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ABSTRACT

Shorthouse, K.D. 2012. Pre-harvest lumber value recovery modeling: integrating sawline
laser-scanning with an enhanced forest inventory.

Keywords: lumber value recovery, boreal, stud sawmill, log scanning, enhanced forest
inventory, supply chain, principal component analysis, multiple regression.

Supply chain management research in forestry is becoming increasingly important in the
forest sector worldwide. Predicting lumber value recovery from pre-harvest forest
inventory forms an important aspect of forestry supply chain management research. The
purpose of this research was to conduct a case study for tracking a stud sawmill’s supply
chain in Ontario’s boreal forest from pre-harvest forest inventory through to green lumber
value recovery (GLVR). The specific objectives of the research were to: (i) compile a
detailed dataset along a stud sawmill value chain; (ii) explore the similarity of variables
existing in log- and tree-level datasets; (iii) extract Principal Components that describe
the variance and collinearity of the variables found in the log- and tree-level datasets; (iv)
build regression models for a stud sawmill for predicting GLVR; and (v) compare and
assess model performance in predicting GLVR.

The log-level analysis was conducted by measuring 16,565 log profiles and their
GLVR at the sawmill. Of the 7 external log variables measured, 6 variables yielded two
principal components: log size and log form. For the tree-level analysis, 101 standing
trees were measured in the pre-harvest timber cruise. Of the 29 external tree variables
measured, 10 variables yielded three components: tree size, tree form, and tree
branchiness. The multiple regression analysis using the principal components found that
non-linear exponential function produced the strongest log-level and tree-level models for
predicting the GLVR. The study demonstrated that an enhanced pre-harvest forest
inventory can be easily integrated with sawline laser-scanning sawmill data to estimate
the GLVR prior to harvesting.
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1. INTRODUCTION

1.1 BACKGROUND

Supply chain management (SCM) research in forestry is becoming increasingly important
in the forest sector worldwide (Sjostrom and Rask 2001). Synonyms of this research term
include: total production management, value chain management, logistical management,
holistic approach and total system costing (Ellram 1991; Cooper et al. 1997; Christopher
1998; Smith 1999; Mentzer et al. 2001; Pulkki 2004; Haartveit et al. 2004; D’ Amours et
al. 2011). Although individual definitions differ substantially, most agree with
Christopher (1998) that “the ultimate purpose of any logistics system is to satisfy
customers” and that customer satisfaction is one of the central issues of SCM.
Furthermore, SCM is the proper planning, organization, development, coordination,
steering and control of inter- and intra-organizational processes in a holistic manner
including exchanges of information, materials, funds, and product development and
marketing activities along the entire production chain of a business process (Mattson
2000; Haartveit et al. 2004).

SCM terminology first emerged approximately 25 years ago (Ganeshan and
Harrison 1995), but it is only since 1990 that SCM has been applied broadly in the
literature to describe a complete business system, mapping information and inventory
from raw materials to delivery of end products to customers (Pulkki 2004). In recent

years, the term has evolved further to what is known as value chain management (VCM),



value chain optimization (VCO) or simply ‘value chains’. Within research on value
chains there is an increased emphasis on the customer and a holistic approach to the
existing SCM. Value means the optimization of a combinatorial set of values including
profit, cost, service levels, productivity, employment and environment values. Value also
includes production and distribution capacities, all affecting the capacity to create value.
The ‘chain’ in value chain can be described as a series of links that integrate to make an
enterprise. For example, the broad chain links in a forest enterprise will include: the forest
resource, procurement logistics, production and delivery to customers. Additionally,
forest value chains can be modeled over multiple time horizons extending from short-
term local harvesting decisions to long-term regional forest strategies (D’ Amours ef al.
2010).

The supply chains that demonstrate the ability to track and optimize forest fibre
resources from the forest to final product and eventually to the customer will determine
the groups who will remain competitive in the future (Poirier 1999). It is crucial for
companies and industrial clusters in the forest sector to apply principals of supply chain
management in order to maximize profit and minimize inventory, as well as information
integration along each step of the supply chain (Mattson 1999; Pulkki 2004; Haartveit et
al. 2004; Alam and Pulkki 2009).

The forest sector is a complex supply chain with a high level of uncertainty in
fibre forecasts from forest to manufacturer. Historical, and more recent studies, have
demonstrated that accurate estimates of fibre volume, quality and potential products from
the forest inventory, are the foundation for optimizing forest product value chains

(Deadman et al. 1979; Pulkki 1990; Deadman 1990; Pulkki 1991; Middleton er al. 1995;



Uusitalo 1997; Middleton ef al. 2003; Maltamo er al. 2003; Maltamo et al. 2006; Liu ef al.
2007a; Liu et al. 2007b; Li 2009; Middleton and Zhang 2009; Groot and Pitt 2010).

In VCM, the focus is increasing towards customer satisfaction through accurate
and efficient order — or available-to-promise (ATP) — fulfillment. Available-to-promise
fulfillment is a business function that provides the most efficient response to customer
orders (Ball ef al. 2004; Fleishmann and Meyr 2004). To maximize profits, ATP
fulfillment is becoming increasingly important in an increasingly market-led economic
environment (D’ Amours et al. 2008). In reality, production economies are always
market-led and consumer-driven; however, in light of recent global economic challenges,
particularly for the forest industry, conventional value chain models and long-time
business practices are being challenged.

Traditionally, the Canadian forest industry has planned production based on broad
estimates of wood volume by species and relied on log yards with large inventories to
allocate the appropriate sized logs and wood quality to fulfill production orders (Dramm
2004; Gaudreault ef al. 2009). Through reliance on a volume-oriented business model
with large inventories geared toward the production of commodity products, the Canadian
forest industry is no longer sustainable (D’ Amours ef al. 2010). The strategic and tactical
analyses done by the forest industry have been aimed at total wood volumes with little
regard to the requirements of the entire supply chain. In an increasingly competitive
market place with increasing production costs, fibre quality and intrinsic value need to be
classified as equal if not more important to fibre volume. For a sawmill, tree or log piece
size combined with its form and fibre quality will predict product value recovery (Zhang
and Gingras 1999). Therefore, a paradigm shift needs to occur in our forest allocation

planning to include wood quality characteristics (e.g., log piece size and quality) in order



to plan for wood value and not merely volume (Pulkki 2004). Additionally, forest product
manufacturers in Canada have traditionally focused the majority of production on
commodity products and have primarily sold to one customer: the United States. Due to a
number of economic and global competition factors the Canadian forest sector is
restructuring, which includes a broader range of higher-value products and a larger
customer base.

An important part in the restructuring process of the Canadian forest sector is to
understand and model its supply chains from pre-harvest inventory to market-ready
products (Frayret et al. 2007; Groot and Pitt 2010). Pre-harvest inventory is a specialized
form of sampling and statistical analysis used to collect information about the species
present in the forest, how abundant they are, how they are distributed in the area, and the
range of sizes and size class distribution. This information is then used in the appraisal of
forest growing stock for specific products before harvesting (Avery and Burkhart 1983;
Davis and Johnson 1987; Nieuwenhuis 2002; Higman ef al. 2005). In a pre-harvest forest
inventory, there can be a wide range in the level of detail and variables measured; this
depends on the level and amount of information managers require to make tactical and
strategic decisions to best satisfy the management objectives for any given forest
management unit (Higman et al. 2005; Li 2009). An enhanced pre-harvest inventory
refers to a more detailed kind of pre-harvest inventory, which can include detailed
specifications of the forest resource to predict product recovery; this includes stem profile,
quality and internal fibre characteristics (Pulkki 1990; Deadman 1990; Pulkki 1991;
Uusitalo 1997; Maltamo ef al. 2003; Maltamo et al. 2006; Liu ef al. 2007a, Liu ef al.

2007b; Li 2009; Groot and Pitt 2010).



As forest supply chains become more competitive, the ability to utilize an
enhanced pre-harvest forest inventory to predict different characteristics of product
recovery will equip managers with better decision-making tools to optimize the available
resources for customer satisfaction. Although widely researched globally, models of how
an enhanced pre-harvest inventory can be used to predict product recovery has not been
extensively studied in Canada. There is a pivotal knowledge and technical innovation gap
between how individual mills can apply the broad body of research to create tools
specific to their supply chain that can simulate product recovery from pre-harvest
inventory.

Additionally, there is increasing pressure on forest enterprises to tighten the
supply chain and reduce inventory costs. For example, mills running with a tighter supply
chain will usually hold only 3 to 4 days of inventory, irrespective of harvesting plans that
can change monthly or even weekly depending on the type of product required to fulfill
customer orders (D’ Amours ef al. 2008; Gaudreault et al. 2009; D’ Amours ef al. 2011).
Tighter supply chains can become problematic if not coupled with agile logistics-
management systems that can efficiently adapt to changes in the market place (Frayret
2001; D’ Amours et al. 2010). Benefits to a tighter supply chain with agile manufacturing
logistics include reduced inventory-holding costs, reduced wood degradation and higher
sales potential (Pulkki 1991; Frayret 2001; D’ Amours et al. 2010).

However, in order to plan for a tighter supply chain, decision support tools (DST)
need to be developed that balance efficient use of the harvesting and transportation
operations with the manufacturing goals. These tools are usually GIS-based platforms
that can use pre-harvest inventory to forecast wood size, species and quality (Sjostrom

and Rask 2001; Uusitalo 2005). These GIS-based DSTs assist managers in deciding



which forest compartments should be harvested to satisfy customer demand. Developing
DSTs for the optimal allocation of forest sections helps to achieve the ultimate goal of
value maximization over the entire value chain. Put succinctly, the goal of value chain
optimization is to deliver the right species of wood of appropriate size and quality
specification to the right mill at the right time to fulfill market demand (Sjostrom and
Rask 2001; Uusitalo 2005; D’ Amours 2008).

Product recovery simulation supports the strategic allocation of forest resources to
satisfy specific customer orders in a forest value chain. Many sawmills — and other forest
product manufacturers — worldwide are now using sophisticated lumber recovery
simulation tools, (e.g., Halco Software Systems) and statistical techniques (e.g., Principal
Component Analysis [PCA] and multiple regression) that utilize enhanced pre-harvest
inventories to model sawmill product value recovery pre-harvest (Steele 1984; Liu et al.
1989; Shi et al. 1990, Wagner and Taylor 1993; Roos et al. 2000; Via et al. 2003;
Middleton et al. 2003; Liu ef al. 2007a; Liu ef al. 2007b). These types of product
recovery simulators can be used in creating geo-database decision support tools to
conduct short and medium-term operational planning in the forest to optimize the wood
mix being transported to one or more mills to fulfill specific orders. In Canada, modeling
product recovery using pre-harvest data is still in the research phase or early
implementation for progressive industry partners, and thus, is an important knowledge

gap both in the research literature and for the Canadian forest sector.



1.2 OBJECTIVES

The purpose of the study is to test whether an enhanced forest inventory can be integrated
with sawmill production data to model green lumber value recovery (GLVR) prior to
forest harvesting.

The specific objectives for this study are: to (i) compile a detailed dataset along a
stud sawmill value chain in Ontario’s Boreal forest from pre-harvest to green lumber
value production; (ii) determine the levels of similarity existing in log- and tree-level
datasets; (iii) extract Principal Components that describe the majority of variance and
collinearity of the variables found in the log- and tree-level datasets; (iv) build GLVR
models for a stud sawmill using PCA regression scores; and (v) to compare and assess

model performance in predicting GLVR.

1.3 SCOPE

The dataset described in the Methods contains a huge amount of data. For this reason the
scope of the study was limited to the pre-harvest and saw-line recovery datasets. The
dataset collected remains of high-value with potential for a number of future research
projects under the topic of forest value chain research.

Additionally, the study has some limitations. Firstly, due to a small number of
trial sites focusing on jack pine (Pinus banksiana Lamb.), the recovery models created
could not be validated and should be applied with discretion for jack pine trees and logs
with size and form characteristics outside the range of the trees measured. Additionally,

the thesis models green lumber, not kiln-dried and planed lumber value recovery. GLVR



was modeled due to constraints in the sawmill w did not allow tracking of individual
lumber pieces from each log through to the planer mill and final grading. Also, the GLVR
estimates from pre-harvest inventory are simulated estimates, as it was not feasible to
track each tree measured through to lumber conversion. Finally, the Comact laser
scanners and optimizers at the sawmill did not take into account log knot characteristics,
which — we know from the literature review — have a significant impact on the lumber

value recovery of jack pine.



2. LITERATURE REVIEW

2.1 THE PARADIGM SHIFT IN THE CANADIAN FOREST SECTOR

The forest industry is a significant contributor to Canada’s economy (3% GDP), and
annual exports of lumber, pulp and paper are estimated at $45 billion, contributing 60%
to the trade surplus (FPAC 2007). The forest industry is also a major source of
employment, contributing 240,000 direct jobs across the country (FPAC 2012). However,
the industry has recently faced unprecedented global economic challenges, including
international competition, a strong Canadian dollar, a weakened US economy, obsolete
production technologies, increasing cost of energy, trade dispute with the US, and
reduced access to capital due to poor past financial performance (FPAC 2007; D’ Amours
etal 2010).

Canada’s domestic environment has contributed to the non-competitiveness as a
result of high-energy costs, high delivered wood costs, relatively high labour costs and
outdated mills. Another contributing factor is the lack of research and development
(R&D) leadership from government and industry (Mandel-Campbell 2007). Canada’s
traditional lumber, pulp and paper industries have failed to invest in R&D related to new
or innovative forest products that could fulfill previously unmet markets by capitalizing
on regional competitive strengths (FPAC 2007; Gingras 2011). Furthermore Canada has
failed to develop a global forest product strategy (Emmett 2005; FPAC 2007; Mandel-

Campbell 2007).
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Traditionally, Canada’s forest industry maintained a push supply model, where
manufacturers focused on producing commodity products, such as pulp, paper and lumber.
Under this model, the industry focused on inventory production and assumed growing
markets would be available to buy the product (Buongiorno 2003; Beaudoin ef al. 2007).
In light of the growing non-competiveness of our commodity producers, there is demand
for a new model. This model is customer oriented (pull-supply model); the process starts
with a market demand for specific forest product attributes (Beaudoin ef al. 2007). The
pull model supports diversified and value-added forest products that are linked directly to
the attributes found at the tree level (Beaudoin ef al. 2007; Groot and Pitt 2010). In order
to fully utilize the pull model, forest value chains are being mapped from consumer,
through the manufacturing process, and back to forest management and operations where
particular wood fiber and characteristics are desired (D’ Amours 2010; Groot and Pitt
2010).

As aresult of these challenges, there have been efforts to find a new policy
direction in Canada’s Forest Sector (Mackenzie and Bruemmer 2009). One of the
foundational points in the policy shift is a paradigm shift away from an exclusively
volume and commodity product based industry to a value oriented industry, where value
is a function of fibre volume, form and quality (FPAC 2007; Lazar 2007). By relying on
large inventories in the production of commodity products, the forest inventory paradigm
has been dominated by a volume-oriented management style. The shift from a volume-
oriented commodity model to a quality-oriented value-added model is not an easy shift
and requires significant R&D in our forest value chains from tree and fibre characteristics
through to intensive market research. In order to gain a better understanding of Canada’s

forest resource value, there is a need to understand which fibre attributes and tree



11

characteristics are significant to forecast product recovery. Additionally there is need to
develop GIS-based inventory systems that can show how value characteristics vary across
species and geography (Groot and Pitt 2010). As paradigms in policy and breakthroughs
in research bring innovation to the forest sector, Canada will create a climate of
investment in the forest economy and secure its future prosperity (Emmett, 2005).

The policy move towards an enhanced forest resource inventory using the latest
technology is supported by research both abroad and now by research executed in Canada.
New Zealand’s forest business model describes their forest estate as a warehouse with a
detailed inventory. The concept of treating the commercial forest areas as warehouses
requires detailed information of the types of wood/fibre and wood/fibre location, and how
to best allocate these wood/fibre types for optimal value creation (Tomppo ef al. 1999;
Goulding 2000; Goulding ef al. 2000). Creating optimal value requires market-driven
harvest planning in order to drive management decisions at the strategic, tactical and
operational levels (Beaudoin ef al. 2007). More recent research in Canada is exploring
how to integrate new technology (e.g. lidar, high-resolution imagery, etc.) to obtain an

enhanced forest inventory to model forest product recovery (Groot and Pitt 2010).

2.2 RESEARCH AND DEVELOPMENT CLUSTERS

Several research clusters have been formed to find solutions to the challenges facing the
Canadian forest sector. These research clusters combine researchers from government,
industry and universities. FPInnovations is one of Canada’s leading national research
hubs for creating specific research clusters (or groups) and addresses specific needs of the

forest industry. FPInnovations’ mandate is to optimize the forest sector value chain by



12

capitalizing on uniquely Canadian fibre attributes and to develop new products and
market opportunities within a framework of environmental sustainability (Gingras 2011).
FPInnovations has four research groups involved in forestry value chain research
including the: Forest Operations Division, Wood Products Division, Pulp and Paper
Division and Canadian Wood Fibre Centre (CWFC) (FPInnovations 2011).

Additionally, the Natural Sciences and Engineering Research Council of Canada
(NSERC), FPInnovations and Natural Resources Canada (NRCan) have developed a
networking hub called the NSERC Forest Sector R&D Initiative; developed to establish,
coordinate and fund strategic networks to bring innovative solutions to the Canadian
forest sector. There are eight strategic networks currently working under the NSERC
Forest Sector R&D Initiative including: Green Fibre Network, NEWBuildS, VCO
Network, Bioconversion, Sentinel, Papier, ArboraNano and ForValueNet (NSERC 2011,
FPInnovations 2011). An important characteristic of these networks is the cooperative
focus between groups (i.e., universities, government and industry). These networks
develop cohesive research strategies that coordinate individual research topics, supply
funding, provide an integrative platform for independent groups and have technology
transfer to the industry as a major goal.

Strategic research clusters under FPInnovations and NSERC are taking a market-
focused strategy and using new technologies to find innovative solutions to induce global
competiveness to the Canadian forest sector (D’ Amours et al. 2010; Gingras 2011). There
has been a renewed interest in market research, as well as the implementation of
marketing principles for the forest industry, towards “being customer focused, but not
customer led” (Slater and Narver 1998; FPAC 2007; D’ Amours et al. 2010; Gingras

2011). Forest product industries are now approached as Value Creation Networks (VCNs),



13

which includes all the companies and business units involved in the procurement,
production of a given product and its distribution to the market (Velde 2006; Beaudoin et
al. 2007, Frayret et al. 2007; D’ Amours ef al. 2008). These VCNs are being transformed
to create new products and to target new markets. An important component to include
within this definition is the information flow, transfer and integration between
components in the VCN. The goal of the VCN is to optimize value for the entire group,
not simply individual components (Cambiaghi ef al. 2008; D’ Amours ef al. 2008).

The Canadian forest sector requires innovation to become globally competitive
and overcome the current industry crisis. The prevailing government strategy set to deal
with the current fallout is funding R&D to re-examine the entire supply chain from tree to
customer. FORAC and CIRRELT are two research groups that have emerged over the
past decade as leaders in discovering innovative solutions for the Canadian forest sector.
The FORAC research cluster is a centre of expertise for advancement of the forest
products industry (FORAC 2011). FORAC’s focus is to develop global quality research
in the fields of integration and optimizations of the value creation network in the forest
products industry (FORAC 2011). CIRRELT is a Quebec-based research cluster focused
on optimizing the usage of networks (CIRRELT 2011). FORAC and CIRRELT
researchers have been leading-partners in the majority of the cutting-edge forest sector
research in Canada (Beaudoin ef al. 2007; Frayret et al. 2007; Cid et al. 2008;
Cambianghi et al. 2008; D’ Amours et al. 2008, Feng et al. 2008; Forget et al. 2008a;

Forget et al. 2008b; Gaudreault ef al. 2009; D’ Amours et al. 2010; D’ Amours ef al. 2011).
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2.3 THE FOREST VALUE CHAIN

A fundamental problem in Canada’s forest value chains is the information disconnect
between forest and manufacturer planning departments. In attempting to quantitatively
model] the forest industry across the supply chain, forest sector issues become
increasingly complex due to the increase in the goods and services provided by forests,
and the linkages within the forest sector and with other sectors (Buongiorno 2003). There
1s also increasing pressure put on forest sectors in different countries due to an increasing
globalized economy, stronger links between nations, trade liberalization and international
treaties (Buongiorno 2003).

