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Abstract

The development of Cystidicola cristivomeri in lake
trout, Salvelinus namaycush, and C. farionis in rainbow trout,
Salmo gairdneri,is described. The population biology of
C. cristivomeri Wwas investigated in lake trout in three lakes
in northwestern Ontario and in arctic chan S. alpinus, in
Gaviafaeces Lake, Northwest Territories.

Young lake trout fed selectively on large Mysis
relicta which were more frequently infected with C. cristivomeri
(up to 5.1%) than small mysids. Pontoporeia affinis was not
a suitable intermediate host in nature and there was no
evidence that fish paratenic hosts were important in transmitting
this nematode to lake trout.

Third-stage larvae given to lake trout migrated
directly via the pneumatic duct to the swimbladder. In
experimentally infected fishes, at 4—10°C, C. cristivomeri were
mature after 67 (males) and 210 days (females); C. farionis were
mature after 112 (males) and 235 days (females). There was no
measurable mortality of C. cristivomeri after 600 days in
experimentally infected lake trout.

Field studies indicated that most C. cristivomeri
live at least 10 years and some probably live longer. The
development of female worms to sexual maturity was retarded
and they grew more slowly when large numbers of C. cristivomeri

were present in the swimbladder. Short female worms produced
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eggs at a slower rate than longer females. This density
dependent regulation of C. cristivomeri at the infra-
population Tevel may result in long-term stability of
the nematode suprapopulation in a lake.

The number of ulcerative lesions on the inner
surface of the swimbladder of lake trout was directly
dependent upon the number of mature C. cristivomeri

present in a fish.
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Introduction

Nematodes of the genus Cystidicola are parasitic
in the swimbladder of salmonid fishes. Two species are
presently recognized; C. cristivomeri White, 1941, reported
only from char, Salvelinus spp., in North America and C.
farionis Fischer, 1798, from a variety of salmonids in
Eurasia and North America. Cystidicola cristivomeri develops
to the infective stage in the opossum shrimp, Mysis relicta
Lovén,and C. farionis develops in various amphipods (Smith and
Lankester 1979). The development of these worms in their
definitive hosts has not been studied.

Cystidicola cristivomeri appears to have a wide
distribution in North America but undoubtedly the extent of its
distribution is incompletely known. This nematode has been
reported from lake trout, S. namaycush (Walbaum), from Lac La Marte,
Northwest Territories (N.W.T.) and from several inland lakes in
Ontario (Ko and Anderson 1969; Dechtiar 1972; Lankester and
Smith <n press). It has also been reported from arctic char,

S. alpinus (L.),from the N.W.T. in rivers draining the Foxe
Basin (Jamieson 1972), Char Lake (Beverly-Burton 1978),
Sommerset Island (Eddy and Lankester 1978) and Boothia Peninsula
(Lankester unpubl.) and from brook trout, S. fomtinalis

(Mitchill),1in Ontario (Lankester and Smith in press).



Recently, some parasitologists have begun to examine
parasite populations using concepts previously applied only
to free-Tiving animals (Crofton 1971b; Anderson 1974a, 1978;
Holmes et aZ 1977). This has proven to be an intellectually
stimulating and productive approach contributing to a better
understanding of mechanisms that regulate growth and stability
of parasite populations. However, these populations differ
basically from those of free-living species in that two levels
of organization rather than one must be recognized (Esch et al
1975). 1In the present paper, infrapopulation refers to the
nematodes present in the swimbladder of an individual fish and
suprapopulation includes the total of all swimbladder nematodes in
all fish and larval stages in all intermediate hosts within a lake.

To date, most studies of parasite populations have been
conducted on species with either seasonal or annual Tife cycles and
many are found in a variety of definitive hosts within the same
ecosystem. Preliminary investigations suggested that C. cristivomeri
is Tong-Tived and it frequently infects a single definitive host.
In addition, this parasite occurs in oligotrophic lakes providing
a relatively simple ecosystem in which to study the dynamics of
a parasite population.

This study was undertaken to determine the migration
route and to describe the development of Cystidicola spp. in their
definitive hosts, determine the 1ife span of C. cristivomeri and

examine its transmission and population biology in nature.



Study Area and Methods

The biology of Cystidicola cristivomeri was studied
in Take trout from three separate lakes (Burchell, Greenwater
and Squeers) within 100 km of Thunder Bay, Ontario, and in
arctic char from Gaviafaeces Lake, Kent Peninsula, Northwest
Territories (68°20°'N, 107°45'W). Burchell Lake (48°35'N, 90°38'W;
area = 1027 ha; depth, maximum = 75 m, mean = 24 m) (Fig. 1) and
Squeers Lake (48°31'N, 90°33'W; area = 387 ha; depth, maximum = 34 m,

mean = 11 m) (Fig. 2) are in the James Bay watershed, Greenwater

Lake (48°34'N, 90°26'W; area = 3060 ha; depth, maximum = 55 m,
mean = 18 m) (Fig. 3) is in the Lake Superior watershed. The
three lakes are 442-488 m above sea level, stratified in summer,
usually ice covered from November to April, oligo-mesotrophic
and have a potential annual fish production of 0.28-0.37 kg/ha
(Ontario Ministry of Natural Resources, Thunder Bay District,
unpublished data).

Northern pike, Esox lucius L., yellow perch, Perca
flavescens (Mitchill), white sucker, Catostomus commersoni
(Lacép;de),and deepwater sculpin, Myoxocephalus quadricormis (L.),
co-habit with lake trout in all three lakes. In addition,
Burchell Lake contains walleye, Stizostedion vitreum (Mitchill),
lake herring, Coregonus artedii Lesueur, burbot, Lota lota (L.),
ninespine stickleback, Pungitius pungitius (L.), rock bass,

Ambloplites rupestris (Rafinesque), two species of darters,



Fig. 1. Map with depth contours (ft.) of Burchell
Lake, northwestern Ontario (48°35'N, 90°38'W).



F
SAMLINW 009

oos | MV T113HOHNG




Fig. 2. Map with depth contours (ft.) of Squeers
Lake, northwestern Ontario (48031'N, 90°33'W).
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Fig. 3. Map with depth contours (ft.) of Greenwater
Lake, northwestern Ontario (48°34'N, 90°26'W).
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Etheostoma spp., and several species of cyprinids; Squeers
Lake contains three species of cyprinids; and Greenwater Lake
contains lake herring, lake whitefish, Coregonus clupeaformis
(Mitchell), ninespine stickleback, burbot and least darter,
E. mieroperca Jordan and Gilbert. Nomenclature of fishes

follows Scott and Crossman (1973).

Gaviafaeces Lake (area = 17.4 ha; depth, maximum
=8 m, mean = 2.9 m) (Fig. 4) is ice-covered for 10-11 months
of the year. Arctic char are land-locked in Gaviafaeces Lake
and are the only fish present. Food items consumed by the char
in decreasing order of importance are chironomid larvae and
pupae, sphaeriid clams and Mysis relicta (Dr. L. Johnson,

Canada Department of Fisheries and Oceans, Freshwater Institute,
Winnipeg, Manitoba, pers. comm. 1979).

Lake trout (generally >30 cm fork length) were examined
from anglers' catches from the three study lakes in northwestern
Ontario, July-September 1978 and January-July 1979. Smaller
lake trout were collected using gill nets (10-25 mm bar mesh)
in October 1978, and July and October 1979. Arctic char (>10 cm
long) were captured in Gaviafaeces Lake using the same gill nets
as above; electrofishing was used to collect smaller specimens.

The swimbladder and stomach from each fish were
preserved in 10% formalin. Swimbladders inadvertently ripped

during removal from fish were discarded. The ages of fish were



Fig. 4. Map with depth contours (m) of Gaviafaeces

Lake, Northwest Territories (68°20'N, 107045'w).
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determined by examining scales from lake trout and otoliths

from arctic char. Otoliths and scales were collected from a

few additional lake trout to compare results of the two methods
of aging. Data recorded for each fish included fork length,
weight and sex. Bladder Tength and color of the flesh (scale 1 to
5) were recorded for lake trout only.

