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ABSTRACT 

This Thesis discusses the triangular finite element so- 

lution to second order elliptic boundary value problems. The 

Barycentric Coordinate system, which some engineers call the areal 

coordinate system, is used throughout in this Thesis. Some funda- 

mental parts of vector calculus are developed in this coordinate 

system, and are applied to the triangular finite element method. 

We also present a new approach to error analysis based 

on the computation of Peano-Sard kernels CF63 of error functionals 

in the Barycentric Coordinate system. Some numerical quadrature 

formulas for the approximation of the load vector = £<f> dp 

are derived, and error bounds are estimated. 

Several approximate inversion methods for the construc- 

tion of an e-approximate inverse to A in the iterative solution 

of the linear system Ax = y are discussed. These procedures 

include the truncation (TRq) method [B3], the least-squares 

CLSq) method [B33, the weighted truncation (WTq) method and the 

interpolation (INq) method. These e-approximate inverses are 

applied to the iterative algorithm FAPIN CF43 to solve the linear 

system Ax - y. 

To illustrate the theory, three boundary value problems 

are solved numerically using piecewise linear splines in the Ritz- 

Galerkin method. Inhomogeneous boundary conditions are used in two 

i 



of the problems, and in one of these the differential operator is 

singular. 
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CHAPTER 1 

FUNDAMENTAL CONCEPTS 

1.1 INTRODUCTION 

We begin this chapter by introducing the Barycentric 

Coordinate system, which some engineers call the areal coordinate 

system, and which is essential for a study of the triangular finite 

element method. Some fundamental results are given in this chapter 

that serve as a basis for the chapters that follow. 

Sobolev spaces and Sobolev norms are defined in terms of 

Barycentric^oordinates in Section 1.6. We state the generalized 

Peano-Sard Kernel Theorem in Section 1.7, followed by an example 

on the application of the Theorem and the construction of kernels 

of the error functional ECf)« Further demonstration on the appli- 

cation of this Theorem will be given in Chapter 3. The non-unique- 

ness of the kernel is shown by giving an example. 

1.2 BASIC NOTATION 

Definition 1.2.1. Let T be a set of triangles in a bounded poly- 

gonal domain Q. We say T is a triangulation of (CS4], [PI], 

CB61) if 

Ci) for each pair of distinct triangles in T, they either inter- 

sect at exactly one vertex or intersect on one complete side or do 

not intersect at all. 

1 
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(ii) the union of all the triangles in T and their interior is 

We will denote by T the triangulation of such that 

h each element of is an equilateral triangle of side length equal 

to h. We also denote by the set of all vertices of triangles T 

in T . Elements of are called nodd6 of A node of is 
h    

called an AJvtQJii.oK node, if it does not lie on the boundary of 

O 

The set of all interior nodes will be denoted by 

Let L be the integer lattice in the plane. Since every 

element of L can be written as a linear combination of (1,0), 

(-1,1), (0,-1) over the set of integer W, we can define a norm, 

called the^hexagonat noAm on L by 

3 
|a[ = min { I |k.| : a - ki(l,0)+k2(-l,l)+k3(0,-l), k. e M }. 

j = l J J 

ll 
For each triangulation T of there is an 1-1 

subset r, of L with h 
h 

the property that : for every T in T , the distance between any 

two of the corresponding vertices of T in is one. Elements 

o 
of will be denoted by X^, where a £ Fj^. We denote by F^ 

o o 
the-set of a £ F, s.t. , X £ .. h ah 

o 
We observe that for every member X of 0, , the set a n 

{ X^ £ : lct--3l = 1 } form a hexagon in with centre X^; 

this hexagon v/ill be denoted by X + H. to 'a 

Denote by P^(J2) the space of polynomials of degree ^ n, 

by C(n) the space of all continuous real valued functions defined 

correspondence between the set and 
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on and by tlie space of real valued functions with. 

continuous derivatives of order up to n. 

Denote by the class of q-times differentiable 

real valued functions which are piecewise polynomials of degree n 

in each of the triangular elements Tex. In particular, we will 

refer to the elements of as ZJJIQJOLX CF3I. 

Definition 1.2.2. A subset Z of a linear space X is an gj 

Apace iff Xxi + ^ 2 whenever Xi,X2 e Z and X e R. 

A function ^ : X X is aijine iff 

whenever xi,X2 e X and 

X e R. 

Remark : Every affine function can be written as a linear function 

plus a constant C, thus, an affine function is linear iff the 

constant C is zero. 

,1.3 BARYCENTRIC COORDINATES 

Let T = A0A1A2 be any triangular element in T. Consider 

the affine space X, generated by the three vertices of T, i.e. 

X = { I qA, : I q = 1 }. 

■Since AQ, A^, A2 are not collinear, they are affinely independent, 

^and any point P e X can be uniquely represented as 

P = ^1-^1 "*■ ^2^2 Co + C2 = 1 (1.3.1) 



Denote by i = 0, 1, 2 the three affine functions 

defined by the equation j » where 6 denotes the 

Kronecker delta function CCF31, CLll). Then, we have 

qCP) = C. for i = 0, 1, 2 C1*3.2) 

Since the expression (1.3.1) is unique, the point P 

can be represented as 

P = CCoCP)>^iCP).?2CP)) or simply PCCo>?l>?2)- 

We will refer to this as the Barycentric Coordinates of P w.r.t. 

the triangle T = A0A1A2. 

If P is in the interior of T, then we have 

0 < < 1, i = 0, 1, 2. 

Geometrically CtS4l, CH41), 

is the ratio of 
1 

Length of PQ Area of PA^^^A^_^ ^ ^ 

Length of A.Q Area of A.A. ,A. , 
1 1+1 1-1 

Fig. 1.3.1 

Where Q is the point of intersection 

of the two straight lines A.P and A. ,A. , as shown in 

Fig. 1.3.1. For this reason, some authors refer to this as an 

Areal Coordinate system. We might also use the term Affine Coor- 

dinate system. 

We observe that ?^CP) remains unchanged for all P 

lying on a line parallel to the side A^^^^A^ , in particular 
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Any polynomial of degree n on can be expressed 

uniquely as a homogeneous polynomial of degree n in the Barycen- 

trie Coordinates w.r.t. a specific triangle T = A0A2A2 in T, 

or else as a polynomial of degree n in any two of the coordinates. 

For example, the polynomial which vanishes on all three 

sides of the triangle T is equivalent to the inhomogeneous poly- 

nomial 51^2 ” ‘ 

In order to compute the integral of polynomials over 

individual triangular element in T, it is convenient to express 

the polynomial in terms of Barycentric Coordinates locally. But 

then another problem arises : the same polynomial will have dif- 

ferent local expression over each of the triangular elements. This 

problem can be solved by establishing the relationships between the 

Barycentric Coordinates of a point X e ^2 w.r.t. two different 

triangles in x. 

Let = A0A2A2 and Tg = B0B2B2 be any two triangular 

elements in x. Suppose C?0J^1>^2) (no 

Barycentric Coordinates of a point X ^ Q w.r.t* and Tg 

respectively. It follows from Ci«3.1) and (1.3.2) that X can be 

represented as : 

X = 5IA2 + ^2^2 == no^o niB2 + H2B2 (1.3.3) 

B. B. B. 
Denote by > i = 0, 1, 2 the Barycentric 
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Coordinates of B. w.r^t. T 
1 i 

Then we have 

\ = io% * sAi + (2^AZ i = 0, 1, 2. 

Substituting these into (1.3.3), we have 

X = I qA. = I n.d = I d 
i j i i j 

Since the representation of X in terms of AQ, AI, A£ is unique, 

we have 

B. 

5i = I i = 0, 1, 2 

. J 
(1.3.4) 

It is plain that the transfoimiation ^(no>ni,n2) = 

described by (1.3.4) is a linear transformation; the map ^ can 

be written in matrix form as : 

and 

$ = 

Bo 
CQ 

BQ 
I C2 

^(no>hi^n2) = 

Bi 
Co 

Bl 
Cl 

Bl 

C2 

B2 
Co 

B2 

Cl 

B2 

C2 

no 

ni 

L n2 

T 

(1.3.5) 

Thus, if f is a function mapping into R, then by virtue of 

(1.3.1) and (1.3.2), there exists a function 
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F : ^ s.t. 

£(P) = FC5O(P).«ICP3,52CP)}‘'' CI.3.« 

i.e. the function £ can be expressed as a function F in terms 

of the Barycentric Coordinates of P w.r.t. T^. It follows from 

Clo3.4) that the function f can also be expressed as a function 

in terms of the Barycentric Coordinates of P w.r.t. Tg as 

f(P) - F-#(noCP),niCP),n2CP)) Cl.3.7) 

where $ is the linear transformation characterized by the matrix 

$ given in (1.3.5). 

In particular, we are interested to look at the six 

matrices of the hexagon A^+ H. 

As shown in Fig. 1.3.2, let 

T. = A A A be the six triangles 
j a a. a. , 

2 J+1 

of the hexagon A^+ H. If 

FCCO>?1>^2) IS an expression of 

a function f : R in terms of the 

Barycentric Coordinates w.r.t. Ti, then. 

«3 

Fig. 1.3.2 

F*$j(5ovCi>^2) Is an expression of f in terms of the Barycentric 

Coordinates w.r.t. T-. The six linear transformation are 
2 2 

given by : 

1 0 o' 

010 

001^ 

t This representation F is not unique. 
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$2 = 

$3 = 

$4 “ 

$5 = 

1.4 DIFFERENTIATION AND INTEGRATION IN BARYCENTRIC COORDINATES 

Let T = AQAIA2 be a triangle in ^2. Define the first 

order linear differential operator w.r.t. the Barycentric Coordi- 

nate CF63 by D^C^^) = 0 and i..e, the counter 

clockwise normalized derivative of a function f in the direction 

parallel to the opposite side of A^. 

If f is a function mapping ^ into R, and if 
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is an expression of £ w.r.t. the triangle T, then 

we have 

D.£ = |^ 
- 35i.l 

(1.4.1) 

Let £ and g be two real valued functions defined on 

Q, If the derivatives D^f and D^g exist, then the operator 

has the following properties : 

1. D^Cf+g) = 

2 c constant c e R 

37 y D.f = 0 
“ 1 

4. D.Cgf) = gD^f + fD^g 

£ f 5, D. (£) = ^ . ^D.g if g 0 
iV g g*- 1 

(1.4.2) 

Cl.4.3) 

The differential operator can be extended to any order 

through D^f = Do^Di^ol^f, where a = (ii,i2>i3) « D® and 

D9 denote the ^e.ntity op2AjoXoK. We will denote by 

[aI = ii + i2 + i$ the order of derivative of f. 

Define f dy the normalized Lebesgue integral of f 

on a measurable subset E of T , s.t. 1 dy^ = 1 

Define | f dy^^ the normalized Lebesgue integral of f 

on a measurable subset E of s.t. 
a 

1 du^ = 1. 
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If is a bounded polygonal region and x is a tri- 

angulation of Qj then we have 

f yp = I w CT) 
“ Tex ^ 

f dy. 

In particular, if ^2 is an equilateral triangle of unit 

side length and x ^ is an equilateral triangulation of we 

■L 

have ^ ^ ^ 

£ = h2 5; 
n 

f dp. 

Tex 

As shown in Fig. 1.4.1, the triangle T = A.A. A. , 

can be transformed into the standard triangle A(1,0), B(0,1), 

CC0,0) by using the affine function which maps A^ C, 

and A. B. Thus if f : T R, then there exists a function 
1-1 ' 

F : ABC R s.t. 

f(P) = FU,n) 
Cl.4.4) 

where C^,n) is the affine image of the point P e T. The 
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Jacobian of this transformation is 2. Thus, the integral f du. 

can also be written as : 

f f du„ = 2f[ ] 
^ ‘'•'ABC 

Define 

T 
F dcdn = 2 

n 

0*' 

1-C 
F dcdn (1.4.5) 

f(X) dX as the Lebesgue line integral of f along the 

line A. ,A. . normalized by 
1+1 1-1 ^ 

•Ai-i 
1 dX = 1 

The following lemmas are some important properties of 

line and surface integrals : 

Lemma 1.4.1. Let f : T R, if D.f exists on the side A. A. . 
  —. 1 1+1 1-1 

then [ ^‘^D.f(X) dX = f(A. ) - (1.4.6) 

1+1 

Proof : Using the affine transformation to map A. A. , onto 

C0,1] through A. -+ 0 and A. 1, then there exists a funcr* 
1+1 1-1 

tion F : CO, 11 ^ K, s.t. fCP) = F(t) inhere t is the affine 

image of P. Thus, 

1 A. , 
1-1 

1+1 

D^f(X) dX = F'(t) dt = F(l) - F(0) = £(A._j) - f(A.^p 

Lemma 1.4.2 
'^i-1 

\+l 

gD.f dX = (gf) (A. - (gf) (A.^j) - 

A. 
1-1 

fD.g dX 
1^ 

i+1 

Proof : The result follows from (1.4.3) and Lemma 1.4.1. 

Lemma 1 .4.3. j D^f dp^ = 2 A. 1 
A. , 
1-1 

f dX - 2 
^i+1 

A. 
1 

f dX 

Cl.4.7) 

(1.4.8) 
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Proof : From (1*4.1) and (1.4.5), we have BC0,1) 

D^f = 2 
ABC 

,3F 9F, 

By Green*s Theorem CH21, we get 

dy^ = -2 (([) F dC + (j) F dn) 

A(1,0) 

The symbol j) denotes the line integral along the three sides of 

-the triangle CAB in the counter clockwise direction. 

Since ^ + n = 1 fot all point P(5,n) on AB, we have 

B rB 
F d^ + 

fB 
F dn = F d(?+n) = 0 

It follows that 

D^f dy^ = -2( 
A 
F d^ + 

fA 
F dC + 

B 
F dn + F dn) 

= -2( 
A 
F dC *«■ F dn) 

B 

Since 
i+1 

f dX = 
A. 
1 

F d^ and 
A. rC 

f dX = F dn, we get 

i-1 
B 

D^f dy^ = 2 
A. 
1 

A. , 
1-1 

f dX - 2 
d+1- 

£ dX. 
A. 
1 

Lemma 1.4.4 gD^f dy^ = 2 
A. 
^ fg dX - 2 

A- , 
1-1 

1+1 
fg dX 

A. 
1 

(1.4.9) 

Proof : The result follows from (1.4.3) and Lemma 1.4,3. 
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We shall end this section by stating two very useful 

formulas of line and surface integrals of polynomials of the form : 

Si S2 S3 

^2 ^3 5 where s^, i = 1, 2, 3 are three non-negative integers. 

Lemma 1.4.5. 
Si S2 S3 

Cl C2 C3 
A. , 
1+1 

dX 
SiiS2!S3! « 

(S1+S2+S3+I)• 0*^i 
(1.4.10) 

where 6 is the Kronecker delta function. 

Si S2 S3 

Proof : If s^ 0 then the function ?i K2 C3 vanishes on the 

side A. ,A. , and hence the right hand side of (1.4.10) vanishes. 

If s. = 0, then 
1 

A. , Si S2 S3 
^ €2 53 dX = 

^i+1 

A. , s. , s. 
dX 

. 1-1 1+1 
A. 
1+1 

It follows from the affine transformation defined by 

A.^,+“ 0 and A. +* 1 that 
1+1 1-1 

A. , s. , s. , 
dX = 

A. 
1+1 

is. s. 
t ^“^(1-t) dt 

0 

^plying itegration by parts to the above integral, the result 

(1.4.10) follows. 
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Lemma 1.4.6. 
" Si S2 S3 

JT 

SI!S2IS3! 

(S1+S2+S3+2) I 
(1.4.11) 

Holand and Bell [H4,p.84] and T. H. Lim [Ll,p.24] have presented 

a proof of the Lemma. 

1.5 THE DEL OPERATOR V AND THE LAPLACIAN OPERATOR A 

Suppose U is an open subet of and .U is a real 

valued function on Let e be a unit vector in then the 

derivative of U at a point x c in the direction e is 

defined ^ the limit 

6^U(X) = ^ (1.5.13 

when the limit exists. 

If U € (fi), then there exists a vector function 

(CWl,P.159], IH3,P.374]) 

Vu : n -> s.t. 

e*VU(X) = D^U(X) (1.5.2) 

for all unit vectors e in The function VU is called the 

QAwiie.yit of U. 

If U c C^(^2), then the operator A defined by 

AU = V-VU is called the LapZacUan opeAcUo^. 

Let X be a point in the triangular element T £ 

Denote by e. the unit vector in the direction A. A. , 
1 1+1 1-1 
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then the vector VU can be written in terms of e.^ as follows 
i±l 

VU = X. e. + X. e. , 
1+1 1+1 1-1 1-1 

where X. are to be determined. 
1+1 ^ 

It follows from (1.5.2) that 

= e. -VU = X. ,e. -e. + X. e. -e.^, 
h i±l i±i 1+1 1+1 1+1 1-1 1-1 111 

(1.5.3) 

Since equilateral triangle, we have 

e.'e. = > 1 
1 3 ' ' 

if i = j 

±f ± ^ 3 

(1.5.4) 

By solving the above linear equations, we obtain 

+ 2D. U) 1+1 3h i-i 1+1 

+ 2D. H) 
1-1 3h^ 1+1 1-1 ^ 

It follows that the gradient operator has a representation of the 

V e. ,-J-(D. + 2D. ,) + e. —J-(D. + 2D. ) 
1+1 Sh'' 1-1 i+1-^ 1-1 3h^ i+1 1-1^ 

(D. - D.) + e. ,(D. - D.)] 
3h 1+1 1+1 1^ 1-1^ 1-1 1^ 

form : 
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Since Je. = 0, we have a symmetric representation of V as 
i 

follow : 

(1.5.5) 

Lemma 1.5.1. Let U be differentiable in an open subset of 

then at each point X in for which VU(X) f 0, the 

vector VU(X) points in the direction in which the derivative of 

U is numerically greatest, and the number |VU(X)1. is equal to 

that maximum derivative. 

Proof : Let e be a unit vector at a point X in for which 

VU(X) f 0. By equation (1.5.2), we have 

where 0 is the angle between the two vectors e and VU(X). 

The inequality (1.5.6) is sharp iff 

DgU(X) = e-VU(X) = lvU(X)lcos0 < 1VU(X)1 (1.5.6) 

VU(X) 
® Ivuo^ 

completing the proof. 
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Lemma 1.5.2. Let T e If U and V are two differentiable 

functions in the triangle T, then 

7U-MV = ^ CD^VI Cl.5.73 

Proof : It follows from equation that 

VO'VV = clr.Ie.D.U)-(|^ ye.D.V) 
^3h “ 11 ^3h “11^ 

9h^ 
Tie.-e. CD-U3 CD.V) +e.*e. CD-U)CD. V) + 
V 11^1"^^!^ 1 1+1 ^ 1 ^ 1+1 

ei-e,.^CDiU)CDi.^V)] 

= g^Ii:CDiU)CDiV) - |CDiU)(D,^^V.D..^V)] 

= QHZ- ICCPiUHDjV) + j(D^U)CD^V)] 
i 

= 3|zI(PiU)CDiV) 

Lemma 1.5.3. In every Tex, the Laplacian operator can be 

expressed as : 

A CI-5.8) 

Proof : It follows from equation (1.5.5) that 
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= V-? =■ ye.D.)’(^ le.D.) 
^3h “11'^ ^3h “11'' 

1 1 

4 V 
9h^ I(®i ^i+i^i,i+i^ ®i°®i-i^i,i-l^ 

= ¥i,i^ 
1 

= 3H-?Vi 

completing the proof. 

1.6 SOBOL^ SPACE H^(Q) 

Denote by H (S^) , k > 0 the Sobolev space of real valued 

functions which together with their generalized derivatives up to 

th 
the order are square integrable over [Tl]. It is a linear 

subspace of (Q). 

Denote by ;(u,v) I uv dp 
Tex •'T 

usual scalar product of the Hilbert space 

the 

Denote by (u,v) I 
|a|sk h^loi •' 

(D“U}(D“V) dv_ 
T 

by (u,v)j^ ^ = I T* Sobolev space H (J2) 

is a Hilbert space with the scalar product (u,v)j^ ^ CTl,p.55]. 

The corresponding Sobolev norm will be ||ulL = C(u,v), 2'^, 
Jx ^ UU ix y u6 
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Denote by lu[^^={J] (D^^u)^ dy , 
:k ^T 

by l"lkn=^, ? l4=] 
-2k 

Q 
Sobolev semi-norm of u 

on the triangle T and the domain Q respectively. 

1.7 PEANO-SARD KERNEL THEOREM AND ITS APPLICATION 

V<ia.¥io-Scih.d KoAmZ Tke.oAejn : Let ^ be a bounded polygonal domain, 

k k 
If E : H (fi) -> H (f2) can be represented as Kf dy^ for some 

K e s"’*'(n), and E(£) = 0 for all £ e ?’'(«), then 

3 Ka £ , |a| = k s.t. 

(1.7.1) 

A proof of the Theorem was given by P. Frederickson [F63. 

In the one dimensional case, we have the trapezoidal 
eb 

vnijmerical quadrature for the integral f dx, which is exact for 
^a 

polynomials of degree < 1, in the two dimensional case, we also 

f dy^ have a similar numerical quadrature for the integral 

1 r I f(A^), where A^, i = 0, 1, 2 are the three vertices o..e 

"of the triangle T. Clearly, this numerical quadrature is exact 

"for polynomials of degree ^1. By applying the Peano-Sard Kernel 

Theorem, we have the following lemma : 
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Lemma 1.7.1. 

then E(£) = 

where K. = - 
1 

f 
Proof : 

Since , 
1+1 

ly, we have 

E(f) 

_ If f e H^(Q) and E(f) = 

£ - J = jl 

f du - 4^f(A.) > 
T i Oi 1 

[f-f(A^] dy^ 

¥ 
1 

[£-f(Ap] dy^ 

fA. 
i-I[2 i C£^£(A.))i(5._i-5.^j) dX 
1 "A. 