The Canadian forest industry has traditionally maintained a production focused
industry model where manufacturers focused on producing. This model is changing to
one that is customer oriented — also known as the pull-supply model — where the process
starts with a market demand for specific forest product attributes. The pull-supply model
supports diversified and value-added forest products that are linked directly to the
attributes found at the tree level (Beaudoin ef al. 2007; Groot and Pitt 2010). In the pull-
supply mode the value chain needs to be mapped from consumer back to forest
management and operations where particular wood fiber and characteristics are desired.
This new type of industry design requires a heavy investment in decision support tools
that can model and manage the entire value chain enterprise.

Value chains in the forest industry are related to supply chains, and both terms fall
under the discipline of Operations Research (OR), which represents the study of optimal
resource allocation to achieve specified objectives (Hillier ef al. 1990; Sjostrom and

Rask 2001; Beaudoin ef al. 2007; D’ Amours 2008; Jensen 2009). Similar to supply chain
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management the goal of value chain optimization is to maximize the value along all
sections of the supply chain (Hillier e al. 1990; Sjostrom and Rask 2001; Beaudoin et al.
2007; D’ Amours 2008). Using the word value instead of supply creates an impression
that end product value is more important than merely tracking inventory across the supply
chain. Although supply chain and value chain terms are often used synonymously it is
important for the reader to note that an important shift occurs when we move from simply
tracking supply to planning for maximum value. The forestry value chain is also defined
as a linked web conceptual model of the entire forest industry, which can span several
companies (Beaudoin ef al. 2007; D’ Amours 2008; Forget ef al. 2008a). This is an
important observation to make as companies traditionally have only shared supply chain
information in-house. However, to optimize the entire supply chain, relevant data needs
to flow freely between companies within the supply chain to truly maximize value for the
entire group (Beaudoin ez al. 2007; Frayret 2007; D’ Amours 2008; Forget ef al. 2008b).
This shows that products and services flow from one contributor to another, and
information exchanges keep the system in operation. Additional benefits of a value chain
approach include the integration of decision-making based on wood/fibre yield,
wood/fibre quality and production costs, and these pillars interact between the forest
resources and extracting maximum value/benefit from them. Looking at the production
process as a value chain can improve an enterprise through minimizing environmental
impacts, procurement and production costs, and maximizing yield, quality, value and
benefit to society (Pulkki 2004; Adams and Cavana 2009).

In order for a value chain to function, information must be shared freely across the
entire enterprise (Frayret 2007; D’ Amours 2008; a et al. 2008). The components in a

value network include: raw material suppliers, the enterprise, extended enterprise and the
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final customers (Pulkki 2004; Beaudoin er al. 2007; Frayret 2007; D’ Amours 2008;
Forget et al. 2008a). There are several sub-groups within each of these components that
add to the complexity of the value chain; information, currency and product variables
travel through each component of the enterprise (Cambiaghi ef al. 2008).

Once the network components have been established, the next stage is the
development of an integrated business and logistics planning system (Frayret 2001;
Sjostrom and Rask 2001; Forget et al. 2008b; D’ Amours 2008). The integrated planning
system is set up for the entire value chain in broad objectives, and then broken down by
infrastructure, hierarchy and timescale (Frayret 2007; Gaudreault ef al. 2009). There is no
set pattern for breaking down the value creation network, but there are generally three
layers of infrastructure: corporate, divisional and facility, as well as a timescale with
multiple horizons (long, medium and short) depending on the objectives (Ronngvist
2003; Frayret 2007; D’ Amours ef al. 2008; Gaudreault ef al. 2009). For assessment
strategies, the continual and accurate flow of information creates adaptation, assessment,
improvement and feedback (Ronnqvist 2003; Beaudoin et al. 2007; Frayret 2007
D’ Amours 2008; Forget ef al. 2008b). For example, corporate strategic level planning
includes business and supply chain strategies with a long-term timescale of five-plus
years. Divisional planning involves the supply chain tactical objectives with a medium-
term timescale of months. And operational planning is carried out by a facility under a

minute-weeks horizon (Figure 1) (Ronnqvist 2003).
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Solution time Solution time versus planning horizon
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Figure 1. Solution time versus planning horizon for lumber mill supply chain
optimization (Source: Ronngvist 2003).

Information, product and currency travel between supply chain components at
different timescales to satisfy objectives for each level of infrastructure. In order to
optimize along the value chain, product inventory management is identified as having
significant importance (Ronnqvist 2003; Beaudoin et al. 2007; Frayret 2007; D’ Amours
2008; Forget et al. 2008b). The goal within the value creation network is to efficiently
fulfill product demand, while simultaneously minimizing product inventory at each stage
of the supply chain. Traditionally, forest industries in Canada have carried high
inventories as a safety buffer against irregular wood supply. However, holding high
inventories can carry severe negative impacts to the value network by incurring unneeded
costs (Ronnqvist 2003; Beaudoin et al. 2007; Frayret 2007; D’ Amours 2008; Forget et al.

2008a).
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There is a threshold point in holding inventory where the cost to hold this
inventory increases exponentially. Reasons for the rapid increase in cost include the
facility cost of holding inventory, depreciation or decomposition of the product/resources,
and market demands that can change rapidly resulting in wasted product/resources.
Alternatively, when product supply levels fall below product demand value creation is
lost (Montreuil ez al. 2000; Sjostrom and Rask 2001). The failure to meet product demand
at any stage along the supply chain creates gaps, as well as a literal breakdown of the
supply chain (Montreuil ef al. 2000; Sjostrom and Rask 2001). Due to value networks’
dynamic nature and fluctuations in product demand, the optimal inventory level is
constantly changing. Canadian research clusters are developing robust optimization
models that can assist value creation networks by integrating information along the chain
to minimize inventory and fulfill customer orders efficiently (Beaudoin er al. 2007a;
Beaudoin et al. 2007b; Frayret et al. 2007, Cid et al. 2008; Cambianghi et al. 2008;
D’Amours ef al. 2008, Feng et al. 2008; Forget er al. 2008a; Gaudreault ef al. 2009;

D’Amours ef al. 2010; D’ Amours ef al. 2011).
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2.5 FOREST INVENTORY AND FOREST PRODUCT VALUE RECOVERY
MODELING.

2.5.1 Product Recovery Modeling

Linking lumber products to an enhanced forest inventory has been receiving significant
attention since the 1980’s, but in Canada, this research focus of connecting enhanced
forest resource inventory to simulated product recovery has only grown rapidly over the
last decade (Pitt and Pineau 2009, Groot and Pitt 2010).

More recent modeling attempts are striving to predict product yields with a far
greater degree of accuracy than seen previously. Many of these moldels are using state-
of-the art technology such as airborne and terrestrial lidar, and advanced product recovery
simulation tools (Beauregard ef al. 2002; Malinen ef al. 2003; Uusitalo and Isotalo 2005;
Moberg and Nordmark 2006; Zhang et al. 2006; Murphy 2008). Modeling has been
extended even further, striving to predict the inherent fibre properties using external tree
scanning data (Li 2009; Groot and Pit 2010).

Detailed growth, recovery and fibre property simulators can provide a detailed
assessment of lumber value yield. PipeQual and Optitek, for example, can simulate the
internal 3D stem structure for use in product recovery modeling; used to simulate lumber
yields, grades, and fibre properties (Grondin and Drouin 1998; Zhang and Tong 2005;
Zhang et al. 2006; Liu et al. 2007a and 2007b; Kantola et al. 2008 and 2009). The
simulators use input variables of tree age, dbh, height, crown ratio and diameter profiles
(Grondin and Drouin 1998; Zhang and Tong 2005; Zhang et al. 2006; Liu et al. 2007a;

Liu ez al. 2007b; Kantola et al. 2008 and 2009).
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Sawing simulation plays a critical role in forecasting lumber product recovery at
the sawmill. Although computer controlled sawing simulators have been in existence
since the 1970’s (e.g., Halco Software Systems Ltd.), sawing recovery simulation has
grown into a number of software developers with a variety of simulation platforms (e.g.
Optitek, Sawsim, Halco and Comact) (Grondin and Drouin 1998; Zhang and Tong 2005;
Zhang et al. 2006; Liu er al. 2007a; Liu ef al. 2007b; Kantola ef al. 2008 and 2009;
Murphy et al. 2010a).

Log scanning technology is used in forecasting/predicting lumber product
recovery from forest resources. Recent studie‘s have shown the usefulness of using laser-
scanning to connect external log features to lumber recovery variables which are then
integrated into forest management software (Middleton ez al. 2003; Murphy ef al. 2010a).
Log scanning technology has been used to develop forest management tools in Canada
(e.g., the Forest Estate Enabling Software in British Columbia) designed for modeling
and management of forest stands (Middleton ez al. 2003). Research shows that sawing
simulation software (e.g., Saw 2003) can be utilized to estimate lumber volume and grade
recovery using pre-harvest data (Moberg and Nordmark 2006). Scanning research
supports the observation that a volume-oriented forest management strategy does not
necessarily lead to maximum product recovery and best return (Zhang et al. 1998). Forest
stock dimensions, form and quality also need to be included in product recovery
modeling (Zhang ef al. 1998; Middleton et al. 2003; Moberg and Nordmark 2006).

Emerging product recovery models are striving to link external tree attributes to
estimate internal wood quality attributes (Li 2009; Groot and Pit 2010). Mapping internal
wood properties adds an additional layer of forest or tree detail supporting decisions on

how to best match unique stand attributes to specific end products (Li 2009; Groot and Pit
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2010). By integrating internal properties, these models also provide a basis for grading
simulated products, lumber dimension, lumber value and defect allowance (Barbour and
Kellogg 1990; Houllier et al. 1995; Wagner et al. 1996, Barbour et al. 1997; Ikonen et al.
2003).

Emerging product recovery research is using terrestrial laser scanning (TLS) to
collect base information to model optimal bucking and product recovery (Carson ef al.
2004; Murphy 2008). Lidar derived estimates of average stand value and log product
yields were within 7% of actual hand-measured estimates (Murphy 2008). The TLS
technology has been compared with cruised and manually measured log yield, and
estimates of volume and value recovery are not significantly different (Murphy 2008).
This research shows that TLS is a rapid and accurate method for detailed pre-harvest data
acquisition and can be suitable for product recovery simulation (Murphy ef al. 2008;
Murphy et al. 2010b). Linking this type of product recovery modeling back to the forest
stand for tactical and operational planning purposes has need of more research (Murphy
et al. 2008; Murphy ef al. 2010b).

Since the 1970’s, researchers have worked to incorporate log value into the forest
inventory or timber cruise. An important step in modeling value is simulated tree-bucking
pre-harvest (Wagner 1996; Goulding 2000). Stem coding systems are used in product
recovery modeling DSTs and support market-driven harvest planning based on enhanced
forest inventory data such as dimension, form and quality of the standing trees (Wagner et
al. 1996; Goulding 2000).

One such system is called MARVL, the Method for the Assessment of
Recoverable Volume by Log-types (Deadman and Goulding 1979). MARVL produces a

cruising framework that applies stem codes for each section of the stem. These stem



22

codes contain quality and malformation information that can be entered into a computer
model that bucks the stem into logs to forecast potential yield value from each stem
(Deadman and Goulding 1979; Deadman 1990; Gordon and Lawrence 1995). A
significant drawback of stem-coding cruising systems is that they are very time
consuming and do not predict actual product breakdown (Gordon and Baker 2004). The
dollar values optimized are those under ideal management conditions where there is a
buyer for each log type produced (Gordon and Laurence 1995; Gordon and Baker 2004).

Additionally, the MARVL system was found to be too rigid for assigning stem
parameters for more flexible recovery modeling (Gordon and Baker 2004). Researchers
developed “Stem Description” as an alternative method to assign attributes along the stem
(Gordon and Baker 2004). Stem description is found to be superior to stem coding in
predicting volume by log grade per hectare (Gordon and Baker 2004). Problems with the
stem codes were in efficiency and accuracy as there are over 18 codes for the cruiser to
apply at once, when cruisers can usually only keep 9 codes in mind at once (Gordon and
Lawrence 1995). A major advantage of the stem description method was shown in its
ability to estimate log yields. In stem description, the data does not limit the range of
potential simulated cutting strategies (Gordon and Baker 2004). Tree profiles collected
provide a continuous range of description data along the stem. The stem description
inventory method addresses the need for a more versatile coding system that log grade
specifications and are increasingly more detailed while log prices are being more tightly
linked to log quality (Deadman and Goulding 1979; Gordon and Lawrence 1995;
Goulding et al. 1995; Gordon’s and Baker 2004).

Dynamic tree bucking and product recovery models have been in existence since

the 1970’s. The trend is to take already established growth models and combine them
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with a user-interface geared towards forest practitioners in a stand-alone software
platform (e.g., the Tree Value System). Input forest inventory data include basal area of
the stand, DBH, tree height, heights to first live branch and first dead branch, and species-
specific taper functions to determine optimal bucking strategies (Briggs 1989; Uusitalo
and Kivinen 2000; Malinen et al. 2007). A more detailed pre-harvest measurement tool
has been developed for predicting forest composition and generates an output of stand
characteristics and tree size parameters (Uusitalo and Kivinen 2000). The tree list can be
used to determine bucking parameters prior to harvest. Dynamic bucking simulation tools
are useful in wood procurement and sawing production planning by simulating volume
estimates for each product assortment (i.e., log, pulpwood, etc.) (Pnevmaticos ef al. 1972,
Briggs 1977; Briggs 1989; Uusitalo and Kivinen 2000; Malinen ef al. 2007).

Additional research has found that local taper equations can be used to model
individual tree stem profiles to simulate optimized bucking routines for specific log sizes
and classes (Eng et al. 1986; Gobakken 2000; Zakrzewski ef al. 2010). Additionally, the
use of TLS has been used to model optimal bucking based on log specification (Pilkerton
2009; Murphy et al. 2010).

Comparison between the various types of data and analysis techniques to simulate
optimal bucking and product recovery show that detailed stem profiling creates the most
accurate results (Briggs 1989; Sachet et al. 1989; Malinen et al. 2007; Murphy ef al.
2008). The research shows that taper functions can provide a good description of stem
profiles, but cannot provide descriptions of sweep and branching within individual stems,
thus further detailed stem assessments are required pre-harvest (Eng ef al. 1986;

Gobakken 2000; Zakrzewski ef al. 2010). To support the forest industry management
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shift from volume to value there is the need for detailed stem profile information for

product recovery simulation.

2.5.2 Important Tree and Log Variables

In modeling product recovery from tree-level and log-level inventory, it is important to
measure external variables significant in predicting product recovery. When examining
log and tree-level product recovery, there has been a large body of research modeling
how external log features correlate with internal product recovery and value (Kellogg and
Warren 1984; Steele 1984; Zhang and Gingras 1999; Beauregard et al. 2002;
Wilhelmsson and Moberg 2004; Moberg and Nordmark 2006; Liu ef al. 2007a, Liu et al.
2007b). Important tree variables include: diameter at various heights along stem (stem
profile), diameter at breast height, height of tree, height to lowest dead branch, height to
lowest live branch, crown length (from lowest live branch to tree top), taper, log or stem
shape (sweep, crook, eccentricity), knot frequency and size and internode index (Kellogg
and Warren 1984; Steele 1984; Zhang and Gingras 1999; Zhang er al. 2001; Beauregard
et al. 2002; Wilhelmsson and Moberg 2004; Moberg and Nordmark 2006; Liu et al.
2007a, Liu et al. 2007b).

Many trends in modeling lumber volume and value recovery are similar among
researchers. For example, tree DBH had the greatest effect on modeling tree-level product
value, followed by tree height and tree taper (Beauregard et al. 2002; Wilhelmsson and
Moberg 2004; Moberg and Nordmark 2006). Increases in taper decreased the lumber
value recovery. For intensively managed stands, the modeling results showed that pruned

logs graded significantly higher than un-pruned logs (Steele 1984; Beauregard et al.
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2002; Ruel ef al. 2010). The results also showed that for un-pruned logs, the longer the
internodal length, a higher yield value was realized; demonstrating the importance of
including branch diameter, frequency and distribution along logs and stems when
modeling lumber value recovery (Steele 1984; Beauregard er al. 2002; Ruel ef al. 2010).

Studies cataloguing the variables found to be significant in lumber recovery in
jack pine found DBH, total tree height, height to first live branch and first dead branch,
knot size, branch diameter, crown length/ratio, branch index and basal area of the stand
had the greatest influence on value recovery (Steele 1984; Zhang et al. 2001; Zhang and
Tong 2005; Zhang ef al. 2006; Ruel ef al. 2010). Other stem characteristics such as sweep,
crook and eccentricity are statistically significant but do not impact lumber value
recovery a great deal (Steele 1984; Ruel er al. 2010).

Other studies have simply used DBH, height and taper to predict lumber output
and lumber grade yield in a standard- and random-length sawmill (Zhang and Tong 2005;
Zhang et al. 2006; Liu 2007a; Liu 2007b). Multiple regressions were applied and
explained up to 86% of observed variation in lumber grade yield and up to 92% in lumber
value (Zhang et al. 2001; Zhang and Tong 2005; Zhang ef al. 2006; Liu 2007a; Liu
2007b). The literature suggests for a lower-cost estimate of lumber grade yield, that linear
regression models using DBH alone or combined with tree height would be effective in
lumber grade yield and lumber value prediction. (Zhang et al. 2001; Zhang and Tong
2005; Zhang et al. 2006; Ruel ef al. 2010).

The majority of lumber recovery models created for Canadian sawmills are
general and reflect what is termed as a “normal” sawmill (Zhang ef a/. 2001; Zhang and
Tong 2005; Zhang et al. 2006; Liu 2007a; Liu 2007b). However, most sawmills are

unique, thus general models may not be appropriate for individual sawmills striving to
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model lumber value recovery from forest inventory data. Efforts should be made to
calibrate locally valid models for each sawmill’s lumber value creation process. With
mill-specific models supporting forest value chain DSTs, management decisions can be
made in the context of mill-specific product recovery to achieve specific production

objectives.

2.7 PRINCIPAL COMPONENT AND REGRESSION ANALYSIS USED IN LUMBER
RECOVERY STUDIES

Principal Component Analysis (PCA) has been used in several lumber value recovery
studies to isolate components from a list of measured variables (Bharati et al. 2003;
Chiorescu and Gronlund 2004; Flodin ef al. 2008; Jones and Emms 2010). PCA is
employed because most of the variables measured at the log- or tree-level have
collinearity (Eriksson ef al. 1999: Roos et al. 2000).

The use of PCA and PC regression scores in modeling can reduce variables that
are collinear into factors, thus reducing the level of complexity in the model (Eriksson et
al. 1999: Roos et al. 2000). In general, PCA is a well-established method for making
sense of large data sets of biological material such as trees, where there is collinearity and
noise (Eriksson ef al. 1999: Roos ef al. 2000).

