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ABSTRACT 

Electrical transport properties of n and p-type InSb 

in the temperature range 6.2-300K have been studied under 

pressures up to 15 kbar using Hall measurements. 

The donor gap in n-InSb is found to increase linearly 

with pressure, becoming zero at pressures of 8.4 kbar or less. 

This is responsible for carrier freeze-out under pressure. 

Unexpected behaviour is observed in the donor gap, as it appears 

to decrease abruptly at temperatures near lOOK as temperature 

is lowered. This effect has been investigated and two possible 

theories explaining it are examined. Mobility measurements at 

low pressure indicate that at temperatures below 40K scattering 

processes are dominated by ionized and neutral impurity scattering. 

At pressures high enough to cause carrier freeze-out the mobility 

decreases rapidly with temperature. High electric field measure- 

ments indicate that ionized impurity scattering is the dominant 

scattering mechanism in this regime. 
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PRESSURE DEPENDENT EXTRINSIC EFFECTS IN InSb 

A member of the III-V family of semiconductors, InSb was 

for many years considered a classic example of a narrow band-gap 

semiconductor. Recently there has been renewed interest in the 

donor states of this material, of which there is a surprisingly 

limited understanding. 

The effect of donor freeze-out observed in many semicon- 

ductors is not seen in InSb at any temperature without the action 

of a magnetic field, pressure or some other agent. The explanation 

of this seems to be that the low electron effective mass 0.013 m e 

in InSb results in large donor orbits which overlap for even the 

purest samples available (about 10^^ donors/cc) causing the donor 

level to spread and overlap with the conduction band. 

Magnetically induced freeze-out has been studied fairly 

(1-9) extensively by various workers.' ‘ Two theories of magnetic 

freeze-out are prevalent. One is that the donor levels are initially 

in the conduction band or very near to it, and that a magnetic field 

raises the conduction band minimum more than it does the donor level 
(2 3 4) relative to the valence band, thus increasing the donor gap.' ’ ’ 

Alternatively, the donor electron wavefunctions may overlap 

sufficiently to form a donor band which causes conduction at low 

temperature.The magnetic field compresses the donor electron 
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wavefunctions so that impurity band conduction is destroyed and 

freeze-out is observed. 

The effect of pressure induced donor freeze-out is not as 

well understood as magnetic freeze-out, and less experimental 

work has been done on it. Apart from some combined pressure and 

magnetic field investigations,^^ the primary researchers in 

the field are Porowski and his co-workers.They have 

observed strongly pressure dependent donor freeze-out in n-type 

InSb, as well as an anomalous effect during freeze-out which 

appears to be a sudden change of the donor gap at abolit lOO^K. 

This they explain in terms of a donor atom that can occupy non- 

equivalent lattice positions with different electron energies. 

Studies of acceptor levels in InSb are rare, and an 

understanding of them could be helpful in elucidating some effects 

in n-InSb. Because electrons in InSb are much lighter than holes 

their mobility is much higher (about 80 times), consequently, in 

order to appear p-type the material must be doped with enough 

acceptors to override the effect of donor electrons, so p-type 

InSb cannot be as pure as n-InSb. 

The effect of a high electric field on mobility and carrier 

number in semiconductors has been investigated experimental 

and theoretically.The electron mobility in InSb has been 

given a theoretical treatment in some detail by T. Stokoe and 

(19) 0. Cornwell.' ' Their low temperature results will be compared 
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with our experimental data in the freeze-out range. Impact 

ionization of donors in InSb does not seem to have received as 

much theoretical attention, although some experimenters have 

observed it during freeze-out experiments.Measurement 

of breakdown voltages for donOr impact ionization can reveal 

the presence of more than one donor level by the existence of 

more than one breakdown voltage. In cases of extreme freeze- 

out the measuring fields used could cause impact ionization and 

affect the results, so it is important to know when this becomes 

significant. 

Optical measurements on semiconductors can provide 

information on energy gaps more directly than electrical measure- 

ments. Anomalous optical absorption in pure and doped samples 

of InSb have been observed by M. Tanenbaum and H.B. Briggs, 
(21) 

and by Elias Burstein' ' who explains the effect in terms of 

degeneracy of conduction band electrons for high electron density. 

We have observed degeneracy effects in our samples at low 

temperatures and low pressure. 

We have studied the Hall effect and resistivity for n 

and p-type InSb between room temperature and 7°K at pressures up 

to 15 kbar. This thesis studies the Porowski anomaly, and 

considers alternative explanations. Freeze-out in p-type material 

is examined to see if a simi 1ar effect ocdurs there. Electron 

number and mobility in the freeze-out range are measured for 
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varylng electric and magnetic fields and the results compared 

with theory. 

In Chapter 1 the theory of low field carrier number under 

extrinsic conditions is reviewed and the effects of various doping 

conditions is considered. Low and high field mobility are discussed 

and the current theories of magnetic freeze-out briefly presented* 

The van der Pauw method used for measurements is examined. In 

Chapter 2 the sample preparation and equipment are described. In 

Chapter 3 the results are presented and discussed, and Chapter 4 

contains our conclusions. 
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Chapter 1 

Theoretical Considerations 

1-1• Band Structure i n InSb 

There is a reasonable amount of information on the band 

structure of InSb. 

The maxima and minima of the valence and conduction band 

respectively lie around Ic = 0. The conduction band is made up of 

two bands, the lowest of which lies at the centre of the Brillouin 

zone (r point) where the band has the largest curvature, hence 

the smallest electron effective mass. The band is approximately 

parabolic for energies up to a few tens of millelectron volts at 

zero pressure, and the parabolic approximation becomes better as 

pressure increases the band gap. The band structure of inSb is 

shown graphically in Figure I. 
(22) Kane' ' has performed detailed calculations of the band 

structure of InSb and other small band gap semiconductors. He 

obtains the E - t relations for the conduction and valence bands 

using p, the interband interaction matrix element and A, the spin- 

orbit splitting energy at t = 6. For the conduction band (energy 

measured from the top of the valence band) 



FIgure 1 Band structure of InSb. The dashed lines 

represent the bands under a pressure of 

approximately 15 kbar. 



0.5 as o k [lo'cnf'] 



For the valence bands (energy measured from the top of the 

valence band) 

Heavy hole band 

E = 
2mo 

1 
2 Light hole band 

E , p2k2 Spin-orbit split band. 

Here m^ is the free electron mass and E„ is the valence to conduction 
0 g 

band gap. The parameter A occurs only in the spin-orbit split band 

expression. 

In the conduction band formula, if we measure energy from 

the bottom of the conduction band and ignore tr^k^/2mQ (since 

m^ = 80m* in the conduction band), we have o n 

E’ fr 2 ^ i 9 3 J (1-1-1) 

We define m* = 3tT^E /4p^. Putting this in (1-1-1) and eliminating 
* * y :*' / 

p2, one obtains 

2ra*n 
1 + E'/E 

9, 
(1-1-2) 



-9- 

This is a hyperbolic relation between E' and t. Provided the 

conduction band is not too full and the electron energies are 

not too high (E' « the equation reduces to a parabolic 

relation between E' and t: 

E' = tr2k2/2m^ (1-1-3) 
n 

The effect of pressure is to increase E^ and m* . Thus 
g n 

the parabolic approximation is improved both directly by reduction 

of E'/Eg and by the larger density of states, which is proportional 

to m* ^ . 

The L conduction band edge is estimated to lie 0.52 eV 

above the r conduction band minimum. The pressure derivatives of 

the r and L band minima are estimated to be 14x10"^ eV/kbar and 

8.3x10^3 eV/kbar respectively 

The valence bands Vj and V2 are degenerate at Ic = 0. The 

hole density of states is determined mainly by the low-curvature 

heavy hole band, however, the electrical properties are affected 

by both types of holes since the light holes are more mobile than 

the heavy holes. The split off band V3 does not contribute in 

low electric field studies. 
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1-2. Low Field Carrier Concentration for Extrinsic 

Semiconductors 

The electron density in the conduction band for a semi- 

conductor with parabolic bands is given by 

n = N^Fia(n) 

where fh{n) = 
2 f /ede 

/n J l+exp(e-n) 

(1-2-1) 

(1-2-2) 

e 
0-E 

n = 'i.j- 0 = Fermi energy. 

