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ABSTRACT 

Let X be a normed linear space and K a convex set in X . 

Then TT £ K is a best approximation to f £ XK if 

I If TTI I = inf{ 1 |f - kl I : k £ K} . The existence of such a best 

approximation is shown if K is compact, or closed and bounded in 

a finite dimensional space. Two characterizations of best approxi- 

mation are proved using a geometrical approach involving functionals 

in the dual space. These are applied to the space Lj(T, J], p) 

under the assumption that its dual is equivalent to L<„Ci» y) 

to recover results of Kripke and Rivlin, and Singer. 

The same approach is used to derive criterion for the uniqueness 

of best approximations, and then applied to to obtain, among 

others, Jackson’s classic theorem on approximation to continuous 

functions from Haar Subspaces. A result of Phelp’s on the non- 

existence of finite dimensional Chebyshev subspaces in non-atomic 

R 
is also shown. 

The concept of strong unicity is presented, and investigated 

by looking at particular supporting cones. A useful characterization 

is proposed in and then applied to prove WulbertVs theorem on 

strongly Chebyshev subspaces in . It is shown that no Haar 

subspace is strongly Chebyshev in C^ , and an example of an infinite 

dimensional strongly Chebyshev subspace is given. 
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SI. INTRODUCTION 

Chapter I 

PRELIMINARIES 

With the advent of powerful computing machines the idea of 

approximating functions by other functions parametrized by a 

finite number of variables has become very important. In practice 

one finds an approximation and leaves it at that, but the aim is 

to find the best possible approximation from the set of approximating 

functions. Obviously we need some sort of measure of how good an 

approximation we have. In this thesis we will concentrate on the 

use of the norm for this purpose. To do this we will use some 

powerful geometric ideas which can be stated and proved in any normed 

linear space, so we will first define our best approximations 

in a rather general way. 

Let X be some normed linear space, with the norm 1 |• ] 1 , 

and let K be some set in X . If f £ X we say that ir is a 

best approximation to f from K if | |f - 7r| | = lnf{ | |f - k| | : k e K} 

and TT £ K . 

Our first task will be to investigate the existence of such a 

best approximation. If K is compact they exist for any choice of 

f , but in general existence depends on K , where f is, and the 

type of norm involved. 

If we have an element of K , are there ways of testing to see 

if it is a best approximation? We can uncover such characterizations 

by considering the existence and properties of various hyperplanes 
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which separate K and f . (We assume f is outside K .) This 

approach is very intuitive and easy to understand, and most of the 

major theorems of approximation in the norm can be recovered. 

Since these hyperplanes are defined by functionals in the dual space 

we have restricted ourselves to a measure y which ensures that the 

dual of our space Lj^(T, y) is equivalent to the space 

L^(T, 5], y) . This is satisfied, for example, if y is a-finlte. 

The next chapter discusses the question of uniqueness. Again 

using our geometrical concepts we recover results of Cheney and 

Wulbert, Jackson, and Singer. In particular we characterize sets 

which allow only unique best approximations (called Chebyshev sets). 

In we show that there are no such Chebyshev subspaces when y 

is non-atomic, but do better with continuous functions by proving 

Jackson's famous theorem on Haar subspaces. 

We are not quite finished yet, and go on to introduce strongly 

unique best approximations. The results of Bartelt and McLaughlin 

are used in and some theorems derived. One very nice theorem 

proves that strict inequality in one of our characterization theorems 

in a finite dimensional subspace is necessary and sufficient for the 

best approximation to be strongly unique. A not so nice result states 

that a Haar subspace is not necessarily a strongly Chebyshev subspace, 

even though it is Chebyshev. 

We will start off by giving a few necessary definitions in the 

next section. 
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S2. PRELIMINARY CONCEPTS 

In general, the notation used is that of Dunford and Schwartz 

[16]. 

Many of the definitions will be introduced as needed, and some 

basic ideas from topology are assumed. These include open, closed 

sets and the convergence of sequences (see, for instance, [31]). 

For convenience, sup{f(x); x e X} = sup f[X] and similarly 

for the infimum. 

2/^1*. Definition. X is a linear space over a scalar field if 

X is an additive group under the binary operation + on X together 

with an operation m: $ x X -> X written as m(a, x) = ax satisfying 

a(x + y) = ax + ay x, y £ X a £ $ ; 

(a + b)x = ax + bx x £ X a, b £ $ ; 

a(bx) = (ab)x x £ X a, b £ $ ; 

l*x = X X £ X . 

The scalar field ^ will always be the set (C of complex ntunbers, 

or the set E. of real numbers. 

2.2. Definition. X is a normed linear space over a field $ if 

X is a linear space and for each x £ X there corresponds a real 

number ||x|| , called the norm of x , satisfying 

I|x|I = 0 if and only if x = 0 ; 

1|x|I ^ 0 ; 

lUxll = 1X| 11x11 ; 
I|x + y|I ^ I|x|I + Ily|I for x, y £ X . 
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We let B(y, e) = {x e X: ||x -y|l < e} and 

BCy, e) = {x e X, ||x - y]| ^ e} be respectively, the open and 

closed balls of radius e > 0 centred at y e X . We let B*(y, e) 

denote the corresponding open ball in the dual space X* . Unless 

otherwise mentioned the topology on X is the norm topology which 

has all such open balls as a basis. 

2.3. Definition. M is a linear subspace of a linear space X if 

M £ X and M is a linear space over the same field of scalars. 

2.4. Definition. A set K e X is convex, if for all X e HR , 

0 ^ 1 ^ 1 , (the scalar field $ is ]R or (E) and x, y e K , 

Xx + Cl “* ^)y € K . 

2.5. Definition. Let X and Y be normed linear spaces over the 

same field $ , and L a function mapping X into Y . Then L 

is linear if L(x + y) * L(x) + L(y) and L(ax) = aL(x) for 

X, y € X, a e $. L is bounded if there exists a real number M > 0 

such that I|L(X)|| ^ M||x|| for all x e X . The set of all 

bounded linear functions is itself a linear space over the same 

field. If Y is the scalar field then this set is termed the dual 

space, X , of X . Where $ = (E we define Re L as the real 

part of L , and note that Re L is itself a member of X* . X* 

is a Banach space under the norm, ]|L|| = sup{|LCx)|: |jx]| = 1, x e X} 

The boundedness of a linear functional is equivalent to its continuity. 

For a complete discussion of linear functionals and the dual space 

refer to [16, Chapter IIJ. 
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2.6. Definition. Let D be a subset of a normed linear space X , 

and let f e X . Then TT is a best approximation from D to f 

if TT € D and 

I |f - TT| I = inf{ I I f - d| I : d e D} . 

The infimum is termed the distance, pCf» D), from f to D . The 

set of all such best approximations is denoted by PCD, f) . 

2.7. Definition. Let (T, u) a measure space, and let f 

and g be complex-valued functions on T . Define an equivalence 

relation by f ~ g if p{t e T: fCt) '*■ gCt)) = 0 and let 

[fj be the equivalence class which f belongs to. Then 

f[dy < oo} , with the norm f dy . L j(T, 1. Vi) = { [f]: 

If only the real numbers are being considered we write L^CT, y) , 

and we will suppress the CT, y) wherever it is possible without 

ambiguity. The definition is abused somewhat (harmlessly) by writing 

f e Lj and not [f] e L^ . 

Let J], y) = {[f|j ess sup f[T] < <»} with the norm 

I[fI 1^ = ess sup f[T] . The above comments can be repeated, with 

the added note that, unless otherwise stated, we assume L^ is 

equivalent to L as is the case when y is a-finlte. 

2.8. Definition. Suppose for the measure space CT, J, y) a topology 

is defined on T so that (i) T is a Tychonoff space; (ii) every open 

set is in ^ and every non-empty open set has positive measure; and 

(iii) every singleton is of finite measure. We denote by C^(T, y) 
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(or simply or (T) when the measure space is clear) to be the 

subspace of CT, p) consisting of continuous functions with the 

R R R 
norm. The symbols Cj^CT, I, p) , or 0-) are used when only 

real-valued functions are considered. We note that is not complete. 

In references to previous theorems we will write, for example, 

see theorem 2.4 if the theorem is in the same chapter, or theorem 

III-2.4 if the theorem is in another chapter (chapter III in this 

example). 

S3. EXISTENCE 

Best approximations from closed subsets exist in finite dimen- 

sional spaces, but in the general case this is not true. For some 

special spaces (uniformly or strictly convex) better results can be 

obtained, but the case satisfies none of these conditions, so 

they are not considered here. It is not necessary to postulate 

convexity; any closed bounded subset in a finite dimensional sub- 

space will do. 

More generally closure is not sufficient. The set must be 

compact to ensure the existence of best approximations. In a 

finite dimensional space closed and bounded imply compactness so 

we see that compactness implies the previous paragraph's comments. 

3.1. Theorem. Let C be a compact set in a metric space X , with 

metric d . To each point f e X ~ C there exists a point IT in 

C with d(f, ir) = lnf{d(f, x): x e C) . 
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Proof. Let 6 = lnf{d(f, x): x e C} . By the definition of the 

infimum, there exists a sequence of points S C such that 

lim d(f, X ) = 6 . Since C is compact there exists a subsequence 
n 

{ym) of the sequence which converges to a point, call it 

TT , of C . By the triangle inequality, dCf» 'n') ^ dCf» y^) + 

for all n . Since the left side is independent of n and the 

right side ->-6 as n -> «> , d(f, ir) < 6 . Since TT€C,dCf,TT)^6 . 

Therefore d(f, TT) = 6 and TT is the required point, □ 

In a normed linear space define, as usual, dCx, y) = ||x - y|| . 

Then the above theorem can be quickly applied to yield the following 

corollary. 

3.2. Corollary. For every closed set C in a finite dimensional 

subspace M of a normed linear space X , the set PCC, f) , 

for any f e X ~ C is non-empty. 

Proof. Choose y e C arbitrarily. Consider the set 

H={xeC: ||f-x|l ||f-yl|} . Since C is closed this set 

is also closed, and it is certainly bounded. Since M is finite 

dimensional H must therefore be compact in X l7, p. lO]> and 

by theorem 3.1 there exists a point TT e H such that 

I I f - TT I I = inf{ 1 I f - x| I : X e H} . In other words TT e P (E, f) ; 

but P(H, f) £ P(C, f) , and therefore PCC, f) is not empty. □ 

Cheney gives an example [7, p. 21] showing that finite dimen- 

sionality cannot be omitted. 
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In the rest of this thesis it is assumed that best approximations 

do indeed exist. However, in the actual computation it might be wise 

to check to see if there is something to compute. 

We will consider best approximation from convex sets. For 

discussion on general best non-linear approximation see Dierieck 

[13]. 



Chapter II 

CHARACTERIZATION OF BEST APPROXIMATION 

SI. INTRODUCTION 

There are two important characterization theorems for best 

approximation to convex sets. These will be proved and then applied 

in and C^ . Also, specializations to linear subspaces of 

infinite and finite dimension will be considered. 

S2. FIRST CHARACTERIZATION THEOREM 

The first characterization theorem is due to Deutsch and 

Maserick [9, thm. 2.5], valid for a normed linear space, and is a 

consequence of the Hahn-Banach theorem. 

2.1. Definition. Let X be a normed linear space over (E with 

norm | | * 1 | • A hyperplane [L, c] is a set of the form, for some 

L € X* ~ {0} and c € ]R , 

[L, cj = {x € X: ReL(x) = c} . 

2.2. Lemma. Let LeX*~{0} , ceIR, and H = [L, cJ . Then 

for each x e X , 

C2.2.1) 
, |ReL(x) - c 

'  [|L||- 

-9- 
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Proof. Since L £ X* , for all y e H , " IX) < < 

^ 1 lx - yl 1 . Therefore PCX, H) > ' —^ . 

If 0 < e < I IL11 , then since I IReLI I = 1 |L M , there exists 

z £ X such that |ReL(z)| > (|1L|| - e)l|z|I , and we See that 

iReL(z) 

y = X 

ReL Cx) - c 
ReL(z) 

ReLCx) - c 
ReL (z ) ^ 

> ClILII - e) 
ReL(x) - c 

ReL(z) 

Then ReL(y) = c and z - 

Let 

ReLCz) 
ReL(x) - c 

e)l|x - ylI . Since this is true for 

(x - y ) 

Thus iReLCx) - c| > (||L|| 

all e £ (0, MLM) f there exists y such that ReL(y) = c and 

|ReL(x) - cl > 1|L|1 llx - ylI . Therefore y £ H and 

|ReL(x) - cl . I I 11^ / n     ^ I lx - yl 1 > p(x,, H) . □ 

2.3. Definition. A hyperplane H = [L, cj is said to separate 

two subsets M and N of X if sup ReL[Mj < c inf ReL[Nj . 

It can be shown that if H separates a point x from a set M 

then p(x, M) ^ p(x, H) , and any neighbourhood of a point in H 

contains points x, and x such that ReLCx ) < c < ReLCx ) . t' 1 2 1 2 

The next theorem is the geometric form of the Hahn-Banach 

theorem. A functional L £ X* separates M and N if there 

exists c £ ]R such that [L, c] separates M and N . 

2.4. Theorem. Let M and N be two disjoint convex subsets of 

a normed linear space X , and suppose one of them has an interior 

point. Then there exists L £ X*, L ^ 0 which separates M and 

N . 
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Proof. [19, p. 63]. □ 

If L separates M and N then there exists c such that 

[L, c] separates M and N . But then sup > inf 

since L ^ 0. So L can be assumed to have norm 1. 

Deutsch and Maserick’s "Main Separation Principle" can now 

be shown. 

ReLiN] 

I ILM 

2.5. Theorem. Let K be a convex subset of a normed linear space 

X , and let f £ X ~ K . Then there exists L e X* with norm 1 

such that p(f, K) = ReL(f) - sup ReL[K] . 

Proof. Let B = B(f, p(f, K)) . Then B is an open, convex set 

containing f disjoint from K . By theorem 2.4 there exists an 

L e X* with ML| 1 =1 which separates B and K . Hence 

sup ReL[K] < inf ReL[B] < Re L(f) . Let H = [L, sup ReL[KjJ . 

Then lemma 2.2 implies p(f, H) = ReL(f) - sup ReL[K] :< p(f, K) . 

If p(f, H) < p(f, K) then there exists y e H n B . But then 

B is a neighbourhood of y which lies on one side of H . This 

is a contradiction since any such neighbourhood contains points 

from both half spaces determined by H . Therefore pCf» K) = 

= ReL(f) - sup ReL[K] . □ 

Geometrically this theorem shows the existence of a hyperplane 

separating f and K which "just touches" K , and whose distance 

from f is the same as p(f, K) . This "just touches" notion can 

be stated more exactly as follows. 
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2.6 Definition. A hyperplane H = [L, cj supports a set K at 

ir £ K if sup ReL[Kj = ReL(iT) = c . 

2.7. Corollary. Let K, f, L and H be as in theorem 2.5. If 

TT e PCK, f) then H supports K at IT . 

Proof. As in theorem 2.5, let B = B(f, p(f, K)) , and let B be 

the closure of B . Since TT e P(K, f) , | |f - Tr| | = p(f, K) . 

Hence ir £ B . But inf ReL[B] = inf ReL[Bj S: sup ReL[Kj , Therefore 

ReL(TT) ^ sup ReL[K] 

^ inf ReL[Bj 

^ ReLCir) . 

Thus ReLCn") “ sup ReL[Kj . □ 

Now we are in a position to prove the first characterization 

theorem. A particular set Involved will be referred to a bit later 

on, so for convenience we give the following definition separate 

from the theorem. 

2.8. Definition. Let = {L £ X*: 1 |L1 | =1 and LCf-'7^) = |lf-7T 

where ir is an element of a convex set K and f £ X ~ K . From 

the previous work we can see that is not empty, and contains 

those functions L such that [L: ||f - ir||] supports the set 

{x£X:||x||=||f-ir||} at f-ir. 
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The first major theorem of this chapter follows. Geometrically 

the theorem states that IT is a best approximation from K to f 

if and only if there is a supporting hyperplane to K which passes 

through fr, (ie., IT is a point of support) ^ and whose distance 

from f is the same as pCf, K) . 