PCA has been used in lumber recovery studies. For example, PCA has been
employed in log tracking modeling in Sweden to track logs from log sorts to sawlines, in
order to create an advanced raw material flow control where each log has a unique
signature based on its laser-scanned external log characteristics (Uusijarvi 2000;

Chiorescu and Gronlund 2004; Flodin et al. 2008). Other studies have used PCA to
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reduce log scanning data into Principal Components (PC) to track logs through a
production chain by means of multivariate PCs and Most-Similar-Neighbour (MSN)
analysis (Bharati and MacGregor 2003). In log tracking, the PCA signature was superior
to using any single measured log parameter at one time. PCA has also been used to
research softwood lumber image analysis, by running a multi-way PCA to decompose the
acquired three-dimension lumber images into a two-dimensional principal component
space (Bharati and MacGregor 2003). These components were used in predicting lumber
recovery features in the 2D analysis space. PCA showed strong correlation between
externally measured variables (i.e., branch size variables, the number of branches and
whorls, mean internode length and log acoustic velocity) and internal properties (i.e.
green density and heartwood content) (Bharati and MacGregor 2003; Jones and Emms
2010).

PCA has also been used at the tree-level in integrating lumber value recovery
analysis to predict lumber value (Roos ef al. 2000; Liu et al. 2007a; Liu et al. 2007b).
PCA has been employed to describe the interrelationship of tree-level variables (i.e.,
DBH, height and taper). Due to the low number of input variables, PCs were not used
later in the lumber recovery modeling; instead the original, measured variables were used
in analyses (Roos ef al. 2000; Liu et al. 2007a; Liu et al. 2007b).

The majority of lumber and tree recovery models utilize log and tree
characteristics such a log size, geometry and quality (Steele 1984; Middleton et al. 1989;
Liu ef al. 1989; Shi et al. 1990; Wagner and Taylor 1993; Roos ef al. 2000; Zhang and
Tong 2005; Liu et al. 2007a; Liu et al. 2007b). Modelers have used regression methods
along with optimized programming to relate these tree characteristics to lumber recovery

variables. Generally, measured variable are used in regression analysis to examine how
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tree and stand-level characteristics can predict lumber value, lumber grades and internal
properties based on stand and tree characteristics in conifers (Steele 1984; Middleton ef al.
1989; Liu ef al. 1989; Shi et al. 1990; Wagner and Taylor 1993; Roos ef al. 2000; Zhang
and Tong 2005; Liu et al. 2007a; Liu et al. 2007b).

In conclusion the research shows that PCA and regression analyses techniques are
commonly used in lumber recovery studies. Also, PCA has been shown as an effective
method to reduce a large number of measured tree variables into a few components.
Linear and nonlinear models have also been described as an effective method for
modeling product recovery parameters. For this reason PCA and regression techniques

were applied in the modeling for this study.
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3. METHODOLOGY

3.1 STUDY LOCATIONS

Sites used in this study were located in the Boreal forest region in northern Ontario north
of Thunder Bay (Figure 2). We collaborated with Resolute Forest Products (previously
Abitibi-Bowater) and their harvesting contractor Marcri Logging to carry out the
operational planning and harvesting for the study; including harvesting, tracking of tree-
lengths and chips from forest stands to the sawmill and pulp and paper mill in Thunder
Bay, and sawmilling of the jack pine tree-lengths. The three study sites were selected
from the summer and fall harvest plan of 2010 to cover a range of stem qualities for jack
pine. Table 1 describes the three study site conditions. The three sites were located on
similar sites ranging from moderately fresh and sandy to fresh coarse loamy. All sites
were highly productive. The site classes are based on Plonski’s single-species, normal

yield tables (Plonski 1960) and therefore, should be applied to mixedwoods with caution.
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Table 1. Stand characteristics by block.

Block 383 559 568
Ecosite Classifcation (ELC v.2.0 2009) BO49TH/TI BO34TH/TI BO5OTH/TI
Soils Fresh, Sandy Dry-Fresh, Sandy  Fresh, Coarse Loamy
Site Class (Plonski) 1 1-2 1
Species Mix Pj,Sb,Bf, Pj;Sb,Po, Pj.PosSb,Bf,Bw,
Pj, dominant age (years) 115-125 90-100 80-100
Density (SPH) 872 828 658
All spp. gross merch vol (m®ha) 255.7 217.5 282.1
All spp. net merch vol (m*ha) 2356 202.7 256.8
Pj, gross merch vol (m®ha) 186.7 140.0 106.9
Pj, net merch vol (m*ha) 169.9 133.3 101.7
Pj, tree-length vol (m*ha) 135.9 106.6 81.4
Pj, average net merch tree size (m®) 0.7 0.4 0.5
Pj, average defect severity Med Low High

The sites were harvested using a conventional mechanized full-tree system.
Sawlog wood was transported to the sawmill in tree-length form. The undersized and
non-lumber species were chipped using the chain flail delimber-debarker chipping system.
Approximately 500 m? of jack pine tree-lengths from each site were delivered to the
Resolute Forest Products sawmill in Thunder Bay. The 10 truckloads from each site were
harvested the week before and delivered on the Friday night before each mill run. On
three separate Saturday mornings (6:00 a.m. — 12:00 p.m.), the jack pine volumes from
each site were processed independently through the sawmill after all logs, lumber and
residue were purged from the saw lines, and all computers scanning information and
production data were zeroed. Information was tracked at each stage of the wood
procurement and conversion process up to rough green lumber production. The datasets
collected for each site included a pre-harvest inventory, tree-length taper and quality
profiles, site and mill fecovery volumes and products, residual biomass and standing tree

volume, and internal fibre properties of sample jack pine trees.
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[Block locations used in study|

Figure 2. Map showing locations of three study sites in northern Ontario (Source:
Ministry of Transportation Ontario).

3.1.1 Study Site 1

Block 383 was the first site inventoried and was processed at the sawmill on June 12,
2010. The terrain was gentle with a slight SW slope (2 - 6%). The Ecosite Classification
was B049Tt/T1 (OMNR 2009) and had a Forest Ecosystem Classification of V17 (OMNR
1997) with fresh, sandy mineral soils. A picture showing the average stand conditions for

block 383 is seen in Fig 3. The site was class 1 (Plonski 1960), with stocking
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approximately 658 stems per hectare (SPH). Approximately 3.7 ha was harvested from

the block to run a 500 m® sample through the sawmill.

Figure 3. A picture of the typical stand conditions found within block.

The study site of block 383 had a gross merchantable volume of 255 m’/ha with a
volume composition of 73 % jack pine, 21 % spruce (Picea spp.), 4 % balsam fir (4bies
balsamea (L.)(Mill.)), and 2 % trembling aspen (Populus tremuloides (Michx.)) (Table 2).
The net merchantable jack pine volume was 169.9 m*/ha (Table 3). Form defects were
found on 49 % of jack pine stems. Defects were moderate in severity. A high amount of
scaring and large diameter branches were present in the jack pine. Spruce in the stand was

of moderate quality with high branchiness. Balsam fir was of moderate quality with
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scarring present on 25 % of larger diameter stems. Trembling aspen was of moderate to

poor quality with a high concentration of conk on over 50 % of stems.

Table 2. Gross merchantable volume by species and diameter class for block 383.

Block: 383 Gross Merch Volume (m*/ha)
# Plots = 12 Diameter Class
Species 0-99 [10-139(14-17.9|18-21.9{22-259|26-29.9 30+ Total
Bf 0.0 32 2.2 1.9 24 0.0 0.0 9.7
Bw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pj 0.0 0.0 0.0 7.0 6.8 9.5 163.4 186.7
Pt 0.0 0.0 0.0 0.0 0.0 3.9 0.0 3.9
Sb 0.0 52 10.8 8.7 11.9 4.1 14.7 55.4
Sw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 0.0 8.4 13.0 17.6 21.1 17.6 178.1 255.7

Table 3. Net merchantable volume by species and diameter class for block 383.

Block: 383 Net Merch Volume (m’/ha)
# Plots = 12 Diameter Class
Species 0-99 |10-13.9}114-179|18-21.9{22-259|26-29.9 30+ Total
Bf 0.0 3.1 2.1 1.8 2.3 0.0 0.0 9.3
Bw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pj 0.0 0.0 0.0 6.4 6.2 8.7 148.7 169.9
Pt 0.0 0.0 0.0 0.0 0.0 3.1 0.0 3.1
Sb 0.0 5.0 10.4 8.4 11.5 4.0 14.1 533
Sw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 0.0 8.1 12.5 16.5 20.0 15.7 162.8 235.6

3.1.2 Study Site 2

Block 559 was the second site inventoried and was processed at the sawmill on October 2,
2010. The terrain was gentle- rolling with SW slope (1-12%). The Ecosite Classification
was B034Tt/T1 (OMNR 2009) and had a Forest Ecosystem Classification of V32 (OMNR
1997) with dry-fresh, sandy mineral soils. A picture showing the average stand conditions

for block 559 is seen in Figure 4. The site was class 1-2 (Plonski 1960) with stocking
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approximately 828 SPH. The area harvested from this block to deliver 500 m’ to the

sawmill was 4.7 ha.

Figure 4. A picture of the typical stand conditions found within block.

The study section of block 559 had a gross merchantable volume of 217 m’/ha
with a volume composition of 64 % jack pine, 23 % black spruce (Picea mariana
(Mill.)B.S.P.), 12 % trembling aspen, and 1 % balsam fir (Table 5). The net merchantable
jack pine volume was 133.3 m*/ha (Table 6). The jack pine was of moderate to good
quality with form defects on 30 % of stems with low to moderate severity. The black
spruce was of moderate to good quality with minor form defects. The aspen was of
moderate quality with conk defect found on 25 % of stems. The balsam fir was of

moderate quality, small diameter and in the understory.
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Table 5. Gross merchantable volume by species and diameter class for block 559.

Block: 559 Gross Merch Volume (m*/ha)
# Plots = 10 Diameter Class
Species 0-99 110-13.9{14-179|18-21.9|22-259|26-29.9 30+ Total
Bf 0.0 2.1 0.0 0.0 0.0 0.0 00 [ 21
Bw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pj 0.0 0.0 2.0 12.4 50.1 43.2 322 140.0
Pt 0.0 0.0 0.0 0.0 33 0.0 23.3 26.7
Sb 0.0 4.1 9.0 18.0 8.7 9.0 0.0 48.8
Sw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 0.0 6.2 11.0 304 62.1 52.2 55.6 217.5

Table 6. Net merchantable volume by species and diameter class for block 559.

Block: 559 Net Merch Volume (m>/ha)
# Plots = 10 Diameter Class
Species 0-99 [10-13.9]114-179|18-21.9|22-25926-299 30+ Total
Bf 0.0 2.0 0.0 0.0 0.0 0.0 0.0 2.0
Bw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pj 0.0 0.0 1.9 11.8 47.7 41.2 30.7 133.3
Pt 0.0 0.0 0.0 0.0 2.5 0.0 17.9 20.5
Sb 0.0 4.0 8.7 17.3 8.4 8.7 0.0 46.9
Sw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9
Total 0.0 6.0 10.6 29.1 58.6 49.8 48.6 202.7

3.1.3 Study Site 3

Block 568 was the third site inventoried and processed at the sawmill on October 16,
2010. The terrain was gentle with a slight W slope (0 - 4%). The Ecosite Classification
was BO5S0Tt/T1 (OMNR 2009) and had a Forest Ecosystem Classification of V11 (OMNR
1997) with fresh, course loamy mineral soils. A picture showing the average stand

conditions for block 559 is seen in Fig 5. The site was class 1 (Plonski 1960) with
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stocking approximately 872 SPH. The area harvested from the block to deliver 500 m’ to

the sawmill was 6.5 ha.

Figure 5. A picture of the stand conditions found within block 568.

The study section of block 568 had a gross merchantable volume of 282 m’/ha
with a volume composition of 38 % jack pine, 35 % trembling aspen, 11 % black spruce,
8 percent balsam fir, 7 % white birch (Betula papyrifera Marsh.) and 1 % white spruce
(Picea glauca (Moench) Voss) (Table 7). The net merchantable jack pine volume was
96.2 m*/ha (Table 8). The jack pine was of moderate to low quality with high form
defects and large branches. The average lowest dead branch was lowest of the three sites
(3.5 m). Form defects were found on 75 % of jack pine stems and were moderate to high
in severity. The jack pine also had a high amount of scarring. The trembling aspen was of

moderate quality with a high concentration of conk on large diameter stems. Black and



white spruce were moderate quality with high branchiness. The balsam fir was of

37

moderate quality and mainly found in the understory in thick pétches. The white birch

was of moderate to poor quality with high form defect and primarily found in the

understory.

Table 7. Gross merchantable volume by species and diameter class for block 568.

Block: 568 Gross Merch Volume (m*/ha)
# Plots = 20 Diameter Class
Species 0-99 110-139|14-17918-21.9]22-25926-29.9 30+ Total
Bf 0.0 2.6 5.0 9.3 4.7 1.6 0.0 23.1
Bw 0.0 3.7 4.3 6.0 4.5 0.0 0.0 18.5
Pj 0.0 0.0 0.0 8.4 17.9 22.2 58.3 106.9
Pt 0.0 0.0 1.5 12.0 9.9 14.4 60.1 97.9
Sb 0.0 2.3 4.0 5.8 7.8 33 8.9 32.2
Sw 0.0 0.0 0.0 1.6 0.0 0.0 1.8 34
Total 0.0 8.6 14.9 43.1 44.8 41.6 129.2 282.1
Table 8. Net merchantable volume by species and diameter class for block 568.
Block: 568 Net Merch Volume (m’/ha)
# Plots = 20 Diameter Class
Species 0-99 [10-139(14-179]18-21.922-25926-29.9 30+ Total
Bf 0.0 2.4 4.6 8.7 4.3 1.5 0.0 21.5
Bw 0.0 3.6 4.3 5.8 4.4 0.0 0.0 18.1
Pj 0.0 0.0 0.0 7.6 16.1 20.0 52.5 96.2
Pt 0.0 0.0 1.3 9.9 8.2 11.9 49.8 81.2
Sb 0.0 22 39 5.6 7.5 3.2 8.6 31.0
Sw 0.0 0.0 0.0 1.5 0.0 0.0 1.8 33
Total 0.0 8.2 14.0 391 40.6 36.7 112.7 251.3
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3.2 FIELD MEASUREMENTS

Table 9 presents the datasets measured across the value chain studied. Stages included
pre-harvest timber cruise, tree-length profiling, mill processing, residual biomass
inventory and internal properties testing. It is important to note that the analysis section
uses timber cruise and sawmill recovery datasets only and the remaining datasets are

described as a point of reference for future research.



39

syaeq 01 yid wody sjyoad
12)W0NSURp ARI-X o
sIajourelp
poomae/poom AlEY
jaeq 03 yud sapyyord
Ausuop pue ymoId Sutl Joy
SJBAIRIUI TIG'T 18 MO SYSI(Y "¢ |
Ksua o ,,
uoissardwio) o
YOW
HJOW »
jIeq SPISING WOH] ISjaWep
doy) wejs ajqejueyoIa
Joueosad po1 pue ‘gL “0¢
‘T 0 wody o (W) syjod T
¢ @8
SE SJUSUIGINSEIL SWES o
15001} ojdures
Jo sjustanseawt Bof [y |
1payIfIo)) BIE(]

"9}1S Yora JE 981

spdwes suid yoef uy sopedord
Wp3uens surusle( '] |
:s2a13991qQ) |

Aend .
so102dg
WY
HAd -«
:poyew wisud 7 4vd
Buisn saon Burpuels fenpisay ‘7
Aend
adL] .
saroadg
IWEL .
3uag »
;poylaw
J09SUE) SSBUIONG PUNOID) |
1paydRjo) BlR(Q

‘aumn|oA 931 Surpuels
pUE SSBUIOL] [ENPISAI PIOOY |

:$3A193{qQ |

(isnpames ‘sdiyo
‘sa0o1d pus) sWMOA o
BJBD ONPISIY PUB JISBA b
K1aa00a1
Joquing AIRUWIlg »
3oy 1oy
onjea KI9A0001 IBGUWIAT o
apeid
‘awinjoa 9031d [ENPIAIPY]
Sol ut sa1oatd jo requinTy
oprid 507 »
ode]
doomg
JWINjoA 07
yiBua; So7 »
o3xef 1oowerp o1 .
[{ews Jo)owelp 307 .
oWl W AB( o
:SIOUUEBDS
Suimes voneziwndQ ‘¢
PoIaA0DaI
s3or jo ApEnd) .
PoIRA0031 STO] JO 9ZIS
y13us| 981,
:2[e0s 801 0) YiBusj 901 7
jiurdind
pUe [[IEMES WO}
spodar ajeos-ySop
diyo pue pBusy-avl] |
1paaflo) vieQ

‘SIUUEOS

[[1W WOk 83jy AI3A0031
faqun pafieldp find T

'saroads £q (sojmes
pue sdiyo) sumjoa yoery, °|
HEXVRET(1TeY

y1Susj-ean uo
uopsod dojs pue uelg
:ofuel 109J3(1 9
(31qeyuBydIowW
-UoU i ¢ ‘2}qEadnoU
Aforeq st 1) ¢-1 9[E0S
1AjiI0A3s PIje(d 'S
Seug .
183G .
o3eWIEp "[BIIUBYIDIA
J}ORIDISOL] o
WOg
doy paddeug »
doomg o
NOOID o
aBpry «
JOI3IRSH
1100J9p Aujenb [ensip b
JUSWSIOUI WIG'T Yors
12 JOJoWRIP YOURIG XEIA »
SQINSBIW Yourlg "¢
doy ‘sjuawamuy wg'g
‘HE( ‘aseq 1B el .
SoIMSea JojuWeIp-yiSus 7
Pa3aRfio) Ble

'saqiyoxd Ayjenb
pue 1ade; weys prosay |
1$aAn9fqQ

38n uo
uonsod dois pue uEIS
:o8uel 109y 9
(s1qrueyoIst
-UoU SI § “a{quadnjou
Ajoreq s1 1) 6-1 3[B3S «
A3IOASS 109)9(] S
Seug .
B3G .
oFeiliep [EOIUBYOSIN
J}ORIOISOI] o
Wog o
doy paddeug
doamg »
NOOID
yoo3ap Ajyjenb jensip p
SIUSIRION] WIS’ o
Hgd »
e pPwelq ¢
wBiay sjqeueyorow doj
Youeiq Al ]
youelq pesp .1
doj, «
e sy 1) 7
131490
joid wioy 931 Yorad
0} S0UBISIP PUE YINUWHZY o
a3e soroads JuBHMWIO( «
NSO UMOLD)
US0DY
odojg
100dsY o
3|yoid 10id "1
ipagsafo) vleQ

‘siajeurered

Ajijenb pue aumjoA puejs

pI09a1 03 sj0id asinto wisad
paousIajeload ysijqelsy |
:saAnRfqO

sarpradoay yenaayuy g a8ejg

ssewolg fenpisay ip s5e1s

Burssadoag A i€ 98e1g

Suyjyyoad p3uap-vaay :7 aSeyg

asinI) Jaquur] iy aSe)g

"Apris a3 Jo a8e1s yora 18 P[00 SIjqRLIRA Bl JO uondLosa(] g 9qel




40

3.2.1 Pre-harvest Timber Cruise

Stage 1 data collection consisted of a pre-harvest timber cruise. The method used was a
modified random point design with random plot centres as described by Avery and
Burkhartt (2001). A prism BAF of 4 was used due to the well-stocked nature of the stands
that yielded an average count of 11 trees per plot. A sampling intensity of 2 plots per
hectare was taken. There were time restraints on the window available to conduct the
timber cruises due to harvest scheduling. Therefore, a more intense sampling intensity
was employed to ensure that the coefficients of variation of species volume by stand were
acceptable. It would have been preferred to use a double sample or 3P sampling technique
as outlined by Avery and Burkhartt (2001), but due to the short timeline on harvest
scheduling and distance of study sites from town, it was only possible to conduct an
intensive single-pass point cruise.

