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ABSTRACT

Let X be a normed linear space and K a convex set in X .
Then 7 ¢ K is a best approximation to f ¢ X ~ K if

inf{||f - k||: k € K} . The existence of such a best

£ = ||
approximation is shown if K is compact, or closed and bounded in

a finite dimensional space. Two characterizations of best appfoxi—
mation are proved using a geometrical approach involving functionals
in the dual space. These are applied to the space LI(T, z, u)

under the assumption that its dual is equivalent to L_(T, z, u)

to recover results of Kripke and Rivlin, and Singer.

The same approach is used to derive criterion for the uniqueness
of best approximations, and then applied to Li to obtain, among
others, Jackson's classic theorem on approximation to continuous
functions from Haar Subspaces. A result of Phelp's on the non-
existence of finite dimensional Chebyshév subspaces in non-atomic
L§ is also shown.

The concept of strong unicity is presented, and investigated
by looking at particular supporting cones. A useful characterization
is proposed in L1 and then applied to prove Wulbert's theorem on
strongly Chebyshev subspaces in L1 . It is shown that no Haar

subspace is strongly Chebyshev in Cl , and an example of an infinite

dimensional strongly Chebyshev subspace is given.
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Chapter 1
PRELIMINARIES

INTRODUCTION

With the advent of powerful computing machines the idea of
approximating functions by other functions parametrized by a
finite number of variables has become very important. In practice
one finds an approximation and leaves it at that, but the aim is
to find the best possible approximation from the set of approximating
functions. Obviously we need some sort of measure of how good an
approximation we have. In this thesis we will concentrate on the
use of the L1 norm for this purpose. To do this we will use some
powerful geometric ideas which can be stated and proved in any normed
linear space, so we will first define our best approximations
in a rather general way.

Let X be some normed linear space, with the norm ||«|| ,
and let K be some set in X . If f ¢ X we say that 7 is a
best approximation to £ from K if Ilf - 7n|] = inf{||f - k|]: k € K}
and m ¢ K.,

Our first task will be to investigate the existence of such a
best approximation. If K is compact they exist for any choice of
f , but in general existence depends on K , where f 1is, and the
type of norm involved.

If we have an element of K , are there ways of testing to see
if it is a best approximation? We can uncover such characterizations

by considering the existence and properties of various hyperplanes



which separate K and f . (We assume f 1is outside K .) This
approach is very intuitive and easy to understand, and most of the
major theorems of approximation in the L1 norm can be recovered.
Since these hyperplanes are defined by functionals in the dual space
we have restricted ourselves to a measure u which ensures that the
dual of our space Ll(T’ 2, u) 1is equivalent to the space

L_(T, Y, W) . This is satisfied, for example, if u is o-finite.

The next chapter discusses the question of uniqueness. Again
using our geomefrical concepts we recover results of Cheney and
Wulbert, Jackson, and Singer. In particular we characterize sets
which allow only unique best approximations (called Chebyshev sets).
In L, we show that there are no such Chebyshev subspaces when
is non-étomic, but do better with continuous functions by proving
Jackson's famous theorem on Haar subspaces.

We are not quite finished yet, and go on to introduce strongly
unique best approximations. The results of Bartelt and McLaughlin
are used in L1 and some theorems derived. One very nice theorem
proves that: strict inequality in one of our characterization theorems
in a finite dimensional subspace is necessary and sufficient for the
best approximation to be strongly unique. A not so nice result states
that a Haar subspace is not necessarily a strongly Chebyshev subspace,
even though it is Chebyshev.

We will start off by giving a few necessary definitions in the

next section.
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PRELIMINARY CONCEPTS

In general, the notation used is that of Dunford and Schwartz
[16].

Many of the definitions will be introduced as needed, and some
basic ideas from topology are assumed. These include open, closed
sets and the convergence of sequences (see,‘for instance, [31]).

For convenience, sup{f(x): x € X} = sup £[X] and similarly

for the infimum.

24:. Definition. X 41is a linear space over a scalar field ¢ if
X is an additive group under the binary operation + on X together

with an operation m: ¢ x X > X written as m(a, x) = ax satisfying

a(x+ y) = ax + ay X, y€X acd
(a + b)x = ax + bx x e X a, be®
a(bx) = (ab)x x € X a, be @ ;
lex = x x e X .

The scalar field ¢ will always be the set € of complex numbers,

or the set R of real numbers.

2.2. Definition. X 1is a normed linear space over a field ¢ if

X is a linear space and for each x ¢ X there corresponds a real

number ||x|| , called the norm of x , satisfying
||x]| = 0 1if and only if x = 0 ;
[xl] = 0 3
[l | = In] [ ]x]] s

=+ vl = [lx[] + [Iy]] for x,yex.



We let B(y, €) = {x ¢
B(y, €) = {x € X, ||x - y]|

closed balls of radius € >

>

IA

0

2 = - yl] < e} and

€} be respectively, the open and

centred at y € X . We'let_B*(y, €)

denote the corresponding open ball in the dual space X* . Unless

otherwise mentioned the topology on X  is the norm topology which

has all such open balls as a basis.

2.3. Definition. M 1is a linear subspace of a linear space X if

McX and M is a linear space over the same field of scalars.

2.4, Definition. A set K e X is convex, if for all X ¢ R,

0<Xx<1, (the scalar field & is

Ax + (1 -XNyeKkK.

R or €) and x, y e K,

2.5. Definition. Let X and Y be normed linear spaces over the

same field & , and L a function mapping X into Y . Then L

is linear if L(x + y) = L(x) + L(y)

and L(ax) = aL(x) for

X, y € X, ae ., L 1is bounded if there exists a real number M > 0

such that ||L&x)|| < M||x]|]

for all x € X . The set of all

bounded linear functions is itself a linear space over the same

field. If Y dis the scalar field then this set is termed the dual

space, x* , of X . Where & =€ we define Re L as the real

part of L , and note that Re L 1is itself a member of x* . x*

is 'a Banach space under the norm, l[L||

.sup{}L(x)|: l]xll =1, x ¢ X} .

The boundedness of a linear functional is equivalent to its continuity.

For a complete discussion of linear functionals and the dual space

refer to [16, Chapter II].



2.6. Definition. Let D be a subset of a normed linear space X ,

and let f ¢ X . Then 7 is a best approximation from D to f

if m ¢ D and
||£ - w|| = inf{||f - d|]|: d € D} .
The infimum is termed the distance, p(f, D), from £ to D . The

set of all such best approximations is denoted by P, f) .

2.7. Definition. Let (T, 2, u) be a measure space, and let f
and g be complex-valued functions on T . Define an equivalence
relation "~" by f~g 1if u{t e T: £(t) = g(t)} = 0 .and let
[f] be the equivalence class which f belongs to. Then
L (T, ¥, w) = {[f]: j:r |£ldu < »} , with the norm ||f]|]| = JTIfIdp .
If only the real numbers are being considered we write L?(T, Z, u)
and we will suppress the (T, Z, u) wherever it is possible without
ambiguity. The definition is abused somewhat (harmlessly) by writing
f e L, and not [f] ¢ L, -

Let L (T, )}, u) = {|f|: ess sup £f[T] < @} with the norm
||f||°° = ess sup £[T] . The above comments can be repeated, with
the added note that, unless otherwise stated, we assume LT is

equivalent to L, as is the case when u is o~-finite.

2.8. Definition. Suppose for the measure space (T, z, u) a topology
is defined on T so that (i) T is a Tychonoff space; (ii) every open
set is in Z and every non-empty open set has positive measure; and

(iii) every singleton is of finite measure. We denote by Cl(T, Z, )



(or simply C, or CI(T) when the measure space is clear) to be the

subspace of Ll(T, 2, M) consisting of continuous functions with the
R R R L

L, norm. The symbols CI(T, Z, 1), C, or Cl(I) are used when only

real-valued functions are considered. We note that C_1 is not complete.

In references to previous theorems we will write, for example,
see theorem 2.4 if the theorem is in the same chapter, or theorem

III-2.4 if the theorem is in another chapter (chapter III in this

example).

EXISTENCE

Best approximations from closed subsets exist in finite dimen-
sional spaces, but in the general case this is not true. For some
special spaces (uniformly or strictly convex) better results can be
obtained, but the L, case satisfies none of these conditions, so
they are not considered here. It is not necessary to postulate
convexity; any closed bounded subset in a finite dimensional sub-
space will do.

More generally closure is not sufficient. The set must be
compact to ensure the existence of best approximations. In a
finite dimensional space closed and bounded imply compactness so

we see that compactness implies the previous paragraph's comments.

3.1. Theorem. Let C be a compact set in a metric space X , with
metric d . To each point f € X ~ C there exists a point w1 in

C with d(f, 7) = inf{d(f, x): x € C} .



Proof. Let 6 = inf{d(f, x): x € C} . By the definition of the

infimum, there exists a sequence of points {xn} c C such that

lim d(f, xn) 6§ . Since C is compact there exists a subsequence

{;m} ‘of the sequence {xn} which converges to a point, call it
m , of C . By the triangle inequality, d(f, T) < d(£f, yn) + d(yn, ™)
for all n . Since the left side is independent of n and the
right side -8 as n-+» , d(f, m) <8 . Since me C, d(f, m) 2 8 .

Therefore d(f, m) = & and 7 is the required point. [

In a normed linear space define, as usual, d(x, y) = ||x - y|| .
Then the above theorem can be quickly applied to yield the following

corollary.

3.2. Corollary. For every closed set C in a finite dimensional
subspace M of a normed linear space X , the set P(C, f) ,

for any f € X~ C 1is non-empty.

Proof. Choose y € C arbitrarily. Consider the set

H={xeC: ||f-x|| < |]f-y]|]}. Since C is closed this set
is also closed, and it 1is certainly bounded. Since M is finite
dimensional H must therefore be compact in X [7, P- lQ], and
by theorem 3.1 there exists a point 7 € H such that

||£ = || = inf{||f - x||: x € H} . In other words = ¢ P(H, f) ;

but P(H, f) < P(C, f) , and therefore P(C, f) is not empty. [

Cheney gives an example [7, p. 21] showing that finite dimen-

sionality cannot be omitted.



In the rest of this thesis it is assumed that best approximations
do indeed exist. However, in the actual computation it might be wise
to check to see if there is something to compute.

We will consider best approximation from convex sets. For

discussion on general best non-linear approximation see Dierieck

[13].
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Chapter II

'CHARACTERIZATION OF BEST APPROXIMATION

INTRODUCTION

There are two important characterization theorems for best
approximation to convex sets. These will be proved and then applied
in L1 and C1 . Also, specializations to linear subspaces of

infinite and finite dimension will be considered.

FIRST CHARACTERIZATION THEOREM

The first characterization theorem is due to Deutsch and
Maserick [9, thm. 2.5], valid for a normed linear space, and is a

consequence of the Hahn-Banach theorem.

2.1. Definition. Let X be a normed linear space over € with

norm | -|| . A hyperplane [L, ¢] 4is a set of the form, for some

LeX*~ {0} and c e R,
[L, ¢] = {x € X: ReL(x) = c} .

2.2, Lemma. Let L e X* ~ {0}, ce R, and H= [L, ¢c] . Then

for each x € X ,

|ReL(x) - cl
(2.2.1) p(x, H) = .
Ll
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Proof. Since L € X* , for all y e H , lRe?f;?]- c|.= lRe?leT y) | <
< |lx - yll . Therefore p(x, H) = lResz?[_ cl :
If 0<e< |ILIl , then since |IReL|| = ||L|| , there exists

z € X such that |ReL(z)| > (/ILI| = €)llzl| , and we see that
IR - RelL(x) -
ReL(2)| [RS8/ > (n| - o) [RELED—elypp)) | pee

ReL (z) ReL(z)
ReL(x) - ReL ‘
y=x - eRéi(z) €S 2 . Then ReL(y) = ¢ and z = EZE%;éz%—g x-v) .
Thus |ReL(x) -~ c| > (IlLfI - ¢e)|llx - yll . Since this is true for

all e € (0, |ILI]) , there exists y such that ReL(y) = ¢ and

|ReL(x) = ¢l > ||IL|| |lx = y|| . Therefore y ¢ H and

|ReL (x) - cl
LT O

2 |lx - yll 2 p(x, H)

.