2.9. Theorem. (First Characterization Of Best Approximation). If 

K is a closed convex subset of the normed linear space X , and 

f e X ~ K , then TT e P(K, f) if and only if there exists L e 

with 

(2.9.1) ReL(7r) = sup ReL[K] . 

Proof. Assume TT e P(K, f) . Theorem 2.5 implies the existence of 

L € X* with I ILII = 1 and p(f, K) = ReL(f) - sup ReL|Kj . But 

p(f, K) = ||f “ TTI I and corollary 2.7 implies ReL(ir) = sup ReL[Kj . 

Then ReL(f) - ReL(Tr) = ReL(f - ir) = | |f - 7r| | . 

If there exists such an L e L , then 
TT 

I |f - irl 1 = ReL(f) - ReLCir) < ReL(f) - ReL(k) 

for all k G K . But ReL(f - k) < |L(f - k) 1 < | |f - k| | for all 

k G K . Therefore TT G P(K, f) . □ 
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Singer’s result [40, p. 18, theorem 1.1] can be recovered from 

the preceding theorem with the aid of the following lemma. 

2.10. Lemma. If M is a linear subspace and L € X* with 

sup ReL[M] < <» then L(m) = 0 for all m € M . 

Proof. Let m e M . If L(m) = a 5^ 0 then L(Xm) = XL(m) = Xa 

for all scalars X . Since M is a subspace then sup ReL[M] = <». 

Thus L(m) = 0 for all m e M . □ 

In theorem 2.9, if K is a closed subspace M , then C2.9.1) 

can be replaced by 

(2.9.2) L(m) = 0 for all m e M 

which is Singer’s result. He also derives various other reformula- 

tions of this theorem. [40, pp. 19-24] 

S3. SECOND CHARACTERIZATION THEOREM 

Deutsch and Maserick [10, p. 524, theorem 3.9] have given a 

very nice proof of this theorem from a result of Singer’s for linear 

subspaces. The proof is based on the following set of lemmas which 

are also of importance if M is of finite dimension. 

3.1. Definition. A non-void subset E of a set A is called an 

extremal subset of A if x, y e E whenever x, y e A and 

ax + (1 - a)y e E for some a e (0, 1) . Geometrically, this means 
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that no point of E is an interior point of a line segment whose 

end points are in A ~ E . If E = {z} then z is temned an extreme 

point of A . 

The next lemma is based on the Krein-Milman Theorem which is 

stated here without proof. 

3.2, Theorem. (Krein-Milman) If K is a compact subset of a 

locally convex linear space and E is the set of its extreme 

points then E is not empty and co(E) = co(K) . 

Proof. [16, p. 440, theorem 4] i □ 

3.3. Theorem. [41J If M is a linear subspace of a normed linear 

space X , and f is an extreme point of the closed unit ball 

in M* , then f has an extension to X which is an extreme 

point of the closed unit ball in X* . 

Proof. Let K = {L e X*: IiLl1 = 1 and L(m) = fCm), me M} . 

It can be shown that K is a w*-closed, convex subset of B*C0, 1) , 

which implies K is w*-compact. We will show that K is in fact 

an extremal subset of B*(0, 1) so that the extreme points of K , 

which exist by the Krein-Milman theorem, are also extreme points of 

B*(0, 1) . If g, h e B*(0, 1) with L = ag 4- (1 - a)h e K for 

a € (0, 1) , then ag(m) + (1 - a)h(m) = f(m) , for all m e M and it 

is easy to verify that I |L| I = I IgM = I lh| | =1 . Since f is an 

extreme point of the unit ball in M*, g(m) = f(m) = h(m) for all 
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m e M . Therefore g, h € K , and K Is an extremal subset of 

B*C0, 1) . Then any extreme point of K is a required extension. □ 

The following lemma is proved for the case of real Scalars^ but 

the proof follows the same lines for the complex case. Note especially 

that this lemma immediately gives a characterization of best approxi- 

mations from finite dimensional subspaces. 

3.4. Lemma. Let K be a closed convex subset of M ^ an n-dimensional 

subspace of X , where n < «> . Let f e X ~ K . Then TT e PCK.> f) 

if and only if there exist m extreme points L^ of B*C0, 1) 

(m ^ n + 1 in the real case and m ^ 2n + 1 in the complex case) 

satisfying 

(3.4.1) ” I If - r| I , i = 1, ..., ffl 

m m 
(3.4.2) Re I X L. (TT) = sup Re I X.L. [Kj , X ' > 0, Jx. = 1 . 

i=l i=l 

Proof. Let Y * span{M, f} . Then the dimension of Y is at most 

n + 1 . By a variant of Caratheodory’s theorem given in [40, p* 166] 

we can write the functional Let (Y) of theorem 2.9 as L= T X.L. 
TT 1 1 1=1 

where m^n+l,X^>0, J]X^ = 1 and the L^ are extreme points 

of the unit ball in Y . Extend each L^^ as in theorem 3.3. Then 

(2.9.1) implies (3.4.2), and the extended L e ^^CX) implies 

J[XiLi(f - TT) =s I 1 f - 7TI I . Since Jx^ * 1 , we see that 

XXi(L^(f -ir) - ||f-7r||)«0 , but L^(f - TT) - ||f - TTM < 0 for each i 

and X^ > 0 , so L^(f - TT) - | |f - ir| | = 0 for i * 1, ..., m , 

giving (3.4.1). □ 
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The second characterization theorem is due to Garkavl^ and the 

proof given below is due to Deutsch and Maserick [10, p. 524]. 

3.5. Theorem. (Garkavi: Second Characterization of Best Approxi- 

mation) Let K be a closed convex subset of a normed linear space 

X , and let f e X ~ K . Then ir e P(K, f) if and only if for 

each k £ K , there exists L - £ X* such that 

(3.5.1) L is an extreme point of B* ; 

(3.5.2) ReL(7T - k) > 0 ; 

(3.5.3) L(f - 7T) = I lf - ir| I . 

Proof. Assume TT £ K and such an L exists for each k £ K. . Then 

Ilf - TTI I * ReL(f) - ReL(TT) < ReL(f) - ReL(k) < Ilf - k| | . Since 

k is arbitrary TT £ P(K, f) . 

Let T £ P(K, f) . Since L is a w*-closed subset of 
TT 

B* = B*(0, 1) , is w*-compact. Therefore has extreme 

points by the Krein-Milman theorem. Since is also an extremal 

subset of B* these extreme points are extreme points of B* , and 

they satisfy (3.5.1) and (3.5.3). 

Now suppose k £ K and ReL(TT - k) < 0 for all extreme points 

L of L^. Let N be the convex set {x £ X: x = Ak + (1 - X)TT, X e [0,1]}. 

We see that TT £ P(N, f) and N is in the span of k and ir , which 

is two dimensional. Therefore, by lemma 3.4 there exist m ^ 5 

(complex case) or m < 3 (real case) extreme points L^ of B* , 
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and m positive real numbers such that J[x^ = 1 and 
m 

L. (f - IT) = Ilf - U i - 1, ...» m with Re - w) > 0 
1=1 

for all w € N . This last inequality is a restatement of C3.4.2). 

Since X^ > 0, i = 1, •*.> m there must exist w e N and j such 

that 1 ^ j < n and ReL^ CTT “ w) ^ 0 , or, since w € N , 

XReLjCir - k) ^ 0 for X > 0 giving the required contradiction. □ 

S4. CHARACTERIZATION IN AND C^ 

The two characterization theorems just proved can now be applied 

to the special case of approximation in L^CT, y) . The results 

are all based on the Riesz Representation theorem, which shows the 

nature of the equivalence between and L* . 

4.1. Theorem. (Riesz Representation Theorem) If (T, y) 

(see 1-2.7) is a positive, a-finite measure space, then there is 

an isometric isomorphism between L*(T, J], y) and y) , 

where L € L? and g € L are related by 
X . 

L(f) fgdy and 

Proof. [16, p. 289]. □ 

This theorem is crucial to the application of the previous 

approximation theorems to the space . Recall that we have 

decided that the measure space will not be exotic. The use this 

theorem will be put to indicates that a good definition for "exotic” 
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would be the breakdown of the Riesz representation theorem. 

The approximation theorems also indicate the need for a 

knowledge of the extreme points of the closed unit ball in . 

Hence we prove the following handy lemma. 

4.2. 

ball 

igi = 

Lemma. For , L is an extreme point of the closed unit 

B* in if and only if there exists a g £ L such that 2 . ^ 00 

1 almost everywhere and L(f) = fgdy for all f e . 

Proof. Since the map and its inverse of theorem 4.1 preserves the 

extreme points of the unit balls we need only show that g is an 

extreme point of the closed unit ball B in if and only if 

Igl =1 almost everywhere. 

Assume lg(t)l = 1 for t e A where y(T ~ A) = 0 , and 

that there exist f and h in B , and a e fO, 1) such that 

g = af + (1 - ot)h . For all t e A , 

lgCt)l = 1 = |af(t) + Cl - a)h(t)| < a|fCt)l + Cl - a)|h(t)l < 1 

since h and f have absolute value at most 1 . The functions 

f, h and g , therefore, map A into the unit disk of the 

complex plane. However lgCt)l =1 Vt £ A implies gCA) is a 

subset of the boundary of the unit disk. But the boundary of the 

unit disk is precisely the set of extreme points of the unit disk 

and so if g(t) = Xf(t) + (1 - X)h(t), X e [0, 1] , then 

f(t) = hCt) = gCt) Vt £ A . Since y(T ~ A) = 0 , g is an extreme 

point 
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If g is an extreme point and lgCt)l ^ 1 for t e E where 

y(E) > 0 9 then, since llglI , lgCt)i < 1 for all t e E . 

f (t) 
Recall the function sgn is defined by sgn f(t) = |f| 

f(t) ^ 0 , and sgn f(t) = 0 if f (t) = 0 . Let fCt) = gCt) - h(t) 

for t e T ~ E and let f(t) = sgn g(t) and h(t) = C2|g(t)| - l)sgn g(t) 

for t € E * Then Ilf I I and IJhM ^ 1 and y f Ct) +-|-h(t) == g(t) 

,for t e T ~ E . If t e E , y f(t) + y h(t) = |gCt)|sgn gCt) = g(t) . 

But h(t) * f(t) for t € E , and y(E) > 0 , so g is not an 

extreme point. □ 

Now the characterization theorems can be applied. The first 

theorem is a restatement of theorem 2.9, using theorem 4.1. The 

proof will not be included. 

4.3. Theorem. Let K be a closed convex subset of Lj^ and 

f e L, ~ K . Then TT e P(K, f) if and only if there exists g e L 
1 00 

such that 

(4.3.1) 

C4.3.2) 

(4.3.3) 

Re 

8li„“ 1 ; 

TTgdy = sup{Re 

(f - TT)gdy = 

kgdy: k € K} ; 

f - Trldy . 

4.4. Corollary. Let K be a closed convex subset of L^ and let 

f e L^ ~ K . Then ir e P(K, f) if and only if there exist g € L^ 

with norm 1 such that 
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(4.4.1) ReJ (TT - k)gdy ^ 0 for all k e K ; 

(4.4.2) g(t) » sgn(f(t) - 7r(t)) for all t i z(f - TT) . 

(Here, and elsewhere, Z(h) denotes the zero set of h and the bar 

on sgn(h(t)) denote the complex conjugate of sgn(hCt)) so that 

^(h(t)) = if t i Z(h) .) 

Proof. (4/4.1) follows directly from C4.3.2). C4.3.3) implies 
I 

((f - ir)g - |f - Tr|)dy = 0 . But |gl < 1 almost everywhere by 
I 

(4.3.1) so (f - ■rr)g - If - TTI ^0 . Thus (f - t)g = {f - IT| , or 

g = sgn(f - ir) whenever f - ir ^ 0 . 

The converse again comes from 4.3, or it can be proven directly 

as follows: f - Tr| dy 

r 
(f - ■ir)gdy ^ Re[ (f - k)gdyj by (4.4.1) 

and (4.4.2). But 

so TT € P(K, f) . 

Re 

□ 

(f - k)gdy < f - kidp since IIglL “ 1 : 

4.5. Corollary. Let K be a closed convex subset of , and 

f € ~ K . Then TT e P(K, f) if and only if there exists a 

p-measurable g defined on Z(f - TT) with |g| <1 almost every- 

where and 

(4.5.1) Re 
T'^Z(f-TT) 

for all k £ K . 

- k)sgn(f - ir)dp S Re 
Z(f-TT) 

g(Tr - k)dp 

Proof. Let ir £ P(Kj f) . Then (4*4.1) and (4*4.2) Imply 

Ref 
•'T->Z(f-ir) 

(TT - k)sgn(f - Tr)dp + Re 
ZCf-ir) 

(ir - k) gdp ^ 0 
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where llgll =1 » which innnediately gives (4.5.1). 

Conversel/a‘!ssuming g as above exists, we extend it to T by 

defining g(t) = sgn(f(t) - TrCt)) for t ~ TT) • Then the 

extended g satisfies the requirements of 4.4 and TT e P(Kj f). □ 

If K is a subspace of , then these corollaries can be 

improved. The following theorem is a standard one proved by many 

authors, among them Kripke and Rivlin [24, p. 104] who gave a proof 

by considering the derivative of the norm. The proof given here 

follows the same lines as Singer^s proof. 

4.6. Theorem. Let M be a closed linear subspace of , and 

f e ~ M . Then TT € P(M, f) if and only if 

(4.6.1) m sgn(f - 7r)dpi ^ Imldy for all m e M . 
•' ZCf-Tt) 

Proof. Assume IT e P(M, f) . Then by corollary 4.5 there exists a 

g as given in the corollary satisfying (4.5.1) for all k e M . 

For each m let m = TT - k . Since M is a linear sub space we see 

that 

Re m sgn(f - Tr)dy ^ -Re gmdy for all m e M . 
Z(f-TT) 

We can replace m by -m to show that only the equality is allowed 

Taking the absolute value of both sides and recalling that Igl 1 

then gives (4.6.1). 

For the converse assume the inequality is valid. Following 

Singer we choose u e M arbitrarily, and define g by 
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^ sgnCf(t) - ir(£)) if t Z(f - TT) ; 

0 if 

or 

g(t) 

t e Z(f - IT) and either y(Z(f ~ ir)) 

u n 0 on Z(f - 7T) ; 

0 

\ l» 

T Z(f-Tr) 
u sgnCf - TT)dy 

Z(f«1T) 
ul dy 

sgn u(t) otherwise. 

We see thet Igl “ 1 outside Z(£ - TT) » and on this set CA.6.1) 

ensures that lg| % 1 . Therefore g € , and if 

y(ZCf - '!T)) > 0 and M ^ Q on Z(f * t) , 

gudy - 
J i T^Z(f-ir) 

« SgllCf “ 'rr)dy - I • 
f~ZCf«1T) 

u SgnCf “ ir)dy 

0 . 

If yCZ(f - IT)) ■ 0 §f « * 0 ift it! then CA.6.1) 

implies the same result straightforwardly. We also gee that 

g(f « ff)*f|£-fT|dy«||f“Tr|! I mi fehitifore» 

Ilf - trll g(f - ir)dy gudy 

gCI - If - u)dy i f - ff - u ! dy » 

where the last step follows sinoe |gl i 1 almost everywhere. There» 

fore ilf»ir|| i Ilf - (Tf4*u)|| • Sinoe H is a suhspaoe and u 

is arbitrary! IT t F(K! f) . 0 
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It might be expected that if M is finite dimensional lemma 

3.4 would produce some interesting results, but unfortunately the 

only result is a trivial refinement of the previous theorem. If 
n 

M = span{^j, ..., (|) } then g can be replaced by ^ X.g. where 
n ^ i=l 

X. 2: 0 , ^ X. = 1 and I g. I = 1 almost everywhere, i = 1, n 
i=l ^ ^ 

This does not change (4.6.1) at all. 