1-1 

/\ • 
1 

(1.7.2) 

A. 

and 5. , vanish on A. ,A. and A.A. , respective- 
1-1 1-1 1 1 1+1 ^ 

fA. 
ij[ ^ (£-£(A.))(l-5,) dX + 
i JA. ^ 

1“1 

1 + 1 

A. 
1 

Cf-£(Ap)(l-q) dX + 

1 
/ (f-£(Ai))D,^^(5,- dX - 

^-1 

'^■'^(£-£(A.))D._j(C.. ^p dX 4- 
A. 
1 

Vi 

£. D.£ dX 
^l-l^l+l 1 

fA. - 
E. D.£ dX - i 

- ^i-l^i+l 1 2 A. 
1 
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= lie (f-f (Ai) (€i- 
A. 

A. 

A. 
1-1 1-1 

(f-£(Ap)(S.- isp 
A. 
1+1 

A. 
1 1 

2j «i-i5i.ie>i,if <iV 

1 " A. . 
1-1 

i+1,, 1-2 

A. 
tv - 

C. ,5.^,D. .£ dti„] 
,1-11+1 1,1 T 

= (q-|5?)CD.£^D,.^£) dx 
1 •'A 

1-1 

A. 
^*^(5.- 4€?HD.£ + D.^,£) dX - 1 

1 2 1^ 1 1+1 2 ,^i-l^i+l°i,i^ 

(1.7.3) 

The line integrals in (1.7.3) can be rearranged into the 

following form : 

E(£) = IK 3V 
1 

A. 
1 1-2 

A. , 
1-1 

(5i- ^pD.£ dX . JD.f dX - 
^ ^1+1 2 1+1 1 
i 

^po.f dx - y a._^. ^ipo.f dx 
1 ^i-1 

C, D. .f dy„] 
, 1-1 1+1 1,1 T (1.7.4) 
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By expressing line integrals of (1.7.4) in 

terms of and from Lemma 1.4.3., we obtain 
1 

= TKTI (5- ,f dp„ - i([ ^ (l-C?)D,f dX - 
!h 

3V 2J^^ i 2 i" i,i T 2'-J^ 1' 1 

1-1 

f^i+1 

IA^ Cl-C?)D,f dX) - dV 

= -I 
1 

1^0 1 1^0 ^ , 
,^2^i" 4^i " 4 4^i " 2^i-l^i+i^^i,i^ 

^ T 

completing the proof. 

Unlike the one dimensional case, the Peano-Sard kernels 

for the linear interpolation error functional are not unique. We 

shall derive two different forms of Peano-Sard kernels for the 

linear spline interpolation remainder. These kernels will be applied 

to the finite element error analysis in Chapter 3. 
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Let f : R, then the piecewise linear interpolation 

of £ on each triangular element T = Aj^A2A3 is given by 

^iCAo) = 

vrhere C^i>X2,X3) is the Barycentric Coordinates of a point AQ 

w.r.t. T. 

In order to obtain the kernels of the error functional 

ECfjAg) = fC^o) ■■ Ix.£CA.)> we need the relationships between the 
i 

Barycentric Coordinates of a point P w.r.t. the triangles T 

and T. = AnA. A. 
1 0 1+1 1-1 

Denote by CCi>52>?3) Barycentric Coordinates of P 

T. T. 
w.r.t. T, by ’^i+i’^i-i^ Barycentric Coordinates 

of .P w.r.t. T^c Then it follows from Cl‘3.4) that 

T. 
C. = C.^x. 
1 1 1 

’i+l 

^ 1-1 

T. T. 
E.\. + £. ^ 
^1 1+1 ^1+1 

To T. 

^1 1-1 ^1-1 

Cl.7.5) 

Denote by FC^i,?2»^3) ^.n expression of f w.r.t. 

T. T. T. T. 
the triangle T, by F ^C^^^j^i+i'^i^i^ expression of £ 

w.r.t. the triangle T. = AnA. A. 
® 1 ^ 1+1 1-1. 
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As shown in Fig. 1.7.1, let D f be the normalized 

i 

derivative of f in the direction A^AQ, then from (1.4.1) 

we have 

By substituting (1.7.5) into (1.7.6), we have 

D f 

^i+1 

9F 3F 
-X. + 

9F 

9C.^i ■ 9?. /^i+r 9?. ,''i-l -X. 

1+1 ’1-1 

9F 9F . . 9F 

’1+1 ’i-1 

9F 9F 

i 9C- 9^. , 
1 1+1 

9F 9F 

9C- , 9C- , 
1-1 1+1 

x.D. ,f + X. ,D.f 
1 1-1 1-1 1 

or 

< X.(D.f + D. ,f) + X. n.f or 
1^ 1 1+1 ^ 1-1 1 

-x.D. f - X. ,(D. f + D. f) 
11-1 1-1^ 1-1 1+1 

(1.7.7) 

We observe that, though the representations of F and 

T. 

F are not unique, the final forms of D f are independent 

T. 
of F and F ^ . 
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Now we have three different expressions to resolve 

D f in terms of the derivatives D.f and D.^.f i.e. 
e. 1 i±i 
1 

X. D. -f - X. D. f 
1+1 1-1 1-1 1+1 

De f N 
1 

(x. +x. ,)D. f+x. ,D.f 
^ 1-1 1+1'^ 1-1 1-1 1 

-(x. .+ X. T)D. ,f - X. ,D.f 
^ 1-1 1+1^ 1+1 1+1 1 

(1.7.8) 

(1.7.9) 

(1.7.10) 

If f e then the linear spline f^(Ap)=Jx^f(A^) 
i 

interpolates f in the triangle T, and the error functional 

E(f,Ao)=f(Ao)-J]x.f(A.) is exact for polynomials of degree <’ 1, 
i ^ 

by Peano-Sand Kernel Theorem, there exist kernels K , s.t. 

E(f,Ao) = 
T |a 

y K D“ 
T=2“ 

f dy. 

The problem is how to construct the kernels K 
a 

Claim : The kernels are piecewise constant (functions of 

x^, i-1, 2, 3 only) and it can be written in the form : 

E(f,Ao) = I 
i*' 

i-f i+1. 
(K. D. . ,f + K. D. .^if) 
^ 1 1,1-1 1 1,1+1 ^ ^T 

dy. 

T, 
1 

rAr 

D. ,f dx - 
1-1 

1-1 

fAr 

A., 
1+1 

D. ,f dX] + 
1-1 

1 

'AQ rAo 
D. f dX - 

A. ^ ^ A. ^i+1 
1-1 1+1 

f dX]} 

(1.7.11) 
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E(f,Ao) 

E(£,Ao) 

Rearranging the sums in the equation [1-7.11), we have 

r^O i i + 1 i-1 i 
27 (K7 D.f - n. f + K :D. £ - K D.£) dX 
V . 1+1 1 1-1 1+1 1+1 1-1 1-1 1 ^ 
1^ A. 

1 

(1.7.12) 

From (1.7.9) and (1.7.10), we have 

D £ - X. D.£ 
e. 1-1 1 

D. f = —i  
i”l X. , + X. , 

1-1 1+1 

= 

D £ + X. ,D.£ 
e. 1+1 1 
1 

X. . + x._^, 
1-1 1+1 

Substituting these into (1.7.12), we obtain 

2^f ,)D.£ + ^ 
"I. 1+1 1-11 
IJA. 

f + X. D.f) 
1-1 e. 1+1 1 

X. , + X. , 
1-1 1+1 

K^^J(D £ - X. ,D.£) 
1+1 e. 1-1 1 ^ 

1 

X. + x.^, 
1-1 1+1 

] dX 

2l 
i-' 

fAo ‘‘ i-1 i+r e. 
[  — + 

A. X. , + X. , 
1 1-1 1+1 

1+1 1-1 
X. -K. - X. .K. , 

^ 1 1 , 1 + 1 1-1 1-1 1 + Urx xn jv 
(K. - K. , + -)D.£] dX 
^ 1+1 1-1 ^ 1 

X. , + X. , 
1-1 1+1 
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We want 

1-1 1+1 
K. , + K. ■ 
1+1 1-1 

X. + X. 
1-1 1+1 

1 
= -:rX. 

2. 1 

i+i 
1 1 

K. , - K. + 
1+1 1-1 

1-1 
X. -K. , - X. ,K. , 
1+1 1-1 1-1 1+1 

X- , + X. , 
1-1 1+1 

0 

It follows that 

e 1-1 1+1 If . 
K. , + K. , =-:7X.(x. , + x. ) 
1+1 1-1 2 1^ 1-1 i+i'^ 

f. ^ r 1 1 . 1-1 1+1 
1-1 1+r ^ 1+1 i-1^ 1-1 1+1 1+1 1-1 

By solving the above system of linear equation for 

i=l, 2, 3, we obtain 

i+1 1 
K. - -;rX.X. , 
1 2 1 1-1 

(1.7.13) 

Thus, we have 

ECf.Ao) = I 
i 

(ix.x. ^D. . ,f + - D. . ,f) dii„ ^ ^2 1 1+1 1,1-1 2 1 1-1 1,1+1 ^ 'T. 
i 

(1.7.14) 

We shall derive the kernel of the same error functional 

E(f,Ao) by a different approach and obtain another different 

kernel of E(f,AQ). 
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E(f,Ao) = f(X) - Ix^£(A^) (1.7.15) 

= Ix^(f(X)-f(Ap) 

= Ix. “ 1 

T^O 
D fC§) d§ 

• J A 6 • 
1 -'A. 1 

1 

It follows from (1.7.8) that 

£(f.Ao) = |x^ 
■Ao 

1 A. 
1 

(X. D. f » X. D. f) dX 
1+1 1-1 1-1 1+1 '' 

=T(x.x. , 
4*^ 1 1+1 
1 

Ao 
D. f dX “ x.x. , 
1-1 1 1-1 

Ao 

A. 
1 

dX) 

Rearranging the sums of the above line integrals, we have 

E(f,Ao) = IVl^i+1^ 
fk 0 

D.f dX 
•^A. , ^ 

1+1 

fAo 

^-1 

D.f dX) 
1 

E(£,Ao) = IC- ) D .f du 
T. i 
1 

(1.7.16) 

We observe that (1.7.16) can be written in the form 

E(f.Ao) = I 
i-' 

1 1 
(^x. X. D. . f + —X. X. D. . , f) dvi„ 

rj, 2 1-1 1+1 1,1-1 2 1-1 1+1 1,1+1 ^ 
i 

(1.7.17) 
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The kernels of f in (1.7.14) and (1.7.17) are not the 

same, so this example shows that the kernels are not unique. 

By equating the equations (1.7.14) and (1.7.17), we obtain 

the following identity : 

If f e then 

(x.-x- )D. . f + 
'' 1 1-1-' 1,1-1 

X. (x -X )D f] dy 
1-1 1 1+1 1,1+1 1^ 0 



CHAPTER 2 

FINITE ELEMENT SOLUTION TO THE SECOND ORDER ELLIPTIC PROBLEMS 

2.1 INTRODUCTION 

Consider the second order elliptic boundary value pro- 

blem (CS4],CAI],CB4]), defined in a bounded open domain with 

polygonal boundary by 

f Lu = -V* (pVu) + qu = f in (2.1.1) 

u = g on (2.1.2) 

This differential equation arises in a variety of physi- 

cal contexts, for example, the equation (2.1.1) is satisfied by 

the transverse deflection u(X) of a membrane under uniform late- 

ral tension T, which supports a load of Tf(X) per unit area. 

Under the assumptions p, q are smooth functions and 

1 

k. 

P ^ P min 

q > 0 

> 0 

in (2.1.3) 

the differential operator L = -V'pV + q is a 1-1 continuous 

linear operator (CS3],[T1]) mapping H^(Q) onto H^(J^), where 

is the solution space defined by 
S 

H^(fi) = {u € H^(fi) : u=g on 3fi} . 
S 

30 
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In general, if g 0, then is not a linear 

space, but an affine subspace of . 

In particular, if p = 1 and q = 0, the equation 

(2.1.1) reduces to the Poisson equation 

“Au = f (2.1.4) 

2.2 THE VARIATIONAL FORM OF THE PROBLEM 

The problem of solving a boundary value problem often 

turns out to be equivalent to the problem of minimizing a certain 

quadratic functional (CB4],CA1]) . 

ITie quadratic functional related to the linear equation 

(2.1.1) is given by 

I(v) (pVv*Vv + qv^ 2fv) dpjj (2.1.5) 

The solution of the differential problem Lu = f is 

expected to coincide with the function u that minimizes I. 

Since the integral (2.1.5) involves no second derivatives, the 

class of functions over which the integral I(v) is to be mini- 

mized is enlarged to the space of admissible functions defined by 

(Q) = {u e ff^(J2) • u = g on 
S 

We observe that the admissible space is an 
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affine space, and can be written as + g, where Ho(fi) 

denotes the linear suspace {u e H^(Q) : u = 0 on 9^2} 

Befpre we proceed further, the first step is to check 

that a solution u to the differential problem does minimize 

I(v). 

Let u be an admissible function of the integral I(v), 

1 
and V be any function in HQ (SI). For every e in R, the 

function u+cv is still an admissible function of I(v) and we 

have 

I(u+ev) - CpV(u+ev)'V(u+ev)+q(u+ev)^-2f(u+ev)] dy 
Q n 

Q 
(pVu*Vu+qu^-2fu) dy^+2e 

Q 
(pVu*Vv+quv-fv) dy^+ 

(pVvVv+qv^) dy 
Q 

S2 

It follows that 

dl(u+gy) _ ^ 

de 
Q 
(pVu-Vv+quv-fv) dy^+2e (pVvVv+qv^) dy 

Q 
S2 

and 

d_I^(u+ev) _ 2 (pVvVv+qv^) dy 

de' 
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Since p > 0, q > 0 and VvVv ^ 0 for all v € HQ(^) 

we have 

^(u+ev) ^ Q V V in 

dc^ 

Thus, an admissible function u minimizes ICv) iff 

the first variation 

dl(u+ev) 
de 

e=0 

1 
vanishes for all v in that is, if and only if 

B 

(pVu*Vv+quv~fv) dp =0 (2.1.6) 
JQ “ 

By Green's Theorem ([Wl,p.346],[H2]) equation (2.1.6) is 

equivalent to 

f [-V-(pVu)+qu-f]v dUjj -J 1^ ds = 0 (2.1.7) 

9u 
where — is the outward normal derivative of u on 

9n 
1 

Since v e HgC^), the line integral of (2,1.7) vanishes 

and we have 

I C-V*(pVu)+qu-f]v dp^ = 0 (2.1.8) 
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1 
This holds for all v e Ho(^) iff 

■V«(pVu) + qu = f 

Thus, the elliptic equation (2.1.1) turns out to be the Euler equation 

for the problem of minimizing the integral I(v). Also, the second 

d^I(u+ev) 
variation 

de^ 
is positive unless v is constant, which 

e^O 

implies by the boundary condition, that v vanishes identically. 

Thus u will be the unique function which minimizes the quadratic 

function (2.1.5). 

2.3 ENERGY INNER PRODUCT 

1 1 
Define a bilinear expression on 

a(u ,v) = f I (pVu*Vv+quv) d]i Q 
(2.3.1) 

It is easy to check that a(»,*) has the following pro- 

perties : 

(i) a(ui+U2,v) = a(ui,v) + a(u2,v) 

(ii) a(u,v) = a(v,u) 

(iii) a(Au,v) = Xa(u,v) for all X e R 

1 
(iv) a(u,u) > 0 for all u c HQ(Q) 

(v) a(u,u) = 0 iff u = 0 
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Thus a(»,*3 is an inner product on the space 
1 1 

HQ (Q). This inner product is referred to as the energy inner 

product, and the norm defined by ~ [a(u,u)]^ will be referred 

to as the energy norm. In particular, if p = 1, q = 0, the corres- 

ponding energy norm will be denoted by • 

Theorem 2.3.1. The energy norm l|u|L is equivalent to the Sobolev 

norm . 

The Theorem is proved by the following two lemmas. 

Lemma 2,3.1. There is a constant p > 0. Such that 

llolla^ p|l"lll,J2 

Proof : From Lemma 1.5.2. we have 

Vu-Vu = 3^I(D.U)2 
i 

It follows that 

a(u,u3 = \ Pj^CT) Cp(-^)I(D^u)2+qu2] dp^ 

T€T 

< I p^(T)max(^£|^,q(X)) (j^I(D^u) 2+u^) dp 

Tex 
XeQ T i 

= max(^£|^,qCX)) ||u||2 
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Since p > p . >0 and q ^ 0 in we have 
^ ^min ^ * 

max > q ( X)) > 0 

Letting p = [max,q (X) ) , we get 
Xe^ ^ 

||u||^= [a(u,u)]^ s p||ul| . 

completing the proof. 

Lemma 2.5.2. There is a constant a > 0. Such that 

Proof a(u,u) = I Cp(3pr)I(D^u)^+qu^^ 

T€T^ T 1 

> min( 
Xe^ 

2p(X) 
) I 

TCT 
JT i 

dy. 

By the Poincar4 inequality (CS4], [PI]), there is 

Stant 0 > 0, such that 

Vu'Vu dy 2: a u^ dy for all u e HQ(Q) . 
h JQ 

Since p>p. >0 in we have ^ ^min 

a = [-i min (a, min(^^,^^^)) ]^ > 0 
XeQ 

con- 
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It follows that 

l|u||a= Ca(u,u)T 

> aC J n CT}f (i4lCD.u)2+u2) 
“ JT i ^ 

” a u 
1} ^2 

completing the proof. 

2.4 THE RITZ-GALERKIN METHOD 

Consider the equation 

Lu = f (2.4.1) 

Assume (2.4.1) has a solution in the Hilbert space H 

with the inner product (•,*)• If L is linear, symmetric and 

positive definite. Then as we have discussed in the last section, 

solving of (2.4,1) is equivalent to minimization of the quadratic 

functional 

I(v) = (Lv,v) " 2(f,v) (2.4.2) 

over an admissible space H . 

The Ritz method ([S3], [PI], [B6], [Al]) is to replace 

f/g by a finite dimensional subspace contained in Hg. The 

li h 
elements v of S are called trial functions. If A., 

1 

i - l,*'*,n are the n basis elements of S\ then every member 
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of S can be written as 

V = ^ 

i=l " " 
(2.4.3) 

By substituting (2.4.3) into I(v ) and letting the derivatives 

be zero for i = 1, 2,*'”, n. The Ritz method turns out to be 
dX. 

1 

the solution of a system of linear equations of the form 

n 

j 

XI 

I A (L(j). ,(J) ) = (f,(|) ) for i=l, 2, n (2.4.4) 
i=l J J 1 

Since the linear operator L is symmetric and positive 

definite, the solution of (2.4.4) exists and is unique. 

The main weakness of the Ritz method is the fact that it 

is applicable only to equations with symmetric and positive defi- 

nite linear operators. Another method, called the Galerkin method 

is free from this constraint. We shall describe this method with 

an example of solving the equation (2.4.1). 

An element u e H is called a weak (or 'generalized') 

solution of the problem (2.4.1) if 

(Lu,v) = (f,v) for all v e H 

The Galerkin approximation to the problem Lu = f is 

to seek a weak solution in a finite dimensional subspace S of 

H (CS43,[PI],[B4],[Ml]). Thus, if (J>^, i=l,--“, n are the n 

basis elements of it is sufficient to find u^ e S^, such 
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that 

(Lu^,(()^) = for all i=l, 2, —, n . (2.4.5) 

It is easy to check that for a linear, symmetric and 

positive definite operator L, the two systems of equations 

(2.4.4) and (2.4.5) are identical. Thus the Galerkin method is a 

generalization of the Ritz method. 

The linear operator L = -V*pV + q defined in (2.1.1) 

is linear and symmetric. As we have proved in Section 2.2, the 

inner product (Lu,v) is the same as the energy inner product 

a(u,v), and. from the result of Lemma 2.3.2. we know that L is 

positive definite. Thus, for this linear operator L, the Ritz 

method and the Galerkin method are equivalent, we shall refer to it 

as the Ritz-Galerkin method. 

Denote by a finite dimensional subspace of 

Ti h 
and by {(b.}. . the n basis elements of S . 

The Ritz-Galerkin solution to the problem (2.1.1) thus 

requires only the solution of the system of linear equations : 

I (pVu^«V4»^+qu^cf)^) dy^ = 
for i=l, 2,—, n 

h ? 
u = g + I 

i=l ^ 

(2.4.6) 

where (2.4.7) 
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2.5 RITZ-GALERKIN METHOD WITH TRIANGULAR LINEAR ELEMENTS 

Given an equilateral triangulation T of the 

simplest and most basic of all trial functions is the triangular 
t- 

linear elements. The trial function is linear inside each tri- 

angle and continuous across each edge (CS4],[P1],[C3]). Denote 

1>0 
by S 

g 
the affine subspace define by 

1>0 1>0 
S ={4>eS : ij) = g on 3^}. 
g 

O 
For every element X of , let d) be the trial 

' ah’ 

function which equals 1 at and zero at all other nodes. 

Then these pyramid functions ((> form a basis for the trial space 

l>0 10 
S . The dimension of S ’ equals to the number of elements in 
g g 

Denote by Barycentric Coordinates of a 
a p "Y 

point X w.r.t. the triangle T=X^X^X_^. 

Fig. 2.5.1 
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To construct the Ritz-Galerkin approximation with tri- 

angular elements, we need the following Lemma. 

1 if la-3l=l 

6 if a-B 

0 otherwise 

(2.5.1) 

Lemma 2.5.1. dHjj 
4y^(T) 

3h^ 1 
Proof : 

Y 

As shown in the above figure, let T=A A-A be a tri- 
** a 3 T 

angle of the hexagon A^+ H, then we have 

<j> = 5 a 

and 

if (0,3) e {(a,Y),(Y»B),(3,a)} 

if (0,3) € {(w,3),(3,Y),(Y,a)} 

otherwise 
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From Lemma 1.5.2., we get 

dy^ = I 

“ T£T’’ 

3K2 dy^ 
T a 

= < 

,3h' 
(-1) dp i£ |a-3|=l 

2j^(2) dp^ if a=3 

otherwise 

3h^ 

-1 

6 

0 

if la-3l=l 

if a=3 

otherwise 

completing the proof. 

