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ABSTRACT 

The electrical conductivity of n-type InSb in the 

temperature range 77K - 300K has been calculated by using the 

Boltzmann equation with a relaxation time ansatz. The tv/o 

dominant scattering mechanisms in this temperature range are the 

impurity scattering and the polar scattering. The hydrostatic 

pressure effects on the electrical conductivity have been studied 

by considering the variations of the band structure, the carrier 

concentration, the electron effective mass and the static di- 

electric constant of the material. The variation of the electrical 

conductivity up to 10 kbar at the temperatures T = 81 K and 

T = 290 K is compared with experimental data. 
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Introduction 

The transport properties of InSb at atmospheric pressure 
1 -5 have been widely studied theoretically in the last two decades. 

Although it is experimentally well known that the energy differences 

between the various band extrema of this material are pressure 

sensitive^’^ and consequently the electrical conductivity is strongly 

pressure dependent, there is no systematic calculation so far to 

explain the hydrostatic pressure effect on the electrical conductivity. 

It is the purpose of the present work to present a calculation for the 

pressure dependent electrical conductivity in two characteristic 

temperature ranges, 77 K to 100 K and 200 K to 300 K. 

Kane calculated the band structure of InSb using the 

k . ^ perturbation approach and showed that the isoenergetic surfaces 

of the first conduction band (as well as that of the light-hole 

valence band) are spherically symmetric while the dispersion 
O 

relations between energy and wave number are nonparabolic. 

In Chapter 1, we shall briefly derive various expressions for the 

electrical conductivity at different temperatures using the 

Boltzmann equation approach with a conventional relaxation time 

ansatz, but considering explicitly the specific nature of the 

energy band structure of InSb. The dominant scattering mecha- 

nisms in the two different temperature ranges are assumed to be 
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the impurity scattering (77 K - 100 K) and the polar scattering 

(200 K - 300 K). 

The main effect of the hydrostatic pressure on InSb 

is the variation of the energy differences between the various 

band extrema. In the electrical conductivity expressions, the 

pressure dependent parameters are the carrier concentration, the 

electron effective mass, the static dielectric constant and the 

generalized Fermi-Dirac integrals which are used to describe 

properly the nonparabolic band structure. In Chapter 2, we 

study the dependence of these parameters on the energy differences 

between the various band extrema, and hence on pressure. 

In the last two chapters, we apply the results of the 

previous chapters to calculate the pressure dependent electrical 

conductivity of n-InSb up to 10 kbar at 81 K and 290 K. The 

calculated results are compared with the presently available 
g 

experimental results. In general, the theory is in good agree- 

ment with the experiment in the low pressure range (0 kbar - 

5 kbar), and progressive divergence from the experimental results 

occurs for higher pressures. Possible reasons for the disagreement 

are discussed. 
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CHPATER 1 The Electrical Conductivity of InSb 

The electrical conductivity is defined as the current 

density per unit external electric field applied to the conducting 

material. In this chapter, we make a comparably simple calculation 

to derive the electrical conductivity of n-InSb in the temperature 

range from 77 K to 300 K by assuming a relaxation time T exists 

and also by considering the proper description of the conduction 

energy band of InSb. It is known that the energy in the first 

conduction band of InSb is spherically symmetric but the relation 

between the energy and the wave number k is not quadratic (i.e. 

nonparabolic)^ 

1.1 The Electrical Conductivity for Semiconductor with Spherical 

Energy Surfaces 

The current density is defined as 

J 
% 

(a')' 
e V, f. d^k 'vk k 'x- (1.1) 

where fj^ is the distribution function of the carriers which is 

determined by the Boltzmann equation. Under the relaxation time 

ansatz, the Boltzmann equation is 
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n 3^; ro 3;^^ 

f - f° 
(1.2) 

where ^ is the force on the carrier and f° is the equilibrium 

distribution to which the carriers relax. Neglecting the temperature 

gradient within the sample and assuming the force ^ arises solely 

due to an applied dc electric field we have 

f - f"" = (- 
9f, 

8E 
) T V. • eE . 
' r\ V r\ . 

(1.3) 

By substituting (1.3) into (1.1), we obtain 

3f 
J = % 

47r“ 3E 
M T V. (v^ • E) d^k (1.4) 

g 
In InSb, the energy bands posses a spherical structure, 

i.e. the bands in k-space are described by spherical energy surfaces, 

E(k) = E (k). (1.5) 

This relation greatly simplifies the term v. ('/. • E) in (1.4) 

since the components of the velocity of the carriers Vj^ become 

1 3E(k) 

''k. ■ 7) W. 
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= _J_ dE(k) 9k 
dk 9k^. 

_ 1 dE(k) 
Tik dk (1.6) 

where k is the magnitude of the wave vector. For symbolic 
★ 

convenience, we define an effective mass m , which has been 

widely used in transport theory of semiconductors^^, by the 

relation 

1-1 dE 

m* fi^k dk 
(1.7) 

Then the velocity components have the form 

'k. 
1 

Tik, 
(1.0) 

Assuming the electric field and the current density 

J to be in the x-directi on, we have 

J - a E = a IEI 
X XX X ~ 

where the conductivity 

9 ? w n 

a= —^l( ) T ( - ) k dk (1.9) 
STT sE m 

0 
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1.2 The Nonparabolic Conduction Band in InSb 

In order to evaluate the integral in (1.9), we need 

the band structure of the material under consideration. In InSb, 

the main contribution to the electrical conductivity is from the 

electrons in the first conduction band since the electron mobility 

of this band is very much larger than the hole mobilities of the 

various valence bands (although the light-hole mobility of the 

second valence band is comparable to that of the conduction 

electrons, the light-hole concentration is in fact so small that 

we can neglect its contribution to the conductivity).^^ Therefore 

we shall consider only the electrons in the first conduction band 

to contribute to the conductivity. 