Swimbladders were cut open and the inner surface
examined for lesions. Only the number of discrete lesions
were recorded. Nematodes were scraped from the swimbladder
into settling flasks and a visual estimate of the number of
specimens in each sample was made. A1l worms were counted in
samples estimated to contain less than 200 specimens. Samples
of 200-1000 were subsampled by transferring the worms to a
graduated cylinder and adding a volume of water (ml) equal to the
estimated number of worms in the sample. The cylinder was
agitated and 100 m1 of the suspension were quickly poured off.
The worms in this subsample were counted. Samples estimated
to contain 1000-3000 worms were first placed in 1500 ml of
water in an Erlenmeyer flask. The flask was agitated and
500 m1 of the suspension poured off. This portion of the
original sample was then subsampled using a graduated cylinder
as described previously. Samples estimated to contain more
than 3000 worms were suspended in 1500 ml of water in an

Erlenmeyer flask and 500 ml poured off. This decanted volume
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was made up to 1500 ml in another flask and the 500 ml1 of
suspension poured off was then subsampled using a graduafed
cylinder. The number of worms in the subsample was multiplied
by the appropriate dilution factor to obtain an estimate of
the total number of worms in the original sample. The
accuracy of the subsampling method (2 SD < + 19%) was assessed
by counting all worms in 23 samples containing 200-1500 worms.

The subsample of worms was counted and examined in
glycerin using a dissecting microscope at 7-45X. Female worms
with shelled eggs in their uteri and males with caudal alae
and spicules or a tail coiled at least 540° were considered
mature; all others were considered immature. The maximum and
minimum Tengths of immature worms in each sample and the length
of the three longest male and female worms were recorded.

Stomach contents were identified, divided into
respective groups and measured volumetrically.

Lake herring in Burchell and Greenwater Lakes were
examined as potential paratenic hosts of C. cristivomeri. The
visceral cavity of 71 lake herring (5.0-16.9 cm) were opened
and the whole fish immersed in a fish gastric digest solution
(Meyer and Olsen 1971) in Baermann funnels. The swimbladder
was removed from 27 Take herring (17.0-24.9 cm) and examined

for C. eristivomeri; the remaining viscera were digested. The
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gastro-intestinal tract, swimbladder and remaining viscera

from 10 additional lake herring (17.0-24.9 cm) were removed

and digested separately.- All digests were examined after 2-4 h
for C. eristivomeri. Stomach contents from many lake herring
were identified.

The abundance of third-stage C. cristivomeri larvae
in naturally infected M. relicta was estimated during October,
1979 in each of the three study lakes in northwestern Ontario.
Mysids were captured by towing a conical hoop net (1.0 m diam.,
3.5 m Tong, mesh opening = 0.4 mm) beneath the thermocline at
night and a small otter trawl (see Dadswell 1975 for details)
along the lake bottom during the day. Specimens were measured
from the tip of the rostrum to the tip of the uropods and
divided into two groups; small (3.0-16.9 mm) and large
(17.0-24.0 mm). Mysids, in pepsin solution, were put in a blender
for 3 sec and then poured onto tissue paper in a Baermann
funnel. Larvae passed through the tissue paper and settled to
the bottom of the funnel within 3 h at room temperature.

The suitability of Pontoporeia affinis as a natural
intermediate host for C. cristivomeri was also investigated.
Amphipods were captured in Squeers Lake in the fall, 1978, using
a small epi-benthic sled and were examined for larvae in the

manner described for mysids.



12

The route of migration and development of C. cristivomeri
and C. farionis in lake trout and rainbow trout, Salmo gairdneri
Richardson, respectively, were investigated. Trout used in
experimental infections had been raised in captivity and were fed
a commercially prepared pelleted fish food. Experimentally infected
fish were kept in 350 1 polyethylene tanks with a continuous supply
of dechlorinated water (flow = 2 1/min, 4-10°C). Larvae of C.
eristivomeri used in experimental infections originated from naturally
infected M. relicta. C. farionis were obtained from the swimbladder
of lake whitefish captured in Lake Nipigon in February, 1979. Fishes
were anesthetized with ethyl m-aminobenzoate methanesulfonate
(MS-222) and given larvae suspended in cold 0.7% NaCl or cold
dechlorinated water using a Rusch #8 stomach tube. Infected fish
commonly regurgitated larvae while recovering from anesthesia but
attempts to collect and count expelled larvae were unsuccessful,

Migrating larvae were recovered from fish at various
intervals post-infection by examining separately the lumen of
the stomach, esophagus, pneumatic duct and swimbladder. These
and all other visceral organs were then pressed between glass
plates and examined for Tlarvae using a dissecting microscope.
Visceral organs and skeletal muscle were later placed in a
pepsin solution for 2-4 h at room temperature in Baermann funnels.
Worms recovered were fixed in hot 10% glycerin in 70% alcohol

and cleared in glycerin. Drawings and measurements were made
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with the aid of a camera lucida. BEn face preparations
followed Anderson (1958).

The relative number of eggs released by female
C. cristivomeri of different sizes was investigated using worms
from lake trout from Greenwater and Squeers Lakes collected in
June and October, respectively. Thirty female worms from
individual fish were placed in 0.7% NaCl in a 20 ml test tubg
sealed with paraffin and kept at 8°C for 166-170 h.  Worms
were then removed from the test tubes, fixed in hot glycerin-
alcohol, and measured. Samples containing damaged worms were
discarded. Test tubes were centrifuged at 2500 rpm for five
minutes and decanted. The remaining fluid was agitated with a
magnetic stirrer for 15 min, pipetted onto slides, and examined
at 100X. The tubes were rinsed by adding a few drops of water
and the procedure repeated until the number of eggs from the
Tast rinse was <10% of the total counted from all previous
slides.

Statistical procedures followed Zar (1974) and Nie et al
(1975). Statistical significance of all analyses was at the 0.05
probability level. Normality of distributions was examined by
calculating the third moment statistic (Remington and Schork 1970).
Data deviating from normality, not alleviated by appropriate
transformations, were analysed with non-parametric statistics
whenever possible; otherwise parametric statistics were used in

conjunction with ANOVA (Zar 1974).
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RESULTS

Migration of Cystidicola spp. to the swimbladder

Experimentally infected lake trout (15-25 cm long)
and rainbow trout (10-25 cm) frequently regurgitated after
larvae were administered. Thirty-two percent of C.
cristivomeri larvae given to lake trout were recovered;
larvae of C. farionis given to rainbow trout were not
counted. Al1 Tlarvae recovered were third stage (Table 1).
Six to eight h after infection, larvae were found only in
the stomach of fishes. Shortly thereafter, larvae were
found in the lumen of the esophagus and in the short pneumatic duct.
Larvae reached the swimbladder as early as 16 h after
infection. No larvae were recovered from any of the other

tissues examined.

Development of C. cristivomeri in experimentally infected

lake trout
Infective larvae of C. eristivomeri used in this
experiment were from naturally infected M. relicta. Twenty-
six percent of 650 larvae given to 52 lake trout were
recovered 14-600 days after infection. There was no
significant correlation between the percentage of worms
recovered from each fish and time post-infection (Spearman

r=-0.16, N=52) (Fig. 5).
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Fig. 5. Percentage of Cystidicola cristivomeri
recovered from experimentally infected lake trout killed at

various intervals post-infection.
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Larvae at the third moult were first recovered
after 20 days; some had not yet begun to moult after 50 days.
Third-stage larvae underwent 1ittle growth prior to the
moult. Smaller larvae took longer to reach the moult and
moulted at a smaller size than larger larvae. However, worms
of equal length recovered from different fish infected and
killed on the same days, often differed in their state of
development. No differences were seen between male and
female Tarvae in the time required to reach the third moult.
Male and female larvae undergoing the fourth moult were
recovered after 84-104 and 84-203 days, respectively. Only
the Tongest females were moulting at 84 days; some had not
yet begun to moult after 455 days. Mature male and female
worms were first recovered after 67 and 210 days, respectively.
Most males were mature within 100 days of infection. Mature
male and female C. cristivomeri from lake trout killed within
600 days of infection were 11.4-19.9 mm and 15.5-26.1 mm long,
respectively.

