Height
Growth

m

Ring
width
cm/ring

Latewood
Percentage

%

North Bay(M) 1.45a a> 0.45a *m 0.81a 1.21a * 0.30a *
10121 1.48 0.47 0.86 0.91 0.27
10132 1.40 0.44 0.79 1.27 0.40
10134 1.34 0.40 0.84 1.65 0.34
10137 1.57 0.49 0.79 1.25 0.30
10225 1.46 0.45 0.83 1.04 0.28
10229 1.49 0.47 0 J 5 1.08 0.26
10232 1.51 0.41 0.70 1.22 0.25
10235 1.34 0.43 0J9 1.24 0.29

Thunder Bay (M) 1.41a 0.43 a 0.82a 1.13a 0.30a
50127 1.47 0.41 0.75 1.18 0.31
50128 1.30 0.43 0.92 1.20 0.25
50131 1.41 0.46 0.76 1.02 0.31
50133 1.43 0.47 0.88 1.10 0.27
50226 1.40 0.40 0.75 1.27 0.39
50229 1.40 0.46 0.71 0.93 0.26
50232 1.52 0.42 0.87 1.22 0.37
50233 1.35 0.42 0.85 1.13 0.27

Kenogami (M) 1.28 b* 0.44a 0.64 b 0.90b 0.29a
90125 1.27 0.42 0.69 0.91 0.25
90128 1.36 0.48 0.60 0.96 0.34
90140 1.34 0.41 0.66 1.06 0.29
90141 1.20 0.42 0.66 0.74 0.25
90231 1.26 0.45 0.57 0.88 0.25
90236 1.37 0.48 0.67 0.72 0.34
90240 1.30 0.42 0.62 0.98 0.32
90241 1.16 0.45 0.62 0.94 0.28

Sandy Lake (M) 1.30b 0.43a * 0.66b * 0.95b 0.28a
130121 1.21 0.47 0.80 0.92 0.28
130123 1.40 0.44 0.56 0.84 0.29
130129 1.28 0.37 0.62 0.97 0.28
130134 1.18 0.42 0.53 0.84 0.23
130221 1.36 0.48 0.70 0.93 0.26
130225 1.35 0.42 0.71 0.95 0.23
130227 1.32 0.40 0.71 1.12 0.34
130228 1.27 0.42 0.68 1.01 0.33

(1) Provenance means in a same column, with different letters are significantly different at the O.OS level 
of probability. (2) * : Clonal variation within the provenance is significant at the O.OS levlel of 
probability. Individual provenances’ ANOVA tables are listed on appendix V.
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Variation in 1994 ring width was also significant among provenances (Table 8.). 

Southern provenances (North Bay, Thunder Bay) were significantly different from 

northern provenances (Kenogami River, Sandy Lake); but provenance differences 

within these two regions were not significant. Clonal effects were significant within the 

North Bay provenance, but not significant within others (Table 10).

In both 1991 and 1994 southern provenances had wider rings than northern 

provenances. Ring width increased from 1991 to 1994 for all the provenances and clones 

(Table 9, 10). The widest rings in both 1991 and 1994 were observed in the North Bay 

provenance, and the narrowest rings were found in the Kenogami River provenance 

(Table 9, 10). No significant stand effects within provenances were detected in either 

1991 or 1994 (Table 7, 8).

Variance components for provenance were larger than those for clones within 

provenance for ring width in both 1991 and 1994. From 1991 to 1994, variance 

components of clones increased from 5.9% to 9.8%, but variance components for 

provenances decreased from 25.9% to 17.0% (Table 11).

Latewood percentage

Provenance variation in latewood percentage was not significant at the 0.05 level 

of probability in either 1991 or 1994 (Table 7, 8). Changes in all the latewood 

percentages of provenance were irregular and showed slight increase from 1991 to 1994. 

Clonal variation was also not significant (Table 7, 8). Latewood percentage means for
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clones were very similar among provenances and showed a slight increase from 1991 to 

1994. No significant stand variation was found in eithor 1991 or 1994 (Table 9, 10).

Table 11. Variance components and per cent of variance components( in 
parentheses) for wood property and growth traits *

Trait

Source of variation

Bi Pj BQPj Std BiStd Cln Error

1991
Tracheid .000103 .000147 .000067 0 0 .002993 .006185
Length (1-09) (1-55) (-71) (0) (0) (31.52) (65.13)

Specific .000034 .000127 .000028 0 0 .000997 .001765
Gravity (1-17) (4-30) (-96) (0) (0) (33.78) (59.78)

Height .005075 .006359 .003400 .000305 .000006 0 .024195
Growth (12.90) (16.17) (8-64) (-77) (.01) (0) (61.50)

Ring 0 .017493 .013369 0 0 .003984 .032736
Width (0) (25.88) (19.78) (0) (0) (5.89) (48.43)

Latewood 0 .000015 .001538 0 0 0 .006627
percent (0) (-19) (18.80) (0) (0) (0) (81.01)

1994
Tracheid 0 .006606 0 0 .000458 .003200 .012306
Length (0) (29.27) (0) (0) (2.03) (14.18) (54.52)

Specific .000098 .000005 0 0 (0) .000589 .001490
Gravity (4.50) (-21) (0) (0) (0) (27.00) (68.29)

Height .005687 .008604 .000910 0 .002077 .002205 .010130
Growth (19.20) (29.05) (3.07) (0) (7-01) (7.45) (34.21)

Ring .039274 .019874 .003441 0 .001790 .011457 .040613
Width (33.73) (17.07) (2.95) (0) (1.54) (9.84) (34.88)

Latewood .000993 0 .000512 .000166 .000673 .000646 .005405
percent (11.83)

.. ,B  .
(6.09) (1.98) (8.01) (7.69) (64.39)

* “0” refers to the component value is zero or negative.
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Variance components for latewood percentage were extremely small in 

comparison with other traits. Variance components of latewood percentage for 

provenances were almost zero in both years. From 1991 to 1994, variance components 

o f latewood percentage for clones increased from 0% to 7.7% (Table 11.).

Specific Gravity

Provenance variation was not significant in either 1991 or 1994 for specific 

gravity (Table 7, 8). There was no major change in provenance means from 1991 to 

1994 (Table 9, 10). However, highly significant differences were found among clones in 

both years (Table 7, 8). Analyses of variance for individual provenances indicated that 

clonal variation was significant within the Sandy Lake provenance in both 1991 and 

1994, within the Thunder Bay provenance and the Kenogami River provenance in 1991, 

and within the North Bay provenance in 1994 (Table 9, 10). In 1991, both the lowest 

and highest clonal means were in the Kenogami River provenance (0.38 to 0.52). In 

1994, a clone of the Sandy Lake provenance had the lowest specific gravity (0.37), and 

one from the North Bay provenance had the highest specific gravity (0.49) . No regular 

trends were found from south to north , and from pith to bark. No significant stand 

variation was found in either 1991 or 1994 (Table7, 8).

The variance components due to provenances were much smaller than those due 

to clones in both two years. Variance components Percentage due to provenances
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changed from 1991 (4.3%) to 1994 (0.2%). However, variance components due to 

clones were relatively constant from 1991 (33.8%) to 1994 (27%) (Table 11.).

Tracheid Length

In 1991, provenance variation of tracheid length was not significant (Table 7). 

However, in 1994, the variation was significant (Table 8). Tracheid length was 

significantly different between the northern and southern provenances, but the 

differences were not significant within the northern and within the southern region (Table 

9, 10). The North Bay provenance had the longest tracheid length (1.45 mm), which 

decreased north and west to the Thunder Bay provenance (1.44 mm), the Kenogami 

River provenance (1.28 mm), and the Sandy Lake provenance (1.30 mm) (Table 10). 

From 1991 to 1994 tracheid length of the two southern provenances increased more 

than that for two northern provenances.

Clonal variation was significant in both 1991 and 1994 (Table 7, 8). Analysis of 

variance based on individual provenance indicated that clonal differences within the 

Thunder Bay, the Kenogami River and the Sandy Lake provenances were significant in 

1991, but only clones within the Kenogami River provenance exhibited significant 

variation in 1994. In both years, the shortest tracheid was in a clone from the Kenogami 

River provenance and the longest tracheid clone was in the Thunder Bay provenance. 

Two southern provenances had longer tracheids than two northern provenances in 1994,
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but their trachied length was similar to that in 1991 (Table 9, 10). Stand variation was 

not significant in either 1991 or 1994 (Table 7, 8).

Variance components for provenance increased from 1991 (1.5%) to 1994 

(29.3%). However, variance components for clones decreased from 1991 (31.5%) to 

1994 (14.2%) (Table 11).