According to Kane's theory, the energy structure of 
g 

the first conduction band in InSb is nonparabolic. The conduction 

electron energy as a function of electron wave number k is 

given by 

EG" E* (1 + 1 

2 2 
(1.10) 

where 2TfTi is the Planck const., m^ is the rest mass of the electron, and 

P is the matrix element of the 'interband' interaction, a parameter 

to be determined by the experimental value of the effective mass 
★ 

m^ at the bottom of the conduction band. Eg is the effective 
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mass band gap which determines the curvature of the first conduction 
★ 

band (and thus determines the electron effective mass). Eg 

should be distinguished from the forbidden band gap Eg of the 

semiconductor.^ We shall discuss the nature of these two quantities 

in the next chapter. 

The square root term in (1.10) can be expanded in a 

power series provided that the condition 

8 
3 

2 2 P^k 1 

is valid. This requires that k be less than 0.138 x 10^ cm ^ at 
3 

a temperature T = 290 K which implies an electron concentration of 

18 - 3 less than 1 x 10 cm   a condition readily met even 

17 -3 at 290 K for the n-InSb samples containing up to 10 cm impurity 

11 4 donors. Retaining terms up to k , we obtain 

, PV 
2m, 3 E, 

4 

9 
(1.11) 

Before we invert (1.11) to obtain the relation k = k(Ep), 

it is useful to determine the matrix element P from the value of 

the effective mass m^, at the bottom of the first conduction band 

so that we can simplify the energy equation. The effective mass 

* 12 m^ of the energy band E^ is defined as 
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1 1 ^ 

m* 9k^ 

(1.12) 

which with (1.11) may be written as 

1 _ 1 .4 
* ~ 2 * 

rir 3 Tl Eg 

8 

3 tl^EgS 
(1.13) 

Therefore at the bottom of the conduction band (k = 0), we have 

J_ = 1_ + 4 

”r’ "o 3 

(1.14) 

and thus the value of P 2 can be determined from m^ by 

P 2 3 

4 

Tl^E. 
(1 - u) 

r 
(1.15) 

where we define the quantity y as the ratio of the effective mass 

to the rest mass of the electron 

y - (1.16) 

From experiment y has a value of 0.013 at T = 2.2 K 13 and will change 

due to temperature and pressure arising from the change of the 
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effective mass band gap Eg. 

Substitution of (1.15) into (1.11) gives 

P fi^k^ fi^k^ ,, ^ , (1 - u)^ 1i^k^ E = +  — (1 - y} - %   2“^' —^ 

2m„ 2m_ m„ E- or r u 
(1.17) 

2 The two solutions for k in (1.17) are 

,,2 _ K -  p 
'n^(l - y)^ 

1 t /l - 4(1 - y) 
2 'r 

■G 

(1.18) 

We can expand the square root term in (1.18) in a power series 
2 * 

provided that 4(1 - y) < 1. This condition is again met 

14 - 3 for our sample of n-InSb which has 1 x 10 cm impurity donors. 

Making the expansion, we obtain 

^^6 

V(1 - 
1 ± 1 - 2(1 - y) 2 

- 2(1 - y)^ (- 

and thus for k, we have 

♦ h
j 
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yjzm^E 
* 

r^-Q 

fi(l - u) 
1 - (1 - 

.2 Ep 
(1 tj) (-*-) 

EG -• 

(1.19a) 

k = 

•^2iTipE r^G 
fi [: 

+ (1 - 
,2/Er'^-’ 

u) I -* 

-G' J 

(1.19b) 

Since k is a slowly varying function of energy, having a finite 

value at zero energy, only (1.19b) satisfies the band structure of 

n-InSb. Furthermore, since y is very small compared with unity, 

we can write 

k (1.20) 

Note that we choose the positive sign in (1.19b) which is required 

in obtaining a real physical description of transport properties 

of the conduction electrons. From (1.20), we also have 

dk 
yjzm E r G rE 

2h 
i (1 

ip)-^ 
(1 + 2 4) d(4) . (1.21) 

En 
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Relations (1.20) and (1.21) can be applied to obtain 

the electron concentration n^ in the first conduction band. 

The electron concentration is defined as 

n = I f^{E)g{E) dE (1.22) 

E, 

where and E2 are the upper and lower energies of the band, 

fg(E) is the Fermi-Dirac distribution and g(E)dE is the density of 

states within an infinitesimal range of energy dE which can be 

expressed as 

g(E) dE = ^ k^dk . (1-23) 

By substituting (1.20) and (1.21) into (1.22) and (1.23), we obtain 

n r 
4 ^ 2Trm^kgT^3^2 ( 
— ( ——2 / I 

h'^ ) 

1 

1 + exp 

'X 
(1 + 

keT Eg/kBT 
) 

E /k T E 
"Ml + 2 -^--^) d(-^ 

Eg/kBl kBl 
(1.24) 

where h is the Planck constant and kg is the Boltzmann constant. 
★ 

By defining new variables y = E^/kgT, Op = ® ~ 
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we have 

n r 
2Trm„kDT 3/2 

00 

I (1 + 

0 

8 

3TT 

2TTm kpT 3/2 
(—V-) 