2.3. D;fi;ition. A hyperplane. H = ti, c] dis said to separate
two subsets M and N of X if sup ReL[M] < c¢ < inf ReL[N] .
It can be shown that if H separates a point x from a set M
then p(x, M) 2 p(x, H) , and any neighbourhood of a point in H

contains points X, and X, such that ReL(xl)’< c <'ReL(x2)

The next theorem is the geometric form of the Hahn-Banach
theorem. A functional L ¢ X* sgeparates M and N if there

exists ¢ € R such that |[L, ¢] separates M and N ,

2.4. Theorem. Let M and N be two disjoint convex subsets of
a normed linear space X , and suppose one of them has an interior
point. Then there exists L ¢ X¥, L # 0 which separates M and

N .
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Proof. [19, p. 63]. [

If L separates M and N then there exists ¢ such that

ReL[M] c

[L, ¢] separates M and N . But then sup Ll > ||L|l > ReL[N]

¢ ReL[N]
25 TTLT

since L # 0. So L can be assumed to have norm 1.
Deutsch and Maserick's "Main Separation Principle" can now

be shown.

2.5. Theorem. Let K be a convex subset of a normed linear space
X, and let f ¢ X ~ E . Then there exists L ¢ X* with norm 1

such that p(f, K) = ReL(f) - sup ReL[K]'.

Proof. Let B = B(f, p(f, K)) . Then B is an open, convex set
containing £ disjoint from K . By theorem 2.4 there exists an
L € X* with ||L]| = 1 which separates B and K . Hence
sup ReL[K] < inf ReL[B] < Re L(f) . Let H = [L, sup ReL[K]] .
Then lemma 2.2 implies p(f, H) = ReL(f) - sup ReL[K] =< p(f, K) .
If p(f, H) < p(f, K) then there exists y ¢ Hn B . But then
B 1is a neighbourhood of y which lies on one side of H . This
is a contradiction since any such neighbourhood contains points
from both half spaces determined by H . Therefore p(f, K) =
= ReL(f) - sup ReL[K] . 0O

Geometrically this theorem shows the existence of a hyperplane
separating f and K which "just touches'" K , and whose distance
from f is the same as p(f, K) . This "just touches'" notion can

be stated more exactly as follows.
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2.6 Definition. A hyperplane H = [L, c¢] supports a set K at

T e K if sup ReL[K] = ReL(n) = c .

2.7.- Corollary. Let K, £, L and H be as in theorem 2.5. If

m ¢ P(K, £f) then H supports K at

Proof. As in theorem 2.5, let B = B(f, p(f, K)) , and let B be
the closure of B . Since w ¢ P(K, f) , [|£ - wl| = po(£, K) .

Hence 7 € B . But inf ReL[B] = inf ReL[B] 2 sup ReL[K] . Therefore
ReL(m) < sup ReL[K]
< inf ReL[B]
< ReL(m) .
Thus ReL(r) = sup ReL[K] . 0O

Now we are in a position to prove the first characterization
theorem. A particular set involved will be referred to a bit later
on, so for convenience we give the following definition separate

from the theorem.

2.8. Definition. Let LTT = {Lex*: ||L]|] =1 and L(f -m) = |]|f -n|]|},
where T is an element of a convex set K and f e¢ X~ K . From
the previous work we can see that L,[r is not empty, and contains

those functions L such that [L: ||f - m||] supports the set

{xe X: ||x|| =||f-n|]} at £~ .
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The first major theorem of this chapter follows. Geometrically
the theorem states that m is a best approximation from K to £
if and only if there is a supporting hyperplane to K which passes
through m, (ie., ™ is a point of support), and whose distance

from f is the same as p(f, K) .

supporting hyperplane

2.9. Theorem. (First Characterization of Best Approximation). If
K 1s a closed convex subset of the normed linear space X , and
feX~K, then me P(K, £) i1if and only if there exists L ¢ L,‘r

with
(2.9.1) ReL(m) = sup ReL[K] .

Proof. Assume w ¢ P(K, f) . Theorem 2.5 implies the existence of
L e X* with ||LI| =1 and p(f, K) = ReL(f) - sup ReL[K] . But
p(f, K) =||f - v|| and corollary 2.7 implies ReL(m) = sup ReL[K] .
Then ReL(f) - ReL(m) = ReL(f - m) = ||f = «|| .
If there exists such an L ¢ L,,r , then
||£ = || = ReL(£f) - ReL(r) < ReL(f) - ReL (k)
for all k € K. But ReL(f - k) < |L(f - k)| < [[£f -~ k|| for all

k € K. Therefore m ¢ P(K, £) . 0O
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Singer's result [40, p. 18, theorem 1.1] can be recovered from

the preceding theorem with the aid of the following lemma.

2.10. Lemma. If M 1is a linear subspace and L ¢ X* with

sup ReL[M] < » then L(m) =0 for all me M .

Proof. Let me M. If L(m) =a=0 then L(m) = AL(m) = Aa
for all scalars A . Since M 1is a subspace then sup Rel[M] = ~.

Thus L(m) =0 forall me M. [

In theorem 2.9, if K is a closed subspace M , then (2.9.1)

can be replaced by
(2.9.2) L(m) = 0 for all me M

which is Singer's result. He also derives various other reformula-

tions of this theorem. [40, pp. 19-24]

SECOND CHARACTERIZATION THEOREM

Deutsch and Maserick [10, p. 524, theorem 3.9] have given a
very nice proof of this theorem from a result of Singer's for linear
subspaces. The proof is based on the following set of lemmas which

are also of importance if M is of finite dimension.

3.1. Definition. A non-void subset E of a set A is called an

extremal subset of A if x, y ¢ E whenever x, y ¢ A and

ax + (1 - a)y ¢ E for some a € (0, 1) . Geometrically, this means
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that no point of E 1is an interior point of a line segment whose

end points are in A~ E . If E = {z} then z is termed an extreme

point of A . |
The next lemma is based on the Krein-Milman Theorem which is-

stated here without proof.

3.2. Theorem. (Krein-Milman) If K is a compact subset of a
locally convex linear space and E is the set of its extreme

points then E is not empty and co(E) = EE(K) .
Proof. [16, p. 440, theorem 4]. U

3.3. Theorem. [41] If M is a linear subspace of a normed linear
space X , and f 1is an extreme point of the closed unit ball
in M* , then £ has an extension to X which is an extreme

point of the closed unit ball in X* ,

Proof. Let K={L e X*: |[ILI| =1 and L(m) = £f(m), m ¢ M} .

It can be shown that K is a w*-closed, convex subset of E*(O, 1) ,
which implies K is w*-compact. We will show that K is in fact

an extremal subset of 'E%(o, 1) so that the extreme points of K ,
which exist by the Krein-Milman theorem, are also extreme points of
B*(0, 1) . If g, he B¥(0, 1) with L=ag+ (1 - a)h e K for

ae (0, 1) , then ag(m) + (1 - a)h(m) =‘f(m) . rfor all me M and it
is easy to verify that IIL'I = |lgll = |lhl]l =1 . Since f 1is an

extreme point of the unit ball in M*, g(m) = f(m) = h(m) for all
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me M. Therefore g, h ¢ K, and K is an extremal subset of

5*(0, 1) . Then any extreme point of K is a required extension. [].

The following lemma is proved for the case of real scalars,; but
the proof follows the same lines for the complex case. Note especially
that this lemma immediately gives a characterization of best approxi--

mations from finite dimensional subspaces.

3.4. Lemma. Let K be a closed convex subset of M , an n-dimensional
subspace of X, where n<» ., Let feX~K. Then 7 ¢ P(X, £)
if and only if there exist m extreme points L; of B*(0, 1)

(m £n+ 1 in the real case and m < 2n + 1 in the complex case)

satisfying
(3.401) Li(f -TT) &= |If"' 1Tl| ’ i‘_' 1_" oo ey m
m m 7
(3.4.2) Re ) A;Ly (1) = sup Re Z ML[K], Ay >0, Ay =1 .
i=1 i=1
Proof. Let Y = span{M, f} . Then the dimension of Y is at most
n+ 1 . By a variant of Carathéodory's theorem given in [40, p. 166]

we can write the functional L € Lﬂ(Y) of theorem 2.9 as L = Z AiLi

where m<n+ 1, Ai >0, ZAi = 1 and the L are extreme p;:its

of the unit ball in Y . Extend each L; as in theorem 3.3. Then
(2.9.1) implies (3.4.2), and the extended L € L"(X) implies

ZAiLi(f -7m) = ||f -w|| . Since ZA1’= 1, we see that

Zli(Li(f -m = llf=-7wll)=0, but Ly(f-m) - ||f-n||] <0 for each
and Ay >0, so Li(f -m) - |[|f -7l =0 for i=1, ..., Q .

giving (3.4.1). 0O
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The second characterization theorem is due to Garkavi, andifhe

proof given below is due to Deutsch and Maserick [10, p. 524].

3.5. Theorem. (Garkavi: Second Characterization of Best Approxi-
mation) Let K be a closed convex subset of a normed linear space
X, and let f e X~K. Then m ¢ P(X, f) if and only if for

each k € K, there exists L = Lk € X* such that

(3.5.1) L is an extreme point of B* ;
(3.5.2) ReL(T - k) 2 0 ;
(3.5.3) L(f =m) = ||f - w|] .

Proof. Assume w7 € K and such an L exists for each k ¢ K . Then
I1£ - m|| = ReL(f) - ReL(m) < ReL(f) - ReL(k) < |I|f - k|| . Since i}
k 1is arbitrary w ¢ P(K, f) .

Let m e P(K, f) . Since Lw is a w*-closed subset of
B* E,E*(O, 1) , L“ is w¥-compact. Therefore L1r has extreme
points by the Krein-Milman theorem. Since L1T is also an extremal
subset of B* these extreme points are extreme points of B* , and
they satisfy (3.5.1) and (3.5.3).

Now suppose k ¢ K and ReL(m - k) < 0 for all extreme points
L of Lw' Let N be the convex set {x e X: x =2k + (1 - \)7m, A e [0,1]}.
We see that = ¢ P(N,‘f)_ and N is in the span of 'k and w , which
is two dimensional. Therefore, by lemma 3.4 there exist m < 5

(complex case) or m < 3 (real case) extreme points L, of B% ,
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and m positive real numbers A; such that Ji; =1 and
Li(f -m)=||f-7||l,1=1, ..., m with Re 1§1 AiLi(ﬂ -w) 20
for‘all w € N . This last inequality is a restatement of (3.4.2).
Since Ai >0,i=1, .., m there must exist we N and j such
that 1 < j <n and ReLj(n - w)»z 0, or, since we N,
AReljﬁ'- k) 20 for A >0 giving the required contradiction. [

CHARACTERIZATION IN L1 AND C1

The two characterization theorems just proved can now be applied
to the special case of approximation in Ll(I, 2, ¥) . The results
are all based on the Riesz Representation theorem, which shows the

nature of the equivalence between L_ and L? .