Heritability

Broad-sense heritabilities based on variance components for provenances and 

clones within provenance are presented for each attribute in Table 12. Broad-sense 

heritabilities of tracheid length and specific gravity were much higher based on clonal 

variances than based on provenance variances. However, broad-sense heritabilities of 

diameter and height growth based on clonal variances were smaller than those based on 

provenance variances. In all the traits, latewood percentage had the lowest broad-sense 

heritabilities for both provenance and clone.

From 1991 to 1994, provenance broad-sense heritabilities of tracheid length, 

height growth, and ring width increased significantly, but there were no obvious changes 

in heritabilities of latewood percentage and specific gravity. Clonal broad-sense 

heritabilities of tracheid length and specific gravity showed a slight decrease from 1991 

to 1994, but broad-sense heritabilities for all other traits increased.

Clonal broad-sense heritabilities estimated for individual provenances are listed in 

Table 13. They ranged widely for all the traits in both 1991 and 1994. The Kenogami
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River provenance exhibited the highest clonal broad-sense heritabilities of tracheid length 

in both 1991 and 1994, and for specific gravity and height growth in 1991. The North 

Bay provenance showed the highest clonal broad-sense heritabilities for latewood 

percentage in both 1991 and 1994, and specific gravity and ring width in 1994. The 

Thunder Bay provenance had the highest broad-sense heritabilities for ring width in 

1991, and the Sandy Lake provenance had the highest heritability for height growth in 

1994. Except for 1991 specific gravity, they are larger than the clonal broad-sense 

heritabilities estimated using all provenances. Those traits that had higher clonal broad- 

sense heritabilities estimated using all the provenances also had higher clonal broad-sense 

heritabilities estimated using individual provenance analysis of variance.

Table 12. Broad-sense heritabilities based on provenance and clonal variance and 
their standard errors (in parentheses)

Traits Heritability

provenance clone

Tracheid Length, 1991 
Tracheid Length, 1994 
Specific Gravity, 1991 
Specific Gravity, 1994 
Height Growth Rate, 1991 
Height Growth Rate, 1994 
Ringwidth Growth, 1991 
Ringwidth Growth, 1994 
Latewood percentage, 1991 
Latewood percentage, 1994

0.02(±0.04)
0.29(±0.18)
0.04(±0.06)
0.00(±0.03)
0.19(±0.14)
0.36(±0.20)
0.26(±0.17)
0.26(±0.17)
0.00(±0.03)
0.00(±0.03)

0.3 3 (±0.10)
0.21 (±0.09)
0.36(±0.10)
0.28(±0.10)
0.00*(±0.07)
0.18(±0.09)
0.11(±0.09)
0.22(±0.09)
0.00(±0.07)
0.11(±0.09)

* Heritability is zero or negative
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Table 13. Broad-sense heritability and their standard errors (in parentheses)* based

on clonal variance from analyses of variance for individual provenances

provenance North Bay Thunder Bay Kenogami Sandy Lake

1994
Tracheid Length 0.15 0.18 0.25 0.11

(±0.09) (±0.09) (±0.10) (±0.09)
Specific Gravity 0.45 0.15 0.15 0.31

(±0.09) (±0.09) (±0.09) (±0.10)
Height Growth 0.12 0.10 0 0.39

RingWidth
(±0.09) (±0.09) (±0.07) (±0.10)
0.60 0 0.12 0

Latewood
(±0.08) (±0.07) (±0.09) (±0.07)
0.31 0. 15 0.04 0

percentage (±0.10) (±0.09) (±0.08) (±0.07)

1991
Tracheid Length 0.11 0.29 0.43 0.30

(±0.09) . (±0.10) (±0.10) (±0.10)
Specific Gravity 0.09 0.33 0.55 0.10

(±0.08) (±0.10) (±0.09) (±0.08)
Height Growth 0.13 0 0.28 0.03

RingWidth
(±0.09) (±0.07) (±0.10) (±0.08)
0.04 0.28 0.07 0

Latewood
(±0.08) (±0.10) (±0.08) (±0.07)
0.02 0 0 0

percentage (±0.08) (±0.07) (±0.07) (±0.07)

* Clonal broad-sense heritability estimates for individual provenance’s were based on individual 
provenance ANOVA that were presented in Appendix V.

Correlations

Pearson product-moment correlation coefficients (phenotypic correlation) based 

on individual tree data for all traits in both 1991 and 1994 are presented in Tables 14 and 

Table 15.
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The phenotypic correlations are very small, and in most situations, they are not 

significant except correlations of height growth with ring width, and latewood 

percentage with ring width. An negative correlation of latewood percentage with specific 

gravity was found. Most of the phenotypic correlations increased in variable degrees 

from 1991 to 1994.

Genetic correlations were calculated for all pairs of traits in the same year at the 

clonal level. Some genetic correlation are not available for 1991, because the variation 

components were zero or negative. Most genetic correlations estimated from clonal 

components are higher than phenotypic correlations, especially correlations of tracheid 

length with specific gravity, and ring width with latewood percentage. However genetic 

correlations of ring width with height growth and latewood percentage with height 

growth were lower than phenotypic correlations. Genetic correlations of ring width with 

latewood percentage, height growth with latewood percentage and height growth with 

ring width are similar to phenotypic correlations.

Table 14. Phenotypic and Genetic Correlation (in Parentheses) 
Among Wood Property and Growth Traits in 1991.

Tracheid
Length

Specific
Gravity

Height
Growth

Ring
Width

Specific Gravity -0.04(0.80)

Height Growth 0.02na* 0.02na
RingWidth 0.08(0.61) 0.06(0.25) 0.38na
Latewood percentage 0.09na -0.11 na 0.04na 0.07na

* Genetic correlations are not available because variation components are zero or negative
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Table 15. Phenotypic and Genetic Correlation (in Parentheses) 
Among Wood Property and Growth Traits in 1994

Tracheid
Length

Specific
Gravity

Height
Growth

Ring
Width

Specific Gravity 0.04(0.88)
Height Growth 0.16(0.24) 0.06(0.58)

RingWidth 0.07(0.52) -0.24(0.03) 0.49(0.48)

Latewood percentage 0.05(0.79) -0.05(0.30) 0.24(0.19) 0.60(0.61)

i
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DISCUSSION

Growth Characteristics

The significant variation in growth between northern and southern provenances 

demonstrated that tamarack growth characteristics in this test continue to follow a clinal 

pattern associated with environmental gradients of latitude and the length of the growing 

season (Deng 1990; Farmer et al. 1993). Similar observations on tamarack growth 

patterns have been reported by Jeffers (1975), Cech et al. (1977), Riemenschneider et al. 

(1980). They concluded that the reason for the clinal pattern is the photoperiodic 

response. Aastveit (1983) and Heide (1983) explained this photoperiodic response in 

forest trees as the result of eons of adaptation to given environments. The northern 

provenances adapt to short growth periods and develop hardiness in late summer. The 

southern provenances, from regions with longer growing seasons, adapt to display a 

higher growth potential than northern provenances.

The clonal variation for growth characteristics was much smaller than 

provenance variation. However, the clonal variance increased substantially from 1991 to 

1994 (Table 11). Analysis of variance showed that clonal height growth and diameter 

growth did not vary significantly in 1991. But clonal variance was significant in 1994 for 

both height and diameter growth and contributed a substantial percent of variance. 

However, analysis of variance for individual provenance showed that clonal variation is
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unstable from provenance to provenance and from year to year. This result is in 

agreement with the results of Deng (1990), and Farmer et al. (1993). They interpreted 

this to (1) the relatively small samples, (2) some provenances (normally the northern 

provenances) may more sensitive to photoperiodic response than others, and (3) clones 

within those provenances may have more widely different shoot elongation periods. 

Competition among clones may also contribute to the clonal variance, and the clonal 

variation may increase with the age increasing. St.Clair (1993) noted that Douglas-fir 

height growth and diameter are distinct traits in reaction to competition. He concluded 

that “As the stand developed, larger trees appeared to allocate more stem biomass to 

diameter growth than to height growth, whereas smaller trees attempted to avoid 

suppression by allocating stem biomass to height growth at the expense of diameter.” 

This may be the reason why the significant clonal height growth variation existed in the 

Kenogami River and the Sandy Lake provenances, and the significant clonal diameter 

growth variation only existed in the North Bay and the Thunder Bay provenances (Table 

9, 10).

Wood Properties

The pattern of tracheid length variation is similar to that of growth characteristics 

variation in the two years (7 and 10) studied. Differences among provenances and 

clones increased from 1991 to 1994. In 1994 variation was significantly different among 

provenances. The radical change of the tracheid length from 1991 to 1994 demonstrated
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that the transition from juvenile growth to mature growth in the North Bay and the 

Thunder Bay provenances may take place earlier than in the Kenogami River and the 

Sandy Lake provenances. It also suggested that the North Bay and the Thunder Bay 

provenances may have a shorter juvenile growth period than the Kenogami River and the 

Sandy Lake provenances. Negative correlation between tracheid length and latitude was 

found in this study. However, Yang and Hazenberg (1987) found a weak positive 

correlation between tracheid length and latitude in tamarack, although they noted that it 

was not statistically significant. Zobel et al.. (1960) and Whitesell et al.. (1966) 

demonstrated that in Pirtus taeda tracheid lengths increased significantly with decreasing 

latitude. Dinwoodie and Richardson (1961), in their study on Picea sitchensis, found a 

highly significant positive linear relationship between tracheid length and height 

increment and they noted that tracheid length decreased with increasing latitude of 

origins. The south-north trend existing in tracheid length had been explained by Larson

(1963) and Irgens-Moller (1958) as the result of heritable differences in growing periods 

and the resulting physiological processes directly influencing cambial initial and tracheid 

elongation.