00 

I fgCy, rij,)d [y + ey2 J 
3/2 

(1 

Integration by parts gives 

n = r 
8 ZvmknT 3/2 

fo(y. n^) y + By ] 
3/2 

00 

(“ af 2 3/2 

(^)(y + By^) dy (1.26) 

Since the first term vanishes for both limits, we have 

n r 
2irm 

(  
3/2 

0. 3/2 
o (np, B) (1.27) 

where c is the Fermi level, Hp = ?/kgT is the reduced Fermi level 

2By)dy 

.25) 
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^ m n and 6 = ^gT/Eg and (n,B) is a generalized Fermi-Dirac integral 

9fn(y»^) m ? n k 
(- -^2 ) y"’(y + 6y^)"(l + 2 By)^, (1.28) 

In general, the generalized Fermi-Dirac integrals can not be 

solved analytically, and therefore, we shall evaluate the 
o 3/2 function (np, B) numerically. We shall discuss this type 

of function in the next chapter. 

Another application of (1.20) is to obtain an energy 

dependent expression for m . By substituting from (1.20) into 

(1.7), we obtain 

X = I 

m = mp(l + 2 (1.29) 

1.3 The Electrical Conductivity 

The result (1.9) in Section 1.1 for the electrical 

conductivity involves the relaxation time x which is assumed to 

exist. It is the purpose of this section to discuss the existence 

of a relaxation time for the scattering mechanisms in a polar 

semiconductor such as InSb in the temperature range from 77 K to 
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300 K. The two dominant scattering mechanisms are the impurity 

scattering and the polar scattering. The impurity scattering 

dominates at low temperatures (OK- 100 K) and the polar scattering 

at high temperatures (200 K - 500 K). We shall treat the two 

cases separately. 

1.3a The Low Temperature Case (Impurity Scattering) 

The scattering mechanism predominant throughout the 

temperature range of 0 K - 100 K is the scattering due to the 

ionized impurities. Since the energy emitted or absorbed by an 

electron in a collision with ionized impurities (bound positive 

atoms for donors) is small compared with the initial energy of 

the electron, the relaxation time approximation is valid. According 

to Barrie's result for electrons in a nonparabolic band scattered 

15 by ionized impurities, the relaxation time is 

T . 
tic 

4 
27re N [ In (1 + 4k^ 1 

+ 4k^ J 
k2 dE 

dk 
(1.30) 

where e is the dielectric constant of the material under consi- 

deration, N is the concentration of scattering centres which will 

be equal to the conduction electron concentration n^, in a non- 

compensated n-type extrinsic sample (i.e. N = n^,), and q is the 
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the screening constant in the perturbing impurity potential 
2 

V(j;^) =—— exp(-qr). The quantity ln(l + - 4k‘ 
2 2 

q +4k ] 
is a slowly varying function of k so that it may be replaced 

by a constant y in the integral involved in (1.9). 

Now, the relaxation time is of the form 

T i 
y-he 

2iTe^n, 

2 
(1.31) 

To obtain the energy dependent T^- for the conduction electrons, 

we substitute (1.20) and (1.27) into (1.31): 

(1.32) 

Substituting (1.20), (1.21), (1.29) and (1.32) into (1.9), we 

obtain the expression for the electrical conductivity at 
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low temperatures. 

.00 

^ I 3YTT^^£^^  ^ ^G-* 

■ 3E ) 2e\(kgT)^ '>Lj(n,. 3) (1^2^, 

' ■ 1 

2/1 . o r>,2 + 2-^) 
^ F 

4m E. -i2 

ti 

p J, (1 + 24) 
24“ E, 

-rr dE 
IE.(I+^) 

'G J 

^ r 

U 3, o 00 
2\{I<„T)42 3f 

B I (- —^) 

Tte^m“ *^L “(n_ ,&) I ^E r 0 r 0 

^r/kgT"’^ 
" (1 +-r-S-)i kgT 

-G/kgT '] 
E -2 
r/kfiT E„ 

X (1 + 2 ,, ^ ) d ^ 
E ''B’^ h/kgT 

(1.33) 

Again, using the variables y = 
E kgT 

-j^ y. Tip ~ y y and B — * , we have 
B B EQ 

2\{kJ)^ 

ire 
T 

^ L^(np.3) 

mp= °Lj(np,B) 
(1.34) 
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1.3b The High Temperature Case (Polar Scattering) 

At temperature above 200 K, the polar scattering 

dominates the transport phenomena in InSb. Ehrenreich^ calculated 

the electrical conductivity of InSb due to polar scattering 

by using the variational formulation which is the proper procedure 

to solve the Boltzmann equation since it is questionable to 

define a relaxation time for polar scattering at temperatures 

near or below the Debye temperature 0 of the material { for 

InSb, 0 = 290 K). However Ehrenreich's treatment becomes too 

complex for a discussion of the pressure effects. For simplicity, 

we shall assume a relaxation time Xp exists in the temperature 

range of 200 K - 300 K and compare the pressure dependent electrical 

conductivity with the experimental data. According to Frohlich,^^ 

the relaxation time x for this temperature range is given by 

2"^v(exp ^ - DMo^E^ 

? *0 * u 

)^(m 
(1.35) 

where v is the optical oscillation frequency of the ions, H is 

the reduced mass of the ions, e is the free electron charge, 

* 1 e is the effective charge and is the volume of the unit cell. 
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For conduction electrons in InSb, the relaxation time 

Tp is obtained by substituting (1.29) into (1.35), i.e. 