In addition to traditional variables measured in a point cruise, quality information
was collected for jack pine stems as outlined in Table 9 to include quality, form and
branchiness characteristics. The variables chosen for collection in the pre-harvest timber
cruise are based on the body of research presented in the literature. The stem
characteristics data collection technique was based on the surveying technique presented
by Gordon and Baker (2004), where stem description information is not confined to
specific log grades and can be quantified later for simulating a variety of bucking
strategies. Figure 6 illustrates how the cruiser views the tree when categorizing and

recording tree profile and quality characteristics during the timber inventory.
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Figure 6. Tree profiles created during the timber cruise for merchantable jack pine stems
describing a diameter, sweep and feature profile.

Stem profiles (height/diameters) were produced using the Laser Tech Criterion
RD1000, an electronic version of a relascope. Horizontal distances were calculated using
the Hagglov Vertex and input into the Criterion to automatically calculate the heights. On
the Criterion measuring screen, manually adjusted bars are displayed to compute

diameters. Field data for stages 1 and 2 were collected in a mobile PC unit with a custom-
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built form using Gerema Mobile sofiware. The Gerema mobile software is an extension
of ArcGIS mobile software in which Central Computer Services CCS has built a new
application based off of the ArcGIS background for custom forest surveying needs.
Stage 1 tree diameter measures at DBH were taken using a diameter tape;
distances and azimuth to plot centre were done using the Hagglov Vertex and a Silva
Compass. Data was digitally recorded from the Criterion RD1000 (Figure 7) and Vertex

1V into the Gerema Mobile handheld units.

Figure 7. Criterion RD1000 electronic reI;éébpelng used to record stem profile data.

Diameter profiles of trees were measured using an electronic relascope, following
a methodology from Gordon and Baker (2004), which was based off of original work by

Deadman and Goulding (1979) using the Spiegal Relascope. In this method,
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characteristics (size, form, quality) are measured along the stem to produce a stem profile.
The stem profile is used in future modeling to simulate the product recovery process
(bucking and sawing simulation) and assign a product recovery value. In this study, we
used the LaserTech Criterion RD1000 for measuring heights and diameters; count

trees,and horizontal distances were measured using the Vertex 1V.

3.2.2 Tree-length Profiling

Tree-length measurements (Stage 2 data collection) at roadside were taken to
provide a snapshot of jack pine tree-lengths taken to the sawmill. The variables measured
during the tree-length profiling are listed in Table 9. The basic tree-length measurements
are the same as in the pre-harvest timber cruise; providing a full stem description
including a diameter profile, sweep profile, top merchantable height and defect ranges.
The profiling also measures maximum knot diameter for each 2.5 m section for each tree-
length measured.

Stage 2 data was collected using calipers, a 30 m measuring tape, and the Gerema
Mobile data-recording device with custom built data forms for this study. Stem profiles
with quality and form characteristics were recorded (Table 9). Also, the butt ends of the

logs were marked with blue paint for identification at the sawmill (Figure 8).



44

Figure 8. Tree-length stacked at roadside marked for study.

3.2.3 Mill Processing

Mill recovery data (Stage 3 dataset) were recorded at the Resolute Forest Products
sawmill and pulpmill in Thunder Bay. The data were collected at four stages of the mill
processing operation: tree-length weigh scale at sawmill, chip truck weigh scale at
pulpmill, sawmill log and lumber optimizing scanner, and chips and sawdust data from
the lumber recovery process weigh scaled at pulpmill. The purpose of collecting these
datasets was to provide both an overall recovery of product from the study sites (tree-
length, forest chips, fibre, sawmill chips and sawdust), and a detailed understanding of the
lumber value and volume recovery. Quality and volume specifications were recorded for

tree-lengths and chips delivered to both the sawmill and pulpmill. Residues from the
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sawing process, both chips and sawdust, were recorded after each site was run through
the sawmill.

Sawmill measurements were conducted at the Resolute Forest Products random
lengths sawmill in Thunder Bay, Ontario. The milling process moves the raw wood
material through the wood-to-lumber conversion process (Figure 9) and records scanner
information of size, recovery and waste parameters (Table 9). Specifically for this study,
we examined the Comact sawline scanner optimizers, which create a 3-D image of the log
and run through cutting patterns until optimal log value recovery is reached. The log is
then sawed and the lumber is send through trimmers, reclaimers, and then sorted by size
and moisture content for kiln drying. After drying, the lumber runs through the planer and
then grading. Due to the set up at mill, we were only able to track lumber from each site
up to the rough-green lumber sort. Detailed variables measured during sawmilling

process are listed in Table 9.
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Figure 9. Sawmill wood processing flowchart (Leclerc 2011).

3.4 DATA ANALYSIS

Data was compiled into Microsoft Excel sheets through transcription, data transfer from

Gerema Mobile data logger, and CSV files produced from the Comact scanner/optimizers.
The statistical analyses were performed using IBM software PASW18. Figure 10 shows a

flowchart outlining the data analyses sequence conducted in the study.
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3.4.1 Tree Bucking Simulation

A tree stem-bucking simulator was created in Microsoft Excel to simulate the slasher
deck process at the sawmill using the pre-harvest inventory. Figure 11 shows the slasher
deck at the sawmill that the tree bucking simulation is based upon. The bucking simulator
extracted the same log-level variables (large-end diameter, small-end diameter, length,

taper, volume and sweep) used in log-level PCA and regression analysis.

Figure 11. Picture of the slasher deck at sawmill bucking tree-lengths into s.

The simulated bucking process was used to simulate the logs that would be

recovered from each jack pine tree in the timber cruise. For this purpose, Excel
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spreadsheets were used to transform the pre-harvest timber cruise data into a form that
can be interpreted for bucking patterns set up at the sawmill. The random lengths sawmill
bucking process is not optimized; rather it is a set cutting pattern of 3.17 m, and all
subsequent lengths of 2.51 m. Log diameters for each simulated log were calculated by
interpolating diameters from the 2.5 m interval diameters taken during timber cruise with
the electronic relascope. Stem characteristics (e.g. sweep, defects, etc.) were copied to
each log bucked from stem in those sections (see figure 6 for stem details). All of the
semi-automated bucking calculations were performed in Excel.

An important rule to apply before simulating the logs cut from a tree stem is to
determine if the tree-length is to be kept in one piece or cross-cut into two long-log
lengths. Essentially, long-logs loaded onto the haul trucks need to be less than 19.5 m to
meet transport regulations and the harvesting contractor will not cut long-logs shorter
than 10 m in order to maximize load size. Therefore, if the top merchantable height of the
standing tree is greater than 20.31 m (accounting for 0.3 m for stump height and butt-end
trim) then two long-logs are cut out of a standing tree. If the standing tree is less than 20.3
m, then the tree-length is kept as a single long-log. Determining whether one or two long-
logs are to be cut from a stem is important because the first log cut from a long-log is
3.17 m, whereas all remaining logs are 2.51 m, thus if two long-logs are cut from a tree,
then there will be two 3.17 m logs. An example of these two different cutting patterns can

be seen in Figure 12.



50

Bucking Pattern 1: Bucking Pattern 2:
(Merchantable height <20.3m) (Merchantable height >/=20.3m)
Height (m) Tree-length
Height (m) Tree-length — 257 | Top Height
231 | Top Height
_ 221 |TopMerch, Height
Tree-length waste
_ 195 | Top Merch. Height 218 L o
' I
| Log8
Tree-fength 2.51m
waste E
! |
I — 3L
. 186 1 _ — — i
- Log7
Log7 25im
25Im . -
: _ w67l
_o_er ] |
| . -
S Log 6
Log6 251m
25im t -
| o2 ] i
— el L I
! '
7 Log5
Log5
251m 3.17m
! I
RS § IO SR A, B T I R
! f
Log4 Log 4 1
251m 251m
| . | -
__es X f
| - I
Log3 Log3
251m 25tm
Lo !
R - (N S — e 80
I I
Log?2 Log2 |
2.5tm 251m
! o
S . B A R I S N A
| |
1 1 -
fLogl Log i
3.47m 3.17m
| |
SER I R SN < I I S

Figure 12. Tree bucking pattern 1 and 2 applied to all merchantable tree-length stems that
have a minimum length of 10m and top diameter of 10cm.
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3.4.2 Experimental Design

Due to the large number of predictor variables explaining lumber value and volume
recovery, there is a problem of multicollinearity in conducting multiple regression
analysis of log variables scanned at the sawmill. Therefore, principal component analysis
(PCA) was used to isolate principal components from the original log variables. The end
goal is to build regression models for predicting GLVR in the sawmill with the principal
components extracted (detailed regression models are shown in Chapter 4).

One of the challenges in this study is data correlation between different data
collection stages. For example, 1:1 correlation of tree-level data to the GLVR extracted
from the logs sawn in the sawmill is near impossible without individual tags or signatures
following each and every stem measured from forest through to lumber creation.
Therefore, PCA and regression analysis were performed at the two stages: log-level
(using Stage 3 data collected at sawmill) and tree-level (using Stage 1 data collected in
timber cruise). PCA was performed at the log-level, and the regression models were
created to predict the GLVR. Then using the bucking process described in section 3.4.1,
the log-level regression model was used to calculate individual GLVR for each log
extracted from the tree stem. The value recoveries for each log cut from the same stem

were added together to create a GLVR estimate for the entire tree.

3.4.3 PCA at Log-level and Tree-level

The study was designed to test the hypothesis if log and tree variables measured at the

sawmill and forest respectively, can be isolated into two or three principal components to
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be used in future regression analysis. PCA is a linear dimensionality reduction technique,
which identifies orthogonal directions of maximum variance in the original data, and
projects the data into a lower-dimensionality space formed of a sub-set of the highest-
variance PCs (Chiorescu and Gronlund 2004; Field 2005). The PCs are derived using
linear algebra. The solution is based on an important property of eigenvector
decomposition. The data set is X, an m x n matrix, where m represents each external log
or tree variable and n represents each log or tree observation.

Mathematically, the PC extraction goal is to find some orthonormal matrix P
where Y=PX such that Sy = ﬁ—l YYT is transformed into a diagonal matrix.

The rows of P are the principal components of matrix X (Shlens 2003). Put
succinctly, PCA produces PCs from the dataset containing collinear variables. The PCs
aggregate the collinear variables by representing the majority of variance found between
the groups of collinear variables. The PC’s essentially plot a linear regression line that
best fits a group of collinear variables and assigns a regression value for each log or tree.

The analysis of variance test was used to determine the significance of each
variable prior to conducting the PCA. Three preliminary statistical tests (Determinant,
Kaiser-Meyer-Olkin (KMO), and Bartlett’s test of sphericity) were performed to check
the assumptions of singularity and non-correlation in the data. The Determinant tests
extreme multicollinearity in two or more variables, KMO is a measure of sampling
adequacy, and Bartlett’s test of sphericity is used to test the null hypothesis of singularity.
Following recommendations by Hair et al. (1995), factor loadings higher than 0.3 are
regarded as significant. Loadings slightly less than 0.3 may, however, in some cases

indicate relationships that can be discussed and analyzed. Generally, where the
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component plateau is the intuitive cut-off point, and when using Kaiser’s criterion (Kaiser
1974) where the sample size is >250 and average communality is >0.6,all factors with
eigen values above 1 should be retained for PCA.

Factor rotation is used to improve the interpretability of factors. Rotation
maximizes the loading of each variable on one of the extracted factors, while minimizing
the loading on all other factors (Fields 2005). There are two groups of rotation: i)
orthogonal that is used for factors assumed to be unrelated, and ii) oblique that is used for
factors assumed to be related. Orthogonal rotations include: varimax, quartimax, and
cquamax. For the PCA’s in this thesis, varimax rotation was used for the log and tree-
level analyses in order to maximize the dispersion of variable loadings within the

principal components.

3.4.4 Multiple Regression Analysis at Log-level and Tree-level

The second stage of experimental design was to take the PC regression scores from the
PC’s extracted (e.g. PCl:Log Size = S and PC2: Log Form = F) from the PCA analysis
and explore various linear and nonlinear multiple regression models to predict the GLVR.
The purpose of multiple regression analysis is to understand the relationship
between two or more predictor variables and a dependent or criterion variables (Pearson
1908). Partial Least Square (PLS) is a regression technique commonly used in the lumber
recovery models (Liu ef al. 1989; Roos et al. 2000; Zhang and Tong 2005; Liu ef al.
2007a; Liu ef al. 2007b). PLS is a linear regression method that generalizes and combines
features from PCA and multiple regression analysis (Tobias 1995; Antii 1999; Reeves

and Delwiche 2003; Abdi 2003).
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The lumber value and volume recovery has been determined using log size and
log geometry (Roos er al. 2000; Via et al. 2003; Liu er al. 2007). The log-level multiple
regression analysis was conducted using log size (small diameter, large diameter, volume,
and length) as Principal Component 1 (PC1=S) and log form (taper, length, and sweep) as
Principal Component 2 (PC2=F). The green lumber value recovery at log-level as a

function of S (log size) and F (log form) is represented by equation (1) as:

Lj = f(Spc, Fpc) (1]

Where,
L; represents rough-green lumber value recovery (CANS) from a log j,

Spc denotes the Principal Component 1(log Size) regression score, and

Fp 1s principal component 2 (log Form) regression score.

For the tree-level regression analysis, we use the results from the PCA analysis,
where PC1(S) represents the tree size parameters (diameter profile, top merchantable
height, and taper), PC2(F) the tree form parameters (taper and sweep), and PC3(B) the
crown characteristics parameters (live crown ratio). The green lumber value recovery at
tree level as a function of PC1 (tree size), PC2 (tree form), and PC3 (tree branchiness) is

represented by equation (2) as:

T; = f(Spc, Fre, Bpc) (2]

Where,

T; represents rough-green lumber value recovery (CANS) from a tree j,
Spc denotes the Principal Component 1 (tree Size) regression score,
Fp¢ 1s principal component 2 (tree Form) regression score, and

Bp is principal component 3 (tree Branchiness) regression score.
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Finally, we examined three types of model forms: linear function, exponential
function and power function, using least square regression method for estimating and
validating the reliability of the model (Gujarati 1995).

Models were evaluated based on the coefficient of determination (R?), the mean
squared error (MSE), and the root mean squared error (RMSE) of predictions using the

equations (3), (4) and (5), respectively:

2 _q_ (PP
R?=1 o) [3]
Zr'riﬂp"ﬁ'lz
MSE ==z2J 1\ [4]

m |p._p.1%
RMSE = [g—’"—":j—f’—’— [5]

Where,
P and 13] are observed and predicted rough-green lumber value recovery of logs j,
P is the mean of the observed rough-green lumber value recovery for the n logs,

j=1,2,...,n, and

n is the number of logs (n = 16565 in this study).

The R?is the square of the sample correlation coefficient between the outcomes
and their predicted values (Fields 2005). R? is helpful in understanding the goodness of fit
of the model. The MSE and RMSE are helpful to explain the quality of the model by

proving an indicator of typical misfits of a model or the standard error of the estimate

(Fields 2005). We use both the R? and MSE to assess a model because although R? tells
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us the goodness of fit of the model, MSE is used to explain the width of the confidence
intervals for prediction, or the amount of error between the observed and predicted values.
RMSE is useful when discussing the real error in a model as RMSE is measured in the
same units as the data, rather than in squared units, and is representative of the size of
average error (Fields 2005).

In deciding which models to use, an exploratory method was applied. The
regression analysis started with the running of a stepwise regression analysis to see if
combining different PCs as predictor variables would improve the model accuracy. Two
types of nonlinear models (power and exponential functions) were also formulated and

compared using the model criteria: R?, MSE and RMSE.

3.4.5 Block-level Productivity Comparison

A block-level productivity comparison was created once the PCA and regression analyses
were complete for both log and tree-level data. To generate a block-level productivity
comparison the bucking simulation and tree-length profiles were combined to calculate an
estimated product recovery for each stem in the timber cruise. The timber cruise
information was used to extrapolate the GLVR of different stems (Model 77) to a per
hectare level. The GLVR for an entire hectare was calculated. Different lumber recovery
factors (LRFs) along the supply chain were compared by taking the final GLVR and
board volume scanned at the sawmill trimmers and dividing these recovery values by
total jack pine volumes recorded in the timber cruise, weigh scale, and at the log line

scanncrs.
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4. RESULTS AND DISCUSSION
4.1 LOG-LEVEL PCA

4.1.1 Preliminary Analysis of Singularity and Non-correlation

The descriptive statistics of log level variables along with their preliminary correlation
information with GLVR and significance are shown in Table 10. It was seen that diameter,
length and volume were strongly correlated with GLVR and have a significant effect on
GLVR. Sweep and taper have little or no correlation with GLVR and only taper has a
significant effect on GLVR. Similar results were also found by Steele (1984), and
Moberg and Nordmark (2006) who found log quality and knot characteristics are also
important. The sawmill studied did not scan for knots in the GLVR process and thus are
not included in the analysis. This is a definite shortcoming of the log-level models, as we
know from many researchers (Kellogg and Warren 1984; Steele 1984; Zhang and Gingras
1999; Zhang et al. 2001; Beauregard et al. 2002; Wilhelmsson and Moberg 2004; Moberg
and Nordmark 2006;) that knot size, angle and distribution play a significant role in

GLVR in jack pine and other conifers.
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Table 10. Descriptive statistics used for establishing log-level PCA analysis (n = 16565).

Small End Large End
Descriptive Diameter(cm)  Diameter(cm)  Length(cm)  Volume(m®) Sweep(em)  Taper(cm)  GLVR(S)
Minimum 8.13 10.41 152.40 0.02 0.30 0.00 0.00
Maximum 40.39 58.67 335.28 0.43 13.18 28.80 53.20
Mean 19.38 21.49 266.43 0.09 2.04 2.19 9.73
SD 5.15 5.85 27.07 0.06 1.1 1.57 7.10
Linear R?
predicting GLVR(S) 0.87 0.91 0.91 0.97 <0.001 0.26
Anova Sig. Test <0.001 <0.001 <0.001 <0.001 0.32 <0.001

The correlation matrix describes the level of collinearity between variables and
tests whether or not two variables are significantly similar. The results show that there is
high collinearity between the selected diameter (diameter measured 2 feet from small-end
of log), small-end diameter and large-end log diameter measurements (Table 11). The
final statistic in gauging whether the data has extreme multicollinearity, we use the
determinant of the correlation matrix. Since the value of the determinant is less than 1.0E-
5, one or more variables need to be removed (Hair e al. 1995; Field 2005). We removed
the variable Selected Diameter, as shown in the correlation matrix for culled log variables
in Table 12. The new determinant value of 1.28E-035, is greater than the threshold value

of 1.0E-5, proving that singularity is not a problem in the revised dataset.
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Table 11. PCA correlation matrix for all logs variables reporting correlation coefficients,
tests of significant similarity, determinant, KMO, and Bartlett’s.