Clonal variation in tracheid length was significantly different in both 1991 and 

1994 (Table7, 8). Clonal variance contributed most of the total genetic variance. This is 

similar to the results reported by Yang and Hanzenberg (1987), i.e. that individual 

tamarack trees within natural stands exhibit significant tracheid length variation. The 

observation is also in agreement with those of clonal variation in tracheid length in Picea 

abies (Kennedy 1966) and Populus balsamifera (Ivkovich 1995).
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Provenance variation in specific gravity was not significant in either 1991 or 

1994(Table7, 8). The faster growing provenances had a slightly higher specific gravity 

than slower growing provenances. This result is at odds with some observations that 

faster growth will produce lower specific gravity wood (Bendsten 1978; Zobel 1981; 

Megraw 1985). It is also different from the results reported by Yang and Hazenberg 

(1987), that tamarack specific gravity of natural stands increased slightly with increasing 

latitudes and the relationship between them is significant. It is in agreement with the 

results reported by Loo et al.. (1982) for Larix leptolepis , and the Pinus taeda 

provenance tests reported by Zobel and McElwee (1958), Zobel et al. (1960), Mitchell 

(1964), and Ledig et al. (1975) showing that specific gravity increases slightly with 

decreasing latitude.

The clonal variation in specific gravity contributed about one third of the total 

variance, and thus demonstrated that specific gravity was under strong genetic control. 

No data are available on tamarack clonal specific gravity for comparison. However 

results from studies on phenotypic variation reported by Isebrands and Hunt (1975), and 

Yang and Hazenberg (1987) in natural stands of tamarack showed that variation among 

individual trees within stands was significantly different. My findings are also in 

agreement with the results of a Picea abies clonal test reported by Kennedy (1966) and a 

Populus balsamifera clonal test reported by Ivkovich (1995).

Increase in specific gravity with age was small and not statistically significant. 

Yang et al.. (1986) and Wong (1987) noted that specific gravity increased with age in 

tamarack juvenile wood. This increase in specific gravity with age has also been reported
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by Szymanski and Tauer (1991) in Pirms taeda. They noted that specific gravity and 

percent of summerwood had negative correlations with juvenile-mature transition age. 

Southern provenances make the transition from juvenile growth to mature growth earlier 

than northern provenances (Zobel and Talbert 1984). We may expect that southern 

provenances have higher whole tree specific gravity than northern provenances when 

they are planted under the same environmental conditions on southern sites. This has 

been suggested by Szymanski and Tauer (1991) as a way to breed trees with a small 

percent of juvenile wood and high whole tree specific gravity. However, the complex 

internal and external effects on specific gravity, the lack of information on the genotypic 

variation in tamarack, and the irregular trend in this study suggest that more research is 

required prior to making such a recommendation for tamarack.

Although significant phenotypic variation in latewood percent was found among 

locations by Yang and Hazenberg (1987) in tamarack, in this study variation in latewood 

percentage is not significant among provenances or clones within provenances (Table 7, 

8). The provenance and clonal contributions to the total variance are small and negligible 

(Table 11). Larson (1963) stated that when northern provenances are planted south of 

origin, their earlywood growth can be prolonged by favorable environmental conditions. 

This result suggests that latewood percentage could be influenced more by 

environmental factors than by the genetic composition of the provenances or clones. 

Zahner (1962) found that the transition from earlywood to latewood begins after the 

trees are under severe water deficit and may occur very early in summer. Larson (1963) 

noted that the drought caused transition from earlywood to latewood by limiting auxin
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supply. Water stress also operates indirectly by reducing photosynthesis and growth. 

This results in a decrease in the synthesis of auxin and the induction of the transition 

from earlywood to latewood change. Many other environmental factors, such as 

temperature, soil, light, affect the formation of latewood (Zobel and van Buijtenen 

1989). Kennedy(1971) reported a similar variation in latewood percent in Pinus 

banksmana. However, a significant increase in provenance and clonal variance 

components percent (Table 11) from 1991 to 1994 indicated that age is a factor 

influencing formation of latewood, and genetic selection for latewood percentage may 

still be possible with increasing age. Larson (1957), Megraw (1985), Yang et al. (1986) 

and Wong (1987) found that with increasing age, the variation of latewood percentage 

increased in tamarack and other species. However, because many and complex factors 

influence the formation of latewood, the reliability of those selections is low (Zobel and 

van Buijtenen 1989). Studies are therefore needed to further understand latewood 

percentage variation in tamarack provenances, clones, different ages and different 

plantations.

Phenotypic and Genetic Correlation

The strong phenotypic and genetic correlations between height growth and 

diameter growth indicate that tamarack diameter growth and height growth represent 

each other reliably, and selection for one will have high probability of success in the
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other. A similar correlation between diameter and height growth has been reported in 

tamarack provenances by Riemenschneider (1980).

Phenotypic correlations among wood properties are low (Table 14, 15). This 

agrees with observations reported by Yang and Hanzenberg (1987) for tamarack natural 

stands study in northwest Ontario. It is also in agreement with results reported by Tayor 

and Burton (1982) for Pinus taeda. The genetic correlations among wood properties are 

positive and high (Table 14, 15). They are larger than phenotypic correlations. Similar 

correlations (0.44 to 0.67) between specific gravity and latewood percentage were 

reported in Pinus radiata by Nicholls et al. (1980), and in Pinus taeda by Goggans

(1964). However, the strong genetic correlation between tracheid length and specific 

gravity in this study is in contrast with the lack of correlation among these characters 

reported by Harris et al. (1975) in Pinus radiata, Zobel (1960) and Megraw (1985) in 

Pinus taeda. They concluded that the genetic correlation between tracheid length and 

specific gravity is either weak or genetically independent.

Correlations between growth rate and wood properties are complex. Tracheid 

length has a slight phenotypic correlation with height growth and diameter growth. This 

is similar to results reported by Yang and Hanzenberg (1987), but different from those of 

Petrik (1968) in tamarack. The genetic correlations between tracheid length and growth 

rate are moderate and positive. These correlations are similar with results reported by 

Echols (1958) in Pinus sylvestris, Matziris and Zobel (1973) in Pinus taeda, and 

Ivkovich (1995) in Populus balsamifera. Other researchers (Dorn 1969; Echols 1973; 

Goggans 1964) noted those correlations may not exist or are low. Some papers reported
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negative correlations, e.g. Megraw (1985) in Pinus taeda, and Echols and Conkle (1971) 

in Pinus ponderosa. The phenotypic correlations between specific gravity and growth 

rate are low or negative. This is in agreement with the observation of Yang and 

Hazenberg (1987). It is also similar with the result reported by Zhang (1991) that growth 

rate shows little effect on specific gravity of Quercus liaotungensis juvenile wood. The 

low genetic correlation between diameter growth and specific gravity indicate these traits 

are genetically independent in this species. However, a high and positive correlation 

between height growth and specific gravity was found. These correlations between 

growth rate and wood properties demonstrate that fast growing tamarack provenances 

may also produce high quality wood. No study of the genetic relationship between the 

growth rate and specific gravity in tamarack was reported. Many studies had been done 

on the genetic relation between growth rate with specific gravity in other species, but the 

results are varied and confused. However, it is generally agreed that an inherent tendency 

for fast growth does not necessarily result in lower specific gravity wood (Megraw 

1985). Zobel (1970) concluded “ it is possible to breed for rapid growth and still retain 

high wood specific gravity if simultaneous selections are made for both growth and 

wood density.”

Heritability

Provenance and clonal heritability varied from trait to trait, and year to year. 

Similar patterns have been reported by Zobel (1961, 1965) for Pinus taeda and Farmer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

et a/. (1993) for tamarack. Larson (1963) indicated that the heritability changes from year 

to year partly due to the environment influences on tree growth and cell development. 

However, Nicholls (1967) stated that heritability changes with age is caused by the 

inherent age factor. He explained that different genes played a different role at different 

times, and the dominance relations of the same genes at different growth period are 

different.