Third-stage C. cristivomeri larvae from Mysis relicta

Considerable variation in length; females usually
longer than males (Table 2). Male gonad convoluted, extending
anteriorly to middle of body and not extended to the rectum.
Female gonad straight, extending into anterior half of body;

primordium of vagina uterina protruding ventrally (Fig. 17).
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Figs. 6-8. Posterior end of third-stage Cystidicola
eristivomeri larva from Mysis relicta. Figs. 9-10. Posterior
end of female C. farionis fourth-stage larva from rainbow trout.
Figs. 11-13. En face view of C. cristivomeri. Fig. 11. Third-
stage larva from M. relicta. Fig. 12. Fourth-stage Tarva from
lake trout. Fig. 13. Adult C. eristivomeri from lake trout.
Figs. 14-16. En face view of C. farionis. Fig. 14. Third-stage
larva from rainbow trout. Fig. 15. Fourth-stage Tarva from

rainbow trout. Fig. 16. Adult C. farionis from rainbow trout.
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Figs.

17-19. Developing vagina of female

Cystidicola cristivomeri.

Mysis relicta.
from lake trout.

Take trout.

Fig. 18.

Fig. 19.

Fig. 17. Third-stage larva from
Fourth-stage larva at third moult

Sub-adult at fourth moult from
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Figs. 20-25. Developing larvae of Cystidicola
eristivomeri: from lake trout. Fig. 20. Anterior end of larva
at third moult. Fig. 21. Posterior end of female larva at
third moult. Fig. 22. Posterior end of male larva at third
moult. Fig. 23. Anterior end of sub-adult at fourth moult.
Fig. 24. Posterior end of male at fourth moult. Fig. 25.

Posterior end of female at fourth moult.
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In en face view, two lateral amphids and four submedian
papillae present (Fig. 11). Oral opening elliptical dorso-
ventrally. Lateral pseudolabia, each extended medially as
a lip-like projection continuous posteriorly with lateral
wall of buccal capsule. No circumoral teeth. Tip of tail
with conspicuous cuticular projection (Figs. 6-8). An
apparent lumen in the projection containing a sphere of
tissue of varying density.

Larvae at third moult in lake trout

Third-stage cuticle loosened at anterior and
posterior ends (Figs. 20, 21, 22). Tail of fourth-stage male
more bluntly rounded than female. Male gonad extending to
rectum; twice the length and less convoluted than in third-
stage larvae. Little change in length of female gonad;
vagina uterina and vagina vera united (Fig. 18). Cuticle
thickened over future vaginal opening. Circumoral teeth
present in fourth-stage larva (Fig. 12); four teeth in each
submedian quadrant projecting from a ridge which originates
from the wall of the buccal capsule posterior to margin of
oral opening.

Larvae at fourth moult in lake trout

Fourth-stage cuticle loosened at anterior and
posterior ends (Figs. 23-25). Spicules of males incompletely

sclerotized; caudal papillae present. Female gonad straight,
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amphidelphic and didelphic; regions of ovary, oviduct and
uterus differentiated. Vagina of female 1ined with cuticle
and open ventrally (Fig. 19). En face appearance (Fig. 13)

similar to that of fourth-stage larva.

Development of C. farionis in experimentally infected

rainbow trout

Infective larvae of (. farionis used in this
experiment were from the swimbladder of lake whitefish. One
hundred and ninety-seven worms were recovered for study after
12-235 days from 53% of 36 infected rainbow trout.

Male and female larvae at the third moult were first
recovered after one and nineteen days, respectively; some had
not yet begun to moult after 97 days. There was no relationship
between the time elapsing prior to the third moult and length
of larvae. Male and female larvae undergoing the fourth
moult were first recovered after 74 and 112 days, respectively.
Most males were mature after 112 days. One mature female was
recovered after 235 days and was 23.0 mm long. Mature male
C. farionies from rainbow trout killed within 235 days of
infection were 10.6-16.4 mm long. The morphogenesis of
C. farionis was similar to that of C. cristivomeri and

only differences are described.
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Infective third-stage C. farionis larvae from lake
whitefish |

Larvae described and measured (Table 3) were recovered
from the swimbladder of rainbow trout 17 hr after infection.
Little variation in length. Male gonad occasionally extending
to rectum. Vagina uterina and vagina vera occasionally united
in females. In en face view (Fig. 14), lateral wall of buccal
capsule beneath pseudolabia not projected as a conspicuous 1ip-
like structure into buccal cavity as in C. cristivomeri.

Larvae at the third and fourth moults in rainbow trout

Circumoral teeth present in fourth-stage and fifth-stage
worms (Figs. 15, 16); otherwise en face view similar to third-
stage larvae. Tail with small cuticular projection occasionally
present in fourth-stage females (Figs. 9, 10); Tumen never
apparent; small sphere of tissue rarely present. At the fourth

moult, distal end of female uteri reflected.

Prevelance of C. cristivomeri in naturally infected Mysis relicta

Mysis relicta collected from each of the three lake
trout lakes were divided into groups of small (3.0-16.9 mm long)
and large (17.0-24.0 mm) individuals and digested in pepsin.
Only third-stage larvae were recovered by this method and those
from small mysids were 3.6-8.7 (X=6.1) mm long and those from

large mysids 4.7-15.2 (¥=9.4) mm long.
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The prevelance of infection in M. relicta was
calculated by assuming that only one larva develops to the
infective stage in each infected mysid as reported by Smith
and Lankester (1979). In Squeers Lake, 0.3% of 700 small and
5.1% of 350 large mysids were infected. In Burchell Lake,
the prevelance of infection in three replicate samples of
600 small mysids was 0.0-0.2% (X=0.1%) and in three samples
of 250 large mysids was 1.2-2.0% (X=1.6%). Similarly, in
Greenwater Lake, the prevelance of infection was 0.0-0.2%
(X=0.1%) in small and 0.2-2.8% (X=1.6%) in large mysids.

No C. cristivomeri larvae were recovered from 1500
Pontoporeia affinis examined from Squeers Lake.

Potential paratenic hosts of C. eristivomeri

Cystidicola cristivomeri was not recovered from
98 lake herring examined from Burchell and Greenwater
Lakes. Mysis relicta was present in the stomachs of the
large lake herring, 17.0-24.0 cm long, but not in those
5.0-16.9 cm.

Incidental Taboratory experiments demonstrated
that third-stage C. cristivomeri removed from the swimbladder
of one lake trout could, after being administered by stomach

tube, migrate again to the swimbladder of another.

28
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Biology of lake trout and arctic char in the study lakes

The ages of lake trout used in all analyses were
determined by counting scale annuli, assumed laid down on
May 10. Ages determined by examining both scales and otoliths
were the same for six Take trout 7-9 years old from Greenwater
Lake and for four fish 6-10 years old from Burchell Lake.
However, the scale ages of three other lake trout from Burchell
Lake were 8, 9 and 10 while the ages estimated by examining
otoliths were 11, 14 and 12, respectively, suggesting that the
ages of some older fish from this lake were underestimated.

The growth rate of lake trout up to age 5 was similar
in all three lakes (Fig. 26; Tables 4-6). Fish increased
1ittle in length in Squeers Lake after age 6 and in Burchell Lake
after age 8. The mean length of 10-year-old fish from Burchell
Lake is probably over-estimated because of small sample size
including one unusually large fish (Table 5 ). The length
of lake trout in Greenwater Lake continued to increase throughout
the life of the fish (Fig. 26; Table 4). Arctic char in
Gaviafaeces Lake increased little in length after age 7 (Fig. 26;
Table 7).

The length-weight relationship of lake trout was not
significantly different between the three lakes. Therefore,

data for all fish were combined. The regression equation was:
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Fig. 26. Mean fork length of lake trout and
arctic char from northwestern Ontario lakes and Gaviafaeces

Lake, respectively.
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(1] 1Oge Weight = -5.1 + 3.1 1oge Length

and explained 99% of the variation. The length-weight

regression for arctic char from Gaviafaeces Lake was:
(2] log, Weight = -3.9 + 2.7 log, Length

and explained 99% of the variation.

Mysis relicta was an important item in the diet of
lake trout <35 cm long in all three lakes (Tables 8-10).
Mysids continued to occur commonly in the stomachs of lake trout
>35 c¢m in Squeers and Burchell Lakes although fishes were also
eaten. In Greenwater Lake, M. relicta was rarely eaten by
lake trout >35 cm long (Table 8). Lake trout 10-25 cm long
ate significantly more large than small M. reZlicta at each length
class (5 cm) of fish tested (non-parametric sign test, P < 0.05).
Eighty-one percent of 574 M. relicta from the stomachs of 82 lake

trout were 17.0-24.0 mm long; the remainder were 3.0-16.9 mm.

