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ABSTRACT 

Sequential partial extractions show that partitioning of uranium, 

copper, zinc, iron and manganese into lake, stream and bog sediments 

are affected by the type and abundance of component fractions present 

in sediments and by the physico-chemical conditions of the superjacent 

waters. The water pH influences the concentration of uranium retained 

by organic matter as well as the relative proportion partitioned into 

the amorphous iron hydroxide fraction and the humic and fulvic acid 

components of the organic matter fraction. Copper partitioning is 

controlled by the percent carbon content of sediments which influences 

the concentration of metal retained in the organic matter fraction. 

The amount of copper retained by other component fractions is deter- 

mined by their relative abundance in sediments. The Eh-pH conditions 

of the superjacent waters control the solubilities of iron, manganese 

and zinc thereby affecting the availability and sorption of these 

metals into the organic matter and inorganic hydroxide fractions of 

sediment. Metal partitioning characteristics and physico-chemical 

factors which influence metal partitioning should be considered when 

using lake, stream and bog sediments in geochemical exploration. 

1 



ACKNOWLEDGEMENTS 

I wish to express my sincere gratitude to Dr. J. S. Mothersill 

for his patience, understanding and helpful supervision. I also wish 

to thank the following people - Mr. L. Stevenson, Mr. J. Brandie and 

Mr. G. Mathias for their assistance in the field; Dr. P. M. Huang, 

Dr. V. J. Sopuck, and Dr. R. G. Arnold for thier valuable discussion 

and comments regarding the project; Mr. H. Poulsen, Ms. D. Skwarchuk, 

Mr. C. Mallard and Ms. E. Jensen for their assistance in the laboratory 

and analytical procedures and Mr. S. Spivak for helping to draft the 

figures and maps. 

I am indebted to Dr. W. B. Coker and R. J. Shegelski for the 

interest and support in the project. 

Financial assistance for the field work was provided by the 

Saskatchewan Research Council, Saskatoon, Saskatchewan. Other 

financial support was in the form of a Natural Sciences and Engineering 

Research Council of Canada Graduate Scholarship and a Lakehead University 

Graduate Scholarship. 



TABLE OF CONTENTS 

PAGE 

ABSTRACT i 

ACKNOWLEDGEMENTS ii 

LIST OF TABLES vii 

LIST OF FIGURES 

LIST OF MAPS X 

CHAPTER 1 INTRODUCTION 1 

1.1 General Statement 1 
1.2 Purpose of the Present Study 1 
1.3 Previous Development and Application of Partial and 

Sequential Partial Extraction Procedures 2 

CHAPTER 2 DESCRIPTION OF THE STUDY AREA 4 

2.1 General Description and Location 4 
2.2 Bedrock Geology 4 

2.2.1 Regional Setting 4 
2.2.2 Local Geology 6 

2.3 Regional Quaternary Geology and Glacial History 6 
2.4 Topography and Physiography 9 
2.5 Drainage 9 
2.6 Previous Reports of Uranium in the Area 10 

CHAPTER 3 DESCRIPTION OF FIELD AND LABORATORY PROCEDURES 11 

3.1 Sample Collection 11 
3.1.1 Lake Sediments 11 
3.1.2 Stream Sediments 11 
3.1.3 Bog Sediments 12 

3.2 Investigations of Sediment Stratigraphy Through Lake 
and Bog Basins 12 

3.3 Investigation of Physico-Chemical Parameters 13 
3.4 Extraction Procedures 14 

3.4.1 Sequential Partial Extractions 14 
3.4.2 Partial Extractions 19 

3.5 Analytical Techniques 20 

i i i 



TABLE OF CONTENTS - continued 

PAGE 

CHAPTER 4 RESULTS OF FIELD AND ANALYTICAL PROCEDURES 22 

4.1 Field Procedures 22 
4.1.1 Lake and Bog Basin Stratigraphy 22 
4.1.2 Physico-Chemical Parameters and Percent Carbon 

Concentrations in Lake, Stream and Bog 
Environment 23 

4.2 Analytical Procedures 25 
4.2.1 Comparison of Data Generated by Model 303 and 

Model 2380 Atomic Adsorption Spectrophotometers 25 
4.2.2 Accuracy and Precision of Atomic Adsorption and 

Fluorimetric Analysis 27 
4.2.3 Reliability of the Sequential Partial Extraction 

Technique 29 

CHAPTER 5 RESULTS OF SEQUENTIAL PARTIAL EXTRACTION PROCEDURES 35 

5.1 Introduction 35 
5.2 Uranium 35 

5.2.1 Lake Sediments 35 
5.2.2 Stream Sediments 37 
5.2.3 Bog Sediments 37 

5.3 Copper 38 
5.3.1 Lake Sediments 38 
5.3.2 Stream Sediments 38 
5.3.3 Bog Sediments 40 

5.4 Zinc 41 
5.4.1 Lake Sediments 41 
5.4.2 Stream Sediments 41 
5.4.3 Bog Sediments 43 

5.5 Iron 44 
5.5.1 Lake Sediments 44 
5.5.2 Stream Sediments 44 
5.5.3 Bog Sediments 46 

5.6 Manganese 47 
5.6.1 Lake Sediments 47 
5.6.2 Stream Sediments 47 
5.6.3 Bog Sediments 49 

CHAPTER 6 RESULTS OF PARTIAL EXTRACTION PROCEDURES 50 

6.1 Introduction 50 
6.2 Uranium 50 
6.3 Copper, Zinc and Manganese 51 

6.3.1 The Relationship Between Percent Carbon Concen- 
tration and the Proportions of Copper, Zinc and 
Manganese in the Organic Matter Fraction of Area 
Lake, Stream and Bog Sediments 53 

IV 



TABLE OF CONTENTS - continued 

PAGE 

CHAPTER 7 DISCUSSION 55 

7.1 Physico-Chemical Parameters 55 
7.1.1 Lakes 55 
7.1.2 Streams 57 
7.1.3 Bogs 58 

7.2 Metal Partitioning in Area Lake, Stream and Bog Sediments 59 
7.2.1 Uranium 59 
7.2.2 Copper 67 
7.2.3 Zinc 71 
7.2.4 Iron and Manganese 75 

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 77 

REFERENCES 83 

APPENDICES 

APPENDIX I CHRONOLOGIC BIBLIOGRAPHY OF PREVIOUS PAPERS 
REPORTING THE USE OF PARTIAL AND SEQUENTIAL 
PARTIAL EXTRACTIONS 89 

APPENDIX II DESCRIPTION OF EXTRACTION PROCEDURES 97 

11.1 Sequential Partial Extraction Procedures 98 
11.11 Partial Extraction Procedures to Separate Humic- 

Fulvic Acid Components of Sediment Organic Matter 101 
II. Ill Comments on the Quality of Reagents Used 102 
II. IV Procedures for Preparation of a Stock Solution 

of Sodium Hypochlorite 102 

APPENDIX III ANALYTICAL PROCEDURES 104 

111.1 Atomic Adsorption Spectrophotometric Analysis 105 
Introduction and Theory of Operation 105 
Operation Procedures for the Model 303 Instrument 106 
Operation Procedures for the Model 2380 Instrument 107 
Comments on Analysis of Iron 109 
Comments on Analysis of Sodium Hypochlorite 
Extracts 110 

111.11 Fluorimetric Analysis 110 
Introduction and Theory of Operation 110 

III. Ill CHN Analysis 112 
Introduction and Theory of Operation 112 
Operation Procedures for the Model 240 Instrument 113 

111.IV Accuracy and Precision of Atomic Adsorption and 
Fluorimetric Analyses 114 

V 



TABLE OF CONTENTS - continued 

PAGE 

APPENDIX IV SUMMARY OF STATISTICAL METHODS USED 116 

IV.I The Mann Whitney Statistical Test 117 
IV.II The Substitute t-test 118 
IV.Ill Other Statistics 119 

APPENDIX V DATA FROM REPLICATE ANALYSIS 120 

APPENDIX VI DATA LISTINGS 126 

VI.I Physico-chemical parameters and % carbon content 
in lakes, streams and bogs 127 

VI.II Uranium, copper, zinc, iron and manganese con- 
centrations in the component fractions of 
lake, stream and bog sediments 130 

VI. Ill Uranium, copper, zinc and manganese concentrations 
in the fulvic acid, humic acid and humin fractions 
of sediments 150 

VI 



LIST OF TABLES 

PAGE 

Table 1 Mean element concentrations in barren bedrock of the 
present study area and the entire Maguire Lake area 
(modified after Sopuck, Lehto and Alley, 1980) 8 

Table 2 Summary of physico-chemical parameters in superjacent 
waters and percent carbon in sediments 24 

Table 3 Sum of rank score values for copper, zinc, iron and 
manganese from the Model 2380 Atomic Adsorption 
Spectrophotometer 26 

Table 4 Accuracy of analysis for copper, zinc, iron, manganese 
and uranium 28 

Table 5 Precision of an analysis for uranium, copper, zinc, 
iron and manganese in total and sequential partial 
extractions of lake sediments 30 

Table 6 Precision of analysis for uranium, copper, zinc, iron 
and manganese in total and sequential partial 
extractions of stream sediments 31 

Table 7 Precision of analysis for uranium, copper, zinc, iron 
and manganese in total and sequential partial 
extractions of bog sediments 32 

Table 8 T-test ratios for uranium, copper, zinc, iron and 
manganese in total digestion versus sum of sequential 
partial extractions 34 

Table 9 The proportion of total uranium in component fractions 
of lake, stream and bog sediments 36 

Table 10 The proportion of total copper in the component fractions 
of lake, stream and bog sediments 39 

Table 11 The proportion of total zinc in the component fractions 
of lake, stream and bog sediments 42 

Table 12 The proportion of total iron in the component fractions 
of lake, stream and bog sediments 45 

Table 13 The proportion of total manganese in the component 
fractions of lake, stream and bog sediments 48 

VI 1 



LIST OF TABLES - continued PAGE 

Table 14 Uranium concentrations in replicate lake, stream and 
bog sediment samples 121 

Table 15 Copper concentrations in replicate lake, stream and 
bog sediment samples 122 

Table 16 Zinc concentrations in replicate lake, stream and bog 
sediment samples 123 

Table 17 Iron concentrations in replicate lake, stream and bog 
sediment samples 124 

Table 18 Manganese concentrations in replicate lake, stream 
and bog sediment samples 125 

Table 19 Physico-chemical parameters and percent carbon content 
in lakes, streams and bogs 127 

Table 20 Uranium concentrations in component fractions of lake, 
stream and bog sediments 130 

Table 21 Copper concentrations in component fractions of lake, 
stream and bog sediments 134 

Table 22 Zinc concentrations in component fractions of lake, 
stream and bog sediments 138 

Table 23 Iron concentrations in component fractions of lake, 
stream and bog sediments 142 

Table 24 Manganese concentrations in component fractions of 
lake, stream and bog sediments 146 

Table 25 Uranium concentrations in fulvic acid, humic acid and 
humin in sediments 150 

Table 26 Copper concentrations in fulvic acid, humic acid and 
humin in sediments 151 

Table 27 Zinc concentrations in fulvic acid, humic acid and 
humin in sediments 152 

Table 28 Manganese concentrations in fulvic acid, humic acid 
and humin in sediments 153 

vi i i 



LIST OF FIGURES 

PAGE 

Figure 1 Location of the study area 5 

Figure 2 Geology of the uranium mineralized zone between 
Lake 1 and Bog 2 (after Sopuck, Lehto and Alley, 1980) 7 

Figure 3 Proportion of total uranium in humic acid, fulvic acid 
and the humin fraction of sediments versus the pH of 
superjacent waters 52 

Figure 4 Proportion of total copper, zinc and manganese in the 
organic matter fraction of sediments versus the 
percent carbon in sediments 54 

Figure 5 Eh versus pH stability field diagrams for iron and 
manganese (from Jenne, 1968) 62 

Figure 6 Concentration of uranium in the organic matter 
fraction of sediments versus the pH of superjacent 
waters 65 

Figure 7 Locations of sediment samples containing potentially 
anomalous concentrations of uranium in the organic 
matter fraction with reference to the uranium 
mineralized zone located between Lake 1 and Bog 2 66 

Figure 8 Concentration of copper in the organic matter 
fraction of sediments versus the percent carbon in 
sediments 69 

Figure 9 Locations of sediment samples containing potentially 
anomalous concentrations of copper in the organic 
matter fraction 70 

Figure 10 Concentration of zinc in the organic matter fraction 
of sediments versus the percent carbon in sediments 73 

Figure 11 Locations of sediment samples containing potentially 
anomalous concentration of zinc in the organic 
matter fraction 74 

IX 



LIST OF MAPS 

MAP 1 Bog and basin stratigraphy 

MAP 2 Uranium partitioning in lake, stream and bog sediments 

MAP 3 Copper partitioning in lake stream and bog sediments 

MAP 4 Zinc partitioning in lake, stream and bog sediments 

MAP 5 Iron partitioning in lake, stream and bog sediments 

MAP 6 Manganese partitioning in lake, stream and bog sediments 

X 



1 

CHAPTER 1 

INTRODUCTION 

1.1 General Statement 

During the last decade, drainage system sediments have been used 

extensively for geochemical exploration purposes in Canada. Metal 

concentrations in the sediments has been utilized to assess the 

possibility of economic mineral deposits within each drainage system 

investigated (Allan, 1970; Arnold, 1970; Coker et al , 1974, 1975, 1977, 

1979, Garrett and Hornbrook, 1975; Lehto, Arnold and Smith, 1976; 

Parslow, 1977, 1979; Sopuck, Lehto and Alley, 1980). 

Sediments consist of a number of component fractions including 

organic matter, amorphous and crystalline hydroxides as well as 

carbonate and detrital minerals. Until recently a complete acid 

digestion has been used in geochemical exploration which only gave 

the total amount of each of the metals analyzed in the sediment sample. 

Information on the partitioning of specific metals within the various 

fractions of the sediment was not available by this method. 

1.2 Purpose of the Present Study 

The present study was initiated to examine aspects of uranium, 

copper, zinc, iron and manganese partitioning in drainage system 

sediments. Emphasis has been placed on determining metal concentrations 
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in the organic matter, carbonate mineral, amorphous manganese hydro- 

xide, amorphous iron hydroxide, crystalline iron hydroxide and detrital 

mineral fractions of lake, stream and bog sediments. Metal concen- 

trations in the humic and fulvic acid components of sediment organic 

matter have also been determined in order to study the respective roles 

of organic acids in fixing metals. 

1.3 Previous Development and Application of Partial and Sequential 
Partial Extraction Procedures 

Partial extraction procedures had been developed by the early 

1900's. By these techniques, individual component fractions of soil 

were extracted and examined in light of their physico-chemical properties. 

Soil organic matter was first extracted and examined by procedures 

described by Gortner, 1916; Oden, 1919; Eden, 1924; Troell, 1931; and 

Bremner and Lees, 1949 (Appendix I). Some of the first techniques 

to extract iron hydroxides were described by Robinson and Holmes, 1924; 

Drosdoff, 1935; Allison and Scarseth, 1942; Marshall and Jeffries, 

1946; Deb, 1949; Schofield, 1950; and Aguilera and Jackson, 1953. 

Methods to extract manganese hydroxides and carbonate minerals were 

developed later and are described by Jackson, 1956; Goldberg and 

Arrhenius, 1958; and Chester and Hughes, 1967. 

Sequential partial extraction methods have evolved out of partial 

extraction techniques. By these procedures, an aliquot of sample is 

successively treated with several partial extraction reagents to 

individually remove each of the component fractions of the 
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sediment. Jackson (1956) first reported on the use of a sequential 

partial extraction technique to remove carbonate, organic matter and 

iron hydroxides from soil. 

Some of the first applications of partial and sequential partial 

extraction techniques were concerned with partitioning of metal in 

iron and manganese hydroxide and carbonate component fractions of 

soil, marine and stream sediments (White, 1957; Goldberg and 

Arrhenius, 1958; LeRiche and Weir, 1963; McKeague and Day, 1966; 

Chester and Huges, 1967; and Gamble and Daniels, 1972). Recent 

studies have included the examination of metal partitioning in organic 

matter and silicate minerals as well as iron and manganese hydroxide 

and carbonate component fractions of soil, stream and fresh-water 

lake sediments (Baker, 1973; Gibbs, 1973; Chao and Anderson, 1974; 

Schaef, 1975; Chao, 1976; Grieve and Fletcher, 1976; Meineke and 

Klaysmat, 1976; Gatehouse et al , 1977; Gibb, 1977; Huang et al , 1977, 

1978; Hoffman, 1978; Tessier, 1979; Bogle, 1980; and Sopuck Lehto and 

Alley, 1980; and Sopuck et al, 1980). 

Recently data from sequential partial extractions have been used 

in exploration to aid in the interpretation of geochemical anomalies. 

For example, Dijkstra (1978) has used sequential partial extractions 

to distinguish between natural, and smelter-induced stream sediment 

anomalies in the northeast Pb-Zn mining district of Belgium. Hoffman and 

Fletcher (1978) in a similar manner has distinguished between source- 

related and source-unrelated anomalies in stream, soil and lake 

sediments in the CordiHeron region of Canada. 
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CHAPTER 2 

DESCRIPTION OF THE STUDY AREA 

2.1 General Description and Location 

The study area lies approximately 170 km east-northeast of 

LaRonge, Saskatchewan and 90 km north-northwest of FI in FI on, Manitoba 

in the Maguire Lake region of east-central Saskatchewan (Figure 1). 

This study is centered v^ithin a southward flowing drainage system 

comprising a headwater lake and tv/o down-drainage lakes each connected 

by a series of streams and bogs (Figure 1). Each of the lakes, streams 

and bogs have been numerically labelled 1, 2, and 3 and are hereafter 

referred to as such. 

Fixed vying, float-equipped aircraft from Pelican Narrows, Saskatch- 

ewan, located 17 km to the south-southeast provide access to the area. 

2.2 Bedrock Geology 

2.2.1 Regional Setting 

Precambrian rocks of the Maguire Lake - Pelican Narrows region 

have been described as migmatite, biotite gneiss and granitoids of 

quartz diorite, granodiorite, quartz monzonite, granite and pegmatite 

composition (Satterly, 1932; Kirkland, 1956; Taylor, 1958; Kirkland, 

1976; Sopuck, Lehto and Alley, 1980). 
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SASKATCHEWAN 

km. 

Figure 1 Location of the study area 
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2.2.2 Local Geology 

The geology of the immediate study area has been described by 

Sopuck, Lehto and Alley (1980). In the area between Lakes 1 and 2, 

plagioclase-biotite-garnet pegmatite (P-j) and quartz-plagioclase- 

K feldspar-biotite-garnet pegmatite (P^) intrudes biotite gneiss 

(Figure 2). The P-| pegmatites in this area contain up to 0.24% d^Og 

across 0.5 metres (Sopuck, Lehto and Alley, 1980). Uranium minerali- 

zation has been attributed to secondary alteration which appears as 

a yellow carnotite stain on surface exposures. Thin sections and 

autoradiographs indicate the presence of slightly radioactive monazite 

and zircon but no true uranium minerals have been identified 

Southward from Lakes 1 and 2, biotite gneiss and migmatite outcrop 

adjacent to the drainage basin. Mean metal values in "barren" biotite 

gneiss and pegmatite of the present study area and the Maguire Lake 

area in general are summarized in Table 1. 

2.3 Regional Quaternary Geology and Glacial History 

The Quaternary geology and glacial history of the Maguire Lake 

region has been interpreted by Schreiner, Alley and Christiansen, 1975; 

and Sopuck, Lehto and Alley, 1980. Glacial lacustrine silt, clay, 

sand and gravel and glaciofluvial sand and gravel are the dominant 

surficial deposits in the region. Striations and ice cast grooves 

record a dominant Wisconsin ice flow direction of S20°W. Deglaciation 

was followed by complete inundation of the area by Lake Agassiz until 

about 10,500 years B.P. (Elson, 1961). 
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Figure 2 
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2.4 Topography and Physiography 

Topography of the study area is characterized by rugged, steep 

ridges of bedrock that extend parallel to and flank the drainage system. 