The provenance heritability of growth characteristics is higher than clonal 

heritability. The genetic variation among provenances is mainly due to the different 

photoperiod response. Similar results have been reported by Deng (1990) and Farmer et 

al. (1993) for this tamarack provenance test. Although the clonal variation is significant 

in both 1991 and 1994, the percent of the clonal variance component and the clonal 

broad-sense heritability for growth characteristics are extremely low. So, this clonal 

variation may partly due to the environmental effects or error, because the estimates of 

clonal heritabilities were only based on the 8 genotypes sampled from each of four 

provenances (Deng 1990). The large differences in clonal variances may also due to the 

result of the interaction between genotype and environment. Competition among clones 

possibly contributed to clonal heritability increasing from 1991 to 1994. The irregular 

clonal broad-sense heritability estimated from the clonal variance for individual 

provenances, indicated that the reliability of clonal heritabilities for growth 

characteristics is low.

In contrast to growth characteristics, provenance broad-sense heirtabilities for 

tracheid length and specific gravity are much lower than clonal broad-sense heritabilities
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(Table 12). This suggests that growth rate and length of growing season will not 

significantly influence the specific gravity. The heritabilities for specific gravity and 

tracheid length were relatively constant over age. The similar results have been reported 

before for Pinus taeda (Stonecypher and Zobel 1966), Populus tremuloides (Einspahr et 

al. 1977), Pinus radiata (Nicholls et al. 1980). The significant increase of provenance 

heritabilities for tracheid length may be the result that heritable factors influence the 

initial and elongation of tracheid (Bannan 1964). These results suggested that the 

provenance broad-sense heritability for tracheid length may increase with age. These 

results also suggest that it is essential to measure tracheid and other wood properties as 

long as possible over tree growth period (Zobel and van Buijtenen 1989).

Stand heritabilities for both growth characteristics and wood property 

characteristics are extremely low, and genetic gain in juvenile growth and wood property 

from stand selection is impossible. The similar results have been reported by Deng 

(1990) and Farmer et al. (1993) in tamarack.

CONCLUSIONS

(1) There is significant variation among provenances. Southern provenances have 

higher height growth, diameter growth, and longer tracheid length than northern 

provenances. Variation among provenances is not significant for either specific gravity or 

latewood percentage.
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(2) Clonal variance contributes a significant portion of the total variance. Clonal 

variance in wood properties is large and relatively constant. However, growth 

characteristics variances are smaller compared with provenance variances, and are easier 

influenced by environmental factors than wood properties.

(3) Growth characteristics have higher provenance and lower clonal heritabilities 

than wood property characteristics. Heritabilities change with age, but heritabilities of 

wood properties are more constant than those of growth characteristics. Heritabilities of 

latewood percentage varied irregularly and are unreliable.

(4) The positive genetic correlations between growth characteristics and wood 

properties indicate that it is possible to improve both wood volume and wood properties 

in tamarack at same time.
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APPENDIX I

TRACHEID LENGTH, SPECIFIC GRAVITY, HEIGHT GROWTH, DIAMETER GROWTH, 
AND LATEWOOD PERCENTAGE OF INDIVIDUAL TREES

 0221)___________________________________
Tree Number Tracheid Length Specific Gravity Annual Height Diameter Growth Latewood

Growth (Ring Width) Percentage
mm m cm/ring %

101211 1.15 0.50 0.63 0.57 0.26
101323 1.09 0.54 0.77 1.16 0.39
101343 1.11 0.42 1.01 0.81 0.31
101372 1.11 0.45 0.99 1.22 0.50
102253 1.12 0.46 0.85 0.87 0.21
102291 1.22 0.45 0.87 0.74 0.20
102323 1.20 0.40 0.78 1.20 0.40
102351 0.95 0.43 1.07 0.87 0.29

101211 1.23 0.59 0.68 0.98 0.23
101321 1.07 0.53 0.61 1.08 0.20
101342 1.28 0.37 0.83 1.04 0.33
101372 1.05 0.50 0.96 0.86 0.24
102251 1.04 0.41 0.98 1.03 0.27
102292 1.02 0.55 0.96 1.21 0.45
102321 1.31 0.38 0.83 0.83 0.35
102351 1.04 0.44 1.00 1.07 0.31

101211 1.22 0.42 0.40 1.00 0.23
101323 1.20 0.37 0.81 1.33 0.19
101342 1.10 0.47 0.42 1.09 0.23
101372 0.98 0.49 0.62 1.29 0.26
102252 1.10 0.46 0.65 1.13 0.16
102293 1.19 0.42 0.46 0.92 0.17
102321 1.06 0.47 0.68 0.91 0.30
102351 1.13 0.45 0.60 1.32 0.13

101213 1.22 0.41 0.66 0.56 0.32
101323 1.18 0.47 0.58 0.71 0.37
101341 1.11 0.38 0.78 0.97 0.19
101371 1.14 0.45 0.50 1.01 0.21
102252 1.14 0.41 0.75 0.79 0.26
102293 1.04 0.59 0.60 0.82 0.20
102323 1.30 0.38 0.44 1.07 0.44
102351 1.22 0.40 0.78 0.60 0.32

501272 1.16 0.45 0.98 1.19 0.21
501282 1.08 0.43 0.88 1.04 0.17
501311 1.17 0.45 1.03 0.91 0.22
501333 1.11 0.44 0.68 0.90 0.34
502261 1.05 0.38 0.73 0.83 0.38
502291 1.21 0.47 0.30 1.05 0.33
502322 1.14 0.45 0.99 1.10 0.28
502332 1.12 0.43 0.93 0.79 0.26
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501272 1.32 0.47 0.75 0.45 0.31
501283 1.20 0.43 0.70 1.21 0.26
501313 1.15 0.50 0.53 0.87 0.29
501332 1.12 0.43 0.70 0.80 0.20
502261 1.18 0.38 0.47 1.01 0.33
502291 1.25 0.39 0.62 0.72 0.16
502322 1.23 0.41 0.83 0.73 0.19
502333 1.01 0.41 0.46 0.57 0.27

501272 1.05 0.41 0.68 1.11 0.23
501281 1.15 0.42 0.40 0.95 0.33
501313 1.12 0.46 0.25 0.49 0.17
501331 1.22 0.38 0.60 0.60 0.23
502261 1.12 0.37 0.57 0.73 0.17
502293 1.10 0.40 1.12 1.14 0.26
502322 1.22 0.42 0.51 0.81 0.27
502333 0.98 0.44 0.69 0.49 0.39

501273 1.23 0.45 0.30 1.02 0.34
501282 1.19 0.41 0.93 1.05 0.25
501313 1.06 0.48 0.64 0.64 0.17
501331 1.07 0.50 0.58 0.65 0.28
502261 1.04 0.39 0.56 0.41 0.20
502292 1.17 0.56 0.65 1.04 0.34
502323 1.34 0.43 0.75 0.85 0.26
502331 1.09 0.42 0.86 0.66 0.16

901251 1.20 0.41 0.69 0.76 0.25
901281 1.14 0.58 0.33 0.52 0.26
901403 1.07 0.37 0.71 0.75 0.29
901412 0.91 0.38 0.49 0.66 0.31
902312 1.08 0.45 0.55 0.37 0.27
902363 0.97 0.44 0.61 0.44 0.23
902403 0.99 0.39 0.65 0.72 0.39
902412 1.11 0.42 0.47 0.40 0.30

901253 1.17 0.38 0.60 0.91 0.23
901281 1.14 0.54 0.57 0.93 0.22
901403 1.14 0.39 0.62 0.93 0.30
901413 0.99 0.38 0.45 0.57 0.28
902313 1.18 0.44 0.69 0.64 0.16
902361 1.36 0.42 0.83 0.84 0.32
902401 1.13 0.39 0.65 0.65 0.20
902411 1.06 0.39 0.83 1.07 0.21

901253 1.17 0.40 0.48 0.63 0.37
901282 1.22 0.47 0.47 0.45 0.28
901401 1.11 0.35 0.61 0.71 0.22
901413 0.96 0.41 0.40 0.61 0.18
902313 1.23 0.46 0.62 0.63 0.20
902363 1.29 0.46 0.42 0.64 0.39
902403 1.02 0.40 0.34 0.60 0.24
902413 0.98 0.41 0.43 0.55 0.34
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901252 1.04 0.38
901282 1.14 0.50
901402 1.04 0.39
901413 0.83 0.46
902313 1.26 0.44
902361 1.12 0.64
902402 1.19 0.37
902411 1.11 0.44

1301213 1.14 0.48
1301233 1.17 0.45
1301291 1.13 0.36
1301342 0.96 0.43
1302213 1.11 0.45
1302253 1.27 0.44
1302273 1.14 0.42
1302283 1.07 0.43

1301212 1.05 0.43
1301233 1.25 0.43
1301292 1.11 0.40
1301342 1.14 0.41
1302211 1.14 0.43
1302252 1.18 0.43
1302272 1.12 0.40
1302283 1.07 0.43

1301212 1.04 0.49
1301231 1.28 0.36
1301293 1.11 0.38
1301342 1.10 0.39
1302211 1.06 0.41
1302253 1.25 0.41
1302272 1.08 0.40
1302281 1.06 0.39

1301212 1.09 0.44
1301231 1.10 0.46
1301292 1.06 0.39
1301342 1.08 0.41
1302212 1.10 0.43
1302251 1.07 0.41
1302271 1.06 0.42
1302282 1.16 0.38

0.61 0.70 0.42
0.42 0.69 0.23
0.58 0.71 0.21
0.40 0.49 0.13
0.68 0.68 0.16
0.54 0.30 0.19
0.57 0.61 0.30
0.72 0.76 0.38

0.75 0.85 0.15
0.45 0.73 0.23
0.64 0.61 0.23
0.59 1.00 0.16
0.73 0.71 0.17
0.50 0.83 0.28
0.32 1.07 0.18
0.73 0.91 0.11

0.71 0.78 0.22
0.68 0.70 0.37
0.41 0.44 0.41
0.52 0.70 0.17
0.54 0.61 0.26
0.72 0.63 0.24
0.56 0.59 0.30
0.48 0.74 0.19.