T_ - 

2^v(exp -j^ - l)MUgE'^^ 
 B  

e^(e )^m^(l+2-4-)'^ 

(1.36) 

Similar to the calculation in Section 3.1, by substituting (1.20), 

(1.29) and (1.36) into (1.9), we obtain the expression for the 

electrical conductivity at high temperatures 

a, 1 - fe! 

37T^ f'- 1 
1 

9 *~9~T’ F 7^ 
e‘-(e i 2/, 

nip (1+2-^) 
Eg 

[4mf r -.2 [Ep(H4) X 
.4 

t- i' 
2'%i; 

2li 

(1 + 2^) 
   dE ' Ejl+4) 

Eg 

(1.37) 

Ep p kgT 
Again, using the variables y = - . ■ -f ,np = Tand 8 =—*— we obtain 

B "^B Eg’ 
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4Mv(kgT)^(exp -|^ - 1) 

2 2 
(e ) 

(1.38) 
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CHAPTER 2 The Hydrostatic Pressure Effects 

There are many experiments,^’^ which indicate that the 

energy band structure of InSb changes significantly due to hydro- 

static pressure change and consequently the energy differences 

between the extrema of various bands are pressure sensitive. In 

this chapter, we are going to determine the dependence of the 

parameters which appear in (1.34) and (1.38) upon these energy 

differences so as to obtain the pressure dependence of the 

electrical conductivity. 

2.1 Determination of the Fermi Level 

Since the generalized Fermi-Dirac integrals (n, B) 

which appear both in (1.34) and (1.38) are functions of the reduced 

Fermi level, = c/kgT, we need to determine the Fermi level 

corresponding to the carrier concentrations in thermal equilibrium. 

2.1a The Low Temperature Case 

At low temperatures, essentially all the electrons in 

the first conduction band are excited from the donor impurity 

level. Therefore, for the low temperature range, we shall 
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determine the Fermi level by equating the electron concentration in 

the first conduction band to the ionized donor concentration of 

the impurity level. If we denote nj as the ionized donor concen- 

tration of an impurity level Ej below the bottom of the first 

conduction band; then, from Fermi-Dirac statistics, nj is given 

by 

HI = (1 - ^ 

Ej + ^ 
1 + exp (—- 

B 

(2.1) 

14 -3 where is the total impurity density (10 cm in the sample 
9 experimentally studied ). The impurity energy level Ej is 

12 determined by using the hydrogen-like atom approach, assuming 

that we have a single monovalent donor sample. Ej is then given 

by 

E I 

4 e 
(2.2) 

IJe shall discuss in the next section the temperature and pressure 

dependence of Ej which arises from the temperature and pressure 

dependence of both the band minimum effective mass m^ and the 

static dielectric constant £. 
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Since we assume that all conduction electrons are 

excited from the impurity level at low temperatures (i.e. n^, 

= nj), we have from (1.27) and (2.1) 

3fr 

8 27rmpkgT 3/2 
-r (  2—^ 

1 + exp + np) 

= 0 (2.3) 

This relation can be used to determine the Fermi level. 

2.1b The High Temperature Case 

At high temperatures (200 K - 300 K), InSb behaves nearly 

as an intrinsic semiconductor and the conduction electrons are 

mainly contributed from the various valence bands. To determine 

the Fermi level in thermal equilibrium at high temperatures, we 

need to know the band structure of InSb to obtain the carrier 

concentrations in various bands. 
g 

The band structure of InSb was calculated by Kane 

using the k - perturbation approach. Since InSb has a narrow 

forbidden energy gap, the structures of the first conduction band. 
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the light-hole valence band and the spin-orbit split-off band 

are determined by treating the mutual interactions of these 

three bands exactly, while the higher bands are treated by 

perturbation theory. The results from Kane's calculation are 

F -nV 
r 2m_ '[ (E*2 + 1 PV)^ - E, 

E - - _ F ‘'vl 2m_ ‘'G 
(2.4) 

. ^ 
v2 2m 

5^+p r 
2-0 H - * I- EG ] 

and 

EV3 = - (EG ^ ''i - IS 
0 3(Eg + A) ■ 

The symbols E^,, Eyj>Ey2 ^nd E^^ denote the energy of the first 

conduction band, the heavy-hole valence band, the light-hole 

valence band and the spin-orbit split-off valence band respectively. 

The parameters used in these results are m^ the mass of the free 

electron, EQ the forbidden band gap (for InSb, Eg = 0.23 eV at 
★ 

T = 0 K), Eg the effective mass energy gap which is assumed to 

affect the effective masses of the first conduction band and the 

light-hole valence band only^, P the matrix element of the 
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'interband' interaction and A the spin-orbit splitting of the 

valence band. The value of P has been determined in (1.15). 

While A has not yet been determined experimentally, Kane assumed a 

value of 0.9 eV by combining the estimated values of the spin-orbit 

splitting of the atomic p-functions in the two different atoms, 

indium and antinomy. 

From (2.4), the expressions for and EV2 indicate 

the energy band structure of these two bands are nonparabolic. 
2 2 The degree of nonparabolicity is determined by the quantity P k 

occuring in the second term of the expressions. The extrema of 

these two bands are both at k = 0. Since the effective masses are 
13 very small at these band extrema ( mj,(0,0) = 0.013 m^ and 

8 m^2(0»0) = 0.015 ni^ ) > the curvature of each band is very large 

at k = 0. According to (2.4), the curvature decreases with increasing 

k and thus the energy departs from a parabolic band away from k = 0. 