4.1. Theorem. (Riesz Representation Theorem) If (T; 2,~p)
(see I-2,7) is a positive, o-finite measure spéce, then there is
an isometric isomorphism between LT(T, Z, u) and L_(T, Z, )

where L ¢ t? and g € L are related by
L(f) = Ifgdu‘ and |ILII = Ilgll_ .
Proof. [16, p. 289]. O

‘This theorem is crucial to the application of the previous
approximation theorems to the space L1 . Recall that we have
decided that the measure space will not be exotic. The use this

theorem will be put to indicates that a good definition for "exotic"
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would be the breakdown of the Riesz representation theorem.
The approximation theorems also indicate the need for a
knowledge of the extreme points of the closed unit ball in Lt .

Hence we prove the following handy lemma.

4.2, Lemma. For L1 , L 1is an extreme point of the closed unit
ball B* in LT if and only if there exists a g e L such that

lgl = 1 almost everywhere and L(f) = Jfgdu for all £ ¢ le.

Proof. Since the map and its inverse of theorem 4.1 preserves the
extreme points of the unit balls we need only show that g 1is an
extreme point of the closed unit ball B in L~ if and only if
lgl = 1 almost everywhere.

Assume |g(t)| =1 for t e A where u(T~A) =0, and
that there exist £ and h in E', and a ¢ (0, 1) such that
g=o0f + (1 -a)h . For all te A,
lg(e)| = 1= Jaf(t) + (I - a)h(t)| < alf()] + (A - a)[h(t)]| <1

since h and f have absolute value at most 1 . The functions

f, h and g , ‘therefore, map A into the unit disk of the
complex plane. However |g(t)| =1 'Vt e A implies g(A) is a
subset of the boundary of the unit disk. But the boundary of the
unit disk is precisely the set of extreme points of the unit disk
and so if g(t) = Af(t) + (1 - A)h(t), A € [0, 1] , then

f(t) = h(t) = g(t) Vvt ¢ A . Since u(T~ A) =0, g is an extreme

point.
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If g 1is an extreme point and lg(t)l =1 for t ¢ E where
uw(E) > 0 , then, since gl <1, lg(t)| <1 for all t e E .
Recall the function sgn is defined by sgn f£(t) = T%%%%T if
f£(t) # 0, and sgn f(t) =0 4if £(t) =0 . Let f£(t) = g(t) = h(t) '
for t e T~E and let £f(t) = sgn g(t) and h(t) = (2[g(t)] - 1)sgn g(t)
for t € E. Then IIfl]l =1 and [lhll <1 and %’f(t) + %-h(t) = gt;)
for teT~E. If tekE,qf(t) +3h(t) = lgt)lsgn g(t) = g(¥) .
But h(t) = £(t) for t ¢ E , and u(E) >0, so g is not an

extreme point. [

Now thecharacterization theorems can be applied.  The first
theorem is a restatement of theorem 2.9, using theorem 4.1. The

proof will not be included.

4;3, Theorem. Let K be 'a closed convex subset of L, and

f e L1 ~K. Then me P(K, f) 1if and only if there exists g ¢ L

such that
(%.3.1) el =1 ;

(4.3.2) Rej Tgdu = sup{ReJkgdu:, k € K} ;
(4.3.3) J(f - mgduy = Jlf - wldy .

4.4. Corollary. Let K be a closed convex subset of ”Ll and let
f e_Ll ~K. Then w e P(X, f) if and -only if there exist g ¢ L,

with norm 1 such that
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(4.4.1) Rej(n - k)gdu 2 0 for all k € K ;

(4.4.2) g(t) = sgn(f(t) - n(t)) for all t ¢ zZ(f - 1) .

(Here, and elsewhere, Z(h) denotes the zero set of h and the bar
on _Egg(h(t)) denote the complex conjugate of sgn(h(t)) so that
smh) = 8L g e pzm o
Proof. (4.4.1) follows directly from (4.3.2). (4.3.3) implies
J((f -m)g - |f~-m|)dt =0 . But |g| <1 almost everywhere by
(4.3.1) so (f-m)g-|f-7m| <0. Thus (f-mw)g=|f -"n|, or
g = ;EH(f - n) whenever f -7 2 0 ..

The converse again comes from 4.3, or it can be proven directly
as follows: Jlf - 7w|ldp = j(f - mw)gdy < Re[j(f ~ k)gdu] by (4.4.1)
and (4.4.2). But Ref(f - k)gdu < J!f.— kldu since |lgll_=1;

so me P(K, £) . O

4.5. Corollary. Let K be a closed convex subset of L, , and

f e L1 ~K. Theﬁ‘ T ¢ P(K, f) if énd only if there_exists a
u-measurable g defined on Z(f - 7) with |g| <1 almost every-
where and

(r = k)sgn(f - w)du = ReJ g(m - k)du

(4.5.1) Rej
Z(f-7)

T~Z(f-7)

for all k ¢ K .
Proof. Let 7 ¢ P(K; £) . Then (4.4.1) and (4.4.2) imply

(v - k)sgn(f - w)dp + Rej (m - k)gdu 2 0

e
T~Z (£-7) Z(f-m)
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where |lgll = 1, which immediately gives (4.5.1).
Converéelf*dbsuming g as above exists, we extend it to T by
defining g(t) = sgn(f(t) - w(t)) for t £.2(f - w) . Then the

extended g satisfies the requirements of 4.4 and T € PR, £). O

If K is a subspace of Ly » then these corollaries can be
improved. The following theorem is a standard one proved by many
authors, among them Kripke and Rivlin [24, p. 104] who gave a proof
by considering the derivative of the norm. The proof given here

follows the same lines as Singer's proof.

4.6. Theorem. Let M be a closed linear subspace of L, , ‘and
f'e L1 ~M., Then‘ me PM, £) if and only if
(4.6.1) IJm sgn (f - n)duf;s J m|dy for all me M .
Z{(f-m)
Egggg. Assume T € P(M, £) . Then by cérollary 4.5 ﬁﬁere exists a
g as given in the corollary satisfying (4.5.1) for all k e M.
For each m let m=7 -k . Since M 1is a linear subspace we .see
that
Rejm Egakf - m)dpy 2 -Ref gmdy for all me M .
Z(f-1)

We can replace m by -m to show that only the equality is allowed.
Taking the absolute value of both sides and recalling that (gl =1
then gives (4.6.1).

For the converse assume the inequality is valid. Following

Singer we choose u ¢ M arbitrarily, and define g by
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[ sga(f(t) - m(t)) 4f t {4 Z(f - 1) ;

0 1f t € 2(f - ) and either u(Z(f -7)) =0

or u= 0 on Z(f - 7m) ;

g(t) =ﬁ
_J u ;gr;(f - m)du
T Z(f-m) \ sgn u(t) otherwise.
J fuldu
\ Z(f-1)

We see that |g|l = 1 outside 2(f - T) , and on this set (4.6.1)
ensures that {g| s 1 . Therefore ge¢ L , and if

HCZ(E -7))>0 and u=20 on Z(f - 7) ,
jSUdv - j u-EEEQf - m)dy = 1 ¢ J u sgn(f - m)dy
T~Z (£~1) ™2 (£-7)
s (0. .

If u@E -1)) =0 or u=0 on E(f = m) then (4.6.1)
implies the same result straightforwardly. We also gee that

Is(f -1) = Ilf - nldy = ||£ =7|| , and therefore,
[ = u|| = Jg(f - m)dy = Jgudu
- Js(f -7 = u)du £ Ilf -7 wuldd ,

where the last step follows since [g| £ 1 almost everywhere. There-
fore [|f = || £ [|f = (*+u)|| . Since M is a subspace and u

is arbitrary, 7 e P(X, £) . DO
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It might be expected that if M is finite dimensiopal lemma
3.4 would produce some interesting results, but unfortunately the
only result is a trivial refinement of the previous theorem. If
M= span{¢1, censy ¢n}‘ then g can be replaced by § Aigi where

n i=1
li 20, .zl Ai =1 and lgil = 1 almost everywhere, i =1, ..., n .
This doeslgot change (4.6.1) at all.

The second characterization theorem gives similar results to
the preceeding section. They are based, as usual, on the Riesz
Representation theorem and the form of the extreme points of the
closed unit ball. Note in particular that theorem 3.5 undergoes
no change if K is a linear subspace. In fact, Singer's second
characterization theorem [40, p. 62] for linear subspaces is the

same, so his corollaries can be used here. Some of these corollaries

are reproduced below. [40, pp. 63-67]

4.7. Theorem. Let K be a closed convex subset of(_LI s and

f e L1 ~ K . Then the following are equivalent.
a) meP(, f) .

b) For each k ¢ K there exists ¢ =q € L with [q] =1 a.e.

such that
(4.7.1) ReJ(ﬂ -k)gdu 20
(4.7.2) j(f - m)q dy = I!f - 7|dy
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c) For each k € K there exists a J-measurable g = g, Wwith

lgl =1 a.e. on Z(f - ) and

(r - k)sgn(f - m)du = —ReJ (m - k)g du .
Z(f~m)

(4.7.3) 'Ref
T~Z (£-1)

d) TFor each k € K there exists a u-measurable g = gk with
lgl =1 a.e. on Z(f - m) such that
(4.7.4) Jlf - 7wldu < Rej (f - k)sgn(f - w)du
T~Z (£-1)

+ Ref (f - k)g du .
Z(f - m)

Proof. a) <> b). Apply theorems 3.5, 4.1 and lemma 4.2.

b) = c). Since Iql =1 a.e., (4.7.2) implies q = sgn(f - I) on
T~ Z(f - 7) . Applying this to (4.7.1) results in (4.7.3) as in
the proof of 4.4.

c) = b). This proof follows the same lines as the converse in 4.4.

b) = d). (4.7.1) implies
Rej(f - m)q du < ReJ(f - k)q du .

Then by (4.7.2) Jlf.- wldu < ReJ(f - k)q du and, as in 4.4, (4;7.2)
also implies q = EEE(f -7) on T~ Z(f - ) . These two observa-
tions imply (4.7.4).
d) = b). Let

g(t) teZ(f -

q(t) = ¢ ___
sgn(f - n) teT~2ZE - m)
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Then (4.7.2) follows immediately and

Rean - k)q du = Rej

T~Z (£-1)

(f - K)sgn(f - m)du + ReJ (f - kg dp

- Jlf - m|dyp

v
o

Z(f-m)

where the last inequality is implied by (4.7.4). 0O

4.8. Corollary. Let K be a closed convex subset of L1 , and

f el ~K. Then m ¢ P(K, f)

(4.8.1) Ref (r - k)sgn(f - w)du 2

™~z (£-7)

for all k € K .

Proof. If = e P(K, f)

if and only if

—J |m = ki{du
JZ(f-m) '

then theorem 4.7 part (c) holds. Then for

the g in theorem 4.7 (c),

<

JZ(f—w)

ReJ (m - k)g du <
Z(f-m)

lj (r - k)g dul <
dZ(f-m)

|7 - kldw , and (4.7.3) implies (4.8.1).

For the converse assume (4.8.1), and choose u ¢ K arbitrarily.

Define g by

| sgn(r
g, (t) = g(t) =
1
Then -Rej (r - u)g du

Z(f-m)

By 4.7(c), ™ € P(K, £f) .

O

IA

u) if te 2(f - 7m) ~ Z(w = u)
if te Z(f -7) n Z(m - u) .
-J 17 = uldu
Z(f-w)

ReJ
T~Z(f-m)

(r - u)sgn(f - mdu .
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If K is a subspace, then Singer gives another corollary

which replaces (4.8.1) by

(4.8.2) m sgn(f - m)du 2 Im|dy for all me K .

S ]

T~Z (f-m) Z(f-1)
This can be easily derived from (4.8.1). The above characterizations
are, of course, equivalent to corollary 4.4 (or 4.5). 1In fact,
Corollary 4.5 is almost identical to theorem 4.7, part c).

