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ABSTRACT

This Thesis discusses the triangular finite element so-
lution to second order elliptic boundary value problems. The
Barycentric Coordinate system, which some engineers call the areal
coordinate system, is used throughout in this Thesis. Some funda-
mental parts of vector calculus are developed in this coordinate
system, and are applied to the triangular fiﬁite element method.

We also present a new approach to error analysis based
on the computation of Peano-Sard kernels [F61 of error functionals
in the Barylentric Coordinate system. Some numerical quadrature
formulas for the approximation of the load vector Fh = f fo du
are derived, and error bounds are estimated.

Several approximate inversion methods for the construc-
tion of an e-approximate inverse to A in the iterative solution
of the linear system Ax = y are discussed. These procedures
include the truncation (TRq) method [B31, the least-squares
(LSq) method [B3], the weighted truncation (WTq) method and the
intetpolation (INq) method. These e-approximate inverses are
applied to the iterative algorithm FAPIN [F4] to solve the linear
system Ax = Yy.

To illustrate the theory, three boundary value problems
are solved numerically using piecewise linear splines in the Ritz-
Galerkin method. Inhomogeneous boundary conditions are used in two

i



of the problems, and in one of these the differential operator is

singular.
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CHAPTER 1

FUNDAMENTAL CONCEPTS

1.1 INTRODUCTION

We begin this chapter by introducing the Barycentric
Coordinate system, which some engineers call the areal coordinate
system, and which is essential for a study of the triangular finite
element method. Some fundamental results are given in this chapter -
that serve as a basis for the chapters that follow.

Sobolev spaces and Sobolev norms are defined in terms of
Barycentric Coordinates in Section 1.6. We state the generalized
Peano-Sard Kernel Theorem in Section 1.7, followed by an example
on the application of the Theorem and the construction of kernels
of the error functional E(f). Further demonstration on the appli-
cation of this Theorem will be given in Chapter 3. The non-unique-

ness of the kernel is shown by giving an example.

1.2 BASIC NOTATION

Definition 1.2.1. Let T be a set of triangles in a bounded poly-

gonal domain Q. We say 1 is a triangulation of Q ([S41, [P1],
[Bel) if

(i) for each pair of distinct triangles in 1, they either inter-
sect at exactly one vertex or intersect on one complete side or do

not intersect at all.



(ii) the union of all the triangles in T and their interior is .
We will denote by th tﬁe triangulation of §, such that
each element of Th is an equilateral triangle of side length equal
to h. We also denote by Qh the set of all vertices of triangles T
h

in Th. Elements of Qh are called nodes of Th, A node of = is

called an Antenior node if it does not lie on the boundary 239 of

2. The set of all interior nodes will be denoted by ﬁh‘

Let L be the integer lattice in the plane. Since every
element of L «can be written as a linear combination.of (1,0),
(-1,1), (0,-1) over the set of integer N, we can define a norm,

called the_hexagonal norm on L by

3
le] = min { }
j=1

lkj,l Po= kp(1,0)+k2(-1,1)+kg(0,-1), Ky € N Y.

For each triangulation D oof Q, there is an .1-1
correspondence between the set Qh and a subset Ph of L with
the property that : for every T in Th, the distance between any
two of the corresponding vertices of T in Ph is one. Elements
of Qh will be denoted by Xa’ where o € Ph. We denote by %h
the -set of o ¢ %h s.t.. Xa € ﬁh"

We observe that for every member Xa of ﬁh’ the set
{Xg e : la-8] = 1 } form a hexagon in @ with centre X ;
this hexagon will be denoted by Xa+ H.

Denote by Pn(Q) the space of polynomials of degree < n,
P p ¢

by C(Q) the space of all continuous real valued functions defined



on £, and by Cn(ﬂ) the space of real valued functions with
_continuous derivatives of oxder up to n.'

Denote by $™*9 the class of q-times differentiable
real valued functions which are piecewise polynomials of degree n
in each of the triangular elements T € t. In particular, we will

refer to the elements of 81,0 as Linear splines [F3].

Definition 1.2.2. A subset Z of a linear space X is an gffine

dpace iff Ax; + (1-A)x; € Z whenever x3,x, € Z and A € R.
A function § : X > X is aggine iff
'§[lx1+(ifx)§3] = AE(x31) + (1-A)E(xp) whenever Xxj,Xs € X and

} e R.

-Remaxrk : Every affine function can be written as a linear function
plus a constant C, thus, an affine function is linear iff the

~constant C 1is zero.

1.3 BARYCENTRIC COORDINATES
Let T = AgAjA, be any triangular element in <. Consider

‘the affine space X, generated by the three vertices of T, i.e.

‘Since Ap, A;, A, are not collinear, they are affinely independent,

#and any point P € X can be uniquely represented as

P = EgAp + E1A; + EQA) Eo + E1 + &g =1 (1.3.1)



Denote by Ei’ i =0, 1, 2 the three affine functions
defined by the equation EicAj) = Gi j , where & denotes the

Kronecker delEa function ([F31, CL11). Then, we have
gi(P) = Ei for 1 =0, 1, 2 (1.3.2)

Since the expression (1.3.1) is unique, the point P

can be represented as

P=(gg(P),E1(P),E2(P)) or simply P(£p,&1,82).

We will refer to this as the Barycentric Coordinates of P w.r.t.
the triangle T = ApAjA,.

If P 1is in the interior of T, then we have
0<gj-_<1, i=0, 1,-2. Ai
Geometrically ([S41, [H41),

Ei is the ratio of

Length of PQ ) Area of PAi+1Ai-1 A Q Ai—l
Length of AiQ Area of AiAi+lAi-1
Fig. 1.3.1
Where Q 1is the point of intersection
of the two straight lines A.P and A. A as shown in
1 1+1 1-1

Fig. 1.3.1. For this reason, some authors refer to this as an
Areal Coordinate system. We might also use the term Affine Coor-
dinate system.

We observe that Ei(P) remains unchanged for all P

lying on a line parallel to the side Ai+1Ai—1’ in particular



8114 ) = 0.

Any polynomial of degree n on § can be expressed
uniquely as a homogeneous polynomial of degree n in the Barycen-
tric Coordinates w.r.t. a specific triangle T = AgAjA, in T,
or else as a polynomial of degree n in any two of the coordinates.
For example, the polynomial £g£;&, which vanishes on all three
sides of the triangle T is equivalent to the inhomogeneous poly-
nomial &8, - £12E, - E1E52.

In order to compute the integral of polynomials over
individual triangular element in T, it is convenient to express
the polynomial in terms of Barycentric Coordinates locally. But:
then another problem arises : the same polynomial will have dif-
ferent local expression over each of the triangular elements. This
problem can be solved by establishing the relationships between the
Barycentric Coordinates of a point X € § w.r.t. two different
triangles in T.

Let T, = AgAjA; and T

A B
elements in 1. Suppose (£9,81,82) and (ng,n1,n2) are the

= BpB;B, be any two triangular

Barycentric Coordinates of a point X € @ w.r.t. TA and TB
respectively. It follows from (1.3.1) and (1.3.2) that X «can be

represented as :

X = EgAg + £1A; + E2A5 = ngBp + n1By + n2By (1.3.3)

B. B. B.
Denote by (601,511,521), i =0, 1, 2 the Barycentric



Coordinates of B; W.T.t. Ty-
Then we have

Bi Bi Bi
Bi = Eg Apg + E17A1 + E27Ap i=0,1, 2.

Substituting these into (1.3.3), we have
Bj Bj
X=1gA =Y ga) =1 (g A

i J 1 N

Since the representation of X in terms of Ap, A;, A, 1is unique,

we have

B.
= J 1 =
g, =1 ni€; i=0,1, 2 (1.3.4)
~ .J
It is plain that the transformation ¢&(ng,ni,n2) = (£05&15E2)
described by (1.3.4) is a linear transformation; the map ¢ can

be written in matrix form as :

¢ % EN

Bo B, B,
€o Eo €
- Bp By Bo
By By By
L &2 €2 €2 |
T
no
and ®(ng,n1sn2) = e m
n2

Thus, if f is a function mapping Q into R, then by virtue of

P

(1.3.1) and (1.3.2), there exists a function



F:R3>R s.t.

£(P) = F(E0(P),£1(P),E,(PN)T (1.3.6)

i.e. the function f can be expressed as a function F in terms
of the Barycentric Coordinates of P w.r.t. TA' It follows from
(1.3.4) that the function f can also be expressed as a function

in terms of the Barycentric Coordinates of P w.r.t. TB,as
£(P) = F-2(ng(P),n1(P),n2(P)) 1.3.7)

where ¢ 1is the linear transformation characterized by the matrix
8 given in (1.3.5).

In particular, we are interested to look at the six

matrices &, of the hexagon A + H. A A
j a e ay
As shown in Fig. 1.3.2, let .Tu
T
T. =AA A be the six triangles A J A T3
j Taley e o

of the hexagon Aa+ H. 1If

F(£p,E1582) 1is an expression of

a function f : @ - R in terms of the

Fig. 1.3.2

Barycentric Coordinates w.r.t. T;, then,
F°¢j(£0,£1,£2) is an expression of f in terms of the Barycentric

Coordinates w.r.t. Tj’ The six linear transformation Qj are

given by :
1 0 0
3= 0 1 0
0 0 1

+ This representation F is not unique.



1 0 1

¢ = 0 0 -1
L 0o 1 1
(1 1 2 )

33 = 0 -1 -1

bg = 0 1 1

0 -1 0

\ 4

1.4 DIFFERENTIATION AND INTEGRATION IN BARYCENTRIC COORDINATES
Let T = AgAjA, be a triangle in @. Define the first
order linear differential operator w.r.t. the Barycentric Coordi-

nate &£, [F61 by Di(gi) =0 and Di(g ) = §1 i.e. the counter

it1
clockwise normalized derivative of a function f in the direction
parallel to the opposite side of Ai‘

If f is a function mapping £ into R, and if



F(£0,81,82) 1is an éxpression of f w.r.t. the triangle T, then

we have

oF oF
D.f =2 -2
1 Bii_l a€i+1

(1.4.1)

Let £ and g be two real valued functions defined on

8, If the derivatives Dif and Dig exist, then the operator

Di has the following properties :

1. Di(f+g) = Dif + Dig

2. D;(cf) = cDif for any constant c € R

3 yID.f=0

(1.4.2)

(1.4.3)

The differential operator can be extended to any order

through D%f = D§IDI2D33f, where o = (ig,ip,iz) € N3, "D and

Dg denote the Adentify operatorn. We will denote by

|la| = i; + i, + iz the order of derivative of f.

Define J f duT the normalized Lebesgue integral of £
E

on a measurable subset E of T, s.t. I

T

1 duT =1.

Define I f d“Q the normalized Lebesgue integral of f
E

on a measurable subset E of Q6 s.t. I 1 du52 = 1.
Q
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If Q@ is a bounded polygonal region and 7t is a tri-
angulation of Q, then we have

fidu, = L u c'r)f £ du
JQ @ e 877 T

In particular, if @ is an equilateral triangle of unit
side length and Th is an equilateral triangulation of §, we

have u.(T) = h? for all T e P oile.
Q

f du, = h% ) ffdu
Lz f Wt T

Tet
~
¢ A (0,1)
R
(g,n)
Ai+1 .A
’ C(0,0) A(1,0)
Fig. 1.4.1

As shown in Fig. 1.4.1, the triangle T = AiAi+1Ai-1

can be transformed into the standard triangle A(1,0), B(0,1),

C(0,0) by using the affine function which maps Ai -+ C, Ai+1+ A,

and Ai_1+ B. Thus if f : T + R, then there exists a function

F : ABC » R s.t.
, (1.4.4)
f(P) = F(&,n)

where (£,n) 1is the affine image of the point P ¢ T. The
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Jacobian of this transformation is 2. Thus, the integral I £ duT
T

can also be written as :

1(1-€
J f duT = 2IJ F d&dn = 2[ I F d&dn (1.4.5)
T ABC o’ o

A.
Define j 1 1f(X) dX as the Lebesgue line integral of f along the

fin Ao
line A., A. ., normalized by J 1dX =1.
1+1 1-1 A

1+1

The following lemmas are some important properties of

line and surface integrals :

-Lemma 1.4.1. Let £ : T » R, if Dif -exists on the side Ai+1Ai-1’

A.

- 1-1 ] = -

—then ;J Dif(x) dX fCAi-l) f(Ai+1) (1.4.6)
i+l

Proof : Using the affine transformation to map Ai+1Ai~1 onto

-£0,1]1 through Ai+1+-0 and Ai- -+ 1, then there exists a func-=

1
“tion F : [0,11 - R, s.t. f£(P) = F(t) where 't 1is the affine

-image of P. Thus,

fA. 1

J 1-1p £(x) dx = J F'(t) dt = F(1) - F(0) = £(A. .) - £(A. )

A. 1 0 1-1 1+]1

i+l

A‘-l Ai—l

melAJ.]l gD. £ dX = (gf) (A. )-mﬂm.)-x[ £D.g dX

A 1 1-1 1+1 A 1

i+l i+l
(1.4.7)

“Proof : The result follows from (1.4.3) and Lemma 1.4.1.

A.

Lemma 1.4.3. J D, f duy = 2[ *¥le ax (1.4.8)
“T A,

1-1 1
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Proof : From (1.4.1) and (1.4.5), we have B(0,1)

oF JF
D.f dy., = 2JJ (z— - =) dé&dn
IT i T ABC an 3

[ %
(&,n)
By Green's Theorem [H2], we get

€(0,0) A(1,0)
J Dif duT = -2(§ F dg + § F dn)
T
The symbol § denotes the line integral along the three sides of
the triangle CAB in the counter clockwise direction.
Since £ + n =1 for all point P(g,n) on AB, we have
B B B
J F dg + J F dn = J F d(g+n) = 0
A A A

It follows that

A C A C
-Z(J F dg + J F dg + J F dn + J F dn)

D.f dp
JT D C B C B

A C
~2([ F d& + f F dn)
C B

A
Since I

i+l A Ai C
f dX = I F d& and [ f dX = wf F dn, we get
A

i Ay B

A, Aiap o
I D £ du,, = 2[ ofax - 2[f~3 £ dX.

T A. A,

i-1 i
A

. A.
L fg dx - zJ T*lgg dx - I £D.g du
A T *

i-1 i

Lemma 1.4.4. J gDif»duT = 2[

T A

(1.4.9)
Proof : The result follows from (1.4.3) and Lemma 1.4.3.
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We shall end this section by stating two very useful

formulas of line and surface integrals of polynomials of the form :

S1 S2 33
€1 &2 &3 , .where CH i =1, 2, 3 are three non-negative integers.

-

A. s s
g 1 52 S3

A

-1 _ Si1lss5ls3!
€1 &2 &3 dX = (Sl+52+53+1‘)! Go,Si

i+l

(1.4.10)

Lemma 1.4.5. J

where 6 is the Kronecker delta function.

S1 S2 s3
Proof : If s # 0 then the function £; &, £3 vanishes on the

side Ai+1Ai-1 and hence the right hand side of (1.4.10) vanishes.

If s; = 0, then

1—1gl £, E3 dx = 1-1g 1--1g 1+1 ax

A. ‘A,
i+l 1+1

fA' S} S S3 A. s s

i-1 7i+l
It follows from the affine transformation defined by

Ai+1* 0 and Ai~1+ 1 that

A. S. S. 1 s. S.

i-1,.7i-1,.71i+1 _ i-1 i+l

IA gi‘l Eiy, X = jo t (1-t) dt
i+]

Applying itegration by parts to the above integral, the result

(1.4.10) follows.
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S1 S2 S3

_ Syl!solsg!
Lemma 1.4.6. ITEI Ep &3 de = [s1¥55555+0)1 (1.4.11)

Holand and Bell [H4,p.84] and T. H. Lim [L1,p.24] have presented

a proof of the Lemma.

1.5 THE DEL OPERATOR V AND THE LAPLACIAN OPERATOR A

Suppose £ 1is an open subet of RZ and U is a real
valued function on Q. Let e be a unit vector in 9, then the
derivative of U at a point x € € in the direction e is

defined a5 the limit

=~ _ Lim U(X+ee)-U(X)
DeU(X) = exp = (1.5.1)
when the 1limit exists.

’If U e CI(Q), then there exists a vector function

(Cw1,P.1593, [H3,P.3741)
VU : Q> RZ s.t.
e-VU(X) = BeU(X) (1.5.2)

for all unit vectors e in €. The function VU is called the

gradient of U.
If U e C2(R), then the operator A defined by

AU = V-VU is called the Laplacian operator.

Let X be a point in the triangular element T e Th.

Denote by ei the unit vector in the direction Ai+1Ai p?
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then the vector VU can be written in terms of ei+1 as follows :

W= A8 Y 2%
where Ai+1 "gre to be determined.

It follows from (1.5.2) that

1

KDiﬂU = eiﬂ.vu = Ai+1ei+1'ei11+ }‘i-l ei-1"'ei~_+1 (1.5.3)
Since AiAi+1Ai-1 is an equilateral triangle, we have
1 ifi=j (1.5.4)
% T 14 if i # 3
By substituting (1.5.4) into (1.5.3), we have A.
[ 1 _ 1
RPi+1V = Aie1T Mo
<
A A
1 .1 i+] i-1
i1V T it Ao
\

By solving the above linear equations, we obtain

= 2 ;
Aspr = 3n(0; U+ 2D, 1)

i+l i+l

2
Ay = 305,V + 2D,

1-1 U)

-1

It follows that the gradient operator has a representation of the

2
s * % TERPiat 205)

. _ 2
form : vV = €1 Sh(Di_1+ 2Di i

2
Zht 541 (Pyay= Dy + ey, (D4

i+l - D:'L):I

-1
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- —{614-1 ‘1+1 ei—1Di-1' (ei+1+ ei-1)Di]
Since Ze. = 0, we have a symmetric representation of V as
follow :
= 3%-2 (1.5.5)
i

Lemma 1.5.1. Let U be differentiable in an open subset & of

RZ, then at each point X in  for which VU(X) # 0, the
vector VU(X) points in the direction in which the derivative of
U is numerically greatest, and the number |VU(X)| is equal to

that maximum derivative.

Proof : Let e be a unit vector at a point X in & for which
VU(X) # 0. By equation (1.5.2), we have

DUX) = e-VU(X) = |vu(x)|cose = |vu() | (1.5.6)
where 6 is the angle between the two vectors e and VU(X).
The inequality (1.5.6) is sharp iff

VU (X)

¢ = FUX|

completing the proof.
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Lemma 1.5.2. Let T € rh. If U and V are two differentiable

functions in the triangle T, then

VU-V = ——z Za) u) (0, V). (1.5.7)

Proof : It follows from equation (1.5.5) that
VU.-vy =

_ 4 ] |
= 5L g[eieei(DiU) (D;V) + e;-e,  (DUI(D;, V) +

e;-e; , O, U)@; V)]

= 5oz E[(D D O,V) - 30,0)(,, V+D, V)]
= o JLO.U) (D,V) + 2(D.U) (D, V)]

g—h’[i “i i 2V i
= 2 NUDICAD

Lemma 1.5.3. In every T € rh, the Laplacian operator can be

expressed as :

2
31-;[2 D. (1.5.8)
1

,

Proof : It follows from equation (1.5.5) that
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- = (2 2
b=V-V= (33 geiDi) (3R geiDi)

e.e.D. .+ e.e. D, . +e.-e. ,D. .
g( i 7i7i,1 i 1+1 1,1+]1 1 el-l 1,1-1)

)]

D. . .+ D, .
1,1+] 1,1-1

completing the proof.

1.6 SOBOLEV SPACE HX(%)

Denote by Hk(Q), k = 0 the Sobolev space of real valued
functions which together with their generalized derivatives up to
the kth order are square integrable over £ [T1]. It is a linear

subspace of: L2(Q).

Denote by (u,v) = J uv duQ = _z uQ(T)I uv duT the
Q Tet T

usual scalar product of the Hilbert space L2(Q).

1 o o
Denote by (u,v)k,T = 1a%sk ol IéD u) (D7v) du,

by (u,v) = Z 1 (T) (u,v) , then the Sobolev space Hk(ﬂ)
k,Q Tet Q k,T

is a Hilbert space with the scalar product (u,v)k Q [T1,p.55].

1
The corresponding Sobolev norm will be Ihl”k Q= [(u,v)k 936.
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-2 1
Denote by [ul, ., = {’ % k‘h 2k I (w2 du }?
{ol= T

by Iulk Q ='ﬂ } p2K J 0*u)?2 duQ}z the Sobolev semi-norm of u
? o=k Q

on the triangle T and the domain § Tespectively.

1.7 PEANO-SARD KERNEL THEOREM AND ITS APPLICATION

--Peano-Sand Kernel Theorem : Let © be a bounded polygonal domain.

If E : Hk(Q) -> Hk(Q) can be represented as J kf duQ for some

Q
K € Sn’z(ﬂ), and E(f) = 0 for all f € Pk(ﬁ), then
3 Ky € Sn‘“k”“k(sz), la] = k s.t.
~.
E(f) = ] uQ(T)I ( KaDaf) du (1.7.1)
Tet T |e]=k

A proof of the Theorem was given by P. Frederickson [F6].