Cystidicola cristivomeri in lake trout and arctic char

In Greenwater Lake, the mean total number of worms (TNW)
increased almost linearly with age of lake trout up to age 5 and
remained fairly constant thereafter (Fig. 27; Table 4).

Only nine-year-old fish had significantly higher numbers of worms
than Take trout of the other age classes (Duncan's multiple range

test F = 3.1 df = 7,195; ages listed in increasing magnitude of
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Fig. 27. Mean numbers of C. cristivomeri in relation

to age of lake trout from Greenwater Lake.
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TNW; ages underscored by the same line are not significantly

different, P > 0.05).

6 10 8 5 7 12 9

(3]

The mean number of female worms (NFEMW) increased slowly in fish
up to age 5 and then increased more rapidly up to age 9 (Fig. 27;
Table 4). The mean number of immature worms (NIMMW) reached

a maximum in Take trout at age 5 and declined steadily in older
fish (Table 4). The mean minimum Tength of immature worms
(MINLEN) increased sharply in fish from age 5 to age 6 (Table 4 ).
There were significantly more mature male worms than females in
fish at each age up to age 8 (non-parametric sign test, P < 0.05)
(Table 4).

In Burchell Lake, the mean TNW in lake trout increased
up to age 9 (Fig. 28; Table 5). The mean NFEMW in fish increased
slowly up to age 5 and more rapidly in older fish. The mean
NIMMW increased in Take trout up to age 7 and remained high in
older fish; the mean MINLEN increased slowly with fish age
(Table 5).

In Squeers Lake, the mean TNW increased in lake trout
up to age 6 and then remained fairly constant (Fig. 29; Table 6 ).
The mean NFEMW was Tow in fish up to age 5 then increased sharply.
The mean NIMMW was high in all age classes of fish; the mean MINLEN

increased slowly as fish aged (Table 6 ).
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Fig. 28. Mean numbers of C. cristivomeri in relation

to age of lake trout from Burchell Lake.
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Fig. 29. Mean numbers of (. cristivomeri in

relation to age of lake trout from Squeers Lake.
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In Gaviafaeces Lake, the mean TNW and mean NFEMW
increased steadily in arctic char up to age 9 and then remained
fairly constant (Fig.30; Table 7). The mean TNW in four-year-
old fish was probably overestimated by a small sample size including
one fish with a very Targe number of worms (Table 7). The
mean NIMMW increased in fish up to age 6 and changed 1ittle in
older fish; the mean MINLEN remained low at all ages (Table 7).

The effect of season of capture and sex of fish on
the TNW, NFEMW and percentage of female worms (PFEMW) were
examined at each fish age in Greenwater, Burchell, and Gaviafaeces
Lakes and at length classes in Squeers Lake (some fish from Squeers
Lake were not aged; see Appendix 1 and 2 for sample sizes at
each season). Season of capture had no significant effect on the
worm variables except in trout <30 cm long from Squeers Lake
(NFEMW in winter 1979 > fall 1978, Mann Whitney U = 68, df = 4,19).
Sex of fish had a significant effect in only a few instances
(Greenwater Lake, age 4: NFEMW and PFEMW, males > females,

t = 3.60, df = 51 and t = 3.66, df = 51, respectively; age 10:
NFEMW, females > males, U = 62, df = 7,10; Squeers Lake, fish
>40 cm long: TNW, females > males, U = 125, df = 14,11).

There were considerable differences in the numbers of
worms in lake trout between the lakes (Figs. 27-30; Tables 4 -7).
The mean NFEMW remained Tow in fish up to age 5 in all Takes

(Fig. 31). The mean NFEMW was not significantly different in



44

Fig. 30. Mean numbers of C. cristivomeri in

relation to age of arctic char from Gaviafaeces Lake.
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Fig. 31. Mean numbers of C. eristivomeri in lake
trout and arctic char 1-5 yr old from lakes in northwestern

Ontario and Gaviafaeces Lake, respectively.
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four-year-olds or five-year-olds between the lakes despite
significant differences in the mean TNW at each fish age
(Table 11).

Cystidicola cristivomeri developed to sexual
maturity within two years at 4-10°C in experimentally infected
lake trout with a mean of 4.6 worms per fish. However, in
wild lake trout with large numbers of C. eristivomeri, mature
female worms were not abundant until fish were older than five
years. These observations suggested that the development of
C. cristivomeri to sexual maturity may be retarded when large
numbers of worms are present in the swimbladder. If C.
eristivomeri develops more slowly under crowded conditions,
the inner surface area of the swimbladder available to individual
worms also may have an effect. These hypotheses were tested
by combining data for lake trout in all lakes in a stepwise
multiple regression analysis to determine the effects of total
numbers of worms and length of fish on the percentage of
worms present in three-year-old fish that were mature females
in five-year-olds (PFEMw3_5). This analysis accounts for
differences in recruitment rates of immature worms into fish
in all lakes. Length of fish was used as an approximation of
the swimbladder surface area since swimbladder length was
linearly related to fish length (r=0.99, n=368). A correction

factor (cf) was calculated to estimate the number of worms a



Tab

le 11. Comparisons of the mean total number (TNW) of
Cystidicola cristivomeri in fishes of different

age classes from the lakes studied.*

Age TNW from Takes' F df
I1 6 Ga s 19.7 3,33
11 6 G B S 68.1 3,65
IV & G B S 49.9 3,85
v & G B S 28.5 3,51

*

Duncan's multiple range test; means listed in increasing

order of magnitude and those underscored by the same line
are not significantly different (P > 0.05).

G = Greenwater Lake; Ga = Gaviafaeces Lake; B = Burchell

Lake; S = Squeers Lake.
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fish at age five had when it was three years old. This was
calculated by assuming, for example, that individual five-year-
old fish with more than the mean number of worms in fish at
that age class (TNW%) would have had proportionately more worms

than the mean (TNW&) when it was three-years-old. Therefore:

[4] of = /W in a fish at age five in lake X

TﬁWé in fish from lake X

(5] PFEMMW - NFEMW in a fish at age five in lake X
3-5

( [\ in lake X) x cf

The average number of worms present in a fish from age three to

age 5 (TNw3_5) was:

[6] TNHy_ g = (TNW; + TNW

3-5 + TNWg) x cf

4

3

The PFEMw3_5 was significantly related to the TNW3_5 and fish
length (Table 12). TNw3_5 was the most important independent

variable and explained 14% of the variance. Fish length was

48

also significant and explained an additional 10% of the variance.

The multiple regression equation is:
[7] PFEMw3_5 = -23.9 - 0.035 TNW3_5 + 1.5 Length

and was significant (F = 6.7, df = 2,43).

Multiple regression analyses were used with data at
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Table 712. Spearman correlation coefficients between variables
important in analyses of the percentage of female (PFEMW)
Cystidicola cristivomeri from fishes in the lakes studied.
Lake trout Greenwater Lake
adjusted Age 5 age = 8
(n=46) Fish (n=52) Fish
PFEMW;_¢ TNW3_p Tength PFEMW TNW lTength

NFEMW' - -0.01  0.31* - 0.88%* 0.0

TNW3_¢ -0.42% 0.16 -0.15 -0.12

Fish Tength 0.21 0.16 - 0.25* -0.12 -
Greenwater Lake Burchell Lake
age = 9 age = 6
(n=49) Fish (n=12) Fish
PFEMW TNW length PFEMW TNW length

NFEMW 0.96* 0.22 0.58 0.43

TNW 0.07 - 0.15 0.34 0.46

Fish Tength 0.29* 0.15 - 0.37 0.46 -
Burchell Lake Burchell Lake
age = 7 age = 8 and 9
(n=22) Fish (n=53) Fish
PFEMW TNW Tength PFEMW TNW Tength

NFEMW - 0.15 0.09 0.74* 0.03

TNW -0.27 0.74* ~0.34* - 0.13

Fish length -0.24 0.74* - -0.36* 0.13 -
Gaviafaeces Lake
all ages
(n=91)

PFEMW Age TNW length

NFEMW 0.81* 0.73* 0.78*

Age 0.76* 0.85* 0.95*

TNW 0.59% 0.85* 0.88*

Fish length 0.71%* 0.95* 0.88*

T NFEMW = no. of female worms; TNW = total no. of worms; PFEMW =

percentage of female worms.
* p < 0.05.
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individual fish ages in Greenwater and in Burchell Lakes to
examine the effect of TNW and fish Tength on the PFEMW.

