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ABSTRACT
The finite element solution of certain two-point boundary value

problems is discussed.

In order to obtain more accuracy than the linear finite element
method can give, an order-h? global superconvergence technique is
studied. This technique, which uses a quasi-inverse of the Rayleigh-
Ritz-Galerkin (finite element) method, is motivated by the papers of
C. de Boor and G. J. Fix [14] and P. O. Frederickson [25]. The
Peano kernel theorem is generalized and used to approximate the rate

of convergence of the global superconvergence.

Following Sard's theory on best quadraifure formulae [50], with
some generalization, several quadrature formulae are derived. These
quadrature formulae are shown to be consistfent, and have some advantages

over those obtained by Herbold, Schultz and Varga [34].

For solution of large iinear systems which result from the finite
element method, LU decomposition {Gaussian Elimination Method) is fast
and accurate. However, when it comes to a singular or a nearly singular
system, LU decomposition fails. The algorithm FAPIN developed by
P. O. Freﬁerickson for 2-dimensional systems is able to solve §ingu1ar

2l
systems as we demonstrate.

We found FAPIN will work more efficiently in l-dimensional case
if we replace the DBq approximate inverse C, developed by Benson [3],

with other approximate inverses.

For the sake of verifying the theory, appropriate numerical

experiments are carried out.
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CHAPTER 1

JINTRODUCTION

1.1. Two-Point Boundary Value Problems

Two-point boundary value problems (abbrev. TPBVP)
associated with ordinary differential equations mostly arise in
physics and engineering problems. For these probléms conditions
are specified at the two ends of an interval and a solution to the
ordinary differential equation is sought to satisfy the boundary
conditions. For example the vertical deflection y(x) of a transverse
loaded string>with two ends fixed satisfies the ordinary differential
equation —y"(x)=f(x) with the boundary conditions y(0)=a, y(1l)=b.
Numerous analytical techniques for solving TPBVP have been developed.
The characteristic of an analytical method is that it expresses
particular solutions of ordinary differential equations in terms of
series or integrals involving elementary or special functions.
However there are restrictions on analytical methods. For example,
the TPBVP -y"(x)=ex2, y(0)=y(1)=0 has the solution y(x)=—[§ szegzdgdc.
This integral can not be expressed in closed form in terms of known
functions, - thus numerical q;adrature is necessary to approximate the
y(x).. By numerical methods we mean methods to approximate the solution
of TPBVP without any assistance of an analytical solution. Numerical
methods provide practical procedures for approximating the solutions of
a very general class of TPBVP, In parallel with the development of the
modern computer, numerical methods are becoming increasingly important.

Many numerical methods have been developed, for example finite



difference methods which have been investigated in detail in [241, and
shooting methods for which a detailed investigation can be found in [46].
[38] and [39] cover Some other numerical methods. [531 is devoted to
the numerical methods which are under current research activities.

However, this thesis is dedicated to finite element methods.

1.2. Basic Notations

Let u[n] denotes the nth derivatives of u. Let
n _ [n]
(1.2.1) H'[0,11 = {u | u®™ el,0,11} for n=0
Define
v o[il1 [i]
(1.2.2) £.8), = 1 (g
1=0
1 .
then [[£|| = (£,£)2 is a (Sobolev) norm on #7[0,11 and

( #°0,11 , II-Hn ) is known as a Sobofev space (cf. [2]1, [61]).

From (1.2.1) and (1.2.1), we have
(1.2.3) H"Hnl < H'an for n; < ny

hence it is clear that Hnl[O,lj > H72[0,1]1 , i.e. the embedding of

H2[0,1] into H"1[0,1] is continuous (cf. [21, pp.21).

We shall denote by

(1.2.4) HpL0,11 = { u e H'[0,11 | u(0) = u@) =0 } .



Obviously it is a subspace of H™[0,11.