The difference between the first conduction band and a standard 

parabolic band is shown in Fig. 2.1 The reason for considering the 

nonparabolicity of these two bands in transport properties arises 

from the fact that the densities of states of the occupied parts 

of the parabolic and of the proper nonparabolic band differ by a 

significant amount at room temperature so that one should not 

neglect it in the calculation of carrier concentration (H. Ehrenreich 

has discussed this problem and concluded that the difference 

involved at room temperature is more than 50%^). 
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The expression for the heavy-hole valence band in (2,4) 

is less satisfactory. Experimental evidence^^ indicates that the 

heavy-hole effective mass m^j^ has a value of 0.4 m^, rather than 

being equal to the free electron mass as in (2.4). Therefore we 

shall modify Kane's result by replacing m^ by m^^ = 0,4 m^, i.e. 

vl 2 m - E, 
vl 

(2.5) 

In addition to the bands described by (2.4), many 

experiments suggest the existence of a higher conduction band E^ 

with E^, = (E, - E^) . = 0,5 eV at atmospheric pressure. This FL L r min. 

band is assumed to be parabolic with an effective mass m|^ = 0.5 m^. 

With this additional L - band taken into account, the entire band 

structure of InSb is given by 

■^2. 2 
E = ----- -I- F ‘^L 2m, ‘^FL (2.6a) 

] (2.6b) 

E = -1^ . E 
•^vl 2m^j ‘"G ’ (2.6c) 

and 

E = - + v2 2m_ '[ -(E*2 + I PV)' - E* ] 
^v3 ■ ■ 2m^ ■ 3(Eg“+“Ty 

(2.6d) 

8,18 

(2.6e) 
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This is illustrated in Fig. 2.1. 

The calculation of carrier concentrations in various 

bands is similar to that for the first conduction band in section 

1.2. The equations (1.22) and (1.23) are again applied with the 

corresponding energy dependent wave number formulae derived from 

the band structure. 

For the L - conduction band, (2.6a) gives 

(2m. ) 
k =  (E^ - Ej.^ ) (2.7) 

and thus the electron concentration in the L - conduction band 

will be given by 

,00 

fo (EJ g (E^) dE^ 

TL 

4 2Trm, 3/2 
= -iT ( ) 

7T n 

00 

1 

. ^ 
Ic 1 + exp( —^ ) 

TL B 

(EL - E^L) dEL 

(2.8) 

Setting y = and n|_ we have 

2TTm. krjT 3/2 
n. = 2 { — ) 3^ ( HL) 

L h L 
(2.9) 



00 

27 

where 3.(n) = ^ I  ^ dy is the Fermi-Dirac 
I l.exp (y-n) 

19 integral. In InSb, has a value of 0.5 eV while the main 

energy gap EQ = 0.23 eV at zero temperature. Since the Fermi level 

n is within the main gap, the quantity = (^ - Epj^)/kgT at room 

temperature is always a large negative number, so that by following 
19 Blakemore's arguement, we make the approximation 

3i^( n|_ ) - exp (2.10) 

Thus (2.9) becomes 

2Trm. kpT 3/2 
n = 2 ( exp (n. ) . (2.11) 

L h'^ L 

For the heavy-hole valence band, (2.6c) gives 

k = ± ( 
2m , \ 

<- Evi - EG) (2.12) 

(Note that we shall choose the negative sign in this expression 

for k in order to obtain a real physical description for the hole 

concentration). By following the same approach as for the L - 

band except using the hole distribution function [l - fg(E)], the 

hole concentration in the heavy-hole valence band is 



- 28 - 

2iim ,kpT 3/2 

Pvi = 2 <- J - -) (2.13) 

where n vl 

( C + Eg) 
Since n,.i has a value close to zero 'vl 

room temperature, we approximate 3'i(n i) 
'5 V1 

19 

exp(nyj) 

" 1 + 0.27 exp (nyj) 
(2.14) 

and thus (2.13) becomes 

27,m^jkgT 3/2 exp(n ,) 

Pvi = 2 (  T )   
1 + 0.27 exp(riyj) 

(2.15) 

The expression (2.6e) for the spin-orbit split-off 

valence band can be rewritten in a simple parabolic form 

■v3 " ■ 2iTr, - (Eg + A) , 
v3 

(2.16) 

2 ^3 
by defining an effective mass m^^ = ^ ( 2—^ 

dk 
From (2.6e), 

m, is given by 

mv3 = -fi \zr- 
[% 

2p^ 
^Eg + A) 

-1 
(2.17) 
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and is approximately 0.115 m 

dependent k in this band as 

Equation (2.16) gives the energy 

2m . is ^2 

k = - ( 1^) - (E^3 + Eg + A) . (2.18) 

By following the same approach as for the L - band, the hole 

concentration in the spin-orbit valence band is 

2Trm okpT 3/2 
Pv3 = 2 ( ^2 ) exp (ny3) (2.19) 

( C + Eg + A) 

' k^T  ■ 

For the nonparabolic bands of InSb, we have already 

calculated the electron concentration in the first conduction band. 

The result for n^, is given by (1.27). A similar calculation can 

be applied to determine the hole concentration in the light-hole 

valence band and a result similar to (1.27) is obtained by approxi- 
★ 

mating the upper limit E2 in (1.22) by Eg instead of using the 

correct quantity Eg. This approximation is valid, since the number 

of electrons excited from the light-hole valence band is much 

smaller than that from the heavy-hole valence band. The hole 

concentration in the light-hole valence band so obtained is 
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<%2' 8) (2-20) 

where 11^2 

In general, especially in the temperature range where 

the intrinsic and extrinsic transitions are both important, 

the condition of electric neutrality of the crystal requires that 

the electron concentration in the conduction bands should be equal 

to the ionized donor concentration from the impurity level plus 

the hole concentration in the valence bands, i.e. 