Variables in the analyses were occasionally interrelated (Table 12).
Generally, the analyses illustrated that the PFEMW was related
negatively with the TNW and positively with fish Tength (Table 13).
The regressions accounted for differing amounts of the variance

in the PFEMW at each age (Table 14). In Gaviafaeces Lake, sample
sizes at individual ages were small (Table 7). Therefore,

age was included in the multiple regression analysis combining
data from all fish. All variables were significantly inter-
related (Table 12). Age was the most important independent
variable and explained 40% of the variance. TNW also had a
significant effect and explained an additional 7% of the variance
but fish Tength had no significant effect. The multiple

regression equation is:
[8] PFEMW = -7.3 + 2.8 Age - 0.012 TNW

and was significant (F = 39.1, df = 2,88). In Squeers Lake,
neither the TNW nor fish length had a significant effect on the
PFEMW.

In vitro studies of C. cristivomeri were conducted
to investigate any relationship between the Tength of mature
female worms and the number of eggs released. The number of

eggs released by female worms in vials of water at 8°C was
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Table 13. Regression equations of the percentage of female
Cystidicola cristivomeri (PFEMW) and of the maximum
length of female worms (MAXLF) on the total number

of worms and fish length at individual fish ages.

Lake Fish Age Regression Equation F value df
Greenwater 8 PFEMA = -17.8 + 1.3 Length 5.8 1,50
Greenwater 9 PFEMW = 3.3 + 0.9 Length 4.1* 1,47
Burchell 6 PFEMAW = -81.2 + 2.6 Length 4.0 1,10
Burchell 7 PFEMA = 14.6 - 0.003 TNW 2.4 1,20
Burchell 8 and of PFEMW = -48.0 - 0.003 TNW + 1.6 Length 9.3* 2,50
Burchell 8 MAXLF = -36.9 + 1.4 Length 8.5* 1,19
Burchell 9 MAXLF = -14.8 + 0.9 Length 7.5% 1,21

* P < 0.05.
Age, when added into the analysis as a dummy variable, had no

significant effect; therefore, data were combined.



Table 14. Percentage of the variance (R2 X 100) in the
percentage of female Cystidicola cristivomeri (PFEMW)
and in the maximum length of female worms (MAXLF)
explained by the total number of worms (TNW) and
fish length.

Dependent

variable Lake Fish Age TNW Length

PFEMW Greenwater 8 6.0 10.5%

PFEMW Greenwater 9 0.2 8.0*

PFEMW Burchell 6 2.0 28.6

PFEMW Burchell 7 10.7 0.0

PFEMW Burchell 8 and 9+ 12.6* 14,4%

MAXLF Burchell 8 0.0 30.8*

MAXLF Burchell 9 8.0 26. 3%

* P < 0.05,

+

significant effect; therefore, data were combined.

Age, when added into the analyses as a dummy variable, had no
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significantly and positively correlated with length of worms
(Spearman re = 0.90, n = 16 and re © 0.40, n = 42 for worms from
lake trout in Squeers and Greenwater Lakes, respectively)
(Fig. 32).
The mean maximum length of female C. cristivomeri
(MAXLF) was greatest in fish from Greenwater Lake (Fig. 33;
Tables 4-7, 15). Fish from Greenwater Lake also had fewer
worms than fish from the other lakes (Figs. 27-30; Tables 4-7).
These observations suggested that the maximum length attained
by female worms might be determined by the total number of worms
(TNW) present and perhaps, by the space available in the swim-
bladder. Since the MAXLF and the MAXLM (Figs. 33-34; Tables 4-7)
were significantly and positively correlated with fish age
(rS = 0.83, 0.83, 0.83 and 0.90 for MAXLF and r. = 0.80, 0.73,
0.49 and 0.76 for MAXLM in Greenwater, Burchell, Squeers and
Gaviafaeces Lakes, respectively), subsequent analyses to determine
the effect of TNW and fish length on the MAXLF were done, when
possible, within individual age classes for each of the lakes.
In Burchell Lake, the variables in the analyses
were occasionally interrelated (Table 16). The MAXLF was
positively related to fish length and was the only independent
variable which explained a significant amount of the variance
(Tables 13, 14). In Gaviafaeces Lake, all ages were combined.

A11 variables were significantly interrelated (Table 16).
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Fig. 32. Relationship between the number of
nematode eggs laid in 24 hr and the length of female
C. cristivomeri from lake trout from Squeers and

Greenwater Lakes.
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Fig. 33. Mean maximum length of female C.
eristivomeri in relation to age of lake trout and arctic
char from lakes in northwestern Ontario and Gaviafaeces

Lake, respectively.
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Table 15. Comparisons of the mean maximum length of female (MAXLF)
Cystidicola cristivomeri in fishes of different age

classes from the lakes studied¥*.

T F

Age MAXLF from Lakes df

II Ga . G B 18.5 2,29
I1I Ga B S G 6.3 3,38
IV B S Ga G 8.9 3,59
) B Ga S G 15.5 3,37
VI Ga B S G 10.1 3,23
VII Ga B S G 18.7 3,37
VIIT B Ga S G 4.3 3,56
IX B Ga G 30.1 2,61
X Ga B G 4.7 2,22

* Duncan's multiple range test; means listed in increasing order
of magnitude and those underscored by the same line are not
significantly different (P > 0.05).

Ga = Gaviafaeces Lake; G = Greenwater Lake; B = Burchell Lake;

S =-Squeers Lake.



57

Fig. 34. Mean maximum length of male C. cristivomeri
in relation to age of Take trout and arctic char from lakes

in northwestern Ontario and Gaviafaeces Lake, respectively.
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Table 16.

in the lakes studied.
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Spearman correlation coefficients between variables
important in analyses of the maximum length of mature

female (MAXLF) Cystidicola eristivomeri from fishes

"
Fish length

Burchell Lake
age = 8

(n=21)

MAXLF TNW

-0.03
0.59* -0.09

Fish
length

-0.09

TNW

Fish length

Burchell Lake
age = 9

(n=23)

MAXLF TNW

0.53*
0.47* 0.25

Fish
length

0.25

Age
TNW
Fish Tength

Gaviafaeces Lake
all ages

(n=69)

MAXLF Age
0.90*

0.73* 0.85*

0.87* 0.95*

Fish
TNW Tength

0.85% 0.95*
0.88*
0.88* -

T TNW = total no. of worms; MAXLF = maximum length of mature

female worms

* P <0.05



Age was the most important independent variable and explained
78% of the variance. The effects of the TNW and fish length
were also significant and each explained an additional 2% of

the variance. The multiple regression equation is:

[9] MAXLF = 6.5 + 1.5 Age - 0.006 TNW + 0.68 Length

and was significant (F = 101.7, df = 3,65). In Greenwater
and Squeers Lakes, neither the TNW nor fish length had a
significant effect on the MAXLF.

Lesions on the inner surface of the swimbladder

appeared as raised ulcers (1-20 mm dia.), sometimes encircled

by hyperemic mucosa and occasionally with a hard ochre-colored

material covering a central crater (Figs. 35, 36). The
mean numbew of l1esions were Tow in lake trout less than six

years old (Table 17). The mean number of mature worms
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(males + females) also remained low in fish less than six-years-

old (Tables 4-7). The number of lesions was significantly
and positively correlated with the number of mature worms
(rS = 0.70, 0.80 and 0.80 in Greenwater, Burchell and Squeers
Lakes, respectively).

There was no correlation between the color of fish

flesh and the TNW in any of the lake trout lakes. There was

no correlation between the condition factor of fish (= Weight X

10%/(Tength)3) and the TNW or the NFEMW.
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Fig. 35-36. Ulcers in the swimbladder of lake
trout caused by Cystidicola cristivomeri. Fig. 35. Tangled
mass of worms adjacent to swimbladder lesion. Fig. 36.
Linear arrangement of lesions along the ventral surface of

the swimbladder.
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Table 17. Number of lesions in the swimbladder of lake trout

with Cystidicola cristivomert.