In the one dimensional case, we have the trapezoidal
b

~numerical quadrature for the integral I f dx, which is exact for
polynomials of degree < 1, in the two.di:ensional case, we also
\hav; a similar numerical quadrature for the integral I f duT
i.e. %?Z f(Ai), where Ai’ i=0,1, 2 are the threeTvertices
-of the £;iangle T. Clearly, this numerical quadrature 1s exact

for polynomials of degree < 1. By applying the Peano-Sard Kernel

Theorem, we have the following lemma :
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Lemma 1.7.1. If f ¢ H2(Q) and E(f) = I f duT - %{f(Ai) 5
' ‘T i

then E(f) = ZJ Dy ;f dug
i'T ’

. (1.7.2)
where K; = - 12(1 2& *28. 151+1)
Proof : I £ duy - f(A ) = Zf [£-£(A)] dug
T 1 i’T A.
-1 - L -
- 3ng[f £(A)7 0,05, -5, ) duy
A, :
= L 1 1 ; A; Ay
= 3§[2JA. (£-£(A,))5(E;_-E,,,) X iy i-1

1-1

A.
i+1 1 1
ZIA (£-£(A )58, -E;,,) X - fTE{si_l £;,1)D; € dugl
i
Since £i+1 and Ei—l vanish on AielAi and AiAi+1 respective-

ly, we have

1o (A4 Aj
E(f) = —th (£-£(A)) (1-E,) dX + j (£-£(A,)) (1-£,) dX +

31 A A.
1
—z—fTDI(s £, ,,)D; £ dug]
A
= L5l t (e-£(a))D. (5.~ 2£2) ax -
3 A. i 1+1°°1 2°i
1-1
Ai+1(f-f(A D, . (E.- 1£2) dx + & g. .£. D.f dx -
A i i-1%°1 27i A i-1714171
i i-1

A
i+1 : 1

IA 81184 D5 dX - 2IT51-151+1Di;if dup]
i
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]

A, A. g2
1 1 1
A JA (€5= 7904, F dX -

i-1 "Ry

1 1.0
gg[ (£-£(A;) (8- 3ED)

1.2 -
(8- 35900 ,f &X

Ai+1 JA1+1
+
A

. A,
i i

1
(E-£(A)) (8- 5ED)

1
QJT51-151+1Di,if dur]

ive [N 1, Aja
= 3{[°J (€5~ 28)D;,, F dX + J
1 A. A.

1-1 1

1.2
(&;- 3%§)D; ,F dX -

1 D

EIT51-151+1 1,if v

= 41 & (.- 22)(D.£ + D. _£) aX
T, ;- 751 (D i-1 -
i-1

A
iel, 1., 1
JA (85- 257 (O£ + Dy, ) aX - f{TEi—1€i+1Di,if dur]

(1.7.3)

The line integrals in (1.7.3) can be rearranged into the

following form :

B = e[ oo eoyo £ ax e [N, - R’ ypg ax -
) =3 i 27005 i+1” 2-i+) i
1 ‘A, A.
1-1 1
A, A,
it 1., ! -1 -
IA (85- 287)D;F dX IA (B5 1 381,005 F X
i i-1

1
EIT€1-161+1Di,if dur] (1.7.4)
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By expressing Eiil in the line integrals of (1.7.4) in

terms of £i and from Lemma 1.4.3., we obtain

E(f)

b - Lezyo. £ an, - L[ ez g ax -
3R] 01T 20,4 L I B2 TAet
i-1

JA1+1 ) 1
A, (178D dX) - Zngl 1E1+1D1 1f d]'KTJ

i
i 1, 1., 11, 1
- SEJT(fil NI I AT 1€1+1)D’ £ dvg

- y S - 254026, £, D, LF duy
T

-
completing the proof.

Unlike the one dimensional case, the Peano-Sard kernels
for .the linear interpolation error functional are not unique. We
shall derive two different forms of Peano-Sard kernels for the
linear spline interpolation remainder. These kernels will be applied

to the finite element error analysis in Chapter 3.
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Let f : @ » R, then the piecewise linear interpolation

of f on each triangular element T = AjAjA3 is given by
£1(Ag) = Exif(Ai)

where (xj;,Xp,x3) is the Barycentric Coordinates of a point Ag
w.r.t. T.
In order to obtain the kernels of the error functional

E(f,Aq) = f(Ag) - Xxif(Ai), we need the relationships between the
i

Barycentric Coordinates of a point P w.r.t. the triangles T
and T, = AgA. _A. .

i Vi1 i-y
Denote by (£1,£2,&3) the Barycentric Coordinates of P

T. T. T.
w.r.t. T, by (Eil,giil,gizl) the Barycentric Coordinates

of P w.r.t. Ti° Then it follows from (1.3.4) that

Ti
(&5 = &%
Ti Ti
< §i+1 = Ei Xi4* gi+1 (1.7.5)
Ti T1
\ gi-l = gi x1-1+ gi—l

Denote by F(&;,£2,£3) an expression of f w.r.t.

T. T. T. T.
the triangle T, by F 1(511’5ii1’€ii1) an expression of f

w.r.t. the triangle Ti = AOAi+1Ai-1c
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As shown in Fig. 1.7.1, let De f be the normalized
i

derivative of f in the direction AiAo, then from (1.4.1)

we have
T. T.
5F 1 oF T
D f= -
e. T. T.
i+1 5 1 SE 1
Ei i+1
_pE By por %
3 0 j Ti 3 d j Ti
agi 3€i+1
=3 gg D &, (1.7.6)
j j i+l J

By substituting (1.7.5) into (1.7.6), we have

oF aF aF
D f = X, + (x:,,- 1) + z74/—x.
€1 agi i 3§i+1 i+l agi_l i-1
oF oF aF
= X. - (x:+ x;_.) + X
agi i 3€i+1 i 1-1 agi-l i-1

oF oF oF oF
= X. ( - ) + X, - )
198y BBy, A1RE L, 9%,

-xiD. f + x. ,D.f or

= xi(Dif + Di+1f) + xi-lnif or (1.7.7)

-x.D. f - x, (Di—1f + Di+1f)

We observe that, though the representations of F and

T.
i

F are not unique, the final forms of D f are independent

T. i+1
of F and F 1
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Now we have three different expressions to resolve

D f in terms of the derivatives D.f and D, .f 1i.e.
ei i 1t}

i+17i-17 T Ti-17ie (1.7.8)

p, £5¢ iy X400 %+ % D f (1.7.9)
i

_—(xi_1+ xi+1)Di+1f - xi+1Dif (1.7.10)

If f e H2(Q), then the linear spline fI(A0)=inf(Ai)
i
interpolates f in the triangle T, and the error functional
E(f,Ao)=f(Ao)—2Xif(Ai) is exact for polynomials of degree 51,
: ,

by Peano-Saxd Kernel Theorem, there exist kernels Ko s.t.

o
E(f,Aq) = I k D°f du
T |a]=2 ¢ T
The problem is how to construct the kernels Ky

Claim : The kernels Kk, are piecewise constant (functions of

X s i=1, 2, 3 only) and it can be written in the form :

E(f,Ap)

i-1 i+l
EI O3 Dy,50F % % Dy 50 dip

i1, fRo
= J{2¢; [[ D, .f dX - j D. .f dX] +
LT AL i-1 i-1

(1.7.11)
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Rearranging the sums in the equation (1.7.11), we have

i+l

A . . .
0 i 1i-1 1
ZZI (ki 1D5F - K5 D5 F £
1‘Ai

Kig1D3_,f -« D.f) dX

E(f’AO) = i-171

(1.7.12)

From (1.7.9) and (1.7.10), we have

Deif - xi-IDif
D. f =
i-1 X + X
i-1 i+l
. .f
Deif + x1+1D1
Djrf = - x . x
i-1 i+1

Substituting these into (1.7.12), we obtain

i+l

Ao i Ki-1(Deif * xi+1Dif)
E(f,Aq) = 2ZJ [(x; ,- k; ID.f + ' +
A l+.1. 1-1 1 X + X,
1784 i-1 i+1
i-1
101 P £ - %5 105)
= 1 dx
X1t e
i+1 i-1
Ag ( i-1 i+1)De.
= ZXJ [ +
i TR PO RS P
Ki+1 _ Ki-l
RS 1+l 1-1  1-1 3%y, £ ax
1+1 1-1 1
X. + .
1-1 1+1
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We want
( i-1 i+l
Kied ¥ %401 1
T 204
+
< x1—1 x1"'1
Ki+1 Ki-1
i i i+17i-1 i-17i+)
L K; - K 0
i+l i-1 X + x
i-1 i+1
It follows that
i-1 i+] 1
i + k., I = =x.(x. + X.
[ K1+1 K1—1 2x1(x1-1 x1+1)
i i _ i-1 i+l

e L+ X, (k. - ) =X, . - X, . K.
Oy * Xia)) (S50 = %50) = %0050 7 XS
By solving the above system of linear equation for

i=1, 2, 3, we obtain

= 2xx (1.7.13)

Thus, we have

1 1 .
E(f,A0) = ZI< %%, 10 F * 353X Dy, 100 ¥,
i Ti ) i
(1.7.14)
We shall derive the kernel of the same error functional

E(f,Ap) by a different approach and obtain another different

kernel of E(f,Aq).
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E(f,Ag) = £0X) - Jx,£(A)) (1.7.15)

1

Exi(fcx)-f(Ai))

Ag
- in] b, £(5) ds
i A. 71

It follows from (1.7.8) that

Ag
E(f,Aq) = EXiIA (x;,,0;_,F - x;_.D;, £) dX

i

Ag Ag
=§(xixi+1JA Di_lf dx - XX I Diflf dX)

Rearranging the sums of the above line integrals, we have

Ag Ag
E(f,Ag) = in_lxi+1(I D,f dX - f D.£ dX)
i A. A.
1+1 1-1
X. )(._'_1
E(f,Aq) = )(- -i:%—i——-)[ D, ,f du; (1.7.16)
‘ i T. ? i

i
We observe that (1.7.16) can be written in the form

_ 1 1
E(£,h0) = EIT i %P1, 1% T %P, in D d“Ti
i
(1.7.17)
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The kernels of f in (1.7.14) and (1.7.17) are not the
same, so this example shows that the kernéls are not unique.
By equating the equations (1.7.14) and (1.7.17), we obtain

the following identity :

If f e H2(Q), then

EJT D O 0550 8 0 Xy B0 O 50y B dog = 0
i



CHAPTER 2
FINITE ELEMENT SOLUTION TO THE SECOND ORDER ELLIPTIC PROBLEMS
2.1 INTRODUCTION
Consider the second order elliptic boundary value pro-
blem ([S4]1,[A1]1,[B4]), defined in a bounded open domain § with

polygonal boundary 3Q by
Lu
u

This differential equation arises in a variety of physi-

-V (pVu) + qu = £ in @ (2.1.1)

g on 90 (2.1.2)

cal contexts, for example, the equation (2.1.1) is satisfied by
the transverse deflection u(X) of a membrane under uniform late-
ral tension T, which supports a load of Tf(X) per unit area.
Under the assumptions p, q are smooth functions and
P 2 Ppin ~ 0

in @, (2.1.3)
q=0

the differential operator L = -V°pV + q is a 1-1 continuous
linear operator ([S3],[T1]) mapping Hé(ﬁ) onto HO(Q), where

Hé(ﬂ) is the solution space defined by

Hé(Q) = {u e H2(Q) : u=g on aQ} .

30
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In general, if g # 0, then Hé(ﬂ) is not a linear
space, but an affine subspace of H2(Q) .
In particular, if p=1 and q = 0, the equation

(2.1.1) reduces to the Poisson equation

-Au = f (2.1.4)

2.2 THE VARIATIONAL FORM OF THE PROBLEM

The problem of solving a boundary value problem often
turns out to be equivalent to the problem of minimizing a certain
quadratic fynctional ([B41,[A1]) .

The quadratic functional related to the linear equation

(2.1.1) is given by
I(v) = I (pVv Vv + qv? - 2fv) dug (2.1.5)
Q
The solution of the differential problem Lu = f is
.expected to coincide with the function u that minimizes I.
Since the integral (2.1.5) involves no second derivatives, the

class of functions over which the integral I(v) is to be mini-

mized is enlarged to the space of admissible functions defined by

Hé(g) ={ueHl(@Q :u=g con 9%}

We observe that the admissible space Hé(Q) is an
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affine space, and can be written as. Hé(@) + g, where Hé(ﬂ)
denotes the linear suspace {u ¢ HI(Q) tu=0 on 3N}

Befpre we proceed further, the first step is to check
that a solution u to the differential problem does minimize
I(v).

Let u be an admissible function of the integral I(v),
and v be any function in Hg(ﬁ). For every e in R, the

function u+ev 1is still an admissible function of I(V) and we

have
I(utev) = I [pV(u+tev) *V(u+ev)+q(u+tev)2-2f (utev) ] duQ
Q
= I (pVu- Vu+qu2-2fu) du +2e[ (pVu-vv+quv-£fv) dp_ +
Q Q Q Q
ezJ (pVv-Vv+qv2) du
f
Q
It follows that
difurev) 2| (pVu-Vv+quv-£fv) dp.+2e (va-Vv+qv2) du
de Q Q Q Q2

and

d?I(u+ev) _ ,

(va-VV+qv2) dup
de? [Q &
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1
Since p >0, q=20 and Vv'W 2 0 for all v e Hy(Q)
we have

d21(u+ev)
de?

1
0 ¥V v in Hy(®)

Thus, an admissible function u minimizes I(v) iff
the first variation

dI(u+ev)
de

€=0

1
vanishes for all v in Hy(R), that is, if and only if

~.

J (pVu-: VW+quv-£fv) du9 =0 (2.1.6)
Q

By Green's Theorem ([W1,p.3461,[H2]) equation (2.1.6) is
equi#alent to

on

J [-V- (pVu)+qu-£lv dus2 —I EEV ds = 0 (2.1.7)
ey 7230

where %%- is the outward normal derivative of u on 3Q.

1 .
Since v e Hy(R), the line integral of (2.1.7) vanishes

‘and we have

I [-V: (pVu)+qu-£flv duQ =0 (2.1.8)
Q



34

1
This holds for all v e Hy(Q) iff
-Ve(pVu) + qu = £

Thus, the elliptic equation (2.1.1) turns out to be the Euler equation
for the problem of minimizing the integral I(v). Also, the second

d21 (u+ev)

is positive unless v 1is constant, which
de? €=0

variation

implies by the boundary condition, that v vanishes identically.
Thus u will be the unique function which minimizes the quadratic

function (2.1.5).

2.3 ENERGY INNER PRODUCT

1 1
Define a bilinear expression on Hy(R)xHg(R) by

a(u,v) = J (pVu+Vv+quv) duQ (2.3.1)
f

It is easy to check that a(e,¢) has the following pro-

perties :

(1)  a(uitup,v) = a(u;,v) + a(up,v)
(ii) a(u,v) = a(v,u)

(iii) a(iu,v) = ara(u,v) for all A € R

v

1
(iv) a(u,u) 0 for all u e Hy(Q)

) a(u,u) 0 iff u=20
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Thus a(-,- is an inner product on the space
1 1
Ho (Q)xHy (). This inner product is referred to as the energy inner
>
product, and the norm defined by |lull, = [a(u,u)1* will be referred

-

to as the energy norm. In particular, if p =1, q = 0, the corres-

ppnding energy norm will be denoted by |luf|, .
Theorem 2.3.1. The energy norm Hu[L is equivalent to the Sobolev
norm ”u]h,g )

The Theorem is proved by the following two lemmas.

Lemma 2.3.1. There is a constant p > 0. Such that

lull, = ellully, o

Proof : From Lemma 1.5.2. we have
VueVu = —Zz{(D u)2
3h ] i

It follows that

a(u,u) = § uQ(T)I Ep(—s—}zly)Z(ﬁiu)hquzJ du
Tet T =
<! uQ(T)max(%ﬁ‘l,ch))jT(lez(oiu)2+u2) dug
1

Teth Xefd

= max (22X qe0) [lul
XeQ g
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Since p 2z p in 0 and q 20 in &, we have

mi

nax (2 ,q(0) > 0

' L
Letting p = [max(2 gx),q(X))]2 , we get
Xef

1
“u||a==[a(u,u)]2 < p”u“l’Q ,

completing the proof.

Lemma 2.3.2. There is a constant o > 0. Such that

ollull, o= llull

Proof : a(u,w) = I up(D | peZromeauy au;
T i
Tet

. 2p(X) 1
> min(E2) § w (T)I =7} (D, u)? du
Xe@ > Terh @7 ph"yd T

By the Poincaré inequality ([S41, [P1]), there is a con-

stant o > 0, such that

~

1
f Vue+Vu dug > UJ u? du for all u € Hy(R)
Q Q &

Since p 2 Ppin ~ O in ©, we have

' 1
g = {% min (&, min(gE—(—K)—-])]2 >0
3
Xef
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It follows that

llull, = Cacu,wi®

3

[\

of } u(T)J
hQ

1 2.9 5
(Ezg(Diu) +u“<) duT]
Tex

T

ollull, g

completing the proof.

2.4 THE RITZ-GALERKIN METHOD

Consider the equation
Lu = £ (2.4.1)

Assume (2.4.1) has a solution in the Hilbert space H
with the inner product (°*,°). If L 1is linear, symmetric and
positive definite. Then as we have discussed in the last section,
solving of (2.4.1) is equivalent to minimization of the quadratic
functional

I(v) = (Lv,v) - 2(f,v) (2.4.2)

over an admissible space HB.
The Ritz method ([S31, [P1], [B6], [Al]) is to replace
HB by a finite dimensional subspace Sh contained in HB. The

elements vh of Sh are called trial functions. If ¢i’

. . h
i=1,"*,n are the n basis elements of S, then every member
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of Sh can be written as

(2.4.3)

<
=3
i
I~
>
-

By substituting (2.4.3) into I(vh) and letting the derivatives

5%- be zero for i =1, 2,---, n. The Ritz method turns out to be
i

the solution of a system of linear equations of the form

n
,Z_lxj(wj,q»i) = (£,9;) for i=1, 2, «--, n (2.4.4)
J:

Since the linear operator L is symmetric and positive
definite, the solution of (2.4.4) exists and is unique.

The main weakness of the Ritz method is the fact that it
is applicable only to equations with symmetric and positive defi-
nite linear operators. Another method, called the Galerkin method
is free from this constraint. We shall describe this method with
an example of solving the equation (2.4.1).

An element u e¢ H is called a weak (or ‘generalized')

solution of the problem (2.4.1) if
(Lu,v) = (£,v) for all v e H

The Galerkin approximation to the problem Lu = f is
to seek a weak solution in a finite dimensional subspace Sh of
H ([s41,(P1]1,(B4]1,[M1]). Thus, if $;5 i=1,--+, n are the n

basis elements of Sh, it is sufficient to find uh € Sh, such
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that

(La6,) = (£,4,) for all i=1, 2,-, n . (2.4.5)

It is easy to check that for a linear, symmetric and
positive definite operator L, the two systems of equations
(2.4.4) and (2.4.5) are identical. Thus the Galerkin method is a
generalization of the Ritz method.

The linear operator L = -VepV + q defined in (2.1.1)
is linear and symmetric. As we have proved in Section 2:2, the
inner product (Lu,v) 1is the same as the energy inner product
a(u,v), and from the result of Lemma 2.3.2. we know that L is
positive definite. Thus, for this linear operator L, the Ritz
method and the Galerkin method are equivalent, we shall refer to it
as the Ritz-Galerkin method.

Denote by s" 4 finite dimensional subspace of H1(Q),
and by {¢i}2=1 the n basis elements of S".

The Ritz-Galerkin solution to the problem (2.1.1) thus

requires only the solution of the system of linear equations :
| ovu"vo,+qu.) an, =| £o. au (2.4.6)
lg i i 2 Jgq ie o

for i=1, 2,:-+, n ,

n

where u =g+ ) Aé, (2.4.7)
i=1 * %
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2.5 RITZ-GALERKIN METHOD WITH TRIANGULAR LINEAR ELEMENTS

Given an equilateral triangulation Th of @, the
simplest andfqpst basic of all trial functions is the triangular
linear elements. The trial function is linear inside each tri-
angle and continuous across each edge ([S4],[P1],[C3]). Denote

150
by Sg the affine subspace define by

1,0 150
Sg ={pe8S : ¢=g on 3}

For every element Xa of éh’ let ¢a be the trial
function which equals 1 at Xa and zero at all other nodes.

“Then these pyramid functions ¢a form a basis for the trial space

150 10
S . The dimension of Sg’ equals to the number of elements in

8,

Denote by (Ea’ge’gy) the Barycentric Coordinates of a

i .T.t. i T=X X X .

point X w.r.t. the triangle o‘)(B Y
The basis function

.¢a(x) can be expressed as

£ if X e X+ H
o o
6, () =

0 otherwise

Fig. 2.5.1
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To construct the Ritz-Galerkin approximation with tri-

angular elements, we need the following Lemma.

-

g (T) -1 %f |a-8|=1
Lemma 2.5.1. IQV¢Q.V¢B d“g = _—_STIT 6 if a=B
0 otherwise
(2.5.1)

Proof :

As shown in the above figure, let T=AaABAY be a tri-

angle of the hexagon Aa+ H, then we have

¢a - Ea
and

1 if (0,8) € {(a,7),(v,8),(8,0)}
D ¢ -1 if (0,B) ¢ {(2,B),(B,Y),(y,)}

0 otherwise
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From Lemma 1.5.2., we get

LZV%'V% dug = £ (D f 22 T(04,) (0 05) dig

Te T T o}
(2w (T)| 25(-1) 4 if |a-g|=1
Ya 7% Ly =
= < 6u (T 25(2) d if a=8
. uQ T3h uT it a=
L 0 -otherwise
-1 if |a-B|=1
3hZ
0 otherwise

completing the proof.