The second characterization theorem gives similar results to 

the preceeding section. They are based, as usual, on the Riesz 

Representation theorem and the form of the extreme points of the 

closed unit ball. Note in particular that theorem 3.5 undergoes 

no change if K is a linear subspace. In fact. Singer*s second 

characterization theorem [40, p. 62j for linear subspaces is the 

same, so his corollaries can be used here. Some of these corollaries 

are reproduced below. [40, pp. 63-67] 

4.7. Theorem. Let K be a closed convex subset of , and 

f € ~ K . Then the following are equivalent. 

a) TT £ P(K, f) . 

b) For each k £ K there exists q = q^ e with |qi = 1 a.e. 

such that 

(4*7.1) Refxir - k)q dy ^ 0 

(f - ir)q dy = (4.7.2) \f - IT 1 dy 
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c) For each k e: K there exists a p-measurable g = with 

Igl « 1 a.e. on Z(f - TT) and 

(4.7.3) Re 
1>^Z(f-Tr) 

(ir - k)sgn(f - ir)d|i > -Re 
Z(f-Tr) 

(ir - k)g dy . 

d) For each k e K there exists a y-measurable g = with 

Igl = 1 a.e. on Z(f - IT) such that 

C4.7.4) f - irldy ^ Re 
T~Z(f-7r) 

+ Re 

(f - k)sgn(f - ir)dy 

(f - k)g dy . 
Z(f - TT) 

Proof, a) b). Apply theorems 3.5, 4.1 and lemma 4,2. 

b) => c). Since lq| =1 a.e., (4.7.2) implies q = sgn(f - II) on 

T ~ Z(f - TT) . Applying this to (4.7.1) results in C4.7.3) as in 

the proof of 4.4. 

c) b). This proof follows the same lines as the converse in 4.4. 

b) d). (4.7.1) implies 

Re (f - ir)q dy ^ Re Cf - k)q dy . 

Then by (4.7.2) If - Tr|dy Re (f - k)q dy and 

also implies q * sgn(f - ir) on T ~ Z(f - IT) . 

tions imply (4.7.4). 

d) b). Let 

, as in 4.4, (4.7.2) 

These two observa- 

g(t) t £ ZCf - TT) 

sgnCf - IT) t £ T ~ ZCf “ 7T) 
qCt) = 
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Then (4.7.2) follows immediately and 

Re (IT - k)q dy - Re (f - k)sgn(f - ‘ir)dy + Re 
T-Z(f-7r) 

f - Trldy 

Z(f-TT) 
Cf - k)g dy 

> 0 

where the last inequality is implied by (4.7.4). □ 

4.8. Corollary. Let K be a closed convex subset of , and 

f € L;^ ~ K , Then ir £ P (K, f) if and only if 

(4.8.1) Re 
T~Z(f-ir) 

for all k £ K . 

(IT - k)sgn(f - ir)dy ^ - 
•'Z(f-ir) 

I TT - k I dy 

Proof. If IT £ P(K, f) then theorem 4.7 part (c) holds. Then for 

(TT - k)g dy < 
Z(f-TT) 

(TT - k)g dy| ^ the g in theorem 4.7 (c), Re 
t J Z (f-7r ) 

I IT - kldy , and (4.7.3) Implies (4.8.1). 
Z(f-TT) 

For the converse assume (4.8.1), and choose u e K arbitrarily. 

Define g by 

g^(t) " g(t) 
sgn(iT - u) if t £ Z(f - IT) ~ Z(ir ^ u) 

if t £ Z(f - TT) n Z(TT - u) . 

Then -Re 
Z(f-TT) 

(TT - u)g dy = - 
Z(f-TT) 

[TT - u|dy 

< Re 
T~Z(f-Tr) 

(TT - u)sgn(f - Tr)dy . 

By 4.7(c), TT e P(K, f) . □ 
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If K is a subspace, then Singer gives another corollary 

which replaces C^.8.1) by 

(4.8.2) Re m sgn(f - 'n-)dy ^ Imidy for all m e K . 

•'T~Z(f-TT) •'ZCf-ir) 

This can be easily derived from C4.8.1). The above characterizations 

are, of course, equivalent to corollary 4.4 (or 4.5). In fact. 

Corollary 4.5 is almost identical to theorem 4.7, part c). 

In some restricted cases sharper results can be derived. Con^ 

R 
sider the real case, L^[T, y] where T is an interval [a, bj of 

the real numbers and that y is finite, and, as usual, nonatomic. 

Let the subspace M be equal to span{(j)^, ..., where the set 

is linearly independent, i.e., approximation from a finite 

dimensional subspace. 

Also, assume the existence of a set of points x^ which 

satisfy a = x„ < x, < ... < x < x = b , and 
0 1 r Tc+1 * 

r+l . 

I (-1) if.(t)dy(t) = 0 , j = 1, n . 
■I-1 J 

Then the following theorem can be proved; but, unfortunately, the 

conditions are only sufficient for a best approximation, not necessary. 

However, Usow [44] has used the theorem to advantage in producing an 

algorithm. It can also be used when applied to algebraic and trigono- 

metric polynomial approximation. 
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4.9. Theorem. Let i = 1> •••> n} be a set of linearly 

independent functions in L^[T, yj where T is an interval [a, b] 

in H and p is finite and nonatomic. Let {x^> i=0, ... r+1} 

be a set of points, r < n , such that a = x < x < ... < x^ < 

and 

CA.9.1) 
r+1 

I (-1)^ 
i=l X. , 

1-1 

(|>j(t)dy(t) = 0 , j = 1, ...» n . 

If TT € M interpolates f at 1> •••» f TT 

changes sign at precisely the points {x^: i = 1, ..., n) then 

IT e P(M, f) . 

r+1 
^ b 

Proof. Let s(x) = aC“l) » x e Cx^_^, x^) , aiid s(x^) = 0 , 

i = 0, ...» r+1 , where a = -sgn(fCa) ~ ir(a)) . Since f - TT 

changes sign only at the x. , i = 1, ..., r , sgn[fCx) - TTCX)J = sCx) 

^ rb 
s(x)<J). (x)dp (x) = 0 , 

a n 
for all X ^ Z(f - ir) . Then (4.9.1) implies 

j - 1, ...» n . Choose m e M arbitrarily. Then m - ^i^£ 

f that I msdii = 0 , and 
a 

> 0 - 

m sgn(f - Tr)d]J = 
1*1 

m s dy - I ms dy 2: 
a •'z(f-Tr) 

imjdy . Therefore by theorem 4.6, since m is 
Z(f-7r) 

arbitrary, TT e P(M, f) . □ 

It is natural then to ask of the existence of such critical 

points. Hobby and Rice [18] have shown that they do indeed exist 

in most cases. The theorem is presented here with a very nice 

proof by Alan Pinkus [34]. 
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4.10. Theorem. [Hobby-RiceJ Let real functions in 

' R ■ 
l'l[[0» 1]» » where y is finite and nonatomic. Then there 

exist {u.}. - , r < n such that 0=u„<u, <...<u <u,,=l 
i i=0 01 r r+1 

and 

C4.10.1) 
r+1 

I (-1)' 
j=i 

fU. 
1 (J)^Cx)dp(x) =0 , i = 1» n 

u 
j-1 

Proof. Recall that a mapping T:IR^ ->-]R^ is odd if T(x) = -TC-x) . 

For a set Q in H let be the boundary (the closure without 

the interior) of ^ and let CC9f2, IR^) be the set of all continuous 

maps from to 3R^ . The proof depends on the following version 

of the Borsuk Antipodality theorem [5, 29]: 

Let be a bounded, open, symmetric neighbourhood of 0 in 

and T e C(9f2, K ) , with T odd on . Then there exists 

X* e for which T(x*) - 0 . 

For the Hobby-Rice theorem, let S = {x = (xi, ..., x ,,): 
n+1 . n 1 

|x I = 1} , and define YQ (x) = 0 
i=l 
Let T: S ->]R^ be defined by 

. (X) = I 
k=l 

X, 

Ti(x) 
n+1 ry, Cx) 

= I (sgn X.) Ct)dy (t), i = 1, ...» n 

j=l ^ h. i(x) 
n+1 3 ^ 

Certainly {x: |x. | < 1} is symmetric and open, and S is 

its boundary. Since y^(x) = y.(-x), T.(x) = -T-(-x) and T is odd. 
j j r 1 

It remains to show that T is continuous with respect to x . 

n + 1 
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The Yj are certainly continuous functions of x , 

i=0, ...,n+l. Consider the integral 

yj (x) 

y^_i(x) 
(|)^(t)dy(t) . 

We can write this as 

ry^ (x) 

0 
<J>^(t)dy(t) - 

l-y (x) 
J ^ 

0 
<|>^(t)dy (t) 

•yCx) 
Therefore we must show that the integral F(x) = 

a continuous function of x , in which case 

fyjCx) 

4>Ct)dy(t) is 
0 

y^.iCx) 
<|)^(t)dy Ct) 

is the sum of two continuous functions which is itself continuous. 

Now, letting f(x, t) = y(x)J ’ where i|; is the 

characteristic function, F(x) = f(x, t)dyCt) . Choose a point 

X e S and any sequence (x^) converging to x . Since y is 

continuous, lim f(x^, t) = f(x, t) for all t except at t = y(x) . 
n-x» 

But y is non-atomic so ^Cx^, t) converges to f(x, t) almost 

everywhere since y{t: t = y(x)} =0 . Also lf(x^, t)1 ^ !^(t)| 

and lf(x, t) 1 ^ t e [0, 1] . Applying the Lebesgue 

Dominated Convergence theorem [15, p. 328], lim F(x^) = FCx) . 
n 

Since this is true for any sequence x^ converging to x , F is 

a continuous function of x . 

Now consider T. , Sgn x. is a continuous function of x. 
1 1 3 

except where x^ changes sign. At this point x^ = 0 ; but then 

“ 7j (x) , so the integral is also zero. Since the integral 
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is continuous the product must approach 0 continuously so 

ry^ Cx) 
sgn(x.) (J). Ct)dy Ct) 

is continuous in x . Therefore T £ CCS, 3R^ and we can apply 

Borsuk*s theorem to find x* with 

n+1 ry.(x*) 

I Csgn X*) ^ 

j=i J 
(f)^Ct)dyCt) =0, i = l, ...,n. 

If X* = 0 or sgn x* = sgn x*. - then the i-th term of the 
J 3 J 

IT 
sum can be removed and the y.Cx*) relabeled to obtain {u.}._, with 

3 3 3“A 

n+1 ru. i C-1)^ ^ ^.Ct)dyCt) = 0, i=l, ...,n. □ 
j=l 'u. , 

4.11. Definition. A set B is a cone if Ab £ B for all A > 0 

whenever b e B . If B is also convex then it is called a convex 

cone, 

The next theorem involves an example of a convex cone in 

and a characterization of best approximations from such a cone. The 

results were first shown by Duffin and Karlovitz [15, p. 672, thm. 7]. 

First, two lemmas are proved. 

4.12. Lemma. If K is a convex cone in a normed linear space X 

and L e X* with sup ReL[Kj < «> , then sup ReL[K] = 0 . 
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Proof. If sup ReLfK] > 0 then there exists k € K with 

ReLCk) > 0 . By definition 4.11 AReL(k) > 0 for all X ^ 0 so 

sup ReL[K] - «> . Since 0 e K , sup ReL[K] ^ 0 , so 

sup ReL[K] = 0 . □ 

For the lemma to follow, let M be an n-dimensional subspace 

of C^(T) , and let K = {k e M: kCt) ^ 0 for all t e T} . Let 

f e C^CT) ~ K. , and define the set C = {Xf - k: A e H , k e K} . 

For each t £ T , let e^ be the linear functional on N = span{M, f} 

having the values ^j-Cf) = 0 and (™) == ni(t) for all m £ M . 

Let E = • 

4.13. Lemma. Suppose there exists m’ £ M such that m’(t) > 0 

for all t € T . Then the convex cone, con(E) , generated by E 

is equal to the polar C® , of C , where 

C° = {L £ N*; LCu) ^ 1 for all u e C} . 

Note: For the definitions of some terms to be used in the proof, 

see [22, pp. 183-184]. By our definition 4.11 we have assumed the 

vertex is always 0, and the vertex is always in the cone (the cone 

is pointed). 

Proof. By the definition of the convex cone C , C° is the convex 

cone {L e N*: L(f) = 0 and L(k) ^ 0 for all k e K} . We see that 

C® is w*-closed in fact, closed, and E £ C° . Therefore con(E) £ C° 

If F € C° ~ con(E) then we can separate F and con(E) by a linear 
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A 

functional h(u) = u(h)» u e N, for some h e N ~ {0} [16, p. 417, 

theorem 10, and p. 421, theorem 9]. Therefore there exist real 

numbers c and e > 0 such that FCh) > c and LCh) < c - e for 

all L e con(E) . Since F e C®, F(f) = 0 , and similarly, 

L(f) = 0, L €: con(E) . Now h e N implies h = Xf + m for some 

m e M , and then F(m) ^ c , L(m) < c - e for all L e con(E) . 

Therefore L(m) < F(m) . But L e con(E) implies aL e con(E) 

for all a > 0 . Since F(m) is bounded then L(m) < 0 for all 

L £ con(E), or e^(m) < 0 for all t e T . But e^On) = mCt) so 

m(t) 0 and -m £ K . Since F £ C° then F(m) < 0 . But 

aL(m) < F(m) for all a > 0 and L £ conCE) so we can choose 

a = 0 and FCm) > 0 , a contradiction. 

To complete the proof we will show that con(JI) = con(E). The 

cone con(E) is pointed, and it is also a proper cone. If it were 

not proper then there would exist a t such that e^On^) < 0 , a 

contradiction. Also, since con(E) is the convex cone generated by 

E , we see that con(E) is the cone generated by the convex hull, 

co(E) , of E . Because of the existence of m’, co(E) does not 

contain the vertex, 0, of con(E) . We note now that E is in fact 

closed, as can be shown quite straightforwardly by considering any 

convergent sequence in E . Since M is finite dimensional and all 

functions are continuous it can be shown that E is bounded, and 

therefore compact. By theorem G in [38, p. 78J co(E) is compact, 

which in turn implies that con(E) is closed [22, p. 338]. Therefore 

con(E) = con(E) = C® . □ 



-34- 

4.14. Theorem. Let M = span{(f)^, ..., (J>^} £ be such that there 

exists m e M with m(t) > 0 for all t e T . Let 

K = {m £ M; m(t) > 0 for all t e T} . Then TT e P(K, f) if and 

only if there exist distinct points t , t and positive 
1 s 

numbers e , ...» e such that TrCt.) = 0, i=l, ...,s and 
IS 1 

C4.14.1) m sgn(f - 7r)dy + I e^.mCti) | < 
i=l 

m|dp for all m e M 
Z(f-Tr) 

Proof. Assume ir e P(K, f) . Since K is a convex cone theorem 4.3 

and lemma 4.13 imply the existence of g £ L such that 

TTgdy = 0 > kgd]i for all k £ K , 8 = 1 , and 

g(t) = sgn(f(t) - Tr(t)) for all t £ T ~ Z(f - TT) . Let N = span{M, f} 

and C = {Af - k: X £ m, k £ K} . Define F £ N* by F(k) = ~ kgdp 

for each k £ M , F(f) - 0 , and extending linearly to N . Then 

FCU) = Jugdy 0 for all u £ C and so F £ C® . Then lemma 4.13 

allows us to write F as a positive combination of points in E . 

Therefore there exist positive numbers i = 1, ..., s and points 
s 

e^ of E such that F = J e.e where s < «> . Therefore for 
t. i t. 
1 r s ~~ 

each m £ M , 
s i=l 

mgdy + J] e^e^ (m) = 0 , or 

m 

i=l i 
s 

sgn(f - ir)dy + [ e^mCt^) | = |- 
i=l Z(f-7r) 

mgdy 

i m I dy . 
ZCf-7r) 

Since F(TT) = 0 , J e.7r(t,) = 0 . 
i=l 

TT(t^) =0, i = 1, ..., s . 