To construct the Ritz-Galerkin solution of (2.1.1) with 

the boundary condition u = g on it is convenient to ex- 

ii 
press the minimizing function u in terms of as 

u = ^ A 
a a 

acT, 
h 

(2.5.2) 

We observe that only those interior parameters A^ in 

the equation (2.5.2) are to be determined. For those nodes which 

lie on the boundary 

A = g(X ) 
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By substituting the equation (2.5.2) into (2.4.6), we 

have 

ZA 
a 

(2.5.3) 

for a e r. 

It follows from Lemma 2.5.1 that the system of linear 

equations (2.5.3) becomes 

BeT, * 

f6 dn_ for a € f, 
a Q h 

(2.5.4) 

where 

T uT^ 
a 3 

c- -|i2Pm + t„'f'3qCX)]dy„ if la-el = l ^2 

where and are the two triangular elements in T 

"a, 3 ^ 
having the common side X X- 

01 p 

X + H 
a 

[3H2PCA) + 42q(x)] if a=3 

In particular, if p=l and q is a constant. 

then 
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L Q = ^ a,13 

lo 

if |a“3|=l 

if a=3 

otherwise 

Expressed diagrammatically, the discrete linear operator 

h 
L associated with the continuous operator L = -A + q has a 

representation of the form : 

3h^ ,h 

If q = 0, L becomes the Laplacian operator -A. The 

associated discrete Laplacian operator L has a representation 

of the form : 
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2.6 NUMERICAL QUADRATURE FORMULAS 

For arbitary p, q and f, the integrals in the expre- 

ssion (2.5.3) cannot be computed exactly, and some numerical qua- 

drature will be necessary to approximate these integrals. 

In this section, we shall derive some numerical quadra- 

ture formulas for the following four types of integrals : 

(i) F = 
^ a 

(ii) Q = 
a 

(iii) P 
a,3 

P dy a 
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The corresponding numerical quadrature will be denoted 

‘’y ^a’ ^a’ ^a,e' respectively. 

We observe that the integrals and have support 

over the hexagon X + H. The simplest numerical quadrature is 

the 1-point formula, that is, and are approximated by 

af(X^) and bq(X^) respectively, where a and b are two con- 

stants to be determined. 

To obtain the values of a and b, we may require that 

they be exact for constants f and q, that is 

r 

a 

dpjj - a = 0 

< 

dp - b = 0 
Ja ” 

It follows that 

and = =6p„(T)J_^C^dpT 

By the symmetric form of the integrals f(|) dy and 
OC aw 
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q(})^ is easy to verify that the two numerical quadra- 

tures F = 2y (T)f(X ) and Q = ii^(T)q(X ) are exact for all 
CC uu Ct Ct ab Ct 

polynomials of degree 1. 

To obtain numerical quardrature with higher order of 

accuracy, we require the following Lemma : 

Lemma 2.6.1. Let be 

value 1 along the edges 

the line XX of the 
0.2 as 

a quadratic polynomial which takes the 

X X and X X and vanishes along 

hexagon X^+ H. Then 
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Proof : Denote the Barycentric Coordinates of a point X £ + H 

w.r.t. the triangle T. = X X X by Then the poly- 
® 1 a a. a. , r / 

nomial ip can be represented in terms of the Barycentric Coordi- 

nates of X w.r.t. the triangle T = X X X as 
A Ot 0i> - ot _ 

1 2 

It follows from the transformation matrix we have deve- 

loped in Section 1.3 that the local expression of w.r.t. the 

six triangles are as follow : 

^ ic2 

+ 2TIK + K‘ 

2 

in T2 and T5 

in T3 and Tg 

in Ti and T4 

It follows that 

n 
'‘'‘•’a 

5(TI^ + + TIK) dpr 

, ,ry,^r2l2l , 2121 . 2U 

5! 5! 

Similarly, we have 

+ nic) dy^ = 

completing the proof. 
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From the result of Lemma 2.6.1., we observe that the two 

numerical quadratures F - 2p (T) and Q = are not exact 
QL uu Ot do 

for all polynomials of degree 2. 

Another numerical quadrature for F^ and exact for 

polynomials of higher degree can be derived as follows : 

Assume the numerical quadrature for F^ has the form : 

F 
a 
(Xg) 

' af(Xg) 

' bf(Xg) 

0 

if a-3 

if la-3|=l 

otherwise 

Since F^ has two parameters a and b to be 

determined, and the one parameter numerical quadrature is exact 

for all polynomials of degree 1, we may require the 7-point formu- 

la to be exact for all polynomials of degree 2. 

If this is the case, we should have F - F = 0 for 
a a 

f equal to 1, and the quadrature polynomial ifj as defined in 

Lemma 2.6.1., that is 

f 
4> dy_ - a - 6b 0 

ip(p dy^ - 4b = 0 

(2.6.1) 
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drature 

F 
a 

and y s. 
V 1 
1 

n on T 

tent way 

It follows from the result of Lemma 2.6.1. that 

b = 
12 

& 

By substituting this into (2.6.1), we have 

Expressed diagrammatically, the 7-point numerical qua- 

can be represented as 

(2.6.2) 

n ^2 ^ 3 
The set = { C n ^ are non-negative integers 

= n } form a basis for all homogeneous polynomials of degree 

X, and these polynomials can be extended to in a consis- 

It is not hard to verify that the 7-point formula for 
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is exact for all polynomials in . Since elements of , B^ Ti Ti Ti 

are all odd functions, by the symmetric form of the integral 

and the numerical quadrature F , the 7-point numerical quadrature 

F^ is exact for all polynomials in B^^ and B^^. Thus the 7-point 

formula F^ is exact for all polynomials of degree < 3. 

Similarly, the 7-point numerical quadrature for can 

be obtained by solving the following system of linear equations : 

and this reduces to 

Qa 
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It is easy to verify that.the 7-point formula is 

consistent i.e. - Q^= 0 for all q e by applying the 

symmetry arguments, we conclude that Q is exact for all poly- 
ct 

nomials of degree < 3. 

If we return our attention to the integrals 

and 
Q 

P dp 
JT UT„ 

a B 

qc|) (|) dy , we observe that Q _ has support over the two 
01 p Ob 01, p 

adjacent triangles T and T^, and for the integral P . we 
ot p ot, p 

only have to integrate p over the triangles T and T . 
06 p 

The simplest numerical quadrature for Q is the 
a, p 

following 2-point formula 

5= < 

aq(X.^) if Y=a or B 

elsewhere 

To determine a, we may require Q „ ” Q o “ ^ 
a,p a,p 

q = 1, that is 

. % - 2a = 0 

this reduces to 

a 12 
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It is easy to check that the 2-point formula for 

is exact for all polynomials of degree ^ 1. 

Similarly, the 2-point formula for the integral P 
a,3 

is 

if Y = a or 3 

elsewhere 

It is easy to verify that the 2-point formula P _ is 
a, p 

exact for all polynomials of degree < 1. 

Numerical quadrature for P ^ and Q - exact for 
a,3 a,3 

polynomials of higher degree can be obtained by putting weights at 

several points on the triangles T and T_ (see T. H. Lim [LI]). 
a p 



CHAPTER 3 

ERROR ANALYSIS 

3.1 INTRODUCTION 

Error bounds for the finite element method for elliptic 

boundary value problems are frequently of the form 

u-u < 
"a 

kh^||u||j^ ^ , where k is a constant independent 

of h, the mesh parameter. In this chapter, we apply a triangular 

version of the Peano*-Sard Kernel Theorem, proved by Frederickson 

CF6], to construct some kernels for the error functions u-Uj and 

D^(u-Uj) in the Barycentric Coordinates system. Error bounds 

are computed from these kernels and applied to the finite element 

analysis of elliptic boundary value problems, to obtain an upper 

bound for the constant k. The expression of norms in the inter- 

polation error bounds are simplified by an application of the 

generalized Hardy inequality proved by P. Frederickson and W. 

Eames CF5], to the norm of the form mill V (T^) L2 (T) 
where 

T^ is a sub-triangle of T. 

Barnhill and Gregory ([B1],[B2]) have applied the Sard 

Kernel Theorem in the rectangular coordinate system to obtain an 

error bound for the constant k, but their computation involves line 

integrals and is more complicated than the results we have obtained. 

In Section 3.4, Peano-Sard Kernels for, the 1-point and 

54 
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7-point numerical quadratures are derived, and the error bounds 

for these numerical quadratures are estimated. The quadrature 

** li. h. 
errors introduced by computing u rather than u^ are also 

discussed in this section. 

3.2 ERROR BOUNDS FOR INTERPOLATION ON TRIANGLES 

Denote by E(u,X) = u(X) - Uj(X) the error of u at 

X e where Uj is an interpolant of u. In particular, if 

Uj is a piecewise linear interpolation of u, then we have the 

following Theorem. 

Theorem 5.2.1 If u e then 

II E(u.O L 2(fi) /17.5 
u 2,Q (3.2.1) 

To prove the Theorem, we need some auxiliary lemmas and 

the following generalized Hardy inequality. 

Generalized Hardy Inequality : For any u e (T), p > 1, define 

9 

u(§)dy„(§) 
J'T * 

X 
$ by $(X) =   , where T is the triangle AQAIA2 

and Ty is the triangle XAJA2. 
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Then $ e and 

^ IUP(T) " ^ 

A proof of the inequality has been given by Frederickson 

and Fames [F5], 

Lemma 5.2.1. If the error functional E(u,X) is expressed in 

terms of the kernels in equation (1.7.14) as 

ECu.X)^ I c|x,Xi^^Di i.iU(S) . 

(3.2.2) 

then 

(3.2.3) 

Proof : Since p^(T.) = x^, the equation (3.2.2) can be written 

as 

E(u.X) = I I [K _j(S)D .^u(§) . K ,^(S)D, ,,^u(5)]dp 
1 *' 1 

T 

(3.2.4) 

(§) 

where 

= ■! 

1 
■^X. , 
2 1^1 if § € T. 

1 

otherwise 
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By applying the triangle inequality and the Cauchy-Schwarz 

inequality to the equation (3.2.4), we have 

|E(U,X)| < I (II L2(T) 

II '^i,i+lll L2(T) ll^i,i+l'^ lll^(T) 

(3.2.5) 

Since the kernels j^4.j(X) vanish outside the triangle 

T., we have 
1 

Ki^i,l(X)d,T(X) 

1 2 
^X._ X. 
4 1+1 1 

Substituting this into (3.2.5), followed by taking the 

norm of E(u,X) over T, together with the application of 

the triangle inequality and the Cauchy-Schwarz inequality, we get 

1 2 
||E(U,01I i.2^-p) - I n ( ll^i,i-i^ll L2('J') ^ 

( 
1 ^ 
4^i-l"i“^T 
ix? ,x,dy.,(X))^||D.^.^.^u||^_2 (T) 
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vi20 

completing the proof. 

Lemma 3.2.2. If the error function E(u,X) is expressed in terms 

of the kernels in equation (1.7.16) as 

E(u,X) = I 
i T. 1 

1 

(§) (3.2.6) 

then 

HE(U.- )lli2(T) ^ (3.2.7) 

Proof : It follows from (3.2.6) that 

lE(u,X)l 
1 

X. 
2 1-1 1+1 

By taking the norm of E(u,X) over the triangle 

T, .together with the application of the triangle inequality and 

the Cauchy-Schwarz inequality, we have 

P (U,*)||£2('T) dy^(X)) [I (T) 

1 

/3^ 
D. .u 
1,1 
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Applying the generalized Hardy inequality to the norm 

I'Ll (T.) L2(T) 
, we have 

11^2 (jy ^ ^ 1 II ^i,i^ll/.2(T) 

completing the proof. 

Remark: The reader may wonder why we use two different techniques 

to prove the Lemma 3.2.1 and Lemma 3.2.2, This is because the 

L2 norm of the kernal K. . in (3.2.6) is 
t, 1 

1 -h 
= —X. X. ^ X. ^ 

2 1-1 1+1 1 

Jl ^ 
and the norm of 4x. ,x..,xT^ does not exists. Thus we can- 

2 1-1 1+1 1 

not apply the Cauchy-Schwarz inequality to obtain a error 

bound for E(u,X). 

However, the technique for proving the Lemma 3.2.2 can 

be applied to Lemma 3.2.1., but the result will be 

1IE(U.-)I1L2 m ^ (ll°i.i-i"llL2m^l''i,i-i"llL2(T>> 

that is, a larger error bound is obtained. 

Since the kernels for the error functional E(u,X) are 
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not unique, as we have proved in Lemma 3.2.1 and Lemma 3.2.2, 

different kernels may end up with a different upper error bound. 

Now we shall combine the results of Lemma 3.2.1 and Lemma 3.2.2 

to prove the Theorem 3.2.1. 

Proof of Theorem 3.2.1. 

It follows from the inequality (3.2.3) that 

From (3.2.7) we have 

The above two inequalities follow from the fact that 

n n 
for all a- £ R . 

1 
1=1 

It follows that 
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this reduces to 

TCT 

h2 

•^TCT^ 

l“l2,T^ 

h2 

/TTTB 
u 

2,Q 

completing the proof. 

To obtain an error bound for the energy norm 

II u-UjII^, we have the following Theorem. 

Theorem 3.2.2. If u e and Uj is a piecewise linear 

interpolation to u, then 

II"-“IIIA^ 3, 

for sufficiently small h (|h|<l). 

To prove the Theorem, we need the following two lemmas. 

If u e and Uj is a piecewise linear Lemma 3,2.1. 
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interpolation of u, then the error of the derivative 

D^E(u,X) = (u(X)-Uj (X)) , X e T = ^as a representation 

of the form ' . 

(a) D^E(u,X) = j 
fX T. 

§ ^Cx.D. .u(§)-x. D. .u(§)] d§ - 
i 1 1+1,1 ^ ^ 1+1 1,1 ^ 

A • , 
1- 1 

A. 
f T. 

§. Cx.D. .u(§)-x. D. .u(§)] d§ + 
11 1-1,1 ^ 1-1 1,1 

[x.(D. .u(§)-D. ,u(§))-(x. “X. _)D. .uC§)]dy 
, 1^ 1+1,1 ^ 1-1,1 1+1 1-1 1,1 T 

where § is the first Barycentric Coordinate of § w.r.t 
i 

T. = XA. A. 
1 1+1 1-1 

(b) In addition to that, if u e then D^E(u,X) can be 

represented in terms of surface integrals of derivatives up to 

order 3 as 

D.E(u,X) = j 
T. 
1 

Cx.(D. .u(§)-D. , .uC§))-(x. -X. ,)D. .u(§} 
1^ 1+1,1 ^ ^ 1-1,1 ^ 1+1 1-1^ 1,1 

T- 
§.^(x?D ^u(§)-x.x. D. . .u(§)-x. x.D. . .u(§] + 
1^1 012 ^ 1 1+1 1-1,1,1 1-1 1 1 + 1,1,1 

X. x. D. 
1-1 1+1 1 

. .U(§})]d]i^ (§) 

* i 

(§) 
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Ti T. 
Proof : Denote by D. » and D. • the two normalized 
  ^ 1+1 1-1 

derivatives D. • and D • respectively. 
1-1,X 1+1 

Then 

D^E(u,X) = D^Cu(X) - I X u(A )] 

= D.u(X) - Cu(A._^) - u(A.^^)] 

A. 

ir 
T- 

fX Ti ^ Ti 

A. , 
1-1 

D. ,(§. D.u(§)) d§ - 
1+1^ 1 1 ^ 

fAi+i Ti Ti 
D.^ f§+D.u(§)) d§3 - j ^ l-l l 

.Ai-1 

D.u(§) d§ 
‘’A. , ^ 

1+1 

if^ Ti Ti 1 
2 §i D, (D.u(S))d§ - 2 

^-1 

fA. T. T. 
V\CD.uC§)) d§ 

Jx 1 1-1 1 

D.u(§) dS - D.u(§3 d§) + M 
A. , ^ ■'A. , ^ 
1+1 1-1 

^ ^D.u(§) d§ 

'^i-1 
D.u(§) d§) 

JA. ^ 
1+1 
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fj §.-D.:^CD,U(D) dS - |P"'§?D^.\(DiU(§)) d§ - 
1 r ji 

A. 
1-1 

\ D^ip,u(§)) d,^^(i) . 1 
i 

DJ^CD U(§)) dw (§) 
Till 
1 

(3.2.8) 

From (1.7.7) we have 

Diil(DiU(§)) = ^iD^+^^^u(§)-x^+^D^^^u(§) (3.2.9) 

substituting this into (3.2.8), we obtain 

D E(u,X) = 
X 

fX T. 
§/(x.D. , .u(§)-x.^.D. .u(§)) d§ 

^ 1^1 1+1,1 ^ 1+1 1,1 

i“l 

f A ^ 

if ^^^§.^(x.D. ^ .u(§)-x. D. .u(§)) d§ - 
2J^ 1 ^ 1 1-1,1 1-1 1,1 

T. 
1 

(XiD._i^iU(i)-x._iDi^iU(§)) duT (§) - 

i 
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Ti 
§. (x.D. .u(§)-x. D. .u(§)) d§ 

. 1^1 1+1,1 ^ 1+1 1,1 

1-1 

T. 
1 

We have proved the part (a). 

TA 
Since §.^ vanishes on the side A. A. , it follows 
^ 1 1+1 i-i’ 

from (3.2.8) that 

D^E(u,X) = ^ 
fX T- T. 

§^V^j(D^uC§)) dl 

Vl 
T- T. 
§.^D.^ (D.u(§))d§] 

JA ^ ^■*■1 ^ 
1+1 

I^J 
fA, T- T. 
l+l.^l..^! 

§. D. ,(D.u(§)) d§ 
1 1-1^1 

fA. T. T 
^“^§. D. (D.u(§)) d§3 + 

JA ^ ^ 
1+1 

r T • T. 

If u £ f/ (fi), then by Lemma 1.4.3 , we get 
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D.E(u,X) = -j 

^i 

, r T. XT. II „lr,l„l 

T T. 

[Di^l (DiU(5)) -Di^l (D.uC§)) ]du.j, (§) 

X. 
1 

T. T. T. T. T. 

(3.2.10) 

From (3.2.9), we have 

T. T- T. 
D.^ ro.-^, (D.u(§))] = D.^, (x.D.^, .u(§)-x.^D. .u(l)) 
1-1 1+1^1 1-1^1 1+1,1^^ 1+1 1,1^^^ 

= x?D^, „u(§)-X.X. D. , . .u(§)-x. x.D. , , .u(§) + 
1 012 ^ 1 1+1 1-1,1,1 ^ ^ 1-1 1 1+1,1,1 

X. .X. -D. . .u(§) 
1-1 1+1 1,1,1 

substituting this into (3.2.10), we get 

1 
D.E(u,X) = 2 [x.(D. -u(§)-D. .u(§))-(x. -X. )D. .u(§) - 

1^ 1+1,1 1-1,1 1+1 1-1^ 1,1 '' 

§.^(x?D.,„u(§)-x.x. ,D. . .u(§)-x. X.D. . .u(§) + 
1 '' 1 012 ^ 1 1+1 1-1,1,1 '' ^ 1-1 1 1+1,1,1 

completing the proof. 
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Lemma 5.2.2 If u c H^(Q) and Uj is a piecewise linear 

interpolation of u, then 

1^240 
^012^1* L 2(T) 

/720 

" L^m* J-^CT) 

(3.2.11) 

Proof: From Lemma 3,2.1. we have 

D^(u(X)-Uj(X)) = j] X.J. (5)(D^^^^^U(§)-D^_J^^U(§)-§^\XJ^DOI2U(§) ' 

x.^ D. , . .u(§)-x. D.^, . .U(§))) dp.^(§) - 
1+1 1-1,1,1 ^ ^ 1-1 1+1,1,1 ^ ^ 

T. 

T. 
1 

r(x. ,-x. )D. .u(§) + §.^x. X. D. . .u(§]] dy^ (§) 
1+1 i-r 1,1 ^ ^ 1 1-1 1+1 1,1,1 ^ 

where Xr- denotes the characteristic function of T. 
T. 1 
1 

By applying the triangle inequality and the Cauchy-Schwarz inequality 

to the above equation, we have 
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ID.(U-Uj)] « iijdl (I)** m 

 —-"II D. . .u|| ) + ^\x. "X. I ||D. .U|| , 
1+1,1,1 "L2(T) 2' 1+1 i-i' " 1,1 “L^(Ti) 

Ll(T.D 

by taking the norm of D^(u-Uj) over the.triangle T, together 

with the application of the triangle inequality and the Cauchy-Schwarz 

inequality, we obtain 

II l>i("-»i)lll2(T) ‘ i'll L2(T)*II “I-1,I“III! (T)> * 

1/2^ 

^i+l,i,i^'' ^ L2(T) 

/360 
1.2 (T) 

applying the Generalized Hardy inequality to the norm 

II • 11,1 (T^ 
L2(T) 

we have 



69 

II D.(U-UJ)||J_2(^3 ^ (T)"ll Vi,i"llL2(T)5 

_P 012“^^ 2(T)* l-^(T) 
./240 

II *^i+l,i,i“ll L2 (T)^ * ^11 °i,i“ll L2(T) 

;;^ii '’i.i.i"ll i^cT) 

completing the proof. 

Proof of Theorem 3.2.2. 

Tex 
T 3h i 

2v^m 

= I -V-niD.(u-uj)F^2(^j 

Tex h 3h i 
(3.2.12) 

By applying the Cauchy-Schwarz inequality to the right 

hand side of the inequality (3.2.11), we get 
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D^(u-Uj) 6 80 720 720 6 90^ ^2 ^i+1^ H (T) 

2ll^i-l^llL2(T) ^ 311^012^H (T) 

ll^i+l,i,i^lll2(T) ll^i-l,i,i^llL2(T) 

(T)^ 

It follows that 

I ||D^(U-UJ) ||^2(-x) ^ 720^ II ^01^ II 1.2 (■'i’^ 11^12^11 L2(-J) + 11^20^11 + 

^ i|Dll^lll2(T) 11^22^11^2(7) ^ 

11^012^11 L^(T) ?^ll^i + i,i,i^llL2(T) 

ll^i-l,i,i^llL2(T) ll^i,i,i^llL2(T)^ ^ 

" 7^^^^1^l2,T 

763 ^ 
~ T^^^ll^lls T sufficiently small.h (|h|<l). 