N = 2(2TTm*kT/h2) ^2 fs the effective density of states in the 

conduction band, m* is the electron effective mass. 
e 

If there is a concentration of donor atoms with ionization 

energy , the number of deionized donors will be 

1+B exp kT 

(1-2-3) 

But Nj+ = - Nj . (1-2-4) 

Nj+ is the number pf ionized donors. 
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For the non-degenerate case where E - 0 > 4kT we have 
w 

n = N FJ^(n) - N exp(n) = N 
C C# U 

exp 
i-E 

kT 0-2-5) 

Substituting (1-2-3) and (1-2-5) in (1-2-4) we obtain 

fE .+0-E 
d c l + g-l0Xp 

I kT 
1 + BN exp kT 

(1-2*6) 

A similar expression exists for the number of ionized acceptors. 

That is 

+1 
(1-2-7) 

2/ 
where N„ = 2(2TrkoTm*/h2) 2 -js the density of hole states in the V u p 

valence band and B is a factor that accounts for possible multi- 

plicity in atom bound states. This will be taken as 2. 

To solve for the carrier concentration in the conduction 

band, two other equations are required. From charge neutrality 

P + Np+ = n + N^- (1-2-8) 

and the intrinsic carrier concentration of carriers excited across 

the valence to conduction band gap gives 
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Hp = exp 
-E, 

(1-2-9) 

where E_ is the valence to conduction band gap. 
b 

The four equations (1-2-6) to (1-2-9) can be solved to find 

the free electron or hole concentration for any ratio of and Np 

However, this would involve solving a fourth order equation, so it 

is helpful to consider simpler cases. 

If there are no compensating acceptors, the free electron 

concentration is simply 

n = Np+ 

1 + 
fE, 

BN exp 
KBT 

or 

exp 
KBT 

(1-2-10) 

In the case of a lightly compensated sample N- >> N. we can 

make the approximation (in the extrinsic range) 

ND+ = n + N^ (1-2-11) 
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because all the acceptors will have electrons frozen onto them. 

Putting this in (1-2-6) we have 

n(n+N^) 
—_ = jg(^ 

No-N^-n C 

-E, 

kgT 0-2-12) 

This equation can give anomolous appearances. For moderate freeze-out 

Np » n » , 

n(N^+n) 

Therefore 

n = exp c D 

-E. 

2keT (1-2-13) 

But for extreme freeze-out >> n , 

n(N^+n) nN^ 

Np-n-N, Np 

and 

8NcNp/N^ exp I'D 
kgT (1-2-14) 

Thus the energy gap appears to double as the number of carriers 
3/ 

decreases past n = . A plot of log (n/T 2) against 1/T will show 
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two Straight lines with one having twice the slope of the other 

intersecting at n = . This has been observed experimentally 

and may be used to obtain information about compensation levels 

in a semiconductor. 

For heavily compensated semiconductors the solution must 

be obtained by solving the four equations (1-2-6) to (1-2-9) 

giving 

n * 2nexp(ep)+N^ " * 2Nj.exp(e^-eg)+n 

(1-2-15) 

where ~ ~ 

assumed twofold degeneracy for both donors and acceptors. 

This equation gives the carrier number under all conditions 

of doping and compensation. 

Equations of this type can best be solved by numerical 

methods. This will be discussed further in section 1-5, part III. 
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1-3. Low and High Field Mobility 

The mobility of carriers in a crystal is limited by several 

processes whose effects are generally dependent on lattice temperature, 

carrier temperature, carrier effective mass, and ionization conditions. 

The most important scattering mechanisms in InSb at temperatures below 

/^BO^K are ionized and neutral impurity scattering. At high tempera- 

ture, phonon and electron hole scattering predominate. The low field 

mobility limits for these processes have been given in a previous 

thesis by S.M. Fon^.^^^^ The impurity scattering formulas are of 

interest to us as we are concerned with mobilities at low temperatures, 

however, the high field behaviour of phonon scattering is also 

considered as It could play a role when the carrier temperature becomes 

elevated. 

I. Ionized Impurity Scattering 

At low temperatures, when phonon scattering becomes less 

effective, the mobility limit may be controlled by ionized impurity 

(271 
scattering. The mobility limit has been given as' ' 

Mj = 3. 
m. 

m’' 
yen 1.3x10V‘*T‘'^k 

m* 
m 

0} 

/n (1-3-1) 

Np and are the number of 

free carrier concentration. 

ionized donors and acceptors, n is the 

and k is the dielectric constant of the 

material. 
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The units used are in the cgs system. The mobility will 

be in the cm^/V-sec. We have for low fields 

I 

The scattering time T giving the effective collision period is 

related to carrier energy by^ ^ 

T a . (1-3-2) 

Similarly, the Hall factor is 

= 315TT/512. 
H 

The ionized impurity mobility limit is observed to drop 

rapidly when an electric field raises the electron energy. Since 
3/ 

the scattering time is proportional to ^ gp increase in the 

electron's energy by the field will result in its being scattered 

less so that it can increase its energy still further. The mobility 

will undergo a runaway increase for a small range of field strengths 

until it is limited by some other process. When freeze-out of donors 

is advanced, the number of ionized impurities will be reduced. The 

application of a high electric field may cause impact ionization, 

increasing the ionized impurity concentration, and reducing the 

mobility limit due to this process. Thus the field dependence of 

ionized impurity scattering in a sample exhibiting extreme freeze-out 

will be the difference of these two competing processes. 
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II. Neutral Impurity Scattering 

Scattering by neutral impurities may be of importance in 

(29) 
samples experiencing a high degree of freeze-out. Erginsoy' ' 

has given a simple treatment of this process for low temperatures. 

y N 
1.4x1022 cm2/V-sec. (1-3-3) 

N|^ = number of neutral impurities per cc. 

Again we have^^^^ 

a m*T^ and T a (1-3-4) 
n 

Here the Hall factor is = 1 

Because the scattering time is independent of the carrier 

energy, the mobility limit has no explicit temperature or field 

dependence. Since the number of neutral impurities is temperature 

dependent and may also be reduced by impact ionization, the neutral 

impurity scattering process is indirectly affected by these para- 

meters, and will generally become less effective when temperature 

or electric field strength is raised. 
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III. Phonon Scattering 

I 

Carriers may be scattered by lattice^'vibrations or phonons. 

Acoustic phonons are present in all types of lattice, while polar 

optical phonons occur only in diatomic lattices since they rely on 

the relative movement of two unlike atoms. The low field mobility 

limits for optical and acoustic phonon scattering are given in 

the thesis of S.M. Fong, however, they are of little concern here 

because phonon scattering, since it relies on thermal lattice 

vibrations, becomes insignificant at low temperatures. When the 

electron energy is raised by an electric field it may dissipate 

some of this energy in the form of acoustic or optical phonons. 

Thus, the high field mobility limits of these processes may be of 

importance. 

A theoretical treatment of high field acoustic and polar 

optical scattering is given by Seeger.The mobility limit due 

to acoustic phonons at high field exhibits a characteristic E “ 

field dependence 

= i.8i (1-3-4) 

where is the low field mobility, and u^ is the speed of sound 

in the material. 
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This result is verified by experimental observations of 

the field dependent mobility in germanium. 

Polar optical scattering is also effective in InSb since 

it is a diatomic material. The mobility limit due to this process 

exhibits a runaway increase at sufficiently high field strengths, 

an effect that has been related to dielectric breakdown. It has 

never been observed in a semiconductor because other scattering 

mechanisms take over at high enough fields. D. Matz has pointed 

out that the non-parabolic conduction band in InSb would prevent 

the breakdown. 

At low lattice temperatures (T « 0, where 6 is the Debye 

temperature) the drift velocity may be limited to a nearly constant 

value over a range of field strengths before the breakdown. This 

would result in a mobility field dependence of approximately . 