To construct the Ritz-Galerkin solution of (2.1.1) with
the boundary condition u =g on 23R, it is convenient to ex-

PP . h .
press the minimizing function u in terms of ¢a as

h _
u = gr A0 (2.5.2)
*“*h
We observe that only those interior parameters Aq in
the equation (2.5.2) are to be determined. For those nodes which

lie on the boundary 39,

A, S g(Xa}
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By substituting the equation (2.5.2) into (2.4.6), we

have

LA J (PV¢_<%d,+ q¢ ¢.) du, = J f¢ du (2.5.3)
BGThBSZ o B8 a'B Q q ¢ 9]

for o ¢ %h

It follows from Lemma 2.5.1 that the system of linear

equations (2.5.3) becomes

ZAABLa’B =,J £, dug for a e T, (2.5.4)
Bel Q
h
where
r [- 25000 + ¢ 4,a(01du,  if |a-8=1
T 3n2P a?p Mo
uT
a B
where Ta and TB are the two triangular elements in Th
L _ < having the common side XaXB
a,B
4 2 £ =
I [gﬁzp(X) + ¢aq(X)] duQ if o=B
Xa+ H

In particular, if p=1 and q 1is a constant,

then
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f

4 .
(-3h2 + Dug(D if |a-g|=1
8 .
L GE nmif s
0 otherwise

Expressed diagrammatically, the discrete linear operator
Lh associated with the continuous operator L = -A + q has a

representation of the form :

3h2 h |
4uq (T)

If q=0, L becomes the Laplacian operator -4, The
associated discrete Laplacian operator Lh has a representation

of the form :
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(2.5.6)

2.6 NUMERICAL QUADRATURE FORMULAS

For arbitary p, q and £, the integrals in the expre-
ssion (2.5.3) cannot be computed exactly, and some numerical qua-
drature will be necessary to approximate these integrals.

In this section, we shall derive some numerical quadra-

ture formulas for the following four types of integrals :

(1) Fa j f¢a dus2
Q
o

(i) Q= [ 992 dug
1)

(iii) P = I p du
a,B T uT Q
o B
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(iv) Qa,B = an¢a¢8 du,

The“corresponding numerical quadrature will be denoted

by F, Q, Pa,B and Qa,B respectively.

We observe that the integrals Fa and Qa have support
over the hexagon Xa + H. The simplest numerical quadrature is
the 1-point formula, that is, Fa and Qa are approximated by
af(xa) and bq(xa) respectively, where a and b are two con-
stants to be determined.

To obtain the values of a and b, we may require that

they be exact for constants f and q, that is

{ F

1}
(=]

Jg¢a d“n - a
b,

[

I
o

2 - =
Jg¢“ duﬂ b

It follows that

a= Jﬂ¢a dug = 6uQ(T)JT€a dup = 2u,(T)

= P 2 = 2 =
and b Jg¢a dug 6uQ(T)JTEa duT 1o (T)

By the symmetric form of the integrals J f¢a duQ and
Q
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J q¢§ dug, it is easy to verify that the two numerical quadra-
9}
tures Fa = ZuQ(T)f(Xa) and Qa = uQ(T)q(Xa) are exact for all
polynomiaIS'of degree 1.

To obtain numerical quardrature with higher order of

accuracy, we require the following Lemma :

Lemma 2.6.1. Let ¢ be a quadratic polynomial which takes the

value 1 along the edges X X and X X and vanishes along
g Q1 a3 Qy

the line X_ X of the hexagon X + H. Then
Qs ag o

Ho (T)
(1) f v, dug = —3
Q

- ) ) Hg (T)
(11) ng¢a dug - 9

X X
asg oy
Ty
Ts T3
X
xas Xa3
Te T,
T
X X

o) a2
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Proof : Denote the Barycentric Coordinates of a point X «¢ Xa + H

w.r.t. the triangle T. = XaXa Xa by (&,n,k). Then the poly-
? i “in
nomial ¢ can be represented in terms of the Barycentric Coordi-

nates of X w.r.t. the triangle T1 = XaXa Xa as Y(g,n,k) = n?

1 2
It follows from the transformation matrix we have deve-
loped in Section 1.3 that the local expression of ¢(X) w.r.t. the

six triangles Tj are as follow :

k2 in T, and Ts
P(E,n,k) = 9 n? + 2nk + «? in T3 and Teg
n? in T; and Ty

It follows that

fﬂw¢a dug = 4uQ(T)JT€(n2 + k2 + k) du,

2121 2121 21
g (M G5+ =57 + 27

1o (T)
3

]

Similarly, we have

: u, (T)
JQ¢¢§ dug = 4uQ(T)JT£2(n2 + k2 + nk) dup = %

completing the proof.
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From the result of Lemma 2.6.1., we observe that the two

numerical quadratures Fa = ZuQ(T) and Qa uQ(T) are not exact
for all polynomials of degree 2.

Another numerical quadrature for Fa and Qa exact for
polynomials of higher degree can be derived as follows :

Assume the numerical quadrature for Fa has the form :

af(xs) if a=8
F‘a(xs) = bE(Xp) if |a-8|=1
0 otherwise

-~

Since Fa has two parameters a and b to be
determined, and the one parameter numerical quadrature is exact
for all polynomials of degree 1, we may require the 7-point formu-
la to be exact for all polynomials of degree 2.

If this is the case, we should have Fa - Fa = 0 for
f equal to 1, and the quadrature polynomial ¢ as defined in

Lemma 2.6.1., that is
I9¢a dus2 -a-6b=0 (2.6.1)

I9w¢a duQ - 4b =0
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It follows from the result of Lemma 2.6.1. that

g (T)
12

b =

13

By substituting this into (2.6.1), we have

3
a-= EuQ(,T)

Expressed diagrammatically, the 7-point numerical qua-

drature can be represented as

(2.6.2)

S; S, S
The set BY = { 3 ln 2,73

T : s, are non-negative integers
1

and Zsi =n } form a basis for all homogeneous polynomials of degree
i

n on T;, and these polynomials can be extended to §© in a consis-

tent way. It is not hard to verify that the 7-point formula for Fa
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is exact for all polynomials in B%l. Since elements of B%l, B%l

are all odd functions, by the symmetric form of the integral Fa

~

and the numerical quadrature Fa’ the 7-point numerical quadrature
13

ﬁa is exact for all polynomials in B%l and B%l. Thus the 7-point
formula Ea is exact for all polynomials of degree < 3.
Similarly, the 7-point numerical quadrature for Qa can

be obtained by solving the following system of linear equations :

.
2 - - =
I ¢ duQ a 6b 0

2 - =
Iﬂxp(pa dug 4b =0

~

and this reduces to

% '
(M) -~ .
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It is easy to verify that the 7-point formula Qa is

consistent i.e. Q - Qa= 0 for all q e P?(Q), by applying the

symmetry arguments, we conclude that Qa is exact for all poly-
nomials of degree < 3.

If we return our attention to the integrals P duQ
B8

and qu%(bB dug, we observe that Qa,B has support over the two

JZT uT
o

adjacent triangles Ta and TB’ and for the integral Pa 8 we
. 3
only have to integrate p over the triangles Ta and TB’
The simplest numerical quadrature for Qa 8 is the
2

following 2-point formula

aq(Xy) if Y=o or B
0 4 = <
QG,B(XY)
0 elsewhere
To determine a, we may require Qa,s - Qa,B = 0 for

q =1, that is
J9¢a¢6 duQ -2a=20
this reduces to

g (T)
12

a =
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It is easy to check that the 2-point formula for Qa 8
>
is exact for all polynomials of degree < 1.

Sim%larly, the 2-point formula for the integral Pa

»B
is
uQ(T) if y=a or B
P (X)) =
a,B( Y)
0 elsewhere
It is easy to verify that the 2-point formula ﬁa 8 is

exact for all polynomials of degree < 1.

Numerical quadrature for Pa and Qa 8 exact for
2

B
polynomials of higher degree can be obtained by putting weights at

several points on the triangles Ta and TB (see T. H. Lim [L1]).



CHAPTER 3

ERROR ANALYSIS

3.1 INTRODUCTION
Error bounds for the finite element method for elliptic
boundary value problems are frequently of the form

llu—uh

I, = khSHu[lk,Q , where k is a constant independent
of h, the mesh parameter. In this chapter, we apply a triangular
version of the Peano-Sard Kernel Theorem, proved by Frederickson
[F6], to construct some kernels for the error functions u-ug and
Di(u—uI) £; the Barycentric Coordinates system. Error bounds

are computed from these kernels and applied to the finite element
analysis of elliptic boundary value problems, to obtain an upper
bound for the constant k. The expression of norms in the inter-
polation error bounds are simplified by an application of the
generalized Hardy inequality proved by P. Frederickson and W.

g

Eames [F5], to the norm of the form where

L2 (1)’

llulhl(Ti)
Ti is a sub-triangle of T.

Barnhill and Gregory ([B1],[B2]) have applied the Sard
Kernel Theorem in the rectangular coordinate system to obtain an
error bound for the constant k, but their computation involves line
integrals and is more complicated than the results we have obtained.

In Section 3.4, Peano-Sard Kernels for the 1-point and

54
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7-point numerical quadratures are derived, and the error bounds
for these numerical quadratures are estimated. The quadrature
errors introduced by computing ﬁh rather than uh are also

discussed in this section.

3.2 ERROR BOUNDS FOR INTERPOLATION ON TRIANGLES
Denote by E(u,X) = u(X) - uI(X) the error of u at
X € 2, where ug is an interpolant of wu. In particular, if

u. 1is a piecewise linear interpolation of u, then we have the

I

following Theorem.
~.

Theorem 3.2.1 If u e H2(Q), then

h?
“ B(u,°)”l_ Z(Q) S.;;—glulz!g (3.2.1)

To prove the Theorem, we need some auxiliary lemmas and

the following generalized Hardy inequality.

Generalized Hardy Inequality : For any u ¢ P, P > 1, define

u(8)dp(5)
J, 2

$ by o(X) = X ;, where T 1is the triangle ApgAjAp

HT(Tx)

and Ty is the triangle XAjA,.
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Then ¢ ¢ Lp(T), and
2
” ¢ ”LP(T) < i)'% ”u”Lp(T),

A proof of the inequality has been given by Frederickson

and Eames [F5].

Lemma 3.2.1. If the error functional E(u,X) is expressed in

terms of the kernels in equation (1.7.14) as

1 4
E(u,X) - § j I:2 1x1+1 i,i-1 u(s) + 2 iti- 101 1+1u(§)]duTi(§)

(3.2.2)
then
'”E(U,o)”LZ(T) 2(" i,i-1 ”LZ(T) ” i i+1u”L2(T))
(3.2.3)

. Proof : Since uT(Ti) = Xy, the equation (3.2.2) can be written

as

E(u,X) = g IT[Ki,i 1(§)D i- 1u(§) + Kl 1+1(§)D1 1+1u(§)]duT(§)
(3.2.4)

where

N =
tad

ix1 if § € 'I‘i
Ki,in(8) = )
0 otherwise
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By applying the triangle inequality and the Cauchy-Schwarz

inequality to the equation (3.2.4), we have

|E(u,X)| < g (IIKi,i—lllLZ(T)Ilni,i-lldle(T) +
(3.2.5)

[les 1+11IL2(T) Io i, 1+1u|lL2(T)

Since the kernels Ky i+1(X) vanish outside the triangle
,it

T., we have
1
,
s 5y hi2 ony = ITKi,itl(x)d“T(x)

1 2
4 izl

uT( -)

i
>'<
”

Substituting this into (3.2.5), followed by taking the
‘L2 norm of E(u,X) over T, together with the application of

the triangle inequality and the Cauchy-Schwarz inequality, we get

”E (u, )” Lz(T) < z [(J“ i+l 1d“T(x))li“D1 i- lu”L2(T)

1 Y
(IZ«%_lxiduT(X)) IlD 1+1uan D
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1 .
= "/'1_;_(')" g(“Di,i—lu”LZ(T) + ”’D',i+lu”L2(T))

completing the proof.

Lemma 3.2.2. If the error function E(u,X) is expressed in terms

of the kernels in equation (1.7.16) as

E(u,X) = ) J (——é—xi_lxi+1)Di ;u(8) dus (5) (3.2.6)
i Ti 2 i
then
2
I‘L].E(u:°)“1_ Z(T) s % g”ni,iu”LZCT) (3.2.7)

Proof : It follows from (3.2.6) that

1
|Eu,X)| =< § Fio1 %500 05 ully L(t,)

By taking the L2 norm of E(u,X) over the triangle
T, .together with the application of the triangle inequality and

the Cauchy-Schwarz inequality, we have

”E (u,-)“Lz(T) < E(IT—})(%_IX?U_I duT(X))’/z” ”Di,iu'”Ll(Ti) “LZ (T)

=/_1__Z lIIDi,i““Ll(Ti)“LZ(T)

360 1
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Applying the generalized Hardy inequality to the norm

L2(T) we have

” ”Di,iu ”Ll (Ti)

2
“ E(u,-) ”LZ ) s X ” Dl iu||L2(T)
completing the proof.

Remark: The reader may wonder why we use two different techniques

to prove the Lemma 3.2.1 and Lemma 3.2.2, This is because the

L? norm of the kernal «k, . in (3.2.6) is
™ 1’1
kg sz = o x;*
i,il2(m) © 2%i-1%iq%

1
’2

=X does not exists. Thus we can-
2 i-1 1+1 i

and the L? norm of

not apply the Cauchy-Schwarz inequality to obtain a L2 error
bound for E(u,X).
However, the technique for proving the Lemma 3.2.2 can

be applied to Lemma 3.2.1., but the result will be

| ECu, - )“LZ (m = /_(Tz (|| i,i- 1ul|L2(T) ”Dl 1.,.1““1_2(1‘))

that is, a larger error bound is obtained.

Since the kernels for the error functional E(u,X) are
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not unique, as we have proved in Lemma 3.2.1 and Lemma 3.2.2,
different kernels may end up with a different upper error bound.
Now we shall combine the results of Lemma 3.2.1 and Lemma 3.2.2

to prove the Theorem 3.2.1.

Proof of Theorem 3.2.1.

It follows from the inequality (3.2.3) that

A

2 | )
120||E(u, ')“L?' (T) []._Z(”Di,iqu”l.z(T)“ ”Di,i-f-luan(T))]

A

2. 2 2
12(”D01 u”L2 (T)+ ”Dlz u”LZ (T +”D20 u” LZ(T))

From (3.2.7) we have

A

2 2
'42—5” E(u,‘) ”L2 (T) (EHDi,iu”LZ(T))Z <3 g”Di,iu”LZ(T)

The above two inequalities follow from the fact that

n n :
(f a.)2<nj) a? for all a, e R.
PR ¢ PRal | i
i=] 1=1

It follows that

2 2
(0L e, Il 2 gy TaLz”Dau“ Lo = b Il
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this reduces to

2 L
HEQ, )l j20g) = 2 po(IE@, I 2407
Tet

2 2 1
s (] wgmlul, p*

Vl?.STeTh

h2
- 22

/75 28

completing the proof.
N
To obtain an error bound for the energy norm

||u-u1[]A, we have the following Theorem.

Theorem 3.2.2. If u e H3(Q) and u; is a piecewise linear

interpolation to u, then

763.%
lw-uplly = Goge) “mllull, g

for sufficiently small h (|h|s1).

To prove the Theorem, we need the following two lemmas.

Lemma 3.2.1, If ue H2(Q) and u, is a piecewise linear

I
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interpolation of wu, then the error of the derivative

DiE(u,X) = Di(u(X)-uI(X)), XeT-= AiAi+lAi-1 has a representation

of the form

X T,
-1 i - -
(a) DE(u,X) = ZJA 5. '0x;Dy,  ju($)-x;, D ;u(6)] ds
i-1
1 i+1 Ty
Efx 8, [xiDi_l’iu(§)-xi_lDi’iu[§)] ds +
1
ZJT[xi(Di+1,iu(§)—Di—1,iu(g))—[xi+1-xi~1)Di,iu(§)]d“Ti(g)

1

where §‘l is the first Barycentric Coordinate of § w.r.t.
i

. = XA. _A.
i i+17i-1
(b) 1In addition to that, if u e H3(Q), then D,E(u,X) can be

represented in terms of surface integrals of derivatives up to

order 3 as

_ 1 :
DiE(u,X) = 2JT [xi(Di+1’iu(§)-Di_1’iu(§))—(xi+1—xi_1)Di,iu(§) -
1
58 (x20  u(8)-x.x, D «8)-x. x.D u(s) +
i io012 iTi+171-1,1,1 i-1747i+1,1i,1

xi-lxi+1Di,i,iu(§))]d“Ti(g)
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T. 1.
Proof : Denote by Diil° and Difl° the two normalized

derivatives D « and D . respectively.
A. XA.
1-1,X i+1

13

Then

D;E(u,X) = D,[u(X) - § xju(Aj)J

= Diu(X) - [u(Ai-l) - u(Ai+ )1

1

X T; Ta:
_ 1 1 i
= E{j Di+1(§i Diu(§)) ds -

i-1

A
A - T T 1-1
i+1_ i i
J Di_l(’éi Diu(§)) ds] - JA Diu(§) ds
i+l

X T: T A. T. T.
_1 i ti 17i+1, i1 _
J §i Di+1(Diu(§))d§ - fo §i Di_l(Diu(§)) ds

X Ai+

D,u(s) ds) + %{jx 'D,u(s) ds -

As
%{J 1p u(s) ds - J

1 A
i+l i-1

A
f 1- D.u(§) ds)

A,
1+]



64

X Ts T A, T: T
i 174+ 44 i
J 5.°D,,,(D,u(8)) ds - Efx 5,°D; 7 (Du(8)) ds -

1 T3 1 Ti
z{ Di_JDiU(§)) dup (8) + ZJ Di+i(Diu(§)) dup (8)
T. 1 T. i
i i
(3.2.8)
From (1.7.7) we have
T
+1(D u(g)) = x. D1+1 i (§)- ) i,iu(§) (3.2.9)
substituting this into (3.2.8), we obtain
X T
DiE(u,X) = EJA §i (xiDi+l,iu(§)-xi+1 i, 1u(§)) ds -
i-1
A, T
10 i+7. 41 _
ifx §i (x 1 i-1, 1u( )-x i-1 i 1u(§)) ds
1

.u(8)) duT (8) +

ZJT (x3D5 4,108 -%5 D5 5

ZIT (%305, 348 -x;, D 5u(8)) d”T (5)
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1ix T
= E-A §i (xiDi+l,iu(§)-x +1 i 1u(§)) ds -
i-1
A, T
1/i+1 %1
ZJX 8 (%305 1,i" u(8)-x;_,D i, U(8)) ds +
1
ZJT [x. (D1+1 1u(§) -D; u(§)) ( 1-1) i,iucg)]duTi(§)
i
We have proved the part (a).
. T, -
Since § i vanishes on the side A1+1A1 .0 it follows
from (3.2.8) that
1 (X T T A, T1 T,
D.E(u,X) = [ 5.7 (D. u(§)) ds - §, (D u(§))d§] -
i 2 i 1+1 i
A, A,
1-1 1+1
A, T: T A, T, T.
1 iv t17d j-1_ i 1
E{j §,D;_,(D;u(s)) ds - f 5, Di_l(Diu(§)) ds] +
X A.
1+1]
Y o 0w, (0.u()] dup ()
4)r it Vi i-1vi Ti ’
i

If uce Ha(ﬂ), then by Lemma 1.4.3, we get
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D.E(u,X) = -~ p.i (5.0, 5 (D.u(8))] du,. (s
) I D,y (0;u(8) hp (8) -
i
T LT
o p,} st ()] iy () +
i

1 T T
_fT Louenot o OO

. T, T, T, T,
= ijT [D;,, (0;u(8))-D;7 (@u(8))-5."p,

i

T,
(D33, (D;u(5))) Juy_(5)

(3.2.10)

From (3.2.9), we have

Di-l[Di+;(Diu(§))] = Di-l(xl i+1, it u(s)- X1+1 i, e u(8))
= x2p -
- 1 012u(§] X3 1+1D1 1,1, 1u(§) xi-1x1D1+1 i,i u(s)+
X5 1%54104,5,:905)
substituting this into (3.2.10), we get
1
DiE(u,X) = EJT [xi(Di+l’iu(§)—Di_1’iu(§))—(xi+1—xi_1)Di,iu(§) -
i
T3 ’
§i (x10012u(§) X. x1+lD1 1,1, ;U u(s)-x o1 101+1 i, 1u(§) +

xl 1 1+1D1 i, 1u(§))] duT (5)

completing the proof.
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Lemma 3.2.2 If u e H3(Q) and Uy is a piecewise linear

interpolation of wu, then

1

“ Di(u"uI)&”LZ (T) s E(lleﬁl,iu”Lz (T)+”Di-l,iu”l.2 (T)) +

L |ip, . ul +
o 012 "L 2(T)

1 |
—;;O—(HDi-l,i,iu”Lz(T)*' |!Di+1,i,iu”L2(T)) +

2

2
/6_“ Di,iu” LZ(T)+ @T)-” Di,i,iu“ LZ(T)

(3.2.11)
Proof: From Lemma 3.2.1. we have
: 1 T3
P; (u®)-u X)) = EJTXTi(g) (D4y,2(8)-D5 ;51 (8)-8;7(x;D010u(8) -
X301P5-1,1, 190 %5 (D5 5,40 080)) dug(8) -
I rx. ,-x. D u(§)+§Tix x. D (5)7 du. (5)
I T e R i %i-1%i4171,1,1" b1,
i

where X denotes the characteristic function of Ti'
i

By applying the triangle inequality and the Cauchy-Schwarz inequality

to the above equation, we have
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1L
|Di(u-u1)l < 5';(||Di+1,iu|‘L2 Cr)+” Di-—l,iu”/-2 m "

X. X5
i 1+1
o O L SRR T
X1 1
+ =X, -X, D, ¥
I uHI_z(T)) 7% % 1l 1’1UIIL1(Ti)

V i+y,i,1
1
5*1-1xi+1"01,i,iu” Ll(Ti)

by taking the L2 norm of D, (u-u;) over the triangle T, together
with the application of the triangle inequality and the Cauchy-Schwarz

inequality, we obtain

1

“ Di(u"ul) ”L 2(T) < '}1—_5‘(” Di.,, 1.,iu“ LZ(T)"'“ D,

1,182 (o)

1 1 :
———I|| D ——(|| D. .. +
/m” 012u” LZ(T)+ _7___20(” 1-1,1,1u”L2(T)

1 .
1250y, 2y * 25l WPl [l -

Ao, 5 ull el
/560 i,i,i Ll(Ti) L2(T)

applying the Generalized Hardy inequality to the norm

s we have

el
LA 2y
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” Di(u-ul) “L‘?(T) s %(“ Di+1,iu”‘.2_ (T)+“ Di-l,iu”LZ(T)) +

1 1
%llDOIZUI-lLZ(T)+ %(” Di—l,i,iu” LZ(T)

+

| Di,,l,i,iU“Lz (T)) + ’é’“ Di,iu“ LZ(T)+

2

il P10l 20y

completing the proof.

