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Abstract

This work characterizes parameters of ubiquitin metabolism in Chlamydomonas reinhardtii 

Dangeard growing under constant conditions and after an exposure to cold shock. Ratio of free 

and conjugated ubiquitin to total protein, and rate constant of ubiquitin synthesis and conjugation 

increased about two-fold during first 4 hours after cold treatment, whereas rate constant of 

ubiquitin degradation reached its maximum 9 hours after treatment. Half-life of ubiquitin calculated 

from the constant of degradation decreased from 6 hours to 3.5 hours during first four hours after 

the cold treatment. Rate constant of ubiquitin deconjugation did not change after cold treatment. 

Ratio of free to conjugated ubiquitin decreased temporarily to approx. 8 immediately after cold 

treatment and raised back to its original value at 2 h after cold treatment. These observations 

raise questions regarding the regulatory mechanisms of ubiquitin synthesis and hydrolysis.

Ill
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1. Introduction

It has been known since the early 1940's that proteins in living cells are in a state of 

constant turnover (Vickery et al. 1940, Schoenheimer 1942). Protein turnover has two 

components: synthesis of protein molecules and their degradation into constituent amino acids. 

While there is a considerable body of knowledge about processes leading from.information stored 

in nucleic acids to protein molecules, less attention has been paid to mechanisms of protein 

degradation. Perhaps the best studied cytosolic pathway responsible for dismemberment of 

polypeptides is the ubiquitin pathway (Ciechanover 1994), in which protein substrates are first 

covalently linked to one or many molecules of 76 amino acid protein ubiquitin in an ATP- 

dependent manner. Proteins tagged with multiubiquitin chain(s) are then specifically degraded by 

an ATP-dependent 26S proteasome complex.

Proteolysis plays an essential role in the cell response to stress conditions such as 

extreme temperature and pH, UV radiation (Hilt & Wolf 1992), microinjection of denaturated 

proteins (Ananthan et al. 1986), introduction into bacteria of a vector generating large amounts 

of foreign protein (Goff & Goldberg 1985), and ’poisoning’ with heavy metals or amino acid 

analogues (Goldberg 1972). Abnormal proteins arising as a result of stress conditions (Finley et 

al. 1984, Kabakov & Gabai 1993) can be channelled into ubiquitin pathway for protein degradation 

(Hershko & Ciechanover 1982, Parag et al. 1987). Ubiquitin itself has been shown to be one of 

the heat shock proteins, a group of proteins that are synthesized as a part of the cellular 

response to stress (Parsell & Lindquist 1993).

One of the possible stressful conditions a cell can encounter is a temperature shock, an 

exposure to extreme temperature. Involvement of the ubiquitin system in cellular responses to 

heat shock has been well established in yeast (Finley et al. 1987), plants (Ferguson et al. 1990)
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and animals (Niedzwiecki & Fleming 1993). Enzymes of the ubiquitin-conjugating system have 

been identified as responsible for cell survival at elevated temperature (Ciechanover et al. 1984, 

Finley et al. 1984, Seufert & Jentsch 1990, Cropper et al. 1991). One of the endogenous 

inhibitors of the 20S proteasome has been recognised as heat shock protein HSP90 (Tsubuki et 

al. 1994) and this proteolytic complex has been found essential for stress-induced proteolysis (Hilt 

et al. 1993). Increased transcription of ubiquitin genes as a reaction to heat shock has been 

observed (Finley etal. 1987, Burke et ai 1988, Shimogawara & Muto 1989, Ferguson et a i 1990, 

Binet et al. 1991, Christensen et al. 1992, Garbarino et al. 1992, Genschik et al. 1992, 

Niedzwiecki & Fleming 1993, Schiedlmeier& Schmitt 1994), as well as changes in cellular content 

of ubiquitin and ubiquitin conjugation to protein substrates (Shimogawara & Muto 1989, Ferguson 

etal. 1990, Wettem etal. 1990, Niedzwiecki & Fleming 1993). However, less attention has been 

paid to changes of ubiquitin system following cold shock (Gindin & Borochov 1992).

To investigate low temperature function of the ubiquitin system, Chlamydomonas 

reinhardtii Dangeard (a unicellular aquatic photosynthetic eukaryote) was chosen as a model 

organism. Availability of mutants of this organism defective in cell cycle control (Harris 1989) 

makes it a suitable model for study of role of ubiquitin system in cell cycle regulation and 

disruption of the cell cycle by changes in the environment. This work is a first step in such an 

effort.

The purpose of this study is to determine whether ubiquitin turnover in Chlamydomonas 

reinhardtii Dangeard changes after an exposure to a cold shock. Rate constants of ubiquitin 

synthesis, degradation, conjugation, and deconjugation have been determined under constant 

conditions and after an exposure of cells to low non-freezing temperature.

1.1. Ubiquitin svstem for protein degradation
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3

1.1.1. Ubiquitin

Ubiquitin was first isolated (Goldstein et al. 1975) and sequenced (Schlessinger et al. 

1975) as a lymphocyte differentiation promoting factor. Thereafter a histone H24A was found to 

be a covalent complex of histone H2A and a ubiquitin molecule (Goldknopf & Busch 1975, 

Goldknopf et al. 1975), joined through an isopeptide linkage between e-amino group of histone's 

Lys and carboxyl-terminal Gly of ubiquitin (Goldknopf & Busch 1977). In another line of work, 

rabbit reticulocytes were found to contain an ATP-dependent proteolytic system (Etiinger & 

Goldberg 1977), which required an 'ATR-Dependent Proteolysis Factor I' - APF-I (Ciechanover 

et al. 1978, Hershko et al. 1979). APF-I formed covalent compounds with proteolytic substrates 

in an ATP-dependent manner (Ciechanover et al. 1980, Hershko et al. 1980) and was 

subsequently identified as ubiquitin (Wilkinson et al. 1980).

Ubiquitin and ubiquitin genes have been found in all eukaryotic cells examined to date 

(Vierstra 1993) and in several viruses (Dunigan et al. 1988, Guarino 1990, Russell & Rohrmann 

1993, Tautz et al. 1993). Ubiquitin, but not its coding sequence, has recently been reported in an 

archaebacterium (Wolf et al. 1993b). Early reports of presence of ubiquitin in eubacteria 

(Goldstein et al. 1975) have not been confirmed yet.

When first sequenced, ubiquitin was determined to consist of 74 amino acids, with arginyl 

as the carboxyl-terminal residue (Schlessinger et al. 1975). In contrast, the sequence of 

ubiquitinated histone H2A contained an intervening glycine dipeptide between lysyl residue of the 

histone and arginyl of the ubiquitin (Goldknopf & Busch 1977). Physiologically active ubiquitin 

contains the carboxyl-terminal sequence Arg-Gly-GIy (Wilkinson & Audhya 1981) and that the 

terminal glycine dipeptide is sensitive to proteolytic cleavage by an In vivo present protease (Haas 

et al. 1985, Vierstra et al. 1985). Ubiquitin is perhaps the most conserved protein detected to 

date. Its amino add sequence is identical among all higher-plant spedes examined and is

I
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4

distinguished from the Chlamydomonas, the yeast, and the invariant mammalian ubiquitin 

sequence by only one-, two-, and three-amino acid substitutions respectively (Vierstra 1993).

X-ray studies revealed ubiquitin having a simple architecture rich in secondary structure, 

including a five-strand P-sheet with three antiparallel and one parallel pairs of strands, an a-heiix 

(residues 23-34), a short 3,o helix (residues 56-59), and seven reverse tums (Vij'ay-Kumar et a i 

1987). Ubiquitin shares an unusual crossover motif of the outer strands of the p-sheet and the 

central a-helix with G-protein (Kraulis 1991). The curved p-sheet and the flanking a-helix enclose 

a single core of densely packed hydrophobic side chains, which is likely to contribute to the high 

stability of ubiquitin toward dénaturation by heat, extremes of pH, and denaturing agents 

(Lenkinski et a i 1977, Briggs & Roder 1992). Its thermal stability has been exploited for its 

isolation (Goldstein et al. 1975, Vierstra et al. 1985). In spite of its small size, ubiquitin can fold 

 ̂ into a very stable globular structure, without relying on disulphide bonds, metal binding sites, or 

prosthetic groups for structural stabilization (Khorasanizadeh et al. 1993), which makes it an 

attractive model system for protein folding studies (Pan & Briggs 1992, Katta & Chait 1993, 

Khorasanizadeh et al. 1993, Woolfson et al. 1993).

Presence of ubiquitin and a complex pattern of ubiquitin conjugates has been revealed 

in the cytosol and the nucleus of mammalian (Haas & Bright 1985), plant (Beers et al. 1992), and 

algal (Wettem et al. 1990) cells and ubiquitin is apparently a component of mammalian 

I cytoskeleton (Murti et al. 1988) and insect muscle fibres (Ball et al. 1987). Ubiquitinated cell 

surface proteins have been localized in mammalian (Siegelman et al. 1986, Yarden et al. 1986, 

Spencer et al. 1988), plant (Schulz et al. 1994), and algal (Wettem et al. 1990) cells. Although 

ubiquitinated proteins have been found in lysosomal system of mouse fibroblasts (Laszio et al. 