Number of lesions

Fish Age Greenwater Burchell Squeers
Lake Lake Lake
I 0
II 0 0 0.3+0.6 (0-1)
ITI 0.1x0.4 (0-1)* 0 0.4+0.5 (0-1)
IV 0.1x0.3 (0-1) 0.1£0.3 (0-1) 0
v 0.3+0.5 (0-2) 0.5+0.9 (0-3) 0.8+1.0 (0-2)
VI 0.6+0.5 (0-1) 1.0£0.8 (0-2) 3.4x2.5 (0.8)
VII 1.421.0 (0-4) 2.4:1.7 (0-5) 3.9x2.2 (0-7)
VIII 1.5+1.2 (0-6) 3.3t2.3 (0-7) 5.7+2.0 (4-9)
IX 2.0+1.3 (0-5) 4.4+2.2 (1-8)
X 2.3+1.5 (0-5) 2.2¢£1.5 (0-4)
XI 2.7£1.9 (0-6)
XII 3.0+1.1 (0-5)
>XI1I 0.8+1.0 (0-3)

* Mean + S.D. (range)
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Discussion

Cystidicola spp. migrate as third-stage Tlarvae to
the swimbladder of their fish hosts via the pneumatic duct.
Several authors have speculated that these nematodes migrate
directly to the swimbladder (Shipley 1908; Mueller 1940;

White and Cable 1942; Smith 1978) but evidence has been

lacking. Drew (1909), on finding nematodes identified as

C. farionis in the intestine and associated mesentery of brown
trout (Salmo trutta L.), suggested that this parasite undergoes
a tissue migration to the swimbladder. However, in view of
findings presented here, worms recovered by Drew (1909) probably
were not C. farionis.

Protuberances, similar to the posterior cuticular
projection on the tail of third-stage larvae of Cystidicola spp.,
have also been reported on third-stage larvae of other closely
related nematodes. Choquette (1955) reported that female
Cystidicoloides tenuissima Zeder, 1800 could be distinguished
by a knob-Tike appendage on the tail which was absent on males.
However, Moravec (1971) found exceptions in both sexes.
Presumably, the material of varying density enclosed within
the tail projection of Cystidicola spp. is an extension of the
hypodermis but a connection was not visible. This material
is shed with the third-stage cuticle and if it is an
extension of hypodermis, it must be pinched off from the worm

at the time of the moult.
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Several authors have suggested that some nematodes
of the family Cystidicolidae moult to the fourth stage in
the intermediate host. Moravec (1971) speculated that well
developed larvae of C. tenuissima in mayflies were fourth
stage and that both third-stage and presumptive fourth-stage
larvae were capable of development in the definitive host.
Keppner (1975) did not observe the third moult of Spinitectus
micracanthus (Christian, 1972) in bluegills (Lepomis macrochirus
Rafinesque) and suggested it occurs in the intermediate host.
Baylis (1931) reported that C. farionis from Gammarus pulex (L.)
were fourth stage larvae. None of the above mentioned authors
observed the third moult in the intermediate host. Cystidicola
eristivomeri undergoes considerable growth in M. relicta after
the second moult but does not develop beyond the third stage.
The worms described by Baylis (1931), Moravec (1971) and
Keppner (1975) Tikely were third stage. Continued growth of
larvae in the intermediate host after the second moult appears
to be common in this family (Baylis 1931; Choquette 1955;
Uzmann 1967; Moravec 1971; Keppner 1975; Smith and Lankester
1979) and has probably led to the confusion.

The size of third-stage cystidicolid larvae may
influence the Tength of time required to reach sexual maturity
after being ingested by the definitive host. Long larvae of

C. eristivomeri in lake trout moulted sooner than shorter larvae.
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Some cystidicolid nematodes, such as C. tenuissima in brown
trout and C. farionis in lake whitefish, may be expelled from
their fish host at certain times of the year (Leong 1975;
Pellitero 1976; Watson 1977; Watson and Dick 1979).
Presumably, small Tlarvae picked up late in the season would
have less chance of developing to maturity than longer larvae.

Cystidicola spp. take longer to reach maturity than species of
closely related genera . C(ystidicoloides tenuissima, in
brook trout (Salvelinus fontinalis Mitchill), matured after
60-70 days (Choquette 1955); in brown trout, at 18°C, mature
male and fifth stage females were recovered after 12 and 20
days, respectively (Moravec 1971). Mature male and fifth stage
female Spinitectus micracanthus were recovered from bluegills
after 26 and 36 days, respectively (Keppner 1975). Neither
Choquette (1955) nor Keppner (1975) reported the temperature
at which their experiments were conducted. Mature male and
female C. cristivomeri were first recovered after 67 and 210
days, respectively. Mature male and female C. farionis Were
first recovered after 110 and 235 days, respectively. However,
female C. farionis may have reached maturity earlier than found
since infected rainbow trout had not been sampled between 112
and 235 days, post-infection.

The swimbladder nematode that reaches sexual maturity

in lake whitefish in North America is referred to C. farionis
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but the validity of this identification recently has been
questioned (Lankester and Smith in press). Certain biological
and morphological features seem to distinguish the nematode

in lake whitefish from C. farionis in other salmonids. In
some lakes, mature swimbladder nematodes are found in lake
whitefish but not in lake herring while the opposite is found
in other lakes. In lakes in western Canada, the swimbladder
worm in lake whitefish appears to mature seasonally (Leong
1975; Watson 1977; Watson and Dick 1979) while 1ittle evidence
was found of seasonal changes in the intensity of immature
swimbladder nematodes in lake whitefish in Lakes Superior and
Nipigon (Lankester and Smith in press). The eggs from swimbladder
nematodes in lake whitefish are also distinctive in having
predominantly lateral rather than polar filaments (Smith 1978).
Evidence reported here further suggests that the swimbladder
nematode that matures in lake whitefish is different from that
which matures in other salmonids. Third-stage larvae used to
infect rainbow trout originated from lake whitefish from Lake
Nipigon. In Lake Nipigon, lake herring were commonly infected
with mature C. farionis yet lake whitefish have only third and
early fourth-stage larvae in the swimbladder (up to 2500)
(Black unpubl.). However, when these apparently arrested Tarvae
from Take whitefish were put into rainbow trout, they became

sexually mature and were identical to C. farionis. Further studies



66

are required to substantiate the suggestion that the swim-
bladder nematode which matures in lake whitefish is a distinct
species.

Immature lake trout captured in October fed almost
exclusively on large mysids (>17 mm long). Large mysids
were more heavily infected with C. eristivomeri than small
mysids. Although the size composition of the mysid population
was not determined in the study lakes, large shrimp (considered
2 one year old) constituted less than 10% of the autumn population
in Takes in eastern North America (Brownell 1970; Lasenby and
Langford 1972; Reynolds and DeGraeve 1972; Carpenter et al 1974).
Mysis relicta, when present in a lake, is a very common forage
of young lake trout (Eschmeyer 1956; Rawson 1961; Dryer et al
1965; Wright 1968; Anderson and Smith 1971; this study). This
dependence on mysids in conjunction with selective feeding on
large shrimp ensures that most, if not all, lake trout will
become infected with C. cristivomeri in lakes where M. relicta
is abundant. Smith and Lankester (1979) observed limited
development of C. cristivomeri in experimentally infected
Pontoporeia affinis Lindstrom but results reported here
suggest that P. affinie is not a suitable intermediate host of
this parasite in nature.

The prevelance of C. cristivomeri was similar in

M. relicta from both Burchell and Greenwater Lakes yet young



lake trout from Burchell Lake were more heavily infected
with swimbladder nematodes than those from Greenwater Lake.
Analysis of trout stomachs indicated that young fish in both
lakes fed predominantly on mysids but most samples from
Greenwater Lake were taken in the fall while samples from
Burchell Lake were taken throughout the year. Small lake
trout frequently utilize a piscine forage when readily
available (Eschmeyer 1956; Wright 1968; Frantz and Cordone
1970; Martin 1970) and their diet may change with season
(Dryer et al 1965; Wright 1968; Frantz and Cordone 1970;
Anderson and Smith 1971). Possibly, lake trout in Greenwater
Lake consume fewer mysids at certain times of the year than
lake trout in Burchell Lake.

There is no evidence that a paratenic host is
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important in the transmission of C. cristivomeri to lake trout.