0.49 0.77 0.26
0.49 0.50 0.40
0.48 0.92 0.20
0.45 0.68 0.28
0.43 0.56 0.25
0.40 0.79 0.16
0.41 0.45 0.19
0.36 0.90 0.44

0.83 0.96 0.46
0.75 0.90 0.28
0.59 0.98 0.40
0.67 0.58 0.31
0.77 0.72 0.23
0.47 0.59 0.37
0.80 1.07 0.29
0.47 0.87 0.45
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APPENDIX H

TRACHEID LENGTH, SPECIFIC GRAVITY, HEIGHT GROWTH, DIAMETER GROWTH, 
AND LATEWOOD PERCENTAGE OF INDIVIDUAL TREES

_____________ (1994)____________________________________
Tree Number Tracheid Length Specific Gravity Annual Height Diameter growth Latewood

Growth (Ring Width) Percentage
mm m cm/ring %

101211 1.50 0.56 0.83 0.79 0.28
101323 1.50 0.50 0.73 0.94 0.32
101343 1.24 0.42 0.93 1.58 0.30
101372 1.80 0.50 0.75 0.78 0.29
102253 1.45 0.46 0.74 0.79 0.22
102291 1.58 0.48 0.60 0.65 0.22
102323 1.42 0.42 0.52 0.75 0.22
102351 1.13 0.42 0.85 0.97 0.39

101211 1.46 0.49 1.01 0.95 0.31
101321 1.50 0.47 0.86 1.47 0.53
101342 1.43 0.39 0.75 1.66 0.35
101372 1.50 0.49 0.75 1.08 0.25
102251 1.44 0.44 0.84 1.27 0.28
102292 1.58 0,48 0.80 1.22 0.27
102321 1.39 0.41 0.65 1.39 0.25
102351 1.39 0.47 0.88 1.45 0.33

101211 1.60 0.40 0.74 0.94 0.22
101323 1.31 0.38 0.92 1.49 0.40
101342 1.33 0.42 0.89 1.72 0.38
101372 1.53 0.48 0.76 1.71 0.35
102252 1.40 0.46 0.91 1.04 0.28
102293 1.42 0.44 0.94 1.33 0.29
102321 1.67 0.43 0.91 1.33 0.32
102351 1.44 0.42 0.98 1.45 0.28

101213 1.35 0.45 0.87 0.96 0.26
101323 1.30 0.42 0.63 1.18 0.36
101341 1.36 0.39 0.80 1.64 0.34
101371 1.44 0.49 0.89 1.45 0.30
102252 1.56 0.45 0.81 1.08 0.34
102293 1.39 0.46 0.65 1.13 0.25
102323 1.55 0.36 0.72 1.41 0.23
102351 1.43 0.43 0.86 1.08 0.14

501272 1.61 0.43 0.65 1.25 0.33
501282 1.32 0.45 0.82 1.08 0.20
501311 1.45 0.48 0.50 0.74 0.19
501333 1.52 0.43 0.78 1.05 0.29
502261 1.29 0.39 0.68 1.07 0.22
502291 1.46 0.45 0.98 0.51 0.17
502322 1.49 0.41 0.76 0.83 0.23
502332 1.55 0.42 0.83 0.80 0.23
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501272 1.53
501283 1.24
501313 1.38
501332 1.31
502261 1.49
502291 1.40
502322 1.43
502333 1.23

501272 1.44
501281 1.29
501313 1.46
501331 1.54
502261 1.36
502293 1.39
502322 1.68
502333 1.24

501273 1.31
501282 1.37
501313 1.35
501331 1.36
502261 1.47
502292 1.34
502323 1.48
502331 1.38

901251 1.42
901281 1.42
901403 1.28
901412 1.15
902312 1.19
902363 1.31
902403 1.28
902412 1.16

901253 1.18
901281 1.22
901403 1.39
901413 1.20
902313 1.26
902361 1.61
902401 1.25
902411 1.15

901253 1.26
901282 1.48
901401 1.35
901413 1.23
902313 1.26
902363 1.46
902403 1.33
902413 1.15

0.40 0.57
0.44 0.82
0.47 0.71
0.47 0.87
0.44 0.69
0.42 0.77
0.44 0.83
0.42 0.65

0.44 0.87
0.44 1.04
0.44 0.83
0.44 0.97
0.39 0.78
0.40 0.54
0.44 0.93
0.43 0.90

0.39 0.90
0.40 0.99
0.44 0.95
0.53 0.91
0.37 0.85
0.56 0.95
0.41 0.95
0.41 1.00

0.42 0.65
0.47 0.41
0.40 0.62
0.43 0.46
0.53 0.50
0.50 0.46
0.44 0.49
0.46 0.51

0.46 0.53
0.53 0.58
0.42 0.66
0.32 0.53
0.44 0.56
0.45 0.40
0.43 0.52
0.47 0.48

0.41 0.80
0.46 0.63
0.39 0.46
0.46 0.79
0.42 0.56
0.43 0.98
0.42 0.76
0.44 0.81

0.43 0.25
0.93 0.19
1.08 0.27
1.35 0.28
1.49 0.53
0.93 0.28
1.24 0.42
1.10 0.33

1.71 0.35
1.41 0.25
1.22 0.38
0.95 0.24
1.68 0.54
1.28 0.32
1.55 0.46
1.46 0.28

1.34 0.32
1.38 0.35
1.03 0.41
1.04 0.27
0.85 0.26
0.99 0.28
1.27 0.36
1.18 0.26

0.73 0.21
0.77 0.27
1.03 0.32
0.52 0.21
0.39 0.19
0.38 0.21
1.10 0.37
0.63 0.20

0.77 0.24
1.04 0.40
0.84 0.21
0.68 0.24
0.89 0.26
0.58 0.24
0.77 0.23
0.86 0.31

1.11 0.28
0.93 0.36
1.33 0.42
0.72 0.25
1.22 0.24
1.22 0.55
1.09 0.35
0.94 0.34
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901252 1.22 0.40
901282 1.33 0.45
901402 1.35 0.42
901413 1.22 0.47
902313 1.33 0.39
902361 1.11 0.56
902402 1.32 0.39
902411 1.17 0.42

1301213 1.33 0.45
1301233 1.55 0.43
1301291 1.37 0.38
1301342 1.22 0.43
1302213 1.29 0.53
1302253 1.34 0.44
1302273 1.25 0.41
1302283 1.21 0.41

1301212 1.08 0.48
1301233 1.24 0.50
1301292 1.46 0.39
1301342 1.29 0.47
1302211 1.58 0.44
1302252 1.31 . 0.43
1302272 1.49 0.31
1302283 1.27 0.46

1301212 1.16 0.46
1301231 1.52 0.40
1301293 1.11 0.36
1301342 1.08 0.36
1302211 1.24 0.41
1302253 1.30 0.39
1302272 1.29 0.45
1302281 1.14 0.42

1301212 1.29 0.48
1301231 1.29 0.45
1301292 1.20 0.36
1301342 1.12 0.43
1302212 1.35 0.53
1302251 1.46 0.42
1302271 1.25 0.43
1302282 1.44 0.41

0.78 1.05 0.28
0.76 1.10 0.33
0.89 1.04 0.20
0.86 1.03 0.33
0.65 1.01 0.31
0.85 0.71 0.37
0.72 0.94 0.35
0.68 1.32 0.26

0.65 0.37 0.16
0.31 0.62 0.21
0.56 0.38 0.13
0.45 0.63 0.12
0.59 0.52 0.24
0.65 0.61 0.13
0.79 1.09 0.46
0.65 0.65 0.19

0.81 0.75 0.22
0.51 0.80 0.36
0.59 0.71 0.20
0.59 0.64 0.23
0.56 0.92 0.30
0.64 0.98 0.26
0.66 0.96 0.27
0.65 0.91 0.22