1990) and in higher plant vacuoles (Beers et al. 1992), they were absent in algal vacuoles 

(Wettem et al. 1990). Free and conjugated ubiquitin has also been reported in mitochondria and

!
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endoplasmic reticulum of rabbit brain (Magnani et al. 1991) and in chloroplast of Chlamydomonas 

reinhardtii (Wettem et a i 1990). Neither free nor conjugated ubiquitin was detected in plant 

apoplast (i.e. plant extracellular space) by Beers et a i (1992), but free ubiquitin has been found 

in human seminal plasma (Lippert et a i 1993).

In addition to ubiquitin's covalent conjugation with protein substrates, it has also been 

suggested that it can act as a 'chaotropic* agent forming stable noncovalent complexes with 

oxidant-damaged proteins, rendering them susceptible to degradation by 20S proteasomes 

(Wenzel & Baumeister 1993). A report of ubiquitin having intrinsic proteolytic activity (Fried et a i 

1987) has not been confirmed.

In most of the eukaryotes studied to-date, ubiquitin is encoded by 3 multigene families 

(Schlesinger & Bond 1987, Callis & Vierstra 1989); polyubiquitin genes, ubiquitin extension (or 

monoubiquitin) genes and ubiquitin-like genes. There is only one organism {Giardia lamblia) in 

which ubiquitin coding sequence has been found to be present only in a single copy per cell 

(Krebber ef a/. 1994).

P o l y u b iq u it in  g e n e s  consist of 3  to 52 tandem head-to-tail repeats of 228  bp with various 

carboxyl-terminal extensions of 1 to 3  amino acids, that may function to block ligation of 

polyubiquitin chains to their protein targets prior to their processing into ubiquitin monomers 

(Schlesinger & Bond 1987, Callis & Vierstra 1989). The polyubiquitin precursor is cleaved by 

cytoplasmic proteases to yield monomers of ubiquitin (Wilkinson et al. 1989, Tobias & Varshavsky 

1991, Baker ef a/. 1992).

M o n o u b iq u it in  g e n e s  consist of single monoubiquitin coding units. Translated proteins are 

flanked by C-terminal extensions of 52 or 76-80 amino-acid residues (Finley ef a i 1989, Redman 

& Rechsteiner 1989, Cabrera ef a i 1992). These extensions have been well conserved in 

evolution and have been identified as components of 408 and 60S ribosomal subunits in yeast
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(Finley et al. 1989), mammals (Redman & Rechsteiner 1989), and Drosophila (Redman 1994). 

Several gene clusters coding 5S rRNA in Tetrahymena pyriformis are flanked by ubiquitin genes 

(Neves et al. 1988, Neves et al. 1991, Guerreiro et al. 1993), suggesting a common mechanism 

of transcription regulation and thus the possibility of involvement of ubiquitin in biogenesis of 

ribosomes (Guerreiro et al. 1993).

T h e  c l a s s  o f  u b io u it in - u k e  g e n e s  includes both pseudogenes and genes that encode 

proteins with amino acid substitutions from the conserved ubiquitin sequence (Jones & Candide 

1993, Linnen etal. 1993, Michiels etal. 1993, Sun & Callis 1993). The function of these proteins 

is not completely understood. It has been hypothesized that there are parallel pathways of protein 

conjugation involving ubiquitin-like proteins and that these conjugates may have entirely different 

functions from those involving ubiquitin (Loeb & Haas 1992).

1.1.2. Ubiquitin conjugating machinery

The set of reactions and corresponding enzymes leading to ubiquitin conjugation to a 

protein substrate was first described in rabbit reticulocyte lysates (Hershko et al. 1983). Since 

then elements of the pathway have been found in yeast, mammals and plants (Sullivan et al. 

1990), illustrating the evolutionary conservation of the system among eukaryotes (Hershko & 

Ciechanover 1992).

U b io u it in  a c t iv a t in g  e n z y m e s  (E ls ) initiate the ubiquitin conjugation pathway (Ciechanover ef a/. 

1981) by adenylating the carboxyl-terminal glycine of ubiquitin using ATP. Activated ubiquitin is 

then attached via a thiol-ester linkage to a cysteine in a catalytic site of the same molecule of El 

with a concomitant release of AMP (Haas & Rose 1982).

E ls  have been found in the nucleus (Cook & Chock 1991, McGrath ef a/. 1991, Trausch 

ef a/. 1993), cytoplasm (McGrath ef al. 1991) and they co-locallse with cytoskeleton (Trausch ef
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al. 1993). They form homodimers (Ciechanover et al. 1982) and can form complexes with 

individual ubiquitin conjugating enzymes (Jentsch 1992). Genes coding E ls have been cloned 

from various organisms (Jentsch 1992). E ls predicted from published sequences are around 100 

kD long, with two Gly-X-Gly-X-X-Gly motifs characteristic of nucleotide binding domains and 

nuclear targeting signals (McGrath et al. 1991). Nucleotide sequences of characterized E ls  

appear to be highly conserved among mammals (Imai et al. 1992).

U b iq u it in  c o n j u g a t in g  e n z y m e s  (E 2 s ) are defined as a family of related proteins able to form a 

thiol-ester with ubiquitin accepted from E1 (Hershko et al. 1983, Pickart & Rose 1985). Purified 

E2s have been shown being capable of catalyzing isopeptide linkages between e-amino groups 

of lysines of model substrates and the carboxyl-terminal Gly of ubiquitin (Haas & Bright 1988) as 

well as Lyŝ  ̂-dependent ubiquitin-ubiquitin linkages on a free polyubiquitin chain (Chen & Pickart 

1990) and during autoubiquitination-of E2 molecule (Baneijee et al. 1993). Ligation occurs with 

or without the help of family of ubiquitin protein ligases (Bartel et al. 1990). Although ubiquitinated 

proteins may carry single ubiquitin units or multiubiquitin chains, only the latter serves as a 

degradation signal (Chau et al. 1989); monoubiquitinated proteins such as histones (Wu et al. 

1981) and cytoskeleton subunits (Murti et al. 1988) are stable molecules with long half-lives. 

Multiubiquitin chains may be attached to target substrates either by a one-step transfer of a 

presynthesized multiubiquitin chain (van Mocker & Vierstra 1991) or processively by adding 

additional ubiquitin molecules to ubiquitins already conjugated to a target molecule (Bamezai et 

al. 1989). Recent evidence seems to support the former mechanism (van Nocker & Vierstra 

1993).

E2s have been localized in yeast nucleus (GoebI et al. 1994), cytoplasm of various 

eukaryotic cells (reviewed in Jentsch 1992), and plasma membrane of Arabidopsis thaliana cells 

(Bartling et ai. 1993). Ubiquitin-conjugating activity has been detected in chloroplasts of A vena
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sativa (Veierskov & Ferguson 1991). Integral membrane E2 has been found in peroxisomes 

(Wiebel & Kunau 1992) and the endoplasmatic reticulum (Sommer & Jentsch 1993) of yeast cells.

E2s comprise a heterogenous family of mostly small molecular mass (16 to 26 kOa in 

wheat germ, Sullivan et al. 1990) isoenzymes found in yeast, mammals and plants (Jentsch et 

al. 1990, Sullivan etal. 1990, Sullivan & Vierstra 1991). All E2s contain a conserved catalytic core 

(UBC domain, Jentsch et al. 1990) of approximately 150 amino acids surrounding the active site 

cysteine required for thiol-ester formation (Sullivan & Vierstra 1991, Sullivan & Vierstra 1993). The 

three-dimensional structure of the E2 encoded by the Arabidopsis AfUBCI gene has been 

determined (Cook et al. 1992b) and a model of interaction between E2 and ubiquitin has been 

proposed (Cook et al. 1992a, Sullivan & Vierstra 1993).

E2s can be structurally divided into three classes (Jentsch et al. 1990): Class I enzymes 

consist almost entirely of the conserved UBC domain (Jentsch et al. 1990). They are barely able 

to transfer ubiquitin from E l to test proteins irt vitro which suggests that they may need the 

presence of E3s for substrate recognition (Jentsch 1992). Class II enzymes possess C-terminal 

extensions to the UBC domain which are in part responsible for substrate specificity (Jentsch et 

al. 1990, Sullivan & Vierstra 1991) and for cellular localization of the enzymes (High ef al. 1991). 

Class III enzymes have N-terminal amino acid extensions in addition to the UBC domain, but no 

C-terminal extensions. The functional significance of their N-terminal extensions is unknown 

(Jentsch 1992).

As ubiquitin, E2s are among the most conserved proteins identified to date (Jentsch 1992). 