IV. Combined Scattering Processes 

E.M. Conwell^^^^ has measured the electron mobility in 

germanium at 20^K, and observes that it rises rapidly for a small 

range of electric fields and then decreases as f ^ . For higher 

temperatures the mobility is constant with field up to some point 

and then decreases as E ^ at high fields. She attributes this 

behaviour to a combination of ionized impurity and acoustic scatter- 

ing. The ionized impurity scattering limits the mobility at 20^K 
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and its effect decreases rapidly with increasing field until 

acoustic scattering takes over with its characteristic 

mobility dependence. At higher temperatures (77°K) acoustic 

scattering is dominant at all electric field strengths. 

In InSb, however, polar optical scattering may play an 

important role since we are dealing with a diatomic material. 

(191 
T.Y. Stokoe and J.F. Cornwell' ’ have analyzed high field trans- 

port in n-InSb using the drifted Maxwellian approach, taking the 

dielectric constant as 17.5 and the acoustic deformation potential 

as -7.2 eV. They take into account in their calculations mixing 

of Bloch states, spin reversal scattering, and band non-parabolicity. 

For a lattice temperature of 77°K they calculate that polar 

scattering is the dominant process for electron temperatures up to 

400^K or more. 

They also calculate the field dependence of the mobility for 

lattice temperatures of 20°K, taking into account band non-parabolicity, 

Bloch state mixing, polar, acoustic and ionized impurity scattering. 

The results give a field dependence for low fields (F. < lOV/cm) of 

p ct F^'^^ and for high fields (E > 30V/cm) y a These results 

will be compared with some of our experimental work which was also 

done near 20°K. 

V. Impact Ionization 

At low temperatures and high enough pressures most of the 

electrons in n-InSb freeze out onto donors. As the electric 
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field across the sample is increased, some of the free electrons 

acquire sufficient energy to ionize these neutral donor atoms. For 

donor levels of the order of 10 meV below the conduction band * 

impact ionization begins to increase the number of electrons for 

fields of about 0.1 V/cm. The increase in carrier number with 

(31V 
field should be exponential'^ ^ and the power of the exponential 

is proportiona1 to the mobi1ity, i.e. 

g( E) a exp(uE) 

The rate of impact Ionization can also be affected by a 
(32) 

magnetic field. Z. Dobrovolskis and A. Krotkus' ' observed an 

increase in ionization for smal1 magnetic fields, whi1e 1arger 

fields retarded the ionization. 

They explain this by magnetic cooling Of the electrons at 

high magnetic fields, while at low fields (670 Oe) the main effect 

of the magnetism is to cause distortions in current paths, resulting 

in inhomogeneous electric fields in the sample and areas of high 

local ionization. They observe the carrier generation rate to be 

exponential with electric field strength. 

If the electric field is increased sufficiently the 

ionization rate will enter a region of breakdown where the number 

of carriers increases very rapidly with field until all the donors 

are ionized, when the carrier number will become constant. If 
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more than one donor level is present a distinct breakdown should 

be observed for each level. An example is zinc doped germanium 

(two acceptor levels: E. = 33 meV, E« = 90 meV) which exhibits 
j. ^2 

two regions of breakdown in an n vs. t plot. 

1-4. Hall Effect Measurement and the Van der Pauw Technique 

(33) 
Van der Pauw' ' has developed a method of measuring the 

specific resistivity and Hall resistivity of flat samples of 

arbitrary shape. This method holds if the following conditions 

are met: 

(a) The contacts are at the circumference of the sample. 

(b) The contacts are sufficiently small. 

(c) The sample is of uniform thickness. 

(d) The sample has no isolated holes. 

The specific resistivity is given by 

n - 
P 2ln2 .’^AB.CD * '^BC.DA 

AB.CD 

[•^BC.DA 
(1-4-1) 

where d is the sample thickness, cD resistance defined as 

the voltage between D and C per unit current between A and B contacts. 

The resistance is defined in a similar manner. 
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The parameter f is a slowly varying function of the ratio 

CD^^^BC DA * gives the relation satisfied by f as 

= f arc cosh {fiMMimi (1.4.2) 
*^AB,CD “ ^BC,AD K d } 

This equation is consistent with Van der Pauw's graph of f against 

^'^AB,CD'''^BC,DA^ ’ 

The arrangement for measurement of specific resistivity is 

shown in Fig. 2. 

Figure 2 
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The Hall coeffleient can be determined by measuring 

the change of resistivity when a magnetic field S is applied 

perpendicLilar to the sample. We have 

AR 

Bl BD,CA 
(1-4-3) 

For n-type InSb the electron mobility is of the order of one 

hundred times greater than hoile mobility and since the number of 

electrons is always equal to or greater than the number of holes 

the electrons dominate conduction processes and one may assume single 

band conduction. Then 

R = R = !H , 1 
||, ''BD.CA ne rig^^e (1-4-4) 

where Yu = <u ♦ The Hall factor YM varies from 1 to 2 
rl n n n 

depending on the scattering processes. If Y^ is unknown one may 

obtain the Hall mobility and effective carrier number leaving Y^ 

undetermined. 

= R„/P = ne ''D 

(n =y,S=0) 
'on n ' 

(1-4-5) 

One must know Y^^ in order to specify the drift mobility. 
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The apparent carrier concentration is plotted as n through- 

out this thesis and is given by 

'eff = |S|/d( 
1 

AR 
BD.CA 

^ n/Y 
H 

(1-4-6) 

For the purpose of obtaining the derivatives of n and u 

with temperature, pressure,or other parameters,there is negligible 

error in plotting n^^^ and instead of n and pp since Y^ will 

only vary slowly and over a small range. 

The situation is more complex in p-type InSb. At room 

temperature the material is intrinsic and the more mobile electrons 

dominate all conduction processes. As the temperature is lowered 

the situation changes from intrinsic to extrinsic as the proportion 

of electrons to holes becomes smaller. The Hall resistivity in this 

case is 

n p-nb^ 
e (p+nb)^ (1-4-7) 

where b = and p is the number of holes. The Hall resistivity 
n p 

changes sign at p - nb^ rather than at the intrinsic concentration 

n = p. In InSb we have b - 80 at room temperature so the hole 

concentration must exceed the electron concentration by a factor 

of 6400 for the to change sign. 
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In this thesis we are pritnarily interested in the extrinsic 

behaviour of InSb, which in p-type tnaterial means that the condition 

p >> nb^ must be satisfied. In order to calculate how far below the 

sign change ot the temperature must be for extrinsic conditions 

to prevail we use the formula 

np - exp(-Eg/kgT) (1-2-9) 

Eg being the band gap energy. At the sign change we have p ^ 6400 n 

which means that the concentration of holes is extrinsic, i.e. equal 

to the number of uncompensated acceptors. 

p - = constant 

n = (^QN^/N^) exp(-Eg/kgT) 

We know that N^Ny has a dependence, and the smallest 

value of Eg is at zero pressure and is about 0.2 eV. The sign change 

occurs at around T = 150°K. 

a T3 exp(-2321/T) IBO^exp 
f-232l1 

150^ 
6.43 X 10*1 
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To ensure extrinsic conditions we specify n < n /lO 
V# 

which is satisfied for T < 133°K. Thus it is safe to ignore 

electron conductivity at temperatures twenty degrees or more 

below the sign change in . 

Another complication arises in extrinsic p-type InSb, 

this being the two valence bands contributing heavy and light 

holes, with different mobilities. A simplified expression valid 

at low fields is 

_ ^lPl‘*'^2P2 

^ ® (UlPl+y2P2)^ 
(1-4-8) 

where Pi and P2 are the concentrations of the two hole types, and 

Pi and P2 are their respective mobilities. 

If the ratios P1/P2 = x and PI/P2 = b are known to be constant 

with temperature then we may solve for pi or p2 : 

In b^x + 1 
e (bx + (1-4-9) 

P2 
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Figure 3 shows the arrangement for Hall measurements. 

Figure 3 
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1-5. Donor Freeze-out in InSb 

I. Magnetic Freeze-out 

At zero pressure and magnetic field strength the effect 

of donor freeze-out is not observed in InSb at any temperature. 