Define (cf. [2] [561)
X
(1.2.5) H7100,11 ={ u | Jo u(t)dt € H9[0,11, 0 <x =<1}

with norm

1
max | J £(x)v(x)dx |
a.2.6) ||£]].y = :
vetl[0,11 Hvll

We observe that the Dirac &-function, dx , 1s an element of H-'1

if x e (0,1)

Let Cn[O,ll be the set of all real-valued functions which
have continuous derivatives of order at least n in [0,1], where

n is a non-negative integer.

Let @I : 0 =xg < X3 < ®°°v°°*°° < X, = 1 be a partition on

[0,1]0 Let Ii [Xi_l, Xi], "h. = x. = xi—l s for i = l,ooeo’n ,

1 1

tl

and h =fm%x h;. If hi g h for all i, we shall denote. by Hh the

regular partition on [0,1] with regular mesh h = —%—

We shall denote by Sz’k the space of spline functions (definition

is given in 1.9.) defined on I.



Let E = [a,bl < [0,1]1. Denote by jyn(E) the set of polynomials

of degree m defined on E and Py (E) = { p ¢ P™(E) | p(a) = p(b) = 0 }.

The truncated power function is defined as

m
bd x>0
m
x =

0 x <0

For m = 0, this is the well known Heaviside function.

1.3. Problem Formulation

Consider the differential equation
(1.3.1) -pxIu' (X)) + gX)ux) = £(x) x ¢ [0,11

Define the differential operator L : H[0,11 -~ H 1[0,1]

(cf. [81, [561) by
(1.3.2) Lu = - (pu')' + qu

The problem is : given a f ¢ H™1[0,1]1, we are asked to find a

u € H1[0,11 such that

(1.3.3) lu=f

with the boundary conditions :
(1.3.4) u(0) =go , u(l) =g .

To ensure that the equation (1.3.2) - (1.3.4) has a solution, we

assume that ([81, [37], [561, [591)



(L.3.5) p(x) e ¢900,11, q(x) « €90,11
and
(1.3.86) px) zp >0, qx) 20

min

Let Hg[O,ll = { ueH0,11 | u(0)=gg, u(l)=g; } ; it is the space

of admissible functions. It is not a vector space, but an afgine

space since uj, up € HE[0,11  imply uj - up € H3CO,11.

With the assumptions (1.3.5) - (1.3.6), L is a one-to-one continuous
linear operator from Hé[O,l] to H-1[o,11. Thus for each f ¢ H100,11,
the BVP (1.3.2) - (1.3.4) has a unique solution u ¢ Hé[O,l] (fs61).

Moreover, there exists a constant p; » independent of f, such that

(1.3.7) Hulli < e1ll£]]=3

A

If f e HT0,1], then u € Hé[o,l] and there exists p, such that

A

(1.3.8) Hullz < e2ll€]]o

(with Py also independent of f).

Lemma 1.3.1 (i) L is positive definite on Hé[o,ll,

i.e. (Lvg, vg) > 0 for all non-zero vy e HI[0,1].
(ii) L is symmetric, i.e. (Lu, vg) = (Lvg, u)
for u e H[0,11, vy ¢ Hé[O,l]
g

(c£. [371, [401, [56]).



Proof: (i) If vq € H3E0,11, p(x) >0 and q(x) = 0, then

1

(Lvy,vp) = Jo {-(p&Ivg N ' + ax)vy (x) bv(x) dx

f1
= |, (P N2+ a) vy ) ax > 0

(ii) Let u € Hé[o,1], vy € Hg[o,ll, then

1
Jo rp(x)u'(x)va(x) + q(x)u(X)vo(x) dx

(Lu,v,)

(Lvg,u)

1.4. The Variational Formulation of The Problem

Let ¢ : Hé[o,l]'+ R be a quadratic functional defined by

(c£. [81, [91, [401, [561)