Proof of Theorem 3.2.2.

2
laugll = 3 uom| 25 5o, (aup1 dg
TeTh T 3h" 1

216 (T) )
=] D Tl g 1D Cw-upd 112 2 q,y (3.2.12)
Tet

By applying the Cauchy-Schwarz inequality to the right

hand side of the inequality (3.2.11), we get
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1Dy wup) [ly2qy < (6 'é "8 172072076 " 90) 2 I|D1+lu“L2(T)

1 2 2 1 2
2105 yully2 gy + 105 sullj2 gy * 3lIPg o0l 2.0y +

2
”Di+1,i,iu”L2(T) * “Di-l,i,iu”Lz(T) *
2 1
2
”Di,i,iu“Lz(T))

It follows that

763{”D

Z”D (u-u )”LZ(T)_ 720 +

2
+ “Dzou” L2 (T)

2 2
Olu”[_2 (T) + “Dlzu”LZ (T)
2 2 2
“DOOUHLZ (T) + “Dllu”LZ (T) * ”Dzzu“LZ (T) +
2 2
“D012u“L2(T) * g“(”Diﬂ,i,iu”Lz(T) *

2
D54, 5,50l 2 gry * 1IPg 5 1u”L2(T))}

763

= 720h4(|ul + hz|ul3 )
< ;gg*fﬁl ”3,T for sufficiently small h (|h|<1).

Substituting this into (3.2.12), we have

lu-upll, < Ga23%n( § c"r)llull3 D= Gl

Terh

completing the proof.
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3.3 ERROR BOUNDS OF THE RITZ APPROXIMATION

As we have discussed in Section 2.3, the energy norm
- 2 . .
“tdla = (| (pVu-Vu+qu“) dug) is equivalent to the Sobolev norm

llu“l Q and provides a means of measuring how close the Ritz
b
approximation uh is to the true solution u.
The following Theorem [S4,p.39] is fundamental to the

Ritz theorey.

Theorem 3.3.1. [S3] If the function u minimizes I(v) over

the admissible space Hg and Sg=.S¢+g is a closed affine sub-
~ .
space of Hg’ then

(a) a(u-uh,u—uh) = min a(u-vh,u—vh) (3.3.1)
vieS
g
®) aCu-u,v?) =0 for all V' e S, (3.3.2)
(c) a(uh,vh) = (f,vh) for all vh<sso (3.3.3)

"In particular, if Sg = Hg, then

ca(u,v) = (£,v) for all v e Hp (3.3.4)

Corollary 3.3.1. [S3] It follows from (3.3.2) that a(u-uh,uh-g) =0

and a(u-uh,u-uh) = a(u-g,u-g) - a(uh-g,uh-g). Furthermore, since
a(u—uh,u-uh) > 0, the strain energy in tJL-g always underestimates

the strain energy in u-g, that is a(uh-g,uh—g) < a(u-g,u-g).
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Corollary 3.3.2. Let u; be an interpolant of u in Sg, then

a(u-uh,u-uh) < a(u-uI,u-uI) (3.3.5)

-

In fact a(u-uh,u-uh) + a(uh—uI,uh-uI) = a(u-uI,u-uI) (3.3.6)

Proof: Inequality (3.3.5) follows directly from equation (3.3.1).

a(u-uh+uh—uI,u-uh+uh-u

a(u—uI,u-uI) I)

a(u-uh,u-uh)+2a(u-uh,uh-u1)+a(uh-u1,uh-uI)

since uh—uI € Sg, from (3.3.2), we have

a(u-uh,uh-ul) =0
which implies

a(u-uh,u-uh)+a(uh-u1,uh—u1) = a(u—uI,u—uI)

completing the proof.

To obtain an error bound for the energy norm I[u-uh[L ,

we have the following Theorem :

Theorem 3.3.2. If u ¢ H3(Q) and u; is a piecewise linear

interpolant to u in gis0 , then

i
2

1 5 h -
763 || p| —“ﬂii—}nunw

Jlu-u" || <h max(

»

1080 ' 75
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Proof:

“ u-uI“a. {[Q[pV(u—uI)'V(u—uI)+q(u-uI)2] duQ }l/2

A

A

The inequality (3.3.8) followed from the fact that
L
(a2+b2)? < a + b if a, b =20

From Theorem 3.2.1. and Theorem 3.2.2. we have

2 1,2
765 1 Il n
luugll, = G| pll2 hllully g+ —== lul, o

< h max {(£§§; 4|| r JL%J&?&II ”

The result of the Theorem follows from Corollary 3.3.2.

It follows from Theorem 3.3.2. that the Ritz-Galerkin
solution to the problem Lu = f with linear element has a rate

of convergence of order h in the energy norm.

2
cliell, fQV(u-uI)-vcu—uI) augell all Il wmugllp2 gy

Ll Nwmugll, <l alf, Buullpg, —(3.3.8)

1
2
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3.4 QUADRATURE ERRORS AND THEIR EFFECT ON THE NUMERICAL SOLUTION
OF BOUNDARY VALUE PROBLEMS

In this section, we shall derive the Peano-Sard kernel

of the 1-point and 7-point numerical quadratures of the integral
f f¢qd“9 and obtain an error bounds for these two numerical
f

quadratures. The effect of the quadrature errors to the solution

of the boundary value problems is also discussed in this section.
For simplicity, we denote by X, the centre Xa of the

hexagon xa+H and by Xj,j=1, ...6 the six vertices of Xa+H.
‘To.get an estimate for the l-point numerical quadrature

error, we have the following Theorem.

Theorem 3.4.1. If f ¢ H2(Q) and ﬁa(f) = 2u,(T)£(X,), then

(I [EEX) %)% < g%mQ(T))l/zhzl'flz’Q (3.4.1)

ack,

To prove the Theorem, we need the following two auxillary

lemmas.

Lemma 3.4.1. If f ¢ H?(Q) and P(£p) 1is a real valued function

of g 0 ij+1 ,

0 defined on each of the triangular elements Tj'= X X

then
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6 Xg 6 [
! J P(g,)D, , fdX = - E,JT FP(EID £ dup

. X .
=17X. 0 1'T. ¢ -
J j J J j J
Proof: Xs X,
Ty
Ts Ts
Xo
Xg VA X3
Tg Ty To
D £ p 1Xof
Do f
X1 X2

We observe that along the side XjXO, DX xof can be
]
decomposed into the sum of the two derivatives Dof and le.

Thus, we have

X X,
[[ Tz Ip £ ax +J Ip(z ID. £ dx3
0° 0 0”1
Xp Xg

[
—
~
(=]
o~

P(£,)Dy ¢ £ dX =

jo j=1

since the derivative le w.r.t. Tj along the side ijo is

the same as the derivative -Dof w.Tr.t. Tj-l’ we have
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Xo 6 X X.
J P(£)Dy y fdX = -} [J " P(E,)D,f dX - J TP(£,)Dyf dX]
. X

J 3 j’o j=1 Xjﬂ 0

fl

j

L ags No )

1
j 27 (8g)Dgf dup
1 Tj j

completing the proof.

Lemma 3.4.2. If f ¢ H2(Q), then the error of the 1-point numeri-

cal quadrature has a representation of the form :

E(f,X) = J £¢,, dug - 2h2f(Xa)
Q

(3.4.2)
Proof :

= 2
E(f,Xa) = f f¢a d].xs2 - 2h f(Xa)

Q
6
=) uQ(T)[I £&o dup - [ £(Xo)&p dug J
j=1 T. j T. J
J J
6
=1 uQ(T)f [f - £(X0)1Eq dug
j=1 T j

j
Eo

uQ(T)[ [f - £(Xo)[Do5(E2 - £1)7 du

T.
j J

n
[ g ey}

1

.
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It follows from Lemma 1.4.4 and the fact £&; and
£> vanish on xj+1xo and XOXj respectively that

6 <  (Xg
BGEX) = L ugML] g0t - £0) (F - £(Xg)) o +

=1 xj+l

X.
J TEo (1 - E9) (£ - £(X)) dX + J Do(%goglgz)Dof du, ]
6 Xo xD
=] uQ(T)[ZJ Eo(1 - &g) (£-£(Xp)) dX + J E05182Df dX -
j=1 Xj+1 xj+1

X.
J TE0E 182D dX - I %‘505152000f du
Xp Tj j
2
6 g2 gg Xo Xo &0 Eg
= L ug(ML2(C0 =0 (£- £(X)) |y - 2J (5 - 5Dy x £ dX -
j=1 2 3 j xj j’o
L E1E,Dof du.. ]
58081820001 dug

T. j

6 Xp 9 2 3 1
= -1y (T) ) [J (8o - 3E0)Dy x £ dX + J 5€08182D00f duy 1
j=1 7, i"0 T, j

It follows from Lemma 3.4.1. that

2 3
g0 EO 1
UQ(T)JT (j{'- = - §£o€152)Doof duTj
j o

E(£,X) =
J

1o~

1

completing the proof.
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Proof of Theorem 3.4.1.

Application of the triangle inequality and the Cauchy-Schwarz

inequality to equation (3.4.2), we get

12

[N JL:—*

[ Lo

[ECE,Xx )| <
J

LNJle—'-

1.2 2
1NQ(T)[J (§€0 - 0E182)2 duT lIDgo £ ”Lz(Tj)

T.
j j

sy 8
= Gzeo) o L 11000t [z
j= J

It follows that

IOIRGEX) |2 s z22u () T wg ()L Z | Doof||L2(T ok

o f F =1
T, aely

560 <551 (D) Z Cug (T) Z || Doof ||2 Lz(T ]

aerh j=1

We observe that for each T = XpX;Xo € Th and each i,

2
the term HDi ifll [2(7,) @ppears in the right hand side of the
above inequality at most once, thus we have
2k 23 4 3 2 L
CFIEEXD IR = [, M L wgM T 1ID; £ 11%209)
[} h i=1
aeFa Tet

23

CSeo™ 560 '

A

cT)Jthlfl

completing the proof.
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To obtain an estimate for the 7-point numerical quadra-

ture error, we have the following Theorem.

14

Theorem 3.4.2. If f e H*(Q) and ﬁa is the 7-point numerical

quadrature of Fa, then

4 L
CLEEX) 27 < 0.072080i (M) [£]2 o (3.4.3)
aerh

To prove the theorem, we need the following auxiliary

lemmas.

Lemma 3.4.3. If f ¢ H*(Q) and P(gp) 1is a real valued function

of &y defined on each of the triangular element Tj = XOXij+1,
then,
6 X. Xo '
P [J IP(£9)Dagof dX - J P(E9)D1g0f dXI
i=1 'Xp Xj+1
61 1 1
= Y | 3P(0) (Doooof - 3Doo12f) dug (3.4.4)
j=1/T. j
J
Proof :
6 (X, Xo
) [J IP(£0)Dpgof dX - J P(£g)Digof dX]
j=1 'Xp X,
J*1
6 X. Xp
=) [J IP(£0) ( -Dgoof - Dygof) dX - [ P(£0) (-Dogof - Dzgof) dXI]
j=1 “Xg X.

j+1
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6 Xp er
= 'thix P(E,)D;,,f dX - ) P(£g)Dpgof dX *
J j+1 0
r’XO ) er
P& )D_ £ dX - P D, f dX
J, PP, J P&y (]
it 0
6 1 X Xj
= f P f -1 “P D, f dX
p) [J FP(EID, o o F dup +J (50D, dX J (840D, 5o f 9X1
j=1 °’T, j X, X,
J J*1 .
j j*1
Fig. 3.4.1
As shown in Fig. 3.4.1, the derivative -Djggof along XjXO
w.r.t. Tj is the same as Djoypf w.r.t. Tj-l’ and Dsogof along
Xj+1X0 w.T.t. Tj is the same as -Djjgf w.r.t. Tj+1‘ Thus, these

derivatives can be divided into two equal parts, half of them will
be added to the line integral of the adjacent triangle. It follows

that
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6 Xj Xp
[j P D f dX - I P D f dx]
jél PO, RERACRLAY
0 j+1
6 ¢ 1 Xo
fz L) 2P(E0)D5000f dip. +J —P(g 0) (Dypof + Dypef) dX -
j=1 ‘T. j X.
J j+1
X
? 3P(80) (D190 + D110f) dXI
Jxo
=§ tf Loy £oan. - %o e yp. . £ax + % Loz yp.. £ axa
Lt 2507 P0000" OMT, 2" Y50’ "210 2 “70° 120
j=1"“T. j X, X
j j+1 0
I Y N
j2p Jr, 2 "T07 0000 4 *0' 0012 uTj

J

completing the proof.

Lemma 3.4.4. If f ¢ H¥(Q), then the error functional of the

7-point numerical quadrature has a representation of the form

([l ko))

3 1
E(£,X)) JQ £ dug - uQ(T)[gf(Xo) * 13

£(X)1
j j

1
5 £ £
1 1 2 3 0o =0
WQ(T):}EIJT {[(5+8,-85,+554*E E.E )E 8, -5 -7+
J

2
3 13,4 1.8 & 3 13 4
3E,- 7%, +g0300000 (G 380+ 78 -E )Domf} duy

(3.4.5)
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Proof: We shall only give a brief proof for this lemma.

F uQ(T) 6

2
E(£,X,) £¢,dug - Zh°E(X )T + —lz—jglf

(]
m

f(XO]-f(X.)]
lq J

¢ X

6
) 2 1. 0
= [Jgf¢adu9 2h"£(X )3 + lqu(T)_Z J Dx.xof dX
J=1 Xj J

It follows from Lemma 3.4.2 and Lemma 3.4.1 that

o (T)

24
1

E(£,X) =
j

n S~

| 2 0,3
JT (-1+128,-85,-1288,8,) Dy o £ duTj
J

It is not hard to get into the following step:

ua (T 6 Xo » 3
[J (-1-28,+16€,-105,)£,D o £ dX +

X, . 3
(-1-284+168,-10E()E, D, £ dX -
X

0

1 2 .3
IT,2(-1-2€0+16€0-10g0)(gZ_gl)Dooof duTj-
j

2 2
IT Dy (8g€152)Dgq0t d“Tj]
j

after further evaluation, we have
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2

U, (T) 6 (X, g
IR’ J 0,..3 13
E(£,X) = —3— 1 [J CSp-2680 2% Zg 0)D200f
j=1 ‘X
0
Ll EE+6 3134 5e%)
X BT P BT
j+1

IT (3+6,-8E, +5E,+E £,E,)E, &

j

0 dX -

D f dX +
100

€2D0000f d“Tj

Applying the Lemma 3.4.3, the result of Lemma 3.4.4 follows.

Proof of Theorem 3.4.2:

Applying the triangle inequality and the Cauchy-Schwarz

inequality to equation (3.4.5), we get

|E(f,xa)| <

f
0000 I Lz(Tj)

where k0 = 0.08495 and k1 = 0.04297

Applying the Cauchy-Schwarz inequality to the above inequality, we get

ue (T)

|E(£,X)] <
It follows that

21
(L IEEX))?

ath ath

2 >
”D0012f“L2(Tj)}

+k1”D

6

0012f”L2(Tj))

Q 2 2. L 6 2 2
54 (6k0"6k1)2{j21(HDoooof”L2(Tj)+ ”D0012f”L2(Tj))}

< 0. 07208(u9(r))2{ Jow (T)JZ(HDOOOOfHLz(1 )

(3.4.6)

1
7
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h . ! 2
for each T € t, since the terms !iDoooof” Lz(Tj) and

||D appear in the right hand side of the inequality

2
0012f” Lz(Td)
(5.4.6) at most once, thus, we have

2 1 L L
(I, lECEX | )2 < 0.07208 (1o (T)) *( I o (D) ] HDBfHsz) :
oel ¢ h ™ L
h TeT |8|=4

1
= 0.07208 (ug (T)) *h*[£],

completing the proof.

We know from Section 2.5 that the Ritz-Galerkin solution
to the linear operator Lu = -Ve(pVu)+qu = f turns out to solve

the following system of linear equations:

h h _ e 2
J (pVu Vo, +qu ¢a) duQ = I f¢aduQ > « € Ty
Q Q
or it can be written as
a@’,0) = F = (£,6) (3.4.7)
Yo o Ve e

If the integral Fa is approximated by a numerical quadrature

Fa’ “then we are solving

far L]

a(ﬁh,¢a) - F_ aef (3.4.8)



where uh = Z A is a solution to the linear system (3.4.8).

From (3.4.7j and (3.4.8) we get

h ~h = .
a(u -u ,¢a) = Fa Fa = E(f,ka)

It follows that

h ~h h ~h

a(u-u,u-u) = Y(A A)E(f‘()
aeF
h
this reduces to
[ Z lx Xl TEEX ) (5.1.9)

By applying the Cauchy-Schwarz inequality to the equation (3.4.9),

we get
h ~hj2 3 y24% 1 cy12yE (3
a7 = (I, -2 )27 L, [E(E,X )% (3.4.10)
asTy ael
h
To obtain an upper bound for ( Z: (ka—im)z) in terms
us?
h
. 2. i h ~h
of the L[4 norm |{ju -u ”L2(O)’ ‘we need thHe following Lemma.
Lemma 3.4.5. Let u(X) = Z l ,(X) and vanishes on 57%. Then
uffh “
2 1 - L2
lulij2 s (T) 7, 2
Lo 2 wel, ¢
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2
Proof : [iu “ 2 = J u? du
rrootr L2 3 0

= 2
= 1o (T) ) hJT(ku¢a+AS¢B+XYQY) dup

Tet

1 2 .2 .2

= g4e(M I h(Aa+AB+AY+ABAY+AYAa+kaKS)

Tet

where Aa’ AB’ AY are the values of u at the three vertices of

T = XGXBXY.

Since Az + Az + 12 + 2(A A +X XA X A ) =20
B Y B'Y Yya o

for all XA, A,, A_ € R, we have
a’® "B’ Ty

2,42 .42 1.2 .2 .2 -
> =(A i
)) h()\a+>\B+AY+ABAY+XYAC‘+AGA8) > ) hz( o gty (3.4.11)
Tet Tet
Since A =0 for all X ¢ 38, and for each « ¢ ) ,
a (¢} h
T 1in Th with the common vertex Xa’
written

there are six triangles
thus the right hand side of the inequality (3.4.11) can be

as 3 Zo A2 It follows that
aerh e
2 1 2
llu'lLZ(Q) z fvo(T) Zo Ay 0
. ath

completing the proof.
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Since u -u 1is a piecewise linear function on & and
vanishes on the boundary 9, we can apply Lemma 35.4.5 to the

inequality (3.4.10) to get

13

h ~h 2 3 SR
[uP-a" || Gy (T)) 2l [‘Lz(m(a‘thlﬂf,xaﬂ )

From Lemma 2.3.2 we have

h - ~h h -h
[[u”-a ” crHu ”1,32 ollu’-a IILZ(c)
It follows that
- i
-l < prpe R LICE Rk

o (kg (T)) a€1"}

If the 1-point numerical quadrature is used, from

Theorem 3.4.1 we have

h ~h 1,
”u - ”a" (280 (_3-h |f‘2’Q s

and if the 7-point numerical quadrature is used, from Theorem 3.4.2

we have

loP-ah | < Q2019 puje)
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If u is the exact solution to Lu = f, from the

triangle inequality, we get

. h ~h
IS (e (P I P [
From Theorem 3.3.2 we know that the energy norm [|lu-u
order of accuracy O0(h), whereas the energy norm Hu - }
an order of accuracy O(hz) and O(h"%) for the l1-point and 7-point
numerical quadrature respectively. Thus, both the numerical quadra-
tures are consistent [V2] in the energy norm, that is, the solution
still has an order of accuracy O0(h) in the energy norm for the

1-point and 7-point numerical quadrature.



CHAPTER 4

SOLUTION OF THE DISCRETE LINEAR EQUATIONS

4.1 INTRODUCTION

It is well known that discrete twéidfﬁensional boundary
value problems become very hard to solve:by the usual iterative
algorithms as the number n of data points become large. P.O.
Frederickson has introduced an algorithm FAPIN [F4] to solve this
type of problem. In particular, the algorithm FAPIN solves the
Ritz-Galerkin approximation in O(n) operations and O(n) storages.

In this chapter, we lean heavily on the first few sect-
ions of Frederickson [F4] and many of our results come from this
source.

The algorithm FAPIN requires an approximate 1l-local in-
verse C. This approximate inverse can be constructed by the 1TRq
or LSq method introduced by Benson [B3]. The TRq method is
generalized to the weighted truncation (WTq) method by multiply-
ing a weight W to CA-I.