Substituting this into (3.2.12), we have 

II“-“IIIA " I i^,miiuii;^^)^= (j^)^hiiu|i3^ 
2 L 763 

0. 
Tei' 

completing the proof. 
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3.3 ERROR BOUNDS OF THE RITZ APPROXIMATION 

As we have discussed in Section 2.3, the energy norm 

l“lla= ( (pVu*Vu+qu^) dy^)"^ is equivalent to the Sobolev norm 

|lu|| , and provides a means of measuring how close the Ritz 
X ^ 

approximation u is to the true solution u. 

The following Theorem [S4,p.39] is fundamental to the 

Ritz theorey. 

Theorem 3.5.1. [S3] If the function u minimizes I(v) over 

the admissible space H and S = SQ+ g is a closed affine sub- 
^ g g 

space of H , then 

(a) a(u-u^,u-u^) = min aCu-v^,u-v^) (3.3.1) 
V^£S 

g 

(b) aCu-u^,v^3 = 0 for all v^ £SQ (3.3.2) 

(c) a(u*^,v^) = (f,v^) for all v^ e SQ (3.3.3) 

In particular, if S = H , then 

•a(u,v) = (f,v) for all v £ HQ (3.3,4) 

Corollary 3.3.1. [S3] It follows from (3.3.2) that a(u-u^,u^-g) = 0 

h h h h 
and a(u-u ,u-u ) = a(u-g,u-g) - a(u -g,u”-g). Furthermore, since 

ll.ll ll 
a(u-u ,u-u ) > 0, the strain energy in u”- g always underestimates 

the strain energy in u - g, that is a(u”-g,u -g) s a(u-g,u-g). 
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Corollary 5.3.2. Let Uj be an interpolant of u in then 

li h 
a(u-u ,u-u ) < a(u-Uj,u-Uj) (3.3.5) 

h h h h 
In fact a(u-u ,u-u ) + a(u -Uj,u -u^) = a(u-Uj,u-Uj) (3.3.6) 

Proof: Inequality (3.3.5) follows directly from equation (3.3.1). 

hi h h li 
a(u-Uj,U”Uj) = a(u-u^+u^-Uj,u-u^+u^-Uj) 

= a(u-u ,u-u )+2a(u-u ,u -Uj)+a(u -Uj,u -u^) 

since u^-u^ e 5QJ from (3.3.2), we have 

. h h . _ 
a(u~u ,u -Uj) = 0 

which implies 

.hh. ,h . 
a(u-u ,u-u )+a(u -Uj,u -Uj) = a(u-Uj,u-Uj) 

completing the proof. 

To obtain an error bound for the energy norm |lu-u || , 
a 

we have the following Theorem : 

Theorem 3.3.2. If u e H (J2) and Uj. is a piecewise linear 

interpolant to u in , then 

llu-u'^ll _<h ?i|^)|lu|l 
a 10 bO /TTTS 
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Proof: 

l|u-Uj.|la = {j CpV(u-Uj)-V(u-Uj)+qCu-Uj)2] 

s C II P IL| V(u-Uj)-V(u-Uj) dpjj+ll q||^ II u-UjII 

^ II PII^ II “-“llli + ll qlfl II '^■"IIIL2(J2) (3.3.8) 

The inequality (3.3.8) followed from the fact that 

I 
(a^+b^)"^ <a + b ifa, b>0 

From Theorem 3.2.1. and Theorem 3.2.2. we have 

II ^-Ujll a ^ Pll» 

Iklfih^ 

^ ^ /l7, 
u 

2,^ 

£ h max { (^)*^|l Plfl II “! 

The result of the Theorem follows from Corollary 3.3.2. 

It follows from Theorem 3.3.2. that the Ritz-Galerlcin 

solution to the problem Lu = f with linear element has a rate 

of convergence of order h in the energy norm. 
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3.4 QUADRATURE ERRORS AND THEIR EFFECT ON THE NUMERICAL SOLUTION 
OF BOUNDARY VALUE PROBLEMS 

In this section, we shall derive the Peano-Sard kernel 

of the 1-point and 7-point numerical quadratures of the integral 

f(j) dp_ and obtain an error bounds for these two numerical 

quadratures. The effect of the quadrature errors to the solution 

of the boundary value problems is also discussed in this section. 

For simplicity, we denote by XQ the centre of the 

hexagon and by X^,j = l, ...6 the six vertices of 

To^.get an estimate for the 1-point numerical quadrature 

error, we have the following Theorem. 

Theorem 3.4.1. If f e and F Cf) = 2y^CT}f CX. ), then 
” ' CL dtf Ct 

a S (^„(T)DV|f| (3.4.1) 

To prove the Theorem, we need the following two auxiliary 

lemmas. 

Lemma 3.4.1. If f e and P(^o) ^ real valued function 

of defined on each of the triangular elements T. = X^X.X. , , 
0 ^ 1 0 j :J + 1 ' 

then 



Proof: X5 X4 

We observe that along the side X.Xn, D„ „ f can be 
J X.Xo 

decomposed into the sum of the two derivatives D^f and D^f- 

Thus, we have 

J = J 0 j = i 

P(C^)Dj,f dX * 
,X. 

’P(5„)D f dX] 

^0 

since the derivative D,f w.r.t. T. along the side 
1 3 

the same as the derivative -D^f w.r.t. T. 
0 1 

x.y. 
j 0 

is 

we have 
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6 j-Xo 6 

7 ^ " ’-VJ 
J=1-'X. JO j=l J 

’•^0 
P(5o)D„f dX - 

‘j + 1 

rX. 
^P(5„)D f dx] 

= -1 
j = VT. 

3 

completing the proof. 

Lemma 5.4.2. If f € then the error of the 1-point numeri- 

cal quadrature has a representation of the form : 

ECf.X„) 

j=l 

f ^0 
C 

T. 
3 

2 3 2 )Doof 

(3.4.2) 

Proof : 

E(f,X ) = a 

= I 
j = l T. 1 

3 

f(Xo)?o dy„ 3 
T. 3 
3 

j = l T. 
3 

[f - f(Xo)]?o dp 
T. 
3 

= ^ '^am 
j=l T. 

3 

Cf - f(XO)][DO*^(^2 - 5l)3 dp 
T. 
3 
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It follows from Lemma 1.4.4 and the fact and 

^2 vanish on and X^X^ respectively that 

j=l 

rX. 

f^O 
5o(l - Ko)(f - f(Xo)) dX + 

'j + 1 

hoa - 5o)(f - f(Xon dx + 

Xo 

fXo 

Do(^o5l?2)Dof du ] 
T. j 

1 

= I Pom[2 ^o(l - ^o)Cf-f(Xo)) dX + 
fXo 

j=I ^ ^X 
j + 1 

fX. 
hoKiKl^of dX - 

Xo 

^j-hl 

KoKi^Z^of dX - 

6 2 3 
= I - £(Xo)3 
j=i 2 ■ 3 

dp_ ] 
T. j 

^ 2 
Xo 

X. 
1 

- 2 
Xo ?0 ?o 

- -^}D f dX 
X. ^ jO 
1 

9^0?l?2Doof d]i.p ] 
T. i 

1 

6 

= -V„(T) I [ 
1=1 •'X. 

3 

^°(5o - |«o)Dj^.Xn^ f I^oSieaDoof dv^ ] 

It follows from Lemma 3.4.1. that 

1=1 

2 3 
f ^0 ^0 1 

(— - — - y^o^l?2)Doo^ dp 
T. 1 

1 

completing the proof. 
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Proof of Theorem 5.4.1. 

Application of the triangle inequality and the Cauchy-Schwarz 

inequality to equation (3.4.2), we get 

|E(f,X^)| S I Hjj(T)[J - i€o5l52)2 1|DOO£ ||^2(T.) 

3 ^ -2 3 3 

^3360^ ^00^ II L^(T.) 1=1 ^ r 

I |E(f,X^)|2 < 

It follows that 

23 

0 
aeF 

a 

^ U„(T)[ I ||Doo£||^2fTO^^^ 
ael J 

“ 560 ^ J II Doof || ^^2(''p j ^ 
aef, J = 1 J 

We observe that for each T = XQXIX2 e T and each i, 

2 
the term || ^f || ^_2('r ■) appears in the right hand side of the 

1, Ujj 

above inequality at most once, thus we have 

( I lECf.XjP)"^ < I V-s^m I II D.^.f 
acT 

a 
Tex 

2,n 

completing the proof. 
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To obtain an estimate for the 7-point numerical quadra- 

ture error, we have the following Theorem. 

Theorem 5.4.2. If f e (Q) and is the 7-point numerical 

quadrature of F^, then 

cl |E(f,X < 0.07208(y„(T))V|f|f (3.4.3) 

aef, 
h 

To prove the theorem, we need the following auxiliary 

lemmas. 

Lemma 5.4.5. If f e (Q) and PCCQ) is a real valued function 

of defined on each of the triangular element T^ = 

then, 

fXo 6 j-X. 

I [ ^P(Co)D20of dX - 
j=l ^Xo 

P(5o)Dioof dX] 
X. , 

= I 
j=l^ 

1 1 
■oP(?o) (^0000^ " ^0012^) dy„ 

T. j 
J 

(3.4.4) 

Proof : 

6 fX. 

7 C ^P(eo)D20of dX - 

j = l •'Xo 

Xo 
P(Co)Dioof dX] 

X. 
1+1 

6 |-X. 

= I [ ^P(eo)( “Dooof - Dioof) dX - 
j=l Jxo 

Xo 

X. , 
J+1 

P(Co)(-Dooof - D200f) dX] 
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1 
j=i •'x. , j + 1 

P(? dX - ^ 0 000 

PG.?JD f dX - 
0^ 200 

X. 

^PCSo^Dooo^ >1’^ * 

6 

I C 
j=l ^ T. 

3 

-xP (E )D £ du^ + 
2 '‘^0^ 0000 

j -^x. 
3 + 1 

P(^ )D f dX - 
0 200 P(5o)Dioo^ 

X. 
3 

X. 
J + 1 

Fig. 3.4.1 

w.r.t. 

j+1 

As shown in Fig. 3.4.1, the derivative -Digof along X^XQ 

is the same as ^220^ w.r.t. and D2oo^ along 

X_. .,Xn w.r.t. is the same as -DUQ^ w.r.t. T. 
J + 1 

Thus, these 

derivatives can be divided into two equal parts, half of them will 

be added to the line integral of the adjacent triangle. It follows 

that 
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X. 
I [ )D £ dX - 

i = i J y 0 200 3-1 AQ 

.XQ 

P(^ )D f dX] 
Y 0 100 
3 + 1 

6 

= I c 
j=i •' 

Xo 1 
4P(5.)(D.»„f + D„„„f) dX - 2 ^0 200 220 ^ 

3 + 1 

rX 
3 1 

Xo 
P(?o3(Dioof + DllO^) ^X] 

= I C 
3 = 1 

6 

-I 
3 = 1 ■' 

^(5 )D _ f d]x^ - 
j 2 ^ 0 0000 T. J 

3 ^ 

° ^CC«)D £ dX + 
2 '‘^0^ 210 

3 + 1 ^0 

iha )D £ - hu )D £] dii^ 
y 2 0 0000 4 0 0012 T. 

j 
3 

completing the proo£. 

Lemma 5.4.4. I£ £ e then the error £unctional o£ the 

7-point numerical quadrature has a representation o£ the form 

E(£,X ) 
a 

UU ^ 1 

j = l-'T 

dX] 

(3.4.5) 



82 

Proof: We shall only give a brief proof for this lemma. 

ECf.v = ^ 
2 ^ 

£*„dp„-2h^£(X^)] I C£(X„)-£CX )] 
Q 3 = 1 J 

= C f^^dn^-2h^f(XJ] * T^VOCT) I 
0. 

Y f dX 
3 = i^X. ^3^0 

It follows from Lemma 3.4.2 and Lemma 3.4.1 that 

E(£.x 3 = I 
^ a'^ 24 

1 = 1 •' 

dy^_ 

It is not hard to get into the following step: 

E(£,X^3 

y„CT3 6 r^o 
S2 ^ (. 
24 

1 = 1 •' 
(-l-2Co+16?Q-10Co)C2Doof dX + 

^j + 1 

2 . 3, 

•'X 
J(-1-25O4.16&;,-10?(,3CID £ dX - 

i(-l-2? +165^105^3 (? -5 3D £ dy 
2 00021 000 T 

3 ^ 

after further evaluation, we have 
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E(f,X ) 
a 

— y [ 
24 

J = 1 

fX 0 C 3 13 4 5 
+2? )D f dX + 

'■^0 2 ^0 2 ^0 0-^ 100 

j + 1 

^^H-8€^55^5„CjV5i52Do„oof dp^ 

1 ^ 

Applying the Lemma 3.4,3, the result of Lemma 3.4.4 follows. 

Proof of Theorem 3.4.2: 

Applying the triangle inequality and the Cauchy-Schwarz 

inequality to equation (3.4.5), we get 

6 
|E(f,X^)| < 24 ^^^^^o^^^OOOO 

where = 0.08495 and k, = 0.04297 
0 1 

Applying the Cauchy-Schwarz inequality to the above inequality, we get 

|E(f>X^)l ^—24 (6k + 6k^) { J ( IIDQQQQ^II |_2(-'p j II^QQ L^(T.)^ ^ 

3 = 1 3 3 

It follows that 

( I |E(f,X^)|^’^ < 0.07208(M^m)^{ ^ . It H DQOOO ^ H l2 (T. ) " 

acT h 
3~1 

11^0012^11 L2(T.) ^ 
3 

(3.4.6) 
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for each Tex, since the terms j 
" 0 000 " L-^CT.) and 

^0012^^^1 right hand side of the inequalit; 

(5.4.6) at most once, thus, we have 

( < 0.07208 (yCT)J*'"( I Uj,(T) I || D ® f H 2 , .^1 ^ 
aef. " V. " . . L V j Ter e =4 

= 0.07208(Pn(T))^h“l£l ^ 
ii 4, ii 

completing the proof. 

We know from Section 2.5 that the Ritz-Galerkin solution 

to the linear operator Lu = -V*(pVu)+qu = f turns out to solve 

the following system of linear equations: 

Q 
dPjj a - i'h 

or it can be written as 

a(u ,(j) ) = F = (£,<!> ) (3.4.7) 

If the integral is approximated by a numerical quadrature 

, then we are solving 

a(u^,4> ) = F a € r. (3.4.8) 
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“* h V ' 
where u = / A ds is a solution to the linear svstera C5.4.S) 

^Q, a a 
aeT 

From (3.4.7) and (3.4.8) we get 

a(u^-u^,(|> ) = F -F = E(f,X^) 
^ * a. a a ^ * a-' 

It follows that 

a(u^-u^,u^-u^) = y (A -A )E(f,X ) 
cteT, 

h 

this reduces to 

^ h IV^al lEtf'Vi a *-0 ■ a a 
acF, 

h 

(5.4.9) 

By applying the Cauchy-Schwarz inequality to the equation (3.4.9), 

we get 

h ~h|i2 
U -U 11^ s ( L lE(£,X^)i2)'5 C3.4.10) 

a£ i a£ i 

To obtain an upper bound for ( (A^-X _)^) in terms 

of the iP- norm || u^-u^ i| , we need the following Leirma. 

Lemma 3.4.5. Let u(X) = J X^6^^(X) and vanishes on o5. 
a£T, 

7 . 2 /. 

Then 



S6 

Proof : du 
Q 

I 

l£T 
h-' T 

where A , X_, X are the values of u at the three vertices of 
a 3 Y 

T = X X„X , 
a 3 Y 

Since X^ + X^ + X^ + 2CX.X +X X +X X.) > 0 
a 3 Y 3YYctct3 

for all X , X„, X £ R, we have 
a* 3 Y 

y iX^+xl+X^+X.X +X X +X X.) > y 4C^^+A^+X^) (5.4.11) 
^ a3Y3YYC6a3 ^ 7^ n P. w-' 2^ a 3 Y' 

Tex Tex 

Since X =0 for all X £ 30, and for each a £ F, , 
a a h 

there are six triangles T in x^ with the common vertex X , 

thus the right hand side of the inequality (3.4.11) can be written 

2 
as 3 y X 

a£Ph 

It follows that 

" km L 
aeF, 

completing the proof. 
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Since u -u is a piecewise linear function on f: and 

vanishes on the boundary we can apply Lemma 5.4.5 to the 

inequality (3.4.10) to get 

-h 
-u 

h 
u 

~h 
-u 

(.Q) 
E(f,X ) 

a 

From Lemma 2.3.2 we have 

It follows that 

 p( L |E(f,X )12)’s 

If the 1-point numerical quadrature is used, from 

Theorem 3.4.1 ^ve have 

4^ 2,n > 

and if the 7-point numerical quadrature is used, from Theorem 5.4^2 

||u^-a^il^< 0^1019 ,4 h"^|f I 

we have 



ss 

If u is the exact solution to Lu = f, from the 

triangle inequality, we get 

From Theorem 5.5.2 we know that the energy norm jju-u^|| has an 

order of accuracy 0(h), whereas the energy norm ||u^-u'^||^ has 

an order of accuracy O(h^) and O(h^) for the 1-point and 7-point 

numerical quadrature respectively. Thus, both the numerical quadra- 

tures are consistent CV2] in the energy norm, that is, the solution 

still has an order of accuracy 0(h) in the energy norm for the 

1-point and 7-point numerical quadrature. 



CH.A.PTER 4 

SOLUTION OF THE DISCRETE LINE.4R EQUATIONS 

4.1 INTRODUCTION 

It is well knovvTi that discrete two dimensional boundary 

value problems become very hard to solv'e by the usual iterative 

algorithms as the number n of data points become large. P.O. 

Frederickson has introduced an algorithm FAPIN [F4] to solve this 

type of problem. In particular, the algorithm FAPIN solves the 

Ritz-Galerkin approximation in 0(n) operations and 0(n) storages. 

In this chapter, we lean heavily on the first few sect- 

ions of Frederickson [F4] and many of our results come from this 

source. 

The algorithm FAPIN requires an approximate 1-local in- 

verse C. This approximate inverse can be constructed by the TRq 

or LSq method introduced by Benson [B3]. The TRq method is 

generalized to the weighted truncation (h'Tq) method by multiply- 

ing a weight W to CA-I. 

We then introduce a new technique for the construction 

of an optimal e-approximate inverse to A, v.-hich we refer to as 

the yiyvtQJipotcutlcn meXkod, (INq) . Numerical results with each 

approximate inversion technique considered are presented, serving 

as a basis of comparison of different constructive methods. 

89 



90 

We end this chapter by presenting some numerical examples 

for the solving of the Poisson equation in a triangular domain with 

homogeneous and inhomogeneous boundary conditions, and in one of 

these, the differential operator is singular. 

4.2 APPROXIMATE INVERSION 

Let II • II and || *11 be the norms of the Banach 

Spaces X and Y respectively, and let A be a bounded linear 

operator mapping X into Y, For a given y in the range of A, 

we are interested in constructing a numerical solution x e X s.t. 

Ax = y (4.2.1) 

We recall two definitions from Frederickson [F4]: 

Definition 4.2.1. Given 0 < e < 1, then an element x € X is 

called an e-app^oxMncUe ^olvutton to (4.2.1) if 

lly-Ax||y^ E||y||y (4.2.2) 

Definition 4.2.2. For 0 < e < 1, a linear operator C : Y X 

is called an e-a.pp^oX'UnatQ, ZnveA^^ to A if 

||Ax-ACAx||y < ej|Ax||^ for all x € X (4,2.3) 

If A is nonsingular, then (4.2.3) is equivalent to the 

inequality 

||I-AC|| < G (4.2.4) 
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which is known (CF7], [VI]) to be a sufficient condition for the 

convergence of the iterative process 

= y - Ax,^ 

(4.2.5) 

to a solution to (4.2.1) for any initial approximation XQ and any 

y in the range of A. 

If A is singular, Frederickson [F73 has shown that the 

iterative'process (4.2.5) still works, provided only that (4.2.1) 

has a solution. 

Theorem 4.2.1. [F7] If C is a nonsingular e-approximate inverse 

to A, then the following are equivalent: 

(a) There exists an XQ e X, such that the iteration procedure 
(4.2.5) converges 

(b) Equation (4.2.1) has a solution 

(c) For any starting vector XQ e X, the sequence 

(4.2.5) converges to a solution to (4.2.1), and the map : 
XQ -> X is affine and onto the set of all solutions to 
(4.2.5) . 

Proof : (a) (b) 

Let X be an element of X s.t. 
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From (4.2.5) we have 

rj, = y - AXj, y - Ax 

from W'hich it follows that 

C(y-Ax) = 0 

Since C is nonsingular, we have 

y = Ax 

Now we want to prove (b) —^ (c) 

Let X* € X s.t. Ax* = y 

From (4.2.5) we have 

Since C is an e-approximate inverse to A, we have 

= y - A(Xj^+Crj^) 

(y-AXj^) - AC(y-Axj^) 

= A(x*-x^) - ACA(x*-Xj^) 

It follows that 

(4.2.6) 
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From (4.2,5), we have 

^ = l|Cr , + Cr „ + *•'+ Cr 1! V m > n m n'!x " m-1 m-2 n“x t- 

- l|c|KllVi!( * llV2lly 

S Hell llroll + £ ) 

< (jc II Ikolly. e^/(l-e) 0 as n -> « which 

implies is a Cauchy sequence in X and hence converges to 

a point X € X. 

Thus Ax, Ax k 

From (4.2.6), we have r^ 0, hence 

y - AXj^ 0 

or AXj^ -> y 

It follov^7s that Ax = y 

To prove that the map described by (4.2.5) is affine, let x l,k 

and X be any two elements of X and 
2,k 

■" Xz = 1 

then from 

X k , follows 2 2,k 
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= + XjCy f X^Cy - XjCAx^^j^ - X^CAx^^^ 

= Xj[Xj^^ + C(y-AXj^^)T + X^Cx^^,^ + C(y-Ax2^^)] 

“ ^1^1,k+1 * ^2^2,k+1 

Thus the map XQ x described by (4.2.5) is an affine map. 

To prove that it is onto the range of A is easy, if Ax = y we 

simply choose XQ = X. 

The implication from (c) to (a) is trival, completing the proof. 

Define by p 
^ m 

II 
llvil^ 

the KdduiCJtion jacitofi [VI] at 

iteration m, if r II 0, where r is the residual vector 
* " m-i'' ’ m 

defined in (4.2.5). 