In some restricted cases sharper results can be derived. Con-
sider the real case, L?[T, u] where T is an interval [a, b] of
the real numbers and that yu is finite, and, as usual, nonatomic.
Let the subspace M be equal to sPan{¢13 “oes ¢n} where the set
{¢i}2=i is linearly independent, i.e., approximation from a finite
dimensional subspace.

Also, assume the existence of a set of points x, which

i
satisfy a = X, <'x1 < vee < X, < X 41 = b , ’and
r+l 1 Xy
Z (-1) J ¢j(t)d1~|(t) =0, =1, eeey Do
i=1 X, h

i-1

Then the following theorem can be proved;but, unfortunately, the
conditions are only sufficient for a best approximation, not necessary.
However, Usow [44] has used the theorem to advantage in producing an
algorithm. It can also be used when applied to algebraic and trigono-

metric polynomial approximation.
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4.9, Theorem. Let {¢i, i=1, ..., n} be a set of linearly

independent functions in Ll[T, u] where T is an interval [a, b]

in R and u is finite and nonatomic. Let {Xi’ i=0, ... r+ 1}

i < =x < < ... < < =
be a set of points, r n , such that a xo x1 X, xr+l‘L_b

and

| r+1 ;4
(4.9.1) Y (1) J ¢(0)du(e) =0, J=1,...,n.
i *i-1

If m™ € M interpolates £ at {xi: i=1, ..., r} and f -
changes sign at precisely the points {xi: i=1, ..., n} then

T e P(M, f) .

Proof. Let s(x) ‘a(—l)l y X € (xi-l’ xi) , and s(xi) =0,
i=0, ..., r+ 1, where o = -sgn(f(a) - 7(a)) . Since f -
changes sign only at the X; i=1, ..., r, sgn[f(x) - 71(x)] = s(x) g
b i
for all x ¢ Z(f - m) . Then (4.9.1) implies J s(x)¢j(x)dy(x) =0, :
a n :
j=1, «¢e, n . Choose me M arbitrarily. Then m = Z Ai¢i so
b b b i=1
that I msdy = 0 , and J m sgn(f - m)dy = J m s dyp - f ms duy 2
a ' a ' a Z(f-7w)
J Im{du . Therefore by theorem 4.6, since m is
Z(f-m)
arbitrary, e P(M, f) . [
It is natural then to ask of the existence of such critical
points. Hobby and Rice [18] have shown that they do indeed exist

in most cases. The theorem is presented here with a very nice

proof by Alan Pinkus [34].
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4.10. Theorem. [Hobby-Rice] Let {¢i}2=1 be real functions in

;Lﬁ[[o, 1], u]:, where u is finite and nonatomic. Then there

r+l :
exist {ui}i=0 » T <n such that 0 =u, <u < ...<u < u g = 1
and
r+l . fu,
(4.10.1) Z (—1)J f J ¢i(x)du(x) =0,1i=1, ..., n.
j=1 uj_'1
Proof. Recall that a mapping T:R" +R" 1is odd if T(x) = -T(-x) .

For a set Q in IRP+1 let 99 be the boundary (the closure without

the interior) of © and let C(BQ,ZRP) be the set of all continuous
maps from 3Q to R . The proof depends on the following version
of the Borsuk Antipodality theorem [5, 29]:

Let Q be a bounded, open, symmetric neighbourhood of 0 in
R*! and Tec@e, BY) , with T odd on 3 . Then there exists
x* € 3Q for which T(x*) =0 .

For the Hobby-Rice theorem, let S = {x = (xl, .o iy xn+l):

n+l ,
z Ix,| = 1} , and define y.(x) =0, y,(x) = % I ]!, =1, «c., n+ 1.
i=1 1 0 J k=1 k
Let T: S »R" be defined by .
n+l Yj(x)
Ti(x) = z (Sgn xj)J ‘¢i(t)dU(t); i=1, oo, n.
j=1 Y &)
n+l J 7
Certainly {x: 2 -lxil < 1} 4is symmetric and open, and S 1is
i=1

its boundary. Since yj(x) = yj(—x), Ti(x) = —Ti(-x) and T is odd.

It remains to show that T is continuous with respect to x .
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The y. are certainly continuous functions of x ,

i=0, «+., n+ 1. Consider the integral

yj(X)
J ¢4 (E)du(t) .

yj_lcx)
We can write this as
y; (0 ¥ @)
f ¢, (e)du(e) - [ 5 (B)au(e) .
0 0

y (x)

Therefore we must show that the integral F(x) = J o (t)dut) is
0

a continuous function of x , in which case
J ¢i(t)d7~| (t)
yj_l(X)
is the sum of two continuous functions which is itself continuous.
Now, letting f(x, t) = ¢(t)w[0,y(x)] , Where ¢ is the
characteristic function, F(&x) = |f(x, t)du(t) . Choose a point
x € S and any sequence (xn) converging to x . Since y is
continuous, lim f(x, t) = £(x, t) for all t except at t = y(x) .
n-re
But u is non-atomic so f(xn, t) converges to f(x, t) almost
everywhere since u{t: t = y(x)} =0 . Also lf(xn, )| < [ ()|
and |f(x, t)| < |¢(t)| for all t ¢ [0, 1] . Applying the Lebesgue
Dominated Convergence theorem [15, p. 328], 1lim F(xn) = F(x) .
n
Since this is true for any sequence x converging to x , F is
a continuous function of x .
Now. consider Ti' Sgn xj is a continuous function of xj

except where xj changes sign. At this point xj = (0 ;3 but then

yj;l(x) = yj(x) , so the integral is also zero. Since the integral
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is continuous the product must approach 0 continuously so

JY-CX)

sgn(xj) ¢4 (£)du(r)

yj_l(x)
is continuous in x . Therefore T e C(S, R") and we can apply

Borsuk's theorem to find x* with

ntl Yj (X*)
z (sgn x?)j o, (t)du(t) =0, i=1, ..., n.
5=1 Py Jant
j-1
If x*¥* =0 or sgn x? = sgn xij—l then the j-th term of the

sum can be removed and the ,yj(x*) relabeled to obtain {uj};=1 with
n+l . fu.

I (1) J T ogy®)ue) =0, i=1, ...yn . O

j=1 uj-l

4,11. Definition. A set B is a cone if Ab ¢ B for all A 2 0

whenever b € B . If B is also convex then it is called a convex

cone.

The next theorem involves an example of a convex cone in C?
and a characterization of best approximations from such a cone. The
results were first shown by Duffin and Karlovitz [15, p. 672, thm. 7].

First, two lemmas are proved.

4,12, Lemma., If K 1is a convex cone in a normed linear space X

and L € X* with sup ReL[K] < « , then sup ReL[K] = 0 .
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Proof. If sup ReL[K] > O then there exists k € K with

ReL(k) > 0 . By definition 4.11 AReL(k) > 0 for all A =2 0 so

v

sup ReL[K] = » . Since 0 ¢ K, sup ReL[K] > 0, so

o. O

sup ReL[K]

For the lemma to follow, let M be an n-dimensional subspace

v

of CT(T) , and let K = {k ¢ M: k(t) 2 0 for all t ¢ T} . Let

i

f e Cy(I) ~K, and define the set C = {Af - k: A ¢ R, k ¢ K} .
For each t ¢ T , let e be the linear functional on N = span{M, f}
having the values et(f) =0 and et(m) =m(t) for all me M.

Let E = {et: t e T} .

4.13. Lemma. Suppose there exists m' € M such that mn'(t) > 0
for all t ¢ T . Then the convex cone, con(E) , generated by E
is equal to the polar C° , of C , where

€ ={L ¢ N*: L(u) €1 for all u e C} .

Note: For the definitions of some terms to be used in the proof,
see [22, pp. 183-184]. By our definition 4.11 we have assumed the
vertex is always 0, and the vertex is always in the cone (the cone

is pointed).

° is the convex

Proof. By the definition of the convex cone C , C
cone {L e N*: L(f) =0 and L(k) 20 for all k ¢ K} . We see that
C° 1is w®-closed in fact, closed, and E < C° . Therefore con(E) ¢ C° .

If F e C° ~ con(E) then we can separate F and con(E) by a linear
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functional ﬁ(u) = u(h), u ¢ N, for some h e N~ {0} [16, p. 417,
theorem 10, and p. 421, theorem 9]. Therefore there exist real
numbers ¢ and € > 0 such that F(h) 2 ¢ and L(h) < c - ¢ for
all L e con(E) . Since F e C°, F(f) = 0 , and similarly,

L(f) =0, L ¢ E;;(E) . Now h e N implies h = Af + m for some
me M, and then F(m) 2 c , L(m) < c - ¢ for all L ¢ E;EkE) .
Therefore L(m) < F(m) . But L ¢ con(E) implies oL ¢ con(E)

for all o =2 0 . Since F(m) dis bounded then L(m) < 0 for all

L € con(E), or et(m) £ 0 forall t e T . But et(m) = m(t) so
m(t) <0 and -me K. Since F e C° then F(m) < 0 . But

oL(m) < F(m) for all o >0 and L ¢ con(E) so we can choose

o =0 and F(m) > 0, a contradiction.

To complete the proof we will show that con(E) = con(E). The
cone con(E) is pointed, and it is also a proper cone. If it were
not proper then there would exist a t such that etCm') <0, a
contradiction. Also, since con(E) is the convex cone generated by
E , we see that con(E) is the cone generated by the convex hull,
co(E) , of E . Because of the existence of m', co(E) does not
contain the vertex, 0, of con(E) . We note now that E is in fact
closed, as can be shown quite straightforwardly by considering any
convergent sequence in E . Since M 1is finite dimensional and all
functions are continuous it can be shown that E is bounded, and
therefore compact. By theorem G in [38, p. 78] co(E) is compact,
which in turn implies that con(E) is closed [22, p. 338]. Therefore

con(E) = con(E) =C° . O
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4.14. Theorem. Let M = span{¢1, ey ¢n} (= CT be such that there
exists m e M witﬁ m(t) >0 for all t e T . Let
K={meM: m(t) 20 for all t e T} . Then 7w ¢ P(K, £) if and

only if there exist distinct points ¢t tS and positive

12 "o

numbers € ceey E such that n(ti) =0,1i=1, ..., s and

12 s

S
(4.14.1) IJm sgn(f - w)du + Z eim(ti)l < Im|dy for all me M .

i=1 jZ(f—n)
Proof. Assume w7 e P(K, f) . Since K is a convex cone theorem 4.3
and lemma 4.13 imply the existence of g ¢ L_ such that
Jwgdu =0 2 Jkgdu for all k ¢ K, Hgll°° =‘l , and
span{M, f}

—jkgdu

g(t) = sgn(f(t) - ﬂ(;)) for all t e T~ 2(f -7) . Let N

and C = {Af - k: A ¢ R, k ¢ K} . Define F ¢ N*¥ by F(k)
for each k e M, F(f) =0, and extending linearly to N . Then
F(u) = Jugdu <0 for all ueC and so F ¢ C° . Then lemma 4.13
allows us to write F as a positive combination of points in E .