We then introduce a new technique for the corstruction
of an optimal e-approximate inverse to A, which we refer to as

the interpolaticn method, (INq). Numerical results with each

approximate inversion technique considered are presented, serving

as a basis of comparison of different constructive methods.

89
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We end this chapter by presenting some numerical examples
for the solving of the Poisson equation in a triangular domain with
homogeneous and inhomogeneous boundary conditions, and in one of

these, the differential operator is singular.

4.2  APPROXIMATE INVERSION

Let ||-[|, and H-Ily be the norms of the Banach
Spaces X and Y respectively, and let A be a bounded linear
operator mapping X into Y. For a given y in the range of A,

we are interested in constructing a numerical solution x € X s.t.
AX = y (4.2.1)

We recall two definitions from Frederickson [F4]:

Definition 4.2.1, Given 0 < e < 1, then an element x e X is

called an e-approximate solution to (4.2.1) if

lly-axll, = ellyll, (4.2.2)

.

Definition 4.2.2. For 0 < e < 1, a linear operator C : Y » X

is called an e-approximate {nverse to A if

[le—ACAx[[y < elle”y for all x e X (4.2.3)

If A 1is nonsingular, then (4.2.3) is equivalent to the

inequality

l1-Ac| < e (4.2.4)
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which is known ([F7], [V1]) to be a sufficient condition for the

convergence of the iterative process

(4.2.5)

to a solution to (4.2.1) for any initial approximation xg and any
y in the range of A.

If A is singular, Frederickson [F7] has shown that the
iterative process (4.2.5) still works, provided only that (4.2.1)

has a solution.

Theorem 4.2.1. [F7] If C is a nonsingular e-approximate inverse

to A, then the following are equivalent:

(a) There exists an xgp € X, such that the iteration procedure
(4.2.5) converges

(b) Equation (4.2.1) has a solution

(c) For any starting vector xg € X, the sequence <Xy > of

(4.2.5) converges to a solution to (4.2.1), and the map :
Xp * x 1is affine and onto the set of all solutions to
(4.2.5).

Proof : (a) =% (b)

Let X be an element of X s.t.

> X

Xx



From (4.2.5) we have

Tk T Xy T X 7O

]

r y - AX, >y - AX

k k

from which it follows that
C(y-Ax) =0

Since C is nonsingular, we have
Yy = AX

Now we want to prove (b)=—=> (c)

Llet x* ¢ X s.t. Ax* =y

From (4.2.5) we have

T =y - Ax

k+1 k+1

i}

y - A(xk+Crk)

(y-Ax) - AC(y-Ax,)

A(x*—xk) - ACA(x*—xk)

Since C 1is an e-approximate inverse to A, we have
Ty, lly, s ellacer - xlly, = el I,

It follows that

i lly = eMixoll,, @.2.6



o
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From (4.2.5), we have

'”fm - x|l o= ller, _, + Crp o, + + cx |l ¥V m>n
< el yll * gyl + <o = fxgh, )
< el liroll, (™ Foem2s - we
< lc | “Tolb e'/(l-e) 0 as n >« which

implies <xp > is a Cauchy sequence in X and hence converges to

a point x € X.

Thus Axk -+ AX

From (4.2.6), we have Th - 0, hence
y - Axk -+ 0
or Axk >y

It follows that Ax =y

To prove that the map described by (4.2.5) is affine, let x

1,k
and xz « be any two elements of X and
Xl + A, =1
then from
X, = Alxl,k + Azxz,k follows
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o
]

ke1 = X COAY)

=-A1xl,k + Azxz’k +.A1Cy + Asz - )\ICAXI,k - AZCsz,k

n

AL Lx

10%y ¢ * COAxy (I + A%, o+ Cly-Ax, ()]

=M% ke T 22%2 ke

Thus the map xg > x described by (4.2.5) is an affine map.
To prove that it is onto the range of A 1is easy, if Ax =y we

simply choose xg = x.

The implicZtion from (c) to (a) is trival, completing the proof.

| e :
Define by p_ = —BY  the neduction gactor [V1] at

ey Il

iteration m, if ”rm—1” # 0, where r_ is the residual vector
defined in (4.2.5).

If the largest eigenvalue A in modulus of the linear
operator I-AC 1is dominant, and if 1y is not orthogonal to the
eigenvector V corresponding to A, then the limit of °n exists

and [B5, p. 269]

%;m Py = P(I-AC)

Thus, the spectral radius p(I-AC) serves as a basis of

comparison of how well the operator C approximates the inverse of
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A in an iterative algorithm.

In terms of actual computations, the spectral radius »p
of the operator I-AC can be estimated from the computation of the
reduction factor on in an iterative algorithm to the solution of
the equation

Ax = 0

with a random initial vector x.

If we order the eigenvalues of the operator I-AC so that

Il Dyl gl e e 2 g

.

Then the rate at which the sequence p, converges depends
on the dominance ratio : [V1]

I,

R ]
I

8
the convergence of the estimate P of p 1is slow when 6 is
close to 1. However, the convergence of the sequence Py San be
accelerated by the application of a non-linear sequence-to-sequence
transformations proposed by D. Shanks [S3]. A Fortran program to

perform this transformation is given in Appendix B.

4.3 LOCAL OPERATORS
For the purpose of solving the system of linear equations

produced by the Ritz-Galerkin solution to the linear operator
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Lu = £ on a bounded polygonal domain £, we restrict our attention
to finite dimensional linear spaces X and Y.

Denote by X, the space of real valued functions on the

Th

integer lattice Ph defined in section 1.2, and let YP be a

subspace of X. We say that the linear operator A : XP- > Yr
h

is a q-fLocal operator for some integer q if the value of Ax at

a point «a € Ph depends only on the values of x in a q-neigh-
bourhood of a ; [F4], more precisely, if
tTAX)a #0]=>[] B¢ Ty |e-8] < q, and Xq # 01,

where |-| is the hexagonal norm defined in Section 1.2.

Thus, for any q-local operator A : xr -+ YP , there
h h

are elements a s.t. for any point a € Ph

o,B
(Ax),, = ;B}Sqé“’sx“*s (4.3.1)

In particular, if A is a 1-local operator, then at each point

o € %h’ expressed diagrammatically, A has a representation of

the form
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Denote by n the number of points in Fh, then the
implementation of (4.3.1) allows storage of A in 7n locations
and evaluation of Ax in 7n multiplications.

Let A be a q;-local operator and C be a q,-local

operator defined on the linear space Xr . We seek the linear
h

operator B such that for any x € Xr
h

Bx = C(Ax)

In terms of the representation (4.3.1), B can be

expressed as



(4.

(7]
.

£
~—

(Bx)a = Z ca,Baa+8,Yxa+B+Y
B,y
|8]=a; Ivl=q,
The sum extends over only those & and B8 for which o + 8 ¢ ?h.
As we can see from (4.3.2), B8 is a (ql+q2)-local opera-
tor.

In particular, if A 1is a constant coefficient 1l-local

operator with a representation of the form

(4.3.3)

and C 1is also a constant coefficient 1-local operator with a

representation of the form
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then the composition of CA 1is a 2-local operator. The graph of
B =CA is shown in (4.3.5).
It is easy to see that if A and C are constant co-
efficient local operators, then the composition commutes, i.e.
AC = CA.
In this case, AC <can be written as a convolution opera-

tor.
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(4.3.5)
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4.4 BEST APPROXIMATION

For every triangulation Th of @ there is a least

. - -1 . L
integer & such that |a|<2® for every a ¢ T, we write T-

for Fh and define, using the recurrence

k-1 - {o: 8. |B]<1, 2a+8 ¢ ¥y (4.4.1)
the sets rk for 1<k<2

k-1

We observe that |a|<2 if a € Pk, and in particular,

1

I'" has at most 7 points.

Denote by Xk the linear space of real valued functions

defined on Fk, and define the sequence of Lifespolaticn cperatcrs

Qk . xKl 5 XK through

- k k-1

xx = @xh, = I ke (4.4.2)

B B k-1 o (o)

ael
where 5 if |20-8| =1

k . _

¢a(8) = 1 if 8 = 2u
0 otherwise

The set {¢§}a€rk-1 form a basis for the space

1

Uk - Qk(xk— ).

Define the sequence of projection operatons
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PN s XN - XN by
k-1 k_k k k .
T, = (Pr), = Z'¢a(s)rs (4.4.3)
: k
3 6€F

Beginning with Az = A and Y2 = Y, we define the

sequence of operators Ak : Xk > Yk by

e AR S G (4.4.4)
Then in terms of the representation (4.3.1), Ak'l can be repre-
sented as
k-1_k-1 k k
(AT X7 = ¢ (2a+Y) a ) k k-1
o ‘Y <1 @ iol<1 2a+y,0 6 ¢a+8(2a+y+c)xa+8
|y+o-28]=<1
k k k . k-1
= I 6qQuwv)ay 60 o (2eryea)x g
B,Y,0
Igl<1,|v|=<1,]|oj<1
|y+o-28]<1
or
akl . I ¢k(2a+y)ak ¢k (2u+v+s)  (4.4.5)
o, B Y,0 o 204y ,G U+B " ’
[ylsl,[olsl
|y+o-2B8|<1

In particular, if A 1is the 1l-local discrete Lapacian
operator derived in (2.5.6), it is easy to verify that A 1is

invariant under the collection.
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Thus, we have

(4.4.6)

for all 1sk<®

If Ak is a constant coefficient operator of the form

(4.4.7)
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then we have

(+4.4.8)
k-1 k .
It follows that A = AA~ for some constant A iff
5 k k _ k
§a0 + 9a1 = kao
5 k 1 k _
78 * 38 T A2
iff A=4o0r1

.. 2 2 %
The two constant coefficient ag and a, of A" are

related by
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ag = 6a2
0o 1 if A.=1
L £
L %0 = %% if A= 4
K k . k
Given an element 7T in the range of A", we are asked
to find an element xk € Xk s.t.
Akxk - rk (4.4.9)
Let ! be the image of PX at rk, if X1 is the

the solution of the equation

ak-1.k-1 _ k-1

o

. . . k-1 .
We are interested to know how close the solution x is to x 7

This question is answered by the following Theorem [F4]:

Theorem 4.4.1, If A is symmetric and positive definite, then

the operator Ak_1 defined by (4.4.4) is the Ritz-Galerkin best

approximation to Ak in the subspace Uk = Qk(xk-l) cf Xk.

Proof: We define the quadratic functional related to (4.4.9) by

F(xk) = <Axk - Zrk,xk>

where <xk,yk> = Z kxzy (4.4.10)

Let xk be an element of Uk and £ =« R. Then we have
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F(xk+evk) <Ak(xk+evk) -A2rk,xk+svk>

<Akxk-2rk,xk>+s(<Akxk,vk>+<Akvk,xk>

-2<rk,vk>)+ez<Akvk,vk>

]

. k . C . < ' .k _k
Since A 1s symmetric i.e. <Akxk,vk> = <Akvk,x >, we have

F(xkfﬁvk) = F(xk)+2e(<Akxk,vk>-<rk,vk>)+e2<Akvk,vk>

It follows that

§Eﬁxk+evk) = 2(<Akxk,vk>—<rk,vk>)+2€<Akvk,vk>
de
and
dZF(xk+evk) = 2<Akvk,vk>
de?

Ak is positive definite implies

a2F(xF+ev™)| > 0 if VK #o0
de? £=0

Thus x* minimizes F iff the first variation dF (x +ev)
de €=¢

vanishes for all vk in Uk i.e.
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Since the functions ¢§ , O € Tk-l form a basis for Uk, this
holds for all v~ in UM iff
<Akxk,¢k> = <rk,¢k> for all & ¢ 71
o a
k k . . . .
X € U implies it can be written as
xk - Z Kk—1¢k - Qkxk-l
a o
k-1
ael
It follows that
k. k k-1 k_ _ k ,k
<A Q X ,¢(!> = <r ’¢(!>
From (4.4.10) we have
k k k-1 k k. .k
I (AQxT)p6,(8) = ] rg0.(8)
Berk Bst
From (4.4.3) we get
(pkAkaxk'l)a = (Pkrk)r for all o e r*7?

It follows that

pkAkaXk-l _ krk k-1
From (4.4.4) we get

Ak-1k-1 k-1
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. k-1 . . X
i.e. A is the Rit:z-Galerkin best approximation to AL in the

subspace Uk.

_ . . k . . -
However, in general if A is not symmetric and positive

s -1 .
definite, then the operator Ak can only be described as the

Galerkin approximation to Ak.

4.5 THE ALGORITHM FAPIN

P.0. Frederickson [F4] introduced a new algorithm FAPIN
to solve a large sparse linear systems of a certain class in 0(n)
operations. In particular, it solves all finite element approxi-
mations, over a sufficiently regular mesh.

FAPIN is an iterative algorithm. At the beginning of

the nth pass one has an approximation x, to the solution of

Ax = y. An inner loop of FAPIN requires a l-local e-approximate

inverse Ck : Yk - Xk to Ak. If Ax = y has a solution,

Theorem 4.2.1 tells us that the initial vector Xy can be random.

The iteration begins by computing the residual vector

2 . . . k
r <y - Axn, continues by evaluating the residual vector T

defined by (4.4.3) from r° to r-°, the residual vector at the

. . 0 20_1
bottom level £0. Next, the approximate solution z2 = c*Or 0

is computed in the space zg’0 and then one works back up from
k=20 to k = 2-1, first interpolating and then refining this

approximation:
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K k_k-1

2« Qz

zk « zk+Ck(rk-Akzk) (4.5.1)

14

At the top level, k = £, these assignments are replaced by
2 £
xn < X, + Qz

L L. 2 -
r-AX / 2
X a1 © X+ C( AAn) (4.5.2)

A detailed coding of the algorithm in Fortran to solve
the linear system Ax = y in a triangular domain is given in
Appendix A.

The actual programs compute the norm of r£ while compu-
ting rz and this is used to allow an early exit when tolerance
€ has been achieved.

In general, if the operator A 1s not constant, then
the lower approximations Ak must be computed first according to
the equation (4.4.5). The corresponding approximate inverses Ck
must also be evaluated. Techniques for construction of these ap-

proximate inverses will be discussed next.

4.6 CONSTRUCTION OF APPROXIMATE INVERSES
Benson [B3] has introduced several techniques to con-
struct an approximate inverse for certain band matrices. In this

section, we put the Truncation Technique (TRg) and Least-squares
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Technique (LSq) [B3] into a slightly modified form and apply it
to an 1-local linear operator A, to construct a l-local operator
C, an eg-approximate inverse to A. The TRq method is generalised
by multiplying a weight W to the operator CA; we refer to this
method as the Weighted Truncation Technique (WTq). However, appro-
ximate inverses obtain by these methods are not optimal. We intro-
duce another new technique call Interpolation Technique (INg) to
construct an optimal approximate inverse of A. This optimal in-
verse speeds up the convergence of the algorithm remarkably.

Denote by TRq(CA) the truncated g-local operator, where
C and A are all gq-local linear operators.

The TRq approximate inverse of A can be constructed

by solving the system of linear equations
TRQ(CA), 4 = 80,0),8 ° |2l<q (4.6.1)

where & denotes the Kronecker delta,.

If A 1is the operator defined in (4.3.3) and the 1l-local
approximate inverse to A has the form (4.3.4), then it follows
from (4.3.5) that the TRqQ approximate inverse C can be obtained

by solving the following system of equations:

ac + (a+2a)c =20
( 10 ( ] 1) 1

’
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2 .. .
if a§ + 2aoa1 - 6a1 # 0, the above system of linear equations

has an unique solution, i.e.

( a +2a
0 1

2 2
ac+2a _a_-6a
0 01 1

a
1

C:
632—2a a —32
1 01

In particular, if A is the discrete Laplacian operator

given in (4.4.6), then C has a representation of the form:
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Results with the TRq method applied to the discrete
Laplacian operator A on a triangular ‘domain at each level &

are tabulated below and graphically in Fig (4.6.4),

2 n p

2 15 0.3333

3 45 0.3591

4 153 ‘ 0.4115

5 561 0.4612
6 2145 0.4757

7 8385 0.4751

where n = (1+2£—1)(1+22) is the total number of equations.

The TRq method can be generalized by multiplying a
weight W to the operator CA, where W 1is a constant coeffic-
ient r-local operator.

The WTq approximate inverse C can be constructed by

solving the system of linear equations
TRq(CAW) = TRq(W) (4.6.2)

If A and C are of the form (4.3.3) and (4.3.4) res-
pectively, and W is a 1-local operator with a representation of

the form
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OO0

then it follows from (4.3.5) and (4.3.2) that the linear

system (4.6.2) becomes

: (a0w0+6a1w1)co+6[a1w0+(ao+2al)w1]cl = W
(4.6.3)
[ Lajwg+(ag+2a;)wylcg + [(ag+2ay)wp+(2ap+i5a)wyley = wy

The linear system (4.6.3) always has an unique solution

if

2
6[a1wo+(a0+2a1)w1] # (a0w0+6a1w1)[(§0+2a1)w0+(2a0+15a1)w1]
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In particular, if W 1is chosen as A, then the linear
system (4.6.3) becomes
2, ,.2 ; -
(a0+6a1)c0 + 12a1(a0+a1)c1 a,
(4.6.4)

2 2
+ + + 5 =
2a1(a0 al)c0 (ao 4a0a1+1oal)c1 a,

We observe that the system (4.6.4) always has a solution.

If A 1is the discrete Laplacian operator, we have

17/89 = 0.1910112

(@]
f

(4.6.5)

3/89 0.0337079

g]
1

Results with the WTq method applied to the discrete
Laplacian operator A on a triangular domain at each level 2

are tabulated below and graphically in Fig (4.6.4),

% n o]

2 15 0.1011
3 45 0.1461
4 153 0.1510
5 561 0.1698
6 2145 0.1746
7 8385 0.1748
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1, 2
Denote by ”'”a,z.= (¥ 32,8)2 the discrete &

I8]<q
norm of the q-local operator A at the point o ¢ %h’ by

g, = l|~H§ ,- If C and A are the linear operators defined

in (4.3.4) and (4.3.3) respectively, then

g, = llca1l?

! - 142 0 )
a,n = (Bgp*6a e -1)% + 6lajcq+(ag+2a e 1% + 30(a cy)

{4.6.6)
We observe that g, is a function of the parameters c,

and c¢ the methods of calculus enable us to find the values of

1}

s and <) that minimize g. The approximate inverse C obtained
by this method is called the LSq approximate inverse and we refer

to this technique as the LSq method.

From (4.6.6) we have

dg
a = -
33;' = Z(aé%;éalcl l)c0 + 12[alc0+(a0+231)c1]a1
Bga )
I - 2(a0c0+6a1c1—1)(6a1) + 12[a1c0+(a0+2a1)c1](a0+2a1)+60a1c1

s e s . g
To minimize g,> Wwe require a
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( (a2+6a2)c + 12a (a +a_)c_ = a
0 170 19 171 0

ﬂ

1

2a (a +a_)c_ + (a2+4a a +15a2)c = a
L 10 170 0 01 1" 1

We observe that the above system of linear equations turns
out to be the same as the WTq method applied to same operator CA
with a weight W = A.

In general, if the six coefficients 2, 8> [B]=1 are

o

not equal, then the approximate inverse C at each point o € Ph

has 7 parameters to be determined. It follows from (4.3.2) that

- 2 132 2
g “HCATIE = € Toey gogug, g% 1 € Lo gouug,yp)
|gl=1 1<y |<2 18] <1
|y-8]<1
To minimize g _, we require agu _ for o € Iy» |o-a|<1. Now
¢ EC
0,0

3g
= a e -
aca,o 2f8§<lca,8aa+8;“5.l)aa+os'6 ’
g 2( é a: Baa*‘B,Y—S au+c,Y_o - 0
1<|yl<2, |8]=1
Iy—o <1 !y—B]Sl
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which gives

0

Thus, the 1-local LSq-approximate inverse of A at the

point o € T, can be obtained by solving the above linear system

h
of 7 equations. This linear system of equations can also be

written as

Z CU,B 5 aa+0,Y-0aa+B,Y*B - aa+y,—o (4.6.7)
|8]=1 lyl<2,|y-o|=1
ly-8|<1

for oceT |o-a|<1

h,
The sum extends over only those y for which +y-o, y-8

e T .

If A 1is a constant coefficient 1-local operator, we
are also interested to construct an approximate inverse of A by

the application of LSq method to the weighted operator ACA, and
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try to minimize the expression

- N
g, = lAca - alE
It follows from (4.3.5) and (4.3.2) that

= 2,642 2 2 2v¢ _a 12
g, [(a0+6a1)c0+12a1(a0+a1)c1+ao] +6[2a1(a0+al)co+(a0+4a0a1+15a1)c1 a,d

v

2. 2 2 2 4.2
+ 6[a1bn+2a1(a0+3a1)c1] -+6[2a1c0+2a1(2a0+3a1)c1] + 114a1c1‘

og og
Let o 0 and —> =0 we have
3c ac :

1

o

4 L 2,2 3 L 3 2 2 3
(a0+36a0a1+48a0a1+90a1)c0 + 24a1(a0+3a0a1+15a0a1+15a1)cl

= a3+18a a2+12a3
0 01 1

3,242 2 3 L 3 2,2 3 L
4a1(a0+3a0a1+15a0a1+15a1)c0 + (a0+830a1+90a0a1+240a0a1+340a1)c1

= 3a2a +6a a2+15a3
. 01 01 1

In particular, if A 1is the discrete Laplacian operator,

then we have

103/597 0.1725293

(]
I

(4.6.8)

-1117/48556

0.0230044

(¢}
1]
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Application of the above approximate inverse to the
algorithm FAPIN on a triangular domain, the numerical results

are tabulated below and graphically in Fig (4.6.4).