If the largest eigenvalue X in modulus of the linear 

operator I-AC is dominant, and if rg is not orthogonal to the 

eigenvector V corresponding to X, then the limit of exists 

and [B5, p. 269] 

lim p 
m-x» m 

P(I-AC) 

Thus, the spectral radius p(I-AC) serves as a basis of 

comparison of how well the operator C approximates the inverse of 
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A in an iterative algorithm. 

In terms of actual computations, the spectral radius p 

of the operator I-AC can be estimated from the computation of the 

reduction factor in an iterative algorithm to the solution of 

the equation 

Ax = 0 

with a random initial vector x. 

If we order the eigenvalues of the operator I-AC so that 

l^ll > U2I a JX3I s ••• 1x^1 

Then the rate at which the sequence p^ converges depends 

on the dominance ratio : CVl] 

the convergence of the estimate p^ of p is slow when 6 is 

close to 1. However, the convergence of the sequence p^ can be 

accelerated by the application of a non-linear sequence-to-sequence 

transformations proposed by D. Shanks [S3]. A Fortran program to 

perform this transformation is given in Appendix B. 

4.3 LOCAL OPERATORS 

For the purpose of solving the system of linear equations 

produced by the Ritz-Galerkin solution to the linear operator 
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Lu = f on a bounded polygonal domain we restrict our attention 

to finite dimensional linear spaces X and Y. 

Denote by X the space of real valued functions on the 
h 

integer lattice r, defined in section 1.2, and let Y_ be a 
^h 

subspace of X. We say that the linear operator A : X„ ^ 

is a q-tocat opoAcutOH. for some integer q if the value of Ax at 

a point a € depends only on the values of x in a q-neigh- 

bourhood of a ; CF4], more precisely, if 

t'(Ax)^ 0] => ^ ^ ^ 01, 
where \‘\ is the hexagonal norm defined in Section 1.2. 

Thus, for any q-local operator A : X„ Y , there 
h h 

are elements ^ s.t. for any point a e Fj^ 

(Ax). = I a QX (4.3.1) 

In particular, if A is a 1-local operator, then at each point 

o 
a € Fj^, expressed diagrammatically, A has a representation of 

the form 
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Denote by n the number of points in then the 

implementation of (4.3.1) allows storage of A in 7n locations 

and evaluation of Ax in 7n multiplications. 
t 

Let A be a q^-local operator and C be a local 

operator defined on the linear space X„ . We seek the linear 
h 

operator B such that for any x e X„ 
^h 

Bx = C(Ax) 

In terms of the representation (4.3.1), B can be 

expressed as 
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(Bx) 
a 

Yea X 
a,3 a+3,Y'ot+3+Y 

P» Y 

(4.5.2) 

UNQI I Y 1^92 

The sum extends over only those a and 3 for which a + 3 £ F, 

As we can see from (4.3.2), 3 is a (q^^+q^)-local opera- 

tor. 

In particular, if A is a constant coefficient 1-local 

operator with a representation of the form 

and C is also a constant coefficient 1-local operator v;ith a 

representation of the form 
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C : 

(4.3.4} 

then the composition of CA is a 2-local operator. The graph of 

B = CA is shoun in (4.3.5). 

It is easy to see that if A and C are constant co- 

efficient local operators, then the composition commutes, i.e. 

AC = CA. 

In this case, AC can be written as a convolution opera- 

tor. 
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(4.3.5) 
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4.4 BEST APPROXIMMION 

For every triangulation of Q there is a least 

I I £-1 f 
integer Z such that |a|^2 for every a e we \vrite F 

for and define, using the recurrence 

F^"^ = {a:2[3-, |3|^1, 2a+3 e F^} (4.4.1) 

the sets F^ for l<k<£ 

We observe that la|<2^ ^ if a e F^, and in particular, 

F has at most 7 points. 

Denote by X the linear space of real valued functions 

Ic 
defined on F , and define the sequence of ^vtOyipctcutLcti 

„k-1 vk . 
Q : X X through 

where 

k ,^k k-l. 
Xg = (Q X )g = 

aei ,k-i 
^ ^ a 

(4.4.2) 

4>;(3) = 1 

The set {({)^} „k-l 
acF 

if |2a-3l = 1 

if g = 2a 

otherwise 

form a basis for the space 

U k Qk(xk-I)^ 

Define the sequence of pKoj(icXA,on opoAoto^ 
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by 

k-1 
a 

(PV) = I <?'"CS)r‘ 
a a t 

3er 

C4.4.5) 

z z 
Beginning with A = A and Y = Y, we define the 

k k k 
sequence of operators A : X Y by 

Ak-1 ^ pk^^qk . -> Y^'^ 
(4.4.4) 

k-1 Then in terms of the representation (4.3.1), A can be repre- 

sented as 

,.k-l k-l. 
(A X ) 

a 
lY 

7 (}.'^C2a+Y) I I .k ^ ^ k-1 
T<1 “ \o]<l B 

I Y+cr-23 1^1 

y (2a+y) a*' (i)^ o(2a+y+cj)x^ \ ^ 2a+y,a a+3 ct+3 
3,y,a 

3|<1,|y|<l,|al<l 
Iy+a-23| 

or 

k-1 y ak^o . ^ k .k rn ^ ^ y 

a,3 y,a 2a+y,a a+3 
Iy|<l,|a|<l 
|y+a-23|^l 

(4.4,5) 

In particular, if A is the 1-local discrete Lapacian 

operator derived in (2.5.6), it is easy to verify that A is 

invariant under the collection. 
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Thus, we have 

A 
k 

= A 

for all l<k<il 

If A is a constant coefficient operator of the form 
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then we have 

A 
k-i 

(4.4.8) 

k-1 k 
It follows that A = AA for some constant X iff 

ok ^ k 
—+ 9a, 
2 0 1 

5 k Ik 
2^1 4^0 

= Xa, 

= Xa. 

iff X = 4 or 1 

The two constant coefficient 
% 

ag and 
1 

of are 

related by 
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; I , K a = -6aj 

i ^ Z 
^0 = 

if X.= 1 

if X = 4 

Given an element in the range of A^, we are asked 

to find an element e s.t. 

,k k k 
Ax = r 

(4.4.9) 

Let ^ be the image of at r^, if x^ ‘ is the 

the solution of the equation 

.k-i k-i k-i 
Ax = r 

We are interested to know how close the solution x^ ^ is to x^? 

This question is answered by the following Theorem [F4]: 

Theorem 4.4.1. If A is symmetric and positive definite, then 

k-1 
the operator A defined by (4.4.4) is the Ritz-Galerkin best 

k k k k-1 k 
approximation to A in the subspace U = Q (X ") of X . 

Proof: We define the quadratic functional related to (4.4.9) by 

T-r k. , k _ k k 
F(x ) = <Ax - 2r ,x > 

where 
k k k k 

<X ,y > = i 
aeP 

(4.4.10) 

k k 
Let X be an element of U and e € R. Then we have 
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F(x +ev ) = <A (x +ev ) - 2r ,x +ev > 

,kk— k k ,,kk k .kk k 
= <A X -2r ,x >+e(<A x ,v >+<A v ,x > 

_ k k» p.kk k 
-2<r ,v >)+£^<A V ,v > 

k k k k k k k 
Since A is svinmetric i.e. <A x ,v > = <A v ,x >, we have 

T-i^k,^k^ T^^kvA^ykk k k k^ o.kk k 
F(x ) = F(x ) + 2e(<A x ,v >-<r ,v >)+e^<A v ,v > 

It follows that 

k k. -- .k k k k k . .k k k 
dF(x +ev ) = 2(<A x ,v >-<r ,v >)+2e<A v ,v > 
de 

and 

d^F(x +ev ) = 2<A v ,v > 

de^ 

A is positive definite implies 

d^F(x^+£V^) 

de^ 

> 0 

e=0 

if ^ 0 

Ic Ic k 
Thus X minimizes F iff the first variation ^(x +ev ) 

dc ^ = 0 

k k 
vanishes for all v in U i.e. 

^.k k k^ ^ k k^ 
<A x ,v > = <r ,v > for all v^ £ 
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Since the functions , a £ ^ form a basis for U^, this 
a 

holds for all in iff 

<A^x^,<|)^> = <r^,4>^> for all a £ F^"^ 
a a 

k k 
X £ U implies it can be written as 

k 
X 

0£F 
k-1 

X 4> 
a a 

k-1 

It follows that 

■k^k k-1 ,k k ,k 
<A Q X > = <r ,b > 

^ a a 

From (4.4.10) we have 

r ^.k^k k-K ,k,-. 
1 (A Q X )QC;5^(3) 

T r-' Ut 

Bcr’^ 
I 

3cr^ 

From (4.4.3) we get 

,^k.k^k k-1. ,^k k. 
(P A Q X ) = (P r ) 

ct o. 
for all a £ r 

-k-i 

It follows that 

„k.k^k k-1 k-1 
PAQx =Pr = r 

From (4.4.4) we get 

,k-l k-1 k-1 
Ax = r 
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K— 1 l- 
i*®* A is the Ritz-Galerkin best approximation to in the 

subspace U^. 

However, in general if is not s>Tnmetric and positive 

definite, then the operator A^ ^ can only be described as the 

Galerkin approximation to A^. 

4.5 THE ALGORITHM FAPIN 

P.0, Frederickson [F4] introduced a new algorithm FAPIN 

to solve a large sparse linear systems of a certain class in 0(n) 

operations. In particular, it solves all finite element approxi- 

mations, over a sufficiently regular mesh. 

FAPIN is an iterative algorithm. At the beginning of 

the n^^^ pass one has an approximation x^ to the solution of 

Ax = y. An inner loop of FAPIN requires a 1-local e-approximate 

k k k k 
inverse C : Y X to A . If Ax = y has a solution. 

Theorem 4.2.1 tells us that the initial vector XQ can be random. 

The iteration begins by computing the residual vector 

r y - Ax^, continues by evaluating the residual vector r 

Z £0 
defined by (4.4.3) from r to r , the residual vector at the 

bottom level £0. Next, the approximate solution 

£n 
is computed in the space z and then one works back up from 

k = £0 to k = £-1, first interpolating and then refining this 

approximation: 
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k k-1 

k 
z z +C (r -A z ) (4.5.1) 

At the top level, k = £, 

£ ^ £-1 
X X + Q z 
n n ^ 

these assignments are replaced by 

£ 

+ 1 
Ac ^ C (y-Ax ) V.- n (4.5.2) 

A detailed coding of the algorithm in Fortran to solve 

the linear system Ax = y in a triangular domain is given in 

Appendix A. 

£ 
The actual programs compute the norm of r while compu- 

£ 
ting r and this is used to allow an early exit v/hen tolerance 

e has been achieved. 

In general, if the operator A is not constant, then 

the lower approximations A must be computed first according to 

the equation (4.4.5). The corresponding approximate inverses C 

must also be evaluated. Techniques for construction of these ap- 

proximate inverses will be discussed next. 

4.6 CONSTRUCTION OF APPROXIMATE INVERSES 

Benson [B3] has introduced several techniques to con- 

struct an approximate inverse for certain band matrices. In this 

section, we put the Truncation Technique C^Rq) and Least-squares 
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Technique (LSq) [B5] into a slightly modified form and apply it 

to an 1-local linear operator A, to construct a 1-local operator 

C, an G-approximate inverse to A. The TRq method is generalised 

by multiplying a weight W to the operator CA; we refer to this 

method as the Weighted Truncation Technique (UTq). However, appro- 

ximate inverses obtain by these methods are not optimal. We intro- 

duce another new technique call Interpolation Technique (INq] to 

construct an optimal approximate inverse of A. This optimal in- 

verse speeds up the convergence of the algorithm remarkably. 

Denote by TRq(CA) the truncated q-local operator , where 

C and A are all q-local linear operators. 

The TRq approximate inverse of A can be constructed 

by solving the system of linear equations 

TRq(CA)^_3 
'^(0,0),s 

(4.6.1) 

where 6 denotes the Kronecker delta. 

If A is the operator defined in (4.3.3) and the 1-local 

approximate inverse to A has the form (4.3.4), then it follows 

from (4.3.5) that the TRq approximate inverse C can be obtained 

by solving the following system of equations: 

f a c + (a +2a )c = 0 
10 011 

a c + 6a c 
0 0 11 

1 
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2 2 If + ^^0^1 ~ ^ above system of linear equations 

has an unique solution, i.e. 

a +2a 
0 1 

a^+2a a -6a^ 
0 0 1 1 

2 2 
6a -2a a -a 

1 0 10 

In particular, if A is the discrete Laplacian operator 

given in (4.4.6), then C has a representation of the form: 

C: 
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Results with the TRq method applied to the discrete 

Laplacian operator A on a triangular domain at each level Z 

are tabulated below and graphically in Fig (4.6.4), 

n 

15 

45 
153 
561 

2145 
8385 

0.3333 
0.3591 
0.4115 
0.4612 
0.4757 
0.4751 

Z-1 Z 
where n = (1+2 )(1+2 ) is the total number of equations. 

The TRq method can be generalized by multiplying a 

weight W to the operator CA, where W is a constant coeffic- 

ient r-local operator. 

The WTq approximate inverse C can be constructed by 

solving the system of linear equations 

TRq(CAW) = TRq(W) (4.6.2) 

If A and C are of the form (4.3.3) and (4.3.4) res- 

pectively, and W is a 1-local operator with a representation of 

the form 
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then it follows from (4.3,5) and (4.3.2) that the linear 

system (4.6.2) becomes 

(aoWQ+6aiWi)Co+6[aiWo+(ao+2aj^)w^]c^ = 

c 

[ajWQ + (aQ+2ai)wi]co + C (ao+2ai)wQ+(2aQ+15a;^)Wj]cj = Wj 

(4.6.3) 

The linear system (4.6.3) always has an unique solution 

6[a^w^+(ap+2apw^] f (aoWo+6aiWi) [ (a^+2a^)w^+(2a^+15apw^] 

if 
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In particular, if W is chosen as A, then the linear 

system (4.6.3) becomes 

(a?+6a?)c„ + 12a (a^+a )c = a 
^0 r 0 0 1^ 1 0 

(4.6.4) 

We observe that the system (4.6.4) always has a solution. 

If A is the discrete Laplacian operator, we have 

c^ = 17/89 = 0.1910112 
< 

c, = 3/89 = 0.0337079 
(4.6.5) 

Results with the iVTq method applied to the discrete 

Laplacian operator A on a triangular domain at each level i 

are tabulated below and graphically in Fig (4.6.4), 

n 

15 
45 

153 
561 

2145 
8385 

0,1011 
0.1461 
0.1510 
0.1698 
0.1746 
0.1748 
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Denote by ||•|| 
o 1' ^ 

^ = (7 ^ the discrete Z a,2 a, 3 

B|<q 

norm of the q-local operator A at the point a e by 

g “ II‘IP o' ^ ^ linear operators defined Ot Ot ^ 2 

in (4.5.4) and (4.3.3) respectively, then 

g„ = II = (apGg+6ajCj-l)2 + 6[ajCg+(ap+2aj)Cj]2 + 30(ajCj) 

(4.6.6) 

We observe that is a function of the parameters CQ 

and c^, the methods of calculus enable us to find the values of 

c^ and c^ that minimize g. The approximate inverse C obtained 

by this method is called the LSq approximate inverse and we refer 

to this technique as the LSq method. 

From (4.6.6) we have 

-r— = 2(ac+6a c --l)c + 12Ca c +(a +2a )c 3a 
9c- ^00110 10^0 111 

3g 

= 2(aQCQ+6ajCj-l) (6ap + 12CajCQ+(aQ+2apc^3(a^+2a^)+60a2c. 

rr, • • • • To minimize g , we require ^ j ot „ . 
^ -r— = 0 and — = 0, i.e. 

3Co 3Cj 
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(a^+6a^)c + 12a fa +a )c = a 
0 10 loll 0 

2a (a +a )c + (a^+4a a +15a^)c = a 
I 1010 0 01 11 1 

rVe observe that the above system o£ linear equations turns 

out to be the same as the WTq method applied to same operator CA 

with a weight W = A. 

In general, if the six coefficients a . , |3|=1 are 
cc, p 

not equal, then the approximate inverse C at each point a e f 

has 7 parameters to be determined. It follows from (4.3.2) that 

3 <1 

|y-3(<l 

To minimize we require 9g 

ac 
a „ for a € r, , la--a|<l. Now 

= 0 h ' ' 
a,a 

as a 
ac = 2C 

a,a 3^1 
c „a ^ ^”l)a _ + 
a,3 a+3,-3 a+cj,~cj 

I<|Y 

|Y-a 

I 2C ^ ^a,3^a+3,Y-3^^a+a,Y-cf 
y 3 

= 0 

^2, 131^1 
<1 |Y-S1SI 
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which gives 

a 
a+o j-o 

lelsi,. 
^ ^a+a,Y-o ^ ci+B»Y“B 

I<1Y1<2 le|si 
|Y"CJ[:^I |Y“3|^I 

0 

for a e F^, [a-a[<l. 

Thus, the 1-local LSq-approximate inverse of A at the 

O 
point a € Fj^ can be obtained by solving the above linear system 

of 7 equations. This linear system of equations can also be 

written as 

^ a,3 ^ a+o,y-a a+3,y-3 a+y,-o (4.6.7) 

\y\<2y |y-a|<l 

IY-3|^I 

for a £ Fj^, |o-a|<l 

The sum extends over only those y for which y-’Oy y-3 

^ "h- 

If A is a constant coefficient 1-local operator, we 

are also interested to construct an approximate inverse of A by 

the application of LSq method to the weighted operator ACA, and 
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try to minimize the expression 

g^, = IKCA - 

It follows from (4.3.5) and (4.3.2) that 

+ 6[a^c^+2a (a +3a )c ]^+ 6[2a^CA+2a (2a +3a )c + 114a^c^ 
1 0 0 11 1 ^ 10 11 11 

T Let C4 ^ J n 1. 
= 0 and -r— = 0 we have 

3c 3c. 

(a^+36aja?+48a^a?+90a‘j‘)c„ + 24a fa?+3a?a +15a a^+15a^)c 
n 01 01 1^0 1^0 01 01 1^1 

= a^+18a a^+12a^ 
0 0 1 1 

4a, (aj+3aja +15a a^+15a^)c + (a^+8aja,+90aja?+240a^aj+340a!t)c, 
1^ 0 01 01 10 0 01 01 01 1-^1 

= 3a^a +6a a^+15a^ 
01 0 1 1 

In particular, if A is the discrete Laplacian operator. 

then we have 

r CQ = 103/597 = 0.1725293 

< ’ 

c, =1117/48556 = 0.0230044 
1 

(4.6.8) 
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Application of the above approximate inverse to the 

algorithm FAPIN on a triangular domain, the numerical results 

are tabulated below and graphically in Fig (4.6.4)• 

n 

15 
45 
153 
561 

2145 
8385 

0.1258 
0.1539 
0.1691 
0.1714 
0.1672 
0,1637 

The approximate inverse C determined by the TRq or 

LSq method is usually not optimal,however, it can be improved by 

the INq method. This method is feasible only in the constant 

coefficient case. For simplicity, we shall introduce this techni 

que with an example for the construction of an optimal e-approxi- 

mate inverse to the discrete Laplacian operator A. 

Let CQ and c^ be two approximate parameters of the 

oper.ator C obtain by TRq or LSq method. Then the optimal 

values of and c^ can be obtained by the following steps: 

Step I. is held fixed. Perturbing Cj about the point 

c , we obtain a set of experimental data (p,c ). 
1 ^ 

The point where p has a minimum can be obtained by 

plotting the graph of p against c^. 
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Step II. Perturbing about for each fixed values of 

carry out the same procedures as in Step I to 

obtain a set of points (c ,c . ). 
^ 01 min^ 

Step III. c^ is held fixed instead of c^, repeating the whole 

procedures as in Step I and II, we obtain another set 

of points (c *^P^,c ,p . 
0 1 min^ 

Step IV. Plotting the graph of c against c for the data 
1 0 

(c„,c^°P^) and (c^°P^,c^) collected in Step II and III, 

we find that the curves intersect at a point 

(c^°P^,c^°P^), this is the optimal solution of the 

operator C. 

To illustrate the method, three graphs of c^ against 

c for the data collected in Step II and III of the INq method at 
O' 

level £ = 2,3 and 4 are plotted in Fig (4.6.1), Fig (4,6.2) and 

Fig (4.6.3) respectively. In order to have a clear picture of the 

behaviour of p near the optimal solution (CQ°P^,C^°P^), three 

contour graphs of p at different height are also plotted in these 

graphs. 

The INq e-approximate inverses C at level £ = 2,3 and 

4 are shown in Table 4.6.1. Application of these INq e-approximate 

inverses C to the algorithm FAPIN, the spectral radius of the 

operator I-AC at each level £ are shown in Table 4.6.2 and 

graphically in Fig 4.6.4. 
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Table 4.6.1 

Table 4.6.2 
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Fig. 4.6.1 

(INq method5 Z=2) 
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0 0 35 
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0 

0. 

0 

0 
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Fig. 4. 6. 3 

(INq method, £ = 4) 

02791 

0 .155 0 .165 0 .175 0.T85 0.195 0.205 Cx) 
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From the experimental results, we observe that the INq 

e-approximate Inverse C varies from one level to another level, 

they are only optimal at the constructed level. ‘ In order to have 

a clear picture of the behaviour of the spectral radius as i 

becomes large, a chart of the spectral radius p against I for 

the various construction techniques are plotted in Fig 4.6.4. 

As we can see from the graphs in Fig 4.6.4, the rate 

of convergence is independent of n for equations in the class 

considered. IVhen £ becomes large, the spectral radius of I-CA, 

p tends to a certain value. 

We observe that the spectral radius p(I-AC) for C 

constructed by the LSq method or WTq method with weight W = A 

are not too far away from its optimal value. We are interested to 

know what is the best choice of the weight W, to make the WTq 

approximate inverse becomes optimal? 