No infective larvae were recovered from lake herring from

the study Takes and large piscivorous lake trout (>50 cm long)
in Greenwater Lake had few immature worms that would indicate
recent infection. However, the possibility that paratenic
hosts are involved in the transmission of Cystidicola spp.
cannot be excluded entirely. Work reported here and that by
Opie (1980), who experimentally infected rainbow trout

with ¢. farionis larvae from rainbow smelt (Osmerus mordax

Mitchill), indicate that larvae removed from the swimbladder
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of one fish can reach the swimbladder of another. Feeding
experiments in the laboratory would determine whether
cystidicolid larvae could escape from the carcass of a fish
eaten and migrate to the swimbladder of a piscivorous salmonid.
Since paratenic hosts apparently play no role in transmitting
C. cristivomeri in Greenwater Lake and lake trout greater
than 35 cm long rarely consumed M. relicta, there is
essentially no recruitment of larvae to fish older than five
years (mean length = 29.3 cm) in this lake. This conclusion
is also supported by the observation that the number of
immature worms were highest in five year old fish and the
size of immature worms increased sharply in fish after age
five.

Swimbladder lesions associated with the presence
of Cystidicola spp. have been described by several authors
(Drew 1909; MacLulich 1943; Awachie 1973; Lankester and Smith
in press) but how the lesions develop and whether they cause
fish mortality is presently unknown. The number of lesions
in the swimbladder of lake trout with C. cristivomeri was most
highly correlated with the number of mature worms present.
The number of lesions also appeared related to the size of
mature worms. There were more lesions in fish from Greenwater
Lake with Targe mature worms than in lake trout from the other

lakes with similar numbers, but smaller mature worms.



Salvelinema walkeri (Ekbaum, 1935) Margolis, 1967 in the
swimbladder of coho salmon, Oncorhynchus kisutch (Walbaum),
feeds on blood (Margolis 1967b). Whether Cystidicola spp.
feed in a similar way is unknown but it should be noted that
worms were never found attached to the wall of the swimbladder
at necropsy of infected fish. Lankester and Smith (in press)
found tangled masses of C. farionis closely associated with
ulcerative Tesions in the swimbladder of rainbow trout. Since
similar lesions in lake trout appear dependent on the number
of mature C. cristivomeri present, they may result when adult
worms aggregate, possibly to mate. Mysis relicta has been
introduced into a large number of Takes where shrimp formerly
were absent (Gosho 1975). In view of the potential for

C. cristivomeri to cause disease, mysids might be transported,
when practical, only from lakes where the parasite is absent.

Evidence indicates that (. cristivomeri is

69

particularly long-lived in lake trout. There was no measurable

mortality of worms after 600 days in experimentally infected
lake trout. In Greenwater Lake, the maximum length of mature
worms increased with increasing fish age (ages 2 to 12)
suggesting that worms present in young fish keep growing and
are still present when fish are much older. Also, the number

of worms remained essentially constant in fish from age five

until after age 12 as would be expected if worms were long-lived
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and there was no recruitment during this period. Therefore,
most C. eristivomeri in lake trout from Greenwater Lake appear
to Tive at least 10 years and some probably live longer.

Worms likely are similarly long-lived in the other lakes

where fish were more heavily infected since the maximum Tength
of mature worms continued to increase with fish age.

There is reason to suspect that worms may live even
longer than suggested. The number of worms in age classes
greater than 12 years cannot be compared to that in younger age
classes because of small sample sizes and because ages may have
heen underestimated. Although scale ages of fish less than 10
years old agreed with otolith ages, scales have frequently been
reported to underestimate the age of old lake trout (Bulkley
1957; Dubois and Langueux 1968; Simard and Magnin 1972; Johnson
1976; Power 1978). Also, the stunted growth of lake trout in
Squeers Lake and to a lesser extent in Burchell Lake, is not
uncommon in this species (Martin 1952, 1966; Kerr 1971), but
probably resulted in underestimates of the ages of some of the
older lake trout in these Tlakes.

The longevity of C. cristivomeri is rather unique for
a parasite of fishes. Most fish parasites have seasonal or
annual life cycles (Kennedy 1975). Only a few fish parasites have been
reported to Tive longer than one year in their definitive host

including the monogeneans Discocotyle sagittata (Leuckart, 1842)
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Diesing, 1850 and Diplozoon paradoxum Nordmann, 18323 the
digenean Tubulovesicula lindbergi (Layman, 1930) Yamaguti,
1934; the cestode Eubothrium salvelini Nybelin, 1922; and two
nematodes Cucullanus truttae Fabricius, 1794 (=Dacnitis truttae)
and Salvelinema salmonicola (Ishii, 1916) Margolis, 1966
(Paling 1965; Anderson 1974b; Margolis and Boyce 1969;
Hoffman 1967; Margolis 1965; Margolis 1967a, respectively).
The Tongevity of C. cristivomeri makes detection of any
seasonal recruitment or maturation that may exist difficult.
Also, a Tong 1ife span is an important consideration when
examining parasite population dynamics.

Female C. cristivomeri appeared to mature more slowly
in heavily infected fish than in those with fewer worms suggesting
a density-dependent regulation of maturation. This 1is ap-
parent upon casual examination of data for five-year-old
fishes where the mean numbers of mature females were essentially
the same in fishes from each of the four lakes despite
significant differences between total number of worms present.
Analysis of data from five-year-old lake trout indicated
that the percentage of female C. eristivomeri in individual
fish was inversely related to the total numbers of worms and
positively related to fish length. The effect of fish length
likely reflects the space available for worms in the swimbladder.

The same variables affecting the percentage of mature females
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were important with reasonable consistency when data for
older Tlake trout from Burchell and Greenwater Lakes and when
data from all ages from Gaviafaeces Lake were analyzed. The
failure to demonstrate a density-dependent relationship at
individual fish ages in Squeers Lake may not be surprising.
The ages of many of the older fish were almost certainly
underestimated and would result in considerable unaccountable
variation in the analyses.

It might be argued that the inverse relationship
between the percentage of mature females and total numbers of
worms resulted from density-dependent mortality of C. cristivomeri
rather than retarded growth of female worms. Several parasites
appear to experience density-dependent mortality (Hasselberg and
Andreasson 1975; Anderson and Michel 1977; Mills et al 1979)
but most of these examples are thought to be mediated by host
immune responses. However, it has not been demonstrated that
the immune system of fishes responds effectively to endoparasitic
helminths (Harris 1973) and there is general agreement that it
plays no role in the regulation of fish parasite infrapopulations
(Kennedy 1975, 1977). Mills et al (1979) observed density-
dependent mortality of the ectoparasitic digenean, Transversotrema
patialensie (Soparker, 1924), on its fish host Branchydanio rerio
(Hami1ton-Buchanan) which apparently resulted from intraspecific

competition for space; an immune response was not thought to
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be involved. Density-dependent mortality is an unlikely
explanation for the observed relationship between the
percentage of mature females and total numbers of

C. eristivomeri since dead worms were never found in swim-
bladders or being expelled from fish through the stomach, and
larvae of all developmental stages were found in the most
heavily infected fishes. There was no detectable mortality
of worms in experimentally infected lake trout up to 600 days
nor was there evidence that many worms died over a long period
of time in lake trout from Greenwater Lake.

Mature female C. cristivomeri may not grow as
rapidly in heavily infected fish as in fish with fewer worms.
In Gaviafaeces Lake, the maximum length of females was
related negatively with total number of worms and positively
with fish length. In Burchell Lake, fish length was the only
variable significantly affecting the maximum length of female
worms and no significant effects on female length were seen in
fish from the other lakes. However, in Greenwater Lake where
the intensity of infection was low, the maximum length of
females was consistently higher than that in the more heavily
infected fish from Burchell Lake. The magnitude of the
differences between these lakes may be somewhat exaggerated.
The probability of measuring the longest worms in fish from

Greenwater Lake was high since absolute counts of worms were
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made from most fish. However, the subsampling technique
used on worms from Burchell Lake fish probably decreased
the chances of measuring the longest females. Failure to
demonstrate a negative relationship between total number
of worms and maximum length of females at individual fish
ages in these two lakes may not be surprising. In
Greenwater Lake, the variation in numbers of worms in fish
of the same age may have been insufficent to reveal any
effect of worm numbers on the maximum size attained by
females. In Burchell Lake, the subsampling technique and
the suspected problem of aging older fish probably resulted
in additional unaccountable variation in the analyses.
Consequently, any relationship between numbers of worms and
maximum length of females may have been masked.