But > 0 and TT ^ 0 so 
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sgn(f - 7r)dy + I e mCt.) . 
i=l 

For the converse, define a linear functional G on M by 

G(m) = m 

If we let p(m) = |m|dp then it can easily be verified that 
•’z(f-j) 

p is a semi-norm on (T) . From C4.14.1) we have iG(jn)| < pOn) 

for all m e M . By the Hahn-Banach theorem G has an extension to 

R 
all of C^(T) (which we denote by G again) with lG(m)l pCm) 

for all m e (T) . By the Riesz representation theorem, there 

exists g € L such that 

G(m) = - mgdp . 

Thus for all m e M , 

m sgn(f - TT)dp + J e^m(t^) = - 
i=l 

mgdp . 

In particular, for k, ir e K , 

(4.14.2) (IT - k)sgn(f - TT) + (ir - k)gdii = - I e. On- - k) Ctf) 
i=l ^ 

= I £^^(1^) 
i=l 

> 0 . 

R 
Now define a linear functional H on by 

H(u) = u[sgn(f - 7T) + gjdy . 
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Then we have H(7T - k) ^ 0 for all k € K . Since 

G(f - TT) I < p (f - IT) = 0 it follows that 

H(f - 7T) = (f - Tr)sgn(f - Tr)du + 

f - ir I dp 

f - TT 

(f - Tr)gdp = 0 . Thus 

(f - 7r)gdp 

R 
Also for any u e , we have 

H(u)| = I (u sgnCf - TT) + ug)dy 

u SgnCf “ Tr)dp + ugdp 

1 u 1 dy + 

T-ZCf-ir) 

lull ; 

Z(f-7r) 
I u| dy 

consequently | lH| | = 1 . By theorem II-2.9 then TT e PCK, f) . □ 

S5. BEST ONE-SIDED APPROXIMATION 

Here we restrict ourselves to the real case and consider K to 

be those functions which are all less than or equal to some chosen 

f . The set K can be further restricted, for instance, by letting 

K lie in a suitable subspace. Unfortunately our previous theorems 

turn out to be rather trivial extensions of the basic definition of 

best approximation, as the following theorem shows. We will content 
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ourselves with sketching two proofs to show the lack of information 

in the characterization theorems. 

Also note that we have defined best approximation from below, 

but that best approximation from above is the same except for the 

obvious changes. 

5.1. Theorem. Let f e L 

R 

and define, for any convex set 

C S Lj , the set K = {k £ C: k(t) f (t) for all t e T} Then 

IT e P(K, f) if and only if Trdy = sup{ kdy: k 6 K} . 

Proof. Since f - kldy = (f - k)dy for all k £ K this is a 

trivial theorem* As an alternative proof we can apply corollary 

4.8 (assuming f ^ K) , Recall the inequality (4.8,1) specialized 

to the real case 

► ^ 

(IT - k)sgn(f - 7r)dy > - |ir - k|dy for all k e K 

JT~Z(f-7r) Jz(f-Tr) 

In the right side since the integral is taken over Z(f - TT) we can 

replace IT by f , then remove the absolute value signs as f > k , 

and then put back n , We also note that sgn(f - IT) = 1 on 

T ~ Z(f - IT) . We then have 

(ir - k)dy ^ 0 for all k £ K , 
J 

which is what we needed. The converse follows also. □ 
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Therefore we need some different methods to discover more useful 

results. Bojanic and DeVore [4] and DeVore [12] have Investigated 

this subject and have come up with a characterization for best pne- 

sided approximations. Bojanic and DeVore dealt with polynomial 

approximation which DeVore then generalized to cases where C (see 

theorem 5.1) is an n-dimensional Haar subspace M , where n < «> . 

We will present some of DeVore’s results here. 

First we will have to define Haar systems. Attention is 

restricted to an interval [a, b] in IR , and y is some finite, 

non-atomic measure. The last condition is not absolutely necessary 

but in this thesis we have already noted that y will be non- 

atomic in general. DeVore [12] summarizes the major properties of 

Haar systems, but for a deeper study Karlin and Studden's text is a 

good reference. [21, chapter 1] Note that sometimes CDeVore) a 

Haar system is called a Chebyshev system. 

R 
5.2. Definition. A set of functions, •••> ^ 

is a Haar system if for any m € span{4>2» •••> ™ ^ ^ 

has at most n - 1 zeroes in [a, b] . Equivalently, every 

(|)^(X2) ... (j>^CXj) 
• • 

• • 

• • 

^ ) • • • ^ (x ) ^ n' ^n n^ 

determinant 
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made from n distinct points x^ in [a, b] is non-zero. 

If a basis of a subspace is a Haar system, then the subspace is 

called a Haar subspace. 

It seems reasonable that, for a Haar system at least, the 

points where f and TT meet (the Interpolation points) will be 

of Importance. The following lemma, due to DeVore, immediately 

indicates how the integral may be related to these points. 

5.3. Lemma. Let M be a Haar subspace of (finite) dimension n. 

If t^, ..., t^ are any n distinct points in [a, b] , then there 

exist n real numbers , ..., such that for any m e M we 

have 
•b n 

mdv = I A^mCt^) . 
i=l 

Proof. [12, Lemma 4.1]. This iS a quadrature formula for M . The 

formula reflects the fact that the Haar property implies the point 

evaluations at •••> are linearly independent in the 

n-dimensional space M* and so the linear functional defined by 

the integral is a linear combination of these point evaluations. □ 

We can now use this quadrature formula to give a characterization 

theorem for best approximation. To make it a little more general 

DeVore has introduced the concept of essential zeroes, and allowed 

f to be any real measurable function. The proof is no more com- 

plicated if we assume f to be discontinuous so we will follow 

DeVore's presentation. 
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5.4. Definition. Let f be a real function on [a, b] . A 

point tjj e [a, b] is an essential zero of f if for every e > 0 

and neighbourhood N of t^ there exists a point t ^ t^, t e N 

such that lf(t)i < e . This concept allows us to cope with dis- 

continuous functions. Note that any zero of a continuous function 

is also an essential zero. One useful property says that if f 

has no essential zeroes and no zeroes on a closed set K in [a, b] 

then using a simple compactness argument, there exists a positive 

e such that inf|f[K]l >e . 

5*5. Theorem. [12, Theorems 4.1 and 5.1] Let M be an n-dimensional 

R R 
Haar subspace of L^[a, bj , f e L^[a, b], and 

K = {k e M: k(t) < fft) for all t £ [a, b]} . 

(i) If TT £ P(K, f) and f - TT has precisely m zeroes, 

m < n , and all these zeroes are essential zeroes then 

these zeroes are nodes of a quadrature formula for M with 

non-negative coefficients. 

(ii) If 7T £ K and t^, i = 1, ..., m , are essential zeroes of 

f - TT such that they are nodes of a quadrature formula for 

M with non-negative coefficients then TT £ P(K» f) • 

Proof. (i) Let t,, ..., t be the essential zeroes, m < n , 

of f - TT, and assume IT £ P(K, f) . Let > •••» 

other points so that we have a full complement of n distinct 

points in [a, b] . Apply lemma 5.3 to find real numbers A^ such 

that 
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b n 
mdy = I A^m(tj^) 

a i=l 

for all m € M . 
n 

Assiyne that |A. | > 0 . Now define, for r > 0 » the 
i=m+l 

function g e M satisfying 

g(t^) = 

i = 1, *.., m 

r sgn A^ i = m + 1, .*. , n 

Then, by the quadrature formula. 

. m n 
gdy = - - I A^ + r I lA^l . 

i= 1 i=nri-l 

Choose r large enough to ensure that this expression is positive. 

Since g is continuous there exists an open set (in the relative 

topology) N such that t^) £ N , and gCt) < 0 for 

all t 6 N . We see that the set H = [a, bj ~ N is compact and 

contains no essential zeroes or zeroes of f - TT , and therefore 

there exists e > 0 such that f (t) - ir(t) > e for each t e H . 

Let n = e/sup{ 1 g(t) I : t e [a, b] } . Now f - IT > 0 so we have 

ng(t) ^ 0 ^ f (t) - Tr(t) for all t e N , and also 

ng(t) ^ n sup{|g(t)|: t e [a, b]} = e < f (t) - ir(t) j t e H . 

Therefore ng(t) < fCt) - 7T(t) for all t e [a, bj , and we have 

that ng + 7T € K . Also, r was chosen to ensure that ngdy > 0 

(since n > 0) , and therefore ng + TT is a better approximation 
n 

to f, a contradiction. Thus 'I |A^1 = 0 , and all the "extra” 
i=nH-l 

A^ vanish. 
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It remains to show that the rest of the are non-negative. 

Suppose there exists j, 1 < j < m , such that Aj < 0 . Then 

take g e M to satisfy, for some r > 0 , 

-1 if ± ^ j 

S(t^) = 

Then, again, we have 

-r if i = j . 

, and can choose r gdy = - 5] A^ + rlA.I 

i^j 
large enought to make this positive. As before it is possible to 

show that ng + TT e K , and we have a contradiction. 

Cii) If t., i = 1, 2, ..., m , are essential zeroes of £ - IT 

then for every k e K, TrCt^) ^ k(t^) . For, Suppose ” 

= -6 < 0 for some 1 < j < m and some k e K . By continuity, there 

36 6 
is a neighbourhood N of t. such that irCt) - kCt) < - y for 

J ^ ^ 

every t in N . Since t^ is an essential zero of f - TT there is 

6 6 
a tp in N for which ~ ~2 ^ ^ T ‘ Thus 

f(tQ) - k(tQ) =[ir(tQ) - k(tQ)] + [fCtg) - ■^(to)J 

5.6 

= 0 , 

which contradicts that k e K . Thus TT (t> kCt^^), i = 1, 2, 

and so 
• m m r 
kdy = I A^k(t^) < J A^TrCt^) = Udy 

•' i=l i=l *' 

m 

for all k £ K . So TT £ P(K, f) . □ 

Of course, this theorem is very specialized. No work has been 

done where C is more general, say, any finite dimensional subspace. 

This direction is open to further research. 

DeVore goes on to investigate quadrature formulae with positive 

co-efficients in the case where the set f } is also a 
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Haar system. He shows that such formulae always exist in this rather 

special case. This type of formula can be used when we consider 

polynomials, and especially trigonometric polynomials,where some very 

powerful results on interpolation are available. As An example we 

quote a theorem of Bojanic and DeVore [4, p. 152] . 

R d^f 
5.6. Theorem. Suppose that f € C,[a, b] and that —^ Ct) ^ 0 

dx 
for all t € (a, b) . If n = 2t then the best approximation from 

the set of polynomials of degree at most n - 1 to f from below 

is defined as follows 

TrCt^) = f(t^), Tr'(t^) = f'Ct^), i = 1, ...» I 

where t^ are the nodes of a Gauss quadrature. Similar formulae 

but for different quadratures hold if n = 2^ + 1 . 

S6. APPROXIMATION WITH RESTRICTED RANGE AND OTHER CONSTRAINTS 

Lewis [25] has chosen the set K to be 

K = {k € M: Z(t) < k(t) ^ u(t) for all t e [a, b]} 

where all functions are continuous on [a, bj and Z and u are 

chosen to bracket the chosen function f , i.e., 

Z(t) ^ f(t) u(t) for all t € [a, b] 

£(t) < u(t) for all t e [a, bJ . 

He calls this approximation with restricted range and derives char- 

acterization theorems for the uniform norm. However, the case 

seems to be untouched and is open to investigation. 
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One can also, for instance, take K to be those functions in 

a subspace M which interpolate f at some points. Lewis [25] 

has stated the following theorem, which can be easily proved using 

corollary 4.8. 

6.1. Theorem. (Lewis) Let f e L^[a, b] and M an n-dimensional 

subspace of L-|^[a, b] . Define K = {k € M: kCt^) = fCt^), i *= 1, ..., in} , 

where t^, t^, ..., t^ are m < n points in [a, b] . Then 

TT £ P(K, f) (in L^[a, b]) if and only if 

rb f 
I sgn(f - 7T)dy| < |<|i. Idp 
U ■'Z(f-ir) ■ 

for i = 1, ..., n - m where <|)i , ..., (f> is a basis of K - ir . 
J- n—m 

It would be interesting to see if this result could be extended 

further, possibly by the use of some of DeVore’s quadrature formulae. 

Rice [37] has done a lot of work with best approximation from 

"varisolvent" interpolating functions (with some special limit 

properties). He gives conditions for best approximations to be 

interpolating functions, but the converse is unfortunately less 

well covered. In general best approximations from varisolvent 

R 
functions in L^[0, 1] are interpolating functions. The varisolvent 

condition is quite restrictive, as varisolvent functions must satisfy 

a type of Haar condition and any sequence of varisolvent functions 

with a limit must approach this limit with a uniform rate of convergence. 
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We can put other conditions on the cd-efficiehts of the basis 

functions to construct more convex sets K . Although some work in 

the uniform norm has been done, little is available for , One 

special example of this type, that of spline approximation, has 

been worked on quite extensively, but the topic has a vety wide 

range and is a bit beyond the scope of this thesis. 



Chapter III 

UNIQUENESS OF BEST APPROXIMATIONS 

SI. INTRODUCTION 

After having found a best approximation, it is natural to 

investigate the existence of another one. This chkpter starts by 

giving criteria for the uniqueness of a best approximation* and 

then introduces Chebyshev sets, which are sets containing unique 

best approximations to every point in the whole space. A theorem 

characterizing Chebyshev sets is given, and then used to prove 

various examples. 

S2. UNIQUENESS OF A BEST APPROXIMATION 

In this section a best approximation is assumed to be known, 

and conditions are given for it to be the only best approximation. 

2.1. Theorem. Let K be a convex subset of L^CT» I» y) • If 

TT € K satisfies 

C2.1.1) Re 

then {TT} = P(K, f) . 

(IT - k)sgn(f “ 7r)dy > - N - k|dy for all k e K~ 
T •'zCf-ir) 

Proof. By Corollary (II-4.8), TT e P(K, f) . Choose an arbitrary u 

in K ~ {TT} and define g £ by 

-46- 
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gCt) = ( 
sgn(f(t) - Tr(t))j t ^ Z(f - IT) 

I sgn(TT(t) - u(t)), t € ZCf - 7T) 

where I is given by the expression 

^ ^ •'T~Z(f-TT) 
(IT - u)sgn(f - 7r)dy 

Z(f-7T) 
TT - u |d]i 

If the denominator vanishes let 1=0 . 

Recalling the definition of sgn(Tr - u) we see that 

(2.1.2) g(TT - u)dy = (TT - u)sgn(f - Tr)dy - 1 
T~Z (f-ir) 

T~Z (f-ir) 
(¥ - u)sgn(f - Tr)dy 

= 0 , 

and also, Igl ^ 1 on T , and |g| < 1 on Z(f - ir) by the 

condition (2.1.1). As well, we note | 1 f - ir (f - 7T)gdy , 

which can be written as 

Then I I f - TT I I < 

(f - u)gdy with the aid of (2.1.2). 

f - u 1 dy + 
T~Z(f-ir) Z.(f-TT) 

(f - u)gdy < f - u I dy 

Since u is arbitrary in K ~ {IT} we have Iff - ir| 1 < I |f u| 

for all u e K ~ {IT} . Therefore {IT} = P(K, f) . □ 

Theorem 2.1 can, as usual, be applied to subspaces to get a 

result due to Kripke and Rivlin. If K is a subspace M , then 

condition (2.1.1) can be replaced by 
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C2.1.3) 1 m sgn(f - Tr)dyl < Imldy for all m e M ~ {0} 

JZ(f-TT) 

The following rather trivial example shows that this condition is 

not, in general, a necessary condition. It is important when 

studying strong uniqueness. 