UbcD1 gene of Drosophila and ubc-2 gene of Caenorhabditis elegans, homologues of the UBC4 

and UBC5 genes of yeast, have been cloned and found to exhibit a strong similarity to yeast 

genes, and their expression in yeast cells rescues the phenotypic defects of ubc4 ubc5 double
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I "
I mutants (Treier et al. 1992, Zhen et al. 1993). A homologue of the yeast UBC4 and UBC5 gene 

products have been also isolated from wheat germ (Girod & Vierstra 1993).

U b iq u it in  p r o t e in  l ig a s e s  (E3s) interact specifically with different E2s in recognizing various types 

of protein substrates (Girod & Vierstra 1993). Only few E3s have been isolated to-date (Bartel et 

al. 1990, Huibregtse et al. 1993, Parag et al. 1993). Various heat shock proteins which have a 

role in protein repair (Ellis & van der Vies 1991) may also have E3-like functions. Heat shock 

proteins have affinity to misfolded proteins and could be therefore utilized for the ubiquitin- 

dependent degradation of partially unfolded proteins (Jentsch 1992). They can also function both 

in protein repair and protein degradation pathways in Escherichia co//(Sherman & Goldberg 1992, 

Sherman & Goldberg 1993).

The E6 protein of human papillomavirus (HPV) has been found to stimulate the ubiquitin- 

dependent degradation of the tumor suppressor protein p53 (Scheffner et al. 1990) by forming 

a complex with cellular protein E6-AP (E6- associated protein) which then serves as an p53 

specific E3 (Huibregtse et al. 1993, Scheffner et al. 1993). E6-AP also possesses an E3 activity 

in the absence of E6 (Scheffner et al. 1993). E6-AP has been found to form thioester complexes 

with ubiquitin accepted from E2, and the thioester formation was found necessary for E6-AP's 

function as an E3 (Scheffner et al. 1995). These results suggest that E3s do not act only as 

molecules recognizing specific substrates but that they have a ubiquitin-ligase activity and are a 

part of an E1-E2-E3 ubiquitin-thioester cascade (Scheffner et al. 1995).

U b iq u it in - p r o t e in  is o p e p t id a s e s . Apart from being degraded by 2 6 S  proteasome, ubiquitin- 

protein conjugates may be disassembled by isopeptidases (or ubiquitin carboxyl-terminal 

esterases) which cleave only the Lys-Gly bond between ubiquitin and the target protein, releasing 

both target protein and multiubiquitin chain intact (Mayer & Wilkinson 1989). A deconjugating 

activity present in reticulocytes has been observed to compete with ubiquitin-dependent
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proteolysis (Hershko et al. 1980, Hershko et al. 1984, Hough et al. 1986). Similar activity has 

been also detected in wheat germ extracts (Sullivan et al. 1990). The purpose of this process may 

be to correct errors made by ubiquitin-conjugating system (release of ubiquitinated proteins not 

ready for hydrolysis), regulate ubiquitination level of specific proteins or to remove proteolytic 

fragments generated during conjugate digestion from ubiquitin's carboxyl-terminus (Vierstra 1989).

1.1.3. Degradation of ubiquitin-protein conjugates; Proteasome

Although the ATP requirement of intracellular proteolysis has been known since 1953 

(Simpson 1953) it took 25 years since then until an in vitro ATP-dependent proteolytic system has 

been described (Etiinger & Goldberg 1977). Cytoplasmic particles called prosomes were 

identified in the early 70's (Shelton et al. 1970), but it was not until 1987 that prosomes, or 20S 

proteasomes, were found to be associated with the ATP-dependent protein degradation pathway 

as a component of 26S proteasome (Hough et al. 1987, Waxman et al. 1987).

The 20S proteasome has been isolated from many eukaryotic organisms, including rabbit 

reticulocytes (Hough et al. 1987), plant leaves (Ozaki et al. 1992) and plant seeds (Yang & Malek 

1991, Skoda & Malek 1992). It is also present in Archaebacterium Thermoplasma acidophilum 

(Dahlmann et al. 1992). The 20S proteasome complex is resolved as 8-10 proteins on one­

dimensional SDS gels, and 15-20 proteins in the range of 22-34 kDa on a two-dimensional gel 

(Rechsteiner et al. 1993). Its three-dimensional structure has been described as a cylindrical 

barrel built up from two juxtaposed rings and two disks closing off the tripartite compartment 

(Hegerl et al. 1991). Relative positions of subunits of 20S proteasome suggest that this structure 

itself is a complex dimer of two identical halves, composed of rings designated a  and p (Kopp 

et al. 1993). Outer rings of the T. acidophilum proteasome exhibit 7-fold symmetry (Pühler et al.

1992), whereas human proteasome appear to have 6-fold symmetry (Rechsteiner et al. 1993).
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Transfer RNA was reported as an essential part of the ubiquitin system (Ciechanover et al. 1985) 

and of the 20S proteasome itself (Coux et al. 1992), but it was not detected in 20S proteasome 

preparations from T. acidophilum (Pühler et al. 1992).

Five distinct proteolytic activities, each associated with a different component of the 20S 

proteasome, have been identified (Orlowski 1993): Three activities, trypsin-like, chymotrypsin-like, 

and peptidyl-glutamyl-peptide hydrolysing, cleave peptide bonds on the carboxyl side of basic, 

hydrophobic, and acidic amino acid residues, respectively (Cardozo et al. 1992). A fourth 

component cleaves bonds preferentially on the carboxyl side of branched chain amino acids 

(Pacifici et al. 1993) and the fifth cleaves bonds between small neutral amino acids (Orlowski 

1993). However, purified 208 proteasomes do not catalyze ATP-dependent breakdown of 

ubiquitin-protein conjugates (Tanaka & Ichihara 1988, Driscoll & Goldberg 1989, Matthews et al.

1989).

The 268 proteasome has been found in rabbit reticulocyte lysates in (Hough et al. 1986) 

and only recently in plants (Fujinami ef a/, in press). It is thought to be a functional homologue 

of bacterial CIp ATP-dependent protease (Dubiel ef al. 1992). Its assembly from multiple subunits, 

one of which is 208 proteasome, requires ATP (Eytan ef al. 1989, Driscoll & Goldberg 1990, 

Kanayama ef al. 1992). The 268 complex has a significant ATPase activity (Armon ef al. 1990). 

Orino etal. (1991) confirmed that the 208 proteasomes associate reversibly and ATP-dependently 

with multiple protein components to form the 268 proteasome that degrades ubiquitinated proteins 

in an ATP-dependent manner (Orino ef al. 1991). The 208 proteasome probably serves as a 

catalytic core of 268 complex, with other subunits acting as regulators and/or conferring additional 

enzymatic activities (Rechsteiner ef al. 1993). These include a ubiquitin carboxyl-terminal 

hydrolase/isopeptidase activity releasing polyubiquitin chain from substrate protein (Eytan ef a/.

1993) and another ubiquitin hydrolase activity which disassembles polyubiquitin chains (Hadari
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etal. 1992). Joint action of these 268 proteasome associated activities perhaps causes liberation 

of ubiquitin at the end of the proteolytic process (Eytan et al. 1993). Apart from its ATP- and 

ubiquitin dependent proteolytic activity it also seems to possess an ATP-dependent proteolytic 

activity independent of ubiquitin (Murakami et al. 1992), cleaving its substrate into oligopeptides 

5-10 amino acid long (Tokunaga et al. 1994).

In addition to 22-34 kDa polypeptides common with the 208 proteasome, the 268 complex 

contains about 10 additional subunits between 40-60 kDa and two 100 and 110 kDa subunits 

(Rechsteiner ef a/. 1993). Three dimensional E.M. image analysis revealed two highly asymmetric 

masses of approximately 198 attached to both ends of a dimeric 208 proteasome in both animal 

(Peters ef al. 1993) and plant (Fujinami ef al. in press) 268 proteasome complexes. Another 

group used E.M. to visualize a complex of the 208 proteasome with a PA28 proteasome activator. 

This complex forms, in contrast to 268 proteasome, highly symmetrical caps on proteasome 

stacked rings (Gray et al. 1994).