Maximum relief along the ridges is approximately 30 metres. Physio- 

graphy of the drainage basin is dominated by bedrock and glacial deposits 

which account for approximately 40% and 30% of the land surface, res- 

pectively. Lakes cover 20% and bogs and streams the remaining 10% of 

the area. 

2.5 Drainage 

The Maguire Lake area is defined by a regional drainage divide 

which routes water either to the north or south. The present study 

area is located along the south-flowing flank of this divide. Local 

topography defines an elongate, trough-shaped drainage system which 

extends for approximately 3.75 km southward from its' headwaters. 

Lakes within the basin are typically elongate and the ratios of length 

to width for Lakes 1, 2 and 3 are 5:1, 12:1 and 9:1, respectively. 

The bogs along this drainage basin are low relief wetlands typical of 

the Precambrian Shield areas . Streams are narrow, never exceeding 

1 metre in width and flow even during the late summer season. 



10 

2.6 Previous Reports of Uranium in the Area 

The first report of uranium vn'thin the area was provided by 

Kirkland (1956) who documented the presence of radioactive pegmatites 

to the west of the present study. Interest in the area was renewed 

in 1975 following the release of data from the Geological Survey of 

Canada - Saskatchewan Survey Regional Reconnaissance Lake Sediment 
2 

Survey. This survey indicated the presence of a 60 km lake sediment 

anomaly centered about Maguire Lake 5.0 km to the east of the present 

study area. Investigations of this and other regional anomalies 

were completed by the Saskatchewan Research Council between 1975 

and 1978 as part of a provincial program of resource evaluation 

(Lehto, Arnold and Smith, 1976, 1978). 
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CHAPTER 3 

DESCRIPTION OF FIELD AND LABORATORY PROCEDURES 

3.1 Sample Collection 

Sampling of the lakes, streams and bogs following the standard 

methods utilized by the Geology Division, Saskatchewan Research Council 

was carried out during the first ten days of August 1978. 

3.1.1 Lake Sediments 

Thirty-three lake bottom sediment samples were collected from a 

twelve foot, motorized "Canova" craft using conventional Eckman dredge 

equipment (Maps 2-6). The sampling procedure consisted of lowering 

the loaded dredge along an attached line to the point of maximum 

penetration in bottom sediment. A brass weight 'messenger' was run 

along the line which activated the spring-loaded jaws. The dredge 

was retrieved onboard and the contained sediment vjas transferred to 

polyethylene bags, sealed and labelled. 

3.1.2 Stream Sediments 

Eighteen samples were collected from the three streams along the 

drainage system (Maps 2-6). Samples were retrieved by hand from the 

upper 0.5 metre thickness of sediment, transferred to polyethylene 

bags, sealed and labelled. 
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3.1.3 Bog Sediments 

Seventeen samples of basal organic-rich sediment were collected 

from the local bogs (Maps 2-6). Sampling operations involve hand- 

augering through the surface moss and intermediate organic layers to 

basal peat-like accumulations. The lower basal sections of bogs are 

typically marked by a sharp contact with underlying glacial sediments. 

This contact is easily determined since the auger will not readily 

penetrate into the glacial sediments. Samples were transferred to 

polyethylene bags, sealed and labelled. 

As soon as possible after collection, the lake, stream and bog 

sediment samples were refrigerated at 5°C. Samples were shipped to 

and temporarily stored at Saskatchewan Research Council facilities in 

Saskatoon, Saskatchewan prior to final shipment to Lakehead University, 

Thunder Bay, Ontario in May 1979. During all stages of transit the 

samples were refrigerated. 

3.2 Investigations of Sediment Stratigraphy Through Lake and Bog Basins 

The late Quaternary stratigraphy of the lake and bog basins was 

investigated with the aid of a portable overburden drill. The system 

used in this study was originally employed by the Finnish Geological 

Survey for regional and detailed drift sampling programs. The appli- 

cation of the system in Canada has been previously reported by Sopuck 

& Lehto (1978). The system consists of 1 metre length inter-connecting 

drill rods and flow-through drill bits of either 25 or 35mm diameter 
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operated by a 28 kg gas-driven percussion hammer. The flow-through bit 

marks one of the many innovations of the system. Drilling is not 

hampered because of the internal wedge shape of the drill bit that 

allows material to continually pass through the nose and out the 

larger diameter side opening until the desired sampling media is inter- 

sected. When hammering ceases, sediment in the bit at that time 

remains wedged. Rods are retrieved with a mechanical jack and the 

sample extruded from the bit. 

The application of the system to lake basin studies required that 

a drill platform be mounted betv/een two braced canoes. Four anchors 

maintained the raft in a stationary position while drilling of at 

least seven sites per lake was carried out from the platform (Map 1). 

At each site, the entire thickness of organic sediment v^^as penetrated 

in order to examine the nature of the underlying glacial sediment. 

Bog basin studies were restricted to Bog 2 where drilling operations 

were conducted from the ground (Map 1). 

3.3 Investigation of Physico-Chemical Parameters 

Physico-chemical parameter measurements including pH, oxidation 

reduction potential (Eh), conductivity, dissolved oxygen (DO) and 

temperature were taken of the superjacent water above the sediment- 

water interface at each lake, stream and bog sample stations. Obser- 

vations were made in-situ with a Hydrolab Model 6-D water quality 

analyzer which was designed for field use and comprises a surface 

recording unit connected by cable to a submersible sonde which houses 

the five individual probes. The operation involved lowering the sonde 

to the desired depth and manually switching channels on the surface 

unit to display each individual parameter. 



14 

3.4 Extraction Procedures 

As an initial step in processing, approximately 1.0 kg of lake, 

stream and bog sediment samples were oven-dried at approximately 40°C. 

Dried samples were disaggregated on a mechanical shaker and then homo- 

genized by hand on an agate mortar and pestle in preparation for 

extraction and analytical procedures. 

3.4.1 Sequental Partial Extraction 

The following fractions were considered to be important in the 

metal partitioning with lake, stream and bog sediment samples: 

1. organic matter. 

2. carbonate and silicate minerals. 

3. amorphous and crystalline iron and manganese hydroxides. 

The choice of reagents to be used in the procedure has been based 

on the selectivity of each reagent in dissolving specific sediment 

fractions. Numerous alkaline solutions have been reported as effective 

reagents in the removal of sediment organic matter. The use of sodium 

hydroxide has been reported by Gortner, 1916; Oden, 1919; Eden, 1924; 

Troell, 1931; Schnitzer et al, 1958; and Kemp, 1964. Sodium hypo- 

brornite, chlorite and nitrate solutions have been used by Troell, 1971; 

Anderson, 1963; Lavkulich and Wiens, 1970; Schnitzer and Khan, 1972; 

Baker, 1973; Gibbs, 1973; Schaef, 1975; Hoffman, 1978; Bogle, 1980; 

Sopuck, Lehto and Alley, 1980; and Sopuck et al , 1980. Acidic solutions 

of hydrogen peroxide/hydrochloric acid, hydrogen peroxide/hydrofluoric 

acid and hydrogen peroxide/ascorbic acid have also been demonstrated 

as effective reagents in the dissolution of organic matter (Gortner, 
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1916; Eden, 1924; Lavkulich and Wiens, 1970; Presley, 1972; Meineke and 

Klaysmat, 1976; Huang et al, 1977; Huang and Liaw, 1978, 1979; and 

Tessier, 1979). 

A comparative study of the relative effectiveness of sodium hypo- 

chlorite and hydrogen peroxide was carried out by Anderson (1963) and 

Lavkulich and Wiens (1970). They concluded that sodium hypochlorite 

effectively extracts more organic matter with comparatively less des- 

truction and removal of the carbonates, hydroxides and silicates than 

procedures employing hydrogen peroxide. The application of the sodium 

hypochlorite technique is based on its ability to oxidize and dissolve 

organic matter. Anderson (1963) reports that three consecutive treat- 

ments with sodium hypochlorite freshly adjusted to pH 9.5 is sufficient 

to remove the bulk of organic matter present in soils. 

Carbonate minerals have been dissolved by sodium and ammonium 

acetate (Jackson, 1956; White, 1957; Zwarich and Mills, 1971; Gatehouse 

et al, 1977; Huang et al, 1977; Huang and Liaw, 1978; and Tessier, 1979) 

and with acetic, sulphuric and hydrochloric acids (Chester and Hughes, 

1967, Zwarich and Mills, 1971; Presley et al, 1973; Hoffman, 1978; 

Sopuck, Lehto and Alley, 1980). Acetate solutions have been used 

primarily in conjunction with peroxide treatments whereas acidic solu- 

tions have been used in sequence following hypochlorite treatment for 

removal of organic matter. Hoffman (1978) and Bogle (1980) report 

that the alkaline nature of hypochlorite may promote adsorption of 

metals onto clays or precipitation of metals as basic hydroxides. 

Subsequent treatment of the sample with acid would therefore dissolve 

these species as well as the carbonate minerals and associated metals. 
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In the event that specific examination of the metal concentration in 

the carbonate mineral fraction is desired, an alternative to the 

hypochlorite treatment, namely the acetate-peroxide treatment, may 

have to be sought. 

Hydroxylamine hydrochloride, a weak reducing agent has been shown 

to be effective in dissolving amorphous manganese hydroxides in soils and 

sediments (Arrhenius and Korkish, 1959; Chester and Hughes, 1967; 

Chao, 1972; Presley, 1972; Chao and Anderson, 1974; Chao, 1976; 

Grieve and Fletcher, 1976; Meineke and Klaysmat, 1976; Gatehouse et 

al, 1977; Dijkstra et al, 1978; Hoffman, 1978; Tessier, 1979; and 

Sopuck, Lehto and Alley, 1980). The duration of the treatment is 

commonly limited to 30 minutes to ensure that only minor quantities 

of amorphous iron hydroxides are dissolved. 

Iron hydroxides have been dissolved by sodium dithionite/sodium 

hydrosulphite (Deb, 1949; Aguilera and Jackson, 1953; Mitchell and 

McKenzie, 1954; Jackson, 1956; White, 1957; Mehra and Jackson, 1960; 

Coffin, 1963; Chao, 1976; Gibb, 1977; Huang et al, 1977; Dijkstra et 

al, 1978; Hoffman, 1978; Huang and Liaw, 1979). This method employs 

the sodium dithionite as a reducing agent in conjunction with sodium 

bicarbonate to act as a buffer solution and sodium citrate as the 

chelating or complexing agent for the dissolved ferric and ferrous 

iron. Inherent disadvantages of this method have been documented. 

Dithionite effectively dissolves both amorphous and crystalline iron 

hydroxide species thereby inhibiting separate examination of these two 

component fractions. Atomic adsorption spectrophotometric analysis of 

zinc in dithionite extracts is prohibited by extremely high positive 
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interferences (Hoffman, 1978; Sopuck, Lehto and Alley, 1980). For 

these reasons, acid ammonium oxalate is the preferable reagent to 

dissolve amorphous iron hydroxides (Robinson and Holmes, 1924; 

Schofield, 1950; deEndredy, 1963; McKeague and Day, 1966; Gamble and 

Daniels, 1972; Huang et al, 1977; and Hoffman, 1978). Acid ammonium 

oxalate is also a reducing agent and thereby complexes metal ions 

and keeps them in solution. The extraction is commonly conducted in 

darkness due to the photo-sensitive nature of the reaction (Schwertmann, 

1964; McKeague and Day, 1966; and Huang et al , 1977). Crystalline 

iron hydroxides are dissolved by hydrazine chloride which acts to reduce 

iron species (Gatehouse et al, 1977; Sopuck, Lehto and Alley, 1980). 

Detrital minerals are commonly dissolved either by alkaline 

fusion or mixtures of strong acids. The acid method is preferable as 

the fusion method requires a large excess of fusing salt to complete 

the dissolution which can contribute to instability and high background 

readings in atomic adsorption spectrophotometry (Tessier, 1979). 

The sequential partial extractions must follow an 

order whereby each successive chemical treatment involves a stronger 

reagent than the previous one. In view of the rich organic nature 

of the sediments being presently examined, early removal of organic 

matter was considered important in choosing the sequence of partial 

extractions. Carbonate minerals were not expected to be in abundance 

due to a lack of evidence of a local carbonate source. Consequently 

specific examination of this fraction was not necessary and sodium 

hypochlorite was considered to be a suitable reagent to remove organic 

matter. 
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The method adopted for the present study was as follows: 

1. treatment with sodium hypochlorite to dissolve organic matter and 

associated metal; 

2. treatment with water-hydrochloric acid solution to dissolve car- 

bonate minerals, clay minerals and basic hydroxides and associated 

metal; 

3. treatment with hydroxyl amine hydrochloride to dissolve amorphous 

manganese hydroxides and associated metal; 

4. treatment with acid ammonium oxalate to dissolve amorphous iron 

hydroxides and associated metal; 

5. treatment with hydrazine chloride to dissolve crystalline iron 

hydroxides and associated metal; 

6. treatment with hydrofluoric-nitric-perchloric acid to dissolve 

residual detrital minerals and associated metal. 

The sequential partial extraction procedure modified from Gatehouse 

et al, 1977 and Hoffman, 1978 is described in detail in Appendix 

Extractions of sediment samples (1.000 g dry weight) were conducted in 

50.0 ml nalgene centrifuge tubes. Each of extractions 1 through 5 

were repeated three times in succession with 20.0 ml of reagent. 

Solution extracts were separated from the sample residue after each 

step by spinning the samples at 2400 rpm for 10 minutes in a Sorvall 

Model RC2-B Automatic Refrigerated Superspeed Centrifuge. Solutions 

were decanted into 100.0 ml Pyrex volumetric flasks and the sample 

residue was left in the centrifuge tubes. After the third step was 

carried out for each treatment, the sample residue was washed with 

10 ml of deionized water to remove any reagent remaining before 
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implementing the next extraction procedure. Solution extracts were 

topped up to a final volume of 100.0 ml with deionized water. The 

final step of sequential partial extractions was dissolution of the 

detrital mineral fraction which was performed by subjecting the sample 

residue from extraction #5 to a single treatment with concentrated 

hydrofluoric-nitric-perchloric acids as described in Appendix II(II). 

Solutions from this digestion were transferred to Pyrex volumetric 

flasks and brought up to a final volume of 100.0 ml with deionized 

water in preparation for analysis. 

3.4.2 Partial Extractions 

In the present study, partial extraction techniques have been 

utilized to separate the humic and fulvic acid components of sediment 

organic matter (Oden, 1919; Eden, 1924; Kemp, 1969; Schnitzer and 

Khan, 1972; Baker, 1973; and Schaef, 1975). Humic and fulvic acids 

are high molecular weight compounds that represent the dominant con- 

stituents of humic material (Manskaya and Drozdova, 196B). They 

consist of aromatic nuclei and nitrogen based groups in cyclic form 

or as peripheral chains. The presence of side-chain groups such as 

phenolic and alcoholic hydroxyls, OH; carboxyls, COOH; carbonyls, CO; 

and methoxyls, OCH, have also been documented. The capacity of humic 

and fulvic acids to retain metals has been attributed to the ion 

exchange and sorption capacity of these functional groups. 

The separation of these compounds has been based on their relative 

solubilities in alkaline and acidic media. Reagents generally used 

include sodium hydroxide, sodium hyponitrate and hydrochloric acid. 

Humic acids are dark-coloured organic compounds that are soluble in 
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alkaline solutions and precipitate on addition of acid to the alkaline 

extracts. Light straw to tea-coloured organic compounds that are 

soluble in both alkaline and acidic media consitute the fulvic acid 

component. The humin fraction of sediments includes hydroxide and 

detrital mineral species which are insoluble in both acid and alkaline 

medium. Humic-fulvic acid and humin extractions were performed in 

the present study with sodium hyponitrate - hydrochloric acid according 

to methods described by Schnitzer and Khan (1972) and Schaef (1975). 

Details of the procedure are provided in Appendix II (II). The 

extractions were performed in 250 ml centrifuge tubes initially 

containing 10.0000 g dry weight of sample and were repeated three 

times in succession on each sample. After separation, humic and 

fulvic residues were dried at 40°C and subjected to total acid 

digestion procedures in preparation for analysis (Appendix II (I)). 

3.5 Analytical Techniques 

The concentrations of copper, zinc, iron, and manganese were 

determined by standard atomic adsorption spectrophotometric methods 

using Perkin Elmer Model 303, and Model 2380 instruments. The use of 

two instruments for the present study was necessitated by the replace- 

ment of the old Model 303 instrument with a newer model. This 

decision to replace the spectrophotometer Vvfas out of the hands of 

the researcher and resulted in approximately 80% of the analyses 

being carried out on Model 303 and the remaining 20% on Model 2380. 

Features of each instrument and details of operating procedures are 

provided in Appendix III(I). 
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Uranium concentrations in sediment samples were determined by 

fluorimetric analysis using a Jarrell Ash Fluorimeter. Features of 

the instrument and operating procedures are provided in Appendix III(II). 

Determination of percent carbon concentrations in sediment samples 

were performed on a Perkin Elmer Model 240 Elemental analyzer. Details 

of the operation and features of the instrument are provided in 

Appendix III (III). 
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CHAPTER 4 

RESULTS OF FIELD AND ANALYTICAL PROCEDURES 

4.1 Field Procedures 

4.1.1 Lake and Bog Basin Stratigraphy 

The late Quaternary stratigraphy of the lake and bog basins is 

shown in Map 1. Four traverses spaced at 100 m intervals were com- 

pleted across Lake 1. Along each traverse at least one centre basin 

and two nearshore drill sites were chosen. Traverses were completed 

only on Lake 1 as Lakes 2 and 3 were too narrow. Drilling has shown that 

the thickest sequence of post-glacial organic sediment (6.5 m) occurs in the 

centre of Lake 1 and thins to an average of about 3 metres toward 

the shore. In Lake 2, the organic sediments range in thickness from 

2 metres in the south to 5 metres in the central regions and the northern 

end of the lake. Organic sediments in Lake 3 varied in thickness 

from 1.5 to 4.5 metres. 

At most lake drill locations the organic sediments are immediately 

underlain by glaciolacustrine clays or mixtures of clay and sand. The 

thickness of penetration through clay and sand ranges from 2 to 10 metres. 

Four traverses spaced at 90 m intervals were completed along the 

length of Bog 2 (Map 1). The organic sediment in this bog ranges up 

to 6 metres in thickness and is observed to be underlain by glacio- 

1acustrine clay and clay-sand deposits up to 8 metres in thickness. 
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4.1.2 Physico-Chemical Parameters and Percent Carbon Concentrations 1n 
the Lake, Stream and Bog Environment 

Physico-chemical parameter values including pH, oxidation reduction 

potential (Eh), conductivity, dissolved oxygen, and temperature of the 

superjacent water and carbon concentrations for each sediment sample 

location are listed in Appendix VI, Table 19. 

The pH values of the superjacent waters in the study area are 

generally in the acidic to alkaline range (pH 4.7 - 7.6; Appendix VI, 

Table 19). Mean values of 6.5 and 6.2 are recorded for local lakes 

and streams respectively. Bog waters are more acidic as illustrated 

by a mean pH value of 5.5 (Table 2). The oxidation reduction potentials 

are recorded in millivolts and show that oxidizing conditions prevail 

(Eh'*^485 - ^700 millivolts. Appendix VI, Table 19). The mean Eh values 

for lakes and streams is 603 and 607 millivolts, respectively. The 

Eh conditions in bogs are less oxidizing than in lakes and streams 

according to a lower mean value of 545 millivolts (Table 2). Con- 

ductivity is a measure of ionic concentration in water and is recorded 

in micromhos/cm. In the present study, conductivity is highest 

in bog waters according to a mean value of 112 micromhos/cm. 

The mean conductivity for lakes and streams are 108 micromhos/cm and 

104 micromhos/cm, respectively (Table 2). Dissolved oxygen is a 

measure of the oxygenation level in waters and is reported in ppm. 