2 n P

2 15 0.1258
3 45 0.1539
4 153 0.1691
5 561 0.1714
6 2145 0.1672
7 8385 0.1637

~
The approximate inverse .C determined by the TRq or

LSq method is usually not optimal,however, it can be improved by
the INq method. This method is feasible only in the constant
coefficient case. For simplicity, we shall introduce this techni-
que with an example for the construction of an optimal g-approxi-

mate inverse to the discrete Laplacian operator A.

Let Eo and El be two approximate parameters of the

operator C obtain by TRq or LSq method. Then the optimal

values of ¢, and" c, can be obtained by the following steps:

0 1

Step I. Eo is held fixed. Perturbing c; about the point
¢ , we obtain a set of experimental data (psc)).
1 .
The point where p has a minimum can be obtained by

plotting the graph of p against c, -
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Step II. Perturbing c, about EO, for each fixed values of

co, carry out the same procedures as in Step I to

. . . opt
obtain a set of points (co,cI ’pmin)°

Step III. < is held fixed instead of co, repeating the whole
procedures as in Step I and II, we obtain another set

of points (COOPt,c P ).

1’ 'min
Step IV. Plotting the graph of o against s for the data
(cg,clopt) and (cOOPt,cl) collected in Step II and III,
we find that the curves intersect at a point
(c °Pt ¢ OPYy this is the optimal solution of the

Y 0
operator C.

To illustrate the method, three graphs of c, against
c0 for the data collected in Step II and III of the INq method at
level &£ = 2,3 and 4 are plotted in Fig {(4.6.1), Fig (4.6.2) and
Fig (4.6.3) respectively. In order to have a clear picture of the
behaviour of p near the optimal solution (coopt,clopt)} three
contour graphs of p at different height are also plotted in these
graphs.

The INq e-approximate inverses C at level £ = 2,3 and
4 are shown in Table 4.6.1. Application of these INq e-approximate
inverses C to the algorithm FAPIN, the spectral radius of the
operator I-AC at each level 2 are shown in Table 4.6.2 and

graphically in Fig 4.6.4.
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Table 4.6.1
2 . opt . opt
0 1
2 0.1786 0.03569
0.1803 0.02921
0.1825 0.02791
Table 4.6.2
P
n : -
opt. ‘level £ = 2| opt. level & = 3 |opt. level & = 4
2 15 0.0003 0.0578 0.0821
3 45 0.2224 0.0822 0.0950
4 153 0.3072 0.1370 0.1037
5 561 0.3318 0.1510 0.1001
6 2145 0.3368 0.1528 0.1190
7 8385 0.3326 0.1532 0.1310
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Fig. 4.6.1
(INq method, 2=2)
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‘Fig. 4.6.2
(INq method, £=3)
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Fig. 4. 6.3
(INq method, 2=4)
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INq method, 2=2

WT'q method,W=A

W
w—ﬁ\)

qu method,E:E

INg method, 2=4

+
<

.......



126

From the experimental results, we observe that the INg
g-approximate Inverse C varies from one level to another level,
they are only optimal at the ccnstructed level. " In order to have
a clear picture of the behaviour of the spectral radius as £
becomes large, a chart of the spectral radius p against 2 for
the various construction techniques are plotted in Fig 4.6.4.

As we can see from the graphs in Fig 4.6.4, the rate
of convergence is independent of n for equations in the class
considered. When £ becomes large, the spectral radius of I-CA,
p tends to a certain value.

We observe that the spectral radius p(I-AC) for C
constructed by the LSq method or WTq method with weight W = A
are not too far away from its optimal value. We are interested to
know what is the best choice of the weight W, to make the WTIq
approximate inverse becomes optimal?

If W is a 1-local operator, from (4.6.3), we have

(a c +6a ¢ -1)w + 6[a c +(a,+2a Jc Iw =0
00 11 0 10 0 17171

[a c +(a +2a )c Iw_ + [(a +2a )c +(2a +15a )c_ -1lw =0
10(0 1)10 (o 1)0(0 1)1‘1

(4.6.12)

The linear system (4.6.12) has non-txivial solutions iff
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6la c +(a_+2a )c_ 1% = (a ¢ +6a ¢ -1)[(a +2a )c +(2a +15a )c -1]
10(0 1)1 (00 11)(0 1)0(0 1)1

It follows that (co,c]) are related by

(6a2-2a a_-a2)c? - (2a2+9a a -12a2)c ¢ + 6(a®+2a a -11a?)c? +
1 01 0" 0 0 01 1 01 0 01 1 1

2(a +a1)c0 + (2a0+21a1)c1 -1=0

0

In particular, if A is the discrete Laplacian operator

a = 6, a, = -1, we have
78c2 - 6c ¢ - 18c%2 + 10c - 9c -1 =0 (4.6.13)
1 01 0 0 1

The locus of the above equation is a hyperbola with

c, =2 0.3047298 or CO < 0.2281788.

0
The LSq(ACA) e-approximate inverse obtain in (4.6.8)
and the INq e-approximate inverses at level & = 2,3 and 4 can-
not fix into the equation (4.6.13) exactly. For each c, we have
constructed before, the corresponding Eo obtain from (4.6.13)
which is closest to those constructed value c¢_ and the corres-

0
ponding weight W are tabulated below:
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.6.1 i
Construction constructed From (4.6.13) Weight W
Technique ' ‘ ~

<, <, <, W W,
TRq 0.2222222 . 0.0555556 0.2222222 1 0
LSq(AC-I) 0.1910112 0.0337079 0.1910112 6 -1
LSq(ACA-A) 0.1725293 0.0230044 0.1725503 4.704 -1
INqg, &=2 0.1786 0.03569 0.1943 6.400 -1
INg, 2=3 0.1803 0.029231 0.1833 5.322 -1
INg, 4=4 0.1825 0.02791 0.1811 5.169 -1

4.7 EXPERIMENTAL RESULTS

We now discuss some numerical examples of boundary value
problems, whose solutions have been approximated by the Ritz-Galer-
kin approximation discussed in Chapter 2.

Consider the problem

4 . .
tu = -A S X, = —) sin(1-2x. in Q
u u(xO Xy xz) ) ( i)

(4.7.1)
u=20 on &

where @ is an equilateral triangle of unit side length, and
(Xg,Xy5X,) 1s the Barycentric Coordinates of a point X in the

triangle Q.

The unique solution to (4.7.1) is

u(xo,xl,xz) = 51n(x0)51n(x1)5}n(x2)
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The solution of (4.7.1) was approximated by minimizing

the quadratic functional

I(wW = J [Vu-vu -
Q.

u%m

g 51n(1—2xi)] duQ

over the piecewise linear subspace Sé’o of Hé(ﬂ).
It follows from (2.5.4) and (2.5.6) that we are solving
the 1-local linear system

h 3h?2 J h?2 J 3
Au = ———| f¢ dy, = —=| fo du
4uQ(T) q @ Q uQ(T) q © 9)

‘where A 1is the discrete Laplacian operator defined in (4.4.6)

and f = z sin(l—in)
i

If the 1-point numerical quadrature is used, then we are

solving the linear system

h

AU = 2h2%(xa)

The numerical results are given in Table 4.7.1. The

quantity s in this table is

The norm Uu—ﬁhlle(Q) is approximated by applying some
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numerical quadrature to each of the triangular elements T ¢ Th;
In our numerical experiment, the third order Gregory type formula

[L1,p74] are used to approximate the norm ||u—ﬂh|h? )

We see from Table 4.7.1 that the accuracy seems to be

0(h?) in the norm ||‘|| ,
L (®
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Table 4.7.1 (1-point formula)

g h Ju-i], @ | 3
2 0.25 5.4427x10° 3
3 0.125 1.3725x10° 3 1.99
4 0.0625 3.4390x10™ * 2.00
5 0.03125 8.6298x10°5 | 2.00

If the 7-point numerical quadrature is used, then

vh = h? F where F is the 7-point numerical
IB Sl CL;B a,B

quadrature apply to the function
f = g 51n(1-2xi)

The numerical results for the 7-point numerical quad-

rature are given in Table 4.7.2

We see from the Table 4.7.2 that the accuracy seems

to be 0(h2) in the norm ‘!°l|L2(Q)



132

Table 4.7.2 (7-point formula)

~h
2 h “u'u “LZ(Q) S
2 0.25 5.6333x10" 3
|3 0.125 1.4339x10 3 1.97
4 0.0625 3.6016x10°% | 1.99
5 0.03125 | 9.0370x10° 5 2.00

Our second example is the problem of inhomogenous

boundary condition defined by

2
-x£
, 8 i,
[ Lu = -Aux,,x;,X,) = 3-2‘(1-2xi)e in &
1 (4.7.2)
2
-X5
_ i on 39
u(xo,xl,xz) % €

where © is an equilateral triangle of unit side length.

The unique solution to (4.7.2) is

u(x ,x;,x)) = g e

»

The Ritz-Galerkin approximation to the problem (4.7.2)
. 1 ,
in the finite dimensional affine space Sg’o yields the follow-

ing system of linear equations:
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h h?-J
Au’ = ———| f¢ dp
uQ(T) Q a '

x2

where f = 2 Z (1—2xi)e 1 and A is the discrete Laplacian
i
operator.
If the l-point or 7-point numerical quadrature is used,

we are solving the following 1l-local linear system

Al -t

This linear system can be solved by the algorithm FAPIN
as easy as the homogeneous boundary condition case by simply pre-

~ _x¢
set the values of ah on the boundary of &, by ) e *1

i
instead of zeros.
The results of the 1-point and 7-point numerical quad-
ratures are given in Table 4.7.3 and Table 4.7.4 respectively.
It seems from the results in these tables that the accuracy of the

Ritz-Galerkin solution to the problem (4.7.2) are probably 0(h?).
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Table 4.7.3 (1-point formula)

) h -l 2 gy |3
2 0.25 1.9278x10 2

3 0.125 4.7939x10 3 2.01
4 0.0625 1.1945x1073 | 2.00
5 0.03125 2.8678x10 * 2.06

Table 4.7.4 (7-point formula)

) ~h

L h ||u-a “L?(Q) | s

2 0.25 2.0306x1072

3 0.125 5.1281x10" 3 1.99

4 0.0625 1.2849x10°3 | 2.00
5 0.03125 3.1192x10° % 2.04

As we can see from the first two examples, although the
7-point formula is more accurate than the 1-point formula, when
they are applied to the Ritz-Galerkin approximation, for certain
types of function u, the error in the l-point formula may cancel
off part of the error induced by the Ritz-Galerkin approximation

and give a better approximation to the true solution wu than using
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the 7-point formula would give.
Our last example is to apply the algorithm FAPIN to

solve the problem.

Lu -Au + Au = f in

(4.7.3)

1

u sin(x )sin(x )sin(x -Xx on 39
(0) (1) (0 1)

with f <chosen to be Lu and
u = sin(x -x )sin(x )sin(x )
1 2 1 2

where § is an equilateral triangle of unit side length, and X is

equal to one of the eigenvalues of the operator Au = Au.

X

to check that u, = 0 on 23f.

If u, = sin(2nx0)+sin(2nxl)+sin(2wx2), then it is easy

For this function wu, we have

Diu = -2nCos(2nxi+1) + ZnCos(ani_

A )

1

D. .u
i,i A

“Ar2cs - ATlci
47 51n(2nxi+1) 47 51n(2ﬂxif1)

It follows that

_ 2 _ 1eméy _. _ 1en?
Aul = 3{ Di,iu = - =3 Z 51n(2nxi) = - =3
i i
1672 . . .
Thus A = - is the eigenvalue corresponding to

3
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the eigenfunction u, = z sin(2nxi) of the Laplacian operator A.
i
16n272

In fact, An = - are the eigenvalues correspond-

ing to the eigenfunctions u, = Z sin(anxi) for all n e N

1

A

16m2
3 3

It follows from (2.5.5) that the Ritz-Galerkin solutions to (4.7.3)

When A = -

the operator L = -A + AI is singular.

is the solution of the following linear system

n h 1 : 2 f
AT UIOL L SR §%—J £6_dug (4.7.4)
v Sl

. 2. -
where Ah is the discrete Laplacian operator and Bh - h%h h

can be represented as
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If the 1-point or 7-point numerical quadrature is used,

we are solving the linear system

h~h

L &

= aAPaashat - F (4.7.5)

16m2
3

In this case, X = - is approximately equal to the

discrete eigenvalue Ah of Lh‘ Thus the linear operator Lh is

nearly singular. The linear system (4.7.5) becomes difficult to
solve by some zlgorithm. However, if (4.7.5) has a solution.
Theorem 4.2.1 tells us that a solution to (4.7.5) is constructed
by (4.2.5).

Since the problem (4.7.3) has a solution

u = 51n(xg)51n(x1)51n(x0-x1)

thus the linear system (4.7.5) still can be solved by the algorithm

FAPIN, although Lh is almost singular.

It follows from (4.4.8) that the Ritz-Galerkin best
approximation to the operator Lk at the kth level can be writ-

ten as

1kl o AKX 4 4Bk for 2<ksti

or -they can be expressed in terms of Ah and ﬁh as

- 2 .
k- ah s gt k(ﬁg—ash for 2<ksi



138

The approximate inverse for Lk at level k can be
constructed by the WIq method for a proper choice of weight W.

If u is a solution to the equation (4.7.3), since L
is singular, it implies u + KUy is also a solution to Lu = f,
where k 1s a constant and uy. is the eigenfunction of A cor-
responding to the eigenvalue . Because of the symmetry of the
algorithm we are using, the solution ﬁhiis, like F, antisymme-
tric with respect to the line X, - X, = 0. Thus k = 0, and
we are able toc compare Gh with wu.

Numerical results with the 1-point and 7-point formulas
apply to (4.7.4) are given in Table 4.7.5 and Table 4.7.6 respec-
tively. It seems from these tables that the accuracy of the

Ritz-Galerkin solutions to the problem (4.7.3) for the 1-point

and 7-point numerical quadratures are both 0(h?).

Table 4.7.5 (1-point formula)

~h
L h ”u'u ”LZ (Q) S
2 9.25 1.5042x10°2
3 0.125 | 3. 3667x10 3 2.16
4 0.0625 8.9534x10 * 1.91
5 0.03125 2.2858x10° % 1.97
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Table 4.7.6 (7-point formula)

L h =& 112 gy s
2 0.25 | 1.8307x1072

3 0.125 2.9901x10°3 2.61
4 0.0625 7.7986x10° "% 1.94
5 0.03125 1.9813x10 * 1.98

An even more striking demonstration is provided by taking

# = X7, 1in this case the linear operator Lh is almost singular,

and yet the linear system still can be solved by the algorithm FAPIN.

Numerical results for A = Ah ='—52;810 at level 2 =5

are given in Table 4.7.7. The norm “F L ”2 in this table is

the root-mean-square of the residual Fh Lh 2

n

h h h .h h, h __h

Table 4.7.7 (L'u = (A+A B )u = F , ug = 0)
HFh h huz , A= Js2.810
Iteration
i-point formula | 7-point formula
0 3.0428x10°2 | 3.0430x10 2
1 4.6462x10 3 4.6464x10" 3
2 3.5905x10 " * 3.5907x10 *
3 2.8968x10" 3 2.8963x10 2
4 3.5354x1076 3.5372x1076
5 3.8152x10° 7 3.7858x10° 7
6 1.2493x10 7 1.2448x10° 7
7 6.4122x10 8 6.4493x10 8
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The rate of convergence for the 1-point and 7-point

N . 52.810 are showed in Table 4.7.8 and Table

formula with A
4.7.9 respectively.

h

Table 4.7.8 (1-point formula, A" = -52.810)
-h
2 h ”‘l"u ”LZ (Q) S
2 0.25 1.5626x10 2
3 0.125 3.3356x10 3 2.23
4 0.0625 8.5449x10™ " 1.96
5 0.03125 1.8673x10 " 2.19

Table 4.7.9 (7-point formula, Ah = -52.810)

~h
L h ”u'u “LZ (Q) S

2 0.25 1.9033x10 2

3 0.125 2.9610x10° 3 2.68
4 0.0625 7.4242x10° 4 2.00
5 0.03125 | 1.6120x10 % 2.20

h
We observe that as & becomes large, the vector F
h
in the linear system Lhuh = Fh' tends to zero and u  tends to the
exact solution u. But in terms of actual computing, because of

the round off error, the Ritz-Galerkin solution to the problem
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Lu = £ can only give a good approximation in single arithmetic if
the level & is less than 6 . However, a better approximation
can be obtained by refining  the mesh and using the double precision

arithmetic.



APPENDIX A

FORTRAN PROGRAMS OF FAPIN FOR SOLVING A 1-LOCAL
LINEAR SYSTEM IN A TRIANGULAR DOMAIN

In this appendix, we describe in detail the FORTRAN
subroutine FAPIN for solving a l1-local linear system
Ax = y 1in a triangular domain Q.

As shown in Fig. Al, the integer
lattice (ij,is) of the triangular grids

are numbered from top to bottom for ij

and from left to right for i,. The

vectors xk, y and rk are all stored

in each of the one dimensional array X,

Fig. Al

Y and R respectively. In particular,

as X(N(K)+M(I1)+12), =~ . as
11,12
R(N(K)+M(11)+12), yil ;, & Y0I)+12).

k
we store X. .
11,12

Starting with N(1) = 0, M(I1) represents the total
number of points in row 1,'ro§‘2, “** up to row (i;-1). Similarly,
with N(L) = 0, N(K) indicates the total number of points in fz,
Pl-i, = up to k-1,

In each of the iteration, the residual vector r2 + y-Ax
and rk <+ rk—Akxk are computed in the subroutine RESINV by
setting the logical parameter RESIDU = -TRUE-, the vectors

xk + xk+Bk(rk) are also evaluated in this subroutine by setting

142
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RESIDU = -FALSE- The projection steps 1. Pk(rk) and

. . k k., k-1
interpolation steps x <« Q (xk ) are carried out in the

subroutine FAPIN. Once the norm Jlr ]l is less than the tole-

rance TOL or when the number of iterations reaches NIT-1, the

computed results are passed to the calling program.

Fig. Al

WHEN RESIDU = « TRUZ. o TO COMPULTE THE RESIDULAL VECTOR RK=RK=AK(XK)

THE TwO CONSTANT COEFFICIENTS OF —-AK ARE STCRED IN ACO(K) sAC1(K)e
GHEN RESTIDU = JFALSC ey TU CUMFUTE THE VECTCOR XK=XK#+BK{IRK ).

THE TwW0O CONSTANT COEFFICIENTS OF CK AFRE STORED IN ACO(K) AC1{(K).

SUBKOUTINE RESINVIAR »RX s Y s LK s MaNsDIMXR, DIMY DIMLK 4ODIMM,ACOsACY,
INTEGER DIVMXRIDIMY DIMLK sDIMMGLK{DIMLK) sM{DIMM)  N{DIMLK)
REAL XR{DIMXR) s RA{DIMXIL) o Y(DIMY) s ACO(CIMLK) JACL (DIMLK)
LOGICAL SONORM,RESIDU
COMMOCN L +KySGNM
SMALL=1.E-35
IKI =LK {(K)
DO 100 I1=3, 1K1
IZ=N{K)Y+M(I1)
IK2=11~1
DOy 1CO 12=2,1IK2
I=13+12
YX=0s
IF(RESIDU) GO TO 77
IF K=2 AND L NUT EGQUAL TO 2, TO COMPUTE X2 = C2{(R2).
IF {KeEQa2e ANDWsL «NEW2) GO TO 70
76 YX=RX{1)
GO TO 70
TO COMPUTE RK = RK—-AK{XK)e IF K=Ls R = Y=A(X),
77 IF{K «NESL) GO T2 76
YX=y(I)
70 BX{I)=YXH+AZO(K)IAXR{ID+ACI{KIX{ XR(I=1D)+XR{IF1I+XR{I-I1)+XR{ I-T11+1)+
* XR{ETI+TI 1)+ XR{TI+11+1))
TC CCMPUTE THE NORM 1Ff REQUIRED.
IF{SONORMs ANDeASSIRX{ I) ) eGTeSMALL) SCAM=SCNM+RX{I)%x*2
100 CONT INUE
RETURN
END
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Fig. A2

A SUBROSUTINE T 5ubve THE LINFAR SYSTEM AWX = Y IN A TRIANGULAR DOMAIN,

LK * AN INTEGER ARRAY OF DIMENSION = K, LK{K) = 2%%K,

N AN INTEGER ARRKAY OF DIMENSICN = K3 STRUCTURE CONSTANTS, N{(K}) =
TOTAL NUMBER OF POINTS IN THE TRIANGULAR LATTICE IN LEVEL K=1,
LEVEL KeeeesbEVEL Lo

Mot AN INTEGER ARRAY UOF DIMENSICN = 142%¥%K3STRUCTURE CONSTANTS . M{I1) =
TOTAL NUMBER OF POINTS IN ROWls RUOW2sesesROB(I-1)e

X ¢ AN ARRAY 0OF DIMENSION = DIMXY, TD STORE THE VECTOR XK, FROM K = L
TO K = 2¢ XK{T1+I2)=2X{(NI{KY+M(I1)+T2).

DY AN AERAY OF DIMENSION = DIMXR, TC STCRE THE RESIDUAL VECTORS RK,

FECM TOP LovEl R TU UOTTOM LEVEL K2, RKOTI1,12)=R{N(K)+M{I1)+12)

IT ¢ ON FETURNLIT SHUOWS THE NUMBER OF NORNS CCMFRUTED.