Therefore there exist positive numbers €45 i=1, ..., s and points

s
e of E such that F = 2 €.e where s < » ., Therefore for
t. it,
i s i=1 i
each me M , ngdu + 2 €58 (m) =0, or
i=]1 i
s r
IJm sgn(f - mdu + ] em(ey)] = |- ngdy |
i=1 Y7 (f-m)
r
< jm|du .
! 7(f-1)
s
Since F(r) =0 , 121 ein(ti) =0. But €; >0 and w20 so

n(ti) =0, i=1, ..., 5.
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For the converse, define a linear functional G on M by
s
G(m) = Jm sgn(f - w)dp + Z eim(ti)
i=1 '
If we let p(m) = I Im|duy then it can easily be verified that
z(£-1)
p is a semi-norm on Cj(T) . From (4.14.1) we have [G(m)| < p(m)
for all m ¢ M . By the Hahn-Banach theorem G has an extension to
all of C?(T) (which we denote by G again) with |G(m)| < p(m)
for all m ¢ C?(T) . By the Riesz representation theorem, there

exists g € L_  such that

G(m) = —jmgdu .
Thus for all me M ,

S
jm sgn(f - m)dp + z sim(ti) = —ngdu .
i=1

In particular, for k, m ¢ K,

S
-1-2.1 g; (r = k) (4)

(4.14.2) J(ﬂ - k)sgn(f - m) + j(ﬂ - k)gdu

s
Y oegk(ty)
121 i i

\%

0_ -
. R
Now define a linear functional H on Cl by

H() = [u[sgn(f - m) + gldu .
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Then we have H(m - k) 2 0 for all k ¢ K . Since
|G(f - m)| < p(f = w) =0 it follows that J(f - 7)gdp = 0 . Thus

p

H(f - m) = J(f = m)sgn(f - m)du + J(f - 7)gdu
[
= ||f - m|dp
J
= ||f-al] .

R
Also for any u € C1 s Wwe have

[H(u)| = Ij(u sgn(f - m) + ug)dul
< Iju sgn(f - m)dup + Ijugdul
< J fuldu + J fuldu
T~Z(£-m) Z(f~m)
= ||ull ;
consequently ||H|| = 1. By theorem II-2.9 then 7 ¢ P(K, £) . [

BEST ONE-SIDED A?PROXIMATION

Here we restrict ourselves to the real case and consider K to
be those functions which are all less than or equal to some chosen
f . The set K can be further restricted, for instance, by letting
K 1lie in a suitable subspace. Unfortunately our previous theorems
turn out to be rather trivial extensions of the basic definition of

best approximation, as the following theorem shows. We will content
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ourselves with sketching two proofs to show the lack of information
in the characterization theorems.

Also note that we have defined best approximation from below,
but that best approximation from above is the same except for the

obvious changes.

5.1. Theorem. Let f ¢ L? , and define, for any convex set

R
1 b

m e P(K, f) if and only if Jﬂdu = sup{Jkdu: k € K} .

Cel the set K = {k ¢ C: k(t) < f(t) for all t ¢ T} . Then

Proof. Since Jlf - kidp ='J(f - k)dp for all k ¢ K this is a
trivial theorem. As an alternative proof we can apply corollary
4.8 (assuming f ¢ K) . Recall the inequality (4.8.1) specialized

to the real case

(mr - k)sgn(f - m)du 2 —J [" - kldy for all k € K .

jT~Z(f—n) Z(f-m)

In the right side since the integral is taken over Z(f - m) we can
replace m by £ , then remove the absolute value signs as f 2 k ,

and then put back 7 . We also note that sgn(f - 7) =1 on

T~ Z(f - m) . We then have
J(w - k)du 2 0 for all ke K,

which is what we needed. The converse follows also. (]
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Therefore we need some different methods to discover more useful
results. Bojanic and DeVore [4] and DeVore [12] have investigated
this subject and have come up with a characterization for best omne-
sided approximations. Bojanic and DeVore dealt Wi;hvpolynomial
approximation which DeVore then generalized to cases where C (see
theorem 5.1) is an n-dimensional Haar subspace M , where n < = ,
We will present some of DeVore's results here.

First we will have to define Haar systems. Attention is
restricted to an interval [a, ] in R, and u is some finite,
non-atomic measure. The last condition is not.absolutely necessary
but in this thesis we have aiready noted that u »will be non-
atomic in general. DeVore [12] summarizes the’major fropérties‘of
Haar systems, but for a deeper study Karlin and Studdén's textjis‘a
good reference. [21, chapter 1] Note that' sometimes (DeVore),a"

Haar system is called a Chebyshev system.

5.2. Definition. A set of functions, {¢1, ...,_¢n} in CR[a, b]
is a Haar system if for any m ¢ span{¢l, oo ¢nl.’; mz0, m
has at most n - 1 zeroes in [a, b] . Equivalently, every

determinant,
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made from n distinct points X,, ..., X in [a, b] is non-zero.

1’

If a basis of a subspace is a Haar system, then the subspace is

called a Haar subspace.

It seems reasonable that, for a Haar system at least, the
points where f and 7 meet (the interpolation points) will be
of importance. The following lemma, due to DeVore, immediately

indicates how the L1 integral may be related to these points.

5.3. Lemma. Let M be a Haar subspace of (finite) dimension n.
If tl,...., t, are any ‘n. distinct points in [a, b] ,  then there
exist n real numbers Al’ ...,'Ah such that for any m e M we

have

b n
J mdy = ‘Z Aim(ti) .
‘a i=1 1

Proof. [12, Lemma 4.1]. This is a quadrature ‘formula for M . The

formula reflects the fact that the Haar property implies the point
evaluations at t;» ..., t, are 1inear1y'independéﬁt'in‘tﬁe
n—-dimensional space M* and so the linear functional defined by

the integral is a linear combination of these point evaluations. O

We can now use this quadrature formula to give a characterization
theorem for best approximation. To make it a little more general
DeVore has introduced the concept of essential zeroes, and allowed
f to be any real measurable function. The proof is no more com-
plicated if we assume f to be discontinuous so wg"will fqllow

DeVore's presentation.
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5.4. Definition. Let f be a real function on [a, b] . A

point t, € [a, b] is an essential zero of f if for every e > 0

and neighbourhood N of t, there exists a point .t = to, teN
such that |£f(t)| < ¢ . This concept allows us to cope with dis-
continuous functions. Note that any zero of a continuous function
is also an essential zero. One useful property says that if £

has no essential zeroes and no zeroes on a closed set K in [a, b]
then using a simple compactness argument, there exists a positive

e such that infl|f[K]| 2e .

5.5. Theorem. [l12, Theorems 4.1 and 5.1] Let 'M3 be-an_n«dimensiona1
Haar subspace of L?[a, b] ,lf exiﬁta, b], and:
K={k e M: k(t) < £(t) for all t ¢ [a, b]} .
(i) If me PK, £) and £ - 7 has precise1y ,m éerégg,
m=<n, and all these zeroes are essential zeroes;tﬁen
these zeroes are nodes of a quadrature formg}a for M W%th.,
non-negative coefficients.
(i) If m e K and ty, 1= 1, ..., m , are essential zeroes of
f - m such that they are nodes of a quadrature formula for

M with non-negative coefficients then m ¢ P(K, f) .

Proof. (i) Let tl, cees tm be the essential zeroes, m < n ,
of f -, and assume T ¢ P(K, f) . Let t o1 e tn’ pe any
other points so that we have a full complement of n distinct
points in [a, b] . Apply lemma 5.3 to find real numbers A; such

that
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b n
j mdy = z Aim(ti)
a i=1

for all me M .,
n 3
Assume that Z |A,] > 0 . Now define, for r > 0 , the
. i : T ;
i=mtl ‘ :
function g € M satisfying

- %~ i=1, .y, MW
g(ti) =
rs‘gn‘A:.L i=m+1, ..., n
Then, by the quadrature formula,
& n
Jgdu == Z Ai + r -Z lAiI
i=] i=mtl

Choose r large enough to ensure that this expressibn is fgsitive.
Since g 1is continuous there exists an open set (in the relative
topology) N such that {tl, cees tm} <N, and g(t) < 0 for
all t € N. We see that the set H = [a, b] ~ N is compact and
contains no essential zeroes or zeroes of f -1 , and therefore
there exists € > 0 such that £(t) - m(t) 2 ¢ for each t ¢ H .

Let n = e/sup{lg(t)]l: t ¢ [a, b]} . Now £ -7 =2 0 so we have

IA

ng(t) 0 < f(t) - 7m(t) for all t ¢ N., and also

A

f(t) - n(t) , t e H.

IA

ng(t) < n sup{ig(t)l: t ¢ [a, b]} = ¢

Therefore ng(t) < £(t) - n(t) for all t ¢ [a, b] , and we have
that ng + m™ ¢ K. Also, r was chosen to ensure that Jngdu:> 0

(since n > 0) , and therefore ng + v is a better approximation
n .
to f, a contradiction. Thus ) lAil =0, and all the "extra"
i=mt1
Ai vanish.
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It remains to show that the rest of the Ai are non-negative.

Suppose there exists j, 1< j < m , such that Aj < 0 . Then

take g e M to satisfy, for some r > 0 ,
-1 if i = j
g(ty) = -
~r if 1 =3 .
Then, again, we have jgdu = - Z Ai + rlAjJ , and can choose r
izj
large enought to make this positive. As before it 1s possible to
show that ng + m™ ¢ K, and we have a contradiction.
(ii) If ti,vi =1, 2, ..., m , are essential zeroes of f - 1
then for every k ¢ K, ﬂ(ti) Zlk(ti) . For, suppo$é~'ﬁ(tj)‘— k(;j) =
= -§ < 0 for some 1< j<m and some k:elK . 'By continuity, there
is a neighbourhood N of tjA_such that - %§-< m(t) - k() < - %- for
every t 1in N . Since tj is an essential zero of f - 7 there is
§
2

a t in N for which -

8
0 < f(to) - w(to) <75 . Thus

£(tg) - k(tg) =br(ty) = k(ty)] + [£(ty) ~ ()]
o) S - .
< ~32%3
=0,
which contradicts that k ¢ K . Thus w(ti)Z'k(ti); i=1,2, ..., m

and so

m m
Jkdu = 1 Ajk(e)) < ) Agm(e)) =7deﬂ'""
i=1 i=1

for all ke K. So mwe PR, £) . 0O

0f course, this theorem is very specialized. Novwork has been
done where C 1is more general, say, any finite dimensional subspace.
This direction is open to further research.

DeVore goes on to investigate quadrature formulae with positive

co-efficients in the case where the set {¢1, ceey ¢n, f} 1s also a
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Haar system., He shows that such formulae always exist in this rather
special case. This type of formula can bevpsed whep we-cbnsiﬁer
polynomials, and especially trigonometric pblynomials,where some very
powerful results on interpolation are available. As an example we

quote a theorem of Bojanic and DeVore [4, p. 152].

n

5.6. Theorem. Suppose that f ¢ C?[a,vb] and that g—iﬁ(t) >0
R o dx

for all te (a, b) . If n = 20 then the best approximation from
the set of polynomials of degree at most n - 1 to f“ from below
is defined as follows

m(eg) = £Qe), W) = (e, E =1, .an, £
where ti are the nodes of a Gaugsrquadrature. ,SimiIAr;fqrmu}ae

but for different quadratures hold if n =20 + 1 . .

APPROXTMATION WITH RESTRICTED RANGE AND OTHER CONSTRAINTS

Lewis [25] has chosen the set K to be .
K=1{k ¢ M: £(t) < k(t) € u(t) for all t gs[a, b]}
where all functions are continuous on [a, b] and £ énd' u are
chosen to bracket the chosen function ,f" i.e.,
£(t) € £(t) < u(t) for all t « [a,‘b]:
£(t) < u(t) for all tv e [a, b] . |
He calls this approximation with reétricted range and derives char-
acterization theorems for the uniform norm. However, the L, case

seems to be untouched and is open to investigation..
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One can also, for instance, take K to be those functions in
a subspace M which interpolate f at some points, Léwis‘[25]
has stated the following theorem, which can be easily proved using

corollary 4.8.