The mean dissolved oxygen values in lakes and streams are 8.4 ppm and 

6.5 ppm, respectively. Bog waters which have a mean value of 3.2 ppm 

aissolved oxygen are less oxygenated than lakes and streams 

(Table 2). Temperature values are reported in °C and for local stream 
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Environment 
Type 

Physico-Chemical Parameters (measured in water 
adjacent to sediment water interface) 

pH 
Oxidation 
reduction 
potential 

(+mi 11 i vol ts) 

Conductivity 
(micromhos/ 

cm) 

Dissolved 
Oxygen 

(ppm) 
Temp 

% C 
Analyzed 
in 
Sediment 

Lake 1 
n = 11 

7.0 

c. V 

561 103 9.7 16.4 30.3 

23 

Lake 2 
n = 7 

6.0 

c. V 

664 86 8.6 14.4 18.1 

11 

Lake 3 
n = 15 

6.3 

c. V 

605 

19 

121 7.3 

26 

12.9 

28 

23.2 

28 

All lakes 
n = 33 

6.5 

c. V 

603 

15 

108 8.4 

24 13 

14.4 

21 

24.5 

31 

Stream 1 
n = 1 

6.4 

c. V 

620 no 3.5 10.5 2.7 

Stream 2 
n = 6 

6.5 

c. V 10 

603 90 5.6 

13 

12.3 21.9 

38 

Stream 3 
n = 11 

6.1 

c. V 

608 111 7.3 

13 18 

15.7 

22 

10.4 

68 

All Streams 
n = 18 

6.2 

c. V 

607 104 6.5 

14 23 

14.8 

18 

14.0 

68 

Bog 1 
n = 4 

6.4 

c. V 

580 

8 

105 15 

51 

12.1 

28 

45.9 

Bog 2 
n = 9 

5.1 

c. V 

529 116 2.3 

14 39 

11.9 41 .4 

10 

Bog 3 
n = 4 c. V 

25.2 

All Bogs 
n = 13 

5.5 

c. V 12 

545 112 3.2 

13 63 

11.9 

17 

37.5 

X - mean 

c.v. - coefficient of variation about mean value expressed as standard deviation/ 
mean value x 100% 

Table 2 Summary of physico-chemical parameters in superjacent waters and 
percent carbon concentrations in sediments of the study area 
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and lake waters mean values are 14.8°C and 14.4'^C, respectively. Bog 

waters are typically colder than lake and stream waters according to 

a mean value of 11.9°C (Table 2). The total carbon concentrations of 

sediment samples reflect their organic matter content (Coker, 1974). 

The highest total carbon concentrations occur in bogs (x = 37.5%). 

Local lake sediments contain a mean value of 24.5%C and stream sedi- 

ments a mean value of 14.8%C (Table 2). 

4.2 Analytical Procedures 

4.2.1 Comparison of Data Generated by Model 303 and Model 2380 
Atomic Adsorption Spectrophotometers 

The Mann Whitney statistical test has been used to determine 

whether or not analytical data derived from Model 303 and Model 2380 

Atomic Adsorption Spectrophotometers are comparable (Mann and Whitney, 

1947; Kreyszig, 1970). The test v;hich is described in Appendix IV 

has been applied to data from a series of replicate samples. The 

replicate suite comprises three samples, one each from local lake, 

stream and bog environments which have been separately subjected to 

extractions and analyzed ten times for copper, zinc, iron and man- 

ganese over the course of the study (Appendix V, Tables 14 to 18). 

For each replicate sample, two analyses were performed on the Model 

2380 and eight on the Model 303. Results of the Mann Whitney test 

indicate that at the 95% confidence interval there is no significant 

statistical difference in metal values generated from either instru- 

ment (Table 3). The analytical data for the entire study are therefore 

considered to be comparable. 
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*W is a sum of the rank score from the Model 2380 Atomic Adsorption 
spectrophotometer data. The reader is referred to Appendix IV(I) for 
details concerning the computation of W. Values between 3 and 19 
indicate no statistical difference between element values determined 
on Model 303 and Model 2380 Atomic Adsorption spectrophotometers. 
The confidence interval is 95%. 

Table 3 Sum of rank score values for copper, zinc, iron and manganese 
from the Model 2380 Atomic Adsorption Spectrophotometer 
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4.2.2 Accuracy and Precision of Atomic Adsorption and Fluorimetric 
Analysis 

The analytical accuracy and precision of atomic adsorption spectro- 

photometric and fluorimetric analyses have been determined by a series 

of standard samples and a suite of replicate analyses, respectively. 

Details of procedures used in the present study are provided in 

Appendix III(IV). Accuracy is considered to be a measure of the 

ability of a procedure to reflect the true concentration of an element 

and in the present study has been judged by comparing metal values 

determined from routine analysis to the established value of standard 

samples. A quantitative measure of accuracy has been provided by cal- 

culating the coefficient of variation about the established value 

(Table 4). At the upper limit of metal concentration established as 

100 ppm copper, 240 ppm zinc, 5.9% iron, 600 ppm manganese and 36 ppm 

uranium, accuracy is - io% for atomic adsorption spectrophotometric 

and fluorimetric analyses. At concentrationuvalues approximately 

one tenth the upper limit, accuracy is - 20%. 

Analytical precision refers to the limits within which analyses 

are reproducible. A quantitative measure of precision has been pro- 

vided by calculating the coefficient of variation about a mean metal 

value determined from replicate analysis of a selected sample. In 

the present study, three replicate samples have been selected, one 

each from lake, stream and bog environments. Each sample has been 

separately subjected to sequential partial extractions ten times over 

the course of the study and analysed for uranium, copper, zinc, iron 

and manganese (Appendix V, Tables 14-18). Precision of analysis for 
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Element Established Value 
Analyzed of Standard Sample 

Observed Values in Standard Sample 

c.v.(%) 

Cu 
(ppm) 

100 
10 

42 
36 

98 
9 

5.8 
1.5 

6 
15 

Zn 
(ppm) 

240 
20 

29 
29 

239 
22 

11.9 
3.9 

5 
20 

Fe 
(%) 

5.00 
.50 

44 
38 

5.21 
.60 

.44 

.09 
9 

15 

Mn 
(ppm) 

600 
50 

39 
35 

597 
54 

11.7 
6.5 

2 
13 

U 
(ppm) 36 43 35 3.3 

N = no. of observations 

X = arithmetic mean 

a = standard deviation 

cv = coefficient of variation about absolute value expressed as a/absolute 
value X 100% (this value is interpreted as a quantitative measure of 
analytical accuracy) 

Table 4 Accuracy of analysis for copper, zinc, iron, manganese and uranium 
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each replicate lake, stream and bog sample is summarized in Tables 5, 

6 and 7, respectively. Precision of the entire combined sequential 

partial extraction procedure has been determined by computing the 

coefficient of variation for the summed value of all six extractions. 

The value was determined to be less than 11% in each of lake, stream 

and bog sediments (Tables 5,6,7). For each of the sequential ex- 

tractions, the coefficient of variation was observed to vary according 

to the proportion of total metal extracted and the results can be 

summarized as follows: 

(a) - 12% for extractions containing more than or equal to 30% of 

total metal in the sample. 

(b) from 12 to 20% for extractions containing 10 to 30% of the total 

metal in the sample. 

(c) from 20 to 30% for extractions containing 5 to 10% of the total 

metal in the sample. 

(d) greater than 30% for extractions containing less than 5% of the 

total metal in the sample. 

4.2.3 Reliability of the Sequential Partial Extraction Technique 

The reliability of the sequential partial extraction technique 

has been determined by testing the comparabi1ity between metal values 

computed as a sum of all extractions and metal values reported from a 

total digestion of the same sample. The substitute t test described 

in Appendix IV has been used for this purpose (Miller and Kahn, 1962; 

Dixon and Massey, 1969). The test is based on the premise that the 

sum of partial extractions should equal the total metal concentration 
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12 = no. of replicate analysis 
X = arithmetic mean a. expressed as a percentage of total sum of partial extraction. 

b. in concentration units of ppm unless otherwise stated, 
a = standard deviation 

cv = coefficient of variation about mean expressed as a/x x 100 (This value is 
interpreted as a quantitative measure of analytical precision). 

Table 5 Precision of Analysis for uranium, copper, zinc, iron and manganese in total 
and sequential partial extractions of lake sediments 
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b. 43 

3.69 
r ■■ 

9 
} 

a. 100 
,b. 40 

2.97 

6 

a. 100 
b. 95 

3.32 

3 

0.12 

3 

a. 100 
.b, 568 

^ 10.86 

a. 100 
b. 41 

3.38 

8 

 vy-^ V X X.. X- V 

a. 2 ;a. <1 a. 14 la. <1 ! a. 2 
b. _34 jb^ J 4b, _^L jb6 I < DL I b^ _J  

0.49 i I 0.92 1 ! 0.40 3.17 

9 49 
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2.71 

6 
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b. 13 
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 4.. 

40 

a. 2 X. 
A- 

b. , J 

1 

b. 
4 |a. 33 
2 |b. 15 

“|a7’Tl 
b. 5 

a. 22 
b. 10 

1.22 I 
4 

9 i 100 

0.78 ; 0.94 I 1.11 

39 22 

4.13 

4 

a. 10 i a. 1 
b, __9 i_br J 
2.87 I 0.67 

32 i 67 

1 36 
1 ^b. 34 

0.81 4.67 

a. 6 
|_bv__6 

1.50 

81 14 

2.60 

26 

a. 47 

3.04 

 ( 

25 
H 

X 

a. 100 a. 100 a. 2 i a. 3 la. 2 36 
-T-  
la. 

 I- 

b. 4.59 ;b. 4.60, b.0.09 b.Q.15b.0.07 ib.l .68 |b.0.19 

0.14 

3 

a. 100 
b, .564 

0.02 ; 0.03 
. ....4  

22 ! 20 

a. 15 I a. <1 
b. 831 b. <1 

0.02 

29 

0.12 0.03 

16 

a. 54 
.b.,.._.2^.48 

0.19 

8 

a. 13 ! a. 19 
b. 73 ! b.l08 

10.71 i 11.61 
-T 

14 

0.66 

>100 

6.88 6.50 

a. ! a. 48 
b^ 27 Lb. 273 

4.45 

16 

13.73 

a 
cv 

no. of replicate analysis 
arithmetic mean a. expressed as a percentage of sum total of partial extractions 

b. in concentration units of ppm unless otherwise stated 
standard deviation 
coefficient of variation about mean expressed as a/x x 100 (This value is 
interpreted as a quantitative measure of analytical precision). 

Table 6 Precision of analysis for uranium, copper, zinc, iron and manganese in total 
and sequential partial extractions of stream sediments 
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11 
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3.29 
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100 

1 0.40 0.63 

100 
- 4. 

40 100 

a. 100 
b. 54 

a. 78 1 a.< 1 

3.31 

b- 42 

2.83 

7 

a. 
b.< 1 ^ b. 

a. 100 
b. 32 

a. 53 

0.48 

> 100 

0.66 

33 

7 ia. 
4 ib. 

a. 
b. 

0.70 

18 

a.< 1 i a. 9 
I 

0.81 

27 

0.49 

12 

13 ia. 13 
b, 17 i b .< 1 4 _h. , _h 

3.53 

11 

3.98 

23 

0.3 : 1.25 

> 100 i 42 

1.56 

39 

T 
i I 

- -R- 
38 41 

a. 100 

0.04 

8 

48 
).2! 

0.03 

12 

a. a. 19 12 a. 

0.01 s 0.01 j 0.02 
--- I 1  
33 ! 25 I 20 

0.02 

8 

0.01 

100 a. 100 a. 67 I a. 2 
57 b. 55 ! b. 37 i b. 1 

3.84 

7 

a. 4 !a. 5 
b. 2 ! b. 3 

33 25 
---1- 

a. 7 
b. 4 

j a. 15 
i b. 8 

4.06 1.22 

11 > 100 

1.14 ; 1.17 
 I  

1 .35 1 .45 

57 39 34 18 

n = no. of replicate analysis 
X = arithmetic mean 
a = standard deviation 

cv = coefficient of variation about mean expressed as a/x x 100 (This value is 
interpreted as a quantitative measure of analytical precision). 

Table 7 Precision of Analysis for uranium, copper, zinc, iron and manganese in total 
and sequential partial extractions of bog sediments 
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of the sample. T ratios have been determined for uranium, copper, 

zinc, iron and manganese in each of lake, stream and bog sediments 

from the replicate suite of samples previously described. Results 

are listed in Table 8, and indicate that at the 95% confidence interval 

there is no statistical difference between mean values determined from 

the sum of sequential partial extractions and mean values determined 

from total digestion. The sequential partial extraction technique is 

therefore considered to be a reliable method. 
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X = arithmetic mean 
w = range of observed concentrations 
Td = t-test ratio for the significance between mean X(l) and X(2), The 

value is expressed as ( X^-X2)/1/2(W^+W^) 
*xd values between -.304 and +.304 indicate ho significant difference 

between mean x(l) and x(2) of the 95% confidence interval 

Table 8 T-test ratios for uranium, copper, zinc, iron and manganese in 
total digestion versus sum of sequential partial extractions 
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CHAPTER 5 

RESULTS OF SEQUENTIAL PARTIAL EXTRACTION PROCEDURES 

5.1 Introduction 

Sequential partial extractions of lake, stream and bog sediment 

samples have been used to investigate uranium, copper, zinc, iron and 

manganese partitioning into: 1) organic matter; 2) carbonate minerals; 

3) amorphous manganese hydroxides; 4) amorphous iron hydroxides; 

5) crystalline iron hydroxides; and 6) detrital minerals (Appendix VI, 

Tables 20 to 24). Histograms which illustrate proportions of total 

metal in each of the six sequential partial extractions have been 

plotted on Maps 2 to 6. 

5.2 Uraniurn 

5.2.1 Lake Sediments 

The organic matter and amorphous iron hydroxide fractions generally 

account for all of the uranium present in lake sediments of the present 

study (Map 2). The mean (x) and ranges (w) of uranium in organic 

matter have been expressed as proportions of total uranium in sediment 

and are as follows: in Lake 1 x = 95%, w = 84 to 100%; in Lake 2 

X = 84%, w = 72 to 91%; and in Lake 3 x = 84%, w = 54 to 98%. Propor- 

tions of total uranium in the amorphous iron hydroxide fraction of 

sediments are as follows: in Lake 1 x = 5%, w = 0 to 16%; in Lake 2 

X = 16%, w = 9 to 28%; and in Lake 3 x = 11%, w = 1 to 39% (Table 9, 
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X - mean 

c.v. - coefficient of variation expressed as standard deviation/x x 100 

Table 9 The proportion of total uranium in component fractions of lake, stream 
and bog sediments 
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Appendix VI, Table 20). The mean proportions of uranium in the car- 

bonate mineral, amorphous manganese hydroxide, crystalline iron 

hydroxide and detrital mineral fractions generally account for less 

than 5% of the total uranium in lake sediments. 

5.2.2 Stream Sediments 

The organic matter, amorphous iron hydroxide and detrital mineral 

fractions generally account for all of the uranium present in area 

stream sediments (Map 2). Proportions of total uranium in sediments 

are as follows: in organic matter in Stream 1 x = 80%, in Stream 2 

X = 88% and w = 78 to 100%, in Stream 3 x = 85% and w = 66 to 98%; 

in amorphous iron hydroxides in Stream 1 x = 10%, in Stream 2 x = 11% 

and w = 0 to 22%, in Stream 3 x = 4% and w = 0 to 19%; and in detrital 

minerals in Stream 1 x = 7%, in Stream 2 x = 0% and w = 0 to 2% and 

in Stream 3 x = 8% and w = 0 to 33% (Table 9, Appendix VI, Table 20). 

The mean proportions of uranium in the carbonate mineral, amorphous 

manganese hydroxide and crystalline iron hydroxide fractions generally 

account for less than 5% of the total uranium in stream sediments 

(Table 9). 

5.2.3 Bog Sediments 

Proportions of total uranium in bog sediments are as follows: 

in organic matter in Bog 1 x = 96% and w = 94 to 98%, in Bog 2 x = 99% 

and w = 98 to 100%, and in Bog 3 x = 92% and w = 88 to 98% (Map 2, 

Table 9, Appendix VI, Table 20). Mean proportions in each of the car- 

bonate mineral, amorphous manganese and iron hydroxide, crystalline 

iron hydroxide and detrital mineral fractions generally account for 

less than 5% of the total uranium content of bog sediments (Table 9). 
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5.3 Copper 

5.3.1 Lake Sediments 

The organic matter, amorphous iron hydroxide, crystalline iron 

hydroxide, amorphous manganese hydroxide and detrital mineral fractions 

account for the bulk of copper present in lake sediments of the present 

study (Map 3). Means and ranges of copper expressed as proportions 

of total metal in sediment are as follows: in organic matter in Lake 1 

X = 52% and w = 11 to 62%, in Lake 2 x = 39% and w = 31 to 68%, in 

Lake 3 x = 48% and w = 27 to 60%; in amorphous iron hydroxide in Lake 1 

X = 19% and w = 15 to 23%, in Lake 2 x = 42% and w = 31 to 68%, in Lake 3 

X = 29% and w = 10 to 59%; in crystalline iron hydroxides in Lake 1 

X = 9% and w = 7 to 13%, in Lake 2 x = 8% and w = 6 to 11%, in Lake 3 

X = 9% and w = 1 to 20%; in amorphous manganese hydroxides in Lake 1 

X = 5% and w = 3 to 8%, in Lake 2 x = 7% and w = 4 to 9%, in Lake 3 

X = 7% and w = 4 to 10%; and in detrital minerals in Lake 1 x = 11% and 

w = 0 to 15%, in Lake 2 x = 2% and w = 1 to 3%, and in Lake 3 x = 5% 

and w = 4 to 8% (Table 10, Appendix VI, Table 21). Mean proportions 

in the carbonate mineral fraction generally account for less than 5% 

of the total copper content of lake sediments (Table 10). 

5.3.2 Stream Sediments 

The detrital mineral, amorphous iron hydroxide, organic matter, 

crystalline iron hydroxide and amorphous manganese hydroxide fractions 

account for the bulk of copper in local stream sediments (Map 3). 

Proportions of total copper in sediment are as follov/s: in detrital 
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X - mean 

c.v. - coefficient of variation 

Table 10 The proportion of total copper in component fractions of lake, stream 
and bog sediments 



40 

minerals in the single Stream 1 sample x = 49%, in Stream 2 x = 11% and 

w = 6 to 15%, in Stream 3 x = 28% and w = 4 to 52%; in amorphous iron 

hydroxides in Stream 1 x = 22%, in Stream 2 x = 16% and w = 12 to 28%, 

in Stream 3 x = 26% and w = 19 to 55%; in organic matter in Stream 1 

X = 9%, in Stream 2 x = 48% and w = 34 to 56%, in Stream 3 x = 24% and 

w = 4 to 42%; in crystalline iron hydroxides in Stream 1 x = 9%, in 

Stream 2 x = 15% and w = 12 to 18%, in Stream 3 x = 8% and w = 5 to 19%; 

and in amorphous manganese hydroxides in Stream 1 x = 7%, in Stream 2 

X = 8% and w = 4 to 11%, in Stream 3 x = 8% and w = 1 to 15% (Table 10, 

Appendix VI, Table 21). Mean proportions in the carbonate mineral 

fraction generally account for less than 5% of the total copper in 

stream sediments (Table 10). 

5.3.3 Bog Sediments 

Means and ranges of copper expressed as proportions of total 

metal in bog sediments are as follows: in organic matter in Bog 1 

X = 63% and w = 54 to 68%, in Bog 2 x = 61% and w = 49 to 75%, in 

Bog 3 X = 55% and w = 37 to 80%; in amorphous iron hydroxide in Bog 1 

X = 9% and w = 6 to 11%, in Bog 2 x = 13% and w = 4 to 29%, in Bog 3 

X = 16% and w = 10 to 49%; in crystalline iron hydroxides in Bog 1 

X = 13% and w = 12 to 13%, in Bog 2 x = 10% and w = 6 to 15%, in 

Bog 3 X = 2% and w = 1 to 4%; in amorphous manganese hydroxides in 

Bog 1 X = 8% and w = 5 to 11%, in Bog 2 x = 10% and w = 5 to 17%, 

in Bog 3 x = 4% and w = 2 to 6%; in detrital minerals in Bog 1 x = 1% 

and w = 0 to 2%, in Bog 2 x = 3% and w = 1 to 8%, in Bog 3 x = 23% 

and w = 5 to 37%; and in carbonate minerals in Bog 1 x = 8% and 
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w = 5 to 11%; in Bog 2 x = 1% and w = 0 to 3%, in Bog 3 x = 2% and 

w = 0 to 2% (Map 3, Table 10, Appendix VI, Table 22). 