NCR MDD AN INTIZSER ARRAY 3F DIMENSICN = NIT,L,IT SHNWS THE HISTROY OF THE
NORM OF THE RESIVDUAL Ko

TOL * SUSROUTINE RETURNS X WrEEN NIORM OF & HAS LESS THAN THE TOLERANCE
TOL CR NUMZ3ER UF ITERATICNS REZACHES NIT-1.

SUBKOUT INS FaPIN (xoROY'NCQMQLK,MQN'CIMXR'DIMYQDIMLKvDIMM'ITQNIT:
* TOLs AOs AL COsCY)

INTEGER DIMAXRSDIMYSDIMLK DIMMJLKIDIMLKY  M{DIMM) N(DIMLK)

REAL NORMI{NITI» A{OIMXR) s RI(DIMXR) ,Y(DIMY)

FEAL AD(DIMILK)sAT{(DIMLK) yCO(DTIVMLK)»CL(DIMLK)

CUMMON LKy SQN™

L=DIMLK
L1=t=~1
NL = 2%k

TO STURE THE TsO CUNSTANT COSFFICIENTS DOF —AK IN AD(K),AL(K).

DC 100 I=2,L

AG(TI)==A0(1)

AL (T)==A1(1}
100 CONMTINUE
NL2 IS THE TOTAL NuMdex OF INTERIZR FCINTS

NLZ=(NL-1)*(NL-2)/2

NIT1=NIT-1

DO 901 IT=1,NITI!

K=L

SONM = 093
TC CCMPUTE R=Y=A«Xe

CALL KESINVIXsRyY LK sMyNDIMXQDIMY,DIMLK,DIMM, ADOsAls e TRUE o

* «TRUE. )

SUNMNM=SGRT(SOUNM/NLZ2)

NORM{IT)=5aNM

IF(SCGNM L Te TOL) RETURN
IF L = 2 +7T0C COMPUTE X2=C(R2).

IF{(L.EQ.2) GO T3 5C0O
PROCJECT RK TC LEVEL K-1.

DO 8C0 LL=2,L1

IK1=11-
DO 8¢0 2
J=Jd3+12
I=I3+2%12
300 RJI=R(1)

RALI=-1)+R ( X)+P(I PXTII+1)+RET-2*xT1+2}+R(I+2%11 )+
* ROI+2%1I1

~
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C T COMPUTZ X2 = C{(R2) .

CALL DESIVV(R;X Yol KoMeN¢DIMXR ¢DIMYJDIMLK $DTITMM,CO43C1seFAILSEas
3 .FALJ&I)

C TO INTERPIOLATE X IN THE SPACE K+1 FRIEM SFEFACE K.
K=3

C TUO COMPUTE XK = QK{ XK1l ) +WHERE K1 = K=-1.

H00 JKI1=LK{K~1)

D 3C0 11=2,4K1
J3=N(K=1)+M(I1)
IZ=N{K)+M{2x%x]1-1)
D0 300 12=2,11
I=13+2%12-1
J=J3+12
IF(K+EQeL) GO TO 350
XCTI)=X(J)
X{(I=-1)}=0eDF(X(J)tx(J~-1))
XCI+2%11=-2)=0e5%(X{ J=1)+X(J+11))
XCI+2%1I1=1)=0ex{ X{(J)+X{IJ+T 1))
GO THO 300

C AT TOP LEVEL L, KL= XL + GL{XL1).

350 X{(I)=X{(JI)+X1{1)
X{TI=1)=0e5%2{X{J)+X{(J~1))+X(TI=1)
XEI+2%T1=-2)=Ce5%{ X{J=1)+X(IJ+T1))+X{I+2%T1=2)
X{ I42%F Tl =1 )=0 o % {A{JI+X(J+T1))I+X([+2%T2=1)

300 CONTINUE

C TO CCMPUTE RK RK=AK( XK},

CALL RESINV{X oY sl KoMy NsDIMXR i DIMYyDIMLK+sDIMMiAOsA 1y e FALSE .

¥ e TRUE S )
C TC COMPUTE XK = XK + CK{RK)
500 CALL RESINVIRI Xy YsLKsMINDIMXR ,DIMY DIMLKsDIMMaCO3Cly «FALLSFE ey
* FALLSZ o)
IF{(K+EQeL) GO TU 901
K=K+ 1
GO TG 600
391 COCNT INUE
I T=NIT
C TO COMPUTE R = Y=-A(X) ANOD THE NO2RM OF THEARESIDUAL Re
SQNM=0 .
LALL RESINVI XoR o Y3 LK eMaNDIMXRDIMYSJDIMIKsDIMM, ADsAls e TRUE 6
e TRUL )
NGFM(NIT)—5QHT(SQVW/VL2)
RE TURN

END



APPENDIX B

FORTRAN PROGRAMS FOR PREDICTING THE LIMIT OF SEQUENCE

In Chapter 4, we have mentioned that the convergence of
a sequence can sometimes be accelerated by the application of a
family of non-linear sequence-to-sequence transformations proposed
by D. Shanks [S3]. These transformations are defined as follows.

Let {xn} be a sequence of numbers, let

and let k be a positive integer. Then a new sequence

{8 ﬁ} (m=k,k+1,k+2,---), ‘'the k'th order transform of {x }",

k,

is defined, if the denominator does not vanish, by

Xm-k ’ xm—i xm "
AX Ry Axmﬂ1 Ax
Axm-k+1°'° Axm Axm+l
Axm-l e AXm+k—1
B = : (1)
k,m 1 1 .1
Axm—k . Axmni Axm
Axm-k+1°"‘ Axm Axm+1
Bxp_q - MXovk-1

146
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We observe that the expression in (1) can be written as

Axm—l ’ AXm—k+1 AXm—k *n-k
Axm+k—2 . Axm Axm_1 xm_1
Axm+k—1 . Axm+1 Axm xm
Bk m
3
Axm-l Axm—k+1 Axm—k 1
ldxm+k—2 o Axm Axm_l 1
Axm+k—1 cee Axm+1 Axm 1
and the value Bk a is the solution of the following system of
> "
linear equations
( Y (7 ) f
. Ax CoBX e A% 1] (2o X ]
. ® < 3 '. 1 = (2)
- Axm+k—2 e Axm Axm—l 1 Zk-ll xm;l
. AX <. AX AX 1| B X
L m+k-1 m+1 m J Uk,m] ('m

Thus the value of B can be obtained by Gaussian

k,m
Elimination. The whole procedure is carried out by the two sub-
routines SEQSMT and DETERM as shown in Fig. Bl and Fig. B2

respectively. At the end of the execution, the program SEQSMT
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returns the transformed sequence {Bk m} stored in the array BK
bl
and the order of transformation for each term Bk n stored in the
3
integer array ORDER to the calling program.

Fig. Bl

SEQSMT IS A SUSRDUTINE TO GENERATE A NEW SZQUENCE 8K(M) IN ACCELERATING

THE CONVERGENCZ JF SLUWLY CONVERGENT SEQUENCES AND IN INDUCING
COCNVEFRGENT (OF SUME DIVERGENCE SEQUENCES. IN CASE THE MATRIX INDUCE BY
THE REGUIRED 3&80DzR OF TRANSFCRMATICN IS SINCGULARs THE ORDER OF
TRANSFURMATION wILL 3% KEDULCED TC A LCwER CRDOER.
DARAMET EFS OF £ SUBROUTINE REQUIRE?:
Te X! AN ARRKRAY COF THE JRIGINAL SECGUENCE
2¢e NI DIMENSIUON OF THE ARRAY X
3¢ K:i: THE ORODER OF TRANSFORMAT ION OF TrHE SEQUENCE XIN) (BETWE
AND (N-=1)/

4. oOKI REAL ARRAY, TO S3TORE THE GENERATED NEW SECGUENCE.
S5, DIMBK:I DIMENSION OF BKs, DIMEK = N=Z2%K,.

be A T AN DUMMY ARRAY UF DIAMENSICN Kl 3Y KPE2

7Te KPI I EQUAL TU K+1

8¢ KP2 I ZQUAL TO K+2

Ge URDER ¢ AN INTZGER ARRAY (DIMENSION=DIMBK)Y TC STORE THE CRDER
OF TRANSFUORMAT ICN.

SUBFIOJUT INE SEGEMT{ XaNpK 9sBK¢DIMBK A KPP ,KP2,CRDER)
INTEGER DIMBK, ORDER
DIMENSION X{IN) +SK{DIMBK) s A(KF1 +KP2),CRDER(DIMBK)
IF(NGE«2*%K+1) GI TO 4
KK={N=1)/2
1F ORDER OF TRANSFURMATION IS CUT OF RANGE,STOPRP RUN.
WRITE (64+65) KK
66 FGRMAT (70 ,'ORDER OF TRANSFCRMATICN MULST EE BETWEEN 1 AND *,12)
sSTOP
4 NMK=nN=-K
DO 1C0 MK=KP1l + NMK
K1l1=KpPl
K2 =K P2
CALL DETERM{X N MK K1 1 K2 sA 3BKM,E1)
GO TGO 110
1IF THE CCEFFICIENT MATRIX JF TRE L INEAR EQUATIONS TS SINGULAR, REDULCE
THE ORDER OF TRANSFORMATICN FOR THE TERNM BK{(M) BY 1.
Ki1=K1l-1
K2 =K2~1
CALL DETERM{XsNoeMK sK1 sK2 sA+sBKM,E1)
ORDER(MK=-K )=K1-1
BK{MK=~K) =BKM
RE TURN
END

—

e
O
(@ Rw]



OGN

@]

O aTeNa!

8!

X!

149

THE O METHOD UF GAUSSITIAN ELIMINATICN TN COMPUTE THE RATIO 0OF TwD
DETERMINANTS.

DALT TAL FIVUTAL CUNUDENSATIUN IS USED- A SEARCH IS MADE IN EACH COLUMN
FOR THE LARGEST ELEMENT EELOW THE DIAGCNALL.GBUT OTHER COLUMNS ARE
NOT SEARCHED.

SUSKROUTINEG DETERMIX s Ne MKy KF1 3K P2 y2,BKNM, %)
DIMENSION A(KPL +KP2) s X{ N}
SMALL=0+1E=32
IF (KPl.GZ2e2) GO TO 130
B M= X { MK )
FETURN
TN CREAT THE AUGMENTED MATRIX A{Il,4)
100 K=KPi~1
DO 750 1I=1,KP1
DO 700 J=1,K

J=X(1I-1)
A{ T +KP1
750 A(I.KPZ2

X {

):

)=

BEGIN THE PAR PIVOTAL CONDENSATION
11
+1

Ii
1.
X(MK+1-KP1)
TI

DO &0o0 =1
IIrpl=I1
L=11

IND TERM IN COLUMN TI16 0N URR BELGCW MAIN DIAGCNAL, THAT IS LARGEST 1IN
ABSGLUTE VYALUEL. AFTER TFE SEARCH, L TS THE ROW ANUMBER COF THE
LARGCFEST ELEMENT,

7

DO 400 I=IIP1+KP1

400 TF(ABS(ACIZI11))GT sA35(A(L,TITY))) L=I

IF THE MATRIX 135 SINGULAR RETURN EBACK TG TF= CALL ING PRDGRAM TO
REDUCE THE URDER OF THRANSFORMATION BY 1 AND PEERNTER THIS SURPRCGRAM
IF (ABS{(A{L,I1)) LT SHMALL) RETURNI1
IF {(LeEQWeIIl) GU TG 500

INTERCHANGE RNOWS L AND [1Is FROM NDIAGONAL RIGHT
DO 410 J=11.KPe
TemvP=A(I1.,3)

A{TT«Jd)=A(L,J)

410 A(L+J)=TEMP

SLIMINATE AbLL SLEZMENTS IN COGLUMN TI 3FEL0wW MAIN DIAGCNAL

500 00 600 I=I1IP1 +KP1
FACTOR=A(I,,I1)/7A(ITI,II1)

DO 00 Jd=11IP1l.KP2

500 A(IZJ)=A{1,J)=-FACTOR®A(II,.J)

IF THE MATRIX IS SINGULAR »RETURN BACK TO TKHE CALLING PRCGRAM TO
REDUCE THFE ORDER OF TRANSFORMATION BY 1 AND REENTER THIS SUBPRIGRAM
IF(ABS { A{KP1l +KP1 }) L TeSMALL ) RETURNI1
BRM=A{KP 1:.KP2)/7A(KP1s3sKP1)

RETURN
END

Fig. B2



APPENDIX C

FORTRAN PROGRAMS TO COMPUTE THE L2 mnorm of the function U-U"

This appendix contains FORTRAN FUNCTION subprograms
to compute the L2 norm of the error functional U—Uh, where Uh
is the Ritz-Galerkin solutions to U in the finite dimensional
subspace S;’O.

Fig.

(=4

C2 contains the FUNCTION subprogram BYCO to
compute the Barycentric Coordinates of the integer lattice (ij,is).
(see Appendix A) w.r.t. the triangle XpX;Xs.

Fig. C1 contains the FUNCTION subprogram L25Q. It
interpolates the function Uh and then computes the square of the
L2 norm of the function U-Uh in each of the triangle YgY;Ys
by using some numerical quadratures on a triangle T. The Barycen-
tric Coordinates of the three vertices Y;,Y;,Yo are given by the
calling program, and the Barycentric Coordinates of each point
X(xg,X1,X2) in YpY;Y, w.r.t. the large triangle XgX;Xp are
computed according to the linear transformation (1.3.4) given in
Chapter 1.

Fig. C3 contains the FUNCTION subprogram L2NORM. It

computes the L2 norm of U—Uh over the triangle XgX;Xp.
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A FUNCTION SU3PRUGRAM TUO CIMPLTE THE SQUARE CF THE L2 NCRM 0OF THE

THE.

FUNCTION (XINT = U) IN THF TRIANGLE YCY1lY2.

XINT IS THdz LINEAR IWNTEREFILATICN CF THE FUNCTICN w IN THEZ TRTANCGLE
YOCY1Y2e . '
BARYCENTRIC CCORUINATES NF THE THREE VERTICES YO,Y1,Y2 ARE STORED
IN THE ARRAY YO(3),Y1{3) AND Y2{(3) RESPECTIVELY.

HY yw 1 s02 ARE THE VALUES JF W AT YO0,Y1l,Y2 RESPECTIVELY.

Nk

IS THE NUM3SR OF INTERVALS TO B CIVIDED OGN EACH SIDE OF THE
T IANGLE YOY1Y2e.

THE GQUADRATURE COEFFICIENTS ARE STORED IN THE ARRAY QUADT, THEY ARE

NUMBERED FROM TUP TGO 39T7TTGOM AND FROM LEFT TO RIGHT.,

NOQUAD : DIMENSION OF GUADT,,NOQUAD = {NH+1)%(NH+2) /2.

700

FUNCTICN L2SUINH s NGGWUAD s GUADT 440 s W1 sW24+YDaY1,sY2)
REAL L2S Gy QUADTINUGUAD)»YO(3)s Y1{2)sYZ(3)42(3)
SMALL=1 +E—-35

H2=1e¢/NH

L2S5G=0.

I=0

NP 1=NH+1

DG 700 I1=1,NP1

D3 700 12=1,11

I=1+1

TO CCMPUTE THE LUCAL SARYCENTRIC COORDINATES OF Z wWeReT. THE
TRIANGLE YOY1Y2e.

CALL BYCO(IlslZ2sH24s2)

TOD COMPUTE THE BARYCENTRIC CRNORDINATES 0OF Z W.ReTe THE LARGE
TRIANGLE T, THE ODJMAIN OF L.

XO=yQ(1)=Z(1)+Y1 (1L )*xZ2(2)+Y2(1)*Z(3)

IF{ABS{X0) o LTaS3SMALL ) XI3=0.
X1=Y0(2)%Z{1)+Y1(2)%Z2(2)+Y2(2)*x2{2)

IF (ABS(X1)sLTeSMALL) X1=0.

X2=] e=XC=X1

lr(AESKX?}.LT SMALL ) X2=0.
XINT=2(1)*%0+2(2)*w 1 +2{3)*w2
DIFF=XINT-U(X0sX1yX2)

IF (AGS{DIFF) o« GT oSMALL ) L2SA=L2SG+QUADT{ I) *DIFF®x%x2
CONTINUE

~ETURN

END

Fig. C1
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A FUNCTION SU32PROGRAM TO SUMPUT

X
AQUACON IS TFHE QUADRATJURE NORMALIZZ CONSTANT.
= 2x%Xl e
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Fig. C2

TO COMPUTE THE bARYCENTAIC COIRDINATES CF A POINT IN THE TRIANGLE
Te )

SUBROUTINE g8YCO(TI1,12-,i,8BC)
REAL BC(3)

sMal L=1.E~-35
BC(1)=1le={I1-14)%H

IF(AES {BC(1 )) LT oSMALL) BC(1)=0,.
SC{3)=(12-1.,)%H

IF(ABS{3C{ 3})sLT«SMALL) BC(3)=0C.
BC(2)=1=8C(1)=3C(3)

IF {ABS(BC(2)) LT «SMALL) EC(2)=0.,.
RETURN

END

Fig. C3

THE L2 NCRM 0OF THE FUNCTION (U - X)
RE I3

=
IN A TRIANGULAR DOMAIN T, WhE THFE RITZ-GALERKIN SOLUTICN TO

i) AT LEVEL Lo

FUNCTIUON _2NURM((Xy 4y DIMX 9D IMM, NL { NHy NOQUAD , QUAD T QUACDON)

INTEGER DIMX»DIbMMyM{DIMM)
REAL L Z2NORM . QUADTINOQUAD ) » XIDINMX) s YOU2)sY1{3)sY2(3)
REAL LZ2SGC
ERPROR=0.
H=1 «/NL
DD 90 T1
DO 90 12
I=M(T11)+
CALL BYC I1, s HeYO)
CALL BYCG{I1l+1+12sHsY12
1+

CALL BYCO(1I 1,I2+1+HyY2)
ARE THE BARRYCENTRIC COORDINATES OF THEE THREE VERTICES OF T,

ERROR=ERRIR+L2SQ(NHs NOQUAD s QUADT + X( T) » X{ I+T11)sX{I+11+1)4Y0sY1,»Y2)
IF{I2.EQeI1) GO TO 50

CALL BYCO(IlsI2+1sHsY1)
ERRCR=ERRIR+LZ2SQINHy NOQUADSQUADT o X(TI ) o X{ T+ 1)+ X({(I+I1+1),Y0,Y1,Y2)

CONTINUE
L2NORM=SQRT{ERRUR* QUACDON)
RETURN

END

[y
i\



APPENDIX D

FORTRAN PROGRAMS TO CONSTRUCT THE DISCRETE EIGENVALUE Ah

This appendix contains four FORTRAN subprograms to
solve the generalized eigenvalue problem

Ahxh = Ahthh

in a triangular domain Q.

The algorithm can be described as [F7]1°

_TK) (Ah_}\hBh)x(k)

L) By ()

NS ) L)), 00 (0

((ks1) L b ()

\ (k+1) L0, ) -

Fig. D1 contains the subprogram RESIDU. It computes

the residual r(k), the vector w(k) and the approximate eigen-
vector x(k)e The inner products (r(k),x(k)) and (w(k),x(k))
(k)

are also computed in this subprogram while evaluating r and
w(k) by setting INNPRO = -TRUE:

Fig. D2 contains the subprogram APRINV. It constructs
an WTq e-approximate inverse Ch to Ah-A(k)Bh by calling the
subprogram Gauss 1listed in Fig. D3 to solve a system of linear

equations.
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where EPS is a given constant. After |v
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The step (1) is not executed unless Iv(k)—v(k_l)l < EPS,

(k)-v(k-l)l is less

than the tolerance TOL or the number of iterations reaches NIT,

the subprogram EIGEN returns a series of sucessive approximate

eigenvalues to the calling program.

- -

b
x

C=———

P
x

13¢

Fig. D1

TG REFINE THE ZIGINVECTOR X AND CCMPUTE THE RESICUAL=(A-EIGVAL .1)X
TO COMPUTE THOD VICTOR R<K OR WKs ACC=AA0, ACLI=AAl s XR=X, RX=R,
INNPRO= . TRUE.
TU REFINE THE EIGINVECTUR Xy ACO=-=C0, AC1==Cls+ XR=R s RX=X
INNPRO=.FALSE,

SUSROUTINE RESIDU{ AR ¢ RAX s NeDIMXRHIDIMMeACO+ACE o SUMRX s NL » INNPRO)
INTEFGER DOIMXRKRysDIMMyM(ODIMM)
REAL XE{IDIMXR) s kX{DIMX~)
LOGICAL INNPRJI

SMALL=]1 «E~-35

DO 100 I1=3,NL

IK1=1I1-1

DO 100 [2=2, IK1

I=mM(I1)+12

YX=RX{1)

IF{INNPRO) YX=0D.

RX(I)=YX+AZORXR{II+ACIH*{XR{I-1)+XR{I+1)I+XR{II-T1)+XR{I-11+1)+
XR{T+T1)+XR{I+I1+1))

TO COMPUTE THE INNER PRODUCT IF INNPRO = .TRUE,

IF{INNPROGANID aABS(RX{I)) eGTeSMALL«ANDGABS(XR{1))GT «SMALL)

SUMRX=SUMRX+XR{I) *RX( 1)
CONTINUE
RETURN
END
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~m===CONSTRUCTION OF THAE #dTQ APPROXIMATICN IRNVERSE

CGPRERATOR & wlTH wEIGHTS wO,W1l.