0.98 1.14 0.20
0.78 0.84 0.27
0.68 1.34 0.26
0.52 1.13 0.25
0.83 1.21 0.28
0.77 1.35 0.24
0.63 1.09 0.28
0.81 1.15 0.41

0.77 1.41 0.52
0.65 1.09 0.30
0.66 1.47 0.51
0.55 0.96 0.31
0.84 1.07 0.23
0.78 0.88 0.27
0.75 1.36 0.37
0.61 1.31 0.49
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Appendix m

ANALYSIS OF VARIANCE, VARIANCE COMPONENTS CALCULATIONS 
FOR WOOD PROPERTY AND GROWTH TRAITS

1. Analysis of Variance For 1991 Tracheid Length

Source df Sums of Mean Square F-ratio Prob Variance
Squares Components

bi 3 0.0266 0.0089
pj 3 0.0309 0.0103
bi*pj 9 0.0501 0.0056
sjk 4 0.0224 0.0056
bi*sjk 12 0.0603 0.0050
cjl 24 0.4358 0.0182
Error 72 0.4453 0.0062
Total 127 1.0714

1.59 0.26 0.00010
1.84 0.28 0.00015
1.11 0.43 0.00007
0.31 0.87 0.00000
0.81 0.64 0.00000
2.94 0.00 0.00299

0.00619

2. Analysis of Variance For 1991 Specific Gravity

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.0084 0.0028 1.65 0.25 0.000034
Pj 3 0.0178 0.0059 3.18 0.15 0.000127
bi*pj 9 0.0154 0.0017 1.15 0.40 0.000028
sjk 4 0.0074 0.0019 0.32 0.86 0.000000
bi*sjk 12 0.0177 0.0015 0.84 0.61 0.000000
cjl 24 0.1381 0.0058 3.26 0.00 0.000997
Error 72 0.1271 0.0018 0.001765
Total 127 0.3319

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

3. Analysis of Variance For 1991 Diameter Growth

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.0823 0.0274 0.24 0.87 0.00000
Pj 3 1.7316 0.5772 33.09 0.00 0.01749
bi*pj 9 1.0399 0.1155 13.46 0.00 0.01337
sjk 4 0.0698 0.0174 0.36 0.84 0.00000
bi*sjk 12 0.1030 0.0086 0.26 0.99 0.00000
cjl 24 1.1681 0.0487 1.49 0.10 0.00398
Error 72 2.3570 0.0327 0.03274
Total 127 6.5516

4. Analysis of Variance For 1991 Latewood Percentage

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.0169 0.0056 0.33 0.81 0.00000
PJ 3 0.0074 0.0025 1.25 0.40 0.00002
bi*pj 9 0.1558 0.0173 3.45 0.02 0.00154
sjk 4 0.0079 0.0020 0.34 0.85 0.00000
bi*sjk 12 0.0601 0.0050 0.76 0.69 0.00000
cjl 24 0.1406 0.0059 0.88 0.62 0.00000
Error 72 0.4772 0.0066 0.00663
Total 127 0.8660

S. Analysis of Variance For 1991 Height Growth

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.6415 0.2138 4.16 0.04 0.00508
Pj 3 0.6873 0.2291 8.95 0.03 0.00636
bi*pj 9 0.4627 0.0514 2.12 0.11 0.00334
sjk 4 0.1024 0.0256 1.24 0.32 0.00031
bi*sjk 12 0.2906 0.0242 1.00 0.46 0.00001
q'l 24 0.4975 0.0207 0.86 0.66 0.00000
Error 72 1.7420 0.0242 0.02420
Total 127 4.4239
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6. Analysis of Variance For 1994 Tracheid Length

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.0229 0.0076 0.72 0.56 0.00000
Pj 3 0.6584 0.2195 27.17 0.00 0.00661
bi*pj 9 0.0949 0.0105 0.75 0.67 0.00000
sjk 4 0.0323 0.0081 0.32 0.86 0.00000
bi*sjk 12 0.1697 0.0141 1.15 0.34 0.00046
cjl 24 0.6025 0.0251 2.04 0.01 0.00320
Error 72 0.8860 0.0123 0.01231
Total 127 2.4667

7. Analysis of Variance For 1994 Specific Gravity

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.0117 0.0039 5.22 0.02 0.000098
Pj 3 0.0054 0.0018 1.09 0.45 0.000005
bi*pj 9 0.0067 0.0007 0.52 0.84 0.000000
sjk 4 0.0066 0.0016 0.43 0.79 0.000000
bi*sjk 12 0.0173 0.0014 0.97 0.49 0.000000
cjl 24 0.0923 0.0038 2.58 0.00 0.000589
Error 72 0.1072 0.0015 0.001496
Total 127 0.2471

8. Analysis of Variance For 1994 Height Growth

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.6231 0.2077 8.08 0.01 0.00569
Pj 3 0.8673 0.2891 20.98 0.01 0.00860
bi*pj 9 0.2314 0.0257 1.39 0.29 0.00091
sjk 4 0.0551 0.0137 0.73 0.58 0.00000
bi*sjk 12 0.2213 0.0184 1.82 0.06 0.00208
cjl 24 0.4548 0.0190 1.87 0.02 0.00221
Error 72 0.7294 0.0101 0.01013
Total 127 3.1824
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9. Analysis of Variance For 1994 Diameter Growth

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 3.9963 1.3321 17.69 0.00 0.03927
Pj 3 2.0847 0.6949 11.79 0.02 0.01987
bi*pj 9 0.6777 0.0753 1.58 0.23 0.00344
sjk 4 0.2358 0.0589 0.68 0.61 0.00000
bi*sjk 12 0.5733 0.0478 1.18 0.32 0.00179
cjl 24 2.0746 0.0864 2.13 0.01 0.01146
Error 72 2.9241 0.0406 0.04061
Total 127 12.5664

10. Analysis of Variance For 1994 Latewood Percentage

Source df Sums of 
Squares

Mean Square F-ratio Prob Variance
Components

bi 3 0.1319 0.0440 3.61 0.06 0.00099
pj 3 0.0123 0.0041 0.38 0.77 0.00000
bi*pj 9 0.1097 0.0122 1.51 0.25 0.00051
sjk 4 0.0426 0.0107 1.33 0.29 0.00017
bi*sjk 12 0.0972 0.0081 1.50 0.15 0.00067
cjl 24 0.1917 0.0080 1.48 0.10 0.00065
Error 72 0.3892 0.0054 0.00541
Total 127 0.9745
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APPENDIX IV

CALCULATIONS OF COVARIANCE COMPONENTS

1. Tracheid Length vs Specific Gravity of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0070 0.0023 2.22 0.16 0.00004
Pj 3 0.0188 0.0063 2.27 0.22 0.00011
bi*pj 9 0.0094 0.0010 0.53 0.83 -0.00012
sjk 4 0.0110 0.0028 0.43 0.79 -0.00023
bi*qk 12 0.0238 0.0020 2.14 0.02 0.00026
cjl 24 0.1554 0.0065 6.98 0.00 0.00139
Error 72 0.0668 0.0009 0.00093
Total 127 0.2921

2. Tracheid Length vs Height Growth Rate of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.3006 0.1002 5.84 0.02 0.00260
Pj 3 0.3337 0.1112 7.64 0.04 0.00302
bi*pj 9 0.1544 0.0172 1.32 0.32 0.00052
sjk 4 0.0583 0.0146 1.23 0.32 0.00017
bi*sjk 12 0.1561 0.0130 1.10 0.37 0.00030
cjl 24 0.2836 0.0118 1.00 0.48 0.00001
Error 72 0.8495 0.0118 0.01180
Total 127 2.1362

3. Tracheid Length vs Riong Width of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0301 0.0100 0.24 0.86 -0.00097
Pj 3 0.6908 0.2303 50.96 0.00 0.00706
bi*pj 9 0.3709 0.0412 8.14 0.00 0.00452
sjk 4 0.0181 0.0045 0.21 0.93 -0.00107
bi*sjk 12 0.0607 0.0051 0.38 0.96 -0.00202
cjl 24 0.5178 0.0216 1.64 0.06 0.00211
Error 72 0.9473 0.0132 0.01316
Total 127 2.6358
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4. Tracheid Length vs Latewood Percentage of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0201 0.0067 0.40 0.76 -0.00032
Pj 3 0.0076 0.0025 1.13 0.44 0.00001
bi*pj 9 0.1519 0.0169 3.49 0.02 0.00151
sjk 4 0.0089 0.0022 0.26 0.90 -0.00039
bi*qk 12 0.0580 0.0048 0.64 0.80 -0.00067
cjl 24 0.2041 0.0085 1.13 0.33 0.00025
Error 72 0.5414 0.0075 0.00752
Total 127 0.9919