Substituting (1.27), (2.1), (2.11), (2.15), (2.19) and (2.20) into 

(2.21), we obtain 

(2.21) 

6) + 2( 
2Trm|^k gT 3/2 

exp (n^) 

3/2 exp (n^j) 

1 + 0.27exp(n^^) 

+ 
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2Trm^knT 3/2 
+ 2( exp (n^.) = 0 . (2.22) 

The variables in (2.22) are the temperature T and the Fermi level 

therefore we can use (2.22) to determine the Fermi level at 

high temperatures. 

2.2 Temperature and Pressure Dependent Parameters 

2.2a The Energy Differences between Various Band Extrema 

In semiconductors, a change in temperature will cause a 

change in the lattice constants due to thermal expansion as 

well as a change in the oscillation frequency of the ions associated 

with the variation of the specific heat. These two mechanisms 

contribute the total temperature induced change of the main energy 

gap Eg (the energy difference between the first conduction band 

and the first valence band), and the temperature coefficient 

(3Eg/3T)p has been determined to be - 2.9 x 10~^ eV/K from the 

20 
measurement of optical absorption in n-InSb. However, it is only 

the change of the energy gap with temperature due to the lattice 

dilatation which will change the curvature near the first conduction 

band minimum (i.e. will change the band minimum effective mass m^,).^ To 

eliminate the effect of the change in the oscillation frequency 
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of the ions with temperature, we have to use the effective mass 
* 

energy gap Eg instead of Eg to calculate the change in m^. 

Ehrenreich calculated the temperature coefficient (aEg/8T)p to 

be - 0.96 X 10"^ eV/K. 

Ehrenreich^ assumed that the pressure coefficients 
★ 

of these two energy gaps are the same, i.e. (3Eg/3P)j = (aEg/aP).^ 

Various values of ( aEg/aP)j have been reported from many experiments.^’^ 

Most of the experimental values were obtained from electrical 

resistivity data with considerable theoretical uncertainty,^’^ 
_2 

therefore we choose the value ( aEg/aP)^ = 1.6 x 10 eV/kbar 

which has been obtained from the optical measurement of the energy 

gap up to 30 kbar.^ 

If we assume a linear relation of the energy gaps with 

temperature and pressure which is, in fact, observed experimentally, 
★ 

then the temperature and pressure dependence of Eg and Eg can be 

written as 

E.(T,P) = E.(0,0) + (- 
aE, 

aT 'P )D T + P 

and 

Eg(T,P) = Eg(0,0) + ( aT ^P T + (-^)j P (2.24) 

where Eg(0,0) = 0.24855 eV is the value for Eg at zero temperature 

and at atmospheric pressure extrapolated from the high temperature 
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20 region of the vs T curve . This value should be distinguished 

from the exact value EQQ = 0.23 eV at zero temperature, since the 

temperature dependence of the energy gap is nonlinear in the low 

temperature range, OK- 100 K. 

The magnitude and pressure dependence of E^^ are not 

well known; however in analogy with other Ge-type semiconductors 

and with some theoretical and experimental support, it is thought 

that 

E^JP) = Ej,^(0) + ( (2.25) 

where E^^(O) = 0.5 eV®’^® and (3Ej.|^/3P).^ = . lO eV/kbar.® 

2.2b The Effective Masses 

The conduction band minimum effective mass m^, is related 
★ 

to the effective mass energy gap EQ and the interband interaction 

matrix element by (1.15). Ehrenreich assumed that this matrix 

element is weakly temperature and pressure dependent.^ With a 

further assumption that the variation of the ratio of the effective 

mass and the free electron mass u is small compared with unity, 

it follows that (1 - y) - const., and then (1.15) gives the 

relation 

Eg (T,P) 

m^(T,P) const. (2.26) 
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Thus the temperature and pressure dependence of is 

Eo (T,P) 
m (T.P) = m_(0,0)    

^ Eg (0,0) 

* 

1 9EO 1 9Ep 

^ Eg(0,0) ^?r~^P ^ Eg(0,0) ^8P“^T ^ 

(2.27) 

where mp(0,0) = 0.013 m^ is the band minimum effective mass at 

zero temperature and atmospheric pressure. 

The temperature and pressure dependence of m^2 

similar to that of m^ and has the form 

= mp(O.O) 

m 
1 3E, 

1 + Eg(o,o)^Fr^p'^ 

1 9Ep 

Eg(0,0) ^ (2.28) 

where m^^ (0,0) = 0.015 m^ is the value for m^2 zero temperature 

and atmospheric pressure. 
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2.2c The Static Dielectric Constant 

We write the static dielectric constant as a sum 

of the contributions from the lattice polarization E-J^^ and the 

electronic polarization , i.e. 

e "lat el (2.29) 

To derive the pressure dependence of e, we first assume 

that the variation of due to pressure is negligible. This 
21 assumption may be reasonable since E-J^^ = 2.2 is small compared 

22 with Eg-j = 15.7 at atmospheric pressure so that any small change 

in ET^. will not be significant in the total change of E. There- 

fore the pressure dependence of e can be derived solely from the 

variation of Eg-j due to pressure. 
23 The Penn model assumes an isotropic free-electron 

energy band throughout k - space except near the Fermi surface 

where it has a gap Ep, the Penn gap. The electronic dielectric 

constant in this model is expressed as 

2 
Eg^ = 1 + ( -^) (2.30) 

where is the plasma frequency associated with the valence 

electrons. 
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Since the plasma frequency w relates to the valence 
K 

electron density N = Nj/V (Nj is the total number of valence 

electrons and V is the volume of the crystal) by 

2 ^ 4i.e^N (2,31) 
p m 

also the pressure dependence of N is given by 

N(P) = N(0) ( 1 + KP) (2.32) 

where N(0) is the density at atmospheric pressure and < = - ^)j 

is the compressibility. We can find the pressure dependence of 

Wp by substituting (2.32) into (2.31), i.e. 