SUBKROUTINS APRINV(I(AO A1 sCC+sClsW0,sul)
REAL A{24:3),C(2)

A(1l,43)==x0

A2+ 3)=w1

A(1+1)=A0RW0O +6 ¢ XAl %W]

AQPZ2A1 =A0+24 %Al

A(2, 11=A1*WO+AQP A1 XRI1

A(l +2)=58+xA(2,1)
A(2:2)=A0P2AL*XWO+(15e*Al +2 ¢ XA )% UL

CALL GAUSS (A,Ce293981)

co=C{(1)

C1=C(2)

RETURN

WRITE{6.771) )
FORMAT{ THE AUGMENTED MATRIX IS SINGULLARS®)
STGCPR

END

Fig. D2

C OF TFHE L INEAR
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THL METHGD 0OF GSAUSSIAN ELIWMINATICN FOR SOLVING SIMULTANEOUS LINEAR
EQUATIONS.

SAARTIAL PIVITAL CONDENSATIUN IS USEC~- A SEARCH IS MADE IN EACH COLUMN
FO% THE LARGEST ELEMENT EBELOW THE DIAGCONAL,BUT OTHER COLUMNS ARE
NOT SEARCHED.

SUBROUT INFE GAUSS (A« XsN e NP1 *)
REAL A(NsNPL1)yX{N)
SMALL=0.15=-35
ANM1=N=-1
3ZGIN THE PARTIAL PIVJUTAL CONDENSATIOCN
DO 600 K=1,NM1
KP1 =K+1
L=K
SIND TERS IN C3LUMN Ky UN OR BELOW MAIN DIAGCNAL + THAT IS LARGEST 1IN
ABSQLUTE VALUE. AFTER ThE SEARCH, L 1S THE ROW NUMBER OF THE
LARGEST ELE™MENT.
DO 400 I=KP1sN
430 1IF{(ABS{A(TI K} )suTsa33(A(L WK
IF (ABS({A(LIK)) sLELsSMALL) R
IF (LeEQ.K) GO TUO 5GCGO
INTERCHANGE ROwWS L AND Ky FRCOCM DIAGONAL RIGET
DG 410 J=K,.N21
TEMP=A{K yJ}
Al Ky J)=ALL s 4
41C A{(LyJ)I=TEMP
ENTs IN COLUMN K BELOW MAIN DIAGNNAL

m

ELIMINATE ALL oM
500 DU sC0O IZKPE’Q
FACTOR=A(T1.K)/A{K,K)
DN 6500 J=KP1l ,NP1
500 A{TI,J)=A{l yJ)~-FACTURXA( K +J)
BACK SUBSTY ITUT ION
IFLABS{AINSNY )L TaMALL ) RETIIRNI
XANI=A(NJN21L)Y/A{NN)
DD 710 IN=14iNML
I=N~IN
I#1=1+1
SUM=0 o

DO 7060 J=IP1.N
SUM=SUM+AL I» J)*X{J)
XCT)=(A{T NP1 }=SUM)/A{I, I)
RETURN

END

~N N
-0
o O

Fig. D3
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C--=-==-T0 SCLVE THE GENERALIZLOD FTIGENVALUE PROPLEM I A WX = EIGVAL «eBe X
L= WOy W1 ARIZ TAZS Tw3 CUNSTANT COEFFICIENTS QF THE WEIGHT wWe

Comw - PROGEFAM RETURNS THIZ A”POXIMATE ETIGENVALUES, IF THE DIFFERENCE

C SETWEEN TWO SUCCESSIVE EIGENVALUES LESS THAN TCL OR NUMB3ER OF

< [TERATIONS REACHES NIT~1.

Comm== X IS AN APPROXIMATE ZIGENVECTOR OF A, THE INITIAL APPROXIMATICN

C CAN Bz <RANIIM,

Commmm— EIGVAL ¢ AN ARRAY CONTAINS THE SUCCESSIVE APPROXIMATE EISGENVALUES.
Cmmm—- ON FETURN,IT SHC«S THZ NUMBER 0OF RECORDED SUCCESSIVE APPROXIMATE

2 EIGENVALUES .

ol M I STRUCTURE CONSTANTS. _

Cw= - EP3 I A CONSTANT, IF ODIFFERENCE BETWEEN TWO SUCCESS IVE RATIO +CT.
c EPSs RATIO I3 NOT ADO=O TO EIGVAL(IT) . )
C====-=A0,A1l ARE THZ Twu C3NS3TANT COEFFICIENTS 0OF THE LAPLACIAN (QOPERATOR.
C=====NL = 2%%_ .

SVAL s My DIMXRsDIMM, IT ¢NITWEPSsAD AL, TOL oNL

£ M)
REAL X i EIGVALINIT)
HATIOO= Oo
SMALL=1.E-32>
HH=1 o /NL %X 2
HO =0 ¢ 75 *HH
H1=0,125%HH
IT=1

N 999 TTZR=1 «NIT
IF(A3S{EIGVAL{IT)) LEeSMALL) SC TG 33
Cmmm—— SUT UR THE Tw3 CUONSTANT COEFFICIENTS QF THE OPERATOR (A-EIGVALeB)Y .
AAOQ=AD wHO*kiGVAL(IT)
AATI=AL1-H1I®Z {GVALIIT)
C=====T0 COMPUTE THE RESIDUAL RK AND THE INNER PRUODUCT (RKyXK).

33 SUMRX=0.

CALL RESIDU(A»R s MeOIMXRsDIMM4AAD 3 AA] s SUMRIX s NL s e TRUE &)
C=-=—=CALL THE APRINV SJUS3RJJITINE TO CONSTRUCT AN APPROXIMATE INVERSE 0OF
c A-ETGVALSS

CalLlL APRINVIAAO,AAL1sCO»C1sWOsWL)

CALL RESIDUIHR X e Mg DIMXR ¢ DIMM3=CO 4~Cl s SUMUXsNL 3 oFALSE,.)
Cm= === T COMPJTE THE VECTU< WK AND TERE INNER FRODUCT (w&oXK).

AAl1=1 4

AAO =€,

SUMWX=0.

CALL RESIDUIX,RaMy OIMXKs DIMM3AAD 3 AAL s SUNWXeNLs « TRUE o)

SUMWX= SUMWX* H1

IF(ASS(SUMWX ) .LT.5MALL) GO TO S99

RATIO=SUMRX/ 3UM &X

IF(ABS{RATIO-RATITV) .GTLEPS) GO TQ 999

RATIOO=RAT IO

EIGVAL(IT+1)=EIGVAL({IT)+RATIO

IF (ASBS{RATIO) LT TOL) RKE TURN

IT=1T+1

993 CONTINUE

RETURN

END

Fig. D4



APPENIX E

FORTRAN PROGRAMS TO SOLVE THE POISSON EQUATION LU = -AU + AU = f
IN A TRIANGULAR DOMAIN &

This appendix contains FORTRAN programs to solve the
boundary value problem

LU = -AU + AU = f in @
U=g g

Fig; El is the Fortran subroutine SPRANY, to produce
an analysis report of the norms of the residue r and the spec-
tral radius of the linear operator I-Cth, where Ch is an e-
approximate inverse to the discrete linear operator Lh.

Fig. E2 contains the FORTRAN subroutine PRINTG to
print out the vector X, Y or R in an triangular form.

Fig. E3 contains the FUNCTION subprogram U, the exact
solution of LU = f.

Fig. E4 contains the main program to construct the Ritz-

Galerkin solution to LU = f.
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Fig. E1

Crm—— ANALYSIS 97 NURM AND SPECTRAL SADIUS.

C=====THIS SURRJIJTINE CALL>S THE SEQSMT SUBROUTINE TO ACCCLERATE THE
C CONVERGENCE 0OF THE 3 cJJENCE 0OF SPECTRAL RADIUS, AND DOUTPUT A

C LISTING OF THZ ANALYTICAL RESULTS. '

C==-===K IS5 THE OJRDER UF TRANSFORMATION

O i A IS A KPl gy KP2 LuMAy ARKRAY, AHERE KPl = K+1, KP2 = K+2,
(=====8SPECTR ¢ A [T B8Y 5 REAaL ARKAY TO STORE THE SPECTRAL RADIUS AND
C THE SMOOTHED 3PECTRAL ~ADIUS.

Ce=-- ~UORDER ¢ A IT BY 4 INTZGEFR ARRAY TO STCRE TrHE QRDER OQF
C TRANSFOURMATION OF THE SMCOTHED SPECTRAL RADIUS.

SUSRTJUTING SPRANY(NURMISPECTR,CRDERK, ITs AsKP1 4KP2)
INTEGER ORUER(IT.4),13RD(4)
?EALINGRM(ET)’SPECTR(iTo5);P1(2).92(Q3.A(KPI,KPZ)
T1=iT-1 .
C===—-=TC GENERATEZ A SEQUENCE OF SPECTRAL RADILES,

4a SPECTRA{I 1 )=NORM{I+1)/78N0OKRM(T1)

83 KPPl =K+1
KPZ2=K+2
OJ 4'

-
P

QO T0O 1
+GTel ) G2 TO 39
O TD QEDUCE Tﬁ_ ORDER JF TRANSFORMATION BY 1, IF THE NUMSER OF TERMS
C IN THE SEJJENCE ARE NUOT ENDOUGH TO CARRY NUT THF REQUIRED ORDER 0OF
C TRANSFURMATIONS.

K=K-1

GU TU 33
"""" CALL THE 52 305MT SUBKIDJUTINE TLC PERFCRM A NCN-LINFAR TRANSFORMATION.

1 CALL SEQSMTI{IPECTROL1s1) s IT2,KsySPECTR(14+1+1)s1IT3,A,KF1 +KP2
Gl OROER{1, 1))

-

O

1 C
37 FQRMAT (=¥, " ITEKAT NI RM NORM(TI)/NORM(I-1) TRANSFCRMA
CN ORDER/SMOOTHED SPcCTRAL RADIUS /4 ' 135X, 408X, *ITERATION *»

Ge0) & Tc
: F"MINE HOwW MANY TIME OF ITERATIVE TRANSFCORMATICNS HAS BEEN
C PERFCRMEC,
ITER=(IT=-2)/(2
IF(ITER «aGT 04 )
83 WRITE(A,87) (
Cowe SUTPUT THE AN
112=0
DO 80 I=1,IT7

-1

EC

+E£Qs 1) GO TO 10

N~

1

2

LEeJ]l «ORIT-1I1..E4Jd1) GO TO 20
=SPECTR{I1—-Jl +12+1)

2)=0RrD 2}
U
S

ZR{I1-J1,

PECTR(Il,1)
NORM(I)
IF(IIZ «EQe 0) GU TU &5
WERITE{6+70) 11+(PL(J)ed=13T1T)s (IORD(U1I4P2(J1)
70 FORMAT{2XyI12 04X +E1 G e712XsE144734X94(1Xs12,2X,E14
GG TO &0
655 WRITE(E+7D) 11, (P1L(J)H»J=1,1T1)
80 CONTINUE
RETURN
END

L \VIEL ] OﬂerG}'|NHHH

et () gt G ) et ) bt ot T g e
HHZNm~y

UV VO et it T oot e st =t et g 2t
A, ZN T~

»112)
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Fig. E2

P INT OQUT THEZ CONTENTS 0OF VALUES IN THFE ARRAY X,R OR Y IN A
TEITANGULAR FORM.,.
K SPECIFY THe LEVEL AT 4HICH X 0OR R TC ERE PRINTED,

TO PRINT X IF XYkK = 1.
TO PRFINT ¥ IF XYk = 2.
TC PRINT R IF XYR = 3.

SUBRCUTINE PRINTG(Xs Rs YsLKsMyNsDIMXRyDIMY,DIMLK D IMMsXYRsK)
INTEGER DIMXRsDIMYsDIMLK $DIMN 4XYRGLK(DTMLK)Y sM{DIMM) 3 NCDIMLK )
REAL X (DIMXR),K{DIMAR)s Y (D IMY),P(8)

K)+1
IF(XYRs.NE.Z) GO TO 79
TO PRINT THEL INTERIOR POINTS OF Ye

DO 200 I11=1I£0,1K1
J3=N(K Y +M{ 113

IK3=1

Ika=11

IF{XYR+NE.Z2} Gu TO 72
IK 3=2

IKa=11-1

DO 25C 12=1I1K3+1r4

ONLY PRINT SQUT TrH:e FIRS3T 3 VALUES IN EACH RCW.
IF(JeGTe8) GO TU 24

I=J03+12

GO TO (15915417 ) XYR

P{J)Y=X(1)

CONTINUE
I13=Jd-1

FORMAT (8E10 .7
WRITE {(6.66) (
J=1

CONT INUE

J=Jd-1
IF(JaGT o0) WRITE (5,695) (R(I),y1I=1,J)
RE TURN

END

)
PlJ) sJd=1,13)

Fig. E3

FUNCTICN U(X0s X1isX2
U=SIN{X0)%SIN{X1)*S
RE TURN

END

)
IN(X0~-X1)
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Fig. E4
Co-===T0 STCLVE THE LINEAK SYSTEM AeX = ¥ WITH THE HOMOGENEDOUS BOUNDARY
C CUOUNODITICN, THOSE BOUNDARY VALUES OF X AT EACH LEVEL K MUST B8BE
C ZEROQOIZED »
Cwme==WITH THE INHOMUGENEQUS SB0OUNDGARY CONDITINON X = G.THE BNOUNDARY VALUES
C OF X AT TAZ TOP LEVEL L EQUAL TO TrHE CCRRESPCONDING VALUES 0OF CsAND
C ALL THE BJUNDARY VALJSES COF X AT THE OTFHER LEVEL K ARE SET TC ZERCQC.
INTEGER ORDceR{40,4)
INTEGER LK(3)sM{(33)yN(53)
INTEGER DIMAR,DIMY 0 1MM
RI AL NONM(Au)'x(774)-R(??4).Y(561):A(5.6) L2ERR({S )+ RATE(4)
RE AL AAO(S):AAI(5)-CCO(5)1CCI(5),Q*AD?(E):LZNORN-XX(3)
DIMENSICN SPECTRA{40,4,5)
LOGICAL UNZPT,SZ VENP
FQUIVALENCE (XX {1)eXI)p {XX(2)eX1)e{XX{32)sXx2)
F(XJ;Xl1X’}—J.*SIN(Z.*(XO‘X1)}'SIN(Zo*XO)+SIN(2u*X1)’
39447842 %«SIN{XCIESIN(XI)*SIN{XO=-X1)
bMALL‘I.t—‘ﬁ )
Cmm—— IF THE 1=23INT NUMERICAL QUANDRKATURE IS USED, CNEPT= ,TRUE .
CNEPT=eTRJE s
Corm=—===[F THE 7-P3INT NUMERICAL CUACRATURE IS USED, SEVENP=,TRUE.
SEVENP =, TRUZ »
DIMM=33
DI MY=561
NDIMXR=774 ‘
Cro=m—— AD s Al ARE THE TwU CONSTANT CCEFFICIENTS OF THE DISCRETE LINEAR
C OPESRATOR A
AD=6
Al =—1 .
L= SET UP THE QUAORATURE COEFFICIENTS FCR COMPUTING THE (2 NORM
NH=Z
NOGQUAD=6
QUADT({1)=0.,
QUADTI(2 ) =1
QUADT(3)=1,
QUADT{4)=0D.
QUADT(S ) =1,
QUAD T 6) =0,
IF{ .NOT .CGNEPT) GU TO 77
10 DO 112 L=2,:5
Li=L-1
K=L
NL =2 % L
H=1./NL
HAR=H %2

QUACON=FH/3,
EIGV=-52.31
C-——-=-=T0 CCOMPUTE THE TWO CONSTANT CDQEFFICIENTS OF AK AND CKe
BK=EIGV*0.1235%HH
DO 600 I=t.L1
K=L~-1I+1
AAOD{K)= 6s%{1e+BK)
AA1(K)I=BK~-1.

C s o o e TO CCMPUTE THE APPROX IMATE INVERSE CK.
CALL APRINV {AAG(K) sAAL1{K) L CCO(K)YCC1 (KY)
BK=4 % 8K

00 CONTINUE
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32 FURMAT( =~
Wi TTE(6 482)
38 FORMAT(? 1
DO 74 J=2.L )
WRITE(OE+85) JsAA0(J)sAAL (U CCO(I)sCCLILY)
74 CONTINUE
Cmm——— CONSTRUCT THE STRUCTJURtE CONSTANTS, M,
M(1) =0
IK I=NL +1
DO 30 I=2, IK1
I1=1~1
3¢ M I)=M(I1)+11
C====—=CCNSTRUCT THE STRUCTURZ CCANSTANTS, LK.,
LK{1)=2
DO 50 I=2,L
S0 LK{I)=2%LK{I-1)
(== === COMSTRUCT THEZ STRUCTURE CCNMNSTANTS, N.
N(L)=D
DO 40 I=1,011
Kl=t~-1
40 NIK1I)I=N(KL+1 )+ (1 +LRK{K1) )R 1+LK(K1+1)}
IKl=N(1)
DG 777 I=1,1IK1
X{I)=0oe
777 R{1)=0.
SQAONM=0 .
IK1I =NL+1
fmem—- AFPLY THE
o 768

K¥soXse *AAO0*, 18X, TAA 1T 41 8X,'CCC* L,18X,'CC1L*%)

!IZ,IXDQ(jK:EIﬁ.?))

-BPOINT OR 1-PCINT FCRMULA TO SET UP ThE VECTOR Y.

! 1+I24sHsXX)

Com===FLESET THE SOUNDARY VALUES 0OF X AT THE TGB [ EVEL L.
TF(I1eEQ eIK1I elkel2¢E00l eDNReI2.FQeT1) X{I)=U( X004 X1 sX2)
IF{CNEPT) GO TGO 760
R T)=F X0y X1 X2)

756 CONT INUE
FO=1e5%HH
Fl=HH/12e
H00 H2=2 « ¥HH
20 100 I1=3,N0L
IKZ=11-1 "~
DO 1C0 [2=2,1K2
I=12+M(11)
IF(CNEPT )Y GG TU 405
Y{(I)=FOXR(I)D+F1%X(R(I=1)4+R(I+1DV4R(I=-T1I+R{I-IT1+1)+R{I+TI1)+
* RI+I1+4+1))
GG TGO 170
405 CALL BYCO{I1l +I12sHsXX)
Y{(1)=H2*%F{XJsX1sX2)
170 IF(ABS(Y (1)) eGT aSMALL) SCAM=SCONM+Y (I )*%2
100 CONTINUE
EPS=1.E-08

C=m=e===COMPUTE THE NO&RM OF Y.
NL2={NL=-1)*x{NL-2)/72
SOMNM=SART(SANM/NL2)

IF{SQNM.GT s SMALL ) EPS=EPS3S®SGNM
NI T=40

Com===ZERDIZED THE VECTOR R
IK1=N(L1)

DO 750 I=1,1K1
750 R{I1)=0.
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CALL FARIN TOD SOLVE THE LINEAR SYSTEM ALX = Y.

CALL FAPRPIN (XsReYsINURIVMeL KN gNySIMXRZDIVMYSLsDIMMSITANITEPS,s AAO,AAL
s CCOLCC1)

ENTER THE SPKANY SUBRISUTINE T3 ANALYSE THE NORM AND SPECTRAL RADIUS

AND QUTPRPUT THE ANALYTICAL RESULTS.

K=4

KP 1=K+1

KPP z=zK+2

CALL SPRANY {NORMSPECTRICRDERIKy ITesAWKP1,KP2)

PRINT QUT THE RITZ-GALZRKIN SEOLUTICOCNS.,

WRITE(B,122)

FORMAT (V- RITZ=-GALERKINMN SCLUTIONS, X =%)

CALL PRINTG{I{XsRIVsLK s My NICIMXROIMY L +sDINMS] L)

PRINT QUT THE INTERIOR PCINTS 0OF Y.

FOFMAT( Y- INTERIOR FJINTS CF Y =t)

WRITE(H,121)

CALL PRINTGIX sReY s LKsMaNyDIMXR,DIMY,L,DIMM,2,0U)

IKI=NL+1

PRINT OUT THE EXACT SULUTICNS OF Xe

DO =7 I1=1,1K1

DO 8&87 12=1,11

ChAatl BYCO{IisllsHseXX)

I=I2+M{11)

RETI)=UL X0y, X1 eX2)

CUNT INUE

FORMAT (¥ = CEXACT SOLUTICNS, X =%)

WRITE(B6.,123}

CALL PRINTG(X sR Y L KsMy NsyDIMXRyDIMYS,LsDIMM, 32,L )

ERHEOF ANALYSIS ¢ COMPUTATION OF L2 NCRM AND RATE CF CCNVERGENCE.

L2ERF(L)=L2Z2NURM (X,MtDIﬂYoOINM'NLoNH,NCOLAD,QUAOToOUACGh)

FORMAT (Y L2ERR= ! ,E16.7)

KR ITE (H46) LLERR(L)

IF(L-GT o2) RATE{(L=~2)={ALOGIL2ERR{L1I)-ALUG(L2Z2ERR{LI)) ZFALNG{2.)

COMTINUE

PRINT QUT THE ANALYTICAL RESULTS.

FORMAT (* =1, ' LEVEL HY, 18X 2 NORMT, 12X, *CONVERGFENCE RATE®)

WRITE(B,E1)

FORMAT(3Xs 144X E14e7+:2(5XsE1447))

L=5

DO &2z I=2sL

H=2 4 %%{~=1)

IF(l EQe2) GO TO 67

WRITE{ 6463} 1+H+L2ERR(I) +RATE{(I-2)

GO TO 62

WHITE{(6,63) 1,H,L2ERR(I)

CUNTINUE

IF(«NUT«SEVENP) GO TO €4
DNEP T=,FALSE .
SEVENP = ,FALSE «

G8 TO 10

STGPR

END
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