5. Specific Gravity vs Height Growth of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.1449 0.0483 5.22 0.02 0.00122
Pj 3 0.1605 0.0535 10.96 0.02 0.00152
bi*pj 9 0.0833 0.0093 1.89 0.15 0.00055
sjk 4 0.0195 0.0049 1.01 0.42 0.00000
bi*sjk 12 0.0587 0.0049 1.18 0.32 0.00018
cjl 24 0.1157 0.0048 1.16 0.31 0.00017
Error 72 0.2990 0.0042 0.00415
Total 127 0.8815

6. Specific Gravity vs Ring Width of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0164 0.0055 0.30 0.82 -0.00040
Pj 3 0.3171 0.1057 24.86 0.00 0.00317
bi*pj 9 0.1643 0.0183 9.23 0.00 -0.00019
sjk 4 0.0170 0.0043 0.57 0.69 -0.00020
bi*qk 12 0.0237 0.0020 0.36 0.97 0.00357
cjl 24 0.1790 0.0075 1.36 0.16 0.00049
Error 72 0.3951 0.0055 0.00549
Total 127 1.1127

7. Specific Gravity vs Latewood Percentage of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0109 0.0036 0.54 0.66 -0.00010
Pj 3 0.0076 0.0025 2.90 0.17 0.00005
bi*pj 9 0.0602 0.0067 2.70 0.06 0.00053
sjk 4 0.0035 0.0009 0.38 0.82 -0.00009
bi*sjk 12 0.0297 0.0025 0.93 0.52 -0.00005
cjl 24 0.0551 0.0023 0.86 0.65 -0.00009
Error 72 0.1914 0.0027 0.00266
Total 127 0.3584
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8. Height Growth vs Ring Width of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.2752 0.0917 1.59 0.26 0.00106
PJ' 3 1.0059 0.3353 68.19 0.00 0.01032
bi*pj 9 0.5196 0.0577 4.57 0.01 0.00564
sjk 4 0.0197 0.0049 0.22 0.92 -0.00108
bi*qk 12 0.1515 0.0126 0.72 0.73 -0.00125
cjl 24 0.5325 0.0222 1.26 0.22 0.00114
Error 72 1.2685 0.0176 0.01762
Total 127 3.7728

9. Height Growth vs Latewood Percentage of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.1007 0.0336 1.46 0.29 0.00033
Pj 3 0.0912 0.0304 5.11 0.07 0.00076
bi*pj 9 0.2066 0.0230 3.92 0.02 0.00214
sjk 4 0.0238 0.0059 1.28 0.30 0.00008
bi*gk 12 0.0703 0.0059 1.06 0.41 0.00008
cjl 24 0.1113 0.0046 0.84 0.68 -0.00022
Error 72 0.3978 0.0055 0.00552
Total 127 1.0017

10. Ring Width vs Latewood Percentage of 1991

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0138 0.0046 0.26 0.86 -0.00042
Pj 3 0.1724 0.0575 32.47 0.00 0.00174
bi*pj 9 0.1620 0.0180 2.88 0.05 0.00147
sjk 4 0.0071 0.0018 0.16 0.95 -0.00056
bi*qk 12 0.0749 0.0062 0.75 0.70 -0.00051
cjl 24 0.2579 0.0107 1.30 0.20 0.00061
Error 72 0.5973 0.0083 0.00830
Total 127 1.2853

11. Tracheid Length vs Specific Gravity of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0148 0.0049 3.10 0.08 0.00011
Pj 3 0.0728 0.0243 17.56 0.01 0.00072
bi*pj 9 0.0144 0.0016 0.77 0.65 -0.00006
sjk 4 0.0055 0.0014 0.22 0.93 -0.00031
bi*sjk 12 0.0250 0.0021 1.31 0.23 0.00012
cjl 24 0.1538 0.0064 4.03 0.00 0.00121
Error 72 0.1145 0.0016 0.00159
Total 127 0.4009
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12. Tracheid Length vs Height Growth Rate of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.2592 0.0864 6.05 0.02 0.00225
Pj 3 0.8843 0.2948 20.25 0.01 0.00876
bi*pj 9 0.1286 0.0143 1.36 0.30 0.00047
sjk 4 0.0582 0.0146 1.67 0.19 0.00037
bi*sjk 12 0.1261 0.0105 1.69 0.09 0.00107
cjl 24 0.2092 0.0087 1.40 0.14 0.00062
Error 72 0.4481 0.0062 0.00622
Total 127 2.1137

13. Tracheid Length vs Ring width of 1994

Source df Stuns of Squares Mean Square F-ratio Prob Covariance Components

bi 3 1.3512 0.4504 15.36 0.00 0.01316
Pj 3 1.3933 0.4644 14.36 0.01 0.01350
bi*pj 9 0.2639 0.0293 1.45 0.27 0.00114
sjk 4 0.1293 0.0323 1.20 0.34 0.00034
bi*gk 12 0.2421 0.0202 1.40 0.19 0.00143
cjl 24 0.6471 0.0270 1.87 0.02 0.00313
Error 72 1.0409 0.0145 0.01446
Total 127 5.0679

14. Tracheid Length vs Latewood Percentage of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.1443 0.0481 3.26 0.07 0.00104
Pj 3 0.0930 0.0310 2.14 0.24 0.00052
bi*pj 9 0.1322 0.0147 2.07 0.12 0.00095
sjk 4 0.0578 0.0145 1.31 0.29 0.00021
bi*sjk 12 0.0851 0.0071 1.10 0.38 0.00016
cjl 24 0.2646 0.0110 1.70 0.04 0.00114
Error 72 0.4656 0.0065 0.00647
Total 127 1.2425

IS. Specific Gravity vs Height Growth Rate of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0789 0.0230 4.49 0.03 0.00056
Pj 3 0.1481 0.0494 15.18 0.01 0.00144
bi*pj 9 0.0460 0.0051 1.18 0.39 0.00010
sjk 4 0.0130 0.0033 0.63 0.65 -0.00012
bi*sjk 12 0.0522 0.0043 1.70 0.08 0.00045
cjl 24 0.1244 0.0052 2.03 0.01 0.00066
Error 72 0.1842 0.0026 0.00256
Total 127 0.6368
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16. Specific Gravity vs Ring Width of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 1.6918 0.5639 23.88 0.00 0.00366
Pj 3 1.3102 0.4367 15.02 0.01 0.00235
bi*pj 9 0.2126 0.0236 1.64 0.21 0.00053
sjk 4 0.1163 0.0291 1.30 0.30 0.00015
bi*qk 12 0.1726 0.0144 1.14 0.34 0.00003
cjl 24 0.5360 0.0223 1.77 0.03 0.00007
Error 72 0.9073 0.0126 0.00542
Total 127 4.9468

17. Specific Gravity vs Latewood Percentage of 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.0385 0.0128 2.42 0.13 0.00024
Pj 3 0.0098 0.0033 0.74 0.58 -0.00004
bi*pj 9 0.0478 0.0053 1.85 0.16 0.00031
sjk 4 0.0177 0.0044 1.54 0.22 0.00008
bi*gk 12 0.0345 0.0029 1.36 0.21 0.00019
cjl 24 0.0688 0.0029 1.35 0.16 0.00019
Error 72 0.1526 0.0021 0.00212
Total 127 0.3697 -

18. Height Growth Rate vs Ring Width 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 1.6918 0.5639 23.88 0.00 0.01689
Pj 3 1.3102 0.4367 15.02 0.01 0.01274
bi*pj 9 0.2126 0.0236 1.64 0.21 0.00115
sjk 4 0.1163 0.0291 1.30 0.30 0.00042
bi*qk 12 0.1726 0.0144 1.14 0.34 0.00045
cjl 24 0.5360 0.0223 1.77 0.03 0.00243
Error 72 0.9073 0.0126 0.01260
Total 127 4.9468

19. Height Growth Rate vs Latewood Percentage 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.2710 0.0903 8.39 0.01 0.00249
Pj 3 0.1390 0.0463 4.19 0.10 0.00110
bi*pj 9 0.0969 0.0108 1.73 0.19 0.00057
sjk 4 0.0442 0.0111 1.96 0.13 0.00034
bi*sjk 12 0.0748 0.0062 1.31 0.23 0.00037
cjl 24 0.1356 0.0057 1.19 0.28 0.00023
Error 72 0.3421 0.0048 0.00475
Total 127 1.1036
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20. Ring Width vs Latewood Percentage 1994

Source df Sums of Squares Mean Square F-ratio Prob Covariance Components

bi 3 0.7439 0.2480 9.72 0.00 0.00695
Pj 3 0.2125 0.0708 2.89 0.17 0.00145
bi*pj 9 0.2297 0.0255 1.40 0.29 0.00092
sjk 4 0.0980 0.0245 1.34 0.28 0.00039
bi*qk 12 0.2180 0.0182 1.56 0.12 0.00163
gl 24 0.4385 0.0183 1.57 0.07 0.00165
Error 72 0.8398 0.0117 0.01166
Total 127 2.7804
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APPENDIX V