2.2. Example. Let T = [-1, 1] with the standard Lebesgue measure. 

f(t) = t , and M = span{l} . Then the best approximation is 

rl 
7rCt) = 0 , itt(t)sgn(f(t))dt = 0 , and y(Z(f)) = 0 . Therefore 

-1 

rl 
m(t)sgnCf (t))dt = 0 -. lm(t) l dt for all m e M . 

J •'Z(f) 

But, TT is unique as can be easily checked. 

It would be advantageousj then* to have a necessary and suf- 

ficient condition for uniqueness. V. N. Nikolsky first noted the 

following theorem, which is based on the following lemma. 

2.3. Lemma. If TTJ^ and ^2 two distinct elements of PCK, f) , 

then 

(2.3.1) sgn(f(t) - TTjCt)) = sgn(fCt) - ir^Ct)), t i Zif ^ Tr^ u Z(f - ^2) 

Proof. Since K is convex, P(K, f) is also a convex set. Then 

TT^ + TT^ 

    e P(K, f) if iTj and TT2 are (distinct) elements of 

1^1 + ■^21 
P(K, f) . Therefore I If - || = M f - M = I |f - [- 2 ] * ^ 

or. 

f - dy = III If - itjl + |-|f - n^ljdw . 
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12 1 1 
By the triangle inequality. If ^ 1 ^ I f - itj I + y I f - 1^2 I > 

which implies I (f - ) + (f - ^2) I = If - I + If - TT^I almost 

everywhere. If f - 0 and f - 5^ 0 then the equality can 

only be satisfied if sgn(f - TT^) = sgn(f - TT^). □ 

2.4. Theorem. Let K be a convex subset of Lj . Then 

{IT} = P(K, f) if and only if TT e P(K, f) and 

Oc - Tr)sgn(f - k)dy < -| (2.4.1) Re k - TTI dy 
T~Z(f-k) 

for all k e K ~ {TT} . 

Z(f-k) 

Proof. Assume TT is unique but (2.4.1) is not true in that there 

exists u e K for which 

(2.4.2) Re (u - Tr)sgn(f - u)dy ^ ” lu -Tr|dy 
JT~Z(f-u) ■'Z(f-u) 

Now 

f - u! ■f. = Re I (f - u)sgn(f - u)dy 
T~Z(f-u) 

= Re (TT - u)sgn(f - u)dy + Re 
T~Z(f-u) 

|u - Trldy + ||f - IT 
Z(f-u) 

(f - Tr)sgnCf - u)dy 
T~Z Cf-u) 

If - TT 1 dy 
Z(f-u) 

= I If - TT| I 

where (2.4.2) has been used to obtain the inequality, and for the last step 
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f - TT = u - TT on Z(f - u) . Therefore u e P(K, f) as well and 

TT is not unique. 

Now assume {IT} ^ P(K, f) . Then there exists u e K such 

that u £ P(K, f) ~ {TT} , which implies ||f - u| I * ||f - ir I I • 

Thus 

or. 

Re 

•'T~Z(f-u) 

Cf - u)sgnCf - u)dy - trl dp 

Re 

^T-Z (f-u) 

= Re 

CTT - u)sgn(f - u)dp 

[If - TT| - Cf - ir)sgnCf - u)]dp 
T~Z(f-u) 

I f -irldp . 

Z(f-u) 

Since f - TT = u - TT on Z(f - u) , the last integral is equal to 

| u - ir|dp , 
JZ(f-TT) : 

and the first integral on the right vanishes since sgnCf - u) = sgnCf 

oh f ~ (Z(f - u) u ZCf - IT)) by lemma 2.3. Therefore C2.4.1) is 

contradicted. □ 

S3. CHEBYSHEV SETS 

A problem which has been extensively investigated is the existence 

and characterization of sets from which every function from the space 

has a unique best approximation. The theory for uniform approximation 

is especially elegant, with some very fine and useful results. The 
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Lj case is not so nice. Almost all work done is involved with 

linear subspaces, and, in the case of a non-atomic measure, no such 

finite dimensional, real subspace exists. However, the situation 

can be improved slightly when only continuous functions are con- 

sidered, although most results are negative. 

3.1. Definition. A subset K of a normed linear space X is 

(semi-) Chebyshev in X if every f in X has Cat most one) a 

unique best approximation from K . In general, the existence of 

a best approximation is assumed, and conditions are given for 

uniqueness. Usually ’in X* is dropped wherever possible without 

ambiguity. 

The first theorem is a general one due to Deutsch and MasSrick 

[10, p. 525, thm. 4.2]. Geometrically K is ChebysheV if and only 

if K has no sides parallel to a side of the unit ball in X . 

3.2. Theorem. Let K be a closed coiivex Subset of a normed linear 

space X . Then K is Semi-Chebyshev if and only if there does not 

exist an L e X* such that ; 

(3.2.1) IILI1=1 ; 

(3.2.2) L(y^) = I iy^^l I for two distinct y^ e X, i = 1, 2 ; 

(3.2.3) ReLCk^) = sup ReL[K] for two distinct k^ e K^ i = 1, 2 ; 

7l - 72 “ ki - ^2 • (3.2.4) 
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Proof. Assume that K is not semi-Chebyshev. Then there exists vl 

f e X ~ K with at least two best approximations and k2 from 

K . Since K is convex, TT = -y-+ -j- is also a best approximation. ; 

Then the characterization theorem 2.2.9 implies the existence of 

L £ X* with i |L| I = 1 , ReLCir) - sup ReL[K] , and L(f - u) = (jf - ir|J . 

Let = f - k.2 and y2 = f - k^^. Then yi ” “ ^2 

L(f - IT) = I 1 f - ir| I = j L(f - k^) + |- L(f - k^) . But 

L(f ” - I If "" I since I iLli = 1 and also 1 |f - irl | =1 1 f k^|.l , 

i = 1, 2 . Therefore L(y^) = L(f - k2) = i | f - k21 1 = I ly^l I and ■■ 

similarly L(y ) = I I y. I I . - Also i ReL(kv) + y ReL(k^ ) = ReL(ir) = 
Z 2 ^ 2 

= sup ReL[K] . Then ReL(ki ) - ReL(k2) = sup ReL[K] since k^ and 

k^ lie on the same side of the half-spaces determined by L . ^ 

Assume now that such an L exists. Let f = k, + y^ * k + y . 
1 ’’1 2 1 

Then L(f - k^) = Ilf - k^| I , i = 1, 2 arid ReL(kj) ® ReLCk2) ® 

= sup ReL[K] . Theorem II-2.9 implies k^ and k^ are best 

approximations to f , and K is hot semi-Chebyshev, □ 

3.3, Corollary. If M is a closed subspace of a normed linear 

space X then M is semi-Chebyshev if and only if there does not 

exist an L e X* with 

(3.3.1) IlLli 

(3.3.2) L(m) = 0 for all m £ M ; 

(3.3.3) L(Vj^) = I lyj^M* 1 = 1, 2, for two distinct elements y^ 

and y^ £ X with y^ - y^ £ M . 
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Proof. This follows when lemma II-2.10 is applied to theorem 3.2. □ 

CHEBYSHEV SUBSPACES IN L, 

4.1. Theorem. A closed subspace M is semi-Chebyshev in 

b^iT, J], y] if and only if there does not exist g e with 

1Igl= 1 and two distinct Yi ^ » i “ 1» 2, such that 

(4.1.1) 

(4.1.2) 

gmdy = 0 for all m e M ; 

r 
gy^dy = ly^ldy , i = 1, 2 ; 

(4.1.3) y^ - y^ e M . 

Proof. 

LCh) = 

By Riesz* theorem the L of corollary 3.3 can be written 

hgdy for some g e * Since 1|L|| = 1,1Igll„ ® ^ • 

C4.1.1), (4.1.2), and (4.1.3) follow immediately from the last three 

conditions of corollary 3.3. □ 

4.2, Theorem. A closed subspace M is semi-Chebyshev in if 

and only if there does not exist g € with I 181 I„ “ ^ 

distinct points y^ and y^ in such that 

C4.2.1) 

(4.2.2) 

g(t) = sgn yi(t) for all t i Z(y^) i = 1, 2 ; 

gmdy = 0 for all m € M ; 

Yl “ ^2 ^ ^ * (4.2.3) 
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Proof. (4.2.2) and (4.2.3) follow from C4.1.1) and (4.1.3). (4.1.2) 

Implies (gy^ - ly^Ddy = 0 where | |g| - 1 and 1-1 or 2 

i6 id) 
(as It does throughout this proof). Let = re and g = se ^ 

with the standard conventions, and take the real part of the first 

expression to get |r(s cos(6 + 0) - l)dy - 0 . Since s ^1 by 

the condition on the norm of g , the integrand is not positive, 

and therefore r(s cos (6 + <j>) - 1) * 0 . Vfliere r does nbt vanish, 

s ^ 0 and so cos(0 + <j>) = ; but s s 1 so cos CQ + 4*) “ i 
s 

^jl^Q - —- - 
and s = 1 . Therefore g = e = sgn(y^) wherever y^ ^ 0 . 

For the converse the g of this theorem satisfies the conditions 

of theorem 4.1, so M Is semi-Chebyshev. □ 

We note that these theorems follow equally well If only the 

real case Is considered. 

The following theorem Is a very nice one due to Cheney and 

Wulbert {8]. 

4.3. Definition. For a subspace M in , a g-set Is a set of 

the form Z(f) where 0 e P(M, f) . Recall that f Is in fact an 

equivalence class of functions, so it follows that Z(f) is Itself 

an equivalence class of sets, as Is each 3-set. This does not affect 

any of the theorems so we usually ignore it in the notation. 

We can now state the theorem. 

4.4. Theorem. If M Is a linear subspace of , then M is semi 

Chebyshev if and only if 0 is the only element of M vanishing on 

a 3-set. 
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Proof. Assume M is not Chebyshev. Then there exist distinct rr^ 

ITj + 1^2 
and TT^ in P(Mf f) for some f e ~ M , and TT = -^—---—:— 

is also a best approximation. Therefore 

|[|f - TTI - (If - TT^I + I f - I )]dp 0 

and the triangle inequality implies |f - TT] ~ f ” 1 ■*" ^1 

almost everjwhere. Then, on the 3-set Z(f— IT) , [f - tr^| + 

Therefore TTJ^ = ir^ on this set and TT^ - IT^ vanishes there. 

If the condition is false then there exists f € ~ M and 

u € M with Z(f) c Z(u) . Let y^ - |u|sgn f , and let 

- lulCsgn f - j sgn u) . Then sgn y^ (t) * sgn y^ (t) ” sgn f Ct) 

for all t i Z(u) . Let g have the same value as that g guaranteed 

by corollary II-4.4 applied to subspaces. Since 0 e ?0l, f) and 

M is a subspace it follows from II-(4.4.1) that |mgdy ** 0 for all 

m £ M , and from II-(4.4.2) that g(t) « sgn f(t) fbr all t / Z(f) . 

Then g(t) = sgn y^(t) « sgn y^Ct) outside Z(u) . But by definition 

Z(u) = Z(yj) = Z(y^) ^ and also y^ - y^ « |uKbgh u) = j u . 

Therefore y^^ € M aiid the conditions of theoreni 4rf2 are satisfied 

Thus M cannot be semi-Chebyshev. □ 

The next theorem gives a necessary condition for a subspace to 

be Chebyshev in the real case. It is a rather Interesting condition 

of which use is made in the study of strong uniqueness. The proof 

is a variant of a proof by Cheney and Wulbert. 
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4.5. Theorem. If M is a Chebyshev subspace of and 

{TT} - P(M, f) , then yCZ(f - ir) ~ ZCm)) > 0 for all m e M ~ {TT} 

Proof. Since M is a subspace we can assume ir = 0 without loss 

of generality. Assume there exists u e M ~ {0} for which 

yCZ(f) ~ ZCu)) = 0 . Let Z = ZCu) ~ ZCf) and define h e by 

h(t) = 
u(t) I sgn f Ct), t ^ Z 

f(t), t e Z . 

Then ZCh) = Z(f) and sgn h - sgn f . Since 0 e PCM, f) , 

m sgn hdy = m sgn fdy ^ 

Z(f) 

lm|dy = 

ZCh) 

m I dy by theorem II-4.6 

and by the same theorem 0 e P(M, h) . For any 0 e (0, 1) 

h - 0uldy = h sgn hdy + 
T~(ZCf)uZCu)) 

(h - 0u)sgnCh - 0u)dy 

+ (h - 0u)sgnCh - 0u)dy 
*'Z(f)~Z(u) 

(h - 0u)sgnCh - 0u)dy . 
Z(f)nZ(u) 

The last integral vanishes, and so does the next to the last by our 

assumption that y(Z(f) ~ Z(u)) = 0. On T ~ (Z(f) u ZCu)) , 

sgn(h - 0u) = sgn h - sgn f since 0 e (0, 1) . Thus 

h - 0uldy = Ihldy + 

+ 0 

Ihldy 
T~(Z(f)uZ(u)) 

C-u)sgn fdy 
T~(Z Cf)uZ(u)) 
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Jihidv + e (-u)sgn fdy 
J 

^ l lhl + e 
^z(f) 

|u|dy . 

But luldp = luldp + luldy = 

JzCf) ■'Z •'Z(f)~ZCu) 
llh-9u|| < llhll for all 0 e (0, 1) , or 

Therefore M is not Chebyshev. □ 

0 , Thus 

eu € P(M, f) . 

S5. FINITE DIMENSIONAL CHEBYSHEV SUBSPACES IN 

We will prove there are no finite dimensional Chebyshev sub- 

R 
spaces in . The proof is due to Phelps and is based on a theorem 

of Liapounoff. 

5.1. Theorem. (Liapounoff) If are finite, non- 

atomic measures on a set T and a a-fleld ^ of sets in T , 

then the subset of IR^ consisting of all n-tuples of the form 

(y^(B), ..., Pj^(B)) for B in is closed and convex. 

Proof. Lindenstraus [26] has given a very nice short proof of this 

theorem. 

' 'R 
5.2. Lemma. If M is a finite dimensional subspace of L^ and 

there exists an extreme point L of B* which annihilates M , 

then M is not Chebyshev. 

Proof. 

Igl = 1 

Assume such an 

a.e., 

L exists, 

fgdp and 

Then 3 g £ L such that 

mgdy « 0 for all m e M Let L(f) = 
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M = span{(i>^, ...» • Let 

n n 

yi “ 8 I y2 “ yi “ I • 
i=l i«l 

Then sgn (t) = sgn g(t) if t / Z(y^) and sgn y2(t) = sgn g(t) 

if t d Z(y^) . Also, y^ ~ 72 * ^^i ^ ^ * Therefore by theorem 

4.2, M is not Chebyshev. □ 

5.3. Theorem. [33, p. 246, thm. 2.5] If (T, y) contains no 

atoms then L^(T, 2,» P) contains no finite dimensional Chebyshev 

subspaces. 

R + ^ 
Proof. Let M = span{<|)j , ..., <|>^} £ L^ , Write ® <j>^ - » where 

*^i* ^5 positive and negative parts. Define, for each 

B 
(|>^dy and P^(B) « 

B 
4>^dy . The , y^ are B e X . W^CB) = 

finite, non-atomic measures on (T, . By Liapounoff's theorem, 

the subset of consisting of all 2n-tuples of the fom 

+ — + — r 
(y (B), y. (B>, ..., y„(B), y„(B)) for B e 2 » ^s convex. Hence 

1 1 n n ■+/'m\ ' • .1'; —/mV 
+ Pj^(T) _ 

B can be chosen so that y^(B) = —and Vf^CB) * Let 

g = 1 on B and -1 on T ~ B . Then |g<|>£dy = 0, i = 1, ..., n 

and the linear functional L defined by g is an extreme point of B* 

Therefore, by the lemma, M is not Chebyshev. □ 

Theorem 5.3 cannot in general be extended to infinite dimensional 

subspaces as the following simple example of Phelps shows. 



-59- 

5.4. Example. Choose a B contained in T with y(T B) > 0 

and y(B) > 0 , and let M = {m G : m(t) = 0 whenever t e B} . 