An apparent increase in at temperatures of the order of 10°K can 

be attributed to the onset of degeneracy of electrons in the 

conduction band. Freeze-out at low temperatures has been observed 

when a strong magnetic field is present, and there are two distinct 

schools of thought as to the cause of this. R.J; Sladek^^^ has 

made a detailed study of magnetic field effects on donor levels in 

InSb. He concludes that the donor levels overlap the conduction 

band at zero field strength, due to the low electron effective mass 

which causes the donbr electron wavefunctions to overlap each other 

at even the lowest available impurity concentrations. A simple 

hydrogen atom model for donors in InSb gives an ionization energy 

of 0.69 meV but as Keys and Sladek' ' point out the average distance 

between donors is only about three times the reduced Bohr radius for 

2 X lO^'* impurities per cubic centimeter. A magnetic field would 

narrow the spread-out donor levels into a donor band which would lie 

below the conduction band. The effect of the field bn conduction 

band electrons would be to raise their energy by where a> is 

the cyclotron angular frequency eB/m* The energy of the donor 

states would also be raised due to the compression of the donor 

electron wavefunctions closer to their atoms, but the increase would 
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\ 
not be as great as for conduction band electrons, thus the donor 

gap would increase with increasing magnetic field strength, 

producing free2e-out. They have observed freeze-out at temperatures 

in the range of 1-10 K and magnetic fields up to 30 kG. The binding 

energy of the donors appears to increase with field as predicted, 

and an impurity band becomes evident at low temperature as 

passes through a maximum and starts to decrease. 

Another effect that may be responsible is the Mott transition. 

Fenton and Haering^^^ have analyzed this in semiconductors, in 

particular InSb. The theory takes into account donor screening by 

conduction band electrons. For shallow donor states the number of 

electrons ionized into the conduction band could be sufficient to 

reduce the donor binding energy to zero by screening, thus there 

will be no bound states and no freeze-out. A magnetic field increases 

the donor gap in the manner described previously, and for some critical 

value of field the donor binding energy would become finite. As 

electrons start to freeze-out the screening decreases, so that the 

process is regenerative and a rapid decrease in the conduction band 

electron density would be observed. At absolute zero the change 

would become a discontinuity called a Mott transition. The field 

strength required to produce this obviously depends on impurity 

concentration since a greater number of impurities produces more 

screening, requiring a higher field strength to produce a transition. 



-31- 

M. von Orthenberg^^^ has considered the problem of 

magnetic freeze-out theoretically, calculating the energy levels 

of a screened hydrogen-1 ike impurity centre, including screening, 

non-parabolicity, and excited bound states. His results show 

good agreement with experiment in the high magnetic field range. 

II. Pressure Induced Freeze-out: Porowski*s Model 

S. Porowski and various co-v;orkers first observed an anomaly 

(12131 in donor freeze-out in undoped InSb' ’ The transition occurs 

during temperature varying, constant pressure runs when the pressure 

is high enough to cause freeze-out. It has the appearance of an 

abrupt change in the freeze-out rate (decrease) at about 100°K as 

the temperature is lowered. Porowski and his colleagues analyzed 

the apparent donor gap on both sides of the transition using the 

donor energy gap formula 

With E^. as the donor energy gap at pressure P, Ei is the gap above 

lOO^K and E2 the gap below lOO^K. Fitting his data Porowski obtains 

E^, = +85 meV Yi = 
01 ^ 

E = +145 meV Yo = 
02 ^ 

-10.5 meV/kbar 

-20.0 meV/kbar. 
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Energies are measured from the bottom of the conduction 

band. The pressure dependences of the donor levels and Y2 

were seen to be close to the pressure dependence of the L and X 

minima respectively; it was initially assumed that the donor levels 

were associated with these minima. This simple model failed to 

explain why level 1 was not being populated above lOO^K or why 

level 2 was not populated below it. 

Porowski ruled out any purely electronic model for the 

transition because the involved electrostatic potentials should 

lower the mobility during freeze-out, which is the opposite of 

what he observed. He assumes a model in which the donor atoms can 

occupy two or more positions in the lattice with different donor 

ionization energies. The model is shown graphically below. 

conduction bond 

z / / z / 
I i 

electron levels 

Figure 4 
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The barrier between sites A and B prevents ions moving 

between them at temperatures below - lOO^K. The donors can 

occupy positions A and B-with corresponding ion energies and 

Eg . The donor electron energies in these positions are and 

Gg . We assume < Eg and > eg . The number of ions in 

positions A and B are and Ng and ” total impurity 

concentration. The number of electrons on donors in states A and 

B are n^ and ng , and the number of available A and B sites per 

unit cell is and Gg . 

At thermal equilibrium the conditions for minimum free 

energy, valid above the transition, give 

NA = N 1 + 
’A 

exp 'A-'B 
kT 

1 + 2 exp 

1 +2 exp 

L-kjJ. 
f^F-^A] 

kT J 

1 

(1-5-2) 

n 
A 

1 + 
1 
2 exp (1-5-3) 

Gp is the Fermi energy level, and the electrons are assumed to have 

twofold spin degeneracy on donors. 

We have also 

n 
0 

HA + ng + n (1-5-4) 
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where n is the number of electrons in the conduction band, and 

n is the total number of donor electrons available. 
0 

The formulas giving and n^ give Ng and n^ by simply 

reversing A and B in all expressions and subscripts. 

The Fermi level can be calculated from 

n (1-5-5) 

2 is the generalized Fermi integral, is the band gap energy. 

For the extrinsic range where T > lOO^K, Porowski calculates 

that the inequality 

^F (1-5-6) 

holds. The equations (1-5-2) and (1-5-3) may be simplified to 

give 

Ng " ng = N 1 + ^exp kT (1-5-7) 

= 0 (1-5-8) 

where E is the energy gap at K = 0. 

Thus for T > T^ we have ions moving from sites A to B with 

subsequent deionization in position B. If G« = 6p 
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= N 1 + 2 

^-1 

kT 0-5-9) 

which is the usual expression for freeze-out onto a donor level 

with binding energy 

and in the experimental results E2 = v? . 

When the temperature falls below the transition temperature 

the electrostatic barrier between ion positions prevents ion transfer 

from position A to B, thus and Ng are fixed, level B will be fully 

populated with frozen-out electrons, and freeze-out onto level A 

begins. This will follow the normal pattern of freeze-out onto a 

level with binding energy and density . 

Porowski predicts relaxation time effects near the transition 

as a result of the electrostatic barrier slowing the rate at which 

(14 15) 
ions can transfer from A to B. ’ He also points out that the 

freeze-out of level A below lOO^K should be dependent on how the 

sample reached that point, i.e. whether the sample was cooled at the 

same pressure the readings are being taken at, or at some other pressure, 

A * 
which should affect N 
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III. Carrier Freeze-out Anomaly: Alternative Model 

An alternative explanation of the freeze-out anomaly may 

be obtained by considering compensation by acceptors in concen- 

trations comparable to the donor concentration. It has been shown 

in the theory that a small concentration of acceptors in an n-type 

Semiconductor will cause the freeze-out rate to double when the 

number of free electrons becomes less than the number of acceptors. 

This effect has not been observed in our measurements for any 

degree of freeze-out; the transition at lOO^K is in the reverse 

direction and the energy gap appears to decrease rather than increase 

as the temperature is lowered. However, it seems unlikely that the 

number of acceptor impurities is so small that it never exceeds the 

electron concentration, especially when this is reduced by several 

orders of magnitude. The possibility that a relatively large 

concentration of acceptor impurities is present was considered, and 

a mathematical analysis yields interesting results. 

Eq. (1-2-16) gives a general solution for n under all doping 

conditions. This equation can be somewhat simplified by noticing 

that the term in 

exp (-.5) 

in Eq. (1-2-15) corresponds to intrinsic carrier concentration and 

should be negligible in the temperature range of interest where the 
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semiconductor is extrinsic. A trial evaluation proved this to be 

the case. The equation then becomes 

2n exp(ep)+N^ n - 2N^ exp(e^-Eg)+n = 0 (1-5-10) 

which can be expressed as 

+ Nj, 2 exp(e^-Eg) + j exp{-Ep)| j 
'N. 1 

(Ny^“Np) exp(-EQ) + exp(e^-Ep”0Q)J n 

Np exp(e^-ep-GQ) - 0 (1-5-11) 

If the acceptor energy is small compared to the band gap 

Eg then 

exp(E^-Eg) exp(-Eg) == 0 

and the equation reduces to a quadratic 

r K 1 
n2 + n j exp{-ep)J+—^ N^. exp(-ep) = 0 

(1-5-12) 
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This can be shown to be identical to Eq. (1-2-12). It 

can be solved analytically, and the results are graphed for the 

following values: 

Ep = 0.1 eV 1160/T = = 1020/m3 

Eg = 0.32 eV Eg = 3717/T N = 

= Ngk/100 

k is the parameter specifying the degree of compensation. 