If W is a 1-local operator, from (4.6.3), we have 

(a c +6a c “l)w + 6[a c +(a^+2a )c 3w =0 
0 0 11 0 1 0 0 1 1 1 

•< 

[a c +(a +2a )c ]w + C(a +2a )c +(2a +15a )c -llw = 0 
10 0 110 0 10 0 i l l 

(4.6.12) 

The linear system (4.6.12) has non-tiivial solutions iff 
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6[a c +(a +2a )c ]^ = (a c +6a c -l)[(a +2a )c +f2a +15a )c -1] 
10011 0011 010 0 11 

It follows that (CQ,C^) axe related by 

(6a^-2a a -a^)c^ - (2a^+9a a -12a^)c c + 6(a^+2a a -lla^)c^ + 
1 0100 ^0 01 101 0 01 11 

2fa +a )c + (2a. +21a Ic -1 = 0 
'^ 0 1^ 0 0 1-' 1 

In particular^ if A is the discrete Laplacian operator 

aQ = 6, ai = “1, we have 

78c^ - 6c c - 18C2 + 10C - 9C -1=0 (4.6.13) 
10 1 0 0 1 

The locus of the above equation is a hyperbola with 

c. > 0.3047298 or c < 0.2281788. 
0 0 

The LSq(ACA) e-approximate inverse obtain in (4.6.8) 

and the INq e-approximate inverses at level £ = 2,3 and 4 can- 

not fix into the equation (4.6.13) exactly. For each c^ we have 

constructed before, the corresponding c^ obtain from (4.6.13) 

which is closest to those constructed value c^ and the corres- 

ponding weight W are tabulated below: 
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Construction 
Technique 

constructed From (4.6.13) 

0 0 

Weight W 

w 
0 

w 

TRq 

LSq(AC-I) 

LSq(ACA-A) 

INq,£=2 

INq,£=3 

INq,il=4 

0.2222222 

0.1910112 

0.1725293 

0.1786 

0.1803 

0.1825 

0.0555556 

0.0337079 

0.0230044 

0.03569 

0.02921 

0.02791 

0.2222222 

0.1910112 

0.1725503 

0.1943 

0.1833 

0.1811 

1 

6 

4.704 

6.400 

5.322 

5.169 

0 

-1 

-1 

-1 

-1 

-1 

4.7 EXPERIMENTAL RESULTS 

We now discuss some numerical examples of boundary value 

problems, whose solutions have been approximated by the Ritz-Galer- 

kin approximation discussed in Chapter 2. 

Consider the problem 

r Lu = -Au(x ,x- ,x ) = sin(l-2x.) in ^ 

^ (4.7.1) 

u = 0 on 

where 9. is an equilateral triangle of unit side length, and 

(XQJXJJX^) is the Barycentric Coordinates of a point X in the 

triangle 9. 

The unique solution to (4.7.1) is 

u(x ,x ,x ) = sin(x )sin(x,)sin(x^) 
^012 0 ^ l. ^ i-' 
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The solution of (4.7.1) was approximated by minimizing 

the quadratic functional 

I(u) = [Vu'Vu - -luT sin(l-2x.)] dy 
•o • 1 Q 

over the piecewise linear subspace of . 

It follows from (2.5.4) and (2.5.6) that we are solving 

the 1-local linear system 

h 3h^ f jrx j 
Au = ^ = 

9. 9 

where A is the discrete Laplacian operator defined in (4.4.6) 

and f = sin(l-2x.) 
i 

If the 1-point numerical quadrature is used, then we are 

solving the linear system 

Au^ = 2h2f(X ) 

The numerical results are given in Table 4.7.1. The 

quantity s in this table is 

s = log(- 

h 
The norm jju-u H^2 approximated by applying some 

/I 
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numerical quadrature to each of the triangular elements T e 

In our numerical experiment, the third order Gregory type formula 

[Ll,p74] are used to approximate the norm l|u-u |1|^2 

We 

0(h2) in the 

see from Table 4.7.1 that the accuracy seems to be 

norm || '|| 2 
L (n) 
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Table 4.7.1 (1-point formula) 

(fi) 

0.25 

0.125 

0.0625 

0.03125 

5.4427x10"3 

1.3725x10"3 

3.4390x10"^ 

8.6298X10"5 

1.99 

2.00 

2.00 

If the 7“point numerical quadrature is used, then 

h 
v" = y F , where F „ is the 7-point numerical 
a a,$ a.B 

quadrature apply to the function 

f = I sin(l-2x^) 
i 

The numerical results for the 7-point numerical quad- 

rature are given in Table 4.7.2 

We see from the Table 4.7.2 that the accuracy seems 

to be O(h^) in the norm || ' Ilf arnA 
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Table 4.7.2 (7-point formula) 

lu-u^ (fi) 

0.25 

0.125 

0.0625 

0.03125 

5.6333X10“3 

1.4339X10"3 

3.6016x10"^ 

9.0370X10"5 

1.97 

1.99 

2.00 

Our second example is the problem of inhomogenous 

boundary condition defined by 

-X? 
1 

Lu = ~AU(XQ,X^,X2) = y I Cl-2x^)e ^ in 

(4.7.2) 

-X? 

u(x ,x ,x ) = y e 
0 1 2 t 

1 

on do. 

where Q is an equilateral triangle of unit side length. 

The unique solution to (4.7.2) is 

u(x = I e 
i' 

The Ritz-Galerkin approximation to the problem (4.7.2) 

in the finite dimensional affine space yields the follow- 

ing system of linear equations: 



and A is the discrete Laplacian where f = 2 J (l-2xpe 
i 

-X 2 
i 

operator. 

If the 1-point or 7-point numerical quadrature is used, 

we are solving the following 1-local linear system 

This linear system can be solved by the algorithm FAPIN 

as easy as the homogeneous boundary condition case by simply pre- 

^h ^ 
set the values of u on the boundary of by ^ e ^ 

i 

instead of zeros. 

The results of the 1-point and 7-point numerical quad- 

ratures are given in Table 4.7.3 and Table 4.7.4 respectively. 

It seems from the results in these tables that the accuracy of the 

Ritz-Galerkin solution to the problem (4.7.2) are probably O(h^). 
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Table 4.7.3 (1-point formula) 

L2(n) 

0.25 

0.125 

0.0625 

0.03125 

1.9278X10"2 

4.7939x10"3 

1.1945X10"3 

9 SA7«Yin"^ 

2.01 

2.00 

2.06 

Table 4.7.4 (7-point formula) 

~h 
u-u 

•L2(J^) 

0.25 

0.125 

0.0625 

0.03125 

2.0306x10”^ 

5.1281x10"^ 

1.2849x10"3 

3.1192x10"'^ 

1.99 

2.00 

2.04 

As we can see from the first two examples, although the 

7-point formula is more accurate than the 1-point formula, when 

they are applied to the Ritz-Galerkin approximation, for certain 

types of function u, the error in the 1-point formula may cancel 

off part of the error induced by the Ritz-Galerkin approximation 

and give a better approximation to the true solution u than using 
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the 7-point formula would give. 

Our last example is to apply the algorithm FAPIN to 

solve the problem. 

Lu = -Au + Xu = £ in 

' (4.7.3) 
u = sinfx )sin(x )sin(x -x ) on 

I 0 10 1 

with f chosen to be Lu and 

u = sin(x -X )sin(x )sin(x ) 
12 1 2 

where Q is an equilateral triangle of unit side length, and X is 

equal to one of the eigenvalues of the operator Au = Xu. 

If u^ = sin(27TX^)+sin(27Tx^)+sin(2iTx^), then it is easy 

to check that u^ = 0 on dQ. A 

For this function u, we have 

D.u, = “27rCos(2Trx. ,) + 2irCos(2TTX. ,) 
1 X '“1+1'' 1-1'' 

D. .u^ = -47T^sin(27TX. ) - 4Tr^sin(2Trx. ) 
1,1 A 1+1 1-1 

It follows that 

Au X = fl 
-u 

IbTT^ 
Thus X = - 

3 
is the eigenvalue corresponding to 
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the eigenfunction ^ 5in(2Trx.) of the Laplacian operator A. 

i 

16ll ^7T ^ 
In fact, ~  3  eigenvalues correspond- 

ing to the eigenfunctions ^ sin(2n7rx.) for all n e M 
i 

16 U ^ 
When X ~ - —-—, the operator L = -A + XI is singular. 

It follows from (2,5.5) that the Ritz-Galerkin solutions to (4.7.3) 

is the solution of the following linear system 

h h , h h. h 3h^^ 
L u = (A -f-XB )u = 

a 
(4.7.4) 

where is the discrete Laplacian operator and ^ , B^ 
o 

can be represented as 
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l£ the 1-point or 7-point numerical quadrature is used, 

we are solving the linear system 

nearly singular. The linear system (4.7.5) becomes difficult to 

solve by some algorithm. However, if (4.7.5) has a solution. 

Theorem 4.2.1 tells us that a solution to (4,7.5) is constructed 

by (4.2.5). 

Since the problem (4.7.3) has a solution 

u = sin(Xg)sin(x^)sin(xQ-x^) 

thus the linear system (4.7.5) still can be solved by the algorithm 

h 
FAPIN, although L is almost singular. 

(4.7.5) 

In this case, X =  — is approximately equal to the 

li h h 
discrete eigenvalue X of L . Thus the linear operator is 

It follows from (4.4.8) that the Ritz-Galerkin best 

Ic th 
approximation to the operator L at the k level can be writ- 

ten as 

< 

, 4XB’^ for 2<k<jl 
V 

or they can be expressed in terms of A and B as 

8 ^ 
for 2<k<il 
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The approximate inverse for L at level k can be 

constructed by the WTq method for a proper choice of weight W. 

If u is a solution to the equation (4.7.3), since L 

is singular, it implies u + KU^ is also a solution to Lu = f, 

where K is a constant and u, is the eigenfunction of A cor- 

responding to the eigenvalue X. Because of the symmetry of the 

algorithm we are using, the solution u^ is, like F, antisymme- 

tric with respect to the line x, - x^ = 0, Thus K = 0, and 

we are able to compare u with u. 

Numerical results with the 1-poiht and 7-point formulas 

apply to (4.7.4) are given in Table 4.7.5 and Table 4.7.6 respec- 

tively. It seems from these tables that the accuracy of the 

Ritz-Galerkin solutions to the problem (4.7.3) for the 1-point 

and 7-point numerical quadratures are both O(h^). 

Table 4.7.5 (1-point formula) 

||u-u^|| 12 (Q) 

0.25 

0.125 

0.0625 

0.03125 

1.5042x10-2 

3.3667x10"3 

8.9534x10"^ 

2.2858x10"^ 

2.16 

1.91 

1.97 
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Table 4.7,6 (7-point formula) 

, ~h 
u-u 

0.25 

0.125 

0.0625 

0.03125 

“2 

“3 
1.8307x10 

2.9901x10 

7.7986x10"^ 

1.9813x10"^ 

2.61 

1.94 

1.98 

An even more striking demonstration is provided by taking 

b b 
A - X ^ in this case the linear operator L is almost singular, 

and yet the linear system still can be solved by the algorithm FAPIN. 

fi 
Numerical results for X = X = -52.810 at level 5, = 5 

ITL h*^}! 
are given in Table ^.1.1, The norm |[F -L this table is 

li h'^h 
the root-mean-square of the residual F -L u^^ 

Table 4.7.7 = (A^+A^B^)u^ = F^, UQ = 0) 

Iteration 

-52.810 

1-point formula 7-pbint formula 

3.0428x10"^ 

4.6462x10*3 

3.5905x10*** 

2.8968x10*3 

3.5354x10*3 

3.8152x10“^ 

1.2493X10*'7 

6.4122x10*3 

3.0430X10*2 

4.6464x10 “3 

3.5907x10*** 

2.8963X10*3 

3.5372x10*3 

5.7858x10**7 

1.2448X10*^ 

6.4493X10*3 
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The rate of convergence for the 1-point and 7-point 

formula \^^ith = -52.810 are showed in Table 4.7.8 and Table 

4.7.9 respectively. 

Table 4.7.8 (^1-point formula, A^ = -52.810] 

h L^CQ) 

0.25 

0.125 

0.0625 

0.03125 

-2 

-3 

1.5626x10 

3.3356x10 

8.5449x10“^ 

1.8673x10"'^ 

2.23 

1.96 

2.19 

Table 4.7.9 C7-point formula, A = -52.810) 

h ||u-u^ 
!L2C^2) 

0.25 

0.125 

0.0625 

0.03125 

1.9033x10"^ 

2.9610X10"3 

7.4242x10"'^ 

1.6120X10"'^ 

2.68 

2.00 

2.20 

We observe that as I becomes large, the vector F 

in the linear system L\I^ = tends to zero and u^ tends to the 

exact solution u. But in terms of actual computing, because of 

the round off error, the Ritz-Galerkin solution to the problem 
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Lu = £ can only give a good approximation in single arithmetic if 

the level £ is less than 6 • However, a better approximation 

can be obtained by refining,the mesh and using the double precision 

arithmetic. 



APPENDIX A 

FORTRAN PROGRAMS OF FAPIN FOR SOLVING A 1-LOCAL 
LINEAR SYSTEM IN A TRIANGULAR DOMAIN 

In this appendix, we describe in detail the FORTRAN 

subroutine FAPIN for solving a 1-local linear system 

Ax = y in a triangular domain Q. 

As shown in Fig. Al, the integer 

lattice (i^ji^) of the triangular grids 

are numbered from top to bottom for ij 

and from left to right for ±2^ The 

vectors x^, y and r^ are all stored 

in each of the one dimensional array X, 

Y and R respectively. In particular. 
Fig. Al 

we store x. . as X(N(K)+M(I1) + I2), r. . as 
il>i2 il>i2 

R(N(K)+M(I1)+I2), y^ . as Y(M(I1)+12). 
il»i2 

Starting with N(l) = 0, M(I1) represents the total 

number of points in row 1, row 2, • up to row (li-l) . Similarly, 

£ 
with N(L) = 0, N(K) indicates the total number of points in F , 

r , '•" up to r 
£ 

In each of the iteration, the residual vector r y-Ax 

k k k k 
and r -e r -A x are computed in the subroutine RESINV by 

setting the logical parameter RESIDU = -TRUE*, the vectors 

k k k k 
X X +B (r ) are also evaluated in this subroutine by setting 

142 
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RESXDU = -FALSE* The projection steps P^(r^) and 

interpolation steps -e Q^(x^ ) are carried out in the 

subroutine FAPIN. Once the norm ||r 1| is less than the tole- 

rance TOL or when the number of iterations reaches NIT-1, the 

computed results are passed to the calling program. 

Fig. A1 

WHEN HESIOU = .TRUE,,10 COMPETE THE RESIOLAL VECTOR RK=RK~AK(XK) 

THE TviO CONSTANT COEFFICIENTS QF -AK ARE STORED IN AC 0 { K) * ACl ( K) . 
WHEN REST DU = .FALSc..,TG COMPUTE THE VECTOR X K-X K H 8K I RK ) • 

THE TWO CONSTANT COEFFICIENTS OF CK APE STORED IN ACO<K) ,AC1 <K ) . 

SUBROUT I NE RES 1 N V( XR , RX t Y * L , N , 0 I MX P , D I MY ♦ D IMLK • D IMM , ACO ♦ AC 1 . 
SQNQkMHRE SIO U) 

INTEGER 01 MX R , D I MY , D liMLK ,0 IMM, LK { DIMLK ) »M< D IMM ) ,N { O IMLK ) 
REAL XRIDIMXR) *RX(DI MXR) *Y(DIMY) , ACO(DIMLK) iAC 1 (DIMLK ) 
LOGICAL SQNORM,RESIDU 
COMMON L,K*SQNM 
5MALL = 1 .E-3 5 
IK 1=LK (K ) 
00 100 I 1 = 3 , IKl 
I3 = N(K ) -»-M( I 1 ) 
IK2= II -1 
on ICO I2-2»IK2 
1= 13+12 
YX =0 • 
IF(RE SI DU) GO TO 7 7 

C IF K=2 AND L NOT EQUAL TO 2* TO COMPUTE X2 = C2(R2)> 
IF (K.EQ.2.AND.L.NE.2) GO TO 70 

76 YX = R X ( I ) 
GO TO 70 

C TO COMPUTE RK = RK-AK<XK). IF K=L. R - Y-A(X). 
77 IF(K.NE.L) GO TO 76 

YX-Y(I) 
70 R X< I ) =YX+ACO( K) ’i'XR ( I )+AC I ( K > * ( XR ( 1-I ) + XR ( I + 1 >+XR { I- I 1 ) +XR ( 1- I 1+1 ) + 

^ XR ( I + I 1 > + XR { I + 11 + I ) ) 
C TC COMPUTE THE NORM IF REQUIRED. 

IF ( SQNORM. AND. AdS( RX( U ) .GT .SMALL) S GN M-S GN M + RX ( I )4c + a 
100 CONT INU E 

RETURN 
END 
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Fig. A2 

A SUBROUTINE TO SULVc: THE UINEAR SYSTEM A.X = Y IN A TRIANGULAR DOMAIN, 
LK : AN INTEGER ARRAY OF DIMENSION = K, LK{K> = 
N : AN INTEGER ARRAY OF DIMENSICN = K; STRUCTURE CONSTANTS, N{K) = 

TOTAL NUMBER OF POINTS IN THE TRIANGULAR LATTICE IN LEVEL K-1, 
LEVEL K»»*,»LEVL.L L, 

M : AN INTEGER ARRAY OF DIMENSION = 1+2**K;STRUCTURE CQNSTANTS,M{ I 1 } = 
TOTAL NUMBER QF POINTS IN ROwl, RO W 2 , • . • , R Q'A ( I - 1 ) . 

X : AN ARRAY OF DIMENSION = DIMXY, TO STORE THE VECTOR XK* FROM K = L 
TO K = 2, XN( I I , I 2) =X{ N 1 K)-l-M ( I 1 )+ 12 ) , 

: AN ARRAY OF DIMENSION = DI M XR . TO STORE THE RESIDUAL VECTORS RK , 
FROM TOP LEVEU rv-L TO BOTTOM LEVEL K-2, RK ( I I , I 2 ) =R < N { K )+M ( I 1 ) + I 2 ) 

IT : ON RETURN,! T SHOWS THE NUMBER OF NORMS CCMFUTED, 
NCF. M : AN INTEGER ARRAY OF DIMENSION = NIT, IT SHOWS THE HISTROY OF THE 

NORM OF THE RE. SIDUAL R, 
TQL : SUbROUTlNE RETURNS X HE N NORM OF R HAS LESS THAN THE TOLERANCE 

TOL OR NUMBER OF ITERATICNS REACHES NIT-l. 

SURROUT INS FAPI\ { X,R,Y,NORM,L K,M,N,CIM XR,DIMY,DIMLK,O IMM, IT,NIT , 
>!= TOL, AO , A 1 , CO , C 1 ) 

IN TE GE R DI MXR,Dl MY,O I ML K ♦ DIM W,L K{DI M L K},M(D IMM ),N (DIMLK) 
P E AL N 0 R M{ N I T ) , A ( D I M XR) , R ( O I M XR ) , Y ( D I M Y ) 
REAL A 0(DIMLK) ,AI ( OI ML K ) , CO (O T ML K ) ,C1 (D I MLK) 
COMMON L,K,SONM 
L= D I ML K 
L 1 =L~1 
NL = 2*’>=L 

C TC STORE THE TO COi'^STANT COEFFICIENTS OF -AK IN AO(K),Al(K), 
DO 100 I-2,L 
AC C I ) = ~ AOC I ) 
AI ( I ) = - A 1 { I ) 

100 CONTINUE 
C NL2 IS THE TOTAL NUMBER OF INTERIOR POINTS 

NL2 = (NL-1 )^(NL-2 )/2 
N I T 1 =^N I T- 1 
DO 001 IT=1,NIT1 
K=L 
SQNM = 0,0 

C TC COMPUTE R=Y-A.X, 
CALL RE S IN VC X , R , Y , i_ K , M , N ,D I MX R , D I MY , D IMLK , D IMM, AO , A 1 , .TRUE .* 

.TRUE.) 
SQ^M=SCRT(SDNM/NL2) 
NORMC I T ) =SQN(M 
IFCSONM .LT . TOL) RETURN 

C IF L = 2 ,TG COMPUTE X2=C(R2). 
IF(L.EQ.2) GO TO 500 

C PROJECT RK TO LEVEL K-1. 
DO SCO LL=2,L1 
K=L-LL+1 
JK1=LK(K) 
DO 800 11=3,JKl 
J3 = M< K ) +M( I 1 ) 
I3=N(K + 1 >+M(2+Ii-l ) 
IK 1=I 1- 1 
DO 800 12=2,IKl 
J = J3 + I 2 
I = I 3+2=«'I 2- I 

3 00 R{J)=R( I) + 0.54=<RU-1) + RCI+1)+R(I-2’!'I1-»-1)ERC 1-2 I I+-2 ) FR ( I + 2* 11 
^ R( 1+2*II-1 ) ) 
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C r ‘J C OiVi P U TE X 2 = C ( R 2 ) . 
CALL RES INV (R,X. Y,LK.M,N ,D IMX^ ,0 I MY,DIMLK,0 TMM,CO *C1 ♦.FALSE. » 

=1= .FALSE.) 
C TO INTERPOLATE X IN THE SPACE K+l PRGM SPACE K. 

K = 3 
C TO COMPUTE XK = OKI XK1 ) ,WHERE K1 = K-l. 