If f € T ~ M , let Tr(t) = 0 on B and ir(t) = f (t) on T ~ B . 

Then for any m e M ~ {TT} 

Thus TT 

If- TT 

B 
f I dy + 0 < j I f I d]i + I If - m|dy = 1 | f 

is the unique best approximation and M is Ghebyshev. 

While no finite dimensional Ghebyshev subspaces in exists 

when the measure is non-atomic, we can obtain better results in C^[T, y] . 

S6. GHEBYSHEV SETS IN C^[T, y] 

As usualj C^[T, y] is that subset of Lj[T, yj consisting of 

continuous functions. The measure y is considered to be non-atomic, 

and T to be Hausdorff, completely regular. Usually T will be an 

interval and y the Lebesgue meSSure. Gheney and Wulbett have, in 

particular, done much work on C^[T, yJ in their paper, and one of 

their results is reproduced here. Jackson's famous theorem on 

Ghebyshev subspaces will also be shown, together with an example 

which contradicts the converse of Jackson's theorem. We assume that 

the sets in question all have best approximations to any f G C^ so 

that existence is not considered, and that L* is equivalent to . 

The first two theorems are analogues of theorems 4.1 and 4*2, 

and the proofs are identical so they are stated here without proof. 
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6.1. Theorem. A closed M is a seml-Chebyshev subspace in 

C. [T, y, y] if and only if there does not exist g e L . with 

I Igl1 =1 such that 
00 

(6.1.1) gmdy = 0 for all m € M ; 

(6.1.2) ly^ldy for two distinct y^ € ; 

(6.1.3) y^ - y^ € M . 

6.2. Theorem. A closed subspace M is a semi-Chebyshev subspace 

in if and only if there does not exist g € L 

and distinct points y^ and y^ in such that 

(6.2.1) g(t) = sgn yj(t) t ^ Z(y^) ; 

(6.2.2) 

(6.2.3) 

g(t) = sgn y^(t) t i Z(y^) ; 

* ' \ J ■ ; 

gmdy = 0 for all m € M ; 

with I tglI 
00 

1 

(6.2.4) y - y e M , 
1 2 

Again we remark that these theorems are valid, with the same 

proofs, in the real case. 

The next theorem is due to Cheney and Wulbert [8, theorem 22]. 

It is the analogue for continuous functions of theorem 4.4, and 

involves ysets which are just 3-sets in . Again the theorem 

works just as well if we consider the real case. 
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6.3. Definition. A y-set is a set of the form ZCf) for which 

0 € P(K, f) for some f £ C^[T, y] . 

6.4. Theorem. If M is a subspace of , then M is semi-Chebyshev 

in if and only if 0 is the only element of M vanishing on a 

y-set in . 

Proof. The proof is exactly the same as that of theorem 4.4» except 

one must note that the functions Involved are all continuous. In 

particular we note that the functions y^ and in the proof of 

theorem 4.4 are continuous because Z(f) £ Z(u) . □ 

We will now prove a famous theorem of Jackson's [20]. It has 

been proved in many ways by various authors, for example, see [7] , 

[35]. Cheney and Wulbert used the previous theorem to givS a proof, 

but we prefer to use the characterization theorem 6.2. 

Recall the definition of Haar subspaces, II-5.2. 

R" 

6*5. Theorem. If M is a Haar subspace In C^[a, b] > then M 

is Chebyshev in C^[a, b] . 

Proof. Let M = span{(()j, ..., be a Haar subspace which is not Chebyshev. 

By theorem 6.2 there exists g e L , with ||g|| ® 1 » and distinct 
CP OP 

y^ and y^ such that (6.2.1), (6.2.2), (6.2.3), and (6.2.4) hold. 

Let t^ ^ ^2 ^ be all the points in [a, b] where both 

y^ and y^ are zero. Since y^ “ 72 ^ y^ ” ^2 nan have at most 

n - 1 zeroes, and thus m < n . Let t. = a , and t >, = b . If 
O ' mri 9 
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g changes sign at some t e (t^, for some i , 0 ^ i ^ m , 

then, since and are continuous, ^ 

then t = tj for some j , so g cannot change sign in any Interval 

(t^, 0 ^ 1 < m . If there are less than n such intervals 

subdivide and relabel the endpoints by a « t^ tj = b . 

Then g is of the same sign, and in fact, constant on each interval. 

Let = g^(t) for t e (t^, , i = 0, ..., n - 1 * Then we 

can write 
•b n-1 

<f>,gdp = 0 * I a. <|>.dp, j “ 1, ..., n . 
•'a i“0 •'t. 

Let * 

Then 

^i+1 <j)jdp , i = 0, ..., n - 1 ; j = 1, ..., n . 

n-1 
^ u.f.C^^j) “ 0> J “ f» •••» a 

i=0 

and, since all ^ 0 , we must havei det(.f^(^j)) *= 0 

there exists a non-trivial set {c,, ..., c } such that 
1 n n 

I c f ((f)J = 0, i = 0, ..., n -1 , or, 
1=1'^ '^ 

Therefore 

^‘i+i " 
I c <j>.dy s= 0 , 1 * 0, n - 1 . 

t. i=l J ^ 

Since the are continuous, must have at least one zero 

in each interval, or at least n zeroes In total, contradicting 

the Haar condition. □ 

Micchelli [30] has extended this theorem to the case where M 

is a "weakly Chebyshev" subspace. Here, if the 9pan M , then 

the determinant det)) must be non-negative for all sets of 
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rather than strictly positive as in a Haar subspace. Unfortunately 

he has to restrict f to a special cone so the theorem is not as 

general as one would like. 

Unfortunately Jackson’s theorem does not give a necessary condi- 

tion, in contrast to the uniform case, as the following example shows. 

6.6. Example. M may be a Chebyshev subspace biit not a Haar sub- 

R 
space in C^{0, 1] . 

Let M = linear span {t} . Now M is obviously not 

Haar since m(0) = 0 for all m e M ^ It is sufficient to show 

that 0 is the only element in M which vanishes on a Y~set. If 

R 
this is not true then there exists a Y“set ZCf) for some f e 

such that m vanishes on Z(f) for some m € M ~ {0} . But 

Z(m) = {0} , therefore Z(f) = {0} , or, f(t) can be assumed to 

be positive for all t e (0, 1] . Then p(Z(f)) * 0 , and, since 

0 e P(M, f) 

•1 rl 
m(t)sgn f(t)dt = c t dt * -r * 0 

JQ ■ r JQ : : - ^ 

for all m e M, m(t) = Ct i which is a contradlctiohi Therefore 

M is Chebyshev. 

Could we apply theorem 4.5 to Cj[a, b^? The following example 

shows that the answer is no. 

'R 
6.7. Example. Theorem 4.5 is not true in C^fa, bj . 
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Let M be the subspace of all constant functions on [-1, 1] 

with the standard Lebesgue measure. Then M is a Haar subspace 

R 
and hence Chebyshev in C2[-l, 1] . Choose f(t) t . Then 

{0} = P(M, f) , but Z(f) = 0 , so uCZCf) ~ ZCm)) = 0 for all 

m e M , 

S7. CONVEX CHEBYSHEV SETS IN OR C^^ 

We can apply theorem 3.2 directly to the Lj^ or C^ case to 

obtain the first two theorems of this section. Then we can move on 

to the special case of the convex cone considered in theorem II-4.14, 

and some other cases of constrained approximation. 

7.1. Theorem. K is a semi-Chebyshev convex set in (respectively 

C^) if and only if there does not exist a g e , distinct points 

y^ and y^ in (C^) , and distinct points and in 

K such that IIglI =1 and ^ 00 

C7.1.1) gyj^du = lyj^ldv 1 = 1, 2 ; 

C7.1.2) Re gk.dy > Re gkdv i = 1, 2 for all k £ K ; 

(7.1.3) yj - yj = kj - k2 . 

Proof. These three conditions are immediate consequences of theorem 

3.2. □ 
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If K is a convex cone then leinma II-4.I2 allows us to replace 

(7.1.2) by 

(7.1.4) Re gk^dy = 0 ^ Re kgdy, i = 1, 2 for all k e K . 

As usual (7.1.1) can also be improved upon to yield the following 

theorem. 

7.2. Theorem. K is a semi-Chebyshev convex cone in (respec- 

tively ) if and only if there does not exist g e , distinct 

points y^^, y^ e L^(C^) , and distinct points k^, k^ e K with 

i I g 1 1 =1 and 
00 

(7.2.1) g(t) = sgn y^Ct), t i Z(y^) i = 1, 2 ; 

(J,2,l) Re gk.dy - 0 ^ Re 
J i 

kgdy, i = 1, 2, for all k e K ; 

(7.2.3) y^ - y^ = k^ - k^ . 

Proof. This follows from theorem 7.1. □ 

Both theorems 7.1 and 7.2 work equally well in the real case. 

We next turn to the example of theorem 4.14, that of best 

positive approximation. Lewis [25] uses this theorem to show that 

a Chebyshev set is the cone formed from the npn-negative elements 

of an extended Haar system (of order 2). Instead we will use the 

previous theorem specialized to the real case, where it is also 

valid. First, a definition. 
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7.3. Definition. Let •••» be a set of differentiable 

functions in C^[a, b] , If every non-zero m in the span of 

these functions has at most n - 1 zeroes in [a, b] , counting 

as two those zeroes where the derivative, m* , is also zero, 

then {^1, ..., is an extended Haar system of order 2. If a 

subspace M has such a basis then it is an extended Haar subspace 

of order 2. For more details see [21]. 

Theorem. (Lewis [25]) Let M be an extended Haar subspace 

of order 2, and K = {k e M: k(t) ^ 0 for all t e [a, b] } . Then 

R 
K is a Chebyshev cone in C^[a, b] . 

Proof. Assume K is not Chebyshev. Then there exist g e L , 
' ' ' 00 

R 
distinct points y^, 72^ , and distinct points k^, k2e K 

where llgll^^ = 1 satisfying (7.2.1), (7.2.2) and (7.2.3) (where 

all quantities are real). For any A e CO, 1) let 

k^ ” Cl -- ^)k2 Cl - ^)Y2 • apply 

the same chain of reasoning as presented in theorem 6.5 to find 

m ^ n points such that y^^, y^, and y^ change sign only at these 

points and have the same sign in the Intervals. Let t^ < t£ < ... < t 

be all points in [a, b] such that > 72 > 7x ^x ~ ^ 

whenever y^ and y^ vanish) are all zero. Since y^ - y^ e M by 

(7.2.3), and M is Haar, m < n . 

Let t- -a , and t - b . If g changes sign at t in 
U mrri 

an interval (t^, for some i , 0 ^ i < m , then, since the » 
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are continuous, Yj Ct) = y£ Ct) = 0 , and Ct) - 0 . But this 

is a contradiction, as t must be one of the t. . Therefore g 
J 

has the same sign on each interval, and, since X e CO, 1), Y2» 

and y^ will have the required properties. We note that this is a 

restatement of lemma 2.3, as f=k +y =k +y has two best 
1^2 2 -^1 

approximations k^ and k2 from K . 

Now let Z(k- ) = {t-, ..., t } (not necessarily related to 

the previous set). Since M is an extended Haar subspace, s < n . 

Let e be the number of endpoints a, b in Z(k ) . If y has 
A A 

less than n + e - 2s sign changes in [a, b] ~ Z(k^) we can find 

m e M such that m has the same sign as y. and mCt.) = 0 for 
A ^ 

i = 1, ..., s . C[21, p. 30], this is taken directly from the proof 

by Lewis). Since M is linear we can assiame lm| < k. , which 
A 

implies k. + m e K . But, (k^ + m)gdy = 0 + mldy by definition 

of g . This is positive and contradicts (7.2.2). Therefore y 
A 

has at least n + e - 2s sign changes in [a, b] ~ 

do y^^ and y^ (since they change sign at the same places). Then 

kj^ - k^ = y^ - y^ = 0 at these points. 

However, since all elements of K are non-negative we have 

that for all t e Z(k^) ~ [a, b] , k^ (t) = k^Ct) = k* (t) = k^Ct) - 0 

Then k^ - k2 has too many zeroes, and we have the required contra- 

diction. □ 

Lewis has also given a very similar theorem for the case of best 

approximation from a set of interpolating functions. The proof uses 
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theorem II-6.1 to find a point which has too many zeroes 

in a manner analogous to the last proof, so we will just state the 

theorem here. 

R 
7.5. Theorem. Let f be in Cj^[a, bj , and also let f be dif- 

ferentiable on (a, b) . Assume M = span{<|)^, ...» <1)^^} is an 

extended Haar subspace of order 2, and K = {k £ M: kCt^) = f(t^), 

i = 1, ..., m} where the t^ are m < n points in [a, b] . Then 

f has a unique best approximation from K . 

Proof. [25, theorem 5.4.] □ 

Lewis gave an example to show that the differentiability of f 

is necessary. 

Can we find a condition on M so that best one-sided approxi- 

mation from M gives us a Chebyshev set? The answer is, not quite. 

We will also need the differentiability condition on f . It would 

be nice if we could use our characterization, theorem 2.1, to show 

the uniqueness of such best approximations. However, as in section 

II-5, this theorem just gives the trivial refinement of the definition, 

that 

Trdy > kdy for all k € K ~ {IT} . 

Therefore we will have to use some new methods; those of DeVore again. 

The theorem is due to DeVore and is based on the following lemma which 

he proves. Recall that the support, C(y) , of a measure y is the 
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complement of the union of all open sets of measure 0. Denote by 

|C(y)| the number of points in C(y) , and by |Z(f)| the number 

of essential zeroes of f (see definition II-5.4), where in both 

cases each point in (a, b) is counted twice. 

7.6. Lemma. Let M = span{(j)j, ..., (j)^} be a Haar subspace in 

C^[a, b] , and let f e L^[a, b] . Define K =* {k e M: kCt) ^ fCt) 

for all t e [a, b] If IT e P(K, f) theii |Z(f - ir)| > min{lC(y)l 

Proof. [12, pp. 16-17] Note that this has connections with theorem 

4.5. □ 

In this lemma, as in the next theorem, it is only necessary that 

y be a Borel measure. The condition of the next theorem, that 

lC(y)| ^ n , is not really very restrictive, and most of our ’’nice" 

measures easily satisfy this. 

7.7. Theorem. (DeVore [12, theorem 3.3]) Let f and K be as in 

Lemma 7.6, but require that M be an extended Haar subspace of order 

2. If f is differentiable on (a, b) , and |C(y)| ^ n then the 

best one sided approximation to f from K is unique. 

Proof. Because of continuity, essential zeroes are the same as 
ir^ + TT^ 

ordinary ones. Assume E P(K, f) . Then TT =   j 

also in P(K, f) . Let t^^ e Z(f - ir) . Since ir^ , and are 

elements of K we must have ~ 

, n} . 
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tg e Ca» b) we also see that (f - 'rr)’CtQ) = (f - ‘iT2)*(tg) = 0 , 

or TT^Ctg) = TT2^tg) = f*(tg) . 

Let r be the number of points of Z(f - ir) , and s be the 

number of points of Z(f - ir) ~ {a, b} . By definition, 

|ZCf - 'ir)l = r + s , and r + s ^ n by lemma 7.6. Therefore 

” ^2 many zeroes, and ” ^2 ’ ^ 

We will close our discussion of Chebyshev sets here. The theorems 

only give some examples of convex Chebyshev sets, but these are quite 

complete and it is difficult to see where the conditions could be 

relaxed. It is unfortunate that we need extended Haar systems to 

guarantee uniqueness, and, as usual, the difficult properties of the 

norm have ensured that we have only sufficient conditions, and 

not some good necessary ones. 



Chapter IV 

STRONG UNIQUENESS 

SI. INTRODUCTION 

Strong uniqueness is a concept deriving from the behaviour of 

elements of the approximating set near the best (unique) approxi- 

mation. We will start immediately with the definition, and then 

discuss the idea. 