6.1. Theorem. (Lewis) Let £ ¢ L?[a,_b] and M an n-dimensional
subspace of L?[a, b] . Define K = {k ¢ M: k(ty) = £(ty), i =1, ..., m} ,

.«.y t are m<n points in [a, b] .. Then

where tl’ t n

2’
™ e P(K, £) (in Li[a, b]) if and only if
b .
IJ ¢ sgn(f - m)dul SJ ¢y ldu
a Z(f-w) ~

for i=1, ..., n = m where ¢1, vers ¢n—m is-aibasis of K-m.

It would be interesting to see if this result could be extended
further, possibly by the use of some of DeVore's qua@ratgre formnlée.
Rice [37] has doné a iot of work with best approximation froi |
"varisolvent" interpolating functions (with some special limit
properties). He gives conditions for best_approximations to be
interpolating functions, but the converse is unfortunately less
well covered. In general best approximations from varisolvent
functions in L?[O, 1] are interpolating functions. The varisolvent
condition is quite restrictive, as varisolvent functions must satisfy
a type of Haar condition and any sequence of varisolvent functions

with a 1limit must approach this limit with a uniform rate of convergence.
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We can put other conditions on the co-efficients of the basis
functions to construct more convex sets K ., Althdugh some work in
the uniform norm has been done, little is available for L, + One
special example of this type, that of spline approximation;'haé
been worked on quite extensively, but the topic haé.a'véry wide

range and is a bit beyond the scope of this thesis.
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Chapter III

UNIQUENESS OF BEST APPROXIMATIONS

INTRODUCTION

After having found a best approximation,‘it is natural to
investigate the existence of another one. This‘chapter starts by
giving criteria for the uniqueness of a best approximation, and’
then introduces Chebyshev sets, which are sets containing.unique
best approximations to every point in the whole space. A theorem
characterizing Chebyshev.setésis given, and then used to prove

various examples.

UNIQUENESS OF A BEST APPROXIMATION

In this section a best approximation is éssumed to be known,

and conditions are given for it to be the only best aﬁproximation.

2.1l. Theorem. Let K be a convex subset of Ll(T,-Z,iu) - If
T ¢ K satisfies

(mr - k)sgn(f - m)du > -I ’In - k|dy for all k € K~ {nm}

(2.1.1) ReJ
| 2 (£-1)

T

then {7} = P(K, f) .

Proof. By Corollary (i144.8), m e P(X, £) . Choose an arbitrary u

in K~ {7} and define g e L, by

46—



-47-

sgn(f(t) - w(t)); t £ Z(f - m)
g(t) = ____ '
I sgn(n(t) - u(t)), t e Z(f - m)

where I 1is given by the expression

J (r - u)sgn(f - w)du
T~Z (£-7)

I =

J [m ~ uldu
Z(f-m)

If the denominator vanishes let I = 0 .

Recalling the definition of sgn(m - u) we see that

(2.1.2) Jg('n - u)du G - u)sgn(f - mdu - 1 -

_fT~Z(f—n)
. f (m - w)sgn(f - m)du
T~Z (£-1) “

=0’

and also, Igl <1 on T, and |gl <1 on Z(f - ) by the
condition (2.1.1). As well, we note HE - x| = I(f - m)gdy ,

which can be written as J(f - u)gdy with the aid of (2.1.2).

Then [ V€ - @] < J |£ = uldp + J (f - u)gdp < Jlf - uldy .
T~Z (f-7) Z.(f-w)

Since u is arbitrary in K~ {w} we have ||f = 7|] < ||f = u}]

for all u e K~ {7} . Therefore {w} =P(, £f) . [0

Theorem 2.1 can, as usual, be applied to subspaces to get a
result due to Kripke and Rivlin. If K is a subspace M , then

condition (2.1.1) can be replaced by
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2.1.3) lJm sgn(f - w)dul < J Im|dy for all me M~ {0} .
Z(f-r)

The following rather trivial example shows that this condition is
not, in general, a necessary condition. It is important when

studying strong uniqueness.

2.2. Example. Let T = [-1, 1] with the standard Lebesgue measure,

f(t) =t , and M = span{l} . Then the best approximation is.

m(t)

1
o, I m(t)sgn(f(t))dt =0, and w(Z(f)) = 0 . Therefore
-1

1
j m(t)sgn(f(t))dt =0 = |m(t)|dt for all me M .

Jace
But, 7 is unique as can be easily checked.

It would be advantageous, then; to have a necessary and-suf-
ficient condition for uniqueness. V. N. ﬁikolsky first noted the

following theorem, which is based on the following lemma.

2.3. Lemma. If w; and 7, are two distinct elements of P(K, f) ;

then
(2.3.1)  sgn(f(t) - m(t)) = sgn(f(t) - m,y(t)), £ £ Z(f - m)) v Z(f - m)) .

Proof. Since K 1is convex, P(K, f) d4s also a convex set. Then

“1 + ﬂz

2
P(K, £) . Therefore ||f - ﬂlll llf -, Il = Ilf -

e P(K, f) 1if m; and w, are (distinct) elements of
m, o
1 2
22,

or,

T, + 7
A2 - 1L 1
Jlf - ldu = “2 £ - m | + >l £ - ﬂzl)du .
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'ﬂl +
By the triangle inequality, |f - >

| + |[f =@ almost

]
Fh
|
k|

which implies | (f - ™) + (f - nz)l N
everywhere. If f -m =0 and f-m, # 0 then the equality can

only be satisfied if sgn(f - ﬂl) = sgn(f - Fz). O

2.4, Theorem. Let K be a convex subset of L, . Then
{n} = P, £f) if and only if m ¢ P(K, f) and

(k - m)sgn(f - k)du < -J |k - |du

(2.4.1) Rej
Z (£-K)

™~Z(f-k)

for all ke K~ {n} .

Proof. Assume 7 is unique but (2.4.1) is not true in that there

exists u € K for which

(2.4.2) ReJ (u - n)EEE(f - u)dy 2 —I fu =rldy .
T~Z (f-u) Z (f=u)
Now
[1f = ull = Ref ‘ (£ - wsgn(f - wdp
T~Z (f-u)
= ReJ | (v - u)sgn(f - u)du + ReJ (£ - m)sgn(f - u)du
T~Z (£-u) ' T~Z (f-u)
SJ Iu—Trldu+I|f-1r|t—J |£ - mldu
Z(f-u) 'Z(f-u)
= ||f - 7w||

where (2.4.2) has been used to obtain the inequality, and for the last step
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f-m=u-7 on Z(f -u) . Therefore u e P(K, f) as well and

T 1is not unique.

Now assume {m} # P(K, f) . Then there exists u € K such

that u e P(K, f) ~ {7} , which implies ||f - ul| = ||f = 7|

Thus
ReJ (f - u)sgn(f - u)du = Jlf - mldu
'1’~Z(f—u) Lo
or,
Rej (r - u)sgn(f - u)du
T~Z (f-u)

= Ref [If-ml - (£ - mysEa(E - wldn
T~Z (f-u)

Z(f-u)
Since f -w=u -7 on Z(f - u) , the last integral is equal to

J lu - wldu ,
Z(f-m) ;

and ;he first integral on the right vaniéheé since sgn(f - u) = sgn(f =
on f ~ (Z(f - ﬁ) u Z(f - 7)) by lemma 2.3. Théreforg (2.4.1) is

contradicted. [J

CHEBYSHEV SETS

A problem which'has been extensivelyzinvestigated is the existence?“
and characterization of sets:from”which ever&\fuﬁctioh ffomlﬁhe ébacé
has a unique best approximation. The theory for uniform approximatiqn

is especially elegant, with some very fine and usefultrgsults.' The
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L, case is not so nice. Almost all work done is involved with
linear subspaces, and, in the case of a non-atomic measure, no such
finite dimensional, real subspace exists. Howéver, the situation

can be improved slightly whén only continuous functions“are‘con-

sidered, although most results are negative.

3.1, Definition. 'AHSUbset K of a normed linear space X is
(semi-) Chebyshev in X if every f in X has (at most one) a
unique best approximation from K . In general, the existence of
a best approximation is assumed, and conditions are given for
uniqueness. Usually 'in X'L is dropped wﬁe;eveé»possiblé wiﬁhout,

ambiguity.

The first theorem is a general onefdue*to-Deutsch'éhd Maserick
[10, p. 525, thm. 4.2]. Géometricaliy‘ K~ is Chebyshev if and only

if K has no sides parallel to'a side of the unit ball in X .

3.2. Theorem. ~Let K be a closed convex suﬁéetféffﬁ,nofﬁé& linear

space X . Then K is semi-Chebyshev if*énd”onlixif‘fﬁeré”dOeéLnot

exist an L € X% such that

(3.2.1) il =1 ;

(3.2.2) L(yg) = Ilyili‘rfor two distinct 'yi_e X, i¥é 1f‘2;;,
(3.2.3) ReL(ky) = sup ReL[K] - for two distinct - ky ¢ K; 1 =1, 2 ;
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Proof. Assume that K is not semi-Chebyshev. Then there exists -

f e X~ K with at least two best approximations k, and k, from

k k,
K . Since K 1is convex, T = —%-+ —%- is also a best approximation;

Then the characterization theorem 2.2.9 implies the existence of

L e X* with [|L|| =1 , ReL(w) = sup ReL[K] , .and L(f - ) = [{f - fj[ .
Let y, = f -k, and Yy = £ - kl' Then y1 Fl Yy e kl - ké -and . i
L(f - ) = I1£-nll =30 - k) + 7 > L(E - k,) . But

L(f - ki) < ||f - kill since ||Ll| =1 and also ||f - w|| = ||f - k Il,
i=1, 2 . Therefore L(y,) = L(f - ky) = |If - k|| = |IY1l| and
similarly L(yz) = llyzli‘.: Also v%-ReL(kf) +~l-ﬁet(k ) = ReL(n) =

= sup ReL[K] . Then ReL(ky) = ReL(k,) = sup- ReL[K] since kl and

k2 lie on the same side of the half-spaces determined by Loy oos

Assume now that such an L exists. Let- f = k1 + y2-= k2 + yi{{
Then L(f - ki) = ||f - kir!-, i=1,2 and:-ReL(k') = ReL(kZ) mr LR
= sup ReL[K] . Theorem II-2.9 implies »"kl and k are ‘best

approximations to- f , and K is not semi-Chebyshev. ' 0

3.3. Corollarz. if M is a closed subspace of a normed linear
space X then M is semi—Chebyshev if and only if there does not

exist an L € X* with

(3.3.1) MLl =1 3
(3.3.2) L(m) 0 -for all meM;
(3.3.3) L(@y;) = lyyll, 1 =1, 2, for two distinct]elements ¥,

and y, € X with Y, =Y, eM .
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Proof. This follows when lemma II-2.10 is applied to theorem 3.2, O

CHEBYSHEV SUBSPACES IN L1

4,1, Theorem. A closed subspace  M is semiQChebyshev in
Ll[T, 2, u] if and only if there does not exist g e L with

llgll =1 and two distinct y; € L s i =1, 2, such that

(4.1.1) Igmdu =0 for all me M ;
(4.1.2) jgyidu = Ilyildu y1=1,23

Proof. By Riesz' theorem the L of corollary 3.3 can be written
L(h) = Jhgdu for some g ¢ L_ . Since |IL]] = l*,fltg[l; =1.
(4.1.1), (4.1.2), and (4.1.3) follow immediately from the last three .

conditions of corollary 3.3. [

4.2. Theorem. A closed subspace M 1is semi-Chebyshev in L, 1if
and only if there does not exist g e L_ with |[gl|_ =1 and

distinct points -y, and y, in L. such that
1 2 1 \

(4.2.1) g(t) = sgn yi(t) for all t ¢ Z(yi) i=1,2;
(4.2.2) ngdu = 0 for all meM;

(4.2.3) Y, =Y, € M.
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Proof. (4.2.2) and (4.2.3) follow from (4.1.1) and (4.1.3). (4.1.2)
implies J(gyi —~lyil)du'='o where [[gfl_=1 and i=1 or 2

(as it does throughout this proof). Let vy = reie and g = sei">
with the standard conventions, and take the real pért of the first
expression to get Jr(s cos (6 +‘¢) - 1)dp =0 . Sihce s <1 by
the condition on the norm of g , thevintegrand is not poSitiﬁe,
and therefore r(s cos(® + ¢) - 1) = Q ;‘"Where r does not vanish,
s #0 and so cos(® + ¢) = é—; but s <1 so cos(®@ +¢) =1

and s =1 . Therefore g = e o EEE(yi)' wherever y; = 0 .