Wp^(P) = o)p^(O) (1 + KP) (2.33) 

where Wp(0) is the plasma frequency at atmospheric pressure. 

The Penn gap Ep is also pressure dependent. Tsay 

24 
et a1. assumed that Ep could be identified as the energy of 

the transition Eo based on the theoretical interpretation 

of the Penn model by Heine and Jones and the experimental optical 

spectrum. With this identification, Ep has a value of 3.7 eV 

at atmospheric pressure and a calculated pressure coefficient 
-3 24 

(3Ep/sP).j. of 9.2 X 10 eV/kbar . In basic agreement 
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25 with the optical results of Zallen and Paul which indicate the 

^9 V ^ r transition has a zero pressure value of 4.1 eV and 
_3 

a pressure derivative of 5.8 x 10 eV/kbar. We shall use the 

theoretical result and write the pressure dependence of Ep as 

Ep(P) = Ep(0) 1 + E^ •dP V 

_ 

(2.34) 

Finally, the pressure dependence of the static dielectric constant 

e is obtained from (2.29), (2.30), (2.33) and (2.34) as 

fi^cOp(O) 

£(P) = e,^(0) + 1 +  -5  
Ep^(O) 

^1 + KPJ 

1 ^^P 

1 ^ W~\^ 

-2 
(2.35) 

2.2d The Effective Charge 

1 
The effective charge is calculated by Ehrenreich to be 

1 

Si 

1 
) . ( e 

(2.36) 
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We shall neglect any pressure dependence of v. Therefore the 
*2 

pressure dependence of the parameter (u./e ) which appears in 
a 

(1.38) arises from the term - e"^). From the assumptions 

made in Section 2.2c {eg-]”^ “ is a very slowly varying 

function of pressure. Therefore we shall neglect the pressure 
*2 

dependence of (u^/e ). 
a 

2.2e The Generalized Fermi-Dirac Integrals 

In Chapter 1, Section 1.2, it has been stated that the 

generalized Fermi-Dirac integrals could not be solved analytically. 

The functions (np,6), 

(1.34) and (1.38) depend upon temperature and pressure. We shall 

determine the effects of variation of these functions upon the 

electrical conductivity by direct numerical analysis at various 

temperatures and pressures. The variables Hp and 3 can be 

determined for a given temperature and pressure. To determine np 

and B, we use the equation (2.3) (for the low temperature case) 

or (2.22) (for the high temperature case) accompanied with the 

temperature and pressure dependent parameters expressed by (2.2) 

(2.23), (2.24), (2.25), (2.27), (2.28) and (2.35). 
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CHAPTER 3 Calculations and Results 

3.1 The Pressure Dependent Electrical Conductivity at Low 

Temperature 

Equation (1.34) has been used to calculated the 

pressure dependent electrical conductivity a|^(P) of n-type 

InSb at 81 K up to 10 kbar by substituting the temperature and 

pressure effects oh the effective mass mj,(T,P) from (2.27) and 

on the static dielectric constant e(P) from (2.35) and by following 

the procedure indicated for calculating the generalized Fermi- 

Dirac integrals (T,P) and °L^2(T,P)- The parameter y in 

(1.34) has been chosen so that the calculated value of aj^(P) is 

in agreement with the measured value at 0.2 kbar. 

To show the various contributions from the pressure 

dependent parameters of the electrical conductivity a^{P), the 

calculated values of e(P), mj,(P), (P) and a|^(P)/a|^(0.2) 

at various pressures are shown in Table 3.1. The variation of 

the electrical conductivity 0|^(P) as a function of pressure is 
9 

compared with the experimental data in Fig. 3.1. A good 

agreement with experiment is obtained for pressures up to 
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approximately 5 kbar. Progressive departure between the calculated 

and the observed values occurs for higher pressures. 

3.2 The Pressure Dependent Electrical Conductivity at High 

Temperatures 

Equation (1.38) has been used to calculate the pressure 

dependent electrical conductivity o^(P) of n-type InSb at 290 K 

up to 10 kbar. Following the discussion in Section 2.2d, the only 

pressure dependent parameter is the generalized Fermi-Dirac integral 

^L_2/2(P) which includes the variation of the conduction electron 

concentration and of the electron mobility due to pressure. The 

variation of the conduction electron concentration due to pressure is 

shown in Table 3.2. The pressure dependent concentration is in 

excellent agreement with the Hall measurement of the intrinsic 

25 carrier concentration . The calculated electrical conductivity 
Q 

a^(P) is compared with the experimental data in Fig. 3.2. The 

theoretical results indicate a nearly linear relation between 

log o^(P) and P with log 0|^(P) = log o^(P^) + bP where b has a value 

of - 0.145 while the experimental results give a nonlinear relation, 

log cr^(P) = loQ ^ ^ where b' = - 0.148 and c' = 0.0022. 
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CHAPTER 4 Discussion and Conclusions 

4.1 The Pressure Dependent Electrical Conductivity at Low 

Temperatures 

The pressure dependent electrical conductivity for 

n-InSb at 81 K has been calculated by assuming the dominant 

mechanism for scattering of electrons to be ionized impurities. 