1.1. Definition. Let K be a convex subset of a normed linear 

space X , and f e X ~ K . Then TT is a strongly unique element 

of best approximation from K to f if there exists a real number 

r > 0 such that 

Cl. 1.1) Ilf “ kl I > I I f - IT I I + r I I Tf - k| I- for all k e K . 

In this case we will write TT e P^(K, f) . The existence of r 

will be implicitly assumed by such a statement. 

First we note that the convexity of K is not strictly needed, 

but as we have restricted ourselves to such sets, it was included. 

The inequality (1.1.1) says that if k moves around in K 

away from TT then the approximation of f worsens with the rate of 

the distance from TT . The concept is related to the question of 

smoothness of the ball in X . Recall that an element x is a 

point of smoothness of the closed ball of radius Mx|I (centred at 

the origin) if there exists one and only exactly one hyperplane supporting 
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the ball at x . If f - ir is such a point then IT is not 

strongly unique. If f - ir is not a smooth point then the hyper- 

planes supporting the ball form a cone which we will use to charac- 

terize strongly unique approximations. 

These ideas, and the presentation following, are due to papers 

by Bartelt and McLaughlin [3], and Wulbert [45]. We will present 

two examples used by Bartelt and McLaughlin to illustrate strong 

uniqueness from subspaces. 

Take X = IR^ , with the norm [figure 1.2] and the 

norm [figure 1.3]. Let M be the hyperplane Cline) x = 0 , and 

f the point (1, 0) . In both cases {0} = P(M, f) , and L is 

a hyperplane supporting the ball, B * of radius 

||f - 7r|| = llfl! = 1 . With the norm L is unique. The 

shaded area is the cone defined by the supporting hyperplanes of 

the ball. Since L is unique in the case f - IT is a smooth 

point of B , and TT = 0 is not strongly unique. In , 0 is 

strongly unique. 

These ideas can be formulated more precisely, and lead to our 

first characterization theorems. Recall the definition of L : 
TT ’ 

L = {L e X*: L(f - IT) = | |f - TTI | , | lL| | =1} . 
TT 

This is the set of linear functionals which support the ball of 

radius M f - TT | | , ceintred at the origin, at f - TT . Let 

K = {x € X: ReL(x) ^ | |f - TT| | for all Lei}, This set is the 
TT TT 

cone generated by the hyperplanes [L, | |f - TT| |] which support 
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(1.2) 

a.3) 
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the ball described above. If L consists of only one functional, 

then f - 7T is a point of smoothness of this ball. If L contains 
TT 

an L such that ReL(7r) = sup ReL[K] then the characterization 

theorem, II-2.9, implies IT e P(K, f) . 

In a subspace M we will define a special functional on 

span{M, f} by ■** ” a| |f - irl | for any m e M and constant 

a , and extend it to X by means of the Hahn-Banach theorem (with 

the same norm), Certainly 1|L||^1. If I1L!|=1, then 
TT TT 

L e L . ; but L (m) = 0 for all m e M so L satisfies the 

requirements of theorem 11-2.9 with (2.9.2), and therefore 

TT e P(M, f) . 

We can now move on to consider the set K and prove the first 
TT 

strong uniqueness theorems. 

S2. CHARACTERIZATION OF STRONG UNIQUENESS 

The first theorem shows strong uniqueness implies uniqueness 

and r ^ 1 always. 

2.1. Theorem. If TT e f) then {TT} = P(K, f) and r ^ 1 . 

Proof. ||f-TT|| < |lf-kll -r||k-TT|| < Mf-kl| for all 

k e K~ {TT} by (1.1.1). Therefore TT is unique. Since 

Mf-kll < llf-Tr|| + iiTT-kll, r< 1 . □ 
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If TT e P^(K, £) , the next theorem proves all points on the 

ray from TT towards f also have TT as a strongly unique best 

approximation. It can also be shown that if u e P^(K, f) then 

0 e P^CK - TT, f - IT) SO in fact it can be assumed that 0 e Pj-(K, f) 

and I If I I =1 . This will make some proofs easier. 

2.2. Theorem. If TT e Pj.(K, f) then TT £ PJ.CK, Xf + Q- - X)TT) 

for all X ^ 0 . 

Proof. Let h = Xf + (1 -■ ^)TT . If X > 1 then for any k £ K , 

k 1 
Y + Cl *" )‘n’ € K . Therefore, for any k e K j 

|,|h - k| I = XI If - c I + (1 - f )ir)l I 

aX||f-ir|| + rXiiit- C ^ + (1 - -i- Jir) I I 

“ I I Xf + Cl “ A)TT -TT|| +r||TT-k|| 

= llh -. TT| I + r| [IT - k| 1 

where the strong uniqueness of IT has been used to obtain the 

inequality. Thus TT e P^CK» h) . If 0 < X < 1 then 

||h-TTll + llf-hll = Ilf-Tril . For any k £ K we can write 

Mh - kll > Ilf - kll - Ilf - hll 

> [i|f-TT|| - ||f-h||] + r||TT-k|| 

= llh-TT|| + r||TT-k|| . 

So TT £ P^CK, h) . If X = 0 the result is trivial. □ 
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2.3. Theorem. [3, p. 257, prop. 1] Let M be a subspace of X 

and assume TT e P^(M, f) . Then, for all m e M and all constants 

a , (real or complex), axr + m e P^(M, af + m) . 

Proof. If M = {0} the theorem is trivial. Assume M {0} . 

Since r < 1 , if a = 0 , again, the result is trivial. If 

a 5^ 0 , then for all u £ M , there exists r > 0 such that 

1 I (af +m)-ull-|a| llf--j(u-m)|| 
d 

> |a| Mf’-irll + |a|r||ir--^(u^m)M 
ci 

= I I Caf + m) - (air + m) | | + r I | (au + m) u| 1 

which implies air + m = P^.^, af + m) for any m e M . □ 

The next two theorems, for subspaces, are originally due to 

Wulbert [45, p. 352, lem. 1]. See also Bartelt and McLaughlin 

[3, p. 258, Theorem 1]. 

2.4. Theorem. Let K be any subset of X . If there exists 

TT € K and r > 0 such that sup{ReL('ir - k) : L e L^} > r| jir - k|| 

for all k £ K , then IT £ P^(K, f) . 

Proof. For k £ K, 11f - k M = sup{IL(f - k)| : 11L1 | = 1} ^ 

^ sup{ |L(f - k) 1 L £ . Now lL(f - k)| > ReL(f - k) = 

= ReL(f - TT) + ReL(iT - k) = 1 |f - IT 1 | + ReLCir - k) for all 

L £ L 
TT - 

Therefore, 
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||f-k|| ^ llf“ir|| + sup{ReL(ir - k): L £ L } 
7T 

> I I f - IT II + r| I IT - k| 1 . 

Since k is arbitrary, IT C PJ.(K, f) . □ 

2.5. Theorem. Let K be any convex subset of X . If 

IT £ Pj.(K, f) then sup{ReL(Tr -k): L £ > rllir - k|| for all 

k £ K . 

Proof. Let k £ K be arbitrary. Since TT e PJ.CR» f) j for 

0 < t < 1 , we have 

,11 f - TT + tOr - k) I I = Ilf- CCl - t)TT + tk) I I 

> I I f - IT I I + rt I ITT - k| I . 

Consequently ^ —2-LL > r| |TT - kj | . Let 

c ^I lf ’r.+ tXir - klij - ||f. - r|| _ 

t-K)+ 

which exists by lemma 1 on page 445 in [16] . Moreover, c > r| ITT - k| 

By theorem 5 on page 447 in [16] there exists a linear functional 

such that I I <j)Qll = 1 , (j>Q (f - IT) = I |f - TT I | and (j>^ C'n’ - k) = c . 

Thus we have SUP{^CTT - k): ^£L^}><^>QC7T-k) = c>r|l7T-k|| . □ 

2.6. Corollary. Let K be a convex subset of X . Then 

TT e P^(K, f) if and only if there exists r and TT £ K with 

sup{ReL(TT - k) : L £ > r| |TT - k| | for all k £ K . 
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Proof. From theorems 2.4 and 2.5. □ 

The next corollary is based on the following lemma. 

2.7. Lemma. Let A be an open convex subset of a linear topological 

space X . If a convex function f , defined on A , is bounded 

above on a neighbourhood of a point a e A , then f is continuous 

at every point in A . 

Proof. See [19, p. 82]. □ 

2.8. Corollary. Let M be a finite dimensional subspace. Then 

TT e Pj,(M, f) if and only if IT e M and sup{ReL(m): L e > 0 

for all m e M ~ {0} . 

Proof. If TT € PJ.CM, f) then corollary 2.6 immediately shows 

sup{ReLCin): L £ L_} > 0 for all m e M ~ {0} . 
TT 

Conversely let pCm) = sup{ReL(m): L e 1^} . Then it is easy 

to verify that p , defined on M , satisfy the following: 

(1) p(m) > 0 with equality hold exactly when m = 0 ; 

(il) p(Am) = Ap(m) if A > 0 and m e M ; 

(ill) p(m + n) ^ p(ni) + p(n) for all m, n e M . 

Consequently p is a convex function defined on M . Moreover, p 

is continuous. To show this, it suffices, by lemma 2,7, to prove 

p is bounded above on the unit ball B(M) . But for any me! 
TT 
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and L £ i. , ReL(m) < lL(m)| < | iLl | | |mi | :^ 1 and so pCm) < 1 
TT 

for all m £ B(M) . 

Now since M is finite dimensional, its unit sphere 

S(M) = {m £ M; 11ml 1 -1} is compact and so p attains its 

minimum r > 0 on S(M) . Now if m £ M ~ {0} is arbitrary 

then p( I'lmff] “ TTmTT ~ I 1^1 1 for all 

m £ M . By corollary 2.6, ir £ P^O^, f) . □ 

Bartelt and McLaughlin give two more characterizations of 

strong uniqueness. The first will be stated without proof since 

it will not be used again. 

2.9. Theorem. Let M be a subspace of X . Then the set K n M 
  ^ IT 

is bounded for some TT e M if and only if TT G P^CM, f) . 

Proof. See Bartelt and McLaughlin [3, p. 259, theorem 2] for 

the proof. □ 

2.10. Theorem. [3, p. 260, theorem 3] Let M be a subspace of 

X . If TT G P (M, f) then the set A = {x G span{M, f}: ReL (x) = 

= 1 1 f - TT 1 1 } n K consists exactly of those elements of the form 

X = (1 + ia) (f - TT) where a G IR . 

Proof. Recall L is defined by L (m + af) = al If - TTI 1 . 
  TT ir 

Certainly if x is of the required form then x G A 
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Assume x € A , and x = bCf - IT) + m for some m e M and 

scalar b. Then ReL^(x) = (Reb)1 If - rI I . By the definition of 

Aj^ then Reb = 1 and x is of the form Cl + ia) Cf - ir) + m for 

some m € M . Now x € K Implies ReLCx) <|lf-Tr|j if LeL* IT 7T 

But for Lei , ReL(x) “ 1 |f - TT| | + ReL(m) . Therefore ReLOn) < 0 
TT 

for all L e i^. By corollary 2.6 m = 0 and x = (1 + ia) Cf - TT) . □ 

2.11. Theorem. [3, p. 261, theorem 4] If M is a finite dimensional 

subspace of X , and if there exists IT e M such that A^ consists 

exactly of those elements of the form x = (1 + ia) Cf - ir) , a e IR , 

then TT e P_(M, f) . 

Proof. Assume ir i P^-CM, f) . Then corollary 2.8 implies there 

exists m € M {0} such that sup{ReLCm); L € i^} ^ 0 . Let 

X = m + Cl + ia) Cf “ TT) • Then ReL (x) — I |f - TTI | and for all IT 

L € i^, ReL(x) 0 + I If - TT I I which implies x € A^ for all a , 

giving a contradiction. □ 

Bartelt and McLaughlin give an example [3, p. 261] to show 

that the finite dimensionality of M is in general a necessary 

condition. 

The following theorem indicates the usefulness of strong 

uniqueness. Let T be the operator Tf = PCK» f) • If f has 

a strongly unique best approximate from a Chebyshev set K then 

Tf satisfies the following Lipschitz condition at f , which 

guarantees continuity at f . 
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2.12. Theorem. [6, p. 82] Let K be a Chebyshev set in X , and 

e X ~ K such that there ^ists ir e K with TT e Pj.(K, f Q) • 

Then there exists X > 0 such that 

IiTfp - Tf|I ^ XI |£Q - fI I Vf e X . 

Proof. Since K is Chebyshev, T is a single-valued mapping. By 

definition, Tf^ = TT , and for any f, Tf € K . Therefore 

rliTf^ - Tf|I S IIfp - TfI I - I|f^ - Tf I|s||f-f|| + l|f-Tf||- 

- Ilfg - Tf|,M . But I If - Tf| I S I If - Tf^n Since Tf e P(K, f) 

and I If - Tf I I S I If - f I I + I If„ - TfJI . Then 
0 0 0 0 

2 
r||TfQ - TflI ^ 2||fQ - f1 I V Choose X = — to finish the proof. □ 

S3. STRONG UNIQUENESS IN 

As usual whenever L^CT, p) is considered, y is assumed 

to be non-atomic, and Lf equivalent to . The first theorem 

is just a restatement of theorem 2.4 applied to . Assume now 

that X = (T, J , y) and K and M are convex subsets and 

subspaces, respectively, of L^(T, y) . 

3.1. Theorem. For a convex set ir e Pj.(K, f) if and only if 

there exist r > 0 and TT e K with 

sup{Re[ (TT - k)sgn(f - Tr)dy + (TT - k)gdy] : |g| < 1 a.e.} ^ 

> r 

Z(f-Tr) 

7T - k|dy for all k € K . 
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Proof. A straightforward application of the Riesz Representation 

theorem and corollary 2.6 gives this theorem since is equivalent 

to the set {g e L^: 1 |g| |^ = 1 and g(t) = sgn(f(t) - 7r(t)) 

for all teT~Z(f-Tr)} . □ 

3.2. Theorem, TT e P^CM, f) if and only if there exists 

such that sup{Re[ m sgn(f - Tr)dii 4- 

> r 
Z Cf “TT ) 

mgdp] I I gl ^ 1 

ml dy for all m e M . 

r > 0 

a.e.} ^ 

Proof. Since for subspaces M, = M if ireM, this 

theorem follows immediately from theorem 3.1. □ 

The next two theorems show immediately the correspondence with 

characterizations of best approximation. Compare especially theorems 

II-4.6 and III-2.1 (for subspaces). 

3.3. Theorem. If ir e P^(M, f) then 

(3.3.1) m sgn(f - Tr)dii I < mldy for all m £ M ~ {0} . 
ZCf-TT) 

Proof. By theorem 3.1, for an arbitrary m e M ~ {0} , there exist 

y-measurable g defined on Z(f - ir) with |g| ^ 1 a.e. such that 

Re[ m sgn(f - Tr)dy + mgdyj > 0 , or 
ZCf-ir) 

Re (-m)sgn(f - Tr)dy < Re 
Z(f-IT) 

mgdy 

^ |m|dy . 
Z(f-Tr) 

Since m is arbitrary in M ~ {0} , (3.3.1) is obtained. □ 
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3.4. Theorem. Let M be a finite dimensional subspace. If 

C3.4.1) m sgn(f “ 'n‘)dii| < 
ZCf-ir) 

m|dp for all m £ M ~ {0} 

then TT £ P^(M, f) . 

Proof. Assume C3.4.1) holds. Choose m £ M ~ {0} arbitrarily. 

Then (3.4.1) implies Re[ m 1 dp ] > 0 . m sgnCf “ Tr)dp + 

  Z(f-TT) 
Choose g = sgn m on Z(f - TT) , and g = sgn(f - ir) outside 

Z(f - TT) , Then L , defined by L(h) = ghdp , is in L 
TT 

Therefore, for all m € M ~ {0} , sup{ReL0n): L € L^} > 0 and by 

corollary 2.8, IT€P^(M, f). □ 

3.5. Corollary. Let M be a finite dimensional subspace. 

TT £ Pj.(M, f) if and only if 

(3.5.1) 

Proof. 

m SgnCf ” 7r)dpl < |m|dy for all m £ M ~ 

ZCf-ir) 

This is directly obtained from theorems 3.3 and 3.4. 