For the converse the g of this theorem satisfies the conditions

of theorem 4.1, so M 'is semi-Chebyshev. []

We note that these theorems follow equally well if only the
real case is considered.
The following theorem is a very nice one ‘due 'to Cheney and

wulbert [8].

4.3, Definipion. For a-subépaCe M in L, ;» afﬁéégsjis-afsét of
the form Z(f) where 0 ¢ P(M,Af)L;”{Recall that . 'f 41s 'in fact an
equivalence class of functions, so’it follows éhat£’2(£)€ is’itsélf
an-equivalence class of sets, as is each~B-sEt. This does not affect

any of the theorems so we usually ignore it in the notation.
We can now state the theorem.

4.4. Theorem. If M is a linear subépace‘of.‘Ll", :then M7Zis_semi-v
Chebyshev if and only if O is the only element of M vanishing on
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Proof. Assume M 1is not Chebyshev. Then there exist ‘distinct m
RAURERE PA J ’
and w, in P(M, f) for some f ¢ L1‘~ ML; fand LML= rl_i_,ji

2

is also a best approximation. Therefore
(g =nl =5 Q€ ~n | + 1€ -7 )]du =
2 1 2 o

and the triangle inequality implies |f - n]v=‘%1f - ull + %Jf ;,wz{
almost everywhere. Then, bnlthe B-set Z(f‘— m) ,‘lf,-'ﬂf‘+-|f - nzl =
Therefore m, = 7, on this set and. nl‘éfnzf’vanishes,therel

‘If the condition is false then there exists f e.Ll ~ M and
ueM with Z(f) ¢ Z(u) . . Let y, = Lulsgnif-,v‘en&jletxe
y, = lul(sgn £ - 38gn w) . Then 'sgn v, (t) = sgn y, (&) = ‘sgn £(t)
for all t ¢ Z(u) . Let ' g have the same value as that g guarenteed?;
by corollary II-4.4 applied to subspaces. Since' O ¢ PCM, f) "snd }
M is a subspace itifollows from II-(4.4;1) that jmgdu = 0 for all
meM, and from II-(4.4.2) that ‘g(t) = ;Er:f(t)for all 't ¢ Z(f) .
Then g(t) =f;§;Ty1(t)f£ ;gg'yé(t) outside Z(u)srgifut by'definirion‘ :“
2(w) = 2(7,) = 2(,) , and also y, -y, = lul(Fegaw) = Fu.
Therefore yl_éfyz‘e’n’“and‘the COnditionsfdf’éheorem 5;2"are setisfied.r

Thus M cannot be semi-Chebyshev. g

The next theorem gives a necessary condition for a subspace to :
be Chebyshev in the real case. It is a rather interesting condition
of which use is made in the study of strong uniqueness. The proof

is a variant of a proof by Cheney and Wulbert.
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4.5. Theorem. If M 1is a Chebyshev subspace of ‘Lﬁ and

{r} =PM, £) , then u@({E -7) ~Z(m)) >0 for all me M~ {7} .

Proof. Since M is a subspace we can assume 7 = 0 without loss
of generality. Assume there exists u e M~ {0} for which

U(Z(f) ~ Z(u)) =0 . Let Z = Z(u) ~ Z(f) and define h ¢ L, by

lu(t)|sgn. £(t), t ¢ Z
h(t) =
f(t), t ¢ Z .
Then Z(h) = Z(f) and sgn h = sgn £ . Since ,O e PM, £) ,
Jm sgn hdp = jm sgn fdp < J Im|dp = |m|dp by_thearem 1I-4.6,

_ Z(£) JZ(‘h) .
and by the same theorem O ¢ P(M, h) . For any 6 ¢ (0, 1)

th - Quldy = th sgn hdy + (h - 6u)sgn(h - Bu)dy

Z J T~(Z (f)uZ (u))

+ j (h - 6u)sgn(h - Bu)dy
Z(£)~Z (u)

+ I (h - 8u)sgn(h - Bu)du .

Z(£)nZ (u)
The last integral vanishes, and so does the next to the last by our
assumption that W(Z(f) ~Z(@)) =0 . On T~ (Z(f) u'Z(uw)) ,

sgn(h - 6u) = sgn h = sgn £ since 6 ¢ (0, 1). Thus

th - Buldp = J [hidu +vJ |h|du
Z T~(Z(£)UZ (u))

+ 6 J (-u)sgn fdu
T~(Z (£)uZ (u))
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Ilhldu + 9 J(—u)sgn fdu

A

[In]l + 6 f Juldu .
Z(£)

But juldy = J juldp + I- 4H]u|dp-=‘0 . Thus
Z

JZ(f) Z(£)~Z (u)
[lh - 6ul| < ||h||l for all & € (0, 1) , or O6ue PM, f) .

Therefore M is not Chebyshev. [

FINITE DIMENSIONAL CHEBYSHEV SUBSPACES IN L?

We will prove there are no finite dimensional Chebyshev sub-
. R . '
spaces in L1 . The proof is due to Phelps and is based on a theorem

of Liapounoff.

5.1. Theorem. (Liapounoff) If Mps ees W, are finite, non-
atomic measures on a set T and a og-field X of,setsvin‘ T,
then the subset of r"? consisting of all n-tuples of the form

(ul(B), ceasy un(B)) for B in z is closed and convex.

Proof. Lindenstraus [26] has given a very nice short proof of this

theoremn.

5.2. Lemma. If M is a finite dimensional subspace of L?‘ and
there exists an extreme point L of B* which annihilates M ,

then M 1is not Chebyshev.

Proof. Assume such an L exists. Then I g ¢ L_ such that

0 for all me M . Let

lgl =1 a.e., L(f) = Ifgdu and Imgdu
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M= gpan{¢1, eiay ¢n} . Let

1_8 Z l¢i and y2=YI‘- 2 4’1 %

Then sgn y,(t) = sgn g(t) 1f t ¢ Z(y;) and sgn y,(t) = sgn g(t)
if t ¢ Z(yl) + Also, y, -y, = Z¢i eM., Therefofe by theorem

4.2, M is not Chebyshev. [J

5.3. Theorem. [33, p. 246, thm. 2.5] If '(T, z,'p) contains no
atoms then L?(T,'z, 1) contains no finite dimensional Chebyshev

subspaces.

+ - i

Proof. Let M = span{¢1, cees ¢n} c L? . Write ¢, = ¢i - ¢i » whereg;

+ - : : , - . . :
¢1’ ¢{ are the positive and negative parts. Define, for each.

Be) , u@) = ¢ 4du and u S(B) = | du . The - ﬁ+ , U, are’ -
i i B i i :
finite, non—atomic measures on (T, Z) . By Liapounoff's?theorem,

the subset of W™ consisting of all 2n-tuples of the form.
(u (B), By (B), cees M (B), L (B)) », for. B e Z , is convex._iﬂgncé

i u+(T) o owm
B can be chosen so that ui(B) = -—??éf and ui(B) =,: 2;_‘, Let

g = 1. on B and -lon T~B. Then. Jg¢i = 0, { = 1, ...y n
and the linear functional 'L definedby g 1s an extreme point of B*';

Therefore, by the lemma, M is not Chébyshev. 2]

Theorem 5.3:cannot in general be extended'to,infiﬁite dimensional_'?A

subspaces as the'followiﬁg simplé.example of Phelps shows.
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5.4. Example. Choose a B contained in T with u(T ~ B) > 0
and u(B) >0, and let M= {m ¢ Lf: m(r) = (0 whenever t}e_B} .
If feT~M, let n(t) =0 on B and n(t) = f(t) on T~B .

Then. for any: m ¢ M ~ {r}
[1£ - wl] = J |£ldp + 0 < J [£ldu + J |f -~ mldp = ||£ - m||);
B B T~B *
Thus 7 is the unique best approximation and M 1is Chebyshev. O
While no finite dimensional Chebyshev subspaces in ‘Ll exists

when the measure is non-atomic, we can obtain better results in CI[T’ uai.

CHEBYSHEV SETS IN Cl[T’ u]

As usual, Cl[T’ u] ‘is that subset of L, [T, u] consisting of
continuous functions. The measure v 1is considered to be non—atomic,'?f
and 'T to be Hausdorff, completely regular. Usually T will be an

interval and u ‘the Lebesgue measure., Cheney and Wulbert have, 1n

particular, done much work on C [T, u] in their paper, and one. of
their results is reproduced here. Jaekson s famous theorem on N
Chebyshev subspaces- will also be shown, together with an. example
which contradicts the converse of Jackson‘s'theoremr ‘Weiassume thar
the sets in quesrion'ali have best approximatious torany f e Cl .80
that,existence is not considered, and that thfis equivalent to: Lu];

The first two theorems are analogues of theorems 4.1 and 4.2,

and the proofs are identical so they are stated here without proof.
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6.1. Theorem. A closed M is a semi-Chebyshev subspace in
c, [T, Y, u]l 4if and only if there does not'exis;v g el with

llgll_ =1 such that

(6.1.1) ngdu =0 for all me M ;

(6.1.2) ngid L= jlyildu fbr'two-distinct Yy e‘C1 $
(6.103) yl - yz e M.

6.2. Theorem. A closed subspace M_'is a semi-Chebyshev subspace

in C, if and only if there does not exist g e L with |lgll =1

and distinct points y, and y, in:C, such that

(6.2.1) 8(t) = sgn y, (1) 4 2(y)) ;
(6.2.2) g(t) = sgn y,(t) t ¢ 2(y,) ;
(6.2.3) J.gmdu =0 forall meM;

(6.2.4) y -y eM.
1 2

Again we remark that these4#heé¥eméxaréiyﬁlid, Qi;h £he?§aQé.
proofs, in the real case. | o » | o

The next thebremvis due to;Cheney andvﬁulbefﬁz[B,'theorem 22].
It is the analogue for conﬁinuous functions of theorem 4.4, and
involves Y-sets which are just B-gets‘ip C, . Again the theorem

works just as well if we consider the real case.
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6.3. Definition. A y-set is a set of the form Z(f) for which

0 € P(K, f) for some f € CI[T’ H]

6.4. Theorem. If M 4is a subspace of C1 , then M is semiAChebyshe§
in C1 if and only if O 1is the only element of M vanishing on a

Yy—-set in C1 .

Proof. The proof is exactly the same as that of theorem 4.4, except
one must note that the functions involved are all continuous. In
particular we note that the functions y, and y, in the proof of

theorem 4.4 are continuous because Z(f) ¢ Z(u)‘, O

We will now prove a famous theorem of Jackson's [20]. It has

been proved in many ways by various authors, for example, ‘see [7],
[35]. Cheney and Wulbert used the previous theorem to give a’ proof
but we prefer to use the characterization theorem 6.2.

Recall the definition of Haar subspaces, II-5.2. .

6.5. Theorem. -If ‘M is a 'Haar subspace in C [a, b] then M

is Chebyshev in C [a, b] .