1.1.4. Functions of the ubiquitin-dependent proteolytic pathway

8TRESS RESPONSE. The involvement of ubiquitin pathway in cell responses to stress were 

revealed in 1984 by Ciechanover, Finley and Varshavsky when they described a mouse mutant 

cell line ts85 expressing a thermolabile E l (Ciechanover ef al. 1984, Finley ef al. 1984); similar 

cell line mutants from other mammals with thermolabile E ls have been reported since (Kulka ef 

al. 1988). It has number of phenotypic abnormalities at the non-permissive temperature, including 

inhibition of degradation of short-lived and abnormal proteins, defects in DMA synthesis, 

nucleoside transport and stress-induced protein degradation (Ciechanover ef al. 1984, Gropper 

ef al. 1991). UBC1, UBC4, and UBC5 genes of Saccharomyces cerevisiae encode ubiquitin- 

conjugating enzymes essential for the cell survival, demonstrated by nonviability of triple mutants
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(Seufert et a i 1990). In ubc4 ubc5 double mutants the cells grow poorly at normal temperatures, 

and they are nonviable at 37°C and in the presence of amino acid analogues (Seufert & Jentsch

1990). Pulse-chase studies have shown that these mutants are deficient mainly in degradation 

of short-lived and abnormal proteins (Seufert & Jentsch 1990). In yeast, ubiquitin mutants are 

also hypersensitive to desiccation and starvation (Finley et al. 1987). The fact that ubc4 ubc5 

double mutants constitutively express major heat shock proteins (Seufert.& Jentsch 1990) 

suggests that defects in degradation of abnormal proteins leading to their accumulation can 

trigger the cellular stress response (Morimoto et al. 1992).

Specific ubiquitin genes are heat inducible in chicken cells (Bond et al. 1988), yeast 

(Finley et al. 1987), Drosophila me/anogasfer (Niedzwiecki & Fleming 1993), Arabidopsis thaliana 

(Burke et al. 1988), wheat (Ferguson et al. 1990), tobacco (Genschik et al. 1992), sunflower 

(Binet et al. 1991), potato (Garbarino etal. 1992), maize (Christensen et al. 1992), Volvox carter! 

(Schiedlmeier & Schmitt 1994), and Chlarrtydomonas reinhardtii{Shimogawara & Muto 1989). The 

levels of ubiquitin and ubiquitin conjugates change during heat shock (Carlson et al. 1987, Parag 

et al. 1987, Niedzwiecki & Fleming 1993), omnilateral gravistimulation (Hunte et al. 1993, Wolf 

etal. 1993a), mechanical stress (Schulz etal. 1994), yirradiation (Delicefa/. 1993), development 

(Pan et al. 1993, Shimbara et al. 1993, Callis & Bedinger 1994), and chilling (Gindin & Borochov 

1992). Resistance to cadmium poisoning in yeast is mediated by ubiquitin-dependent proteolysis 

(Jungmann etal. 1993) as well. The association of ubiquitin with coat proteins of tobacco mosaic 

virus (Dunigan et al. 1988), as well as involvement of the ubiquitin system in the hypersensitive 

response in tobacco plants (Becker et al. 1993) suggest that the pathway may be connected to 

the defense against viral infection in plants (Vierstra 1989).

DNA METABOLISM AND CELL CYCLE CONTROL. It has been shown that yeast RAD6 mediates 5 3 -  

dependent protein degradation (Dohmen et al. 1991). UBC2 {RAD6) is involved in DNA repair.
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induced mutagenesis and spomiation (Kang et at. 1992). UBC3 (CDC34) gene responsible for 

transition from G1 to S phase of the cell cycle in yeast has been identified as ubiquitin- 

conjugating enzyme (GoebI etal. 1988), acting independently of E3 (Haas etal. 1991). Mutations 

in UBC2 {RADS) affect the target site preferences of the yeast retrotransposon Tyl (Liebman & 

Newnam 1993). The human E2 UBCh1 is involved in the repair of UV-damaged, alkylated and 

cross-linked DNA (Kaiser et al. 1994).

C o n t r o l  o f  t u r n o v e r  o f  r e g u l a t o r y  p r o t e in s . Yeast UBC4 E2 and a putative E3 are 

responsible for mono-ubiquitination of calmodulin in yeast (Parag et al. 1993). Tryptophan 

decarboxylase of a plant Catharantus mseus is ubiquitinated in vivo (Fernandez & De Luca 1994).

N e r v o u s  S y s t e m . Members of ubiquitin-dependent pathway have been implicated in 

various aspects of nervous system function: The Drosophila melanogaster gene ben encodes a 

neural protein which is a member of E2 family. Mutation in this gene alters synaptic connectivity 

between a subset of central nervous system neurons and morphological abnormalities within the 

visual system (Muralidhar & Thomas 1993). In Aplysia, long-term synaptic plasticity is facilitated 

by selective degradation of regulatory subunit of cAMP-dependent protein kinase, causing its 

persistent activation. Hedge et al. (1993) have found that the subunit degradation requires ATP, 

ubiquitin and a particulate element (possibly proteasome). Authors suggest that the the 26S 

proteasome and the ubiquitin pathway may be involved in the acquisition of memory.

H u m a n  D is e a s e . The first indication that ubiquitin has a significant clinical role came from 

studies on neurodegenerative diseases (Mayer et al. 1991). Abundance of ubiquitin-protein 

conjugates in pathologically changed neurons in Alzenheimer's disease (He et al. 1993ab, Shin 

et al. 1993), schizophrenia (Horton et al. 1993) and motor neuron disease/amyotrophic lateral 

sclerosis (Bergmann 1993) is explained either as a part of cytoprotective processes or as a cause 

of the neuronal death (Mayer et al. 1991). Ubiquitin is also present in inclusions characteristic of
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skeletal muscle disease inclusion body myositis (Albrecht & Bilbao 1993). Involvement of 

ubiquitin-dependent pathway in many kinds of cancer is well established. For example tumor 

suppressor protein p53 is a target of this pathway (Scheffner et al. 1993), and ubiquitin-ribosomal 

protein S27a gene appears to be an early growth response gene in human colorectal carcinoma 

(Wong et al. 1993). Glycosylation of long lived proteins such as crystalin, myelin and collagen 

inhibits their degradation in ubiquitin-dependent pathway, suggesting its involvement in the 

changes of protein catabolism in diabetes (Takizawa et al. 1993).

D e v e l o p m e n t . A mouse spermatogenesis gene Spy, which is required for the survival and 

proliferation of spermatogonia during spermatogenesis, has been found to be an E l enzyme (Kay 

et al. 1991, Mitchell et al. 1991). Changes in protein levels and activity of 26S proteasome have 

been observed during oocyte maturation (Tokumoto et al. 1993). The yeast E2 gene UBC10 

(Pas2) is required for peroxisome biogenesis (Wiebel & Kunau 1992).

P r o t e in  t r a n s p o r t . Yeast E2 gene UBC6, which encodes an integral membrane protein of 

the endoplasmatic reticulum, causes a protein translocation defect by mediating proteolysis of 

subunits of mutant translocation apparatus in sec61 yeast strain (Sommer & Jentsch 1993). Yeast 

polyubiquitin gene UBI4 can rescue otherwise nonviable Che' yeast strain lacking clathrin heavy 

chain. Increased levels of ubiquitin caused by overexpression of UBI4 may be required for 

turnover of mislocalized or improperly processed proteins accumulating in the absence of clathrin. 

On the bases of these findings it has been suggested that ubiquitin may play a general role in 

turnover of proteins in the secretory or endocytic pathways (Nelson & Lemmon 1993).

1.1.5. Regulation of ubiquitin pathway

Knowledge about mechanisms regulating ubiquitin conjugation system is still limited. The 

yeast Ubc3 (Cdc34) ubiquitin-conjugating enzyme E2 responsible for transition from G, to S
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phase of the cell cycle is ubiquitinated and phosphorylated in vivo (GoebI et al. 1994). Banerjee 

et al. (1993) have demonstrated that when expressed in bacteria the Ubc3 (Cdc34) can 

multiubiquitinate itself in vitro, possibly regulating its own degradation.

Chicken polyubiquitin gene Ubil is located 1.9kb downstream of the tRNA gene cluster 

(Mezquita & Mezquita 1992). The presence of this cluster containing RNA polymerase III promoter 

sequence may exert a positive enhancer effect on the downstream adjacent RNA polymerase II 

promoters: the proximity of the tRNA cluster and the polyufaiquiitn gene UbIl suggests the 

possibility of a coordinate expression of these genes (Mezquita et al. 1993).
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2. Methods

2.1. Plant material and cultivation conditions

2.1.1. Plant material and media

Chlamydomonas reinhardtii Dangeard, wild type CC-125 m f  (carrying nit-1 and nit-2 

mutations, blocking utilization of nitrate) was procured from Chlamydomonas Genetic Center, 

Duke University, Durham (NC). This strain is a widely used model in biochemical and 

physiological studies (Harris 1989). Sueoka high-salt medium (Sueoka 1960), with addition of 

microelements (Hutner et ai. 1950) was used for autotrophic cultivation. Final medium was 

prepared from 9.35 mM N H /, 22.12 mM IC, 0.27 mM N a \ 0.068 mM Ca^*, 0.081 mM Mg^^ 

9.55 mM Cr, 0.182 mM S O /', 13.6 mM P O A  17.9 mM Fe^\ 76.5 mM Zn̂ "̂ , 6.3 mM Cu^\ 6.8 

mM Co^\ 25.6 mM Mn^^ 6.2 mM Mo^% 184 mM BOa^ and 134 mM EDTA, pH 6.8. Deionized 

water (NANOpure, Bamstead) was used for preparation of the media, as well as for 

preparation of other solutions described bellow.