Selected  Small End Large End

Diameter  Diameter  Diameter Length  Volume — Sweep Taper
Selected Diameter 1.000 0.997 0.972 0.350 0.943 0.059  0.365
Small End Diameter 0.997 1.000 0.970 0.347 0.940 0.055 0.348
Large End Diameter 0.972 0.970 1.000 0.464 0.973 0.103 0.564
Correlation  Length 0.350 0.347 0.464 1.000 0.549 0.205 0.611
Volume 0.943 0.940 0.973 0.549 1.000 0.103 0.563
Sweep 0.059 0.055 0.103 0.205 0.103 1.000 0212
Taper 0.365 0.348 0.564 0.611 0.563 0.212 1.000
Selected Diameter - 0.000 0.000 0.000 0.000 0.000 0.000
Small End Diameter 0.000 - 0.000 0.000 0.000 0.000 0.000
Large End Diameter 0.000 0.000 - 0.000 0.000 0.000 0.000
Sig. (I-tailed) 1 ength 0.000 0.000 0.000 - 0.000 0000  0.000
Volume 0.000 0.000 0.000 0.000 - 0.000 0.000
Sweep 0.000 0.000 0.000 0.000 0.000 - 0.000
Taper 0.000 0.000 0.000 0.000 0.000 0.000 -
Determinant = 3.27E-08
KMO =.708

Bartlett's = p <0.001

Table 12. PCA correlation matrix for culled logs variables reporting correlation
coefficients, tests of significant similarity, determinant, KMO, and Bartlett’s.

Small End Large End

Diameter  Diameter Length Volume Sweep Taper
Small End Diameter 1.000 0.970 0.347 0.940 0.055 0.348
Large End Diameter 0.970 1.000 0.464 0.973 0.103 0.564
, . Length 0.347 0.464 1.000 0.549 0.205 0.611
Correlation
Volume 0.940 0.973 0.549 1.000 0.103 0.563
Sweep 0.055 0.103 0.205 0.103 1.000 0.212
Taper 0.348 0.564 0.611 0.563 0.212 1.000
Small End Diameter - 0.000 0.000 0.000 0.000 0.000
Large End Diameter 0.000 - 0.000 0.000 0.000 0.000
Sig, (1-tailed) Length 0.000 0.000 - 0.000 0.000 0.000
Volume 0.000 0.000 0.000 - 0.000 0.000
Sweep 0.000 0.000 0.000 0.000 - 0.000
Taper 0.000 0.000 0.000 0.000 0.000 -
Determinant = 1.28E-05
KMO = .588

Bartlett's = p <0.001
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The final test in PCA to ensure that the PCA will yield acceptable results is the
KMO test that measures sampling adequacy (Field 2005). In the PCA with Selected
Diameter removed, KMO is 0.588 (Table 13), which shows an acceptable pattern of
correlation between the variables and should yield distinct factors (Kaiser 1974; Field
2005). The Bartlett’s test of sphericity result is shown in Table 13. The p-value is <0.001,
therefore, we reject the null hypothesis that the variables are not correlated proving that

there are some correlations between the variables that can be used to perform the PCA.

Table 13. KMO measure of sampling adequacy and Bartlett's test of sphericity.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.588
Bartlett's Test of Sphericity Approx. Chi-Square 196787.459
df 15
Sig. 0.000

4.1.2 Factor Extraction

The total variance explained by components is shown in Table 14. Two components were
extracted with eigen values greater than 1; meaning they explain more variance in data
than any single variable. We see that the un-rotated solution shows the first and second
components explain 61.8 % and 17.8 % of the variance, respectively. Reducing a large
list of log variables into components to be linked through multiple regression to GLVR
was not found in the body of literature relating to lumber recovery from logs studies. This
is probably due to the common use of sawing simulators to model lumber recovery
(Grondin and Drouin 1998; Zhang and Tong 2005; Zhang et al. 2006; Liu et al. 2007a

and 2007b; Kantola ef al. 2008 and 2009) at the sawmill thus reducing the need to model
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the GLVR from logs back to standing trees using PCA and regression. However, PCA
has been used in lumber processing for tracking boards by compressing a 3D image
analysis into a 2D space (Bharati and MacGregor 2003). Flodin ef al. (2008) used PCA to
reduce several log factors (length, top taper, butt taper, sweep height, sweep radius,
sweep position) into PC to track logs through the supply chain. Neither of these
researchers used PCA to generate regression scores for use in multiple regression.

In Table 14 the total variance explained in the rotated solution remains the same
as in the un-rotated solution. The difference between the un-rotated and rotated solutions
is the % of variance explained by each component has changed trending towards a more
equalized proportion of the extracted variance. Component 1 and 2 now explain 56.2 %
and 23.4 %, respectively. The reason for the change in variance explained by each factor
is shown in Table 16, where Taper, Sweep and Length show a higher correlation with

component 2 in the rotated solution than in the un-rotated solution.

Table 14. Total variance of the culled log-level dataset explained by components with
extraction sum of squares loadings and rotated sum of squares loadings.

Extraction Sums of Squared

Initial Eigenvalues Loadings Rotation Sums of Squared Loadings
% of Cumulative % of Cumulative % of

Component  Total Variance % Total Variance % Total Variance Cumulative %
1 3.631 60.52 60.52  3.631 60.52 60.52 3.192 53.19 53.19
2 1.152 19.21 7973 1.152 19.21 79.73 1.592 26.54 79.73
3 793 13.22 92.95
4 .395 6.59 99.54
5 027 46 100.00
6 .000 .00 100.00

The scree plot in Figure13 also represents the contribution of each component in

explaining the variance in the data. Figure 13 shows that component 1 explains the
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majority of the variance in the data and the subsequent components tend to plateau.
Generally, where the components plateau is the intuitive cut-off point (Kaiser 1974; Field
2005), however, all factors with eigen values above 1 should be retained for PCA when
using Kaiser’s criterion where the sample size is >250 and average communality is >0.6.

Therefore, we retained components 1 and 2 for further analysis.

Scree Plot
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Figure 13. Scree plot showing eigen value trend by component number.

The proportion of variance extracted from each log variable is shown in Table 15.
The proportion of variance extracted is good, with the highest value being 0.977 and the
lowest value being 0.602 for Large End Diameter and Sweep, respectively. An average
extraction value of 0.797 is well above the 0.6 level of acceptability. Therefore, the PCA
has a good level of extraction (Kaiser 1974; Field 2005). Although Flodin ef al. (2008)

used PCA to reduce a larger number of log variables into components, they did not report



63

the extraction values and therefore a comparison cannot be made. Other researchers using
PCA (Wold ef al. 1987, Eriksson et al. 2001; Chiorescu 2003) have found extractions

greater than 0.7 to be acceptable for PCA.

Table 15. Communalities in the variables explaining the proportion of data variance
within each variable explained by the principal component factors.

Communalities
Initial Extraction
Small End Diameter 1 0.929
Large End Diameter 1 0.977
Length | 0.638
Volume 1 0.975
Sweep 1 0.602
Taper 1 0.663
Average 1 0.797

Extraction Method: Principal Component Analysis.

4.1.3 Factor Rotation and Interpretation

The Rotated Component Matrix (b) in Table 16 presents the clearer grouping of variables
by component. Although Flodin ef al. (2008) used PCA in a log-level analysis, the
component plots were not shown in the report. There are no other PCA studies found in
the literature that provide a useful log-level comparison of the component plots. Table 16
shows that diameter and volume measurements are strongly loaded on factor 1. Sweep, a
type of form, is strongly loaded on factor 2. Length and taper have significant loadings on
both factor 1 and 2 and, therefore, are expressed as a combination of factor 1 (log size)

and factor 2 (log form). These groupings of variables are shown in an un-rotated loading
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plot in Figure 14. A second loading plot is shown in Figure 15, where the plot is projected
using a varimax rotation. The varimax rotation shows a clearer grouping of variables by
PCs. Varimax rotation was also found to show the clearest grouping of variables by

several researchers (Eriksson ef al. 2001; Chiorescu 2003: Field 2005; Flodin ef al. 2008).

Table 16. Variable loadings by each principal component for the component matrix (a)
and rotated component matrix (b) with values <0.3 (or >-0.3 if negative) excluded.

Rotated Component

Component Matrix(a) Matrix(b)
Variable 1 2 1 2
Large End Diameter 0.962 - 0.968 -
Small End Diameter 0.886 -0.379 0.964 -
Volume 0.97 - 0.957 -
Sweep - 0.749 - 0.765
Length 0.668 0.438 0.421 0.679
Taper 0.702 0.412 0.463 0.669

(a) Extraction Method: Principal Component Analysis.

(b) Rotation Method: Varimax with Kaiser Normalization.
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Figure 14. Log variables scores plotted by principal components (unrotated).
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Figure 15. Log variables plotted against component scores in varimax-rotated space.
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We can see from Figures 14 and 15 that once rotated, the variables loaded on axis
1 and axis 2 clearly distinguish two names for the components. Component 1 can be
termed as Log Size, and Component 2 as Log Form. We see that PClexplains size
components (log volume, small diameter and large diameter), and PC2 explains form
variables (sweep). Taper and length variables are explained by an interaction of size and
form components. The literature does not appear to have a comparable study to this thesis,
where log-level PCA was used to reverse-forecast GLVR in individual stems. PCA was
used in log tracking and image analysis but none of the components were reported

therefore there is no point of comparison to other log-level studies.
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4.2 LOG-LEVEL REGRESSION

4.2.1 Model Development

Table 17 presents the summary statistics for the 16,565 sample logs run through the
sawmill. Taking the results produced from the log-level PCA analysis in section 4.1, a
regression analysis was conducted to determine if the principal components extracted
from log level variables can be used to predict the GLVR from sawlogs. Several models
were created, tested and compared. Figure 16 shows the GLVR ($) by log size (m®). This
is the data trend we are striving to model using PC1:Size and PC2:Form. The modeling
technique of using PC regression scores as independent variables in multiple regression
for modeling GLVR does not appear in the literature. This may be due to the easier
comprehension of using measured variables as the predictor variables. However, previous
researchers have found that using PC regression scores as either tracking signatures or
independent variables explain a higher level of variance than any one measured variable
(Bharati and MacGregor 2003; Flodin ef al. 2008). The fact that PCs can represent more
of the data variance than any one measured variable (Field 2005), and thus improve
model performance with fewer variables, was one of the primary reasons for this
modeling approach. Additionally, most lumber recovery studies use scans of the log to
run optimization routines in lumber recovery (Steele 1984; Middleton ef al. 1989; Liu et
al. 1989; Shi et al. 1990; Wagner and Taylor 1993; Roos ef al. 2000; Zhang and Tong

2005; Liu ef al. 2007a; Liu er al. 2007b).
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Table 17. Summary statistics of the data set used for establishing log-level regression
models (n=16565).

PC1: Size PC2: Form GLVR (8/log)
Minimum -2.71 -2.98 0.00
Maximum 5.03 9.55 53.20
Mean 0.00 0.00 9.73
SD 1 1 7.10

Green Lumber Value Recovery by Log Size
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Table 18 shows the summarized results from the PCA analysis and how each PC
is linearly correlated with the GLVR. The linear correlation with GLVR shows a R? value
of 0.936 with PC1 (Size as a predictor variable) and a R? of 0.021 with PC2 (Formas a
predictor variable). The use of log-level regression correlations of PCs to predict GLVR
was not found in the review of the literature. The tree-level modeling in sections 4.3 and
4.4 have results that can be compared to the literature. Log-level modeling in the

literature appears to focus on log tracking (Flodien et al. 2008) and log image analysis
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(Bharati and MacGregor 2003). From this preliminary look at correlations with the
GLVR, it is apparent that GLVR has the strongest correlation to log size and to a much
lesser extent, log form. Furthermore, the log diameters (both small and large) and log
volume are the most important variables in determining a log’s GLVR. Figure 17
illustrate the strong fit of PC1 with the GLVR. Figure 18 shows a poor linear fit between
PC2 and the GLVR, however, the ANOVA test of significance in Table 18, reveals that
the PC2:Form has a significant effect in predicting the GLVR, thus it needs to be
included in further analysis. The observation that size and form of logs are significant
factors in determining log GLVR is supported by many studies (Kellogg and Warren
1984; Steele 1984; Zhang and Gingras 1999; Beauregard ef al. 2002; Wilhelmsson and
Moberg 2004; Moberg and Nordmark 2006; Liu et al. 2007a, Liu ef al. 2007b). These
studies also included knot size and frequency as significant, but the sawline scanners used

in the study did not include knots and are therefore omitted from the analysis.

Table 18. Summarized results of log-level principal component analysis used in
regression modeling.

Principal Componenets Extracted

PC1: Size PC2: Form
Eigenvalue 3.631 1.152
Proportion of total variance explained (%) 60.524 19.206

Large End Diameter 0.968 -
Small End Diameter 0.964 -
Loadings Volume 0.957 -

(>0.3) Sweep - 0.765

Length 0.421 0.679

Taper 0.463 0.669

Linear R? predicting GLVR($) 0.936 0.021

Anova Sig. Test <0.001 <0.001
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Three types of models were tested in the analysis. These types were linear
functions, non-linear power functions, and non-linear exponential functions. The use of
PC regression scores in modeling GLVR was not found in the review of the literature,
however, similar studies modeling tree-level GLVR were performed by several
researchers (Zhang et al. 2001; Zhang and Tong 2005; Zhang et al. 2006; Liu et al.
2007a; Liu et al. 2007b) who used linear and non-linear functions. How these studies
compared with the thesis are discussed in more detail in section 4.4. A total of seven
individual models were run and the model forms are shown in Table 19 with the
parameter estimates and criteria shown in Table 20. Residual plots are shown in Figures
19 and 20.

Table 19. Model forms for estimating green lumber value recovery using log-level

principal components size (S) and form (F): L is GVLR in $/log, and ay, a;, a; and a; are
constant coefficients).

Model number Model form
1 L=a,+a*S§
20 L=a,+a,*S+a,*F
3, L=a,+a*S8 +a,*F?
4, L=a,+a,*S +a,*F’
5, L=expla,+a,*S+a,*F)
6, L=a,+exp(a,*S+a,*F)
7L L=a,+a*F+a,*exp(a,*S)

4.2.2 Model Comparison and Evaluation

The results of the model parameter estimates and criteria are shown in Table 20. The first

nonlinear models run were power functions. The residual plots in Figure 19 and criteria in
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Table 20 show that both power functions performed poorer than the linear models. The
third model type employed was an exponential model. Models 5; to 7; show different
exponential models. Model 51, shows a better higher-order model than the power models,
however, not as good a fit as the linear models. Models 6, and 7, are modifications of the
exponential model, where terms are moved from the exponential function to linear
components of the model preceding the exponential function. Model 7;, which uses the
exponential form of PC1:Size, adjusted by the linear expression of PC2:Form, produced
the best fit of the data. The purpose of attempting different models with both PC1:Size
and PC2:Form was to assess the interaction and combination of the two significant factors
to find the best modeling of the GLVR. The exponential models fit the data the strongest
because we see that with a linear increase of volume, there is an exponential increase in
value (Figure 16). Tree-level models have been created by other researchers and have a
similar exponential trend in value but the strongest models were polynomial functions
(Zhang and Tong 2005; Zhang et al. 2006; Liu ef al. 2007a). Further discussion of these
tree-level models is found in section 4.4.

The first higher order functions tested was power functions. Model 3;, was used as
a 2" order power function, which yielded the lowest R? value of 0.406 and the highest
MSE value of 29.92. Model 4, shows a third order power function with an improved fit
compared to Model 3;, with an R? of 0.584 and a MSE 209.98. Neither power functions
performed better than the linear functions, therefore, a third type of function needed to be
explored. Liu et al. (2007a) also found that power function models did not perform as
well as linear models.

The three types of function tested were exponential functions. Model 5, included

both PC1 and PC2 in an exponent function, yielding an R? of 0.903 and a MSE of 4.87.
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The residual plots are shown in Figure 19 and show a lack of fit. Therefore other forms of
the exponential model needed to be explored. Model 6, is a modified version of Model 5,
to create a linear intercept coefficient before the exponential function of PC1 and PC2.
Model 6;, yielded an R? 0f 0.544 and a MSE of 22.96. Figure 19 further illustrates that
Model 6, is less fitted than exponential model 5, or both linear models.

A third exponential model was attempted which combined characteristics of the
linear model 2. and exponential features. The reasoning for attempting this model was
based on the linear models (1 and 2) where PC2:Form contributed very little to the overall
model R? but seemed to improve the MSE more, in terms of a ratio. Therefore, Model 7,
takes the linear function of PC2:Form combined with the nonlinear exponential function
of PC1:Size resulting in an R” of 0.972 and a MSE of 1.42. Zhang and Tong 2005, Zhang
et al. 2006, Liu et al. 2007a and Liu et al. 2007b also found that combining linear and
non-linear functions in a model improved performance. Model 7, shows the best model
fit to predict the GLVR with the log-scan data recorded at the sawmill. Model 7,
predicted values overlapped by measured values are shown in Figure 21(ii). Figure 21(i)
represents Model 7, without PC2(log form) in the model to show the affect PC2 has on
model fit. The modeling process described for the log-level data is useful because it
shows a way to link external log measurements to the GLVR before processing. The
utility of the selected log-level models will be further increased in sections 4.3 and 4.4
where it is used to generate base-line GLVR values for individual tree measured pre-

harvest.
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Table 20. Parameter estimates and statistical criteria for the 7 log-level regression models.

Model Parameters Criteria

number ay a a as R? MSE RMSE
1L 9.731 0.967 - - 0.936 3.229 1.344
21 9.731 0.967 0.145 - 0.957 2.164 1.013
3L 6.579 2.681 0.471 - 0.406 29.924 4,537
4, 8.812 1.077 0.029 - 0.584 20.981 3.701
5. 1.000 0.015 -0.204 - 0.903 4874 1.651
61 7.699 1.047 -0.065 0.544 22.964 3.835

Ty -27.467 0.864 36.625 0.172 0.972 1.420 0.797

Above all, the principal components PC1:Size and PC2:Form extracted (shown in
Section 4.1), were successfully able to produce linear and nonlinear models to predict the
GLVR in the sawmill studied. The exponential function seen in Model 7, predicted the
GLVR most accurately. However, the linear model (Model 2,) also performed very well.
PC1:Log Size was the most important factor predicting the GLVR and PC2:Log Form
was significant but contributed less to predict the GLVR. Zhang and Tong (2005) and Liu
et al. (2007a and 2007b) found that stem size as a function of diameter and height as
more significant than taper in predicting lumber value recovery, thus supporting the

similar trend of log size being more important than log form presented in the model above.

L;=127.467 + 0.0864*Fp¢, + 36.626*exp(0.172*Spc)) [Model 7; ]

Where,
L; represents GLVR (CANS) from a log j,
Spc1 denotes the regression score for PC1(Log Size) extracted from the log-level

variables (small end diameter, large end diameter, volume, length, taper and
sweep) in the PCA for each log.

Fpc, denotes the regression score for PC2(Log Form) extracted from the log-level

variables (small end diameter, large end diameter, volume, length, taper and
sweep) PCA for each log.
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The lumber value estimation procedure for logs utilizes the PCA to extract PC
regression scores from 6 external log variables (small end diameter, large end diameter,
volume, length, taper and sweep). These regression scores of PC1:Size and PC2:Form are
used as the dependent variables in the nonlinear exponential multiple regression formula
(Model 7;) to estimate log-level GLVR (Figure 21). This formula was used to calculate
individual lumber recovery values for the logs extracted through simulation (procedure
described in section 3.4.1) from pre-harvest inventory to assign an overall GLVR for each
stem. This assigned GLVR for each stem was used in the tree-level PCA and regression
analyses.

Researchers have done a similar analysis using measured variables for tree-level
data (Zhang and Tong 2005; Zhang ef al. 2006; Liu et al. 2007a; Liu et al. 2007b). The
modeling process described for the log-level data is useful because it shows a way to link

external log measurements to its GLVR before processing.
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4.3 TREE-LEVEL PCA

4.3.1 Preliminary Analysis of Singularity and Non-correlation

The descriptive statistics of tree level variables along with their preliminary correlation
information with GLVR and significance are shown in Table 21. It was seen that diameter
profile and merchantable height have a strong linear correlation with GLVR and have a
significant effect on GLVR. Taper has a weak linear correlation with GLVR and has a
significant effect on GLVR. Live Crown Ratio and Sweep have a very weak linear

correlation with GLVR and do not have a significant effect on GLVR.