6 CO JK 1=LK {K-l ) 
DO SCO I 1=2 ,JKl 
J3 = N{K- 1 ) + M( I 13 
I3 = N( K .) +M< 2Y I 1-1 ) 
DO 300 I 2 = 2, I 1 
I = 1 3 + I 2- 1 
J= J3+-1 2 
IF(K.EQ.L) GO TO 350 
X( I ) = X ( J ) 
X ( I -1 ) = 0 .3 ^ ( X { J ) +X ( J - I ) ) 
X( I + 2^I1-2)=0.5=5^(XIJ-1)+X(J+I1 )) 
X( I + 2=«'I 1-1 )= 0.5^1 X{ J ) +-X{ J+I 1 ) ) 
GO TO 300 

C AT TOP LEVEL L, XL= XL F GL< XL 1) . 
3 50 X( I ) = X < J ) FX{ I ) 

X< I-l) =0.5»{ X(J)FX (J-1) ) FX ( T-1 ) 
X( IF 2* I I -2) = 0.5^ { X( J - 1 ) F X ( JF I I ) ) F X C IF2^ T1 -2 ) 
XI IF2=1' 11 -1 ) = 0 .5 =^{x < J ) FX ( JF r 1 3 ) FX ( IF2=^I 1- 1 ) 

300 CONTINUE 
C TO COMPUTE RK = RK-AKIXK). 

CALL RES INV C X , K,Y,LK,M,N , D IMXR.0 I MY* DIMLK,DIMM * A0,A 1 *•FAL SE. , 
F- . TRUE. ) 

C TC COMPUTE XK = XK F CK(RK) . 
5 00 CALL R E SIN V( R,X,Y,LK * M,N , D I MXR ,OI MY♦DIMLK, O IMM.CO,C1» .FAL S E. , 

* F A E SE . ) 
IF(K .EG .L) GO TU 90 1 

K = K F 1 
GO TO 600 

901 CONTINUE 
I T=N IT 

C TO COMPUTE R = Y-A(X) AND THE NORM OF THE RESIDUAL R. 
SQNM=0. 
CALL RE SINV( X,R , Y,LK,M,N *D TMXR ,DI MY,DIMLK,DIMM, AO * A 1 , .TRUE • , 

^ .TRUE.) 
NO RM < N 1 T ) = S O KT ( S ON M/ NL2 ) 
RE TURN 
END 



APPENDIX B 

FORTRAN PROGRAMS FOR PREDICTING THE LIMIT OF SEQUENCE 

In Chapter 4, we have mentioned that the convergence of 

a sequence can sometimes be accelerated by the application of a 

family of non-linear sequence-to-sequence transformations proposed 

by D. Shanks [S3]. These transformations are defined as follows. 

Let ^ sequence of numbers, let 

Ax = X , - X 
n n+1 n 

and let k be a positive integer. Then a new sequence 

{B, } (m=k,k+l,k+2,•••), "the k'th order transform of {x 

is defined, if the denominator does not vanish, by 

k,m 

m-k 

Ax 
m-k 

Ax 
m-k+1 

Ax 
m-l 

Ax 
m-k * 

Ax 
m-k+1 

Ax 
m-i 

X , X 
m-i m 

Ax T Ax 
m-l m 

Ax Ax , 
m m+1 

Ax 
m+k-1 

. 1 

Ax . Ax 
m-l m 

Ax Ax , 
m m+1 

Ax 
m+k-1 

(1) 
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We observe that the expression in (1) can be written as 

Ax 
m-1 

Ax 
m+k-2 

Ax 
in+k-i 

Ax 
m-i 

Ax 
m+k-1 

Ax , , Ax . X , 
m-k+1 m-k m-k 

Ax 
m 

Ax X 
m-i m-1 

Ax Ax 
m+i m m 

Ax , , Ax , 1 
m-k+1 m-k 

m+k-2 m 
Ax . 1 

m-1 

Ax , Ax 
m+1 m 

and the value B, is the solution of the following system of 
K ^m 

linear equations : 

' Ax . Ax , , Ax , 1 
m-1 m-k+1 m-k 

Ax 
m+k-2 

Ax 
m 

Ax , 1 
m-1 

Ax 
m+k-1 

Ax 
m+1 

Ax 
m 

'k-1 

k,m 

m-k 

m-1 

m 

(2) 

Thus the value of B, can be obtained by Gaussian k^m 

Elimination. The whole procedure is carried out by the two sub- 

routines SEQSMT and DETERM as shown in Fig. B1 and Fig. B2 

respectively. At the end of the execution, the program SEQSMT 
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returns the transformed sequence stored in the array BK 

and the order of transformation for each term B, stored in the k,m 

integer array ORDER to the calling program. 

Fig. B1 

Q 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

5EQSMT IS A SUBROUTINE TO GENERATE A NEW SEQUENCE aK(M) IN ACCELERATING 
THE CONVERGENCE OF SLOWLY CONVERGENT SEQUENCES AND IN INDUCING 
CCNVERGFNT GIF SUME DIVERGENCE SEQUENCES. IN CASE THE ^^ATR^X INDUCE EY 
THE REQUIRED ORDER OF TRANSFORM ATTCN IS SINGULAR. THE ORDER OF 

TR AN SF ORMA TI ON WILL -OE REDLCED TC A LCwER ORDER. 
I:>AR A MET ERS OF THE SUBROUTINE REQUIRE: 

1 • 

2. 
3 . 

4 • 
5. 

• 

7 . 

x: AN ARRAY OF THE ORIGINAL SEQUENCE 
N: DIMENSION OF THE ARRAY X 
K : THE ORDER OF T RANSFORM AT ION OF TFE SEQUENCE 

BK: REAL ARRAY, TO STORE THE GENERATED NEW 
OIMBK: DIMENSION OF BK. DIMEK = N-2^K. 
A : AN DUM04Y ARRAY OF DIAWENSICN KPi BY KP2 
KPi : EQUAL TU K+1 

X <N ) 
AND 

SEQUENCE, 

(BETWEEN 0 
(N-1>/2)• 

8. KP2 : EQUAL TO K+2 
9. ORDER : AN INTEGER ARRAY (DIMENSION=DIMBK) TO STORE THE ORDER 

OF TRANSFGRMAT ION . 

SUBGOUT INE 3E Q S M T X ♦ N ♦ K .BK.DIMBK. A ,KP1 ,KP2 , ORDER ) 
INTEGER DIMBKt ORDER 
DIMF NSIQ N XI N) ,BK(DIMBK > .A( KFl .KP2 ) ,CFQER{DIM3K ) 
IF ( N .GE .24«K +1 ) GO TO 4 
KK = { N-1 ) /2 

IF ORDER OF TRANSFQRMATION IS CUT OF RANGE,STOP RUN. 
WRITE (6,66) K K 

66 FORMAT (*0».'ORDER OF TRANSFORMATICN MUST EE BETWEEN 1 AND •,I2) 
STOP 

4 KMK=N-K 
DO I CO MK-KPl ,NMK 
K1=KP1 
K2 — K P2 
CALL DETERMIX,N ,MK ,K1 ,K2 .A,3KM,&1 ) 
GO TO 110 

IF THE COEFFICIENT MATRIX OF ThE LINEAR EQUATIONS IS SINGULAR, REDLCE 
THE ORDER OF TRANSFORMATION FOR THE TERM BK(M) BY 1. 

1 K1=K1~1 
*K2““ 1 

CALL DE TERM< X,N,MK ,K1 ,K2 . A , BKM , & 1 ) 
110 OROERCMK-K ) = K1-1 
100 BK(MK-K)=BKM 

RE TURN 
END 
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C NiFTHC'D OF GAUSSIAN ELIMINATTCN TO COMPUTE THE RATIO OF TWO 
C DE TEh;-U NANTS. 
C '"AFTIAL PIVOTAL CONOENSATION IS USED- A SEARCH IS MADE I^ EACH COLUMN 
C FOR THE LARGEST ELEMENT EELOW THE DIAGONAL*8UT OTHER COLUMNS ARE 
C NOT SEARCHED. 

SUOROUTINE DET EkM(X * N,MK,K F1 ,K P2 . A *6KM, ^) 
DIMENSION A( KPl « KP2) . X< N I 
SMALL = 0.1E-3D 
IF (KP1.GE.2) GO TO 100 
BKM= X( MK ) 
RETU RN 

C TO GREAT THE AUGMENTED MATRIX A{I,J) 
100 K = KP i- 1 

DO 750 I=1*KP1 
DO 700 J=1♦K 
I I=:!MK+ I - J 

7 00 A{ I, J ) = X < I I )-X ( I I-I ) 
A< I ,KPl ) =i . 

750 A{ I * KP2,)=X< MK + I-KP 1 ) 
C BEGIN THE PARTIAL PIVOTAL CONDENSATION 

DO 600 I I - I . K 
I I P 1 -- I 1 + 1 
L= I I 

C RIND TERM IN COL-UMN I I.ON UR BELOW MAIN DIAGONAL* THAT IS LARGEST IN 
C ABSOLUTE VALUE. AFTER THE SEARCH* L IS THE ROW NUMBER OF THE 
C LARGEST ELEMENT. 

DO 400 I-IIPi.KPi 
4 0C IF ( ABS ( A ( I* I I } ) « GT .ABS( A ( L . I I ) ) ) L = I 

C IF THE. MATRIX IS SINGULAR .RETURN EACK TO THE CALLING PROGRAM TO 
C REDUCE THE ORDER OF TRANSFORMA II ON BY 1 AND REENTER THIS SU3PRCGRAM 

IF { ABS{ A{L, 1 I) ) .LT .SMALL) RETURNl 
IF {L.EO.in GO TO 500 

C INTERCHANGE ROWS L AND II. FROM DIAGONAL RIGHT 
DO 410 J=II,KP2 
TEIMP = A ( I I . J ) 
A( I I , J ) = A( L. J ) 

4 1C A{L.J)=TEMP 
C ELIMINATE ALL ELEMLNTS IN COLUMN II BELOW MAIN DIAGONAL 

5 00 DO 6 00 I-I I PI .KPl 
FACTOR^A{ I , I I ) / A(I I . I I ) 
DO 600 J=I IPi .KP2 

6 00 A( I , J ) ={ I ♦ J )-FACT OR^l'A{ I I , J ) 
C IF THE MATRIX IS SINGULAR .RETURN SACK TO THE CALLING PRGGRAM TO 
C REDUCE THE ORDER OF TRANSFORMATION BV 1 AND REENTER THIS SUBPRCGRAM 

IF (ABS( A(.KPl ,KPl >) .LT .SMALL) RETURNl 
BKM^AI KP 1.KP2)/A{ KPl ,KPl ) 
RETURN 
END 

Fig. B2 



APPENDIX C 

Vi 
FORTRAN PROGR.'XMS TO COMPUTE THE norm of the function U-U 

This appendix contains FORTRAN FUNCTION subprograms 

to compute the norm of the error functional U-U^, where U^ 

is the Ritz-Galerkin solutions to U in the finite dimensional 

subspace 
g 

Fig. C2 contains the FUNCTION subprogram BYCO to 

compute the Barycentric Coordinates of the integer lattice (ii^i2) 

(see Appendix A) w.r.t. the triangle X0X1X2. 

Fig. Cl contains the FUNCTION subprogram L2SQ. It 

interpolates the function U and then computes the square of the 

}l 
norm of the function U-U in each of the triangle Y0Y1Y2 

by using some numerical quadratures on a triangle T. The Barycen- 

tric Coordinates of the three vertices Yo,Yi,Y2 are given by the 

calling program, and the Barycentric Coordinates of each point 

X(XQ,XI,X2) in YOY^Y2 w.r.t. the large triangle X0X1X2 are 

computed according to the linear transformation (1.3.4) given in 

Chapter 1. 

Fig. C3 contains the FUNCTION subprogram L2N0RM. It 

o h 
computes the norm of U-U over the triangle XgXiX2. 
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C A FUNCTION 5UJ=5i-JG GR A N TO CJMPLTF THE SQUAf^E CF THE L2 NCRM Q THE 
C FUNCTION (XINT - U) IN THE TRIANGLE YCY1Y2. 
C XliNT IS THE LlNtiAR I rvl TE K FG L AT I C N OF THE FUNCTION W IN THE TRIANGLE 

C YCY1Y2- 
C THE. OARYCENTRIC CCORUINATtS OF THE THREE VERTICES YO » Y I . Y 2 ARE STORED 
C IN THE ARRAY Y0(3),Yi{3) AND Y2(3) RESPECTIVELY, 

,*/n ^ V*, 1 , V; 2 ARE TiTE VALUES OF W AT Y0,Y1,Y2 RE SPEC T I VEL V. 
NH IS THE NUMUER OF INTERVALS TO 3E DIVIDED ON EACH SIDE OF THE 

TRIANGLE Y0Y1Y2, 
THE QUADRATURE COEFFICIENTS ARE STORED IN THE ARRAY QUADT, THEY ARE 

NU.VU3ERED FROM TUP TO JOTTOM AND FROM LEFT TO RIGHT, 

NGQUAO : DIMENSION OF QUADT.NnQUAD = (NH+1)«(NHF2)/2• 

FUNC TI ON L2SQ ( NH , NO QUAD . G U A D T , \i,0 , W 1 * W2 * YO , Y 1 , Y2 ) 
REAL L2SQ, QU AOT (NUQUAD) .Y0(l),YH3),Y2(3)tZ(3) 
SMALL=1.E-35 
H2 = 1 ,/NH 
L25Q=0. 
I = 0 
NP 1=NH+ I 
DO 7 00 11-i ,NP1 
00 700 12=1,11 
I^ I F 1 

TO COMPUTE THE LOCAL EARYCENTRIC COORDINATES OF Z W.R*T, THE 
TRIANGLE Y0Y1Y2, 
CAi_L E^YCDT I 1 , 12,H2 ,Z ) 
TO COMPUTE THE BARYCENTRIC COORDINATES OF Z W.R.T, THE LARGE- 
TRIANGLE T, THE DOMAIN OF L. 
XO=YO( 1 ) ^2( 1 )FYl { 1 )YZ( 2) +Y2( 1 ) >Z( 3) 
IF(ABS(XO),LT.SMALL) XO-0. 

X 1 = Y 0 ( 2 ) ^Z ( I } + Y 1 { 2 ) Y z ( 2 ) + Y 2 ( 2 ) AZ ( 3 ) 
IF (ABS(X1 ) ,LT .SMALL) Xi-0. 
X2=l,-XO“Xl 
IF (ABSI X 2) ,LT .SMALL ) X2 = 0. 
X I NT =Z ( 1 ) * WO F Z ( 2 ) Y A 1 F Z ( 3 ) YW 2 
0 IFF = X IN T-U < X 0,X 1 ,X2) 
IF (ABS { DIFF) ,GT .SMALL ) L 2 SO =L 2 SQ FQ UA O T ( 1.) IFFX'^2 

700 CONTINUE 
R E TURN 
END 

Fig. Cl 
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Fig. C2 

TO COMPUTE THE bAPYCE.NT.KlC CGOPDINATES OF A POINT IN THE TRIANGLE 
T. 

SUBROUTINE dYCQ( II .I 2 *H *BC) 
REAL BC(3> 
SM AL L = 1 . E-3 6 
L3C ( 1 > = 1 I 1 - 1 . ) YH 
IF < AES { aC( 1 ) ) ,LT .SMALL! 8C ( 1 ) = 0. 
BC (3 ) = ( 12-1 . ) 
IF(ABSIBCI 3) ) .LT .SMALL) BC(3) = C. 
□ C (2 ) = 1 .-3C ( i )-L3C( 3 ) 
IF {ABS{BC(2) ) .LT .SMALL) EC(2 )=0. 
RETURN 
END 

Fig. C3 

A FUNCTION SUBPROGRAM TO COMPUTE THE L2 NORM OF THE FUNCTION (U - X) 
IN A TRIANGULAR DOMAIN T. V/hERE X IS TFE R ITZ-GA L HR KIN SOLUTION TO 
U AT LE VEL L . 

QUACON IS THE OJADRATURE NORMALIZE CONSTANT. 
N L = 2 -Y L . 

FU NCTION _ 2NORM!X, M, O IMX.O IMM♦ NL♦NH,NOQUAD,QUAD T.QUACON) 
I N T E GE R D I MX * D I M M , M < J i rM M ) 
REAL L 2NORM t QUADT(NOQUAD ) , X(DI MX ) ,Y0(3) , Yl I 3) » Y2(3) 
REAL L2SG 
ERROR=O. 
H=1./NL 
DO 90 I1-1,NL 
DO 90 I 2=1 .I I 
I = M( I 1 ) H 12 
CALL BYCO( I 1 .12.H,YO ) 
CALL BYCO( 3 iRi ♦ 12.H* Y1) 
CALL BYCO( II +1 . 12+1 . H,Y2 ) 

C Y0.Y1,Y2 ARE THE BARRYCENTKIC COORDINATES OF THE THREE VERTICES OF T. 
ERRGR = ERRDR+L2S0{NH.NOaUAO.QUAOT♦X( I) * X( 1+I 1 ) ,X(I+11+1 ) ,YO,Y1 ,Y2) 
IF < 12.EQ.I 1 > GO TO 9 0 
CALL BYCOC I 1 * I 2+I .H* Y1) 
ERRCP=ERROR+L2SQ(NH.NQQU AD.OUADT . X< I ) ♦ X{ T+ 1 >. X(I + I 1+ 1 ) .YO,Y1 , Y2) 

90 CONTINUE 
L2NORM = SORT{ERRORY QUACON ) 
RETURN 
END 



APPENDIX D 

FORTRAN PROGRAMS TO CONSTRUCT THE DISCRETE EIGENVALUE X 

This appendix contains four FORTRAN subprograms to 

solve the generalized eigenvalue problem 

in a triangular domain 

The algorithm can be described as [F7]' 

0^) 
m 

w 
.(k) 

(k) 

X 
(k^l) 

(kH-1) 

(A^-xV)^ 

Cr«,xW)/^,(k)^^(k)^ 

xW - 

. (k) (k) (1) 

Fig. D1 contains the subprogram RESIDU. It computes 

the residual r^^^, the vector and the approximate eigen- 

^ (k) on, . j r (k) (k), , , (k) (k), vector X . The inner products (r ,x ) and (w^ >x ) 

fkl 
are also computed in this subprogram while evaluating r^ and 

by setting INNPRO = «TRUE- 

Fig. D2 contains the subprogram APRIiNV. It constructs 

h li ricl Ti 
an WT^ e-approximate inverse C to A -X^ by calling the 

subprogram Gauss listed in Fig. D3 to solve a system of linear 

equations. 
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I rk'l fk-ll 1 
The step (1) is not executed unless |v^ | < EPS, 

where EPS is a given constant. After | is less 

than the tolerance TOL or the number of iterations reaches NIT, 

the subprogram EIGEN returns a series of sucessive approximate 

eigenvalues to the calling program. 

Fig. D1 

 ) G h: t F 1 i\i t T ri E. I G E N V t: C T O >■< X 
 TO COMPUTE THE VECTOR RK OR 

 TO R FF INF THE £ 1 GE NVEC T U R X 

AND CO.MPUTF THE RES t CU AL - ( A-E I GVA L 
WK , ACO=AAO* AC1=AA1* XR:=X, RX-R, 

INNPRO= .TRUE* 
ACO=-‘CO , AC1--C1* XR-R ♦ RX-X» 
I NNPP-0 = . FAL SF • 

I )X 

SUER GUT r NE KtSID U< XR .RX , V,OI MXR.DI MM♦ACO * AC1 *5UMRX * NL• INMPRO ) 
INTEGER D I M X R • 0 IM M , M ( iJ I M M ) 
RE A L X R { D I M X R ) ♦ R X ( D I MX K ) 

LOGICAL INNPRO 
SMALL=1.E-35 
DO 100 I1=3.NL 
IK 1= I 1- 1 
DO 1 00 12 = 2* IKl 
I = M ( II ) -h I 2 
YX=RX(I) 
IF < INNPRO) YX = 0 . 
RX ( 1 ) = YX + ACO^l^xR { I ) +ACl ^ I XR ( I-I )+XR ( I+l ) +XRi I-I 1 )4-XR { I- I 1 +1 ) F 

=f= xR ( I +11) + xR { r + I 1 + 1 ) > 
c— TO COMPUTE THE INNER PRODUCT IF INNPRO = .TRUE. 

IF { INNPRO.ANJ.A3S( RX( I) J .GT. SMALL.AND.ABSCXRT I) ) .GT .SMALL) 
^ SUMRX=SUMRXFXR( I ) ^RX( I ) 

100 CONTINUE 
RE T URN 
END 
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—--CCNSTR UC TI GN GF THt TQ APP w GX I M AT I CK INVERSE C OF TFE LINEAR 
□ PER AT OR A vv IT H w E I GHTS WO . W 1 . 

SUBROUTINE APR!NV( AO ,A1 »CO ,C1 i WO « W1 ) 
REAL A(2 .J ). C<2 ) 
A ( 1,3 ) = 
A ( 2 ^ 3 ) = W 1 
A ( 1 ♦ 1 ) = AO^wO F6•^Ai i 
A0P2Al=A0-«-2.^Al 
A { 2 * 1) = A 1 w 0 -»■ A OP 2A 1 ^ W i 
A( I ,2 )=6 .^A(2.1 ) 
A( 2»2)=AOP15**Al-»-2.=i=AO)=^'Wl 
CALL GAUSS (A*C*2»3*Sl) 
CO=C<1) 
C 1 = C ( 2 ) 
K E T U R N 

1 WR I TE { 6 t 77 } 
77 FORMAK* THE AUGMENTED MATRIX IS SINGULAR*) 

STOP 
END 

Fig. D2 
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C r HL METHOD OF OAUSSiAN t L-1 .vil NA TI GH FOR SOLVING SIMULTANEOUS LINEAR 
C EQUATIONS. 
C PARTIAL PIVOTAL CONDENSATION IS USED-* A SEARCH IS MADE IN EACH COLUMN 
C FOR THE LARGEST ELEMENT BELOW THE DIAGONAL.BUT OTHER COLUMNS ARE 
C NOT SEARCHED. 