2.1.2. Methods of culture characterization

Cultures of various ages were sampled, cells immobilized with a drop of IKI (1 g I2  and 

0.5 g Kl per 100 cm  ̂ of water) and cell density (expressed as number of cells per cm^ 

determined using a haemocytometer (Bright-Line hemacytometer, American Optical). An 

absorbance of an identical sample at 750 nm ( A 7 5 0 )  was also measured using DU-50 

spectrophotometer (Beckman). A standard curve was established linking cell density and A750 

(Figure 1); it was used in all the following measurements of cell densities of Chlamydomonas 

cultures (Harris 1989).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

The culture viability was expressed as a fraction of dead cells from whole cell 

population. Non-motility and intake of Evan's blue pigment (Gaff & Okong'o-Ogola 1971) were 

chosen as indicators of cell death. Samples were treated with a drop of Evan’s blue (Sigma) 

solution (2 0 % w/v in HS medium) and blue coloured non-motile cells were counted using a 

hemocytometer.

2.1.3 Cultivation regimes

Agar (Difco Laboratories) cultures were grown at variable temperature in range of 20- 

30"C, illuminated by cool white fluorescent bulbs (General Electrics), yielding irradiation of 80 

m E.m 'V’ . Liquid pregrowth cultures were grown in 125 cm^ Erienmeyer flasks with an inserted 

Pasteur pipette as a bubbler. Medium with cells was incubated in a Conviron EF7 chamber at 

25°C and 250 mE.m'V^ for 2  days. When the cell density reached approximately 1 .1 0 ® cells 

per cm®, 15 cm® of pregrowth culture was used to inoculate 1.5 dm® of HS medium in 2 . 8  dm® 

Fembach flask. The flask was plugged by a foam stopper with an inserted bubbler. The culture 

was synchronized in a Conviron chamber at 25"C and 250 m E.m 'V’ under 1 2 h/1 2 h dark/light 

cycle and aerated by filtered air (Schlosser 1966). After 2 dark/light cycles the culture was 

subjected to 24 hours of constant illumination (Rollins et al. 1983) with other conditions 

unchanged. Experimental treatments were conducted during this period.

2.2. Labelling of cells with ®H and treatment conditions

The entire culture (1.5 dm® of approx. 2.10® cells/cm®) was centrifuged for 30 min at

10,000.g and 20"C. The pelleted cells were resuspended in 20 cm® of fresh HS medium

containing 1 mC.cm"® of ®HzO (Amersham). The suspension was transferred into 125 cm®
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Erienmeyer flask and then aerated and vigorously shaken for 5 hours under conditions 

identical to cultivation of pregrowth cultures.

After the end of a labelling period, the suspension was centrifuged in screw-capped 40 

cm® Nalgene tubes (lO.OOO.g at 20“C for 15 min) and washed once with fresh HS medium. 

Resuspended cells were then transferred to a 2,800 cm® Fembach flask containing 1,500 cm® 

of either 4“C or 20“C HS medium, depending on the experiment. The culture was then 

incubated under constant illumination of 250 mE.m'V’ and aerated, either in the Conviron 

chamber at 25°C or in the freezer at 4”C . The length of cold treatment was 60 min.

For non-radioactive experiments the flask with the original culture was placed directly to 

the freezer and its temperature was monitored. Remaining conditions were identical to those 

described above.

2.2. Protein extraction and quantification

Samples were centrifuged at 10,000 g at the temperature corresponding to the 

temperature of the sample and pellets were resuspended in extraction buffer (0.1 M P O 4 ® '  

[Na2 HP0 4 /NaH2 P0 4 ], 0.1% NaNs, 10% glycerol, 1 mM iodoacetamide, 10 mM EDTA, 5 mM 

EMI). PMSF (100 mM PMSF solution in 95% ethanol and 5% 2-propanol, pH 7.4) was added to 

final concentration of 1 mM and the sample was sonicated using Sonifier with a microtip 

(Branson Sonic Power) at setting 3 for 10 min while cooled on an NaCI/ice bath (approx. -5°C). 

Samples were stored at -20°C for subsequent processing.

Protein concentration in an extract was determined according to Bradford (1976), using 

Biorad Protein Assay Kit. BSA (Sigma) was used as a standard, Asss was measured using DU- 

50 spectrophotometer (Beckman).
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2.3. Gel filtration separation of free and coniuaated ubiquitin

BioGel P-10 Fine (Biorad) with nominal exclusion limit of 20 kDa was packed into 

1.5x100 cm chromatography column (Econo-Column, Biorad). Flow of GF buffer (the 

composition identical to the extraction buffer except for the addition of 1 0 % glycerol) was 

facilitated by EP-1 Econo Pump (Biorad), placed at the output of the column. Final bed height 

was 90-100 cm. Crude extracts and standards were applied on top of the gel using a flow 

adaptor (Biorad) and separated at flow rate of 5.08 cm.h'̂  (0.15 cm®.min'’). Eluate absorbance 

at 280 nm was monitored and registered by UA-5 absorbance/fluorescence detector (ISCO) 

and fractions were collected using 2111 Multirack fraction collector (LKB Bromma).

Column was calibrated using carbonic anhydrase (MW  29 kDa, Sigma) and ubiquitin 

(MW 8.5 kDa, Sigma) as standards. Eluate fractions with elution time lower than Aggo minimum 

between Aggo peaks of CA and Ub standards were pooled as Ub-C fraction. Fractions with 

higher elution time were pooled and Ub fraction.

Ub and Ub-C fractions were concentrated using stirred ultrafiltration cell 8010 (Amicon)
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Lyophilized powder of Staphylococcus aureus Cowan I (Sigma) cells (Staph A) was 

resuspended in PBS buffer (0.15M NaCI, 0.01M NaH2 P0 4 . pH 7.4 at 25“C) with 0.02% NaNg to 

form 10% w/v suspension. The cells were fixed by 1.5% formaldehyde (Sigma) and heat 

treated at 80"C (Harlow & Lane 1988).

2.4.2. Preadsorption of Staph A and ®H labelled cell extracts

Fixed Staph A was transferred to TETN250 immunoadsorption buffer (25 mM Tris-HCI, 

5 mM EDTA, 250 mM NaCI. 1% Triton X-100, pH 7.5), maintaining 10% w/v concentration. 

Aliquots (500 mm®) of ®H labelled Ub and Ub-C fractions were transferred to 1.5 cm® 

Eppendorf tubes, mixed by vortexing with 10 mm® of Staph /VTETN250 suspension and 

incubated for 15 min at room temperature. The Staph A was pelleted by centrifuging in 

microcentrifuge at room temperature for 3 min at 12,800.g. The supernatant constituted 

preadsorbed ®H labelled Ub and Ub-C fractions.

Staph /VTETN250 suspension was mixed with equal volume of an unlabelled cell 

extract. Mixture was incubated at room temperature for 15 min and centrifuged in a 

microcentrifuge at room temperature for 1 min at 12,800.g. The pellet was resuspended in 

such a volume of TETN250 so that 10% suspension was formed. This suspension constituted 

preadsorbed Staph A.

2.4.3. Formation of ubiquitin-antibody-Staph A complexes

500 mm® aliquots of preadsorbed ®H labelled Ub and Ub-C fractions were added to 1 .5 

cm® Eppendorf tubes containing 100 mm® of 50 mg.cm"® BSA (Sigma) in TETN250 and 50 

mm® of rabbit anti-ubiquitin antibody (Sigma). Reaction mixtures were briefly vortexed and
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incubated for 10 min at room temperature. After that 50 mm® of preadsorbed Staph A was 

added, vortexed and incubated for 5 min at room temperature with mixing every 2 min.

Each of the immunoadsorption reactions was aspirated and layered over 600 mm® 

sucrose cushions (1M sucrose in TETN250) in Eppendorf 1.5 cm® microtubes. Immune 

complexes were centrifuged through the sucrose 3 min at 12,800.g at room temperature. The 

upper layer was aspirated down to the sucrose interface and sucrose cushions were overlayed 

with 2M urea in TETN500 (25 mM Tris-HCI. 5 mM EDTA. 500 mM NaCI, 1% Triton X-100, pH 

7.5). After 5 min of incubation urea and sucrose layers were aspirated, leaving Staph A pellets. 

These were washed twice with excess of TETN250 buffer and final pellet resuspended in 200 

mm® of TETN250.

2.4.4. Counting of ®H incorporated to immunoprecipitates

Resuspended antigen-antibody-Staph A complexes were transferred to 10 cm® plastic 

scintillation counting vials and mixed with 5 cm® of Scinti Verse Bio-HP scintillation counting 

cocktail (Fisher). B-radiation (as cpm's) was measured in 1211 RackBeta liquid scintillation 

counter (LKB Wallac) with open energy window (8-250 keV).