{0} . 

□ 

Theorems 2.10 and 2.11 can also be utilized to characterize 

strong uniqueness in L^ . The following theorem does so, and is 

then used to give an alternate proof of theorem 3.4. 

Looking back at 2.10 (or 2.11), we see that the set A was 
TT 

of some importance, and so we would like to have its counterpart 

in L, . The set F of the next definition is such a set, and 

its relation with A^ will be shown in the proof of the following 

theorem. 
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3.6. Definition. Let F be that set of elements m in the sub-    -jf 

space M for which there exists an a e ]R such that 

f 

(3.6.1) |m + TT + iaf Idp ^ -Re Cm + TF + iaf)sgn(f - Tr)dp 

3.7. Theorem. Let M be a finite dimensional subspace. Then 

TT e f) if and only if consists only of elements of the 

form m *= -(1 + id)7T for some d e 3R . 

Proof. Since M is finite dimensional theorems 2.10 and 2.11 

combine to give a necessary and sufficient condition for the strong 

uniqueness of ir . This condition, that consists exactly of 

elements of the form x = (1 + la) (f - ir) , is related to the 

composition of F as follows; 
7T 

Now X € implies x e span{M, f} , so we need only consider 

those elements of K of the form x = m + bf , for some m e M , TT 

and b a scalar, x £ if and only if 

Re[ X sgn(f - Tr)dvi + 
Z (f—IT) 

xgdy] < 

* 

Jf - Trldy 

for all measurable g such that |gl <1 almost ever3/where on 

Z(f - TT) . (See theorem 3.1. This is an application of the Riescz 

Representation theorem). Since this is true for all such g we 

can write equivalently 

C3.7.1) Re[ X sgn(f - TT)dii + 

Z(f-TT) 
xldyj < (f - TT)sgnCf - ir)dvi . 
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Last of all. If X e , X must satisfy ReL^Cx) = | | f - IT | | . 

By the definition of ,Reb ® 1 , and therefore x must be of the 

form m + (1 + ia)f , a e IR. 

All these arguments work in reverse, so we can collect them all 

by stating 

A = {x-m+(l + ia)f: a e ]R , Re 
ZCf-ir) 

IX1 dy < Re Cf - ir - x)sgnCf 

Note that (3.7.1) was rewritten slightly to get the form of the 

inequality in the statement of A^ . By replacing x by its 

explicit form, and noting that on Z(f - TT), f = IT, we see that 

A = {m + (1 + ia)f; a e IR , (3.6.1) holds} . 
IT 

Theorems 2.10 and 2.11 imply ir e Pj-(M» f) if and only if A 

consists exactly of elements of the form Cl +id) (f - TT) = 

= “(1 + id)IT + (1 + id)f , d e ]R . We can trivially restate this 

as F ={m: (3.6.1) holds for some a e IR} consists exactly of 
TT 

elements of the form -(1 + id)ir for d € ]R . □ 

3.8. Corollary. Let M be finite dimensional. If (3.4.1) holds 

then TT e P^(M, f) . 

Proof. If TT ^ Py(M, f) then there exists m e with 

m ^ -(1 + ia)iT for any a 6 IR . Then m + (1 + ia)TT 0 for any 

IT) dy } 

a € IR and 
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Re (-7T - m - iaf)sgn(f - TT)dy < 
Z(f-Tr) 

m + (1 + ia)7T 1 dy 

+ Re ia(7r - f)sgn(f - Tr)dy 

Z(f-7T) 

ZCf-'n’) 

m + IT + iaf 1 dy - Re Cia I I f - TT j | ) 

I m + 7T + iaf I dy , 

This implies m F , a contradiction. □ 
TT 

3.9. Theorem. Let M he finite dimensional, TT e P^(M, f) if and 

only if there exists measurable g defined on Z(f - ir) with: 

Igi ^ 1 almost everywhere and 

(3.9.1) Re[ 

(3.9.2) 

m sgn(f - TT)dy + 

Imi dy - Re 
Z(f-TT) 

mgdy] * 0 for all m e M ; 
ZCf-TT) 

mgdy > 0 for all m e M ~ {0} . 
Z(f-ir) 

Remark. (3.9.1) is the characterization for best approximation. 

(3.9.2) gives the strong uniqueness. 

Proof. Assume there exists a g satisfying C3.9.1) and C3.9.2) 

Then 

Z(f-^) 
ml dy + Re m sgn(f - TT) ml dy - Re 

+ Re[ m sgn(f - 7r)dy + 

Z (f-w) 

mgdy] > 0 

ZCf-fr) 
mgdy + 

Z(f-^) 

for all m £ M ~ {0} , and corollary 3.5 implies TT e P^Oli f) 
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If IT € P^(M, f) then (3.9.1) holds for some g by the 

characterization theorem and 

ml - Re 

Z(f-TT) Z (f-ir) 

mgdy = 1 m| dy + Re 

Z (f-IT ) 

Re[j mgdy + 

m sgn(f - ir)du 

I ’ 
Z(f-TT) 

m sgnCf - Tr)dy] 

> 0 

for all m e M ~ {0} where (3.9.1) and corollary 3.5 have been used 

for the last step. □ 

3.10. Corollary, TT e Pj.(M, f) , where M Is finite dimensional, 

If and only If the following hold. 

(3.10.1) y[Z(f - TT) ~ Z(m)] > 0 for all m € M ~ {0} . 

(3.10.2) There exists a g € L of norm 1, such that II-(4.4.1) 

and II-(4.4.2) hold. 

(3.10.3) For any m e M ~ {0}, g ^ sgnCm) almost everywhere on 

Z(f - IT) Z(m) . 

Note. We can apply corollary II-4.4 to see immediately that 

TT € P(M, f) . Therefore this corollary is a means of testing an 

already known best approximation for strong unicity. 

Proof. (3.10.1) and (3.10.3) Imply there exists a g Cour g 

restricted to Z(f - IT)) for which |g| 1 e.e. and C3.9.2) is 

true. Since M is a subspace we can rewrite II-C4.4.1) as 
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Rejmgdy « 0 for all m c M . 

Using I1-C4.4.2) we get (3.9.1), thereby proving the sufficiency of 

the conditions. 

If there exists a g as in theorem 3.9, then we can expand it 

to all of T by defining g = sgn(f - IT) on T ~ Z(f - TT) . Then 

this g satisfies II-(4.4.1) and II-C4.4.2) by C3.9.1). C3.9.2) 

can hold only if 

ImIdTT ^ 0 
•'ZCf-ir) 

for all m e M , which gives us (3.10.1), and also 

f 
Imidy ^ Re mgdy 

•^ZCf-TT) -^ZCf-Tr) 

for all m e M {0} . Since lg| ^ 1 a.e. this is equivalent to 

(3.10.3) , and the necessity is proved. □ 

It might be thought that this corollary is a bit overly 

restrictive, that possibly (3.10.3) could be derived from the 

previous conditions. Certainly this would be extremely fine if 

it was true, but unfortunately the following example shows that 

(3.10.3) is needed. 

3.11. Example. Let T be the interval lO, 6J , and y the 

standard Lebesgue measure. Let a typical element in M be of the 

form, for some a e IR , 
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mCt) 

(6 - t) 

Then take as f the function 

0 ^ t ^ 2 

2 ^ t < 4 

4 ^ t £ 6 

/ 
0 

f(t) = 
it - 2) 

(4 - t) 

(t + 6) 

0 < t £ 2 

2 < t ^ 3 

3 < t ^ 5 

5 < t ^ 6 

(see graph 3.11). 

Then we can show that 0 is the unique best approximation to 

f . Therefore Z(f - ‘n’) * Z(f) «• [0, 2] > and, for m 0 , 

Z(m) « {0, 6} . We have p[Z(f) ~ Z(m)J > 0 , as needed. A 

choice of gCt) = 1 for t € [0, 2] , 1 for t e C2, 4) , and 

-1 for t € (4, 6) satisfies all the conditions of corollary 3.10, 

so 0 Is not strongly unique. (This can easily be verified.) This 

Is also an example of a unique, but hot strongly unique, best approxi- 

mation, from a finite dimensional subspace. 

In this discussion the quantity yCZCf - ir)) has been of some 

Importance. It Is related to the concept of smoothness considered 

In the beginning of this chapter. In ^ ^ is a smooth point 

of the ball of radius I If!I If and only if f(t) ^ 0 almost every- 

where (see [22, p. 350]). Bartelt first showed that for TT to be 

a strongly unique best approximation we must have ii(ZCf - ir)) > 0 
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Graph 3*11. 

m(t)    

fCt) ****!#?************ 
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[2, p. 8, theorem 6]. This follows quickly from theorem 3.3. 

Therefore f - TT cannot be a smooth point of the ball of radius 

Ilf - TTI I . 

Finally we remark that all of the previous theorems hold in 

Cj or the real case, as is easily shown. The proofs are identical. 

S4. STRONGLY CHEBYSHEV SUBSPACES 

4.1. Definition. A set K is strongly Chebyshev in X if every 

f e X ~ K has a strongly unique best approximation from K . 

We immediately note that strongly Chebyshev subspaces are 

Chebyshev, and therefore by the theorem ClH-5.3) of Phelps, there 

are no finite-dimensional strongly Chebyshev subspaces in Cwhen 

the measure is non-atomic). An example will be presented to show 

the existence of infinite dimensional strongly Chebyshev subspaces. 

Accordingly, the first theorem is not of much use, but it is an 

interesting application of some theorems in the last section. 

(However in the case when the measure is atomic the situation is 

different.) 

4.2. Theorem. {45, p. 354, example 5J If M is a finite-dimensional 

R 
Chebyshev subspace in LjCT, p) then M is strongly Chebyshev in 

LjCT, U) . 
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Proof. Choose f € ~ M arbitrarily. We can assume without loss 

of generality that {0} = P(M, f) . Then, by corollary II-4.5 there 

exists g e with Mgl 1^0 = 1 and g = sgn f on T ~ Z(f) such 

f 
that mgdy = 0 for all m e M satisfying (3.9.1). We see that 

{t £ T: lg(t)| < 1} £ Z(f) , so we can define f* € by 

f’Ct) 
f(t) if f(t) 0 or |gCt)| 1 

gCt) if fCt) = 0 and lgCt)| =1 . 

It can be shown that 0 c P(M, f’) and ZCf*) = {t e T: |g(t)| < 1} 

Since M is Chebyshev, theorem III-4.5 implies y(ZCf*) ~ Z(m)) > 0 

for all m 6 M {0} . Therefore 

Z(f) 

m I du = 
z(f)'-zCf’) 

lm|dp + |m|dy 

zCf)~zCf') 
mgdy + 

ZCf») 

mgdy 

ZCf*) 

= mgdii 

Jz(f) 

and (3,9.2) is satisfied; so by theorem 3.9 0 is a strongly unique 

best approximation to f . Since f is arbitrary M is strongly 

Chebyshev. □ 

4.3. Example. A strongly Chebyshev subspace of infinite dimension 

in Lj . 

Consider example II-5.4. In that example 



f - ml ] If Idy + If - mldy , I If “ IT 
JT~B 

II = I1fIdy 

and 

r 

IT - m f - m|dy 

T~B 

Choose r = 1 . Then |lf-7r|| +r||Tr-m[| - l|f-m|| for all 

m € M so IT is a strongly unique best approximation to f . Since 

f was arbitrary the subspace is strongly Chebyshev. 

Since there do not exist any finite dimensional Chebyshev 

spaces in where the measure is non-atomic, Wulbert^s theorem 

is not very useful in this thesis. 

R 
Since Haar subspaces are Chebyshev in C^[a, bj it might be 

conjectured that they are strongly Chebyshev. This is trivially 

not true in the case of polynomials. As the next theorem shows, no 

R 
Haar subspace can be strongly Chebyshev in C^[a, bJ . It is based 

on the following lemma. 

4.4. Lemma. If i = 1, ...» n} is a Haar system on an interval 

[a, b] then there exists such that {<1)^; i = 1, ...» n + 1} 

is also a Haar system. 

Proof. The proof is rather long and complicated and is the subject 

of a paper by R. A. Zalik. See [46, p. 72, theorem 1]. □ 

4.5. Theorem. If M is a Haar subspace in C^[a, b] then M is 

not strongly Chebyshev. 
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Proof. Let M = cj>^} and choose f to be the function 

^n+1 S^^^^i^teed by lemma 4.3 and find the best approximation ir 

to f from M . By the assumption TT exists and is unique. Since 

span{M, f} is a Haar subspace f - TT can have at most n zeroes, 

which implies p(Z(f - TT) = 0 if the measure is non-atomic. There- 

fore C3.10.1) is violated and ir is not strongly unique, and hence 

M is not strongly Chebyshev. □ 

Are there any finite dimensional subspaces which are strongly 

R 
Chebyshev in ? This is still an open question. On the other 

hand the Mazur density theorem states that the set of smooth points 

of the closed ball in any separable B-space is a dense Cin fact, a 

residual) subset of its boundary [15, p. 171J , which may suggest 

that one can always find a point f whose smoothness precludes the 

existence of a strongly unique best approximation. 
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Chapter V 

CONCLUSIONS 

To the theorist the subject of best ^approximation from 

linear subspaces seems tolerably complete, although there are some 

holes which we will mention shortly. To the more practical inves- 

tigator there are two omissions; how do we find a best approximation 

in specific cases, and what is the precision of the approximation? 

Neither of these questions have been addressed in any detail. 

These probably form a subject matter which deserve another survey. 

Algorithms to determine best approximations have been produced by 

Barrodale and Young [1], Deutsch, McCabe and Phillips [11], and 

Usow [44], to mention a few. 

Precision is involved with p(f, K) . Can we put lower boxmds, 

or upper bounds on this quantity? Some fine work has been done with 

uniform approximation involving the study of H-sets {13], but this 

has not been carried over to approximation. 

The norm seems to exult in such behaviour, allowing little 

of the theory of uniform approximation to be carried over. We have 

obtained characterization theorems which are useful, but they have 

none of the elegance of the simple alternation theorems of the uniform 

norm. If one uses, for instance, II-C4.6.1) to test an element 

then for each m € M two integrations must be carried out. The 

original definition, I[f - m|dy , implies only one f - irl dy ^ 

integration must be completed, so here the characterization theorem 

has only succeeded in complicating matters. 
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Theorem II-4.9 uses an alternation condition which looks 

pretty, especially with algebraic and trigonometric polynomial 

approximation where the nodal points are knovm. Unfortunately 

the condition is sufficient, but not necessary. 

The same comments can be applied to uniqueness. Theorem 

III-2.1 is useful in that a test for best approximation using 

II-C4.8.1) also tests the criterion III-C2.1.1) for uniqueness. 

However, this criterion is not a necessary one. A necessary and 

sufficient condition is presented in theorem III-2.4, but here 

the range of integration as well as the integrand is changed for 

each element, making III-(2.4.1) rather cumbersome. 

That beautiful result in the continuous uniform case, that 

subspaces are Chebyshev if and only if they are Haar, is not 

repeated in . Jackson's theorem ClII-646) is half the result, 

but the converse is not true. There are no useful sufficient condi- 

tions for Chebyshev sets in or 4 Some interesting properties 

are evident, however. For Instance theorem III-4.5 is a useful test. 

Very little work has been done studying strong uniqueness in 

. Wulbert's result is the most interesting, but not very pertinent 

to the non-atomic case, and it does not carry over to . 
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The existence of strongly Chebyshev subspaces was considered 

but the results are mostly negative. In the uniform case all Haar 

subspaces are strongly Chebyshev In C[a, b] , but this result is 

not true in . In fact, no Haar subspace is strongly Chebyshev, 

We conjectured that no finite dimensional sub space in Cj or 

is strongly Chebyshev, but this has yet to be proved. 

We can see that there is lots of scope for more work, and hope 

that this thesis has indicated some of the directions in which 

future investigations can go. 
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