5.4 Zinc 

5.4.1 Lake Sediments 

The amorphous iron hydroxide, organic matter, detrital mineral, 

amorphous manganese hydroxide and crystalline iron hydroxide fractions 

account for the bulk of zinc in local lake sediments (Map 4). Means 

and ranges of zinc expressed as proportions of total metal in sediment 

are as follows: in amorphous iron hydroxides in Lake 1 x = 39% and 

w = 21 to 48%, in Lake 2 x = 45% and w = 30 to 68%, in Lake 3 x = 42% 

and w = 9 to 61%; in organic matter in Lake 1 x = 36% and w = 15 to 55%, 

in Lake 2 x = 17% and w = 8 to 26%, in Lake 3 x = 30% and w = 5 to 67%; 

in detrital minerals in Lake 1 x = 12% and w = 0 to 33%, in Lake 2 

X = 16% and w = 11 to 29%, in Lake 3 x = 17% and w = 5 to 33%; in amor- 

phous manganese hydroxides in Lake 1 x = 2% and w = 0 to 10%, in 

Lake 2 x = 13% and w = 8 to 19%, in Lake 3 x = 9 and w = 5 to 15%; 

and in crystalline iron hydroxides in Lake 1 x = 12% and 2 = 0 to 24%, 

in Lake 2 x = 7% and w = 2 to 22%, in Lake 3 x = 6% and w = 0 to 20% 

(Table 11, Appendix VI, Table 22). Mean proportions in the carbonate 

mineral fraction generally account for less than 5% of the total zinc 

in lake sediments (Table 11). 

5.4.2 Stream Sediments 

The detrital mineral, amorphous iron hydroxide, organic matter, 

crystalline iron hydroxide and amorphous manganese hydroxide fractions 

account for the bulk of zinc in local stream sediments (Map 4). Means 
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X - mean 

c.v. - coefficient of variation 

Table 11 The proportion of total zinc in the component fractions of lake, 
stream and bog sediments 
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and ranges expressed as proportions of total metal in sediment are 

as follows: in detrital minerals in the single sample along Stream 1 

X = 58%, in Stream 2 x = 38% and w = 12 to 73%, in Stream 3 x = 63% 

and w = 24 to 82%; in amorphous iron hydroxides in Stream 1 x = 18%, 

in Stream 2 x = 23% and w = 7 to 35%, in Stream 3 x = 13% and w = 5 

to 59%; in organic matter in Stream 1 x = 10%, in Stream 2 x = 24% 

and w = 4 to 49%, in Stream 3 x = 5% and w = 6 to 20%; in crystalline 

iron hydroxides in Stream 1 x = 10%, in Stream 2 x = 5% and w = 4 to 

10%, in Stream 3 x = 5% and w = 2 to 16%; and in amorphous manganese 

hydroxides in Stream 1 x = 4%, in Stream 2 x = 7% and w = 0 to 14%, 

in Stream 3 x = 6% and w = 4 to 13% (Table 12, Appendix VI, Table 22). 

Mean proportions in the carbonate mineral fraction generally account 

for less than 5% of the total zinc in stream sediments (Table 11). 

5.4.3 Bog Sediments 

The organic matter, detrital mineral, crystalline iron hydroxide 

and amorphous iron hydroxide fractions account for the bulk of zinc in 

local bog sediments (Map 4). Means and ranges expressed as proportions 

of total zinc in sediment are as follows: in organic matter in Bog 1 

X = 90% and w = 76 to 100%, in Bog 2 x = 57% and w = 22 to 77%, in 

Bog 3 X = 17% and w = 11 to 35%; in detrital minerals in Bog 1 x = 2% 

and w = 0 to 8%, in Bog 2 x = 17% and w = 0 to 54%, in Bog 3 x = 58% 

and w = 23 to 70%; in crystalline iron hydroxides in Bog 1 x = 7% and 

w = 0 to 12%, in Bog 2 x = 10% and w = 0 to 25%, in Bog 3 x = 6% and 

w = 4 to 18%; and in amorphous iron hydroxides in Bog 1 x = 1% and 

w = 0 to 9%, in Bog 2 x = 10% and w = 0 to 15%, in Bog 3 x = 11% and 
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w = 7 to 18% (Table 11, Appendix VI, Table 22). Mean proportions in 

the carbonate mineral and amorphous manganese hydroxide fractions 

generally account for less than 5% of the total zinc in bog sediments 

(Table 11). 

5.5 Iron 

5.5.1 Lake Sediments 

The amorphous iron hydroxide, detrital mineral, crystalline iron 

hydroxide and organic matter fractions retain the bulk of iron present 

in lake sediments of the present study (Map 5). Means and ranges 

expresed as proportions of total iron in sediment are as follows: in 

amorphous iron hydroxides in Lake 1 x = 30% and w = 17 to 44%, in 

Lake 2 x = 45% and w = 27 to 67%, in Lake 3 x = 48% and w = 20 to 78%, 

in detrital minerals in Lake 1 x = 38% and w = 21 to 60%; in Lake 2 

X = 22% and w = 9 to 44%, in Lake 3 x = 31% and w = 11 to 62%; in 

crystalline iron hydroxides in Lake 1 x = 12% and w = 4 to 20%, in 

Lake 2 x = 17% and w = 0 to 41%, in Lake 3 x = 7% and w = 2 to 19%; 

and in organic matter in Lake 1 x = 10% and w = 2 to 28%, in Lake 2 

X = 10% and w = 3 to 19%, in Lake 3 x = 8% and w = 1 to 20% (Table 12, 

Appendix VI, Table 23). The mean proportions in the carbonate mineral 

and amorphous manganese hydroxide fractions generally account for less 

than 5% of the total iron in lake sediments (Table 12). 

5.5.2 Stream Sediments 

The detrital mineral, amorphous iron hydroxide and organic matter 

fractions generally account for the bulk of iron in local stream sedi- 

ments. Means and ranges expressed as proportions of total iron in 
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X - mean 

c.v. - coefficient of variation 

Table 12 The proportion of total iron in the component fractions of lake, 
stream and bog sediments 
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sediment are as follows: in detrital minerals in the single sample 

from Stream 1 x = 25%, in Stream 2 x = 53% and w = 30 to 91%, in Stream 

3 X = 74% and w = 27 to 87%; in amorphous iron hydroxide fractions in 

Stream 1 x = 59%, in Stream 2 x = 19% and w = 7 to 54%, in Stream 3 

X = 17% and w = 4 to 64%; and in organic matter in Stream 1 x = 8%, 

in Stream 2 x = 6% and w = 0 to 10%, in Stream 3 x = 3% and w = 2 to 

10% (Table 12, Appendix VI, Table 23). The mean proportions in the 

carbonate mineral, amorphous manganese hydroxide and crystalline iron 

hydroxide fractions generally account for less than 5% of the total 

iron in stream sediments (Table 12). 

5.5.3 Bog Sediments 

Means and ranges of iron expressed as proportions of total iron 

in bog sediments are as follows: in organic matter in Bog 1 x = 40% 

and w = 26 to 51%, in Bog 2 x = 39% and w = 13 to 77%, in Bog 3 x = 17% 

and w = 2 to 54%; in detrital minerals in Bog 1 x = 3% and w = 1 to 6%, 

in Bog 2 x = 26% and w = 6 to 59%, in Bog 3 x = 59% and w = 1 to 83%; 

in amorphous iron hydroxides in Bog 1 x = 7% and w = 3 to 20%, in Bog 2 

X = 22% and w = 16 to 31%, in Bog 3 x = 16% and w = 10 to 35%; in 

crystalline iron hydroxides in Bog 1 x = 21% and 2 = 17 to 33%; in Bog 2 

X = 6% and w = 4 to 11%, in Bog 3 x = 4% and w = 3 to 6%; in carbonate 

minerals in Bog 1 x = 12% and w = 3 to 29%, in Bog 2 x = 0% and w = 0 

to <1%; in Bog 3 x = 1% and w = 0 to 2%; and in amorphous manganese 

hydroxides in Bog 1 x = 9% and w = 1 to 13%, in Bog .2 x = 7% and w = 1 

to 21%, in Bog 3 x = 3% and w = 2 to 4% (Map 5, Table 12, Appendix VI, 

Table 23). 
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5.6 Manganese 

5.6.1 Lake Sediments 

The organic matter, amorphous iron hydroxide, amorphous manganese 

hydroxide and detrital mineral fractions account for the bulk of man- 

ganese in lake sediments of the present study (Map 6). Means and ranges ex 

pressed as proportions of total metal in sediment are as follows: in 

organic matter in Lake 1 x = 52% and w = 21 to 67%, in Lake 2 x = 30% 

and w = 6 to 36%, in Lake 3 x = 42% and w = 18 to 76%; in amorphous 

iron hydroxides in Lake 1 x = 16% and w = 14 to 22%, in Lake 2 x = 21% 

and w = 15 to 33%, in Lake 3 x = 18% and w = 7 to 34%; in amorphous 

manganese hydroxide in Lake 1 x = 9% and w = 5 to 11%, in Lake 2 x = 22% 

and w = 13 to 50%, in Lake 3 x = 17% and w = 6 to 28%; and in detrital 

minerals in Lake 1 x = 16% and w = 7 to 50%, in Lake 2 x = 22% and w = 7 

to 31%, in Lake 3 x = 20% and w = 4 to 51%. The mean proportions in 

the carbonate mineral and crystalline iron hydroxide fractions generally 

account for less than 5% of the total manganese in lake sediments (Table 13 

Appendix VI, Table 24). 

5.6.2 Stream Sediments 

The amorphous iron hydroxide, organic matter, detrital mineral 

and amorphous manganese hydroxide fractions account for the bulk of 

manganese in local stream sediments (Map 6). Means and ranges expressed as 

proportions of total metal in sediment are as follows: in amorphous 

iron hydroxides in the single Stream 1 sample x = 51%, in Stream 2 

X = 9% and w = 6 to 18%, in Stream 3 x = 6% and w = 1 to 33%, in 

organic matter in Stream 1 x = 9%, in Stream 2 x = 37% and w = 8 to 65%, 

in Stream 3 x = 7% and w = 3 to 19%; in detrital minerals in Stream 1 
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Table 13 The proportion of total manganese in the component fractions of lake, 
stream and bog sediments 
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X = 4%, in Stream 2 x = 33% and w = 10 to 76%, in Stream 3 x = 79% 

and w = 18 to 94%; and in amorphous manganese hydroxides in Stream 1 

X = 30%, in Stream 2 x = 9% and w = 5 to 13%, in Stream 3 x = 5% and 

w = 1 to 30%. The mean proportions in the carbonate mineral and 

crystalline iron hydroxide fractions generally account for less than 5% 

of the total manganese in stream sediments (Table 13, Appendix VI, Table 24). 

5.6.3 Bog Sediments 

The organic matter and detrital mineral fractions retain the bulk 

of manganese in local bog sediments (Map 6). Means and ranges expressed 

as proportions of total manganese in sediment are as follows: in organic 

matter in Bog 1 x = 84% and w = 79 to 86%, in Bog 2 x = 66% and w = 47 

to 86%, in Bog 3 x = 23% and w = 3 to 66%; and in detrital mineral 

fractions in Bog 1 x = 0% and w = 0 to 1%, in Bog 2 x = 21% and w = 4 

to 45%, in Bog 3 x = 67% and w = 11 to 94% (Table 13, Appendix VI, 

Table 24). The mean proportions in the carbonate mineral, amorphous 

iron and manganese hydroxide and crystalline iron hydroxide fractions 

generally account for less than 5% of the total manganese in bog 

sediments (Table 13). 
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CHAPTER 6 

RESULTS OF PARTIAL EXTRACTION PROCEDURES 

6.1 Introduction 

Uranium, copper, zinc, and manganese concentrations in the humic-fulvic 

acid and humin components of sediment organic matter are compiled in 

Appendix VI, Tables 25 to 28. Iron concentrations in humic-fulvic 

acid components have not been analyzed for since iron is observed to 

show a relatively low preference for partitioning into most sediment 

organic matter. In lake sediments the mean proportion of total iron 

in organic matter is 9% compared to 88% for uranium, 47% for copper, 

28% for zinc, and 43% for manganese. In stream sediments mean propor- 

tions in organic matter are 5% for iron, 85% for uranium, 32% for copper, 

15% for zinc, and 17% for manganese, v/hereas in bog sediments mean 

proportions in organic matter are 39% for iron, 97% for uranium, 62% 

for copper, 55% for zinc and 60% for manganese (Tables 9 to 13). 

6.2 Uraniurn 

Manskaya and Drozdova (1968) have shown that uranium is preferen- 

tially retained by organic humic and fulvic acids and that the pro- 

portion of metal in these phases is influenced by pH. Their conclusions 

were based on a series of laboratory experiments whereby uranyl sulphate 

was added to humic and fulvic acid extracts of peat which were then 
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adjusted to various pH conditions. Results of the current study confirm 

that partitioning of uranium into fulvic and humic acids in a natural 

environment is controlled by the pH of the superjacent v;aters 

(Appendix VI, Table 25, Figure 3). The proportion of the total 

uranium in sediment increases from 61% to 67% in humic acid over the 

pH range in superjacent waters of 4.7 to 5.8 and decreases to a minimum 

of 23% as the pH increases to 6.5. In contrast, the proportion of 

total uranium in fulvic acid increases from a minimum of 22% at pH 5.8 

to a maximum 49% at pH 6.5. Over the pH range 4.7 to 6.5 humic and 

fulvic acids combine to account for 53 to 97% of the total uranium 

in sediments. A maximum of 47% is fixed into the humin fraction 

which includes all other fractions of sediment other than organic 

matter. Sequential partial extractions have identified amorphous 

iron hydroxides and detrital minerals as the most important elements 

of the humin fraction to retain uranium. Maximum retention of uranium 

by these fractions occurs over the pH range 6.0 to 6.3. 

6.3 Copper, Zinc and Manganese 

In contrast to uranium, concentrations of copper, zinc and man- 

ganese in the humic and fulvic acid components of sediment organic matter 

are not influenced by pH (Appendix VI, Tables 26 to 28). Within the pH 

range 4.7 to 6.5, the largest proportion of copper in organic matter is 

retained by humic acid whereas the largest proportions of zinc and 

manganese are typically partitioned into fulvic acid. Similar re- 

lationships between copper, zinc and manganese and humic-fulvic acids 

have been reported for lake sediments of the Elliot Lake region of 

northern Ontario (Schaef 1975). Significant proportions of total 
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Figure 3 Proportion of total uranium in humic acid, fulvic acid 
and the humin fraction of sediments versus the pH of 
superjacent waters 
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copper (up to 72%) total zinc (up to 93%) and total manganese (up to 81%) 

are retained by the humin fraction of sediments (Tables 26 to 28). 

Sequential partial extractions have identified amorphous iron hydroxides 

and detrital minerals as the most important elements of the humin 

fraction to retain metals. 

6.3.1 The Relationship Between Percent Carbon and the Proportions of 
Copper, Zinc and Manganese in the Organic Matter Fraction of 
Area Lake, Stream and Bog Sediments 

An examination of the sequential partial extraction data shov/s that 

there are substantial variations in the proportion of total copper, 

zinc and manganese in the organic matter fraction of lake, stream and 

bog sediments of the present study. The proportions of these metals 

in the organic matter fraction of sediments are directly related to 

the amount of total carbon present in the sediments and increase as 

the total carbon content increases (Figure 4). 
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CHAPTER 7 

DISCUSSION 

7.1 Physico-Chemical Parameters and Percent Carbon in the Lake, Stream 
and Bog Environment 

7.1.1 Lakes 

At the time of the survey Lake 1 was characterized by having the 

most alkaline, conductive, oxygenated and the warmest waters of 

the three lakes in the study (Table 2). The sediments of the lake 

have the highest concentration of organic matter (x = 30.3% carbon. 

Table 2). The organic content of lake sediments has been shown to be 

related to decay processes acting on plant and animal debris within 

host lakes and surrounding catchment basins (Hutchinson, 1957; Swain, 

1958; Ruttner, 1963; Kuznetsov, 1970; Jonasson, 1976; and Coker et 

al, 1979). The rich organic nature of Lake 1 sediments would indicate 

a relatively high supply of plant and animal debris. Both the rich 

organic content and shallow water depth (x = 3.6 metres) of Lake 1 

may contribute to the atypical parameter values observed. Organic 

matter has been shown to be a potential reducing agent (Rashid and 

Leonard, 1973; Theis and Singer, 1973). The relatively low Eh values 

in the superjacent waters of Lake 1 are probably related to the rich 

organic nature of the underlying sediment. In Lakes 2 and 3, sediment 

is less organic rich and as a result Eh conditions are more oxidizing. 
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Superjacent v/aters in Lake 1 display near alkaline pH conditions 

(x = 7.0, Table 2) even though more acidic pH might be expected due 

to the organic-rich nature of the underlying sediment. Berner (1970) 

has shown that organic matter in sediments can promote the reduction 

of sulphate to hydrogen sulphide which in turn reacts with iron to 

produce iron sulphide. As a result of the formation of iron sulphide 

H^ ions areliberated which could promote more acidic pH conditions in 

superjacent waters. The reaction between hydrogen sulphide and iron 

is represented as follows: Fe^^ + H2S + S° FeS2 + (after 

Berner, 1970). Relatively acidic pH's in Lakes 2 and 3 are interpreted 

to be the result of the formation of iron sulphide and the release 

of ions. In Lake 1 which is relatively shallow, superjacent waters 

are well oxygenated (x = 9.7 ppm. Table 2). Oxygen is therefore 

available to react with liberated H^ ions to produce OH species which 

instead promotes the more alkaline pH's observed. Organic matter 

occurs in both dissolved and colloidal forms in waters (Coker et al, 

1979). Since conductivity is related to the concentration of dissolved 

and colloidal material and salts in solution, environments enriched 

in organic matter like Lake 1 would be expected to demonstrate high 

conductivity (x = 103 micromhos/cm. Table 2). 

The carbon content of area lake sediments vary considerably 

(coefficient of variation = 31, Table 2). This feature is interpreted 

to reflect compositional changes in sediment. A lake sediment classi- 

fication system based on composition has been proposed by Jonasson 

(1976). Three main classifications have been described. Organic 

gels (gyttja) consist of fine-grained, decomposed organic mull and 
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commonly occur in central basins of lakes. Organic sediments consist 

of relatively undecomposed fibrous coarse-grained mull and host 

partially-rotted twig, root and leaf fragments within their matrix. 

Organic sediments are more typical of near-shore environments parti- 

cularly adjacent to wetlands. Inorganic sediments are composed of 

detrital mineral debris and inorganic hydroxides and abound in 

near-shore inlet and outlet locations. On the basis of percent carbon 

and sample location data, area lake sediments have been interpreted 

according to the Jonasson classification. Throughout most of Lake 1, the 

sediments are fine-grained gyttja. Percent carbon values range from 

29.3 to 39.7 and are the highest encountered in the study area. Sample 

1, Lake 1, along the southern shoreline is an inorganic sediment with 

a low percent carbon value of 9.9 (Maps 2 to 6, Appendix VI, Table 19). 

Lake 2 is characterized by gyttja sediments of lower percent carbon 

than in Lake 1 according to values that range from 15.0 to 21.0 

(Appendix VI, Table 19). In Lake 3, percent carbon in sediments 

varies from 14.9 to 38.2. Sediments throughout most of the lake are 

fine-grained gyttja. Samples 39 and 40 collected adjacent to the 

outlet from Bog 2 are organic sediments according to their coarse- 

grained, fibrous character and presence of leaf and twig debris in 

their matrix. 