2.5. Fluorescence immunoassay for ubiquitin

Fluorescence immunoassay for ubiquitin was performed according to manufacturer's 

instructions [Sigma, Anonymous (1992)] with certain modifications:

2.5.1. Immunoreactions and measurement of fluorescence
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Standards and samples were always run In triplicates. Standards were prepared 

diluting ubiquitin (Ub-F, Sigma) in FIA assay buffer (0.1 M PO4®' [Na2 HP0 4 /NaH 2 P0 4 ], 0.1% 

NaNs, 0.01% bovine g-globulins [Sigma], pH 7.4).

A mixture of ubiquitin-fluorescein conjugate (Sigma), ubiquitin standards or samples 

and rabbit anti-ubiquitin antibody (Sigma; FIA assay buffer was added to NSB tubes instead of 

standards and the antibody) incubated in dark for 60 min at room temperature. After 

incubation, antigen-antibody complexes were precipitated by goat anti-rabbit IgG (Sigma) and 

centrifuged at 2,000.g for 15 min at 4“C. The pellets were washed once with 2 cm® of FIA 

assay buffer and resuspended in 1.5 cm® of SDS/NaOH (0.1 M NaOH, 2% w/v SDS).

Fluorescence was measured using LS50B luminescence spectrometer (Perkin-Elmer), 

with excitation wavelength 495 nm, analytical wavelength 525 nm and integration time 5 sec.

2.5.2. Data reduction

F o-N S B
F  /  Fo = F  -MSB

Equation 1 was used to calculate values F/Fo for individual replicates of standards 

(Figure 3) and samples. F  is fluorescence of a standard or of an unknown, Fo is maximal 

fluorescence of standard 0 (no ubiquitin added), NSB represents an average fluorescence 

signal caused by nonspecific binding of Ub-F. Probit values corresponding to F/Fq of individual 

replicates of unknown samples and averaged F/Fo of standards were calculated using an 

algorithm of Odeh & Evans (1974). A standard curve was constructed using probit values of 

standards through which a line was fitted using a linear least-square regression (Figure 3). An 

average concentration of ubiquitin in individual samples was determined using probit values of 

individual replicates, and a standard deviation of the mean was calculated.
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2.7. Analysis of data

An assumption has been made that ubiquitin molecules in Chlamydomonas cells are 

subjected to processes outlined in Figure 4. According to this model, ubiquitin molecules can 

be found in two pools: Ub pool of free ubiquitin and Ub-C pool of conjugated ubiquitin. Free 

amino acids (AA pool) are considered to be immediate precursors for synthesis of Ub. Two 

amino acids pools AA demonstrate the process by which the ®H label is removed from amino 

acid molecules during the chase period by transaminases, so that AA pool remains unlabeled 

(Humphrey & Davies 1975). By virtue of labelling method used, following assumptions can be 

made: a) there is no recycling of the ®H label taking place, b) the only labelled pools are Ub 

and Ub-C, and c) there is no label present in AA pool during the chase period (Humphrey & 

Davies 1975). Processes taking place in the model (synthesis, degradation, conjugation and 

deconjugation) are quantitatively described by their respective rate constants {ks, ko, kc, koc . 

respectively). Koc is actually an apparent constant which takes into account both the 26S 

deconjugation activity and the ubiquitin-protein isopeptidase activity. All the constants are 

considered to be of first order (units of h*’), except for the rate constant of ubiquitin synthesis 

(units of ng.h"’), which is defined as being of zero order (Davies 1980).

Transformations taking place in the model (Figure 4) are expressed in Equation 2:

— —  =  ( R s - R d J '^  ( R d c - Rc)
a t 2

where dUldt is rate of accumulation of Ub (/?a) in a cell culture. All rates are in units of ng.h'\ If 

dUldt = 0, a simple steady state kinetic analysis could be applied. However, Chlamydomonas 

culture in logarithmic phase was used for experiments and thus cells are in a state of
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continuous growth. To consider effects of label dilution caused by synthesis in excess of 

degradation, non-steady state approaches have to be employed.

The rate constants were calculated for each two consecutive measurements and
I
I considered constant for the time period between those measurements. Therefore the use of 

the term constant is justified, even if the values of the constants change in the course of the 

experiment (reflecting changes in the cell metabolism). The rate constant of conjugation kc 

can be calculated as described by Reiner (1953):

d C
dt

=  ( U ’ - C ' ) k c

where C* and U* is specific radioactivity of Ub-C and Ub pools respectively. To obtain a value 

of kc , Equation 3 has to be restated:

kc =
dC '  I
dt u:-c:

An exponential function was fitted to data points C* and first derivative of this function was 

used to calculate a slope at time t

According to Zak et al. (1979), if fractional rate of turnover and growth of a protein pool are 

considered constant,

koc ~  ka~kc  5

where ka is a rate constant of fractional growth of a protein pool, defined as

d C  I

“  1 7  c  6
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Rate of ubiquitin degradation is defined as

— ^ ~  k c [ U  ] ~ k c [ U  ] ' ^ k v c [ C  ]  y
at /

where [C*] and [U*] are total radioactivity in Ub-C and Ub pools, respectively. After solving 

Equation7 one can calculate ko as follows:

kz> - [U 'l, 8

From Equation 2 follows that

d U
dt

~  k s ~ k o ^ ~ k c U k o c ^

ks — — - ^ U r ( k o  + kcJ-kocCc
dt 1 0

Finally, given the values of rate constants ko and koc, half-life of molecules in Ub and Ub-C 

pools, respectively, can be calculated using Equation 11;

In2

1 1

where kx is either ko or koc .
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3. Results

The growth of a Chlamydomonas reinhardtii culture similar to those used in pulse-chase 

experiments is shown in Figure 5. Synchronization, manifested by constant cell density during 

light phase and division taking place presurriably in dark, occured after the first dark/light cycle. 

A total of three synchronized cycles was observed before the growth of the culture arrested. Cell 

density after the third dark/light cycle reached 7x10® cells/cm® and culminated in essentially 

nongrowing culture after five days at value <?f 9x10® cells/cm®.

To assess survival of cell cultures after a cold chock, they were incubated at 4°C for 

various periods of time (Figure 6 ). 0.31% and 1.27% of cells were observed dead after 1 h and 

24 h treatments, respectively.

Ratio of free and conjugated ubiquitin to total extracted protein (Figure 7) remained 

constant during growth of the cells under constant environment conditions. It was approximately 

2500 ppm of free and 200 ppm of conjugated ubiquitin of total extracted protein. After a 60 min 

cold treatment both free and conjugated ubiquitin ratio to total protein increased until 4 h after a 

treatment, culminating in both cases at about 2.5-fold of the initial values. After that both ratios 

decreased, reaching values similar to thosa obtained at constant conditions at 16 h after cold 

treatment.

During constant conditions, the ratio of free to conjugated ubiquitin (Figure 8 ) persisted 

at about 11. Cold treatment caused it to decrease temporarily to approx. 8  immediately after cold 

treatment. The ratio returned to its original value at 2 h after cold treatment. At the end of 

observation period the ratio decreased to 8 , bbt was within the range of standard error of the ratio 

at constant conditions.

Rate constants of ubiquitin conjugation (Figure 9), deconjugation (Figure 10), synthesis 

(Figure 1 1 ) and degradation (Figure 12) did not change in the course of observation at constant
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conditions and remained at values of 0.035 h ', 0.005 h ’, 750 ng.h ’ and 0.11 h ' respectively. 

During first 4 h after cold treatment increased from 0.040 ti ’ to 0.075 h ’ and returned back 

to its original value 16 after cold treatment (Figure 9). A similar timecourse was observed for kg, 

wtiich increased from 700 ng.h ’ to 1250 ng.h ' during first 4 h after cold treatment (Figure 11). 

Rate constant ko peaked 8  h after cold treatment at 0.20 h*’ and then decreased attaining its final 

value of 0.09 h  ̂ which was slightly lower than its initial value 0.10 h'̂  (Figure-12). No changes 

in koc were observed (Figure 10). Half life of ubiquitin calculated from the constant of 

degradation remained unchanged at a value of about 6.5 hours during cultivation in constant 

conditions, but decreased from approx. 6  hours to 3.5 hours during first four hours after the cold 

treatment (Figure 13).
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4. Discussion

Chlamydomonas cultures were synchronised (Figure 5) in order to obtain a population of 

uniform cells. Periodic changes in content of individual proteins during synchronised growth 

(Howel et al. 1977) could be easily explained as a part of a cell cycle program (Halvorson et ai. 