It can be seen from Fig. 5 that for small values of k (light 

compensation) the kink predicted at n = occurs, and the curve 

becomes steeper at that point. For heavy compensation the freeze- 

out rate is almost constant over the entire range. The effect of 

increasing the acceptor concentration is merely to lower the 

absolute value of n. For k values greater than 100 the solution 

to the equation becomes negative. The physical reason for this is 

that when there are more acceptors than donors, the material becomes 

p-type. 

The quadratic expression, however, only applies when one 

can assume all terms containing exp(-Eg) are negligible. If the 

acceptor level is very high above the valence band the value 

Eg - may be comparable to the donor gap Cp. We then use Eq. 

(1-5-10) which may be written as 
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Figure 5 Log n vs. 1/T calculated for various values 

of k ranging (from top to bottom) 

k = 2 

k = 50 

k = 90 

k 99.5 
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6XP(«E:Q)+1 

C 

nN 
n - D 100 

2N exp(e^-Cg)+n 
= 0 

Def1ning 
N 

a = exp(-Ep) 

b = ZNj. exp (E^-Eg) 

the equation becomes 

r 
|3 + 

100 b + a r[' 100 
- 1 + abj n 

- ab = 0 (1-5-13) 

For k < 100 the coefficient of n is negative, and the 

equation has one sign change. For k > 100 the coefficient becomes 

positive, and the equation still has one sign change, but the form 

changes from ++-- to +++- suggesting some change in the character of 

the solution as k passes through 100. The fact that there is one 

sign change in either case indicates the presence of one positive 

root by Descarte's rule of signs.It may also have two negative 

roots, but these have no physical significance. 
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Since Eq. (1-5-13) is a cubic it can actually be solved 

analytically. However, it proved technically simpler to program 

(36) 
the solution as an iteration based on the ReguTa Falsi procedure. ■ 

Solutions of n for a run to 1/T values were calculated for 

several energy gap values, and a range of k values near 100. The 

results of runs are plotted for the following energy gaps in 

Fig. 6: 

Eg - ^ 238.6 meV Eg 100 meV • 

Eg - E^ = 129 meV Eg = 43 meV 

At high temperatures above about 100°K the slope of the 

curve corresponds to an effective energy gap of v>2 " 

and below the transition we have 2 “ 2€g . The slope change 

occurs over a temperature range of about lO^K, in agreement with 

our experimental plots of n2/(Ng-n)T 2 (Figs. 9a, 9b, 10a and 10b) 

which are observed to deviate from linearity near lOO^K. 

The kink in the theoretical curve is observed for a range 

of k values near k ^= 100. If k becomes too small the kink disappears, 

and if it approaches 100 too closely, the curve will become identical 

to the k = TOO curve Which has a slope corresponding to the upper 

energy gap ^ 2 • 

According to this theory then, the experimental results can 

be interpreted in the following manner: 
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Figure 6 Log n vs. 1/T calculated for two different 

sets of energy gap values 

a = 129 meV 

Ep = 43 meV 

b E^ = 238.6 meV 

Ep =100 meV 

and various k values ranging (froiti top to 

bottom) 

a k = 90 

k = 100 

b k = 90 

k = 98.5 

k = 99.5 

k = 99.9 

k = 100 



lOOO/T (K"') 
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El 
dE. 

Yi = 2 dP (1-5-14) 

•2 = + E^ = 

dE 
0 

dE. 

dP dP (1-5-15) 

where E^ and £2 experimentally observed lower and upper 

temperature energy gaps, and Yj and Y2 are their pressure derivatives. 

All pressure derivatives are relative to the conduction band. 
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Chapter 2 

Sample Preparation and Experimental Techniques 

Detailed descriptions of the pressure vessel and sample 
(26) 

preparation are to be found in the thesis of S.M. Fong. A brief 

account of sample preparation and mounting will be given here 

along with any new techniques, and the experimental methods 

discussed. 

2-1. Sample Preparation 

The specimens of n and p-type InSb used were cut from single 

crystal ingots. They measured approximately 0.5x1.5x1.5 mm. After 

cleaning and etching, electrical connections were made to the sample 

with 0.003 inch platinum wire. Copper wires were soldered to the 

platinum, direct connections by copper wires would result in copper 

contamination of the sample since copper has a high diffusion co- 

efficient in InSb and most other semiconductors. 

The platinum wires were soldered onto the samples in earlier 

work using indium solder containing 2% tellurium. The tellurium 

reduces the possibility of forming a p-n junction at the contact. 

Soldering with this technique proved fairly difficult and the 

contacts were not strong, so an alternative method was tried, namely 

capacitive discharge welding. In this method the sample is connected 

electrically to a capacitor, and the platinum wire to the other side 



of the capacitor, which is charged to an appropriate voltage. The 

wire is then brought in contact with the sample where contact is 

to be made. The energy of the discharge is deposited mostly in the 

contact area, resulting in melting and fusing of the wire and InSb. 

The contact so produced is generally stronger than that achieved with 

solder, although it must be tested to make sure it is not subject 

to fatigue when the wire is bent. 

The capacitor used by us with most success was a 750 pf 

120 volt electrolytic, which was charged through a current limiting 

resistor from a 0-70 volt variable D.C. supply. The voltage range 

for successful welds lay between about 10 and 40 volts. Initial 

attempts should be made at low voltage to avoid sample damage by 

extensive melting. 

In our work the sample Was held in stainless steel tweezers 

which were connected to the capacitor. The platinum wire was held 

in a metal bit on a movable platform, and the contacting was viewed 

through a microscope. The method was successfully used on a variety 

of semiconductor samples; the Only problems arose in materials with 

very high resistivities which limited the discharge of the capacitor. 

After the leads were attached the sample was tested 

electricalTy to ensure that there were no p-n junction effects at 

the contacts, and that the contact symmetry was high enough to give 

an f factor less than 2. Both soldered and welded contacts were 

equally satisfactory in their electrical characteristics. 
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2-2. Experimental Methods 

Hall and resistivity measurements were made on samples 

of n and p-type InSb using the Van der Pauw technique described 

in section 1-4. The measuring current was passed through a ]Q, 

standard resistor in series with the sample, and the voltage 

generated across this resistor provided a measure of the current. 

A Hewlett-Packard Model 419A Null DC voltmeter was used to measure 

both the sample voltage and the voltage across the standard 

resistor. 

In addition to changing the lead configurations as required 

by the Van der Pauw technique, the measuring current was reversed 

and two sets of readings taken for Hall and resistivity measure- 

ments in order to eliminate thermoelectric contact potentials. The 

magnetic field was also reversed in Hall measurements and the paired 

sets of data averaged. This ensured that no other thermomagnetic 

effect contributed to the Hall reading, except possibly the 

Ettingshausen effect. This has the same current and field dependence 

as the Hall effect, but it is small compared to the Hall effect and 

requires a thermal gradient, which should have been eliminated by 

controlling the temperature at each setting for TO to 30 minutes 

before taking a reading. 

In some of our high electric field studies (high carrier 

density-high current) we encountered transient effects which we 



-47- 

ascribe to sample heating. In order to minimize this problem, 

pulse measurements were used when necessary. A Hewlett-Packard 

8011A pulse generator was used as the current source, and an 

oscilloscope was used to measure the pulse voltage across the 

standard resistor and across the sample. This method eliminated 

the need to reverse the measuring current thus halving the number 

of readings to be taken. The method was successful provided the 

pulse length was long enough for all LCR effects to die out since 

the sample did not represent a well matched load, particularly in 

the freeze-out regime where sample resistivity was very high. The 

pulse length was typically 1 millisecond and the duty cycle 1 

part in 100. 