If the maximum length attained by female worms is
determined in a density dependent way then the laboratory
observation that short worms lay eggs at a slower rate than
larger worms is of obvious significance. In comparing the
egg~-output of worms from Squeers and Greenwater Lakes it is
apparent that female worms of the same length, whether from
fish with heavy or light infections, deposit similar numbers
of eggs under laboratory conditions. There was a higher
correlation between egg output and worm length with worms

from Squeers Lake than with those from Greenwater. This may



be explained by the ways in which worms from the two lakes
were collected. Those from Squeers Lake were placed in test
tubes within 24 hours of being taken from freshly caught
fish. However, those from Greenwater Lake were removed

from fish taken by anglers and up to 60 hours elapsed before
most were put in tubes in the laboratory.

An estimate cannot be made of relative output of
eggs from infrapopulations in lake trout because all mature
female worms were not measured. However, other studies
indicated that the resultant effect of density-dependent
egg output at the infrapopulation level may be impossible to
predict for any particular parasite without measuring it
directly. The total egg production by an infrapopulation may
either increase (Boray 1969), remain constant (Michel 1967),
or even decrease (Hasselberg and Andreassen 1975) with
increasing number of worms. It is apparent that the total
egg output by an infrapopulation of C. cristivomeri is
dependent upon the number and length of female worms present.
The length of female worms, in turn, is dependent upon the
length of time a fish has been infected and probably the size
of the infrapopulation during this time.

A11 organisms have a reproductive potential capable
of increasing population size. Obviously, some form of

control must exist to restrain that increase. The controls
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may be effective equally over the entire range of population
densities in which case they are density-independent and
not regulatory in the sense of the word used here. On the
other hand constraints may operate with increasing severity
as population size increases in which case they are density-
dependent. The latter situation results in a negative
feedback control of population growth and is the form of
regulation demonstrated here for C. cristivomeri. Density-
dependent controls, when in operation, usually affect an
infrapopulation in the following way: as recruitment increases
the proportion of worms establishing and maturing decreases as
does the growth rate and egg output per female (Holmes et al
1977). This statement is an accurate description of the negative
feedback controls acting on C. ceristivomeri in its definitive
hosts, except there is no evidence that fewer recruits
successfully establish as infrapopulations increase in size.
Bradley (1972, 1974) outlined three ways in which the
size of suprapopulations may be determined (not necessarily
regulated). The first (Type I) is parasite numbers determined
by factors such as feeding preferences that influence rates
of transmission. The result of different levels of transmission
is readily visible by comparing worm burdens in fish from
Burchell and Greenwater Lakes. However, parasite number

determined by transmission is density-independent (Holmes et al
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19773 Kennedy 1977) and is not regulation in the sense
used here. Bradley's Type II is regulation at the Tevel of
the host population either by the death of the most heavily
infected hosts of an overdispersed parasite population or
by an effective immune response which rids the host of
parasites and results in permanent immunity. Type III is
regulation at the level of the host individual either by
some form of partial immunity or, as recognized by Holmes et al (1977),
by other mechanisms such as intraspecific competition which is
known to regulate populations of free-living organisms.
Bradley's Type II regulation has received considerable
attention. Overdispersion as a characteristic of various
parasite populations has frequently been described (Esch et al
1977). Crofton (1971a, 1971b) recognized and described
mathematically that overdispersion of parasites in their host
population with death of the most heavily infected individuals
can lTead to regulation of the parasite suprapopulation. May
(1977) subsequently re-examined Crofton's model and substituted
more realistic assumptions but generally came to similar
conclusions. Bradley's Type Il regulation is unlikely to play
an important role in the population regulation of C. cristivomeri.
Lesions in the swimbladder appear to be caused by adult worms
and density dependent restraints prevent the maturation of large

numbers of worms except in a few very old fish. However,
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C. eristivomeri may demonstrate another way in which the

size of a parasite suprapopulation is affected at the host
population level. The long development time required

and the Tow reproductive output, probably for several years
after maturation, results in considerable

loss from the system with the natural death of the host.
Adult lake trout suffer up to 50% annual natural mortality (Sakagawa
and Pycha 1971) and presumably higher mortality in earlier
1ife. Other fishes also experience high annual mortality

but most parasites have seasonal or annual 1ife cycles
(Kennedy 1975). Consequently, a reasonable percentage of
these parasites would establish in their definitive host

and reproduce before the host dies. The loss of reproductive
potential in a long-1ived parasite like C. cristivomeri
clearly does not act in a negative feedback manner and hence
is not regulatory.

Bradley's Type III regulation at the level of the
host individual, although well known in homeotherms (see
Bradley 1972, 1974; Kennedy 1975; Grundmann et al 1976;
Schad 1977), seems rare in poikilotherms. Leong (1975)
found Metechinorhynchus salmonis (MG]]er, 1784) infecting ten
species of fishes in Cold Lake, Alberta. The maturation of
female acanthocephalans was strongly regulated in lake

whitefish. The mean numbers of gravid females were not



significantly different between age classes in spite of
significant differences in the mean total numbers of worms.
Holmes et al (1977) modelled this system and found that
regulation at the infrapopulation level in lake whitefish

was sufficient to regulate the levels of the whole
suprapopulation. Kennedy (1977) summarizing his own work and
that of his associates on Pomporhynchus laevis (Muller, 1776)
in the River Avon concluded that this acanthocephalan was

regulated in a manner similar to that of M. salmonis in lake
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whitefish. However, this conclusion was based on studies conducted

with fish in which P. Zaevis did not mature. Apparently,
evidence has since been found for density-dependent regulation

in the suitable hosts of P. laevis (Holmes et al 1977). It

may be significant that the population levels of both M. salmonis

and P. laevie were high in the two localities mentioned.
Kennedy (1977) suggested that density-dependent regulation may
only occur in very crowded populations. Mills et al (1979)
reported that the ectoparasitic digenean 7. patialensis
exhibits density-dependent natality and mortality on its fish
host, B. derio. However, their findings were based on
laboratory experiments and the infrapopulation levels at
which density dependent natality occurred probably do not
exist in nature (Mills et aZ 1979). A few additional studies

have suggested density-dependent regulation of fish parasites
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but the means by which this occurs remain obscure (Kennedy 1977).
Cystidicola eristivomeri 1S characterized by density-dependent
growth before and after maturation and consequently, density-
dependent reproductive output. This is another example of
a fish parasite whose infrapopulations are regulated.
Density-dependent regulatory processes minimize
fluctuations in the size of parasite suprapopulations.
Many authors have modelled host-parasite systemsin an attempt
to examine factors important in affecting this stability
(Anderson 19763 Holmes et al 1977; May 1977; Anderson and
May 1978; May and Anderson 1978). Most models were based on
the assumption that parasites are overdispersed in their
host populations and some hosts may die as a result of heavy
infection. However, this form of regulation seldom occurs
if regulation at the level of the host individual is strong
(Anderson 1978). A long term study is necessary to establish
whether population levels of C. eristivomeri are stable but
evidence presented here suggests that they are. The numbers
of worms in older trout from Greenwater Lake appear to have
remained stable over the last seven years.
The biology of Cystidicola spp. remains incompletely
known. Experimental examination is needed to determine whether
the swimbladder nematode which matures in lake whitefish is

the same species which matures in other salmonids in North America.
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Experimental examination of the delayed development of

C. cristivomeri under crowded conditions would provide a

more precise understanding of this regulatory mechanism.

This experiment could also include an examination of host

immune response associated with increased worm burdens and
changes in egg output by infrapopulations in infected fish.

A long term study of C. cristivomeri in nature is needed

to confirm that population levels of this nematode are

indeed stable. Comparison of egg output between C. cristivomeri
and C. farionis may provide an appreciation of any ecological
differences between these two nematodes. Finally, experimental
infection of fish in the laboratory would demonstrate whether

C. eristivomeri is more pathogenic in lake trout from

unexposed populations than in fish from lakes where the parasite

already exists.
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Appendix 2. Number and length of lake trout examined from

Squeers Lake, 1978-79.

Length (cm)

Season . < 30 30 - 40 > 40
Fall 1978 and 1979 27 24 24
Winter 1978 4 14 9