7.1.2 Streams 

A mean carbon value of 14.0% in area stream sediments is low in 

comparison to the 24.0% value in area lake sediments (Table 2). This 

feature is attributed to lower contents of organic matter contained in the 
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sediments. In area stream sediments, mineral grains of detrital 

K-feldspar, quartz and mica are commonly observed. Mineral debris is 

most prevalent in Stream 3 sediments where carbon ranges from 0.5 to 

19.1% and is least abundant in Stream 2 sediments where carbon ranges 

from 8.4 to 32.9%. 

Of area streams. Stream 3 waters have the highest mean temperature 

and highest dissolved oxygen concentrations according to values of 

15.7°C and 7.3 ppm respectively (Table 2). In contrast, mean tem- 

perature and dissolved oxygen values are 10.5°C and 3.5 ppm in 

Stream 1 and 12.3°C and 5.6 ppm in Stream 2. Lower values for tem- 

perature and dissolved oxygen in Streams 1 and 2 are attributed to 

vegetative cover which acts to partially block out warming sunlight 

whereas penetration is unrestricted in Stream 3 which flows through 

relatively open terrain. A lower mean conductivity value of 104 

micromhos/cm in area streams versus 108 and 112 micromhos/cm in area 

lakes and bogs respectively, is probably a factor of 

the lower organic matter content in stream waters (Table 2). 

7.1.3 Bogs 

A mean of 45.9 percent carbon in Bog 1 and 41.4 percent carbon 

in Bog 2 reflect the organic-rich nature of contained sediments and 

are the highest values recorded in the study area (Table 2). A mean 

of 25.2 percent carbon in Bog 3 indicates a lower organic matter 

content of sediments in this bog. Examination of the auger samples 

has shown that bogs are generally comprised of an undecomposed surface 

and intermediate layer of moss underlain by a basal layer of completely 
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rotted peat. The organic-rich nature of bog sediments is attributed 

to the supply of plant and animal debris, minimum water circulation 

and the efficiency of decay processes in these environments which are 

aided by prevailing acidic-reducing conditions. Mean conductivity 

determined to be 112 micromhos/cm for area bog waters, is probably 

related to colloidal and dissolved organic matter in solution. A 

low mean temperature of 11.9°C, dissolved oxygen content of 3.2 ppm 

and a Eh value of 545 millivolts in bogs may be linked to the effects 

of surface moss which partially obstructs the penetration of warming 

sunlight and oxygen into subsurface vyaters. In contrast to the 

acidic pH and low dissolved oxygen content in Bog 2, near alkaline 

pH conditions and relatively high dissolved oxygen concentrations 

prevail at stations 12 and 13 in Bog 1 near the outlet from Lake 1 

(Appendix VI, Table 19, Maps 2 to 6). These conditions may be 

influenced by the alkaline, highly-oxygenated waters of Lake 1 

which enter the bog from the north end of the lake. 

7.2 Metal Partitioning in Lake, Stream and Bog Sediments 

7.2.1 Uraniurn 

Previous studies have only been able to suggest an association 

between total uranium and organic matter in drainage sediments (Lehto 

et al, 1976). In the present study sequential partial ex- 

tractions have permitted the specific examination of organic matter 

and have confirmed that the bulk of uranium in sediments is retained 

by this fraction (Map 2, Appendix VI, Table 20). Furthermore, the 

proportion of uranium in organic matter components has been shown to 
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be sensitive to the pH of the superjacent waters (Figure 3). In 

environments with pH < 5.8 the largest proportion of total uranium is 

in the humic acid component of organic matter, whereas with pH > 6.4 

it is in the fulvic acid component. Betv/een pH 5.8 and 6.4 the pro- 

portion of total uranium in organic matter decreases and significant 

amounts are retained in other fractions. 

In the present study the pH of superjacent waters range from 6.2 

to 6.8 in Bog 1 and from 4.7 to 5.4 in Bog 2. Eighty-eight to 100% 

of the total uranium in the sediments of these bogs is in organic 

matter and on the basis of pH, the bulk of metal must be in fulvic 

acid in Bog 1 and in humic acid in Bog 2 (Figure 3). The pH ranges 

from 6.5 to 7.2 in Lake 1 and 84 to 100% of the total uranium is held 

in organic matter. The bulk of the metal in Lake 1 sediments is 

likely partitioned into the fulvic acid component according to pH 

(Figure 3). The pH of waters in Lakes 2 and 3 vary over a wider 

range (pH 5.6 - 6.5) and partitioning characteristics of uranium are 

more complex. Relatively acidic pH prevails in near-shore sites 

adjacent to and down-drainage of bogs due to the mixing of acidic 

bog waters with lake waters (pH 5.6 to 6.0 in Samples 17 to 19 Lake 2, 

pH 5.8 to 6.1 in Samples 39 to 42 Lake 3). Eighty-six to 98% of the 

total uranium in sediments at these locations is partitioned into 

organic matter and as a consequence of the acidic pH the bulk of the 

metal must be in humic acid (Figure 3). The pH of superjacent waters 

is less acidic in central-lake basin locations remote from bogs 

(pH 6.0 to 6.4 in Samples 21 to 23 Lake 2, pH 6.1 to 6.5 in Samples 

43 to 57 Lake 3). 
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Since organic matter retains relatively small amounts of uranium 

at these pH conditions, significant proportions of metal are fixed by 

other sediment fractions. Of particular importance in centre-lake 

basin sediments are amorphous iron hydroxides which retain up to 39% 

of the total uranium (Map 2, Sample 43, Lake 3). Jenne (1968) has 

shown that under normal temperatures (25°C) and pressures (1 atm), the 

stability of iron and manganese hydroxides is controlled by Eh-pH 

conditions (Figure 5). Iron hydroxides are stable where pH is greater 

than 3.0 and Eh is less reducing than -900 millivolts whereas manganese 

hydroxides are stable where pH is greater than 6.6 and Eh is less 

reducing than -1200 millivolts. The Eh (+270 to +700 millivolts) and 

pH (4.7 to 7.6) conditions of superjacent waters in the present study 

dictate that iron hydroxides are stable throughout local lake, stream 

and bog environments whereas manganese hydroxides are only stable in 

isolated locations of lakes and streams and are generally unstable 

in bogs (Appendix VI, Table 19). The proportion of uranium retained 

in hydroxides is therefore influenced by the pH of the superjacent 

waters since pH affects the stability of this fraction in sediments. 

Although iron hydroxides are stable throughout the study area 

according to Eh-pH conditions, the relative abundance of this fraction 

varies considerably. Iron concentrations in amorphous iron hydroxides 

provide an estimate of abundance and indicate that this fraction is 

least abundant in bogs (x = 0.19% Fe) and most abundant in lakes 

(x = 0.73% Fe). Therefore the largest proportions of total uranium 

that are retained by the amorphous iron hydroxide fraction occur in 

lake sediments (Map 2, Appendix VI, Table 20). Amorphous manganese 
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hydroxides are generally absent in bogs (x = 6 ppm Mn) which explains 

the absence of uranium in this fraction. Despite the relative 

abundance of amorphous manganese hydroxides in lake and stream sedi- 

ments (x = 65 ppm Mn in amorphous manganese hydroxides) this fraction 

retains insignificant proportions of total uranium (<1%, Map 2, 

Appendix VI, Table 20). 

The pH of superjacent waters in Streams 1 and 2 range from 6.4 

to 7.6 and more than 79% of the total uranium in sediments occurs 

in the organic matter fraction (Map 2, Appendix VI, Table 20). The 

bulk of metal in these sediments is in the fulvic acid component of 

organic matter according to prevailing pH (Figure 3). The partitioning 

characteristics of uranium in Stream 3 sediments vary considerably. 

In samples 58 to 61 and 66 to 68, the pH of superjacent waters ranges 

from 5.9 to 6.1 and organic matter retains up to 98% of the total 

uranium (Map 2, Appendix VI, Table 20). Based on the prevailing pH 

the bulk of metal must be in the humic acid component (Figure 3). 

In samples 62 to 65 water pH ranges from 6.2 to 6.3 and up to 33% of 

the total uranium in sediments occurs in detrital minerals which 

include grains of feldspars, micas and quartz (Map 2, Appendix VI, 

Table 20). In comparison to other stream sediments, low proportions 

of uranium occur in organic matter in these samples (up to 77%). 

In the present study, organic matter retains significant amounts 

of uranium in lake, stream and bog sediments whereas amorphous iron 

hydroxides and detrital minerals are only important in lake and stream 

sediments respectively. It may be important in geochemical exploration 

to examine metal concentrations in a fraction which is common to all 
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sedimentary environments in order to minimize the effects that 

variations in overall sediment composition may have on metal concen- 

trations. Therefore uranium concentrations in organic matter and 

the effects of pH have been investigated in light of their potential 

significance to exploration. On a graphic plot of uranium concen- 

trations in organic matter versus pH, data from the present study 

concentrates in isolated groups which correspond to specific pH and 

sedimentary environments (Figure 6). Uranium concentrations in 

organic matter generally are relatively low between pH 5.8 and 6.4 

and are relatively high where pH is less than 5.8 and greater than 

6.4. This trend generally corresponds to the trend established from 

plotting proportions of uranium in organic matter versus pH (Figure 3). 

Where pH is less than 5.8 and greater than 6.4, large proportions of 

total uranium in sediments are in organic matter and therefore rela- 

tively high concentrations in organic matter might also be expected. 

Most samples in this pH range contain between 75 and 150 ppm uranium 

in organic matter and include many of the sediments from Lake 1 and 

Bog 2 (Figure 6). Those not included in the main groups of data are 

samples 7 and 9 from Lake 1 and 31, 32, 35 to 38 from Bog 2. These 

are located adjacent to the uranium mineralized zone and contain 

between 162 and 1845 ppm uranium in organic matter (Figure 7). 

Between pH 5.8 and 6.4 relatively low proportions of total uranium 

are in organic matter (Figure 3). Most samples within this pH range 

contain between 5 ppm and 75 ppm uranium in organic matter and 

include many of the samples from Lakes 2 and 3, Bog 1 and Streams 1, 

2 and 3 (Figure 6). 
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Figure 7 Locations of sediment samples containing potentially anomalous con- 
centrations of uranium in the organic matter fraction with reference to 
the uranium mineralized zone located between Lake 1 and Bog 2 
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Samples not included in the main group of data are 39 to 41 and 44 

from Lake 3 which contain between 90 and 143 ppm uranium in organic 

matter (Figure G). These samples are from locations adjacent to and 

down-drainage of Bog 2 which may account for their high metal content 

in organic matter (Figure 7). Sample 49 from Lake 3 (99 ppm uranium 

in organic matter) and 59 from Stream 3 (145 ppm in organic matter) 

also plot above the main group of data. These samples are considerable 

distance from the known source of mineralization and may reflect a 

presently undiscovered source of uranium (Figure 7). 

7.2.2 Copper 

In the present study, copper shows a strong preference for 

partitioning into the organic matter fraction of sediments and the 

proportion of copper in this phase is directly dependent on the 

percent carbon in sediments (Figure 4). In local bogs up to 47.4 

percent carbon occurs in centre-basin sediments and a maximum of 80% 

of total copper in sediment is in the organic matter fraction (Map 3, 

Appendix VI, Table 19 and 21). Percent carbon values in lake sediments 

range up to 39.7% and proportions of total copper in organic matter 

range up to 65%. Organic matter retains up to 64% of the total copper 

in some stream sediments that contain up to 32.9 percent carbon. 

In sediments with lower percent carbon, other fractions retain sig- 

nificant amounts of copper. Amorphous iron hydroxides are stable 

throughout the study area according to prevailing Eh-pH conditions 

and retain up to 29% of the total copper in near-shore bog sediments, 

up to 68% of the total copper in near-shore lake sediments and up 



68 

to 55% of the total copper in some stream sediments. Detrital minerals 

constitute a significant proportion of most stream sedimens and up to 

52% of the total copper remains in this fraction. Although detrital 

minerals are not as common in lake and bog sediments this fraction 

retains up to 24% and 37% respectively of the total copper in near- 

shore locations. Despite the presence of amorphous manganese hydroxides 

in lake and stream sediments, this fraction generally retains less 

than 17% of the total copper in these sediments. 

The relationship between percent carbon and the actual copper 

concentration in organic matter of sediments has been investigated in 

view of its potential significance to geochemical exploration. For 

the present study, copper concentrations in organic matter are pro- 

portional to the percent carbon content in most sediments. On the 

basis of this relationship, most samples with a carbon content of 20% 

contain approximately 20 ppm copper in organic matter and so on. 

Exceptions are however observed and include samples 34 and 38 from 

Bog 2, 46 to 48 from Bog 3, 49 from Lake 3 and 59 from Stream 3 

(Figure 8). Concentrations in the organic matter fraction of these 

sediments range between 45 and 100 ppm copper. These samples are 

confined to the geographic region about Lake 3 where biotite gneiss 

is the dominant bedrock type (Figure 9). Although copper mineralization 

is unknown in these rocks, relatively high concentrations of 

copper are common (up to 82 ppm copper. Table 1) which could account 

for elevated values in adjacent lake, stream and bog sediments. 
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concentrations of copper in the organic matter fraction 
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7.2.3 Zinc 

Zinc tends to partition into the component which is the most 

abundant in lake, stream and bog sediments and this varies 

considerably within and between each sedimentary environment. Amorphous 

iron hydroxides have been previously shown to be most abundant in 

near-shore inlet and outlet lake sediments where this fraction retains 

up to 68% of the total zinc (Map 4, Appendix VI, Table 22). Detrital 

minerals are also in relative abundance in near-shore sediments and 

retain up to 33% of the total zinc. In centre-lake basins organic 

matter is abundant and consequently up to 67% of the total zinc in 

these sediments is partitioned into this fraction. Organic matter 

also represents the dominant fraction in centre-bog sediments 

and retains up to 100% of the total zinc whereas in near-margin bog 

sediments up to 74% of the total metal is in detrital minerals. 

Amorphous iron hydroxides in bog sediments generally retain less than 

21% of the total zinc in sediments even though this fraction is known 

to fix significant proportions of copper and iron. The physico-chemical 

conditions in local bogs may be restricting the availability of zinc 

to hydroxides in the same manner as manganese which does not occur as 

hydroxides in bogs because acidic pH makes this phase unstable. 

Detrital minerals are more common in streams than in lakes and bogs and 

up to 82% of the total zinc in stream sediments is retained in this fraction. 

Other fractions are relatively less abundant as indicated by the fact 

that organic matter retains a maximum of 49% and amorphous iron 

hydroxides a maximum of 59% of the total zinc in stream sediments. 
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If metal concentration data from all sedimentary environments are 

to be interpreted collectively in geochemical exploration, the appli- 

cation of zinc in hydroxide form is precluded since this 

phase is not present in bog sediments. In contrast organic matter and 

detrital minerals do retain significant proportions of zinc in lake, 

stream and bog sediments and therefore these fractions were considered 

to be of potential importance. Percent carbon in sediments influences 

the proportion of total zinc in organic matter (Figure 4). Therefore 

the effects of this factor on actual zinc concentrations have been 

investigated by plotting concentrations in organic matter versus 

percent carbon in sediments (Figure 10). Most of the bog sediments 

in the present study contain lower concentrations of zinc in organic 

matter than lake and stream sediments with the same percent carbon. 

For example, at 20.0% carbon, bogs contain approximately 8 ppm zinc 

in organic matter whereas lake and stream sediments contain approxi- 

mately 15 ppm zinc. At 40.0% carbon bog sediments contain approxi- 

mately 18 ppm zinc whereas lake and stream sediments approximately 

34 ppm zinc in organic matter. Low concentrations of zinc in the 

organic matter fraction of bog sediments correspond to low proportions 

of zinc in hydroxides in these sediments and support the hypothesis 

that physico-chemical conditions in bogs restrict the general 

availability of zinc to sediments. In lake and stream environments 

restrictions on availability of zinc to sediments do not exist. 

This characteristic is of considerable importance to geochemical 

exploration. Although samples 28, 39, 44 and 49 contain high concen- 

trations of zinc in organic matter (up to 66 ppm. Figure 11) they may not be 
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of much significance if the locations of the samples are considered. 

These sediments are from Stream 2 and Lake 3 and were collected 

adjacent to Bog 2 and 3, respectively (Map 4). High concentrations 

in organic matter in these sediments may therefore be attributed to 

the increased availability of zinc and not to a potential source of 

zinc mineralization. Since apparent anomalies of this type may occur 

only because zinc sorption occurs more readily into lake and stream 

sediments than into bog sediments, zinc concentrations in organic 

matter and/or hydroxides are of limited use in geochemical exploration. 

The only sediment fraction not affected by physico-chemical conditions 

is detrital minerals since this fraction and contained metals are of 

a primary nature. Zinc in detrital minerals could be of considerable 

importance to geochemical exploration since this fraction represents 

debris which is mechanically eroded from bedrock and soils. High 

zinc concentrations in this fraction could therefore be directly 

related to local mineralization. Specific examinations of detrital 

minerals have not been performed in this study which presently limits 

any interpretation regarding their potential significance to geo- 

chemical exploration. 

7.2.4 Iron and Manganese 

Iron and manganese are commonly analyzed for in geochemical ex- 

ploration because many metals illustrate an association to iron and 

manganese (Coker, 1974). Sequential partial extractions indicate this 

association to be due to partitioning of metals into the amorphous- 

i ron-manganese hydroxide fractions of sediments. The stability of 
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iron and manganese hydroxides in sediments has been shown to be in- 

fluenced by Eh-pH conditions in superjacent waters. Whereas iron is 

stable as hydroxides in lake, stream and bog sediments of the present 

study, manganese hydroxides are only stable in lake and stream sedi- 

ments. Although significant proportions of total manganese in lake 

and stream sediment occur as amorphous manganese hydroxides, this 

fraction generally retains low proportions of uranium, copper, zinc 

and iron (Maps 2-6, Appendix VI, Tables 20-24). In contrast, amorphous 

iron hydroxides retain significant proportions of metals in lake, 

stream and bog sediments (Maps 2-6, Appendix VI, Tables 20-24). The 

limited role of manganese hydroxides in metal partitioning into lake, 

stream and soil sediments has been previously reported from the 

Nechako Plateau region, central British Columbia (Hoffman and 

Fletcher, 1978). Other fractions of sediments that contain iron 

and manganese include organic matter particularly in bog sediments 

and detrital minerals in stream sediments. Partitioning into organic 

matter and occurrence in detrital minerals is primarily influenced 

by the relative abundance of these fractions. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The present study has shown that partitioning of uranium, copper, 

zinc, iron and manganese are affected by the nature of component 

fractions within sediments and by the physico-chemical conditions in 

superjacent waters. In the present study important sediment fractions 

include organic matter, amorphous iron hydroxides and detrital minerals 

whereas carbonate minerals, amorphous manganese hydroxides and 

crystalline iron hydroxides are of limited significance. Important 

physico-chemical parameters include pH and Eh of the waters and percent 

carbon in the sediments. 

Uranium shows a strong preference for partitioning into the 

organic matter fraction of lake, stream and bog sediments. The pH 

of superjacent waters affects the actual concentration of uranium in 

the organic matter fraction of sediments and dictates the relative 

proportion of metal partitioned into the humic and fulvic acid com- 

ponents of organic matter. The largest proportion of total uranium 

occurs in humic acid of sediments where pH in superjacent waters is 

less than 5.8. These pH conditions typically prevail in peat bogs 

and in bays of lakes situated adjacent to and down-drainage of bogs. 

In environments where pH is greater than 6.4, the largest proportion 

of total uranium in sediment is contained in fulvic acid. These conditions 

typically prevail in centre-lake basins and streams. The actual 
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concentration of uranium in organic matter is high where pH is less 

than 5.8 or greater than 6.4 since under these conditions the combined 

humic and fulvic acids have high capacities to sorb metal. Between 

pH 5.8 and 6.4 sorption capacities for humic and fulvic acids are low 

and as a consequence actual concentrations of uranium in these acids 

are relatively low. Although the largest proportion of uranium in 

sediment is still in organic matter, significant amounts of metal are 

partitioned into other fractions. In near-inlet and outlet lake 

sediments, where pH ranges from 5.8 to 6.4 partitioning occurs into 

amorphous iron hydroxides whereas in stream sediments significant 

amounts of uranium remain in detrital minerals. 