One of the problems in pressure measurements carried out 

over a large temperature range is differential contraction pressure 

loss. The contraction rate of the metal is usually less than that 

of the pressure fluid, leading to a reduction of pressure during 

cool down. To obtain an estimate of this pressure loss we made a 

series of constant temperature variable pressure measurements of 

the sample resistivity at 297^K, 198°K (dry ice in acetone) and 

77 K. At room temperature the sample was pressurized in stages with 

readings taken at each step, and then de-pressurized in a similar 

manner. When a plot of p versus applied pressure was made, a 

hysteresis loop was observed in that the pressure on the sample 

appeared higher during de-pressurization. This was taken to be due 
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to internal friction in the pressure vessel. The width of the 

hysteresis curve was about 1.5 kbar and the true pressure was 

assumed to lie in the middle. At lower temperatures the pressure 

fluid was frozen and it was possible only to increase the pressure 

but not to decrease it, so the width of the hysteresis loop had 

to be assumed. 

During subsequent constant pressure variable temperature 

runs the resistivity values were measured at these temperatures 

(297^, 198®, 77®K) and the pressure determined from the graphs of 

resistivity vs. pressure. The pressure was found to have fallen 

about 15% at 198®K and 25% at 77®K. Below 77®K thermal expansions 

are small so the pressure was assumed to be constant. 
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Chapter 3 

Results and Discussions 

3-1. Temperature Dependent Carrier Number in n-InSb 

The Hall voltage as a function of temperature has been 

measured from 297®K to about 10°K for two samples of n-type InSb 

at pressures in the range of 0 to 15 kbar. The samples are 

referred to as sample #1 and sample #2 and the donor concentrations 

taken as the number of free electrons measured at low pressure 

and 77°K are 

= 9.09 X lO^Vm^ 

Np2 = 8.0 X lO^Vm^ 

Figs. 7 and 8 show the temperature dependence of for Samples 1 

and 2. Freeze-out of electrons onto impurities is observed for 

pressures exceeding 8 kbar. The transition described by Porowski 

is clearly visible in this range, manifesting itself as a rapid slope 

change in a plot of R^ vs. temperature in the vicinity of lOO^K. 

Below the transition the freeze-out rate is decreased as if the 

donor activation energy is smaller, and the number of donors also 

appears to decrease. 
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Figure 7 A semilog plot of n vs. T for n-InSb sample #1 

at various pressures. 

® P = 8 kbar 

O P = 11.6 kbar 

H P = 12.2 kbar 

A P = 13.4 kbar 

X P = 14.7 kbar 
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Figure 8 A semilog plot of n vs. T for n~InSb sample #2 

at various pressures. 

o P = 0 kbar 

O P = 8.0 kbar 

ES P = 10.9 kbar 

A P = 11.3 kbar 

□ P = 12.5 kbar 

X P = 15.0 kbar 



T (K) 
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At pressures below 8 kbar the carrier number in the 

extrinsic range stays almost constant down to temperatures of 

the order of lO^K and then decreases in a manner suggesting 

freeze-out of the electrons onto a donor level with very low 

activation energy. 

3-2. Analysis of Donor Energy Gaps 

The data shown in Figs. 7 and 8 was used to determine the 

pressure dependent donor gaps for the two samples, for both the 

upper and lower temperature ranges. Eq. (1-2-10) gives 

n2 
B exp 

3/ 

Since B is a constant and N a T 2 we have 
c 

(Np-n)T>'2 
a exp 

"-E " 
D 

or 

log ot —^ log(exp) (3-2-1) 

y Thus a semilogarithmic graph of n2/(Np-n)T^2 against 1/T should 

give a straight line, and the energy gap Ep is determined from 



-5J- 

d log (No-n)T 

d(l/T) 
JL log(exp) (3-2-2) 

The value of Np used in analyzing the donor gap above 100°K 

(which we will call E2) is the same as that quoted for the sample 

impurity concentration in section 3-1. Below 100°however, the 

donor gap (Ej) must be determined using a new value of Np which is 

the value of carrier number at which the freeze-out curve below the 

transition appears to be levelling off at as the temperature is raised. 

As can be seen in Figs. 7 and 8 this value is most readily determined 

in the lower pressure freeze-out curves where the carrier number 

below 100°K is practically constant with temperature for some distance. 

At higher pressures the value of Np is less apparent and trial and 

error may have to be used to produce a straight Tine. However, when 

freeze-out becomes advanced and ri << Np the term (Np - n) is practically 

constant and the accuracy of the Np value chosen will not affect the 

linearity of the points, or the value of Ej that is calculated using 

them. 

Plots of log(n2/(Np-n)T^) versus 1/T for samples 1 and 2 are 

shown in Figs. 9a, 9b, 10a and 10b. As can be seen from Figs. 9a and 

1Oa the high temperature data fal1s into a straight 1ine between 

about 150°K and 100°K. Deviations from 1inearity at high temperature 

are caused by the onset of intrinsic conduction* and at the lower 
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temperature end by the onset of the transition. Figs. 9b and 

10b show the results of the low temperature donor gap analysis. 

Again the observations deviate from linearity near the transition* 

Deviations at the low temperature ends are probably due to practical 

difficulties in making accurate measurements when the Hall resistivity 

becomes very large. 

The energy gaps Ei and E2 were determined from these graphs, 

using Eq. (3-2-2). The values of these energies are plotted against 

pressure in Fig. 11 to find the pressure derivatives of Ei and E2 . 

Assuming that the donor levels continue rising after they enter the 

conduction band, we were able to predict the values Eoi and Eoi 

which are the values of Ei and E2 at zero pressure relative to the 

conduction band minimum. The results obtained for EQI and E02 » 

and their pressure derivatives Yj and Y2 are: 

EQI = 125 meV Yj = -13.3 meV/kbar 

EQ2 = 218.5 meV Y2 = 26.0 meV/kbar 

fl3l 
These agree quite well with values quoted by Porowski:' ' 

EQI = 85 meV Yi = -10.5 meV/kbar 

EQ2 =145 meV Y2 = -20.0 meV/kbar 



-55- 

V 
Figure 9a A semilog plot of n2/(Np - n)T-^ vs. IOVT for 

n-InSb sample #1 at temperatures above 100°K and 

various pressures. 

• P = 11.6 kbar 

O P - 12.2 kbar 

■ P = 13.4 kbar 

X P = 14.7 kbar 

Dashed lines extend the parts of the curves for 

energy gap determination. 
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Figure 9b A semi log plot of n2/(Np - n)T^ vs. lOVT for 

n-InSb sample #1 at temperatures below lOO^K 

and various pressures, 

• P = 11.6 kbar 

O P - 12.2 kbar 

■ P = 13.4 kbar 
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3/ 
Figure 10a A semilog plot of n2/(Np - n)T'^ vs. lOVT for 

n*InSb sample #2 at temperatures above lOO^K 

and various pressures. 

• P = 10.9 kbar 

O P - 11.3 kbar 

A P = 12.5 kbar 

X P = 15.0 kbar 
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A semilog plot of nVCNp - n)T^ vs. 10Vt for 

n-InSb sample #2 at temperatures below 100°K 

and various pressures. 

♦ P = 10.6 kbar 

O P = 11.3 kbar 

■ P = 12.5 kbar 

P = 15.0 kbar X 
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Figure 11 A plot of vs. pressure P for the two energy 

gaps El and E2. Points marked A are from 

sample #1 and points marked • are from sample 

#2. 
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According to the theory of Porowski the lower donor gap 

El is caused by freeze-out onto a donor level with this activation 

energy, while E2 is caused by freeze-out onto a Tower donor level 

where the activation energy is determined by both electronic and 

atomic processes, thus the pressure derivative of this level cannot 

be related to any purely electronic effect such as the pressure 

derivatives of band gaps. The pressure derivative of the Ej level 

can be so related since it is determined by electronic processes. 

Porowski associates this level with the L minimum which has a 

pressure derivative of 8.3 meV/kbar relative to the valence band.. 

However, as we are dealing with donor states we are interested 

in the pressure derivative with respect to the conduction band 

minimum, which is -5.7 meV/kbar for the L minimum. 