Table 21. Descriptive statistics used for establishing tree-level PCA analysis (n = 101).

Live
ht_mer Crown Sweep
Descriptive do03 d13 d>5 d 1o d.15 d 20 ch Ratio sum  Taper GLVR
(em)  (em) (em)  (em)  (cm)  (cm) (m) (%) (cm)  (cm) $
Minimum 17.44 1600 1400 900 000 000 1000 7.44 1250 250 11.16
Maximum 5290 4500 40.00 32.00 28.00 22.00 2600 4290 100.00 37.95 164.85
Mean 3362 2890 2571 2125 1600 440 1913 23.62 3812 1273  66.73
SD 645 541 499 463 528 682 270 645 1146 7.0 11.16
) e
L‘”eagiv‘}’{(e&g‘“‘“g 0735 0.823 0889 0.89 0760 0515 0562 <001 0001 0.103

. <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0972 0.789 0.001
Anova Sig. Test

The analysis for the tree-level data follows the same approach and work flow as
the PCA for tree-level data. A complete list of the variables used in the PCA is found in
Table 22. As in the log-level PCA, we need to ensure the data does not have extreme
multi-collinearity using the Determinant value test. Run_1 started with all variables that
yielded a determinant value of less than 1.0E-5. Therefore variables with extreme multi-

collinearity needed to be removed (Kaiser 1974; Field 2005). Variables selected for
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removal were ones with two or more correlations greater than 0.9 and were not
significantly different from those variables. Using the sensitivity approach, we removed
only a few variables at a time (Field 2005). Selected Run had an acceptable Determinant

value of 3.10E-5, thus proving extreme multi-collinearity was not a problem in the dataset

(Kaiser 1974; Field 2005).

Table 22. Variables used in each PCA run with determinant, KMO, and Bartlett values.

Tree-level Variable Run 1 Run 2 Run 3 Run_4 Run 5 Run_6 Selected
d 0.3(cm) X X X X X X X
d 1.3(cm)
d 2.5(cm)
d 5.0(cm)
d_7.5(cm)
d_10.0(cm)
d 12.5(cm)
d_15.0(cm)
d 17.5(cm)
d_20.0(cm)
d 22.5(cm)
ht_merch(m)
ht_top(m)
VT(cu.m/stem)
VM(cu.m/stem)
kh_ldead(m)
kh_1live(m)
Taper(cm/m)
Taper(cm)
TaperAve(m)
LiveCrownRatio(%)
DeadCrownRatio(%)
TotalCrownRatio(%)
LogCount(#)
VMLogs(cu.m)
Sweep_sum{m)
SweepAveLogs(m)
SweepCodeSum
SweepCodeAve X

X X X

[ T
P S R
=
o
>
3

[T T T - B T - - - I -

Not positive
Determinant definite 1.76E-06 3.81E-06  3.67E-06  6.85E-06 3.55E-06 3.10E-05
KMo - 0.721 0.715 0.806 0.87 0.811 0.866
Bartlett's (p-value) - <0.001 <0.001 <0.001 <0.001 <0.001 <0,001
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Table 23 shows the correlation matrix and tests of significance difference between
variables for the Selected Run introduced in Table 21. We can see that live crown ratio
and sweep are not significantly different from the majority of variables. However, the
determinant score of 3.1E-05 allows the analysis to proceed with confidence that extreme
multi-collinearity does not exist in our dataset (Kaiser 1974; Field 2005).

Table 23. PCA correlation matrix for Selected Run tree variables reporting correlation
coefficients, tests of significant similarity and determinant.

Live Sweep_s .
d 03 d 13 ds d_10 d 15 d 20 ht_merch Crown = Taper
Ratio um

d_03 1.000 0.934 0.891 0.873 0.768 0.502 0.606 0.036 0.046 0.379
d 13 0.934 1.000 0.940 0.906 0.788 0.547 0.625 0.061 0.042 0.356
ds 0.891 0.940 1.000 0.938 0.815 0.583 0.669 0.007 0.052 0.397
d 10 0.873 0.906 0.938 1.000 0.871 0.622 0.721 0.056 0.091 0.406
Comelation d_ 15 0.768 0.788 0.815 0.871 1.000 0.649 0.862 0.062 0.158 0.352
d 20 0.502 0.547 0.583 0.622 0.649 1.000 0.688 -0.096 0.008 0.233
ht_merch 0.606 0.625 0.669 0.721 0.862 0.688 1.000 0.064 0.219 0.300
LiveCrownRatio  0.036 0.061 0.007 0.056 0.062 -0.096 0.064 1.000 -0.085 0.026
Sweep_sum 0.046 0.042 0.052 0.091 0.158 0.008 0.219 -0.085 1.000 0.188
Taper 0.379 0.356 0.397 0.406 0.352 0.233 0.300 0.026 0.188 1.000
d 0.3 - 0.000 0.000 0.000 0.000 0.000 0.000 0.360 0.323 0.000
d 13 0.000 - 0.000 0.000 0.000 0.000 0.000 0.272 0.339 0.000
ds 0.000 0.000 - 0.000 0.000 0.000 0.000 0.474 0.301 0.000
d_10 0.000 0.000 0.000 - 0.000 0.000 0.000 0.289 0.182 0.000
Sig. (1- d_15 0.000 0.000 0.000 0.000 - 0.000 0.000 0.268 0.057 0.000
tailed) d 20 0.000 0.000 0.000 0.000 0.000 - 0.000 0.170 0.468 0.010
ht_merch 0.000 0.000 0.000 0.000 0.000 0.000 - 0.264 0.014 0.001
LiveCrownRatio  0.360 0.272 0.474 0.289 0.268 0.170 0.264 - 0.199 0.400
Sweep_sum 0.323 0.339 0.301 0.182 0.057 0.468 0.014 0.199 - 0.030

Taper 0.000 0.000 0.000 0.000 0.000 0.010 0.001 0.400 0.030 -

Determinant = 3,1E-05

The final test is to ensure that the PCA will yield acceptable results is the KMO
test that measures sampling adequacy (Field 2005). In the PCA with 15 of the original
variables removed, KMO is 0.866 (Table 24), which shows a strong pattern of correlation
between variables and will yield distinct factors. Other researchers using PCA (Wold ez al.
1987; Eriksson ef al. 2001; Chiorescu 2003) have found extractions greater than 0.7 to be

acceptable for PCA. The Bartlett’s test of sphericity p-value is less than 0.001 (Table 24).
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Therefore, we reject the null hypothesis that the variables are not correlated and that there
are some correlations between the variables that can be used to perform the PCA (Field

2005).

Table 24. KMO measure of sampling adequacy and Bartlett's test of sphericity for tree-
level variables.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.866
Bartlett's Test of Sphericity ~ Approx. Chi-Square 994.992
df 45
Sig. 0.000

4.3.2 Factor Extraction

In Table 25, the total variance is explained by three components. Therefore, three
components were extracted with eigen values greater than 1. We see that the un-rotated
solution shows extracted percent of total data variance of 57.5 %, 11.4 % and 10.1 % for
components 1, 2, and 3, respectively. A varimax rotation was used to maximize the
loading of each variable to one component while minimizing its loading on the others
(Field 2005). Through the use of varimax rotation, the extracted percent of total data
variance for components 1, 2, and 3 changes to 55.8 %, 12.7 %, and 10.5 %, respectively.
This effect of the varimax rotation maximizes the loading of each variable on one of the
extracted factors, while minimizing loadings on all other factors. As in the log-level
analysis, we assumed that the factors should be independent. Therefore, we used an
orthoginal rotation (i.e., varimax). Total extraction from the three PCs is 82.6 %. The

reason for the change in variance explained by each factor is show in Table 26 where
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Sweep and Length show a higher correlation with component 2 in the rotated solution
than in the un-rotated solution. Additionally, the Live Crown Ratio shows a higher
correlation with component 3 in the rotated solution than in the un-rotated solution. The
two PC’s — including size and form — found to be significant in the GLVR regression
models are supported by other researchers, whom have found that individually measured
variables, such as DBH, height and taper, had significant impact on GLVR, of which
DBH was the strongest (Zhang and Tong 2005; Zhang ef al. 2006; Liu et al. 2007a; Liu
2007b). In this study, DBH is strongly correlated to tree size, as is shown by the PCA in
Section 4.3. Variable loadings to PC1 for DBH, height and taper are 0.932, 0.785 and
0.363, respectively. Thus, this supports previous work (Zhang and Tong 2005; Zhang et
al. 2006; Liu ef al. 2007a; Liu 2007b) that DBH, height and taper are significant in

determining GLVR in this order.

Table 25. Total variance explained by components with extraction sum of squares
loadings and rotated sum of squares loadings.

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Total % of Cumulative Total % of Cumulative Total % of Cumulative
Component Variance Y% Variance % Variance %
1 5.750 57.50 57.50 5.750 57.50 57.50 5.578 55.78 55.78
2 1.137 11.37 68.87 1.137 11.37 68.87 1.266 12.66 68.44
3 1.010 10.10 78.97 1.010 10.10 78.97 1.053 10.53 78.97
4 0.821 8.21 87.18
5 0.663 6.63 93.81
6 0.294 2.94 96.75
7 0.129 1.29 98.04
8 0.097 0.97 99.01
9 0.059 0.59 99.60
10 0.040 0.40 100.00

The scree plot in Figure 22 also represents the contribution of each component in
explaining the variance in the data. Figure 22 shows component 1 explains the majority of

the variance in the data and the subsequent components tend to plateau. Generally, where
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the component plateau is the intuitive cut-off point (Field 2005), however, all factors with
eigen values above 1 should be retained for PCA when using Kaiser’s criterion (Kaiser

1974). Therefore, components 1, 2 and 3 were retained for further analysis.

Scree Plot

51

Eigenvalue
9

ot

Component Number

Figure 22. Scree plot showing eigenvalue trend by components.

The proportion of variance extracted from each tree variable is shown in Table 26.
The average proportion of variance extracted is strong (0.790), with the highest value
being 0.924 and the lowest value being 0.444 for d_10 (diameter at 10 m) and Taper,
respectively. An average extraction value of 0.790 is well above the 0.6 level of

acceptability (Kaiser 1974; Field 2005).Therefore, the PCA has a good level of extraction.
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Table 26. Communalities in the variables explaining the proportion of data variance
within each variable explained by the principal component factors.

Communalities

Initial Extraction
d 0.3 1 0.831
d 13 1 0.880
d>s 1 0.901
d_10 1 0.924
d 15 1 0.853
d 20 1 0.601
Ht_merch 1 0.693
LiveCrownRatio 1 0.919
Sweep sum 1 0.850
Taper 1 0.444
Average 1 0.790

Extraction Method: Principal Component Analysis.

4.3.3 Factor Rotation and Interpretation

The Rotated Component Matrix (b) in Table 27 presents the clearer grouping of
variables by component. Table 27 clearly shows that diameter and merchantable height
measurements are strongly loaded on factor 1, which was also found by other researchers
(Zhang and Tong 2005; Zhang et al. 2006; Liu ef al. 2007a). Sweep, a type of form, is
strongly loaded on factor 2. Live Crown Ratio, a descripter of tree branchiness (Kantola
et al. 2007; Ikonen et al. 2009) is strongly loaded on PC 3. Taper has significant loadings
on both PCs 1 and 2 and, therefore, is expressed as a combination of PC 1 (tree size) and
PC 2 (tree form). The reason why taper is explained by a combination of PC1 and PC2 is
due to the fact that taper is the diameter profile of the stem (i.e., tree size) and seeing that
taper changes along the stem, it can also be described as tree form. These groupings of

variables are shown in an un-rotated loading plot in Figure 23. A second loading plot is
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shown in Figure 24, where the plot is projected using a varimax rotation. The varimax

rotation shows a clearer grouping of variables by PCs.

Table 27. Variable loadings by each principal component for the component matrix (a)
and rotated component matrix (b) with values <0.3 (or >-0.3 when negative) excluded.

Component Matrix(a) Rotated Component Matrix(b)
Variable 1 2 3 1 2 3
d_10 0.950 - - 0.950 - _
ds 0.944 - - 0.945 - _
d_13 0.927 - - 0.932 - N
d 0.3 0.903 - - 0.905 - -
d_15 0.923 - - 0.899 - -
ht_merch 0.822 - - 0.785 - -
d 20 0.711 - - 0.733 - -
Sweep_sum - 0.830 0.379 - 0.913 -
Taper 0.463 0.302 0.373 0.363 0.534 -
Live Crown Ratio - -0.537 0.793 . . 0.958

(a) Extraction Method: Principal Component Analysis.
(b) Rotation Method: Varimax with Kaiser Normalization.
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We can see from Figures 23 and 24 that once rotated, the variables loaded on axis
1, axis 2 and axis 3 clearly distinguish three names for the components. Component 1 can
be termed Tree Size, Component 2 Tree Form and Component 3 Tree Branchiness. We
see that PClexplains size components (tree merchantable length and diameters along
stem). PC2 explains the form variable (sweep). PC3 explains the branchiness variable

(Live Crown Ratio). The taper variable is explained by an interaction of size and form

components.
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Stem sweep— described by PC2 — has not been included in many lumber recovery
valuation models due to its difficulty to model and requiring detail stem profile
information (Eng et al. 1986; Gobakken 2000; Zhang and Tong 2005; Zhang et al. 2006;
Liu ef al. 2007a; Liu 2007b; Zakrzewski et al. 2010). However, other studies have found
that stem sweep plays a critical role in determining a stem’s GLVR (Kellogg and Warren
1984; Steele 1984; Middleton et al. 1989; Shi ef al. 1990; Wagner and Taylor 1993; and
Roos et al. 2000; Wilhelmsson and Moberg 2004; Moberg and Nordmark 2006). In the
models that did not include stem sweep, the researchers generally did not have access to
the sweep parameter in the dataset and mentioned that it would have played an important
role in predicting GLVR (Eng et al. 1986; Gobakken 2000; Zakrzewski et al. 2010).

In addition to stem sweep, several studies have also found that branch and knot
characteristics have a critical role in determining GLVR (Steele 1984; Middleton ef al.
1989; Bharati and MacGregor 2003; Jones and Emms 2010). The reason why the analysis
in this thesis did not find PC3 (branchiness) as significant in determining GLVR in a stem
is due to knot characteristics not being recorded in the sawline log-scanning parameters at
the sawmill. The log-level GLVR model presented in section 4.2, therefore, did not have
branchiness or knot characteristics included in the log-level modeling used in the
simulated bucking procedure outlined in section 3.4.1. This is certainly a short-coming in
the log-and tree-level models produced in this thesis and the models should be applied
with caution, as we know that knot (or branch) size, distribution and frequency along a
log (or tree) is significant in determining final lumber value (Steele 1984; Middleton ef al.

1989; Bharati and MacGregor 2003; Jones and Emms 2010).
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4.4 TREE-LEVEL REGRESSION

4.4.1 Model Development

Table 28 presents the summary statistics for the 101 sample trees cruised in stands pre-
harvest that were used in sawmill recovery study. Taking the results produced from the
tree-level PCA analysis in Section 4.3, we conducted a regression analysis to determine if
the principal components extracted from the tree level variables can be used to predict the
GLVR from measured trees. Several models were created, tested and compared. Figure
25 shows the GLVR ($) by merchantable tree size (m?) determined using the simulated
bucking procedure and the log-level GLVR regression model described earlier (Model 7y).
The use of PC’s instead of the directly measured variables in the GLVR models
was a different approach from most product recovery models done previously (Zhang and
Tong 2005; Zhang et al. 2006; Liu et al. 2007a; Liu et al. 2007b). Often times, detailed
stem profiles — as outlined in this study — are used as direct inputs to lumber recovery
simulation software (Zhang and Tong 2005; Zhang er al. 2006: Liu ef al. 2007a: Liu
2007b; Murphy et al. 2008). Due to cost and technical restraints, we were not able to
capture the data in a way that was compatible with a product simulator. Instead, the
multiple regression method was applied, and in order to eliminate the issue of collinearity
between variables, the PCA method was then employed. The extracted PCs were used as
independent variables in the regression models in order to allow for a higher level of data
variance. Although this approach of using PC regression scores as independent variables
has not been widely used to model GLVR, the conceptual theory to use a more detailed

tree list of variables to describe tree variation in GLVR is supported by numerous
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researchers (Briggs 1989; Sachet ef al. 1989; Beauregard er al. 2002; Wilhelmsson and
Moberg 2004; Moberg and Nordmark 2006; Malinen et al. 2007; Murphy et al. 2008).
The superior utility of using PC regression scores over 1 or 2 single measured variables is
further supported by Bharati and MacGregor (2003) who found PCA regression scores
superior to single-measured variables in the automated tracking of logs through the
sawmill supply chain.

Table 28. Summary statistics of the data set used for establishing tree-level regression
models (n=101).

PC1: Size PC2: Form PC3: Branchiness ~ GLVR ($/tree)
Minimum -2.39 -2.27 -2.44 11.16
Maximum 2.85 3.94 4.93 164.85
Mean 0.00 0.00 0.00 66.73
SD 1.00 1.00 1.00 28.65

Green Lumber Value Recovery by Average Tree Size
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F isgure 25. Model estimated GLVR ($/tree) by average tree size (net merchantable
m’/tree).
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Table 29 shows the summarized results from the PCA analysis and how each PC
is linearly correlated with GLVR. The linear correlation with the GLVR shows R? values
0f 0.938 with PC1, 0.001 with PC2 and <0.001 with PC3. From this preliminary look at
correlations with the GLVR, it is apparent that GLVR has the strongest correlation with
tree size and to a much lesser extent, tree form and tree branchiness. Figure 26 illustrates
the strong fit of PC1 with GLVR. Figure 27 shows a poor linear fit between PC2 and the
GLVR. Figure 28 shows no observable fit between PC3 and the GLVR, again this is due
to knot characteristics not being measured. The ANOVA test of significance in Table 29,
reveals that PC2:Form and PC3:Branchiness are not significant in prediction of GLVR.
This is intuitive as the larger the tree size, the more lumber will be recovered. In other
words with the same linear increase of tree size there is an exponential increase in
recoverable value. With an increase in the tree form variability (an increase indicates
poorer form), there is a corresponding drop in recoverable value. Branchiness has the
lowest correlation because knot size was not taken into account at the sawline recovery
phase upon which all log and tree-level models are built. Previous studies support the
observation that tree size and form variables (diameter, height and taper) to be significant
in GLVR of which tree size was most important (Zhang and Tong 2005; Zhang et al.

2006: Liu ef al. 2007a).
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Table 29. Summarized results of tree-level principal component analysis used in

regression modeling.

Principal Componenets Extracted

PC1: Size PC2: Form PC3: Branchiness
Eigenvalue 5.578 1.266 1.053
Proportion of total variance (%) 55.779 12.658 10.531
d 10 0.950 - -
ds 0.945 - -
d 1.3 0.932 - -
d 0.3 0.905 - -
Loadings d 15 0.899 - -
(>0.3) ht_merch 0.785 - -
d 20 0.733 - -
Sweep_sum - 0.913 -
Taper 0.363 0.534 -
Live Crown Ratio - - 0.958
Linear R? predicting GLVR($) 0.938 0.001 <.001
Anova Sig. Test <0.001 0.702 0.884
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Figure 26. Plots of principal component 1 regression scores against GLVR ($/tree).



94

2007

o
=1
L

1007

Lumber Value Recovery ($)
i

T T T ¥
-2 0 2 4

PC2: Form (regression score})
Figure 27. Plots of principal component 2 regression scores against GLVR ($/tree).