Copper also shows a strong preference for the organic matter 

fraction in lake, stream and bog sediments. The proportion and con- 

centration of metal in this fraction increases proportionally as 

percent carbon in sediments increase and so percent carbon is con- 

sidered to be the principle factor to influence copper partitioning. 

Stream sediments and near-inlet and outlet bog and lake sediments 

typically have low percent carbon and therefore low amounts of copper 

in organic matter. Amorphous iron hydroxides and detrital minerals 

are in relative abundance and fix, or contain significant amounts of 

copper in these sediments. Centre-lake and bog basin sediments have 

high percent carbon and as a result there are high proportions and 

concentrations of copper in organic matter and low proportions in 

detrital minerals and amorphous iron hydroxide fractions. 

The Eh-pH conditions of superjacent waters control the solubilities 

of iron, manganese and zinc and thereby directly affect the availability 
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and sorption of these metals into the organic matter and inorganic 

hydroxide fractions of sediment. In the present study, Eh-pH conditions 

ensure the availability of iron to sediments in all environments. 

The proportion and concentration of iron in individual sediment 

fractions is determined by their relative abundance. Although the 

largest proportions of iron in bog sediments is partitioned into 

organic matter, iron is also partitioned to form amorphous iron 

hydroxides and also occurs as detrital minerals particularly in 

near-shore sediments. In lake sediments amorphous iron hydroxides 

are in abundance and typically fix the largest proportion of iron 

with smaller amounts occurring in detrital minerals. The amount of 

iron in organic matter in lake sediments is negligible. Detrital 

minerals are common in stream sediments and contain considerable 

concentrations of iron. In contrast, relatively low amounts of iron 

are found in amorphous iron hydroxides and insignificant amounts in 

the organic matter fraction of stream sediments. The Eh-pH conditions 

in local bogs determine that zinc and manganese are stable in solution 

and therefore are not available for sorption into sediments. Since 

partitioning into the organic matter and/or hydroxide fractions is 

restricted, total concentrations in sediment are relatively low. 

In lakes and streams there are no Eh-pH restrictions on the avail- 

ability of zinc and manganese and total metal concentrations in 

sediment are relatively high. Partitioning of these metals into 

organic matter, hydroxides and occurrence in detrital minerals is 

determined by the relative abundance of these sediment fractions. 

Manganese occurs in relative abundance in amorphous manganese hydroxides 

in lake and stream sediment. However, despite its presence, this fraction 

typically retains insignificant proportions of uranium, copper, zinc and iron. 
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The application of sediment sampling to the geochemical explor- 

ation for zinc, manganese and iron is precluded by the fact that Eh-pH 

conditions in superjacent v;aters affect the amount of these metals 

available to complex with most sediment fractions. The only fraction 

unaffected by physico-chemical conditions in the superjacent water is 

the detrital mineral fraction since it is of a primary nature. Metal 

concentrations in detrital minerals could be of considerable importance 

to geochemical exploration. Since this fraction represents mechanically 

eroded debris from bedrock and soils, high metal concentrations in this 

fraction could be related to local mineralization. Specific examinations 

of detrital minerals has not been performed during the present study 

but considering its potential significance such investigations are 

recommended as part of future studies. The examination of mineralogy 

and weight percent might provide valuable data concerning metal 

associations based on abundance and/or specific mineral types present 

in sediments. 

Recommendations are proposed concerning the use of lake, stream 

and bog sediments in geochemical exploration for uranium and copper. 

Procedures have been based on partitioning characteristics and physico- 

chemical factors which influence metal partitioning in the present 

study. Recommendations are considered to be of a preliminary nature 

and their final acceptance hinges on further testing in other geologic - 

geographic environments. 

Recommendations for uranium exploration are as follows: 

1. The pH of superjacent waters should be routinely measured in con- 

junction with sampling of lake, stream and bog sediments. 
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2. Samples should be treated with sodium hypochlorite to selectively 

extract organic matter. Uranium concentrations in this fraction 

can be determined by standard fluorimetric techniques. 

3. Uranium concentrations in organic matter of sediments should be 

interpreted with regard to three pH ranges in superjacent waters 

(pH < 5.8, 5.8 - pH - 6.4, p>6.4). This can be carried out by 

a graphic plot of uranium in organic matter versus pH. Concen- 

trations will generally be highest in samples where pH is less 

than 5.8 and greater than 6.4 and comparatively low in samples 

where pH is between 5.8 and 6.4. In graphic analysis potentially 

important samples in each pH range will plot above the bulk of data. 

Recommendations for copper exploration are as follows: 

1. Lake, stream and bog sediment samples should be treated with 

sodium hypochlorite to selectively extract organic matter. 

Copper concentrations in this fraction can be determined by 

standard atomic adsorption spectrophotometric techniques. 

2. Percent carbon should be determined on the whole sediment. 

3. Copper concentrations in organic matter should be interpreted 

with regard to percent carbon in sediments. This can be done 

on a graphic plot of copper in organic matter versus percent 

carbon. Copper concentrations in organic matter are generally 

proportional to the percent carbon content of sediments. On the 

basis of known percent carbon values, copper concentrations in 

organic matter can be predicted. Potentially important samples 

may occur where actual concentrations exceed predicted concen- 

trations. 
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Locations of samples containing high concentrations of copper and 

uranium can be recorded. The occurrence of samples within a confined 

geographic area(s) indicate targets that may be worthy of further 

investigation. By applying the recommended procedures, uranium and 

copper targets have been defined in lake, stream and bog sediments of 

the present study that correspond in location to known sources of 

metal in bedrock. Uranium targets reflect uranium mineralization in 

pegmatite that outcrops adjacent to and intersects Lake 1 and Bog 2 

whereas copper targets reflect copper-bearing biotite gneiss in the 

vicinity of Lake 3. Consequently these procedures are considered to 

be of potential importance to geochemical exploration. 
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APPENDIX I 

CHRONOLIGIC BIBILIOGRAPHY OF PREVIOUS PAPERS REPORTING 

THE USE OF PARTIAL AND SEQUENTIAL PARTIAL EXTRACTIONS 
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Type of Component Reagent(s) Elements 
Year Author(s) Sediment(s) Fraction(s) Used Analyzed Scope of Study 

Examined Extracted 

1916 Gortner Soils organic 
matter 

hydrochloric 
acid, sodium 
hydroxide 

general investigation 
of nature of soil 
organic matter 

1919 Oden Soi 1 s fulvic- sodium 
humic acids, hydroxide 
humin frac- 
tion of soil 
organic 
matter 

general investigation 
of nature of soil 
organic matter 

1924 • Eden Soils humic acid hydrochloric 
acid, sodium 
hydroxide 

colorimetric analysis 
of humus 

1924 Robinson Soils 
& Holmes 

iron oxides oxalic acid general investigation 
of iron oxides 

1931 Troell Soils organic 
matter 

sodium hypo- 
bromite, 
sodiurn 
hydroxide 

analysis of mineral 
colloid constituents 
of organic matter 

1935 Drosdoff Soils iron 
oxides 

sodium acid 
oxalate 

1942 Allison & Soils 
Scarseth 

1 ron 
oxides 

sucrose general investigation 
of iron oxides 

1946 Marshall Soils 
& Jeffries 

1 ron 
oxides 

oxalic acid, 
hydrochloric 
acid 

1949 Bremner 
& Lees 

Soils organic 
matter 

sodium pyro- 
phosphate 

examination of elec- 
trophoretic proper- 
ties and hydrolysis 
products of organic 
matter 

1949 Deb Soi 1 s 1 ron 
oxides 

sodiurn 
dithionite 

application of 
dithionite to 
estimate free iron 
oxide in soils 

1950 Schofield Soils i ron 
oxides 

oxalic 
aci d 

general investigation 
of the nature of 
soil iron oxides 

1953 Aguilera 
& Jackson 

Soils 1 ron 
oxides 

sodium 
dithionite, 
citrate, bi 
carbonate 

removal of iron 
oxides observed to 
increase the sensi- 
tivity of x-ray dif- 
fraction analysis 
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Reagent(s r 
Used Year Author(s) 

Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Elements 
Analyzed Scope of Study 

1954 Mitchell & clay soils 
McKenzie 

1 ron 
oxides 

sodiurn 
hydro- 
sulphite 

details extraction 
method and effects 
of pH and temperature 

1956 Jackson soils carbonates, 
organic 
matter 5 
iron oxides 

sodium acetate 
hydrogen pero- 
xide, sodium 
dithionite, 
citrate 
bicarbonate 

removal of carbonates 
organic matter and 
iron oxides observed 
to enhance x-ray 
diffraction analysis 

1957 White soi 1 s iron oxides 
clay sili- 
cate 
minerals, 
carbonates 

sodium dithio- 
nite, citrate 
bicarbonate, 
ammoniurn 
acetate 

Zn 

zinc association in 
clay mineral lattices 
and iron oxides 

1958 Goldberg a marine 
Arrhenius sediments 

1 ron- 
manganese 
oxide 
minerals 

ethyl 
diamine 
tetra- 
ocetate 
(EDTA) 

Na,K,Mg,Ca, removal of readily 
Sr,Ba,B,Si, soluble phases of 
Al,Y,Ti,V, pelagic sediments 
Cr,Cu,Fe, and study of metal 
Mn,Ni,Pb,Mo content of these 
 components  

1958 Schnitzer soils 
et al 

organic 
matter 

sodiurn 

pyrophosphate 
hexameta- 
phosphate 
borate 
fluoride 
chioride 
bromide 
iodide 
carbonate 
hydroxide 
hydrochloric 
acid, 
hydrof1uoric 
acid 
EDTA 

to define conditions 
of maximum extraction 
of organic matter 
by comparing 
reagents 

1960 Mehra & 
Jackson 

clay 
soi 1 s 

1 ron 
oxides 

sodiurn 
dithionite 
citrate 
bicarbonate 

report on effective- 
ness of extraction 
technique 

1963 Coffin clays 1 ron 
oxides 

sodium 
citrate 
sodiurn 
hydrosulphite 

report on extraction 
method 

1963 deEndredy soils 1 ron 
oxides 

acid 
ammoniurn 
oxalate 

one of first reports 
on extraction method 
using ammonium 
oxalate 
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Year Author 
Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Reagent(s) 
Used 

Elements 
Analyzed Scope of Study 

1963 Anderson soils organic 
matter 

sodium 
hypo- 
chlorite 

one of preliminary 
reports on use of 
sodium hypochlorite 
to remove organic 
matter 

1963 LeRiche 
& Weir 

soi 1 s 1 ron 
oxides 

ammonium 
oxalate 

Co,Cr,Cu, 
Ga ,Mn,Ni, 
Pb,Sr,Ti, 
V,Zr 

trace metal analysis 
in iron oxide 
component of soils 

1966 McKeague 
& Day 

soi 1 s 1 ron 
oxides 

di thi onite 
oxalate 

Fe,Al extraction of Fe and 
A1 in iron oxides as 
an aid in differen- 
tiating classes of 
soil extraction 
carried out in 
darkness 

1967 Chester 
& Hughes 

man ne 
sediments 

carbonate 
minerals, 
manganese 
oxides, 
silicate 
minerals 

acetic 
acid, 
hydroxy- 
1 amine, 
hydrochlori de, 
nitric acid 

Fe,Mn, 
Ni ,V 

partitioning of 
trace elements among 
component fractions 
of marine sediments 

1967 McKeague soils 1 ron 
organic 
complexes, 
amorphous 
i ron 

sodium pyro- 
phosphate, 
oxalate 
dithionite 

comparison of 
methods to remove 
iron organic and 
inorganic complexes 

inorganic 
complexes, 
crystal 1ine 
iron complexes 

1969 Kemp lake 
sediments 

bitumen, 
humic- 
fulvie 
acids, 
Kerogen 

benzene, 
methanol, 
acetone, 
sodium hydro- 
xide, sodium 
pyrophosphate, 
perchloric acid 

study of organic 
matter 

1970 Lavkulich 
& Wei ns 

soils organic 
matter 

sodiurn 
hypochlorite, 
hydrogen 
peroxide  

comparison of 
effectiveness of 
hypochlorite and 
peroxide  

1971 Zwarich 
& Mills 

soils carbonates sodium 
acetate, 
sulphuric 
acid 

comparison of effec- 
tiveness of sodium 
acetate and sulphuric 
acid 
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Reagent(s) 
Used Year Author 

Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Elements 
Analyzed Scope of Study 

1972 Chao soils manganese 
oxides 

hydroxylamine 
hydrochloride 

details extraction 
procedure for 
removal of Mn oxides 

1972 Gamble 
& Daniels 

soils 1 ron 
oxides 

acid 
ammoniurn 
oxalate, 
dithionite 

Fe ,Si partitioning of 
metals in iron 
oxides 

1972 Presley 
et al 

marine 
sediments 

carbonates 
iron man- 
ganese 
oxides 5 

organic 
matter, 
si 1icates 

acetic acid, 
hydroxylamine 
hydrochloride, 
hydrogen 
peroxide, 
hydroflouric 
nitric per- 
chloric acids 

study of component 
fractions of marine 
sediments 

1972 Schnitzer 
& Khan 

soils humic-fulvic sodium 
acid, humin hyponitrate 
fraction 

details extractive 
technique 

1973 Baker soil s humic acid sodiurn 
hyponitrate 

Cu ,Zn ,Pb, 
Fe,Bi ,Sb, 
Ni,Co,Ba 

role of humic acid 
in metal migration 

1973 Gibbs n ver 
sediments 

exchange- magnesium Fe,Ni,Co, partitioning of 
able, 
organic 
matter, iron 
manganese 
oxides, 
si 1icates 

chloride, 
sodiurn 
dithionite 
sodium 
hypochlorite, 
nitric acid 

Cr,Cu,Mn metals in 
sediments 

ri ver 

1974 Chao & 
Anderson 

stream 
sediments 

1 ron 
manganese 
oxides 

dithionite, A.g 
hydroxylamine 
hydrochloride 

scavenging of Ag 
by iron manganese 
oxides 

1975 Schaef lake 
sediments 

humic- sodium Cu,Pb,Zn, 
fulvic acid, hyponitrate Mn 
humic com- 
ponents  

partitioning of 
elements between 
organic phases of 
lake sediments 

1976 Chao & 
Theobold 

soil and 
stream 
sediments 

amorphous & 
crystal 1 ine 
iron man- 
ganese 
oxides, 
sulphides, 
si 1icates 

hydroxylamine 
hydrochloride, 
sodium dithi- 
onite, potas- 
sium perchlorite, 
hydrochloric 
nitric acid, 
hydroflouric 
nitric acid 

Co,Ag reports on method to 
fractionate 5 phases 
of iron manganese 
components 
1) amorphous Mn oxide' 
2) amorphous Fe oxide' 
3) crystalline Fe " 
4) sulphides 
5) silicates   
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Year Author 
Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Reagent(s) 
Used 

Elements 
Analyzed Scope of Study 

1976 Grieve & 
Fletcher 

deltaic 
sediments 

carbonate, magnesium Co,Cu,Fe, partitioning of 
iron oxides 
si 1icates 

chloride 
hydroxy- 
1 amine, 
hydrochloride, 
nitric per- 
chloric acid 

Mn,Ni,Pb 
Zn 

metals in component 
fractions of 
sediments 

1976 Meineke & 
Klaysmat 

and soils 
lake 
sediments 

si 1icates, 
sulphides, 
organic 
matter, 
clay 
minerals, 
Fe-Mn 
hydroxides 

nitric acid Cu,Ni,Zn 
(hot & cold) 
nitric- 
hydrochloric 
acid (hot & 
cold) EDTA, 
ammoniurn 
citrate, hydro- 
xylamine hydro- 
chloride, 
ascorbic acid, 
hydrogen peroxide 

extractabi1ity of 
metal by various 
digestion methods 

1977 Gatehouse 
et al 

soi 1 s carbonates, 
Mn hydro- 
xides, 
organic 
matter, 
i ron 
hydroxides, 
si 1icates 

ammonium acetate, 
hydroxylamine 
hydrochloride, 
hydrogen peroxide, 
hydrazine 
chloride, 
hydrochloric 
nitric, 
hydroflouric acid 

1977 Gibbs stream 
sediments 

exchange- 
able, iron 
manganese 
oxides, 
organic 
matter, 
si 1icates 

magnesium 
chioride, 
sodiurn, 
dithionite, 
sodium hypo- 
chlorite, 
nitric acid 

Cr,Mn,Fe, 
Co,Ni ,Cu 

partitioning of 
trace elements in 
stream sediments 

1977 Fluang 
et al 

soils carbonate, 
organic 
matter, 
iron-man- 
ganese 
oxides 

sodiurn 
acetate, 
hydrogen 
peroxide, 
sodium dithi- 
onite, ammonium 
oxalate 

Si ,A1,Fe partitioning of 
trace elements in 
soi 1 s 

1978 Carpenter 
et al 

stream 
sediments 

iron man- 
ganese oxides 

Mn ,Fe ,Cu, 
Zn,Pb,Co, 
Ni 

partitioning of 
trace elements in 
streams and appli- 
cation to exploration 
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Reagent(s) 
Year Author 

Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Used 
Elements 
Analyzed Scope of Study 

1978 Dijkstra 
et al 

stream 
sediments 

iron man- 
ganese 
oxides 

hydroxy- 
lam ine 
hydrochloride, 
sodiurn 
di thionite 
citrate 

Zn 

1978 Hoffman soil, 
& Fletcher stream, 

lake 
sediments 

orgam c 
matter, 
carbonate, 
Mn oxides, 
Fe oxides 
(amorphous), 
Fe oxides 
(crystal- 
line) , 
si 1icates 

sodium hypo- 
chlorite, 
hydrochloric 
acid, hydro- 
xylamine 
hydrochloride, 
acid ammonium 
oxalate, sodium 
dithionite, 
nitric per- 
chloric acid 

Cu ,Zn ,Mo, 
Fe,Mn 

partitioning in 
sediments and appli- 
cation to exploration 

1978 Huang lake 
sediments 

carbonate, 
organic 
matter, 
Fe-Mn 
sesquioxide 

ammonium acetate, 
hydrogen peroxide, 
citrate dithionite 
bicarbonate 

1979 Huang 
& Li aw 

lake 
sediments 

carbonate, 
organic 
matter, 
Fe-Mn 
sesquioxide 

ammoniurn 
acetate, 
hydrogen pero- 
xide, citrate 
dithionite 
bicarbonate 

As study of distribution 
and fractionation of 
Arsenic Precambrian 
and Prairie Lakes 

1979 Tessier 
et al 

stream 
sediments 

exchange- 
able, 
carbonate, 
iron man- 
ganese 
oxides, 
organic 
matter, 
si 1icates 

Cd ,Co 
Ni,Pb 
Fe ,Mn 

magnesium 
chioride, 
sodium 
acetate, 
sodium sulphate, 
sodium citrate, 
hydroxyl amine 
hydrochloride, 
hydrogen peroxide, 
hydroflouric- 
perchloric acid 

Cu 
Zn 

partitioning in 
stream sediments 
environmental 
impact 

1980 Bogle stream 
and lake 
sediments 

organic 
matter, 
manganese 
hydroxides, 
amorphous 
i ron 
hydroxides, 
crystal 1ine 
hydroxides, 
si 1icates 

sodium Cu,Pb,Zn, 
hypochlorite, Fe,Mn,Cu, 
hydroxy- Mg 
1 amine, 
hydrochloride, 
nitric acid 
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Year Author 
Type of 
Sediment(s) 
Examined 

Component 
Fraction(s) 
Extracted 

Reagent(s) 
Used 

Elements 
Analyzed Scope of Study 

1930 Sopuck 5 

Lehto 
et al 

lake 
sediments 

organic 
matter, 
carbonate, 
manganese 
oxides 
(amorphous) 
i ron 
oxides 
(amorphous) 
iron 
oxides 
(crystal - 
line), 
si 1icates 

sodium Cu,Ni,Zn, 
hypo- U,Pb,Fe, 
chlorite, Co,As 
hydrochloric 
aicd, hydro- 
xylamine, 
hydrochloride 
acid ammonium 
oxalate, 
hydrazine 
chloride, 
hydroflouric- 
nitric- 
hydrochloric 
acid 

1980 Sopuck, 
Lehto 
et al 

lake 
sediments Cu,Zn ,Ni, 

Co,U,Pb, 
Fe 
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APPENDIX II 

DESCRIPTION OF EXTRACTION PROCEDURES 
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APPENDIX II 

I. SEQUENTIAL PARTIAL EXTRACTION PROCEDURES 

Treatment #1 

Sodium Hypochlorite Treatment to Dissolve 
Organic Matter - Metal Complexes 

References (Anderson, 1963; Lavkullch and Wiens, 1970; Hoffman 
and Fletcher, 1978) 

Reagents Required: 

500 ml of reagent grade sodium hypochlorite freshy adjusted to pH 9.5 
with 6M hydrochloric acid. 