Interpreting the results on the basis of our theory gives 

us values for the hypothetical donor and acceptor levels, and their 

pressure derivatives. Using Eqs. (1-5-15) and (1-5-16) and our 

experimental data we find 

Ep = 62.5 meV , Yp « -6.65 meV/kbar 

Ep^ = 156 meV = -19.35 meV/kbar 

Using Porowski's values for the activation energies and their pressure 

derivatives, the results are 
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E- = 42.5 meV \ Yp = -5.25 meV/kbar 

= 102.5 meV = -14.75 meV/kbar 

It can be seen that the pressure derivatives of the donor 

level for both sets of results lie very close to the pressure 

derivative of the L band relative to the conduction band (-5.7 meV/kbar). 

The pressure derivative of the acceptor level using Porowski’s 

data is close to the pressure derivative of the valence band relative 

to the conduction band (-14 meV/kbar) while our data puts the value 

somewhat higher. 

Thus the assumed donor and acceptor levels in our theory have 

pressure derivatives suggesting that they are connected with the L 

band minimum and valence band maximum respectively. 

In the next section we show that the acceptor level in p-type 

InSb is nearly fixed with respect to the valence band under pressure, 

although as a different type of acceptor is involved this cannot be 

taken as proving that is connected with the valence band. 

3-3. Temperature Dependent Carrier Number and Acceptor Gap in 

p-type InSb 

Hall measurements were made on a p-type sample of InSb at 

pressures between zero and 8 kbar. The results are shown in Fig. 12. 

The change from extrinsic to intrinsic conduction occurs when ny^^ = 

py„2 and as the ratio of y ^/y^^ - 6400 the hole concentration must be 
P n p 
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Figure 12 A semilog plot of R^/e vs. T for p-InSb at 

various pressures. 

• P = 1.6 kbar 

X P = 3.1 kbar 

O P = 4.4 kbar 

■ P = 7.8 kbar 



T( K) 
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at the extrinsic limit when the transition occurs, i.e., p = . 

The temperature at <^hich the material changes from n to p-type moves 

up with pressure because of the increasing band gap. 

Determination of extrinsic carrier number is difficult 

because freeze-out of the acceptor level has apparently begun when 

the material becomes extrinsic. As mentioned in the theory (section 

1-4) it is safe to assume extrinsic behavior for temperatures twenty 

degrees below the transition from n to p-type. the donor freeze- 

out equation (1-2-10) can be applied to acceptor freeze-out: 

(NA-P)NV 
B exp 

3/ 
where N., = 2(2Trm* ^ m* is the effective mass of the holes. 

V P D P 

An expression for can be derived in the same way as for 

Ep (section 3-2). 

d log (N^-p)T^ 

drrTrT log(e) (3-3-1) 

For advanced freeze-out >> p and the derivative of (N^ - p) 

may be ignored leaving 
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d loq(pT“ ^) _ log(exp) 
d(T/T] kg 2 

There is, however, another complication in that there are 

two types of holes contributing to the conduction processes. From 

the theory, Eq. (1-4-9) gives 

= J_ Llii b^x + 1 
H p2 L e (bx + 1)^ (1-4-9) 

b = yi/y2 ^ “ P1/P2 

The ratio of the concentrations of the two types of holes is 

X = P1/P2 = Ny^/Nv2 = 

The mobility ratio is also determined by the effective masses 

of the two types of holes, since effective mass comes into the mobility 

formulas. In the temperature range of 150®K to 70^K polar optical 

scattering is probably the dominant scattering mechanism. For this 

process 
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u a 
op 

tn. 

nr* a m 
op 

b = UI/M2 

m* 

m* 

Using these relations the equation (1-4-9) simplifies to 

R.. = _1_ 
P2 

ml 
m* + 1 

(3-3-3) 

From the band structure formulas in section 1-1 we find 

that the curvature of the light hole band, and hence the effective 

mass, is proportional to the band gap energy just as it is for the 

conduction band. The heavy hole band is independent of the band 

gap and the effective mass is equal to 0.6 m^ . 

If we let Pi represent heavy holes and p2 the light holes, 

- ^ then as pressure increases the value of (m^/m*) ^ increases from 

a zero pressure value of about to about at 8 kbar. 

Since both of these numbers are much smaller than 1 it seems they 

can be ignored in Eq. (3-3-3). Thus 
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1/P2 Pi 4Pie (3-3-4) 

The heavy hole band represented by pi is largely responsible 

for freeze-out effects since it has a much larger density of states^ 

while the light holes play the domihani: role in the Hall effect due 

to their higher mobility. For the purposes of energy gap determination 

we are interested in the temperature derivative of and pi. We 

know that m* stays constant, while m* will vary slightly since it is 

proportional to the band gap energy, and this has a small temperature 

derivative (0.29 meV/°K), but as this would cause only about a 10% 

change in Eg and m* over a lOO^K range compared to freeze-out over 

several orders of magnitude, it seems safe to ignore temperature 

variation in the effective mass of holes as we did in the case of 

electrons. 

To analyze our data we plotted (Rj^T *+) against 1/T and used 

the slope to calculate the energy of the acceptor level using Eq. 

(3-3-2). The graphs are shown in Figs. 13a and 13b. The resulting 

values of are graphed against pressure in Fig. 14. The points 

being somewhat scattered, we used a least squares fit and found for 

the zero pressure acceptor gap and its pressure derivative. 
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Figure 13 a A semi log plot of vs. lOVT for 

p-InSb at pressures ranging (from top to 

bottom) 

P = 4.4 kbar 

P - 3.1 kbar 

P 1.6 kbar 
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Figure 13b A semi log plot of vs. IOVT for 

p-InSb at pressures ranging (from top to 

bottom) 

P = 7.8 kbar 

P 6.3 kbar 
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Figure 14 A plot of vs. pressure P for the acceptor 
gap in p-InSb. The line through the points is 
a least squares fit. 
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EQA ==67.4 meV 

-2.02 tneV 
kbar 1.21 meV 

kbar 90% confidence 

±2.62 99% confidence 

Other workers in the field have observed an acceptor gap 

in p-type InSb of^^^^ 

0.12 eV = + 1 meV 
kbar 

This is nearly twice our value and the pressure derivative 

lies outside our 99% confidence interval, so it appears that a 

difference type of acceptor is probably involved. The significance 

of these results is that the acceptor levels observed in InSb have 

srhall pressure derivatives, that is they are nearly fixed in energy 

relative to the valence band. This bears out our assumption in 

section 3-2 that the hypothetical acceptor level has the same pressure 

derivative as the band gap. 



3-4. Temperature and Electric Field Dependent Mobility 

and Carrier Number 

I. Temperature Dependence 

Temperature dependent mobility measurements made by S.M. 

Fong at various pressures are shown in Fig. 15.' ^ In cases 

where freeze-out was not apparent the mobility had a temperature 

dependence of T“i*^ in the temperature range 80-300^K, and a 

dependence of T®*® at temperatures from 50 K down. The high 

temperature mobility was satisfactorily explained on the basis of 

polar optical and electron hole scattering. 

At low temperatures the scattering was assumed to be caused 

by impurities, and the ionized and neutral scattering limits were 

calculated using Eqs. (1-3-1) and (1-3-3). The number of ionized 

impurities was taken as the measured carrier number, and the total 

impurity concentration as the carrier number at zero pressure and 

77^K. The calculations for zero pressure yielded mobilities with 

the correct temperature dependence but were larger than the 

experimental results by a constant factor. We have since observed 

that this discrepancy can be removed by noting that the impurity 

numbers used in the calculations were taken from measured values of 

carrier numbers, which will be smaller than the actual number by 

the Hall factor. The mobilities were recalculated, taking 
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Figure 15 A log-log plot of Hall mobility y vs. T for 

n-InSb sample #1 at various pressures. 

• P = 0 kbar 

■ P = 4.2 kbar 

A P = 8.2 kbar 

O P = 10.3 kbar 

X represents a theoretical fit to the zero pressure 

curve. 

Vertical bars on the two lower curves represent 

the range of mobility variation with electric field. 