Proof. Let M = span{§i, ey ¢h} be a Haarﬁéubspa;e Which is not Chebyshev.
By theorém 6.2 there exists: gel, fwithgllgl[ﬁ’*'Ifgw.and distinct :
Y1 and Y, such that (6.2.1), (6.2.2), (6c2.3), and“(6;2,4)-hdld;

Let - t, értz <ele <t be all the points in [a,%bl'wheré“bOth

y, and .y, are zero. Since y, - Y, € My'y, -'yé- can have at most

n - 1 zeroes, and thus m < n . Let 'to-%ya » and tm+1 =b . If
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g changes sign at some ¢t € (ti, ti+1) for some 1 ,0<i<m,
then, since y; and y, are continuous; yi(t) = yz(t) =0 . But
then t = tj for some j', so g cannot change sign in any interval

(ti, ti+1)’ 0<is<m. If there are less than n  such intervals.

subdivide and relabel the endpoints by a = t;, < t, < ... < t = b .

Then g is of the same sign, and in fact, constant on each interval.

Let. oy = gi(t) for t ¢ (ti’ ti+1)’ i=0, «¢., n - 1. Then we

can write

b n-1 t
[“opa=0=T af My, g1, 0
a 1=0 ti
T . _ .
Let f£f_(¢,) = J 1+1"¢ dy , 41 =0, .., n-1;3=1, .c., n .
19907 )T % |
i : :

Then
mt e s
a f.(¢ ) = 0’ j = 1, '...,.“n s
j=o + 1737 . -

and, since all a; # 0 , we must have det(fi(¢j)) = 0 . 'Therefére

there exists a non-trivial set {cl, v iy cﬁ}; such that -
n - ‘ ‘ )
121 cjfi(¢j),=‘0, i=20, ..:,'nl-‘lf, or,

J i+1 Z c.¢du = 0':, i = '0’ cees n - 1 .
t, - j=1" 3"y ’ ] : -
i :

Since the. ¢j are continuous, Z¢j¢j must{han:aczleast one zero
in each interval, or at least n zeroes in total, coﬁtradicting

the Haar condition. [

Micchelli [30] has extended this theorem to the case where M
is a "weakly Cheb&SheV” subsbace. Here, iffthe -¢i span M, tﬂén

the determinant det(¢i(ki)) must be non-negative for all sets of
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X, rather than strictly positive as in a Haar éubspace. Unfortunately,
he has to restrict f to a special cone so the theorem is not as
general as one would like. |

Unfortunately Jackson's theorem does not give a necessary condi-

tion, in contrast to the uniform case, as the following example shows.

6.6. Example. M may be a Chebyshev subspace bot not. a Haar sub-
space in C?[O, 1] |
Let M = 1linear span {t} . Now M is obviously not
Haar since m(0) = 0 for all me M . It is_sufficieﬁt to show
that 0 is the only eiement:in M”.which vanisges oo:é‘yfset, If
this is not‘true then there exi;ts a y;seoy Z(f) ”for some f ¢ C?
such that m vanishes on Z(f) for some m €. M ~ {0} ~.But:
Z(m) = {0} , therefore Z(f) = {0} , or, f(t) can be assumed to
be positive for all t ¢ (0, 1] . ~:'Il,‘hen u(?(f)) = Q ,b and,.sincev
0 ¢ PMM, f) Eoe
1 2

J m(t)sgn f(t)dt = cJ t d:_?:gav o .

g RESOUIFIRS PO z L
for all m € M, m(t) =ct , which’isfoooonfoidioiiohi Therefore

M is Chebyshev. -

Could we apply theorem 4. 5 to C [a, b] ? The following example

shows that the answer is NG .

6.7. Example. Theorem 4.5 is not true in.“C§[a,:b]~,
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Let M be the subspace qf all constant functions on [-1, 1]
with the standard Lebesgue measure. Then M 1is a Haar,Subspace
and hence Chebyshev in C?[-l, 1] . Choose f(t) =t . Then
{0} = P(M, f) , but Z(f) =0, so u(Z(f) ~ zZ(m)) =0 for all

meM.,

CONVEX CHEBYSHEV SETS IN L; OR C,

We can apply theorem 3.2 directly to the L, or C, case to
obtain the first two theorems of this section. Then we can move on
to the special case of the convex cone cohsidefed invtheorem II-4.14,

and some other cases of constrained approximation..

7.1. Theorem. K is a semi-Chebyshev convex set in L (reSPectively?}
Cl) if and only if there does not exist a g ¢ L, » distinct points

y, and y, in L, (Cl) , and distinct points k. and k2 in

1
K such that Hgll°° =1 and

(7.1.1) ngidu = leildu i=1,2;
(7.1.2) Rejgkidu 2 Rngkdu i=1, 2 for all k ¢ K 3

Proof. These three conditions are immediate consequences of theorem .

3.2. O
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If K 1is a convex cone then lemma II-4.12 allows us to replace

(7.1.2) by
(7.1.4) Rngkidp =02 ReJkgdp, i=1, 2 for all ke K.

As usual (7.1.1) can also be improved upon t0'yield.the‘following

theorem.

7.2. Theorem. K is a semi-Chebyshev convex cone in -Ll (respec-
tively Cl) if and only if there does not exist g ¢ L°° s distinct
points y,, y, € Ll(Cl) , and distinct points kl’ kz ¢ K with

llgll_ =1 and
(7.2.1)  g(t) = sgn y;(t), t ¢ 2(y;) 1i=1,2;
(7.2.2) Rngkidu =0 2 ReJkgdu, i= l? 2, for all g € K

(7.2.3)  y; =y, =k, - k, .
Proof. This follows from theorem:7.1. [

Both theorems 7.1 and 7:2 wqu gqually well in the real case.

We next turn-tovthe-exaﬁple of fﬁeorem 4.14, that of best
positive approximation. Lewis [25] uses this theorem to show that
a Chebyshev set is the cone formed from the}nonénegative elements
of an extended Haar system (of order 2). Instead we will use the
previous theorem specialized to the real.éase,vwheré itlis:also

valid. First, a definition.
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7.3. Definition. Let {¢1, cees ¢n} be a set of differentiable
functions in C?[a, b] . If every non-zero m in the span of
these functions has at most n - 1 zeroes in [a, b] , counting

as two those zeroes where the derivative, m' , is also zero,

then {¢;, «..p ¢n}- is an extended Haar system of order 2. If a
subspace M has such a basis then it is an extended Haar subspace

of order 2. For more details see [21].

7.4. Theorem. (Lewis [25]) Let M be an extended Haar subspace
of order 2, and K = {k ¢ M: k(t) 2 0 for all t ¢ [a, b]} . Then

K is a Chebyshev cone in C?[a, b] .

Proof. Assume K 1is not Chebyshev. Then there exist g e‘"L°° ,

distinct points y,, yée‘cﬁ , and distinct points'”kl,‘kze‘K

where |lgll_ =1 satisfying (7.2.1), (7.2.2)"and.£7;é.3)»(where

all quantities are real). ' For any A e¢ (0, 1) let ke }i

k, = Akl + (1 —_A)ké and 2 =~Ay1 + A - A)y2 . We now apply

A
the same chain of reasonlng as presented in theorem 6. 5 to flnd N 7{;
m < n points such that Yi» Yoo and yA change 51gn only at these |
points and have the same sign in the intervals. Let t; < tp; < ... < t
be all points in [a, b] sucﬁ that yl,‘y2 , and ”yl (yk =0

whenever A and y, vanish) are-all zero.’ Since's”y1 Y, € M by
(7.2.3), and M is Haar, m < n . |

Let t, =a, and t p=b. If g changes_eign at t in

an interval (ti, t..,) for some i , 0<41i<m, then, since the

i+l
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y; are continuous, yl(t) = yz(t) =0, and y*(t) = 0. . But this
is a contradiction, as t must be one of the tj . Therefore g
has the same sign on each 'interval, and, since X ¢ (0, 1), Yy y2,
and Yy will have the required properties. We note that this is a
restatement of lemma 2.3, as f = k1 + y2 = k2 + yl has two best
approximations k; and k, from K .

Now let Z(kA) = {tl, ceoy ts} (not necessarily related to
the previous set). Since M 1is an extended Haar subspace, s < n .
Let e be the number of endpoints. a, b in Z(kA) . If Yy has
less than n +.e - 2s  sign changes in [a, b] ~:Z(kk) we can find
m ¢ M such that m has the same sign as Yy and m(ti) =0 for
i=1, ..., s:. ([21, p. 30], this is taken directly from the proof
by Lewis). Since M is linear we can assume |m| < k, , which
implies kk +me K. ‘But, I(kA + m)gdy = 0 + Jlmldu by definition
of g . This is positive and contradicts (7.2.2). Therefore yA
has at least n + e - 2s sign changes in [a, b] ~ Z(kk) , and so
do y, and y, (since they change sign ‘at the same places). Then
k1 - k2 =y, -¥, = 0 at these points.

However, since all elements of K are non-negative we have
that for all te z(k) ~ la, b] , k;(t) = k,(t) = kj(t) =k (t) =0
Then k; - k, has too many zeroes, and we have the required contra-

diction. ]

Lewis has also given a very similar theorem for the case of best

approximation from a set of interpolating functions. The proof uses
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theorem II-6.1 to find a point k, = k, which has too many zeroes

2
in a manner analogous to the last proof, so we will just state the

theorem here.

7.5. Theorem. Let £ be in Cila, b] , and also let f be dif-
ferentiable on (a, b) . Assume ﬁ‘=.span{¢l, vees ¢n} is an
extended Haar subspace of order 2, and K = {k ¢ M: k(ti) = f(ti),
i=1, ..., m} where the ty are "'m < n points in [a, b] . Then

f has a unique best approximation from K .
Proof. [25, theorem 5.4.] g

Lewis gave an example to show that the differentiability of f
is necessary.

Can we find a condition on M .so that best one-sided approxi-
mation from M gives us a Chebyshev set? The answer is, not quite.
We will also need the differentiability condition on f . It would
be nice if we could use our characterization, theorem 2.1, to show
the uniqueness of such'best:approximations. However, as in section
II-5, this theorem just gives the trivial refinement of the definitionm,

that
fﬂdu > Jkdu for all k ¢ K~ {n} .

Therefore we will have to use some new methods; those of DeVore again.
The theorem is due to DeVore and is based on the following lemma which

he proves. Recall that the support, C()., of a measure u is the
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complement of the union of all open sets of measure 0. Denote by
|C(u)| the number of points in C(u) , and by |[Z(f)| the number
of essential zeroes of f (see definition II-5.4), where in both

cases each point in (a, b) 1is counted twice.

7.6. Lemma. Let M = span{¢1, oo ¢ﬁ} be a Haar subspace in
Cf[a, b] , and let f ¢ L?[a, b] . Define K = {k € M: k(t) < £(t)

for all t ¢ [a, b] If mwe P(K, £f) then |Z(f - )| = min{|C(u)|

Proof. [12, pp. 16-17] Note that this has connections with theorem

4.5. 0

In this lemma, as in the next theorem, it is only necessary that
p be a Borel measure. The condition of the next theorem, that
[C(u)l 2 n, is not really very restrictive, and most of our '"nice"

measures easily satisfy this.

7.7. Theorem. (DeVore [12, theorem 3.3]) Let f and K be as in
Lemma 7.6, but require that M be an extended Haar subspace of order
2, If f 4is differentiable on (a,'b) , and [C(u)! = n then the

best one sided approximation to f from K 1is unique.

Proof. Because of continuity, essential zeroes are the same as

T, +
ordinary ones. Assume {ﬂl, ﬂz}‘g P(K, f) . Then = ;'_1_5__3 is
also in P(K, f) . Let: ty € Z(f 