1971). While this is probably true for proteins directly involved in various phases of cell cycle, 

changes in protein synthesis in general appear to be a reaction of cells to changing environmental 

(light) conditions (Rollins et al. 1983). Most of the periodic fluctuation in protein synthesis in 

synchronised Chlamydomonas cultures can be suppressed by subjecting them to constant 

conditions (for example changing 1 2 / 1 2 h dark/light regime to continuous light); fluctuations in 

protein synthesis diminish during first continuous light cycle, while synchronicity of cell cultures 

persists for 3-4 cell cycles (Rollins et al. 1983). As far as ubiquitin is concemed, no changes in 

ubiquitin conjugation, ubiquitin-dependent proteolysis and isopeptidase activities were observed 

in cycling Xenopus egg extracts (Mahaffey et al. 1993). Therefore it can be assumed that ubiquitin 

metabolism in Chlamydomonas cultures cultivated as described was influenced by environmental 

changes but not by various phases of the cell cycle. Furthermore, cells were treated while at the 

same stage of the cell cycle as the controls. The temperature changes the cells were subjected 

to were not lethal, since only 0.3% of cells were observed dead after one hour of incubation at 

4“C (Figure 6 ).

The ratios of free, as well as conjugated, ubiquitin to total protein increased more than 

two-fold four hours after the exposure of cells to 4°C, but remained unchanged during cultivation 

at constant conditions (Figure 7). Also, ratio of free to conjugated ubiquitin decreased from 11 

to 8  immediately after the cold treatment and retumed back to its original value of 1 1  within 2  

hours (Figure 8 ). These observations imply that both free ubiquitin and ubiquitin-conjugate levels
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increased as a result of an exposure to low temperature. An increase in accumulation of ubiquitin 

conjugates after a temperature treatment has been reported in Chlamydomonas previously: 

Shimogawara & Muto (1989) reported that heat stress caused a burst of high MW conjugates 

during a treatment and a reciprocal decrease of 31 and 28 kDa ubiquitinated polypeptides and 

free ubiquitin. The 28 kDa polypeptide was later identified as ubiquitinated histone H2B 

(Shimogawara & Muto 1992). In another study (Wettem etal. 1990) the disappearance of 29 kDa 

protein (perhaps representing the same species as 28 kDa histone reported by Shimogawara & 

Muto) was confirmed, as well as increase of accumulation of high MW ubiquitin-protein conjugates 

during a treatment. Conjugates disappeared slowly during recovery. No changes were observed 

in the free ubiquitin pool. (Treatments described in the mentioned paper were performed in high 

light intensity or dark environment to elucidate the effect of photoinhibition on ubiquitination, and 

can not be therefore directly compared with results presented in this work.) Similar results were 

obtained in wheat roots (Ferguson et al. 1990) and in Drosophila (Niedzwiecki & Fleming 1993). 

In this work changes are observed after the cold treatment, presumably only uppon retum to 

physiological temperature allowing metabolic activity (or perhaps because of the shortness of the 

cold treatment).

The changes in plant metabolism upon exposure to low temperatures have been studied 

extensively (for review see for example Sakai & Larcher 1987, Guy 1990, or Huner et al. 1993), 

and similarities between changes induced by heat and cold stress have been reported (Collins 

et al. 1993). The only report dealing specifically with reaction of ubiquitin metabolism to low 

temperature is that of Gindin & Borochov (1992). After 48h exposure of the Mediterranean plant 

Clemdendrum speciosum to 4®C, they observed 90% decline in free ubiquitin levels. Discrepancy 

between these results and findings presented in this work may be due to the sensitivity of 

Clerodendrum to chilling: chilling injury in this plant is manifested by leakage of cellular
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electrolytes, indicating damage of cellular membranes (Gindin & Borochov 1992). The loss of free 

ubiquitin, as well as reported loss of total protein, would be then consistent with electrolyte 

leakage as a sign of cellular death. Increased conjugation of ubiquitin to cellular proteins is 

difficult to reconcile with this (Gindin & Borochov 1992). The mentioned discrepancy can be also 

attributed to the difference in the length of the cold treatment:- 48 h in Gindin & Borchov (1992) 

compared to 1  h in this experiment.

There appear to be two discrepancies between changes of ubiquitin and ubiquitin 

conjugates following cold shock described in this thesis and the findings pertaining to heat shock 

discussed above. First, ubiquitin-protein conjugates appear to accumulate during heat shock but 

after cold shock. Slowing down of the rate of enzymatic, reaction at temperature much lower than 

physiological temperature may explain this. Events serving as signals for ubiquitin conjugation 

(see below) occur at low temperature, but the cell presumably does not have a chance to respond 

to them accordingly, until the ambient temperature is high enough for enzymatic reactions to 

proceed at sufficient rate. The second discrepancy, the decrease (or no change) of ratio of free 

ubiquitin to total protein during heat shock as opposed to increase in this ratio during cold shock 

might be explained, at least in part, by the same mechanism. It is possible that during cold shock 

induction of ubiquitin conjugation system lags behind activation of ubiquitin genes, allowing growth 

of the pool of free ubiquitin. This might be caused, for example, by differential sensitivities of 

enzymes engaged in protein synthesis and ubiquitin conjugation towards cold and heat 

stress/denaturation.

Figure 9 shows that rate constant of ubiquitin conjugation increased about two-fold 

during first 3 hours after transfer of culture from cold conditions and after reaching its maximum 

it decreased slowly until reaching its original value. This means activity of ubiquitin-conjugating
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system was induced by cultivation at low temperature and that ubiquitin moved faster to the 

conjugate pool. As expected, rate constant remained unchanged during incubation at 25°C.

No changes were observed in rate constant of ubiquitin deconjugation (Figure 10). This 

suggests that neither the 26S proteasome, the enzymatic system responsible for degradation of 

ubiquitin-conjugated proteins, nor isopeptidase system was activated by the cold treatment, or that 

increase of activity of one was compensated by decrease of activity of the other. Although a heat 

shock protein has been identified as a regulatory component of the complex (Tsubuki et at. 1994), 

little is known about the exact mechanism of proteasome regulation. It seems that under 

conditions employed in this experiment no regulatory mechanisms were induced.

These two findings indicate that ubiquitin conjugates accumulated after a cold treatment 

as a result of increased ubiquitin conjugation, which is most likely caused by increased activity 

of enzymes of ubiquitin conjugating system or by increase of their content in cell.

Four hours after the exposure of cells to 4“C an almost two-fold increase in rate constant 

of ubiquitin synthesis kg (Figure 11) was observed as compared to constant conditions, indicating 

that synthesis of ubiquitin increased as a result of incubation at 4°C. It is reasonable to suspect 

that some of the ubiquitin genes of Chlamydomonas were induced by the cold treatment. 

Changes in ubiquitin expression as a reaction to other forms of stress have been reported at the 

transcriptional level. Run-on transcription in maize seedlings following heat shock revealed a 4-5 

fold increase in polyubiquitin gene expression (Christensen & Quail 1989). Maize polyubiquitin 

genes Ubi1 and Ubi2 has been identified as at least partially responsible for this increase 

(Christensen et at. 1992). In potato tubers, several ubiquitin genes (represented by their cDNAs) 

have been reported to be induced by various kinds of stress (Garbarino et al. 1992). These 

authors demonstrated the independent regulation of the different members of the ubiquitin gene 

family in response to various kinds of stress. Genschik et al. (1992) arrived to the same
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conclusion: In tobacco four different size classes of ubiquitin mRNA responded differently to heat 

shock. HgClj treatment, viral infection giving rise to a hypersensitive reaction, and an 

Agrobacterium tumefaciens infection which resulted in tumour formation. Ubiquitin mRNA content 

in antarctic alga Plocamium cartilagineum exhibited after heat shock at 5®C (normal growth 

temperature for this organism is around 0“C) the same pattern of increase as heat shock protein 

HSP70 (Vayda & Yuan 1994).

Two heat shock elements were found in promoter regions of polyubiquitin gene of Volvox 

carter! (Schiedlmeier & Schmitt 1994). In contrast, no heat shock element sequences have been 

identified in the promoter region of heat non-inducible polyubiquitin gene ubi4-2 of Petroselinum 

crispum (Kawalleck et al. 1993). According to the mechanism of induction of the heat shock 

proteins proposed by Morimoto etal. (1992), heat shock gene expression is regulated by negative 

feedback regulation by heat shock proteins capable of sequestering proteins with exposed 

hydrophobic surfaces. Appearance of such proteins seems to be a common consequence of a 

wide array of cellular stress (Kabakov & Gabai 1993). It is known that low temperature can cause 

protein dénaturation (Azuaga et al. 1992, Damaschun et al. 1993), which means that mechanism 

proposed by Morimoto et al. (1992) for heat shock response could be applied as a starling 

hypothesis for study of induction of cold shock response.

Cold shock treatment resulted in two fold increase of the rate constant of ubiquitin 

degradation Aq, during 9 hours after cold shock (Figure 12), lagging behind the induction of kg 

(Figure 11) and Aq. (Figure 9). The corresponding decrease of which is calculated directly from 

ko according to the Equation (12), was from approximately 6  h to 3.5 hours (Figure 13). During 

cultivation in constant conditions there was no change in Aq, and half-life of ubiquitin remained 

constant at approximately 6  hours. These findings suggest that degradation of ubiquitin increased 

after transfer of culture from cold conditions, but later than conjugation and synthesis of ubiquitin.
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Increased degradation is likely to be a way by which the cell ensures retum of the ubiquitin levels 

to the normal values after the perturbation disappeared and high levels of Ub are no longer 

needed.