Procedure: 

Weigh exactly l.OOOg of sample Into a 50 m] nalgene centrifuge tube. 
Add 20 ml sodium hypochlorite and stir. Allow the sample to sit for 
4 hours homogenizing It at 2 hour Intervals. Place the tube In a 
preheated waterbath at 80°C for 3 hours to decompose excess hypochlorite. 
Centrifuge the tube at 2400 rpm for 10 minutes. Pour off the extract 
Into a 100 ml volumetric flask. Repeat the above extraction twice. 
This will give 60 ml of extract. Dilute the extract to 100 ml with H2O. 
Save the extract for analysis. Wash the residue using 20 ml of HpO. 
Shake and centrifuge solution for 5 minutes at 2400 rpm. Pour 
off and discard the H2O. Repeat the washing once. Save the residue 
for the next treatment. 

Comments: 

In very organic-rich sediments addition of hypochlorite is commonly 
followed by a vigorous reaction which may result In sample loss. In 
these samples it is therefore recommended that hypochlorite be added 
in two aliquots of 10 ml each. Extractant solutions are commonly 
dark brown after the first extraction and yellow after the end of the 
third. Spectral interference in sodium hypochlorite extrants hampers 
copper analysis by atomic adsorption spectrophotometry. Contamination 
produces an apparent 25 ppm copper concentration in blank hypochlorite 
solution. Copper concentration In solutions containing sample must 
therefore be computed as the difference between values detected in 
sample solutions and values detected In blank sodium hypochlorite 
(Appendix II (III and IV)). 
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Treatment #2 

Water-Hydrochloric Acid Treatment to Dissolve Carbonate, C1ay-Meta1 
Complexes 

Reference (Hoffman and Fletcher, 1978) 

Reagents Required: 

1 litre distilled water acidified to pH 3.0 with 1.5M hydrochloric acid. 

Procedure: 

Add 20 ml distilled water - HCl solution to the residue from Treatment #1. 
Agitate and allow solution to sit for 30 minutes. Centrifuge tube for 
10 minutes at 2400 rpm. Pour off liquid into a 100 ml volumetric flask. 
Repeat the extraction twice. This will give 60 ml of extract. Dilute 
the extract to 100 ml with H2O. Save the extract for analysis. Wash 
the residue using 20 ml H2O. Shake and centrifuge solution for 5 minutes 
at 2400 rpm. Pour off and discard the H2O. Repeat the washing once. 
Save the residue for the next treatment. 

Treatment #3 

Hydroxylamine Hydrochloride Treatment to Dissolve Amorphous 
Manganese Hydroxide - Metal Complexes 

References (Chester & Hughes, 1967; Chao, 1972; Gatehouse et al, 
1977; Hoffman and Fletcher, 1978) 

Reagents Required: 

Dissolve 3.47 g of hydroxylamine hydrochloride salt in 500 ml of distilled 
water. Adjust the pH of the solution to 3.0 with the 1.5M hydrochloric 
acid used in Treatment #2. 

Procedure: 

Add 20 ml of hydroxylamine hydrochloride solution to the residue from 
Treatment #2. Shake and allow the reaction to continue for 30 minutes 
agitating the sample every 10 minutes. Centrifuge the tube at 2400 rpm 
for 10 minutes. Pour off the extract into a 100 ml volumetric flask. 
Repeat the above extraction twice. This will give 60 ml of extract. 
Dilute the extract to 100 ml with H2O. Save the extract for analysis. 
Wash the residue using 20 ml H2O. Shake and centrifuge solution for 
5 minutes at 2400 rpm. Pour off and discard the H2O. Repeat the 
washing once. Save the residue for the next treatment. 
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Treatment #4 

Acid Ammonium Oxalate Treatment to Dissolve Amorphous Iron 
Hydroxide - Metal Complexes 

References (LeRiche and Weir, 1963; McKeague and Day, 1966; 
Gamble and Daniels, 1972; Huang et al, 1977; 
Hoffman and Fletcher, 1978) 

Reagents Required: 

Dissolve 24.9 g of ammonium oxalate monohydrate and 12.6 g of oxalic 
acid dihydrate in 1 litre of distilled water. 

Procedure: 

Add 20 ml of acid ammonium oxalate to the residue from Treatment #3. 
Allow the reaction to continue for 4 hours in darkness agitating the 
samples at 1/2 hour intervals. Centrifuge the tube at 2400 rpm for 
10 minutes. Pour off the extract into a 100 ml volumetric flask. 
Repeat the above extraction twice. This will give 60 ml of extract. 
Dilute the extract to 100 ml v;ith HoO. Save the extract for analysis 
Wash the residue using 20 ml H2O. Shake and centrifuge solution for 
5 minutes at 2400 rpm. Pour off and discard H2O. Repeat the washing 
once. Save the residue for the next treatment. 

Treatment #5 

Hydrazine Chloride Treatment to Dissolve Crystalline Iron 
Hydroxide - Metal Complexes 

Reference (Gatehouse et al , 1977) 

Reagents Required: 

Dissolve 100 g of 99% hydrazine hydrate in 1.8 litres H2O. Adjust pH 
to 4.5 with cone, hydrochloric acid and then bring volume up to 2 litres 
with distilled water. 

Procedure: 

Add 10 ml of hydrazine chloride solution to the residue from Treatment #4. 
Heat sample in a preheated water bath at 90°C for 3 hours mixing 
periodically. Add another 10 ml of hydrazine chloride, return the sample 
to the v^/ater bath and leave overnight (8-12 hours). Centrifuge the 
sample at 2400 rpm for 10 minutes or until supernatant becomes clear. 
Pour off the liquid into a 100 ml volumetric flask. Repeat the above 
extraction twice. This will give 60 ml of extract. Dilute the extract 
to 100 ml and save for analysis. Wash the residue as outlined in treat- 
ments #1, 2 and 3. Save the residue for the next treatment. 
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Treatment #6 

Hydrofluor1c-N1tr1c-Perchloric Acid Treatment to Dissolve Residual 
Petrital Mineral - Metal Complexes 

(also used as a total digestion procedure) 

Reference (Tessier, 1979) 

Reagents Required: 

15:5:2 Hydrofluoric:Nitric:Perchloric acid solution, a 5% solution of 
Nitric acid, and concentrated hydrochloric acid. 

Procedure: 

Weight exactly 0.5000 g of thoroughly dried residue from extraction #5* 
into a 20 ml teflon beaker. Add a couple drops of 5% nitric acid and 
swirl the beaker to ensure that the sample is completely wetted. Fill 
the beaker with the solution of hydrofluoric:nitric:perchloric acid 
and set on an electric hot plate at 90°C for 8 to 12 hours. Raise the 
temperature of the hot plate to 150°C and allow the sample to thoroughly 
dry. In the final stages of drying, while perchloric acid fumes will 
be observed. Once these fumes disappear the sample is dry. Remove 
samples from the heat, add 3 ml of concentrated hydrochloric acid and 
allow to simmer for 5 minutes. Fill remaining volume of beaker with 
de-ionized water and allow to simmer for 10 minutes. Transfer to 
volumetric flasks. Dilute to 100 ml and save for analysis. 

*Note: where this procedure is used as method of total digestion the 
0,5000 g portion of sample is not residue from extraction #5 but 
is instead a freshly weighed aliquot of whole sample. 

II. PARTIAL EXTRACTION PROCEDURES TO SEPARATE HUMIC-FULVIC ACID 
COMPONENTS OF SEDIMENT ORGANIC MATTER 

Reference (Schnitzer and Khan, 1972; Schaef, 1975) 

Reagents Required: 

0.5N sodium hydroxide, 6.ON and l.ON hydrochloric acid, nitrogen gas 

Procedure: 

Weight exactly 10.0000 g of dried sample into a 250 ml centrifuge bottle. 
Add 100.0 ml of 0.5N sodium hydroxide and shake gently to dissolve or 
wet all sample. Bubble nitrogen gas through the solution for approxi- 
mately 5 minutes capping the bottle immediately afterwards. Allow to 
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stand for 18 hours shaking occasionally. Centrifuge the mixture at 
2000 rpm for 30 minutes. Decant the solution (humic-fulvie component) 
into a 250 ml centrifuge bottle. Remove insoluble residue (humin 
component) and save. Acidify the decanted solution to pH 2.0 with 
addition of 6.ON and l.ON hydrochloric acid. The l.ON hydrochloric 
acid should be used as pH 2.0 is approached since the pH sensitivity 
of the system increases. At pH 2.0 tv;o phases will be present: a humic 
acid precipitate and a fulvic acid supernatant. These are separated 
and saved after centrifuging the mixture at 2000 rpm for 30 minutes. 
The above extraction is repeated twice on the insoluble humin residue. 
The fulvic acid solutions and humic and humin residues are placed in 
a vented fumehood and allovyed to evaporate to dryness. Samples are 
then thoroughly dried at 40°C, homogenized and dissaggregated using 
an agate mortar and pestle. 0.5000 g aliquots of dried and dissaggregated 
sample are subjected to total digestion procedures as described in 
Appendix II(I) in preparation for analysis. 

III. COMMENTS ON THE QUALITY OF REAGENTS USED 

Reagents used in the sequential partial extraction procedures were all 
of analytical grade. Blank solutions of each reagent were prepared 
in identical manner to solutions prepared from sediment samples and 
routinely analyzed for possible metal contamination. Only blank 
solutions of sodium hypochlorite indicate an apparent contamination 
equalling approximately 20 ppm copper. The nature of this contamination 
was further investigated by preparing a stock solution of sodium 
hypochlorite in the laboratory (Appendix II (IV)) and comparing copper 
values in this solution to values determined in commercially available 
sodium hypochlorite. Copper concentrations were observed to be 
similar in each of the solutions. Since the laboraty grade sodium 
hypochlorite was prepared from pure reagents containing no copper, 
apparent contamination can only be attributed to a spectral interference 
phenomena. The application of sodium hypochlorite in sequential partial 
extractions therefore requires that blank solutions be prepared for 
each batch of samples to be analyzed. Copper values in samples are 
then determined by calculating the difference between copper values 
analyzed in samples and values detected in blank sodium hypochlorite. 

IV. PROCEDURES FOR PREPARATION OF A STOCK SOLUTION OF SODIUM HYPOCHLORITE 

A sodium hypochlorite solution is prepared as follows: 

Reagents Required: 

32 gm sodium hydroxide, 150 ml de-ionized water, 150 g ice prepared 
from de-ionized water, chlorine gas 
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Procedure: 

Dissolve 32 g of sodium hypochlorite in 150 ml of water. Cool the 
solution to normal temperature and add 150 g of crushed ice. Pass 
a rapid stream of chlorine gas through the solution until the weight 
has increased by 21 - 24 g. 

Note: Commercially available sodium hypochlorite was used in the 
present study since both it and laboratory prepared solutions 
show similar interference phenomena. 
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APPENDIX III 

ANALYTICAL PROCEDURES 
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APPENDIX III 

ANALYTICAL PROCEDURES 

I. ATOMIC ADSORPTION SPECTROPHOTOMETRIC ANALYSIS 

Introduction and Theory of Operation 

Concentrations of Cu, Zn, Fe and Mn have been determined by the 

author at Lakehead University facilities using Perkin Elmer Model 303 

and Model 2380 atomic adsorption spectrophotometers. Initial pre- 

paration for analysis requires that the samples be brought into solution. 

In the present study samples were dissolved according to sequential 

partial extraction and total digestion techniques described in 

Appendix II(I). 

Sample solutions are introduced into the instrument by the 

nebulizer and are vapourized by means of a flame fueled by a mixture 

of air/acetylene in this study. Temperatures of the flame are suf- 

ficient to reduce droplets of the sample solution into atomic form. 

Atomic species in the flame are in turn illuminated by a hollow 

cathode lamp composed of the same element that is being analyzed. 

Atoms in the flame will adsorb at a distinct frequency incident energy 

radiated from the hollow cathode lamp. Remnant radiation from the 

lamp is then isolated by means of a monchromator and it's reduced 

intensity measured on a detector. The amount of adsorption of light 

energy in the flame is proportional to the concentration of the 

element in the vapour and the measurement of decrease in energy 

received by the detector permits a quantitative determination of 

the element concentration. 
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Prior to analysis of sample solutions the instrument must first 

be calibrated. Calibration requires the use of solution standards. 

For the present study standard stock solutions for each of Cu, Zn, Fe 

and Mn were prepared using high purity metals and methods outlined 

in the Perkin Elmer Manual Analytical Methods for Atomic Adsorption 

Spectrophotometry (1976). For each element to be analyzed up to 

seven solution standards were prepared by step-wise dilution of 

standard stock solutions. Standards are made up so that metal con- 

centrations encompass the entire range of values expected in the 

samples. The solution with the highest concentration is labelled the 

reference having an absorbance value greater than or equal to the 

highest expected metal concentration in samples. 

Operation Procedures for the Model 303 Instrument 

Operation of the Model 303 instrument is as follows: 

(a) The appropriate element lamp is installed, the power switches 

are engaged and the instrument is allowed to reach optimum 

operating conditions during a minimum fifteen minute period. 

(b) Current milliampere, ultraviolet or visible wavelength and slit 

settings are adjusted according to lamp specifications. 

(c) Amplifier gain is adjusted to a peak deflection setting by fine 

clockwise rotation of the wavelength and gain controls and by 

final alignment adjustments of the lamp. 

(d) Adsorption and zero knobs are both set to null point readings. 

(e) Air-fuel flow rates and mixtures, burner head height and nebulizer 

aspiration rates are adjusted to optimum settings according to 

Perkin-Elmer specifications. 
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(f) Calibration is performed by aspirating and observing peak absorb- 

ance values for each of the seven solution standards. Final 

absorbance is recorded as a value equal to the difference between 

absorbance for standards and absorbance for high quality de- 

ionized water. 

(g) Subsequent analyses of sample solutions are conducted in a similar 

manner in groups of five samples; the first and fifth sample being 

the refereoe standard and samples 2, 3 and 4 being sample solutions. 

Two readings per sample are recorded and averaged. Frequent 

repetitive analysis of the reference standard is performed to 

monitor instrument drift. 

(h) Linear regression is performed on absorbance data from the suite 

of solution standards via Fortran program load XRF (KH Poulsen). 

This data is subsequently transposed into actual element con- 

centrations in another step of the same program. 

Operation Procedures for the Model 2380 Instrument 

The analytical operation of the Model 2380 instrument is as 

follows: 

(a) Verify that either the plastic spoiler or impact head is properly 

installed in the burner assembly. In the present study, use of 

hydrofluoric acid in Extraction #6 and Total Digestions 

(Appendix II) required that the plastic spoiler be used. Hydro- 

fluoric acid will attack the impact bead made of pyrex. The 

plastic spoiler was therefore used in all applications to stan- 

dardize the analytical set-up. 
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(b) The appropriate lamp is installed, the power switches are engaged 

and the instrument is allowed to reach an optimum operating 

temperature over a minimum one minute period. 

(c) Current milliampere, ultraviolet or visible wavelength and slit 

settings are adjusted according to lamp specifications. 

(d) Amplifier gain is adjusted to a peak setting of 75 on the lamp 

energy digital display. This is accomplished by fine clockwise 

adjustment of the gain control knob and final lamp alignment 

adjustments. 

(e) The model 2380 instrument is equipped with an automatic zero 

mechanism on the keyboard panel so that adjustment of adsorption 

and zero knobs is not necessary as in the Model 303. 

(f) Air-fuel flow rates and mixtures, burner head height and nebulizer 

aspiration rates are adjusted to optimum settings according to 

Perkin-Elmer specifications. 

(g) Calibration of the Model 2380 is performed with either a single 

solution standard if the expected metal concentration in samples 

falls within the linear range of the instrument or by using two 

or three standards depending on the degree to which the linear 

range is exceeded. The linear working range for each element is 

listed in the Perkin-Elmer Manual Analytical Methods in Atomic 

Adsorption Spectrophotometry. The Model 2380 is capable of 

calibrating directly in units of concentration. The concentration 

of the solution standard is set at the maximum expected value 

for samples and entered by the digital keyboard. A blank solution 

of high quality de-ionized water is aspirated, the integration 
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time is set and the automatic zero control is engaged. The 

solution standard is then aspirated and the read key is engaged. 

Completion of the calibration cycle will coincide with a read-out 

on the digital display of the metal concentration in the standard. 

With the calibration curve established the instrument is capable 

of converting absorbance values directly into concentration values 

which are then displayed. 

(h) Subsequent analyses of sample solutions are conducted in groups 

of five samples; the first and fifth sample being the standard 

and samples 2, 3 and 4 being sample solutions. Five readings 

per sample are performed and averaged through the built in 

averaging program of the instrument. 

Comments on Analysis of Iron 

For iron analysis, extraction solutions were diluted by a factor 

of 50x v/ith high quality de-ionized water and spiked with 10 ml of 

strontium nitrate solution. Strontium nitrate is prepared by mixing 

36 gm strontium nitrate to 1 litre of de-ionized water and acts to 

suppress spectral interference particularly by alkali compounds. 

Addition of strontium nitrate to ammonium oxalate extractant solutions 

(Extraction #4, Appendix II) was observed to produce a white precipitate. 

By analyzing identical solutions with and without the precipitate, it 

was discovered that the presence of the precipitate had no effect on 

the concentration of Fe detected in the solution. Therefore to avoid 

possible clogging of the nebulizer and burner head assembly, strontium 

nitrate was not routinely added to ammonium oxalate solutions. 
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Comments on Analysis of Sodium Hypochlorite Extracts 

The high concentrations of sodium in sodium hypochlorite extrac- 

tants require frequent cleaning of the burner head assembly to avoid 

possible clogging. This task should be performed with a dilute 

solution of nitric acid after completing each sample batch. 

II. FLUORIMETRIC ANALYSIS 

Introduction and Theory of Operation 

Concentrations of uranium have been determined by the author by 

fluorimetric analysis at Saskatchewan Research Council (SRC) 

facilities. Saskatoon, Saskatchewan using a Jarrell-Ash fluorimeter. 

In preparation for fluorimetric analysis, solid samples must first be 

brought into solution. In the present study, samples were dissolved 

according to sequential partial extraction and total digestion 

procedures described in Appendix II (I). Fluorimetric analysis hinges 

on the principle that uranium bearing sample solutions fused with 

a sodium fluoride flux will fluoresce when exposed to ultraviolet 

radiation. The intensity of fluorescence measured in the fluorimeter 

is proportional to the concentration of uranium in the sample. 

The effects cf quenching must always be considered when per- 

forming fluorimetric analysis. Quenching effectively reduces sample 

fluorescence and has been attributed to the presence of interfering 

elements including iron and manganese. Quenching is particularly 

apparent in samples containing high concentrations of iron and man- 

ganese. At SRC, effects of quenching have been compensated for by 

the addition of a transmittance module to the fluorimeter. In the 

transmittance mode, ultra violet light is transmitted through the 

fused sample. Intensity of transmitted light is proportional to the 
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amount of iron and manganese present which tends to increase the 

relative opacity of fused discs. Numerical correctiion factors have 

been determined for various values of transmittance. These correction 

factors are then applied to fluorescence readings recorded while 

operating the instrument in the fluorescence mode. Actual uranium 

concentrations in samples are calculated by the following formula: 

U ppm = X c) X [(S.F. X C.F.) - b] 

0.300 = a constant value equal to mg/ml U 

a = mean fluorescence determined from at least two solution 
standards analyzed with each batch of samples 

b = mean fluorescence determined from at least two blank 
solutions analyzed with each batch of samples 

c = ratio of final volume of sample after dissolution/initial 
weight of sample* 

S.F. = measured fluorescence value of sample 

C.F. = correction factor applied according to measured trans- 
mittance value of sample 

*in the present study the ratio is 100/1. 