200

g

g
"
-
3

Lumber Value Recovery ($)
§

T 1 T i T
0 2 4 6

-2
PC2:Branchiness (regression score)
Figure 28. Plots of principal component 3 regression scores against GLVR ($/tree).



95

4.4.2 Model Comparison and Evaluation

Three types of models were tested in the analysis. These types were linear functions, non-
linear power functions and non-linear exponential functions. Similar functions were
tested on lumber recovery studies by other researchers (Zhang and Tong 2005; Zhang et
al. 2006; Liu et al. 2007a; Liu ef al. 2007b). A total of 8 individual models were run and
the model forms are shown in Table 30 with the parameter estimates and criteria shown in

Table 31. Residual plots are shown in Figures 28 and 29.

Table 30. Model forms for estimating lumber value recovery using tree-level principal
components size (S), form (F), and branchiness (B): T is GLVR in $/tree, and ay, a;, a,
and a; are constant coefficients.

Model number Model form
1+ T=a,+a,*S
2+ T'=ay+a,*S+a,*F+a,*B
3; T=ay+a,*S+a,*F
4y T=a,+a,*S*+a,*F* +a,* B
5; T=a,+a,*S’+a,*F +a,* B’
61 T =a,+a, *exp(a,*S)
Tr T=ay,+a *expla,*S+a,*F)
81 T'=a,+a,*F+a,*exp(a, *S)

In deciding which models to use, an exploratory method was used as per other
researchers (Zhang and Tong 2005; Zhang et al. 2006; Liu et al. 2007a). First a stepwise
regression analysis was used to determine if combining PC1, PC2 and PC3 as predictor
variables would improve the model. The results of model parameter estimates and criteria

are shown in Table 31.
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Three power functions were formulated and tested. Model 41 employed a 2™ order
power function, which yielded the lowest R” value of 0.099 and the highest MSE value of
778.00. Model 5t shows a third order power function with an improved fit compared to
Model 4 with an R” of 0.521 and a MSE 327.00. The observation that with higher order
power functions performing better than lower order power function, supports the
direction to use nonlinear models over linear (Field 2005). Neither power functions
performed better than the linear functions, therefore exponential functions were explored.

Three exponential functions were compared. Liu ef al. (2007a) also compared
exponential functions in modeling lumber value recovery in black spruce using measured
variables diameter and height. They found that exponential functions did not perform as
well as polynomial functions. This difference in superior model forms between this thesis
and Liu et al. (2007a) observations may be due to the use of different types of
independent variables (i.e. PC regression scores rather than measured variables). Model
67 included PC1 in an exponent function, yielding an R? of 0.951 and a MSE of 40.70.
Model 71 used PC1 and PC2 in the exponential function yielding an R?0f 0.957 and a
MSE of 36.74. Model 8t kept PC1 as an exponential function and reduced PC2 to a linear
function yielding an R” of 0.956 and a MSE of 37.17. Figure 30 illustrates the exponential
model residual plots for the models created. Model 71 performed only marginally better
than Models 61 and 8t and there is no noticeable difference between residual plots. The
reason for so little difference between models 61 and 87 is because of the extremely small
affect PC2 (tree form) plays on the overall GLVR modeling that is mostly attributed to
PC1 (tree size). Tree size was also found to be the most significant factor in lumber
recovery modeling by other researchers (Kellogg and Warren 1984; Zhang ef al. 2002;

Zhang and Tong 2005; Liu et al. 2007a). All three exponential models performed better
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than the linear and power-function models thus an exponential function was selected to
estimate the GLVR using tree-level data. An exponential function is a logical choice as
the data plotted in Figure 25 shows an overall exponential data trend. It is important to
note that the inclusion of PC2 only marginally improved the exponential models 7; and
81 showing that size is definitely the most important component in predicting the GLVR
from the tree-level data. The observations that tree size, followed by tree form are the
most important factors in determining GLVR is supported by previous studies (Kellogg

and Warren 1984; Zhang et al. 2002; Zhang and Tong 2005; Liu ef al. 2007).
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Table 31. Parameter estimates and statistical criteria for the 8 tree-level regression models.

Model Parameters Criteria

number ag a as as R? MSE RMSE
1+ 66.73 0.969 0.938 51.239 5.811
2 66.73 0.969 0.039 -0.015 0.940 50.856 5.774
3t 66.73 0.969 0.039 0.940 50.517 5.735
4+ 63.096 5.857 -1.568 -0.618 0.099 778.000 21.741
5t 65.598 5.901 -0.192 -0.164 0.621 327.000 15.098
6+ -91.606 156.014 0.171 0.951 40.702 5.092
Ty -73.429 137.522 0.194 0.016 0.957 36.737 4.236
&1 -72.814 2.006 136.923 0.193 0.956 37.171 4.925

It was found that the exponential function of PC1 and PC2 (Model 7+) estimated
GLVR the most accurately. However, inclusion of PC2 only slightly improved the
exponential models, thus showing that accurate models can be generated with only PC1.
PC3 negatively affected model prediction accuracy and was removed from further
modeling trials.

T;=173.429 + 137.522 * exp(0.194*Spc; + 0.016*F pc5) [Model 71]

Where,

T; represents GLVR (CANS) from a log j,

Spcy denotes the regression score for PC1(Tree Size) extracted from the tree-level
variables (diameter profile, merch. height, taper and sweep) in the PCA for
each tree.

Fp¢, denotes the regression score for PC2(Tree Form) extracted from the tree-
level variables (diameter profile, merch. height, taper and sweep) in the PCA
for each tree.

The lumber value estimation procedure for trees utilizes the PCA to extract PC
regression scores from 11 external tree variables (diameter at 0.3 m, diameter at 1.3 m,
diameter at 5 m, diameter at 10 m, diameter at 15 m, merch. height, taper and sweep).
These regression scores of PC1:Size and PC2:Form are used as the dependent variables in

the nonlinear exponential multiple regression formula (Model 77) to estimate tree-level

GLVR. This formula was used to calculate block-level GLVR estimates.
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Using the PCs over single measured variables (i.e., DBH and height) in the GLVR
models have shown to better predict GLVR in conifer spp. For example, Zhang and Tong
(2005), Zhang et al. (2006) and Liu et al. (2007a) have found DBH and total tree height
capable of predicting up to 92% in lumber value creation. The study has shown that PC
regression scores are capable of predicting 95.7% of the variation in GLVR; thus,
demonstrating that the inclusion of a larger list of measured variables in initial inventory
can yield a more accurate prediction. The increase in prediction accuracy is however
marginal between this thesis model and models using DBH and height, and most likely is
not worth the higher cost of data collection. In order for the methodology described in
this study to become operationally feasible, more cost-effective data collection tools will

need to be implemented; for example TLS, shown by Murphy ef al. (2008 and 2010b).

4.5 BLOCK-LEVEL PRODUCTIVITY COMPARISON

Table 32 shows the block-level productivity summary produced for the three study sites.
In the review of the literature none of the tree-level lumber recovery modeling methods
provided block-level production summaries. The studies described in the literature were
focused on generating tree level models and were not concerned with an applied case
study of how these models can actually be applied to provide block-level production
summaries. However, the utility of the tree-level recovery models to be used in
operational planning were discussed (Kellogg and Warren 1984; Zhang et al. 2002;
Zhang and Tong 2005; Liu ef al. 2007a).

The production summary shows that volume of jack pine per hectare as well as its

piece size, form and quality impact the overall green lumber value per cubic metre of jack
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pine per hectare ($/m’ of net merchantable volume Pj/ha). Blocks 383, 559 and 568 have
overall GLVR ($/m’) of jack pine of $93.0, $78.6 and $74.7, respectively. For example,
we see that the average piece size of block 568 is larger than block 559, yet the $/m”> of
Jack pine in the block is higher for block 559. However, jack pine in block 568 had high
defect severity, while block 559 had low defect severity. This comparison between block
559 and 568 demonstrates that stem form and quality, and not only stem size, are also
important parameters to measure in determining a tree’s (and block) profitability in
sawmilling. The observations that tree size, form, and quality are accordingly significant
in determining GLVR is supported by previous researchers who built and tested tree-level
lumber recovery models (Kellogg and Warren 1984; Zhang et al. 2002; Zhang and Tong

2005; Liu et al. 2007a).

Table 32. Block-level production summary.

Block 383 559 568
All spp. net merch vol (m®ha) 2356 202.7 256.8
Pj, net merch vol (m%/ha) 169.9 133.3 96.2
Pj Tree-length Vol. (m*ha) 135.9 106.6 77.0
Pj, average net merch tree size (m?) 0.7 0.4 0.5
Pj, average defect severity Med Low High
Area harvested to deliver 500m? tree-length (ha) 37 47 6.5
Weigh scale volume (m®) 541.4 538.2 523.6
Stick scale in log yard (m®ha) 579.8 n/a n/a
Total boards produced (FBM) 150,256.2 126,728.5 122,691.6
Total estimate of the boards produced ($) 58,1354 49,109.0 46,683.1
LRF (FBM trimmer/ Pj net merch m®) 240.4 202.8 196.3
LRF (FBM trimmers/weighscale m®) 277.5 2355 2343
LRF (FBMtrimmers /xy scanners m?®) 294.0 293.0 275.0
Pj, board value recovery ($/ha) 15,803.5 10,474.0 7,185.5
Pj, board recovery (FBM/ha) 40,845.6 27,028.7 18,884.7

Pj, board value recovery ($/m® of net merch Pj /ha) 93.0 78.6 74.7
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5. CONCLUSIONS

5.1 SYNTHESIS

The purpose of this research project was to test whether an enhanced forest inventory can
be integrated with sawmill production data to model GLVR prior to forest harvesting. A
case study was conducted for a stud sawmill that tracked supply chain data from pre-
harvest inventory through to lumber conversion. Over the 6 month period that data
collection took place, we were able to compile a value chain dataset for a random-length
sawmill in Thunder Bay measuring three sites from pre-harvest through to the GLVR.
Additionally PCA and multiple regression analyses were conducted on log- and tree-level
datasets to model the GLVR in the stud sawmill supply chain.

For the log-level analysis, we found that there were significant levels of similarity
between the log-level variables measured. Second, out of the 7 log-level variables
analyzed, 6 could be used to construct two principal components (Size and Form) that
explain 80 % of the total log-level data variance. Third, we found that PC1:Size
contributes the most in predicting the GLVR and PC2: Form, although significant, only
made a minor improvement to the log-level regression model’s performance. Finally, we
found that the nonlinear exponential function provided the strongest prediction of the

measured GLVR (Model 7;).
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L;j=27.467 + 0.0864*Fpc; + 36.626*exp(0.172*Spc)) [Model 7 ]
Where,
L; represents GLVR(CANS) from a log j,

Spc1 denotes the regression score for PC1(Log Size) extracted from the log-level
variables (small end diameter, large end diameter, volume, length, taper and
sweep) in the PCA for each log.

Fpc, denotes the regression score for PC2(Log Form) extracted from the log-level
variables (small end diameter, large end diameter, volume, length, taper and
sweep) PCA for each log.

For the tree-level analysis, we found that there were significant levels of similarity
between the tree-level variables measured. Second, out of the 29 tree-level variable
analyzed, 10 could be used to extract three principal components (Size, Form and
Branchiness) that explain 79 % of the total tree-level data variance. Third, we found that
PC1:Size contributes the most in predicting the GLVR and PC2:Form, although
statistically significant, only contributes a minor improvement to the models performance.
PC3:Branchiness had a negative effect on model performance and was removed as a
predictor variable. Finally, we found that the nonlinear exponential function created the
strongest fit to the measured GLVR (Model 77). It is important to note that the scanners
in the sawmill used to create the logs-to-lumber correlations did not scan for branchiness

or knot size. This is probably the reason why PC3:Branchiness was not found to be

significant at the tree-level regression analysis.
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T;=73.429 + 137.522 * exp(0.194*Spc; + 0.016%F pc5) [Model 71]

Where,

T; represents GLVR(CANS) from a log j,

Spc1 denotes the regression score for PC1(Tree Size) extracted from the tree-level
variables (diameter profile, merch. height, taper and sweep) in the PCA for
each tree.

Fpc, denotes the regression score for PC2(Tree Form) extracted from the tree-

level variables (diameter profile, merch. height, taper and sweep) in the PCA
for each tree.

5.2 RESEARCH SIGNFICANCE

The Canadian forest industry is moving through massive structural change and is
improving its supply chain. The business model is increasingly focused on allocating
wood to sawmills to meet changing size, form and quality specifications due to final
product market demands. This new business model requires the industry to map the forest
product supply chain from standing timber through to end-user products. The research
presented in this thesis has been able to track supply chain data from pre-harvest
inventory through the lumber conversion process for a stud sawmill in Thunder Bay,
Ontario. Few studies have been conducted like this in Canada where full scale mill run
recovery data can be linked directly back to the standing timber inventory and used to
create and validate recovery prediction models. The research presented in this paper has
presented a methodology integrating an enhanced forest inventory and log-scanning data
using PCA and multiple regression analysis to model the GLVR prior to harvest. The
research not only fills a knowledge gap in operations research for the Canadian forest
industry, but also demonstrates a methodology that sawmills can use to create mill-

specific lumber recovery models that can be used in production planning. The models
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created can be integrated into a geo-spatial modeling framework for use in tactical and
operational planning. The ability to do tactical and operational planning hinges on the
pre-harvest inventory to be similar to the variables collected in this study.

The possible extension of building a geodatabase tracking system — on multiple
scales — could be an adapted systems design built into forest management software (e.g.,
GEREMA by Central Computer Services, or FPInterface by FPInnovations). This type of
geodatabase system that maps specific product lines to unique forest attributes will allow
managers to model their harvest allocations to fulfill specific orders while minimizing
waste. Bringing GLVR modeling into the wood allocation process adds knowledge of
volume and value into the decision-making. This knowledge will add a more precise
forecasting ability to achieve specific value creation targets rather than simply volume.
These types of forecasting tools support the paradigm shift in the forest industry of

looking at the standing forest more as a warehouse with a precisely measured inventory.

5.4 FUTURE STUDIES

Future research opportunities include developing the GLVR models that use even fewer
tree-level variables but tailored to specific sawmills (Zhang and Tong 2005). Using fewer
tree-level variables in the modeling process has the potential to save inventory costs.
However recent research is trending towards collecting more tree-level variables, not less,
in modeling product recovery (Steele 1984; Middleton ef al. 1989; Liu er al. 1989; Shi et
al. 1990; Wagner and Taylor 1993; Roos et al. 2000; Zhang and Tong 2005; Liu et al.
2007a; Liu ef al. 2007b). Collecting more tree-level variables is becoming more feasible

with the advancement of Lidar technologies (Groot and Pitt 2010). Another future
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research opportunity would be to compare generic lumber recovery models (e.g. Zhang et
al. 2001; Zhang and Tong 2005; Zhang et al. 2006; Liu 2007a; Liu 2007b) and the mill-
specific models presented in this thesis to determine if indeed mill-specific models
produce significantly different GLVR estimates from pre-harvest data. Another future
research project could collect similar data for additional sites to validate the log- and tree-
level GLVR models presented in this thesis.

The dataset collected in this research project could be used to predict lumber
grade yields in jack pine using pre-harvest inventory variables using a similar modeling
approach as Liu et al. (2007b). Locally validated models could be generated for specific
sawmills to aid in forecasting lumber grade yields using a similar approach to this thesis.
High-resolution imagery analysis (e.g. ADS-40) could also be used to generate stem
profile data using regionally calibrated height-dbh curves and taper equations, and
compare model performance with the cruising methodology explained in this thesis.
Further, stem models and recovery models could be used, using terrestrial Lidar scanning
equipment (similar to Murphy 2008) that has not yet been studied in Ontario’s boreal
forest. In order to have a holistic picture for the supply chain of the stud sawmill studied,
there is need for a broader range of sites and stand types and ages, and expand to other
species (i.e., black spruce, white spruce and balsam fir). Additionally, tracking the lumber
through the planer mill and final grading process would greatly enhance the estimation of
the final product value. Finally, additional studies could look at modeling product
recovery using pre-harvest inventory to include more products such as chips, veneer
quality wood, biomass, etc. and model a forest stand with multiple products transported to

multiple forest products manufacturers.



108

LITERATURE CITED

Adams, T., and R.Y. Cavana. 2009. Systems Thinking in the Forestry Value Chain—A
Case Study of the New Zealand Emissions Trading Scheme: Proceedings of the
53rd Annual Meeting of the International Society for the Systems Sciences, 12-17
July 2009, University of Queensland, Brisbane, Austrailia. 156pp.

Anon. 2007. Industry at a Crossroads: Choosing the Path to Renewal. Forest Products
Association of Canada.

Anon. 2009. NSERC Forest Sector R&D Initiative. http://www.nserc-
crsng.ge.ca/Professors-Professeurs/RPP-PP/SNGSuppForestry-
SRSSuppforestier_eng.asp. December 6, 2010.

Anon. 2011. Natural Science and Engineering Research Institute of Canada. NSERC
Forest Sector R&D. http://forest-foret.nserc-crsng.gc.ca/index_eng.asp. September
15,2011.

Anon. 2011a. FPInnovations. FPInnovations Divisions.
http://www.fpinnovations.ca/strength_e.htm. September 15, 2011.

Anon. 2011b. Forac. FORAC Consortium. http://www.fpinnovations.ca/strength_e.htm.
September 17, 2011.

Anon. 2011c. Cirrelt. Mission. https://www.cirrelt.ca/Default.aspx?Page=MISSION.
September 28, 2011.

Anon. 2012. Fpac. Forest Products Assocaition. http://www.fpac.ca/index.php/en/.ca.
February 6, 2012

Aubry, Carol A, W T Adams, and Thomas D Fahey. 1998. Determination of Relative
Economic Weights for Multitrait Selection in Coastal Douglas-fir. Canadian
Journal of Forest Research 28 (8) (August): 1164-1170.

Avery, TE, and HE Burkhart. 1983. Forest Measurement. 3rd Edition. McGraW-Hill
Company, New York 387.

Ayer Sachet, JK, DG Briggs, and RD Fight. 1989. Tree Value System: Users Guide.
Notes: 52.

Ball, P., P. Albores, and J. Macbryde. 2004. Requirements for Modelling e-Business
Processes. Production Planning & Control 15 (8): 776-785.

Barbour, R. J, S. Johnston, J. P Hayes, and G. F Tucker. 1997. Simulated Stand
Characteristics and Wood Product Yields from Douglas-fir Plantations Managed for
Ecosystem Objectives. Forest Ecology and Management 91 (2-3): 205-219.



109

Barbour, R. J, and R. M Kellogg. 1990. Forest Management and End-product Quality: a
Canadian Perspective. Canadian Journal of Forest Research 20 (4): 405-414.

Beaudoin, D., L. LeBel, and J. Frayret. 2007. Tactical Supply Chain Planning in the
Forest Products Industry Through Optimization and Scenario-based Analysis.
Canadian Journal of Forest Research 37 (1) (January): 128.

Beauregard, Robert, Rado Gazo, and Roderick Ball. 2002. Grade Recovery, Value, and
Return-To-Log for the Production of NZ Visual Grades (Cuttings and Framing) and
Australian Machine Stress Grades. Wood and Fiber Science 34 (3) (July 1): 485-
502.

Bharati, M. H., J. F. MacGregor, and W. Tropper. 2003. Softwood Lumber Grading
Through On-line Multivariate Image Analysis Techniques. Industrial &
Engineering Chemistry Research 42 (21): 5345-5353.

Briggs, David George, and Or.) Pacific Northwest Research Station (Portland. 1989. Tree
Value System : Description and Assumptions. Portland, Or.: U.S. Dept. of
Agriculture, Forest Service, Pacific Northwest Research Station. 24.