At low temperatures such as 81 K, it is known that the mobility 

is dominated by ionized impurity scattering in highly degenerated 

samples (N^ > 10^^ cm~^) at atmospheric pressure^. Other experiments^^ 

indicate that at this temperature, impurity scattering dominates 

for samples with lower impurity concentrations down to at least 
15 -3 14 -3 10 cm . For an undoped sample with =10 cm , our 

calculation, in which no approximation is made for degeneracy, 

has a good agreement with experiment for pressures up to 5 kbar. 

Therefore, we do believe that the ionized impurity scattering 

is the only important mechanism at low temperatures. 

In determining the impurity energy level Ej, we use the 

hydrogen-1ike atom approach, assuming that we have a single mono- 

valent donor sample. It is the simplest method of calculating 

Ej which may oversimplify the problem of determining the Fermi 

level. In fact, the undoped sample which was used in the experiment 

may contain different types of impurities. There is no guarantee that 
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all impurities are single monovalent atoms. If part of impurities 

are multivalent atoms, instead of one single impurity energy level, 

there will be additional levels which are deeper in the forbiden energy 

gap. In this case, a decrease in electrical conductivity at higher 

pressures may arise from the decrease in the ionized donor concentration 

associated with the pressure dependence of these additional impurity 

energy levels. The simplification of our impurity model may explain 

the deviation between the calculated and the observed electrical 

conductivity which occurs at higher pressures. 

In our model, we also exclude the possibility that the 

impurity atoms overlap with one another. Incousion of the overlap 

would lead to lowering of the binding energy of the donors. However 

at T = 81 K, all electrons are ionized even when overlap effects 

are neglected. Therefore we did not take the overlap effects into 

account in our calculation. 

4.2 The Pressure Dependent Electrical Conductivity at High 

Temperatures 

The pressure dependent electrical conductivity for 

n-InSb at 290 K has been calculated by assuming that a relaxation 

time exists in the polar scattering process. The theoretical 

result gives an under-estimate of a at 290 K for high pressures. 
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Indeed, the theory does not include the nonlinear pressure effect 

of log (P) which is observed in experiment. At 290 K, the fact 

that electron mobility is dominated by the polar scattering has 

been already verified by Ehrenreich^ at atmospheric pressure. 

Since our calculated results for the conduction electron concen- 

tration are in excellent agreement with experiment, the linear 

dependence of the energy differences between the various band 

extrema may be considered as a reasonable assumption. The absence 

of nonlinear pressure dependence of log (P) in our theory 

possibly may arise from the improper relaxation time assumption for 

the polar scattering process. This suggests that we should solve 

the Boltzmann equation by using the variational formulation to 

obtain the expression for the electrical conductivity.^ Solving 

the Boltzmann equation without the relaxation time assumption is 

highly numerical. Therefore, unless this calculation is made, it 

is not known whether the improper relaxation time assumption 

would cause the under-estimate of the electrical conductivity at 

high pressures. 
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FIGURE 2■1 The Band Structure of InSb. 

  The shape of a parabolic conduction band 

with = 0.013 at k = 0. 
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P [k b a r] 

FIGURE 3.1 The pressure dependent electrical conductivity 

of n-type InSb (N^ = 10^^ cm”^) at 81 K. 

  The theoretical result. 

*—•—• The experimental result. 
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FIGURE 3.2 The pressure dependent electrical conductivity 

of n-type InSb = 10^^ cm'^) at 290 K. 

  The theoretical result. 

» « - The experimental result. 
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P 
(kbar) 

rrip 
/in-28 . (10 gm) 

/ -j 

2) 

0 17.9 0.1147 3.7517 1.0057 

0.2 17.89 0.1162 3.7585 1.0 

17.86 0.1223 3.7873 0.9787 

17.82 0.13 3.8216 0.9537 

17.78 0.1376 3.8521 0.9304 

17.74 0.1452 3.8811 0.9085 

17.7 0.1528 3.9061 0.8867 

17.66 0.1604 3.9304 0.8675 

17.62 0.1681 3.9517 0.8477 

8 17.58 0.1757 3.9728 0.8300 

17.54 0.1833 3.9886 0.8124 

10 17.5 0.1909 4.0073 0.7957 

TABLE 3.1 Calculated values of the static dielectric constant 

the effective mass m^, the parameter 

the resulting relative conductivity at various pressures 

at 81 K. 
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P 

(k bar) 

n. 

(io‘’*cm"®) (io-’=>cm-=*) P 

0 1.858 1.610 -0.722 0.1132 

0.2 1.765 1.554 -0.8 0.116 

1.431 1.342 ■1.1 0.1056 

1.095 1.108 -1.47 0.09887 

0.8338 0.9047 -1.83 0.09298 

0.6323 0.7333 ■2.19 0.08776 

0.4782 0.5901 -2.55 0.08309 

0.361 0.4717 ■2.9 0.07889 

0.2724 0.3745 ■3.25 0.0751 

8 0.2053 0.2960 -3.596 0.07165 

0.1549 0.2323 ■3.94 0.06851 

10 0.117 0.1812 -4.27 0.06563 

TABLE 3.2 The calculated values of the conduction electron 

concentration n^, the light-hole concentration 
•k 

reduced Fermi level np and 6 ^ various 

pressures at 290 K. 
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