Procedures for Uranium Analysis 

Routine analysis of uranium is performed according to the following 

procedure: 

1. 0.200 ml of sample solution are pipetted onto platinum dishes 

and allowed to evaporate in a convection oven. 

Dishes containing evaporated samples are placed on a sample fusion 

rotary burner and heated by propane induced flame to 500°C for 

2. 
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1.5 minutes. Ashing of sodium hypochlorite extractant solutions 

by this technique is unsuitable since samples are observed to 

explode out of the platinum dishes. The high sodium salt and 

organic content of extracts are considered to be the source of 

the problem. Therefore, sodium hypochlorite extractant solutions 

are ashed in a muffle furnace where temperatures can be gradually 

increased to 500°C. This method is observed to be a satisfactory 

alternative. 

3. After ashing, commercially prepared sodium fluoride pellets are 

added to each of the platinum dishes and the samples are fused at 

500°C for 3 minutes on the sample fusion rotary burner. 

4. Samples are allowed to cool, fluorescence and transmittance values 

are immediately read on the fluorimeter, appropriate correction 

factors are applied and actual uranium concentrations are calculated. 

III. CHN ANALYSIS 

Introduction and Theory of Operation 

Carbon determinations on lake, stream and 

bog sediments were performed on a Perkin Elmer Model 240 Elemental 

Analyzer by staff of the Science Instrumentation Laboratory, Lakehead 

University. The instrument determines element content by detecting 

and measuring their combustion products, namely, CO2• 

Combustion occurs in pure oxygen under static conditions. Combustion 

products are analyzed automatically in a self-integrating, steady- 

state thermal conductivity analyzer and results are recorded in bar 

graph form on a 0-1 mV recorder. 
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Operation Procedures for the Model 240 Instrument 

Analyses are performed according to the following procedure 

outlined in the Perkin Elmer Manual Model 240 Elemental Analyzer. 

1. 0.0004 grams of sample are weighed into a platinum boat of known 

weight, placed in the magnetically operated ladle and inserted 

into the sample entrance fitting. 

2. The Start button is engated and the entire system flushed with 

helium at a high flow rate for 90 seconds. 

3. The combustion train is then flushed with oxygen for 30 seconds. 

4. After the inject panel light comes on, the sample is moved into 

the combustion chamber and the combust button is engaged. 

Procedures following this step are fully automatic. 

5. Combustion occurs at approximately 950°C. During the high heat 

interval combustion products are flushed from the combustion 

train into a 300 ml spherical glass mixing volume where they are 

homogenized over 90 seconds. While the sample gases are mixing, 

helium flows through the system and the "zero" output with no 

sample in the detector is determined. When mixing is complete 

sample gases are allowed to expand to atmospheric pressure and 

then displaced through the detectors where the signal output is 

recorded over 30 seconds. The difference in microvolts between 

each "read" and "zero" output on the bar graph is in direct 

proportion to the concentration of the gas measured. Actual 

carbon concentrations are computed with standard formulae. 
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IV. ACCURACY AND PRECISION QF ATOMIC ADSORPTION AND FLUORIMETRIC ANALYSES 

Analytical accuracy and precision of atomic adsorption spectro- 

photometry and fluorimetry were determined in the present study by a 

series of standard samples and a suite of replicate analyses, respec- 

tively. 

Analytical accuracy is considered to be a measure of the ability 

of an analytical method to reflect the true concentration of an element. 

Sample MR6-1 was employed as a standard sample to determine analytical 

accuracy in atomic adsorption spectrophotometry. MRG-1 is a sample 

of Mount Royal Gabbro. A petrographic description and assay analysis 

is provided by Faye, 1978. Two specific v;eight fractions of MRG-1 

were selected to match the range of metal values expected in the 

sediment samples. One weight fraction was chosen to match the upper 

limit, the second weight fraction to match a value approximately 1/10 

the upper limit. Chosen concentration levels for each metal are as 

follows: copper, 100 and 10 ppm; zinc, 240 and 20 ppm; manganese, 

600 and 60 ppm; and iron, 5.0%and 0.5%. Weighed fractions of MRG-1 

were subjected to a total digestion procedure as described in 

Appendix II. Solutions of MRG-1 were inserted into sample batches 

at a frequency of approximately 10% for each element analyzed. 

Sample LS-1 a homogenized lake sediment is used at Saskatchewan 

Research Council facilities to determine accuracy of fluorimetric 

analysis. Fractions of LS-1 were prepared for analysis by total 

digestion procedures and inserted into sample batches at a frequency 

of approximately 5%. 
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Since standard samples are not presently available for sequential 

partial extraction procedures accuracy of individual extractions could 

not be established. Accuracy as reported is considered to be a measure 

of instrument accuracy. 

Analytical precision refers to the limits within which analyses 

are reproducible. In the present study, a suite of replicate samples 

comprised of one lake, stream and bog sediment has been applied to a 

test of analytical precision. Each sample of the replicate suite has 

been separately subjected to sequential partial extractions and 

analyzed ten times over the course of the study. Precision has been 

determined by calculating the coefficient of variation of observed 

metal values about mean values determined for each element and each 

extraction. Data are summarized in Chapter 4.2.2, Tables 5, 6 and 7. 
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APPENDIX IV 

SUMMARY OF STATISTICAL METHODS USED 
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APPENDIX IV 

SUMMARY OF STATISTICAL METHODS 

Statistical methods employed in the present study are as follows: 

I. THE MANN WHITNEY STATISTICAL TEST 

The Mann Whitney statistic: can be used to test the hypothesis 

that two populations are equal against the alternative that they differ 

(Mann & Whitney, 1947; Kreyszig, 1970). In the present study it has 

been used to determine whether or not analytical data derived from 

Model 303 and Model 2380 Atomic Adsorption Spectrophotometers differ. 

From a suite of replicate samples, eight analyses of copper, zinc, 

iron and manganese were derived from the Model 303 and two from the 

Model 2380 instrument. In applying the statistic, data from both instru 

ments have been pooled. Data from Model 2380 was labelled n^, data 

from Model 303 Values from n-j and n^ were arranged in order of 

size from smallest to largest and assigned rank scores of 1, 2, 3, etc. 

In the case of similar values for a number of observations, a mean 

rank score was determined for the sequence. The sum of rank scores 

for the smaller of the two populations (n-j) is determined and assigned 

the value w. This value is compared to critical values c-j and c^ 

which have been published for specific sample populations sizes n^ 

and n^. If the calculated value of w lies within the range of the 

two critical values, the populations can be considered equal. Critical 

values are read from tables published in Kreyszig (1970). For the 

present study n-j = 2, n^ = 8 and critical values c-j and C2 are 3 and 19 

at the 95% confidence interval. Calculated values of w for copper, zinc 
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iron and manganese in all extractions of replicate samples are listed 

in Table 3 and the results are summarized in Chapter 4.2.1. 

II. THE SUBSTITUTE t-Test 

The substitute t-test can be used to determine the significance 

between mean values of two populations of equal size (Miller and Kahn, 

1962; Dixon and Massey, 1969). In the present study it has been used 

to determine the significance between mean total metal values calculated 

as a sum of all sequential partial extractions and mean total values 

determined from a total digestion of the same replicate sample. In 

this way it has been used to test the reliability of the sequential 

partial extraction method on the premise that the summed value of all 

extractions should equal the total metal value of the sample. The 

statistic is not recommended for sample populations where n exceeds 10 

and involves the use of the mean (x) and the range (w) of observed 

values. The statistic is computed by the formula: 

d = 
^ 1/2 (w^ + w^) 

where x. is the mean of one population (in the present study data from 
total digestions) 

Xp is the mean of the second population (in the present study 
data from the sum of sequential partial extractions) 

w-j is the range of observed values in population 1 

w^ is the range of observed values in population 2 

Calculated xd values are compared to critical values determined for 

specific population sizes published in Table form in Dixon and Massey, 

1969. If calculated xd values are less than determined values for a 
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specific confidence interval the means of the two populations can be 

considered to be statistically equal. In the case of the present study 

critical values of xd are - .304 at the 95% confidence interval. The 

substitute t-test is summarized in Chapter 4.2.3 and Table 8. 

III. OTHER STATISTICS 

The following statistics employed in the present study have been 

computed from formulae as shown. 

“ y X 
Arithmetic Mean (x) - —   n 

zx2 - 

Standard Deviation (a ) -  — 

Coefficient of Variation - an/x x 100 

X - observed values 

n - number of observed values 

an - standard deviation 

X - arithmetic mean 
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APPENDIX V 

DATA FROM REPLICATE ANALYSIS 



lAL LUNChNTKATlUN (ppm 
AiJ-'U,KJiJ ,/AL PPyRTIA■- EX 1 ivAC f 11 

AND EXTRACTION 1\ 
)Nsl'“7" '■"■■■■■;; 

xV^ 

,x 

Analyses 1 and 2 are from Model 2380, 3-10 from Model 303 spectrophotometers. 
*^Blank columns indicate values less than the detection limit. 

Table 14 Uranium concentrations in replicate lake, stream and bog sediment samples 
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Table 15 - Copper concentration in replicate lake, stream and bog Sediment samples 
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Table 16 Zinc concentrations in replicate lake, sitream and bog sediment samples 



IZ4 
CUiCbNT(</.TlU^< % ) 

''^X' X '. ■, ■ \A-V;N-,.' sVj- 

Fe 

1.75 

1 .60 

1 .66 

1.74 

1.57 

1.73 

1 .58 

1.68 

1.64 

1 .62 

1 .65 

1.75 

1.57 

1.72 

1 .61 

1 .62 

1.62 

1.65 

1.63 

1 .68 

>\' -v'V- 
' . \'A 

V;' 

0.06 

0.11 

0.06 

0.08 

0.09 

0.10 

0.05 

0.08 

0.07 

0.09 

A'' 

1- i j'^AR Tj Al LX ! i'X'ij [ I'j'iX. 

^A X,:ANVX:.^'' AC 
'A" 

c^aI0N TYPL 

■   A  

A '' \ 

. C 

A CAACAA'A' .<AAC ./ACAA* J 
r’' v''A -'. <-.V VNV"'' 'C X ''' A *■/-' C VXA' 

r\ ^■■'AX'AIVX >A'ACA^ 0 Xc-AAC .XJ/" 
" ,■: V-"'' O^- '-‘'■O' -4 v -A \ '•■ './N ' -. I 

0.04 

0.07 

0.03 

0.05 

0.05 

0.04 

0.07 

0.05 

0.03 

0.01 

‘ -,/O;A;> 'X' 

0.83 

0.71 

0.72 

0.75 

0.03 

0.82 

0.95 

0.85 

0.86 

0.88 

0.24 

0.25 

0.25 

0.22 

0.20 

0.22 

0.16 

0.18 

0.20 

0.24 

A. ,A<XX'' , yV 

0.48 

0.61 

0.51 

0.62 

0.44 

0.44 

0.39 

0.49 

0.47 

0.46 

Fe 

Fe ; ' 
' b 

10 

4.47 

4.42 

4.67 

4.58 

4.72 

4.43 

4.74 

4.75 

4.63 

4.51 

0.57 

0.49 

0.50 

0.54 

0.54 

0.42 

0.49 

0.52 

0.49 

0.45 

4.62 

4.65 

4.71 

4.66 

4.77 

4.78 

4.47 

4.41 

4.50 

4.54 

0.53 

0.49 

0.46 

0.48 

0.47 

0.53 

0.56 

0.50 

0.57 

0.53 

0.09 

0.11 

0.11 

0.09 

0.10 

0.05 

0.07 

0.11 

0.08 

0.10 

0.29 

0.17 

0.24 

0.22 

0.24 

0.29 

0.28 

0.25 

0.27 

0.24 

.15 

.16 

11 

,22 

.15 

,11 

11 

.14 

,15 

,15 

04 

03 

02 

03 

01 

02 

05 

03 

02 

06 

06 

05 

04 

09 

08 

08 

07 

09 

07 

06 

03 

04 

04 

05 

05 

04 

03 

04 

05 

05 

1.72 

1.72 

1.70 

1.72 

1.65 

1.74 

1.77 

1 .86 

1 .44 

1.52 

.10 

.13 

.09 

.09 

.07 

.10 

.11 

.09 

.12 

.11 

18 

22 

24 

16 

15 

18 

17 

22 

15 

19 

03 

07 

04 

06 

08 

05 

04 

05 

08 

07 

2.42 

2.39 

2.51 

2.38 

2.64 

2.62 

2.58 

1 .99 

2.61 

2.62 

.04 

.05 

.03 

.03 

.02 

.03 

. 05 

.04' 

.03 

.04 

Table 17 Iron concentrations in replicate Take, stream and bog sediment samples 
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Table 18 Manganese concentrations in replicate lake. Stream and bog sediment samples 
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APPENDIX VI 
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Table 19 Physico-Chemical parameters and percent carbon content in lakes, streams 
and bogs 
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Table 19 - continued 128 

Sample 
Number 

pH 

CXJ 

24 

25 

6.4 

26 

6.6 

27 

6.6 

6.6 

Physico-Chemical Parameters 
measured at sediment-water _i_nterface 
+mi 11 ivolts') I micromhos/cm’ ^‘X) | 
oxidation 
reduction 
potential 

695 

650 

6.5 

565 

28 7.1 

29 7.6 

30 5.1 

31 

560 

535 

510 

32 

5.2 ! 

5.3 

33 4.9 

34 4.9 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

5.2 

5.2 

510 

545 

545 

555 

545 

555 

5.4 515 

4.7 485 
—-I-.- 

6.1 640 

6.0 660 

5.8 

6.1 

6.3 

6.0 

690 

600 

45 

46 

620 

675 

conductivity Temp 

90 

90 

90 

90 

90 

90 

150 

100 

130 

1_3.5 

13.0 

13.0 

12.0 

11.5 

11.5 

13.5 

12.5 

13.0 

J.. 

130 

no 

100 

12.0 I 
i  - - X 

i 10.5 I 
+ 1- 

! 11.5 i 

100 

no 

no 

90 

90 

100 

Pareimeters not mealsured in Bog 3 

160 

190 

100 

11.5 

11.5 

11.0 

17.0 

18.0 

11.0 

7.0 

6.0 

14.0 

4- 

T ppi'O 
Dissolved 
Oxygen 

5.6 

5.0 

4.8 

5.0 

6.4 

6.6 

1 .7 

3.4 

1.7 

1 .5 

4.1 

2.4 

2.5 

1 .3 

2.4 

7.2 

7.2 

7.3 

7.2 

7.4 

6.7 

''''■ Carbon Contenti 
(deterriiined on j 
vjhole sediment)! 

n 

8.4 

19.2 

29.2 

26.5 

32.9 

15.4 

36^8 

37.4 

43.1 

46.3 

35.1 

46.3 

47.4 

41.1 

39.2 

35.9 

38.2 

29.9 

26.3 

24.9 

21.1 

17.5 

20.7 
 J 
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II. 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a % of sum 

Table 20 Uranium concentrations in component fractions of lake, stream and bog 
sediments 
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Table 20 - continued 131 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a t of sum 
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Table 20 - continued 132 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a % of sum 
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Table 20 - continued 133 

1 

2 

metal concentration in ppm unless otherwise stated 

metal concentration expressed as a % of sum 
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JN (ppm} 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a S of sum 

11 Table 21 Copper concentrations in component fractions of lake, stream and bog 
sediments 
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Table 21 - continued 135 

1 

2 

metal concentration in ppm unless otherwise stated 

metal concentration expressed as a % of sum 
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Table 21 - continued 136 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a ;o of sum 
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2 

metal concentration in ppm unless otherwise stated 

metal concentration expressed as a % of sum 
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1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a t of sui< 
II. Table 22 Zinc concentrations in component fractions of lake, stream and bog 

sediments 
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Table 22 - continued 139 

2 

metal concentration in ppm unless otherwise stated 

metal concentration expressed as a of sum 
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Table 22 - continued 140 

/ 

/ ^ /# /O ^TWOc A-' 'O#, ,0.•> ,-Y c>o. O'O 

-r~- 
ZINC -L; :'i V' NiRAVlUN ^ (ppm) 

' /O •v'^ r ,'' ‘O 

*N . 0_' ' 
Y'-,-' 

45 

I 46 

47 

' 48 

67 
7 

■)^ 
'lO 

67 10 

1 

53 
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125 
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1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a d of sum 
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Table 22 - continued 141 

1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a % of sum 
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1 metal concentration in ppm unless othervn'se stated 

2 metal concentration expressed as a > of sum 

II. Table 23 Iron concentrations in the component fractions of lake, stream and bog 
sediments 
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143 Table 23 - continued 

metal concentration in ppm unless otherwise stated 

metal concentration expressed as a ■ of sum 2 
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Table 23 - continued 144 

IRON ,:;-v {%) 

/ A^'' \ 

/A 
/ / '■> vV'^'O' .C, 

1 metal concentration in ppn unless otherwise stated 

2 metal concentration expressed as a r of sum 
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1 metal concentration in ppm unless otherwise stated 

2 metal concentration expressed as a ^ of sum 
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Table 24 Manganese concentrations in component fractions of lake, stream 
and bog sediments 
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MICLtil concc-ntrdtion in p|)in unless otherv/ise stated 

( fUKsdU.^'ation expressed as a T of sum 
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Table 24 - continued    148 

I iiurLal cGncentration in ppm unless otherwise stated 

.! Hietal concentration expressed as a % of sum 
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1 metal concentration in ppm unless otherwise stated 

metal concentration expressed as a % of sum 
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1 metal concentration in ppm 
2 metal concentration expressed as % of sum of fulvic acid and 

humic acid and humin 

III. Table 25 Uranium concentrations in fulvic acid, humic acid and humin 
in sediments 
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fi ^ rnetal concentration in ppm 
^ I 2 metal concentration expressed as % of sum of fulvic acid and 

humic acid and humin 

III.Table 2G Copper concentrations in fulvic acid, humic acid and humin 
in sediments 
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1 metal concentration in ppm 
2 metal concentration expressed as of sum of fulvic acid and 

humic acid and humin 

Zinc concentrations in fulvic acid. III. Table 27 humic acid and humin in sediments 
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Sample 
Type 

Bog 2 
Sediments 

Lake 3 
Sediments 
(adjacent 
to Bog 2) 

Lake 3 
Sediments 
(distant 
to Bog 2) 

Number 

31 

pH in 
Superjacent 
VJater 

Manganese Concentration in 

c 0 

31 I 
(repl icate)i 

37 

38 

39 

5.4 

4.7 

6.1 

40 6.0 

41 5.8 

41 
(replicate 

43 

52 

53 

55 

5.8 

6.3 

6,1 

6.4 

6.5 

i Fulvi 
Acid 

104 

102 

61 

24 

153 

126 

119 

133 

190 

54 ^ 

78'^ 

50 

56 I 
 [- 

56 I 
(repl i cate)^ 

6.5 

6.5 

— 

i 91 

91 

55 

56 
  - - 

43 

30 

55 

61 

46 

45 ^ 

35  

14 

24 

22 _ 

15 I 

 1 

Munnc 
Ac i d 

33 

31 

24 

12 

36 

30 

42 

48 

83 

c'o i oent 
iAi!c i i\ 
^ i-’cc: ti on 

35 

32 

25 

29 

23 

17 

17 

17 

15 

13 

14 

16 

16 

15 

9 

10 

11 

5 

4 

52 

48 

57 

44 

89 

52 

98 

112 

267 

293 

216 

147 

501 

487 

28 

27 

40 

55 

32 

25 

38 

38 

49_ 

77 

66 

66 

?L 

81 

r-^ 

metal concentration in ppm 
metal concentration expressed as A of sum of fulvie acid and 
humic acid and humin 

111.Table 28 Manganese concentrations in fulvie acid, humic acid and humin 
in sediments 