ANALYSIS OF VARIANCE OF INDIVIDUAL PROVENANCES FOR WOOD 
PROPERTY AND GROWTH TRAITS

TRACHEID LENGTH 

(1). 1991

provenauce Source df Sums of Squares Mean Square F-ratio Prob

North Bay
bi
g
Error
Total

3
7
21
31

0.01 47 
0.0811 
0.1611 
0.2569

0.0049
0.0116
0.0078

0.64
1.51

0.60
0.22

bi 3 0.0188 0.0063 1.20 0.33
Thunder g 7 0.0958 0.0137 2.62 0.04
Bay Error 21 0.1096 0.0052

Total 31 0.2242

bi 3 0.0352 0.0117 1.55 0.23
Kenogami g 7 0.2124 0.0303 4.01 0.01
River Error 21 0.1590 0.0076

Total 31 0.4066
Sandy bi 3 0.0080 0.0027 0.74 0.54
Lake g 7 0.0689 0.0098 2.72 0.04

Error 21 0.0760 0.0036
Total 31 0.1529

1257199?

bi 3 0.0077 0.0026 0.17 0.91
North Bay g 7 0.1784 0.0256 1.71 0.16

Error 21 0.3138 0.0149
Total 31 0.5000

Thunder bi 3 0.0390 0.0130 1.36 0.28
Bay g 7 0.1270 0.0181 1.89 0.12

Error 21 0.2012 0.0096
Total 31 0.3672
bi 3 0.0143 0.0048 0.47 0.71

Kenogami g 7 0.1668 0.0238 2.34 0.06
River Error 21 0.2135 0.0102

Total 31 0.3946

bi 3 0.0567 0.0189 1.21 0.33
Sandy g 7 0.1626 0.0232 1.49 0.22
Lake Error 21 0.3272 0.0156

Total 31 0.5466
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Appendix V Continued
SPECIFIC GRAVITY 

(1). 1991

provenance Source df -Sinus of Squares Mean Square F-ratio Prob

bi 3 0.0062 0.0021 0.60 0.62
North Bay cj 7 0.0334 0.0048 1.40 0.26

Error 21 0.0719 0.0034
Total 31 0.1116

bi 3 0.0072 0.0024 2.15 0.12
Thunder Bay cj 7 0.0229 0.0033 2.94 0.03

Error 21 0.0234 0.0011
Total 31 0.0534

bi 3 0.0065 0.0022 1.16 0.35
Kenogami q 7 0.0756 0.0108 5.80 0.00
River Error 21 0.0391 0.0019

Total 31 0.1212

bi 3 0.0040 0.0013 2.65 0.08
Sandy Lake cj 7 0.0136 0.0019 3.89 0.01

Error 21 0.0105 0.0005
Total 31 0.0280

(2). 1994

bi 3 0.0088 0.0029 3.24 0.04
North Bay cj 7 0.0268 0.0038 4.23 0.00

Error 21 0.0190 0.0009
Total 31 0.0547

bi 3 0.0008 0.0003 0.19 0.90
Thunder Bay q 7 0.0173 0.0025 1.69 0.17

Error 21 0.0306 0.0015
Total 31 0.0487

Kenogami bi 3 0.0032 0.0011 0.56 0.65
River q 7 0.0229 0.0033 1.70 0.16

Error 21 0.0406 0.0019
Total 31 0.0668

bi 3 0.0055 0.0018 1.12 0.36
Sandy Lake q 7 0.0318 0.0045 2.78 0.03

Error 21 0.0343 0.0016
Total 31 0.0716
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Appendix V Continued
ANNUAL HEIGHT GROWTH 

(1). 1991

provenance Source d f Sums of Squares Mean Square F-ratio Prob

bi 3 0 . 5 3 6 3 0 . 1 7 8 8 1 0 . 2 5 0 . 0 0
North Bay q 7 0 . 1 9 2 8 0 . 0 2 7 6 1 . 5 8 0 . 2 0

Error 2 1 0 . 3 6 6 4 0 . 0 1 7 4
Total 3 1 1 . 0 9 5 6

Thunder Bay bi 3 0.2153 0.0718 1.31 0.30
q 7 0.1162 0.0166 0.30 0.94
Error 21 1.1486 0.0547
Total 31 1.4801

Kenogami bi 3 0.1336 0.0445 4.44 0.01
River q 7 0.1779 0.0254 2.53 0.05

Error 21 0.2107 0.0100
Total 31 0.5222

bi 3 0.2190 0.0730 5.00 0.01
Sandy Lake q 7 0.1129 0.0161 1.10 0.40

Error 21 0.3069 0.0146
Total 31 0.6388

(2). 1994

bi 3 0.0833 0.0278 2.70 0.07
North Bay q 7 0.1112 0.0159 1.55 0.21

Error 21 0.2159 0.0103
Total 31 0.4104

bi 3 0.2137 0.0712 5.63 0.01
Thunder Bay q 7 0.1272 0.0182 1.44 0.24

Error 21 0.2658 0.0127
Total 31 0.6067

bi 3 0.4211 0.1404 10.44 0.00
Kenogami cj 7 0.0484 0.0069 0.51 0.81
River Error 21 0.2823 0.0134

Total 31 0.7518

bi 3 0.1364 0.0455 5.12 0.01
Sandy Lake q 7 0.2231 0.0319 3.59 0.01

Error 21 0.1866 0.0089
Total 31 0.5462
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Appendix V Continued
RING WIDTH 

(1). 1991

provenance Source df Sura* of Squares Mean Square F-ratio Prob

bi 3 0.4017 0.1339 4.01 0.02
North Bay cj 7 0.2682 0.0383 1.15 0.37

Error 21 0.7007 0.0334
Total 31 1.3705

bi 3 0.2099 0.0700 1.92 0.16
Thunder Bay q 7 0.6479 0.0926 2.54 0.05

Error 21 0.7640 0.0364
Total 31 1.6219

bi 3 0.2912 0.0971 4.78 0.01
Kenogami q 7 0.1840 Q.0263 1.29 0.30
River Error 21 0.4263 0.0203

Total 31 0.9015

bi 3 0.2193 0.0731 2.70 0.07
Sandy Lake q 7 0.1378 0.0197 0.73 0.65

Error 21 0.5691 0.0271
Total 31 0.9262

(2). 1994

bi 3 1.0376 0.3459 12.96 0.00
North Bay q 7 1.3303 0.1900 7.12 0.00

Error 21 0.5607 0.0267
Total 31 2.9286

bi 3 1.0158 0.3386 4.90 0.01
Thunder Bay cj 7 0.3608 0.0515 0.75 0.64

Error 21 1.4519 0.0691
Total 31 2.8284

bi 3 0.7739 0.2580 7.25 0.00
Kenogami q 7 0.3804 0.0543 1.53 0.21
River Error 21 0.7471 0.0356

Total 31 1.9014

bi 3 1.8466 0.6155 17.52 0.00
q 7 0.2389 0.0341 0.97 0.48

Sandy Lake Error 21 0.7377 0.0351
Total 31 2.8232
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Appendix V Continued
LATEWOOD PERCENTAGE 

(1). 1991

provenance Source df Sums of Squares Mean Square F-ratio Prob

bi 3 0.0567 0.0189 2.76 0.07
North Bay cj 7 0.0528 0.0075 1.10 0.40

Error 21 0.1438 0.0068
Total 31 0.2533

bi 3 0.0027 0.0009 0.16 0.92
Thunder Bay q 7 0.0115 0.0016 0.28 0.95

Error 21 0.1223 0.0058
Total 31 0.1366

bi 3 0.0142 0.0047 0.52 0.68
Kenogami cj 7 0.0336 0.0048 0.52 0.81
River Error 21 0.1930 0.0092

Total 31 0.2409

bi 3 0.1023 0.0341 4.62 0.01
cj 7 0.0379 0.0054 0.73 0.65

Sandy Lake Error 21 0.1551 0.0074
Total 31 0.2953

(2). 1994

bi 3 0.0124 0.0041 1.16 0.35
North Bay q 7 0.0697 0.0100 2.79 0.03

Error 21 0.0750 0.0036
Total 31 0.1571

Thunder Bay bi 3 0.0607 0.0202 3.29 0.04
q 7 0.0728 0.0104 1.69 0.17
Error 21 0.1292 0.0062
Total 31 0.2627

bi 3 0.0490 0.0163 3.21 0.04
Kenogami q 7 0.0415 0.0059 1.17 0.36
River Error 21 0.1068 0.0051

Total 31 0.1973

bi 3 0.1195 0.0398 4.77 0.01
Sandy Lake q 7 0.0503 0.0072 0.86 0.55

Error 21 0.1753 0.0083
Total 31 0.3451

I
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