Buongiorno, J. 2003. The Global Forest Products Model: Structure, Estimation, and
Applications. Academic Press. Pp. 300.

Cambiaghi, A. R., S. D’Amours, and M. Ronngvist. 2008. Core Supply Chain
Management Business Processes — A Literature-Based Framework Proposition. In

3rd World Conference on Production and Operations Management, 5-8 August
2008, Gakushin University, Tokyo, Japan. 970-985.

Carson, W.W., H.E. Andersen, S.E. Reutebuch, and R.J. McGaughey. 2004. LiDAR
Applications in Forestry: An Overview. In Annual Aspres Conference Proceedings,
23.

Chiorescu, S., and A. Gronlund. 2004. The Fingerprint Approach: Using Data Generated
by a 3D Log Scanner on Debarked Logs to Accomplish Traceability in the
Sawmill’s Log Yard. Forest Products Journal and Index 54 (12): 269-276.

Christopher, M. 1998. Relationships and Alliances: Embracing the Era of Network
Competition. Gower Press, Hampshire, England. 272.

Cid, Y., J. Frayret, F. Léger, and A. Rousseau. 2008. Agent-Based Simulation and

Analysis of Demand-Driven Production Strategies in the Lumber Industry. Int J
Prod Res. 47(22): 6295-6319.

Cooper, M.C., D.M. Lambert, and J.D. Pagh. 1997. Supply Chain Management: More
Than a New Name for Logistics. International Journal of Logistics Management,
The 8 (1): 1-14.

D’Amours, S., R. Epstein, A. Weintraub, and M. Rénnqvist. 2011. Operations Research
in Forestry and Forest Products Industry. Wiley Encyclopedia of Operations
Research and Management Science: 27.



110

D’Amours, S., E. Gunn, and R. Pulkki. 2010. NSERC VCO Network. Optimizing the
Modern Forest Bioeconomy Networks. In ECANUSA Forest Science Conference,
16. Edmundston, New Brunswick.

D’Amours, S., M. Rénnqvist, and A. Weintraub. 2008. Using Operational Research for
Supply Chain Planning in the Forest Products Industry. Infor 46 (4) (November):
265.

Davis, L., and K. Johnson. 1987. Forest Management. Mcgraw-Hill College. 816.

Deadman, MW. 1990. MicroMARVL Pre-harvest inventory—User Guide. NZ Forest
Research Institute, Software Series 7: 13.

Deadman, MW, and CJ Goulding. 1979. A Method for Assessment of Recoverable
Volume by Log Types. New Zealand Journal of Forestry Science 9 (2): 225-239.

Dowding, B., and G. Murphy. 2010. Estimating Spatial Changes in Acoustic Velocity in
Felled Douglas-fir Stems . Theses, Dissertations and Student Research Papers
(Sustainable Forest Management, Forest Engineering, & Forest Management).

Dramm, J.R. 2004. Log Sort Yard Economics, Planning, and Feasibility. US Dept. of
Agriculture, Forest Service, Forest Products Laboratory 146: 35.

Ellram, L.M. 1991. Supply-Chain Management: The Industrial Organisation Perspective.
International Journal of Physical Distribution & Logistics Management 21 (1): 13—
22.

Emmett, B. 2005. Focus on: Fibre for a Forest Fix. ADM Canadian Forest Service in CFS
Viewpoint. 12.

Eng, G., HG Daellenbach, and AGD Whyte. 1986. Bucking Tree-length Stems
Optimally. Canadian Journal of Forest Research 16 (5): 1030-1035.

Eriksson, L. 1999. Introduction to Multi-and Megavariate Data Analysis Using Projection
Methods (PCA & PLS). Umetrics AB. 289.

Feng, Y., S. D’Amours, and R. Beauregard. 2008. The Value of Sales and Operations
Planning in Oriented Strand Board Industry with Make-to-order Manufacturing
System: Cross Functional Integration Under Deterministic Demand and Spot
Market Recourse. International Journal of Production Economics 115 (1): 189-209.

Fleischmann, B., and H. Meyr. 2004. Customer Orientation in Advanced Planning
Systems. Supply Chain Management and Reverse Logistics. Springer, Berlin: 297—
321.

Flodin, J., J. Oja, and A. Gronlund. 2008. Fingerprint Traceability of Logs Using the
Outer Shape and the Tracheid Effect. Forest Products Journal 58 (4): 21.



111

Forget, P., S. D’Amours, and J. Frayret. 2008a. Multi-behavior Agent Model for
Planning in Supply Chains: An Application to the Lumber Industry. Robotics and
Computer Integrated Manufacturing 24 (5): 664-679.

Forget, P., T. Monteiro, S. D’Amours, and J. Frayret. 2008b. Collaborative Agent-based
Negotiation in Supply Chain Planning Using Multi-behaviour Agents. CIRRELT,
2008-54. 21

Frayret, J., S. D’Amours, B. Montreuil, and L. Cloutier. 2001. A Network Approach to
Operate Agile Manufacturing Systems. International Journal of Production
Economics 74 (1-3): 239-259.

Frayret, J., S. D’amours, A. Rousseau, S. Harvey, and J. Gaudreault. 2007. Agent-based
Supply-chain Planning in the Forest Products Industry. International Journal of
Flexible Manufacturing Systems 19 (4): 358.

Ganeshan, R., and T.P. Harrison. 1995. An Introduction to Supply Chain Management.
Penn State University, The United States. accessed at
http://lem.csa.iisc.ernet.in/scm/supply _chain_intro.html. July 13 2010.

Gaudreault, J., P. Forget, J. Frayret, A. Rousseau, and S. D’ Amours. 2009. Distributed
Operations Planning in the Lumber Supply Chain: Models and Coordination.
International Journal of Industrial Engineering 17 (3): 19.

Gertler, Meric S., David A. Wolfe, and David Garkut. 2000. No Place Like Home? The
Embeddedness of Innovation in a Regional Economy. Review of International
Political Economy 7 (4): 688-718.

Gobakken, T. 2000. The Effect of Two Different Price Systems on the Value and Cross-
cutting Patterns of Norway Spruce Logs. Scandinavian Journal of Forest Research
15 (3): 368-377.

Gordon, A., and D. Baker. 2004. Using External Stem Characteristics for Assessing Log
Grade Yield: Comparing Stem Description and Stem Coding. In AusTimber 2004
Conference, Albury, NSW, Australia, 30-31.

Gordon, AD, and ME Lawrence. 1995. External Stem Quality assessment-MARVL. D.
Hammond Ed: 190-191.

Goulding, CJ. 2000. The Forest as a Warehouse. United States Department of
Agriculture Forest Service General Technical Report Nc: 276-282.

Goulding, CJ, CM Trotter, BK Hock, and S. Hitchcock. 2000. Determining the Location
of Trees and Their Log Products Within a Stand. New Zealand Journal of Forestry
45: 34-39.

Grondin, F., and N. Drouin. 1998. Optitek Sawmill Simulator-User’s Guide. Forintek
Canada Corporation, Québec, Canada. 38.



112

Groot, A., and D. Pitt. 2010. Incorporating Fibre Attributes into Canadian Forest
Inventories. In Proceedings of the Precision Forestry Symposium, 1-3 March 2010,
Stellenbosch, South Africa. 18.

Guddanti, S., and S. J Chang. 1998. Replicating Sawmill Sawing with TOPSAW Using
CT Images of a Full-length Hardwood Log. Forest Products Journal 48 (1): 72-75.

Gujarati, D., M, Damodar. 2002. Basic Econometrics. 4th ed. McGraw-Hill/Irwin. 1002.

Haartveit, E.Y., R.A. Kozak, and T.C. Maness. 2004. Supply Chain Management
Mapping for the Forest Products Industry: Three Cases from Western Canada.
Journal of Forest Products Business Research Volume 1 (5): 1.

Hillier, F.S., G.J. Lieberman, and M. Hillier. 1990. Introduction to Operations Research.
Vol. 6. McGraw-Hill New York, NY. 1088.

Ikonen, V. P, S. Kelloméki, and H. Peltola. 2003. Linking Tree Stem Properties of Scots
Pine (Pinus Sylvestris L.) to Sawn Timber Properties Through Simulated Sawing.
Forest Ecology and Management 174 (1-3): 251-263.

Jensen, Anders. 2009. Valuation of Non-timber Forest Products Value Chains. Forest
Policy and Economics 11 (1) (January 1): 34-41.

Jones, T. G, and G. W Emms. 2010. Influence of Acoustic Velocity, Density, and Knots
on the Stiffness Grade Outturn of Radiata Pine Logs. Wood and Fiber Science 42
(1): 1-9.

Kantola, A., S. Harkonen, H. Makinen, and A. Makela. 2008. Predicting Timber
Properties from Tree Measurements at Felling: Evaluation of the RetroSTEM
Model and TreeViz Software for Norway Spruce. Forest Ecology and Management
255 (8-9): 3524-3533.

Kellogg, R. M, and W. G Warren. 1984. Evaluating Western Hemlock Stem
Characteristics in Terms of Lumber Value. Wood and Fiber Science 16 (4): 583—
597.

Lazar, A. 2007. Making Canada World-competitive: The Forestry Industry as a Case
Study. Policy Options-montreal- 28 (7): 50.

Li, Y. 2009. Towards Small-footprint Airborne LiDAR-assisted Large Scale Operational
Forest Inventory. Ph.D. Dissertation. University of Washington. 118.

Liu, C. M, W. A Leuschner, and H. E Burkhart. 1989. A Production Function Analysis
of Loblolly Pine Yield Equations. Forest Science 35 (3): 775-788.

Liu, C., and S. Y. Zhang. 2005. Models for Predicting Product Recovery Using Selected
Tree Characteristics of Black Spruce. Canadian Journal of Forest Research 35 (4):
930-937.



113

Liu, C,, S. Y. Zhang, A. Cloutier, and T. Rycabel. 2007a. Modeling Lumber Value
Recovery in Relation to Selected Tree Characteristics in Black Spruce Using the
Optitek Sawing Simulator. Forest Products Journal 57 (4): 57.

Liu, C., S. Y. Zhang, and Z. H. Jiang. 2007b. Models for Predicting Lumber Grade Yield
Using Tree Characteristics in Black Spruce. Forest Products Journal 57 (1/2): 60.

MacKenzie, J., and G. Bruemmer. 2009. Enhancing Canada’s Forest Fibre. The Forestry
Chronicle 85 (3): 353-354.

Malinen, J., M. Maltamo, and E. Verkasalo. 2003. Predicting the Internal Quality and
Value of Norway Spruce Trees by Using Two Non-parametric Nearest Neighbor
Methods. Forest Products Journal 53 (4): 85-94.

Maltamo, M., J. Malinen, P. Packalén, A. Suvanto, and J. Kangas. 2006. Nonparametric
Estimation of Stem Volume Using Airborne Laser Scanning, Aerial Photography,
and Stand-register Data. Canadian Journal of Forest Research 36 (2) (February):
426.

Mandel-Campbell, A. 2007. Why Mexicans Don’t Drink Molson : Rescuing Canadian
Business from the Suds of Global Obscurity. Vancouver: Douglas & Mclntyre. 328.

Mentzer, J.T., W. DeWitt, J.S. Keebler, S. Min, N.-W. Nix, C.D. Smith, and Z.G. Zacharia.
2001. Defining Supply Chain Management. Journal of Business Logistics 22 (2):
1-25.

Meredith Smith, J. 1999. Item Selection for Global Purchasing. European Journal of
Purchasing & Supply Management 5 (3-4): 117-127.

Middleton, G. R. (Gerry), and S. Y. (Tony) Zhang. 2009. Characterizing the Wood
Attributes of Canadian Tree Species: A Thirty-year Chronicle. The Forestry
Chronicle 85 (3): 392-400.

Middleton, G. R., S. Bowe, J. Oja, D. Verret, and B. D. Munro. 2003. Utilizing CT Log
Scanning to Add Value to British Columbia’s Forest Estate: Enabling Software -
Phase 1. 26654 East Mall Vancouver, BC: Forintek Canada Corp. Western Division.
R2003-0135. 85.

Middleton, G. R., L. A. Jozsa, L. C. Palka, B. D. Munro, and P. Sen. 1995, Lodgepole
Pine Product Yields Related to Differences in Stand Density. Forintek Canada
Corp., Western Laboratory. S5(01): 4.

Moberg, Lennart, and Urban Nordmark. 2006. Predicting Lumber Volume and Grade
Recovery for Scots Pine Stems Using Tree Models and Sawmill Conversion
Simulation. Forest Products Journal 56 (4) (April): 68.

Montreuil, B., J. Frayret, and S. D’ Amours. 2000. A Strategic Framework for Networked
Manufacturing. Computers in Industry 42 (2-3): 299-317.



114

Murphy, G. 2008. Determining Stand Value and Log Product Yields Using Terrestrial
Lidar and Optimal Bucking: a Case Study. Journal of Forestry 106 (6): 317-324.

Murphy, G., and M. Acuna. 2008. Determining Stand Value and Log Product Yields
Using Terrestrial Lidar and Optimal Bucking: a Case Study. Journal of Forestry
106 (6): 317-324.

Murphy, G., J. Lyons, M. O’Shea, G. Mullooly, E. Keane, and G. Devlin. 2010a.
Management Tools for Optimal Allocation of Wood Fibre to Conventional Log and
Bio-energy Markets in Ireland: a Case Study. European Journal of Forest Research
129 (6): 1057-1067.

Murphy, G., M. Acuna, and C. Dumbrell. 2010b. Tree Value and Log Product Yield
Determination in Radiata Pine (Pinus Radiata) Plantations in Australia:
Comparisons of Terrestrial Laser Scanning with a Forest Inventory System and
Manual Measurements. Canadian Journal of Forest Research 40 (11): 2223-2233.

Nieuwenhuis, M. 2002. The Development and Validation of Pre-harvest Inventory
Methodologies for Timber Procurement in Ireland. Silva Fennica 36 (2): 535-547.

Pilkerton, S.J. 2009. Thinning Aged Douglas-fir: An Analysis of Mobilization Costs and
a Log Bucking Strategy for Revenue Improvement. Oregon State University,
Oregon, USA. 282.

Pnevmaticos, S. M., Y. Corneau, and R. C. Kerr. 1980. Yield and Productivity in
Processing Tree-length Softwoods. Mills in Quebec. Technical Report, Eastern
Forest Products Laboratory, Forintek Canada Corp. (507E): 11.

Poirier, C.C. 1999. Advanced Supply Chain Management: How to Build a Sustained
Competitive Advantage. Berrett-Koehler Publishers, San Francisco, CA, USA. 154.

Pulkki, R. 2004. Role of Supply Chain Management in the Wise Use of Wood Resources.
Southern Forests: a Journal of Forest Science 191: 89-96.

Pulkki, RE. 1991. A Literature Synthesis on the Effects of Wood Quality in the
Manufacture of Pulp and Paper. Forest Engineering Research Institute of Canada.
TN-171: 10.

Ronngvist, M. 2003. Optimization in Forestry. Mathematical Programming 97 (1): 267~
284.

Roos, A., M. Flinkman, A. Jappinen, and M. Warensjo. 2000. Adoption of Value-adding
Processes in Swedish Sawmills. Silva Fennica 34 (4): 423-430.

Ruel, J.C., A. Achim, R.E. Herrera, and A. Cloutier. 2010. Relating Mechanical Strength
at the Stem Level to Values Obtained from Defect-free Wood Samples. Trees-
Structure and Function 24(6): 1127-1135.

Shi, R., P. H Steele, and F. G Wagner. 1990. Influence of Log Length and Taper on
Estimation of Hardwood BOF Position. Wood and Fiber Science 22 (2): 142—-148.



115

Sjostrom, K., and L. O. Rask. 2001. Supply Chain Management for Paper and Timber
Industries: Proceedings of the 2nd World Symposium on Logistics in [the] Forest
Sector, 12-15 August 2001, Vaxjo, Sweden. 260.

Slater, S., and J. Narver. 1998. Customer-Led and Market-Oriented: Let’s Not Confuse
the Two. Strategic Management Journal 19 (10) (October): 1001-1006.

Steele, P. H. 1984. Factors Determining Lumber Recovery in Sawmilling. United States
Department of Agriculture. Forest Service TR FPL-39. 10.

Tomppo, E., C. Goulding, and M. Katila. 1999. Adapting Finnish Multi-source Forest
Inventory Techniques to the New Zealand Preharvest Inventory. Scandinavian
Journal of Forest Research 14 (2): 182-192.

Tong, QJ, and SY Zhang. 2005. Impact of Initial Spacing and Precommercial Thinning
on Jack Pine Tree Growth and Stem Quality. The Forestry Chronicle 81 (3): 418—
428.

Uusijérvi, R. 2000. Automatic Tracking of Wood. Doctoral thesis. Superseded

Deapartments, Production Systems. Sweedish University of Agricultural Sciences.
Sweden. 170.

Uusitalo, J. 1997. Pre-harvest Measurement of Pine Stands for Sawing Production
Planning. Acta Forestalia Fennica (259): 56.

Uusitalo. 2005. A Framework for CTL Method-based Wood Procurement Logistics.
International Journal of Forest Engineering 16 (2): 37-46.

Uusitalo, J., and J. Isotalo. 2005. Predicting Knottiness of Pinus Sylvestris for Use in
Tree Bucking Procedures. Scandinavian Journal of Forest Research 20 (6): 521-
533.

Velde, D., J. Rushton, K. Schreckenberg, E. Marshall, F. Edouard, A. Newton, and E.
Arancibia. 2006. Entrepreneurship in Value Chains of Non-timber Forest Products.
Forest Policy and Economics 8 (7): 725-741.

Via, B. K, T. F Shupe, L. H Groom, M. Stine, and C. L So. 2003. Multivariate Modelling
of Density, Strength and Stiffness from Near Infrared Spectra for Mature, Juvenile
and Pith Wood of Longleaf Pine (Pinus Palustris). Journal of Near Infrared
Spectroscopy 11 (5): 365-378.

Wagner, F. G, J. A Brody, D. S Ladd, and J. S Beard. 1996. Sawtimber Valuation and
Sawlog Allocation Through Simulation of Temple-Inland Sawmills. Interfaces:
26(6):3-8.

Wagner, F. G., and F. W. Taylor. 1993. Low Lumber Recovery at Southern Pine
Sawmills May Be Due to Misshapen Sawlogs. Forest Products Journal 43 (3): 53—
55.



116

Wilhelmsson, L, and L Moberg. 2004. Predictions of Green Density of Log Assortments
by Prediction Models and Industry Scaling. Skogforsk Report 569:35.

Wolfe, D. A., and M. S. Gertler. 2004. Clusters from the Inside and Out: Local
Dynamics and Global Linkages. Urban Studies 41 (5/6): 1071-1093.

Zakrzewski, W, F Schnekenburger, and P Kozlowski. 2010. Tools for Optimizing
Timber Product Mix: User’s Guide for Visualizer-Buck. Forest Research
Information Paper, OFRI 174: 30.

Zhang, S. Y, and Q. ] Tong. 2005. Modeling Lumber Recovery in Relation to Selected
Tree Characteristics in Jack Pine Using Sawing Simulator Optitek. Annals of
Forest Science 62 (3): 219-228.

Zhang, S. Y., Chuangmin Liu, and Z. H. Jiang. 2006. Modeling Product Recovery in
Relation to Selected Tree Characteristics in Black Spruce Using an Optimized
Random Sawing Simulator. Forest Products Journal 56 (11/12) (December): 93.

Zhang, T., and JF Gingras. 1999. Twig Tweaking: Timber Management for Wood
Quality and End-product Value. Canadian Forest Industries Nov./Dec, 1999: 43-46.