SUBROUTINE GAUSS {A.X.N.NP1.^) 
RE AL A ( N ,NP1 ) . X ( N ) 
SM ALL= 0 . IS- .35 
N iM 1 = M - I 

C BEGIN ThJE PARTIAL PIVOTAL CGNDENSATIGN 
DO 600 K=1,NM1 
KPl=K+1 
L=K 

^IND TERM IN COLUMN K. ON OR 3ELGW MAIN DIAGONAL . THAT IS LARGEST IN 
ABSOLUTE VALUE. AFTER THE SEARCH, L IS THE ROW NUMBER OF THE 
LARGEST E L E !'“i c N T . 
DO AGO I=KPi,N 

4 00 I F ( ABS I A { I , K ) ) . O T . A3 S ( A { L , K ) ) ) L = 1 
IF ( ABS(A{L,K) ) .LE•SMALL ) RETURNl 
IF (L.EQ.K) GO TO 500 

C. INTERCHANGE ROWS L AND K, FRCM DIAGONAL RIGHT 
DC 410 J=K,N^1 
TE MP = A < K . J) 
A ( K ♦ J ) =A < L , J ) 

410 A(L,J)=TEMP 
C ELIMINATE ALL ELEM-ENTO IN COLUMN K BELOW MAIN DIAGONAL 

500 DO 600 I=KPi,N 
FACT OR= A( I ,K ) /A(X,K ) 
DO 600 J=KP1♦NPl 

6 00 A ( I , J)= A U ,J )-F A C TOR M A{ K , J ) 
C SACK SUBST ITUT ION 

I F ( A BS ( A ( N , N ) ) . L T , SM ALL ) R ET*JR N1 
X { M ) = A ( N , N 4 1 ) /A I N , N ) 
DO 710 IN^l.NMl 
I= N- I N 
IP 1 I + 1 
SUM-0• 
DO 700 J-IPl.N 

7 00 SUN = SU|VH-A( I , J ) ^X{ J ) 
7 10 X ( I ) = { A { 1 , NP 1 > -S U M ) / A ( I , I ) 

RETURN 
EN D 

Fig. D3 
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r TG SOLVE THE GENERALIZED FTGEMVALUE PRQCLEM ; A .X = EIGVAL.BeX 
 wo, W1 ARE THE Two CONST /3NT CG EF F I C I E »\ T S OF THE WEIGHT W. 
 PPGGPAM RET-J«^N5 THE A^HKOXIMATC EIGENVALUES* IF THE DIFFERENCE 

BETWEEN TVVQ SUCCESSIVE EIGENVALUES LESS THAN TGL OR NUMBER OF 
I TFKAT IONS kciAC MB S N i I— 1 • 

 X IS AN APPROXIMATE EIGENVECTOR OF A, THE INITIAL APPROXIMATION 
CAN 3E RANDOM* 

 --EIGVAL : AN ARRAY CONTAINS THE SUCCESSIVE APPROXIMATE EIGENVALUES. 
 „QM RETURN,IT SHOwS THE NUMBER OF RECORDED SUCCESSIVE APPROXIMATE 

EIGENV ALUES . 
: STRUCTURE CONSTANTS. 

 EPS : A CONSTANT, IF DIFFERENCE BETWEEN TWO SUCCESSIVE RATIO .GT. 
EPS, RATIO IS NOT ADDED TO EIGVAL(IT). 

 --A0,A1 ARE THE TWO CONSTANT COEFFICIENTS OF THE LAPLACIAN OPERATOR. 
 N L = 2 ^ L • 

SUBRGUTINE EI GEN(X,R , EI 3VAL * M,DIMXR,DIMM, IT ,NIT ,EPS♦AO,A I,TOL .NL, 
W 0 , W 1 ) 

I N T E G E R DI ;M X R , D I M M , M ( D I A' M ) 
REAL X< D IMXR) ,R{DiMXR) ,EIGVAL( NIT) 
■PAT I 00 = 0 . 
SMALL=1.E—So 
HH = 1 • / NL 2 
HO =0 *75^HH 
H 1 =0.1 2 5^HH 
IT= 1 
DO 999 ITER=i,NIT 
IF(ABS(EIGVALI1T))*LE.SMALL> GG TG 33 

 -SOT UP THE Two CONSTANT COEFFICIENTS OF THE OPERATOR IA-EIGVAL.. 
AA0 = A0 - HO’5' 6 I GVAL { IT ) 
A A 1 = A 1 - H 1 ^ E I G V A L ( I T ) 

 .«TO COMPUTE THE RESIDUAL RK AND THE INNER PRODUCT <RK,XK). 
33 SUVPX=0. 

CALL RE SIDU( X ,R ,M,DIMXR,01 MM ,AAO,AA1 . SUMRX,NL, .TRUE . ) 
  CALL THE APRINV SJ3RUJTINE TO CONSTRUCT AN APPROXIMATE INVERSE OF 

A-E rGVAL.B 
CALL A P R IN V( A A 0,A A I ,C 0,C 1,W 0♦W 1 ) 
CALL RESIDJ(R ,X. M, DIMXR, DIMM,- CO,-C1, SUMWX,NL, .FALSE• ) 

C. TO COMPUTE THE VECTOR WK AND THE IMNFR PRODUCT (WX.XK). 
AAl=l, 
AAO =6. 
SUMWX= 0. 
CALL RES IDU(X,R, M, DlMXR, DIMM , A AO,AAl ,SUMWX,NL, .TRUE•) 
SUM WX= SUMWX’J' HI 
IF<ABS(SUMWX).LT.SMAuL) GO TO 999 
RAT I0=SUMRX/SUM WX 
IF(A8S(RATIO-RATI 30) .GT.EPS) GO TO 999 
RAT IO0=RATIG 
E IGVAL ( I T4-1 ) =£1 GVAL( IT ) +RAT IQ 
IF (A3SCRATI 0) .LT.TOL) RETURN 
IT = I T F 1 

999 CONTINUE 
RETURN 
END 

Fig. D4 



APPENIX E 

FORTRAN PROGRAMS TO SOLVE THE POISSON EQUATION LU = -AU + XU = f 
IN A TRIANGULAR DOMAIN 

This appendix contains FORTRAN programs to solve the 

boundary value problem 

' LU = -AU + XU = f in Q 
< 

^ u = g 

Fig. El is the Fortran subroutine SPRANY, to produce 

an analysis report of the norms of the residue r and the spec- 

tral radius of the linear operator I-C L”, where C is an e- 

approximate inverse to the discrete linear operator L^. 

Fig. E2 contains the FORTRAN subroutine PRINTG to 

print out the vector X, Y or R in an triangular form. 

Fig. E3 contains the FUNCTION subprogram U, the exact 

solution of LU = f. 

Fig. E4 contains the main program to construct the Ritz- 

Galerkin solution to LU = f. 
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Fig. El 

 ANALYSIS O" NORM AND ORECTRAL CJAOIUS. 
  THIS SUERJJTINE CALLS THE SEQ5MT SU3RCUTINE TO ACCELERATE THE 

CQN'VERGtNCE OF THE SEJJENCE QF SPECTRAL RADIUS. AND OUTPUT A 
LISTING OF THE ANALYTICAL RESULTS. 

 K IS THE ORDER OF TRANOFGRMAT TON . 
 IS A KPl BY KP2 DUMMY ARRAY, A/HERE KPI = K + 1, KP2 = KH2. 
 S^^ECTR ; A IT BY B RE At_ ARRAY TO STORE THE SPECTRAL RADIUS AND 

THE SMOOTHED SPECTRAL RADIUS. 
 ORDER : A IT BY 4 INTEGEP ARRAY TO STCRE THE ORDER OF 

TRANSFORMATION OF THE SMOOTHED SPECTRAL RADIUS. 

SUBROUTINE SPRANY(NURM.SPECTR, CROER.K, IT,A,KPl ,KP2) 
INTEGER ORDERCIT,4>,IORD(4) 
REAL NORM( IT ) .SPECTR( IT , E) , PI { 2 ) ,P2(4 ) ,A(KP1 *KP 2 ) 
IT1=IT~1 

 -TO GENERATE A SEQUENCE OF SPECTRAL RAOILS. 
DO 44 I=1,IT1 

4 4 SPECTR { I , 1 >=NQRiVi{ I +1 ) /NQRM( I ) 
83 KP 1 -K+ 1 

KP 2~K-h2 
DO 41 1=1,4 
IT3=ITl-2-K4I 
I T2=I T 
IF(IT3.GT.O) GO TO I 
IF (K.LT. 1.OR. I .GT .1 ) GO TO 39 

 TO REDUCE THE ORDER OF TRANSFORMATION BY 1, IF THE NUMBER OF TERMS 
IN THE SEQUENCE ARE NOT ENOUGH TO CARRY GUT THE REQUIRED ORDER OF 
TR AN SFORMA TiON. 
K = K- 1 
GO TO 83 

 CALL THE JEDSMT SUBROUTINE TC RERFCRM A NCN-LINEAR TRANSFORMATION. 

1 CALL SEQSMTI SPECTR{ 1 , I) , IT2.K, SPECTRI 1 , H- 1 ) ,IT3 ,A,KF1 ,KP2 * 
ORDER ( 1,1)) 

41 CONTINUE 
37 FORMAT (•-*,* HERAT NORM N OR M ( I ) ,/NOR M ( I - U TRANSFCRMA 

A HICN OROER/SMQOTHED SPECTRAL RADIUS*./^* *,35X.4(8X,»ITERATION », 
*11)) 

89 ITER=1 
IF(K.EG.O) GO TO 88 

— TO DETERMINE HOW MANY TIME OF ITERATIVE TRANSFCRMATICNS HAS BEEN 
PERFORMED. 
ITER=(IT-2)/(2*K) 
IF( I TER . GT.4) ITER=4 

as 5WRITE(6,87) ( I , 1 = 1 , ITER ) 
C OUTPUT THE ANALYTICAL RESULTS. 

I I 2=0 
DO 80 1=1,IT 
11=1-1 
I I =1 
IF(I .EQ. 1) GO TO 10 
I I =2 
112=0 
DO 85 12=1 ,4 
J 1 =K*I2 
IF ( 11 .LE .J 1 .OR . IT-II .LE . J 1 ) GO TO 20 
P2(I 2)=SPECTR< I 1-J1 ,1241 ) 
IuPD( 12 )=QRDER{ I 1-J1 ,I 2) 
112-12 

35 CONTINUE 
20 PI (2 )=SPECTR( 11,1) 
10 Pi < I ) = NQ RM { I > 

IF< I 12 .EQ. 0) GO TO 65 
WRiTE<6,70) I 1, (PI {J ) .J= 1, IT ) , < IORO( J1 )^P2(J I ) . J I = 1 , I I25 

7 0 FORMAT{2X♦ I 2,4X ♦El 4.7,2X.El 4 .7,4X, 4{ 1X. I 2,2X.E14.7) ) 
GO TO 60 

65 wRITE(6.70) Il,(Pl(J),J=l,II) 
SO CONTINUE 

RETURN 
END 
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Fig. E2 

C~- PKINT OUT T HrZ CJNTENTS 0^ VALUES IN THE ARRAY X*R OR V IN A 
C TRIANGULAR FORM. 
  K SPECIFY THE LEVEL AT .-VHICH X OR R TC EE PRINTED. 

C TO PRINT X IF X Y R = 1 . 
C TO PRINT Y IF XYR = 2. 
C- TO PRINT R IF XYR = A. 

SUBROUTINE PRINTG(X, R* Y,LK,M,N,D IMXR,DI MY♦DIMLK,0 IMM.XYR.K> 
iN TE GER DIM XR , DI NY.DI MLK .DIMV . XYR * LK <DT MLK) *M(D IMM) .N(DIMLK ) 
REAL X (D IMXR >,R C DIMXR ) » Y{O IMV ) ,P( 8) 
J= 1 
I K 0 - 1 
I Ki =LK { K ) + 1 
IF(XVR.NE.2) GO TO 70 

C TO PRINT THE INTER IQR POINTS OF V. 
I K0 = 3 
IK 1~LK(K ) 

7 0 DO 2 0 0 11= 1 K 0♦ 1 K 1 
J3=NIK)+M(Ii) 
IK 3= I 
TK4 = I 1 
IF{XYR.NE,2) GO TO 72 
IK 3= 2 
I K 4 = 11 - 1 

72 DO 2 50 I 2= I K 3 ♦ I K4 
C ONLY PRINT OUT TH- FIRST 8 VALUES IN EACH ROW. 

I F ( J • G T . 8 ) G O T L. 2 4 
1 = J 3-f-I 2 
CD TO < 1 5, i b . i 7 ) , X YR 

15 P{ J) = X { I ) 
GO TO 2 3. 

16 P( J )=Y ( I ) 
GO TO 25 

17 P( J )=R { I ) 
2 5 J = J + 1 

250 CONTINUE 
24 I3=J-1 
66 FORMAT {S E16 . 7 ) 

WRITE 16.6 6) ( P ( J) . J = 1 . I .3) 
J= 1 

200 CONTINUE 
J-1 
IF(J.GT.O) WRITE (6,66) {R(I),I=1,J) 
RE TURN 
END 

Fig. E3 

FUNCTION U(X0.Xi.X2> 
U=SIN< X0)^SIN<X1 ):KSIN(X0-X1 ) 
RE TURN 
END 
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Fig. E4 

 TO SOLVE THE LlHcAH SYSTEM A*X - Y WITH THE HOMOGENEOUS F30UNOARY 
CGNDITICN,THOSE bOUNOARY VALUES OF X AT EACH LEVEL K MUST BE 
ZERO IZED • 

 WITH THE INHQMUGENEOUS BOUNGARY CONDITION X - G»THE BOUNDARY VALUES 
OF X AT THE TOR LEVEL L EQUAL TO THE CORRESPGND ING VALUES OF G»AND 
ALL THE BOUNDARY VALUES GF X AT THE OTHER LEVEL K ARE SET TC ZERO. 

INTEGER ORDCR{40,A) 
INTEGER LK ( 5 ) , M ( 33 > , N ( 5 ) 
I N TE GE R DT MX R , D I MY , D IMM 
REAL NORM! 40) ,X( 774) ,R(774) .Y(561 ) .A<5 ,6) ,L2ERR(5) ,RATE(4) 
REAL AAO <5 ) , AAl ( S)»CC0( 5 ).CC l( 5) .QUA07{ E> . L2NOR M , XX ( 3) 
DIMEKSICN SPECTR<40,5) 
1DGITAL ONEPT.SEVENP 
EQU IVALENCE (XX ( 1 ) ,X0 ), < XX( 2 >» XI ) , (XX( 2) * X2) 
F ( XO ,X I ^X2 ) =3 • VS IN (2 . ={«( XO-X I ) ) -S IN( 2 .*X0 )HS IN(2 . *Xl )- 

V 39.4 7842 VSINC XC) V STN{X1)V SIN C XO-Xl > 
S M A L L. ■- 1 . E — 3 5 

  — IF THE 1-=>UINT NUMERICAL QUADRATURE IS USED, CNEPT=.TRUE. 

CNEPT=.TRUE. 
  ,_IF THE 7-PQlNT NUMERICAL CUACRATURE IS USED, SEVENP= .TRUE . 

SE V ENP = . TR Uc • 
O I M,M = 3 3 
O I M Y =5 6 1 
D1MXR = 7 74 

 A0*A1 ARE THE Two CONSTANT COEFFICIENTS OF THE DISCRETE LINEAR 
GPERATGR A, 
AO = 8 • 
A1 =-l . 

r SET UP THE QUADRATURE COEFFICIENTS FCR COMPUTING THE L2 NORM. 
N H 2 
NOQUAD=6 
OUADT( 1 ) = 0. 
QU ADT ( 2 ) =1 . 
QUAD T( 3 ) -1 . 
QUAOT( 4 ) =0. 
QU ADT I 5 ) =1 • 
QUAD T( 6 ) =0 . 
IF < .NOT .GNEPT) GO TO 77 

10 DO 112 L-2.5 
L1=L- 1 
K=L 
NL =2 V =}c L 
H= 1, /NL 

QUACON=HH/3. 
EIGV=-52.81 

Q TO COMPUTE THE TWO CONSTANT COEFFICIENTS OF AK AND CK* 
BK=E IG WO. 1 2 5 VHH 
DO 600 1=1,LI 
K=L~ I + l 
AA 0< K ) = 6. V( 1 . + BK) 
AA1< K)=6K-1 . 

 --TO COMPUTE THE APPROXIMATE INVERSE CK. 
CALL APRINV {AAO(K) *AAl ( K) .CCO (K) ,CC1 {KI) 
BK = 4.V 8K 

600 CONTINUE 
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a ^ FO SM AT ( * - K • , V X , » A A 0 • , 1 8 < ♦ ^ A A 1 • , 1 3 X , * C C C* , 1 8X , * CC 1 ® ) 
V'.P I TE( 6 ,H2 ) 

85 F 0 FM A T ( • < , I a ♦ 1 X * A ( :i X , £ 1 6.7 ) ) 
D 0 7 4 J = 2 ♦ L 
A F r TE ( 6 , 83 ) J , A AO ( J ) , A A I {J ) ♦ CCO ( J ) ♦ CC U J ) 

7 4 C 0 N T I N UE 
C CCNSTRUCT THE STRUCTJFb CONSTANTSt W. 

V. ( 1 ) =0 
IK 1 = NL + 1 
DCl 3 0 1 = 2, IK I 
11=1-1 

3C M ( I )=M { 11)4-11 
C CCNSTRUCT THE STRUCTURE CCNSTANTS, LK. 

LK ( I ) = 2 
DO 50 1 = 2, L 

50 LK ( I ) =2=i'LK ( I - i ) 
C CONSTRUCT THE STRUCTURE CCNSTANTS, N, 

N(L)=0 
DO 40 I=1,LI 
K I =L- I 

4 0 N { K1 ) = N ( K i T i ) -M 1 +L K ( K 1 ) ) 7 ( 1 4LK ( K 1 + 1 ) > 
iK1=N(1) 
DO 777 1=I,IK1 
X ( I ) =0 ♦ 

7 77 R( I )=0. 
SQNM = 0 . 
IK1=NL+1 

C APPLV THE 7-POINT OR 1-PCI NT FORMULA TO SET UP THE VECTOR Y» 

DO 768 I1=1,IK1 
DO 7 68 I 2 = 1 , i 1 
I- I2 4-M ( II) 
CALL BY CG{ i 1 , 12 , H, XX ) 

C—--.-ppE SET THE BOUNDARY VALUES OF X AT THE TOP LEVEL L, 
IF ( I 1 • EO • I K i , OR • I 2 , E Q , 1 . OR • I 2 . FQ • I 1 ) X ( I) =U { X 0 • XI , X2 ) 
IF < GNEPT) GO TO 766 

f-: { I ) =F < X 0 , X 1 , X 2 ) 
758 CONTINUE 

FO =1 «5 =<=HH 
F1=HH/12. 

800 H2 =2 .YHH 
DO 100 I1=3,NL 
I K 2 = I 1 - I 
DO 1 CO I 2 = 2, IK2 
I = I 2 + M(ID 
IF(CNEPT ) GO TU 405 
Y( I ) =FO*P( I )PF1 ^ ( R( I -1 ) +R ( I HI ) HR ( I-I 1 ) + R< I - II + 1 )+R( IH-I 1 ) H 

* :R ( I +1 1 H 1 ) ) 
GO TO 170 

4 05 CALL 8YC0( I 1 ,12 ,H,XX) 
Y< I ) = H2^F( XO , XI , X2) 

170 IF( ABS(Y ( I ) ) .GT .SMALL) S GNM = SGNM+Y ( I ) 
100 CONTINUE 

EPS=1.E-03 
r COMPUTE THE NORM OF Y. 

NL2=<NL-1)NL-2)/2 
SO NM=S QRT(SQNM/NL2) 
IF < SQNM. GT . SMALL ) EPS = E P SX«S GNM 
NI T= 40 

 ZEROIZED THE VECTOR R. 
1 K 1 = N ( L 1 ) 
DO 750 I=1,IK1 

750 R{I)=0. 
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 CALL FAPIN TO SOLVE ThE LINEAR SYSTEV A.X - Y» 
CALL FAR IN ( X .R , Y , iNiGR V« L K , N , N , DI M X R , 0 I V Y , L ♦ O I M V , I T ♦ N I AAO ,AA1 

, CCO ♦ CC 1 ) 
r ENTE?-< THE SPRANY SUBRCUTINE TO ANALYSE ThE NORM AND SPECTRAL RADIUS 
C AND OUTPUT THE ANALYTICAL RESULTS* 

K = 4 
K.p 1 = K+ 1 
KP L = K+ ? 
CALL SPRANY(NORM,SPECTR. ORDER,K, IT,A,KP 1,KP2) 

C PRINT GUT THE R I TZ-GALERKIN SGLUTICNS. 
WR ITE< 6,122 ) 

122 FORMATI*- RITZ-GALERKIh SOLUTIONS, X -•) 
CA LL PR INTG{ X,R ,Y,LK ,M,N ,DIYXR ,DI MY,L,01VM * 1 ,L) 

C PRINT OUT THE INTERIOR POINTS OF Y. 
121 FOEMAT(’- INTERIOR POINTS OF Y =•) 

WRITE{6,121) 
CALL PRINTGtX ,R,Y ,LK,M, N,DIMXR,DIMY,L,DIMM,2,L ) 
IK1~NLF1 

(3 oyr THE EXACT SGLUTICNS OF X. 
DO ^^67 11=1, IKl 
DO 367 I 2= 1 , I 1 

CALL bYCQ( li , 12, H. XX ) 
r = 12 h Y (11) 
R( I )=U< XO.Xl ,X2) 

367 CONTINUE 
123 FORMAT(•- EXACT SOLUTICNS, X =*) 

WRITE( 6, 123) 
CALL PR I NT G( X ,R ,Y , LK , Yi, N , D I M X R , D IM Y , L , 0 IMM , 3 , L ) 

C ERROR ANALYSIS : COMPUTATION OF L2 NORM AND RATE CF CONVERGENCE• 
L?ERP{L )-L2N0KM( X, M,OIMY,DIMM,NL ,NH,NCQUAD,QUAOT,OUACCN) 

6 FORMAT!’ L2ERR= *,£16.7) 
WRITE (6,6) L2ERR(L> 
IF (L ,GT ,2 ) R AT E(L-2 > = { ALOG( L 2ERRC L 1? )'•ALOG ( L2ERRI L) ) ) /ALOG<2* ) 

1 1 2 CONTINUE 
 PRINT OUT THE ANALYTICAL RESULTS. 

61 FOPMAT (♦-*,»LEV EL H’,18X,’L2 NORM* , 1 2X, * CONVERGENCF RATE*) 
WR I TE( 6 , ei .) 

6 3 FORMAT < 3X, II ,4X, El4, 7,2(5X,E14.7) ) 
L = 5 
DO b2 1=2,L 
H=2 . - J ) 
IF ( I .EQ.2 ) GO TO 67 
WR ITE{ 6,63) I ,H,L2ERR{I ) ,RATE( 1-2) 
GO T O 62 

67 WRITE(6,63) I,H,L2ERR{I) 
62 CONTINUE 
77 IF( .NOT .SEVENP ) GO TO 6 4 

ONep T=.FALSE. 
SEVENP= .FALSE• 
GO TO 10 

64 STOP 
END 
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