T ( K) 
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the average of the Hall factors for ionized and neutral scattering, 

as these were roughly equal in importance. The results give very 

close agreement with the experimental values, and are also shown 

in Fig. 15. Increasing pressure from zero increases the electron 

effective mass and lowers the absolute mobility values while main- 

taining the same slope. 

At higher pressures freeze-out occurs and the mobility is 

observed to drop sharply. This contradicts Porowski's statement 

that the scattering processes become less effective during freeze-out. 

The mobility values are also strongly dependent on the electric field 

strength, as denoted by the bars on the two high pressure curves in 

Fig. 15. The mobility was generally higher at low field strength. 

II. Electric Field Dependence 

In order to gain an understanding of mobility limiting 

processes in the freeze-out regime, we performed systematic studies 

of the field dependence of the mobility at low temperature and at 

various pressures both below and above freeze-out. The mobilities 

and carrier numbers are shown in Figs. 16a, 16b, 17 and 18 . 

At low pressures where freeze-out is not observed (Figs. 16a and 

16b) the mobility is constant with field at low field strengths 

and then increases with approximately an E0*33 dependence. This 

is somewhat higher than the £0*25 dependence predicted by Stokoe 
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09) 
and Cornwells but their calculations are for a higher temperature 

n V 
of 20 K. The low field values of the mobility show the T - 

i' 

temperature and m*^ pressure dependence predicted by Eq. (1-3-1) 

for ionized impurity scattering. 

The carrier number at low pressures appears to undergo a 

sharp decrease at low field strengths. A similar effect was noted 

in temperature dependent carrier number measurements (Figs. 7 and 8) 

at pressures too low to cause a positive donor gap. The explanation 

of this phenomenon seems to be that the electrons are 'pooling' due 

to increasing degeneracy in the bottom of the conduction band. 

Electrons below the Fermi level have few neighbouring energy states 

to move into and thus contribute less to conduction. We calculated 

that the Fermi level for temperatures near 0°K for our sample should 

lie 0.74 meV above the conduction band minimum. The thermal energy 

kgT approximates this value for temperatures of the order of 10°K 

which is where the effect is observed, thus degeneracy would be 

expected. Raising the temperature or applying a high electric field 

will raise the electron energy, destroying the degeneracy. 

At 9 kbar (Figs. 16a and 16b) there is some freeze-out and the 

carrier number increases approximately exponentially with electric 

(31) field due to impact ionization. C. Dick and B. Ancker-Johnson' ' 

predict that the rate of carrier generation by impact ionization should 

be exponential with carrier drift velocity 

g(E) a exp(Vj/e) . (3-4-1) 



75- 

0 is a constant. We know that = yE so that for constant 

inobility we should have an exponential increase in the carrier 

number with field strength, as observed. 

The.field dependence of the mobility at 9 kbar is difficult 

to interpret. The increasing number of ionized impurities reduces 

the mobility up to a point before a runaway increase sets in. This 
(17) 

is similar to the result observed by E.M. Conwell for ionized 

impurity scattering in germanium. 

We went to higher pressures to see if another scattering 

mechanism became dominant when freeze-out reduced the number of 

ionized impurities sufficiently. The results are shown in Figs. 

17 and 18. The rate of carrier generation no longer appears 

exponential with E because of the rapidly varying mobility. It can 

be seen that the field dependence of the mobility almost exactly 

reciprocates the carrier number and hence the ionized impurity 

concentration. This furnishes strong evidence to suggest that 

ionized impurity scattering limits the mobility even in conditions 

of advanced freeze-out. Other possible scattering mechanisms were 

considered. Neutral impurity scattering is favoured when freeze-out 

neutralizes a large proportion of the impurities. As noted in 

section 1-3 the only field dependence of this scattering process 

is in the number of neutral impurities which may be reduced by impact 

ionization. This effect should increase the mobility, whereas we 

observe the mobility decreasing with field, and in any case the 
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relative change in the neutral impurity concentration is less 

than 1 percent in all the high pressure runs, so the mobility 

limit from this process should stay nearly constant with field. 

Acoustic phonon scattering is usually considered to be 

a high temperature effect but it can become dominant if the 

electron temperature is raised by an electric field. As noted 
■ -i- 

in section 1-3 acoustic scattering exhibits a characteristic E ^ 

field dependence which is not observed in any of our results. 

Polar optical phonon scattering for low lattice temperatures 

can limit the electron drift velocity to a nearly constant value for 

a range of field strengths, producing a mobility field dependence 

of E“i. This might account for the results in Fig. 17 but not 

Fig. 18. Since phonon scattering processes are not affected by 

impurity concentrations there is no reason why a phonon mobility 

limit should give the close agreement between mobility and ionized 

impurity number observed in all the high pressure results. We 

concluded, therefore, that under high pressure, ionized impurity 

scattering is the dominant scattering mechanism at low temperatures 

in InSb. 

III. Impact Ionization Breakdown 

The electric field was increased to breakdown at temperatures 

of 20°K and lO^K at pressures where freeze-out was advanced. The 
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Figure 16a Hall mobility p vs. electric field strength E 

for n-InSb sample #1 at various temperatures and 

pressures. 

• P = 0 kbar 

X P = 0 kbar 

O P = 6.3 kbar 

■ P = 9.4 kbar 

A p = 9.4 kbar 

T = n°K 

T = 6.7°K 

T = 6.7°K 

T = 10°K 

T = 6.2°K 
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Figure 16b A semi log plot of carrier concentration vs. 

electric field t for n-InSb sample #1 at 

various temperatures and pressures. 
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0 kbar 

6.3 kbar 
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Figure 17 Hall mobility ]i and carrier number n vs. electric 

field E for n-InSb sample #1. 

• p 

■ n 
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Figure 18 Hall mobility v (upper curves) and carrier 

number n (lower curves) vs. electric field E 

at two temperatures. 

• T = 50°K 

■ T 40°K 
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breakdown field strength lay between 10^ and 10^ mV/cm. It was 

lower at higher temperature where the mobility was higher. 

During breakdown the sample appeared to exhibit negative resistance 

properties; as the current through it was raised the electric field 

across it actually decreased due to the rapidly increasing carrier 

density. Due to this effect we were unable to determine whether 

there were two regions of breakdown corresponding to two donor 

1evels. 
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Chapter 4 

Conclusions 

Donor and acceptor gap measurements have been made in 

n and p-type InSb as a function of pressure up to 15 kbar. Low 

and high field mobility measurements have been made at low 

temperatures and at several pressures. 

The donor gaps in n-InSb are found to increase linearly 

with pressure, becoming zero at pressures below 8.4 kbar. The 

donor gap appears to change abruptly at temperatures around lOO^K 

as the temperature is lowered. Below lOO^K the gap appears to be 

approximately half as wide as the gap above lOO^K. Porowski 

explains this by assuming that the donor ions can adopt non- 

equivalent lattice positions with different electron ionization 

energies, and the ions can transfer from one position to another 

across a potential barrier when the temperature is above some 

critical value. He shows that this will produce a different 

carrier freeze-out rate above and below the critical temperature. 

We have shown that the same effect can be produced by nearly equal 

concentrations of donors and acceptors. The carrier freeze-out 

rate above the critical temperature corresponds to an effective 

energy gap of the combined donor and acceptor gaps, the acceptor gap 

being measured from the conduction band as if it were a donor. 

Below the critical temperature the carrier freeze-out rate corresponds 



-53- 

to an effective energy gap twice the donor gap. Based on this 

theory we find the pressure derivatives of the assumed donor and 

acceptor levels (relative to the conduction band) to be close to 

the pressure derivatives of the L band minimum and the valence 

band maximum, respectively. Measurements on p-type InSb showed 

that the acceptor level remained essentially fixed with respect 

to the valence band, i.e. it had the same pressure derivative 

relative to the conduction band. 

Mobility limiting processes at low temperature (below 40°K) 

in cases where carrier freeze-out is not apparent are dominated by 

ionized and neutral impurity scattering. When the pressure is high 

enough to induce carrier freeze-out the mobility is observed to 

decrease sharply. Investigations of the electric field dependence 

of the mobility at low temperature and a range of pressures indicate 

that ionized impurity scattering is the dominant scattering process 

when carrier freeze-out is advanced. Low temperature and high 

pressure both favor this process. 
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