Haas & Bright (1987) conducted pulse-chase experiments using ®H-leucine with cultured 

human lung fibroblast cells and determined ubiquitin having half-life of 28-31 hours in conditioned 

and freshly fed cultures. Withdrawal of serum from cultures led to a rapid decline in total ubiquitin 

during which the ratio of conjugated to free ubiquitin remained constant. Haas & Bright showed 

that increased turnover after the removal of the serum is likely to involve lysosomal autophagy. 

In this context it is worth noting that a ubiquitin-conjugating enzyme is involved in biogenesis of 

peroxisomes (Wiebel & Kunau 1992), organelles related to lysosomes, and that ubiquitin was 

reported necessary for stress-induced lysosomal degradation of cellular proteins (Gropper et al. 

1991). After feeding with fresh serum content of free ubiquitin in cells rose by about 50% within 

4 days, while ratio of free to conjugated ubiquitin remained constant at about 50%. Stimulation 

of ubiquitin synthesis was explained by the presence of a specific serum factor rather than by 

stress caused by the change of cell environment. According to Gropper et al. (1991) the increase 

of ubiquitin content was due to approximately 1.8-fold increase in its synthetic rate. Ubiquitin 

synthesis was assessed by a pulse experiment using ®H-leudne.

Chin et a i (1982) introduced '®®l-labelled ubiquitin Into HeLa cells by erythrocyte-mediated 

microinjection. Their data show that ubiquitin was degraded with half-life of approximately 10 

hours. Similar technique was used to inject ’®®l-labelled ubiquitin into human diploid fibroblast 

culture (Neff et al. 1981). Observed half-life of ubiquitin was in this case 320 hours. Variability 

between these results and between the results presented in this work (t^ = 6  h) can be certainly 

attributed to a large extent to differences in organisms (or cell type) and growth conditions. It is 

worth noting that in all mentioned experiments a recyclable label (’“ l and ®H-Leu) was used.
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Using such a label requires special accommodations of rate constant calculation (Reiner 1953, 

Zak et al. 1979) none of which were used in these studies. They calculated the degradation rate 

constants from the equation for the first-order decline of the label in the protein, not compensating 

for recycling of the label through amino acid pool back to the protein and thus resulting half-lifes 

are overestimated. Instead of avoiding these errors by solving complicated differential equations, 

tritiated water was used to label ubiquitin in pulse parts of experiments presented in this work. 

The use of to measure turnover of proteins was developed by Humphrey & Davies (1975). 

The method is based on the assumption that when cells are incubated with ^H^O, ®H rapidly 

equilibrates with hydrogen on the a-caiton atoms of most amino acids, owing to an exchange 

reaction catalyzed by transaminases. When cells are transferred back to non-radioactive medium, 

the transaminases ensure that the reverse sequence occurs and hydrogen replaces ®H on the a- 

carfoon. However, if an amino acid labelled with ®H on the a-carbon atom is incorporated into 

protein, the ®H is no longer exchangeable and remains in the protein when the cells are 

transferred back to non-radioactive medium.

During radioactive pulse not only ubiquitin is labelled with ®H, but also the rest of the 

protein population of the cell. When radioactivity of ubiquitin-protein conjugates is counted an 

error of unknown size is introduced by labelled proteins that are linked to ubiquitin. Unfortunately 

it proved to be difficult to develop any assay that would separate covalently linked ubiquitin from 

its substrates. If similar experiments are to be conducted in the future, it might be necessary to 

use isopeptidases to perform this step. A potential source of these enzymes is wheat germ 

(Sullivan et al. 1990).

The ratio of free to conjugated ubiquitin previously observed was 0.5 in human lung 

fibroblasts (Haas & Bright 1987), 0.8 in rabbit reticulocytes and 0.30 in erythrocytes (Haas & 

Bright 1985), whereas results of this work suggest ratio 10:1 (Figure 8 ). This is no doubt caused
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by differential sensitivity of conjugated and free ubiquitin to homogenous and solid phase 

immunoassays; homogenous phase assays (used with anti ubiquitin antibody raised in rabbit) are 

about 8  times more sensitive towards free than to conjugated ubiquitin, whereas sensitivity of 

solid phase assays is reported to be the same for both (Haas & Bright 1985). At the time when 

these studies were conducted no device was available to analyze solid phase blots.

In conclusion, after incubation of C. reinhardtii at 4°C the rate constants of synthesis and 

conjugation increased, the increase of the rate constant of ubiquitin degradation laged behind 

these two and the rate constant of deconjugation did not not change. Half life of ubiquitin 

decreases from 6  to 3.5 hours. This sugests that the accumulation of free ubiquitin and 

conjugated ubiquitin following the cold treatment is caused by increased ubiquitin synthesis and 

conjugation and delayed onset of ubiquitin degradation.
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Figure 1. Standard curve used for spectrophotometric determination of cell densities of 
Chlamydomonas cultures.

Data points were acquired by direct counting of cell densities using a haemocytometer. Each data 

point represents an average of at least 5 independent experiments. Aj^  - absorbance at 750 nm.
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Figure 2. A typical standard curve for fluorescence Immunoassay of ubiqultin, before probIt 
reduction.

Error bars represent standard deviation of a mean calculated from 3 Idependent measurements 

during single experiment. F/Fq - ratio of sample fluorescence to fluorescence of standard 0 .
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Figure 3. A typical standard curve for FIA of ubiquitin. Data were reduced using probit function. 

Each data point is a mean calculated from 3 idependent measurements during single experiment.

F/Fq - ratio of sample fluorescence to fluorescence of standard 0 . ( ------- ) a least square linear

regression line; (....... ) 95% confidence interval for regression
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Figure 4. A model of ubiquitin metabolism in Chlamydomonas reinhardtii. Explanation in text.
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Figure 5. Growth of Chlamydomonas reinhardtii culture cultivated under 12h/12h light/dark regime 
at 25“C.

D - dark period, L - light period; The curve demonstrates the Chlamydomonas cell cycle (division 

in dark, growth in light). Each data point is an average of 3 independent measurements during 

single experiment.
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Figure 6. Percentage of dead cells in a Chlamydomonas culture after cold treatments of various 
duration

Error bars represent standard deviation of a mean calculated from 2 independent experiments.
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Figure 7. Ratio of free and conjugated ubiquitin to total protein at constant conditions and after 
a cold treatment.

Ratio of free (# 0 )  and conjugated (■ □ ) ubiquitin to total protein, at constant conditions ( ■ • )  and 

after a cold treatment (D O ). Error bars represent standard deviation of a mean calculated from 

3 (constant conditions) and 2 (cold treatment) independent experiments. Time -1 denotes the 

beginning of the 1 hr cold treatment.
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Figure 8. Ratio of free to conjugated ubiquitin during constant conditions and after a cold 
treatment.

Ratio of free to conjugated ubiquitin, during constant conditions ( • )  and after a cold treatment (O). 

Error bars represent standard deviation of a mean calculated from 3 (constant conditions) and 

2 (cold treatment) independent experiments.
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Figure 9. Rate constant of conjugation (kf.) during constant conditions and after a cold treatment. 

Rate constant of conjugation (A )̂ during constant conditions (# ) and after a cold treatment (O). 

Error bars represent standard deviation of a mean calculated from 3 (constant conditions) and 

2 (cold treatment) independent experiments.
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Figure 10. Rate constant of deconjugation during constant conditions and after a cold
treatment.

Rate constant of deconjugation (A^) during constant conditions ( • )  and after a cold treatment 

(O). Error bars represent standard deviation of a mean calculated from 3 (constant conditions) and 

2 (cold treatment) independent experiments.
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Figure 11. Rate constant of ubiquitin synthesis (kg) during constant conditions and after a cold 
treatment.

Rate constant of ubiquitin synthesis (A )̂ during constant conditions (# ) and after a cold treatment 

(O). Error bars represent standard deviation of a mean calculated from 3 (constant conditions) and 

2 (cold treatment) independent experiments.
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Figure 12. Rate constant of ubiquitin degradation (kg) during constant conditions and after a cold 
treatment.

Rate constant of ubiquitin degradation {kg) during constant conditions (# ) and after a cold 

treatment (O ). Error bars represent standard deviation of a mean calculated from 3 (constant 

conditions) and 2 (cold treatment) independent experiments.
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Figure 13. Half-life of ubiquitin during constant conditions and after a cold treatment.

Half-life of ubiquitin (t^  during constant conditions (# ) and after a cold treatment (O). Error bars 

represent standard deviation of a mean calculated from 3 (constant conditions) and 2 (cold 

treatment) independent experiments.
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