1
(1.4.1) ¢(vg) = Io {p(x)(v(;(x))2 + q(X)(vo(x))2 - 2£(x)vy(x)} dx

For any fixed w ¢ Hé[o,ll, for any ¢ and vy € Hé[o,ll

1
<@ (wtevyg) = ¢(w)+2e{J (- XIWF (X)) '+ gx)wx) - £(x)) vo(x)dx}
0
(1.4.2) .
+e? Jo {p&x) (v (x)) 2 + q(x) (v (x))?} dx

Define the first variation ([371, [561])



lim @ (w+evg) - &(w)
e~>0 €

GQ(W’VO) =

(1.4.3) 1

2 Jo CEEW X)) + qlxwx) - £(x))vg(x) dx

1t

Then (1.4.2) can be written as

d(wtevg) = &(W) + €-8¢(w,Vvp)

(1.4.4) 1
+ €? jo (P) (Vo' (x))? + q(x) (vo(x))?) dx

From (1.4.4), we have the following important notes:
(c£. [81, [371, [401, [561)

(i) For each w ¢ Hé[o,l]
§o(w,vg) = 0 iff (Lw,vp) = (£,vp)
¥ voeHé[O,lj Y voeH(l,Eo,l]
The right-hand side is known as the Galerkin weak form.
(ii1) If we Hé[o,ll has the property that

so(w,vg) = 0 for all vg € Hé[o,ll
then
d(w) < o(w + evg) for any € = 0,

and non-zero vg e Hé[O,l]

The reverse 1is true.



In other words, the element w in HéEO,IJ which minimizes the
quadratic functional ¢ over Hé[o,lj is the unique element

at which the first variation of ¢ is zero.

(iii) If w e Hé[o,u such that 68®(w,vg) = 0 ¥ vo e HI[0,1]

then w is the solution to (1.3.2) - (1.3.4). The reverse is true.
Thus, we have the following theorem:

Theorem 1.4.1

(1) u*, the unique solution to (1.3.2) - (1.3.4), strictly
minimizes ¢&(v) over the admissible space H;[O,l],
(ii) The first variation of &(v) at u* vanishes,

(cf£. ([81, [371, L401, [561)

1.5. The Energy Norm

Since L in (1.3.3) is a positive definite and symmetric
linear operator on Hé[o,ll . we can define a new inner product

a(u,v) on Hé[O,ll by (cf. [21, [401, [561, [591)
(1.5.1) a(u,v) = (Lu,Vv) for all u,v ¢ Hé[O,l]

The proof that a(u,v) 1is an inner product is straight forward by

the definition of an inner product and the properties of L.



Following [561, we shall call a(u,v) the energy inner product on

HiCo,11.
Define a norm ||-||A on Hé[O,l] by
.5.2)  |[u]], = la@,wI? for all u e Hl[0,11.

We shall refer it as the enengy norm.

Lemma 1.,5.1

The norm ||°||A is equivalent to ||:||; on Hé[o,ll, i.e. there

exists constants p3, py # 0, such that

(1.5.3) eallvlly < [Ivll, = eullvlla

Proof: (cf. [561, pp.42), let vqg e H}L0,1]

HvollZ = atvg,vo)

[}

1
Jo P(x) (vH(x))?% + q(x)vi(x) dx

A

1
max(p(x),q(x)] { (v(')(x))2 + (vop(x))?) dx
0

1]

max[p(x),qx)1 ||voll,

On the other hand, if vd(O) = 0, then we have
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X0
vo(xg) = J vi(z) dz
0

By the Schwarz inequality

X X
| votxo) 12 < (  12az)(| ° |vi(2)]2 d2)
Jo /0 0
1 (x
s ( 1dn(r°hunvdn
U o
(X0
< [va(z)|? dz
‘0
rl
< Ivi(z)]? dz

Integrating w.r.t. xg over the interval [0,1] , we have

1 1 ~
(1.5.4) j v, ))% dx < J wy(2))? dz
0 0

and

@

1
JO P(x) (v4(x))2 + q(x) (vo(x))? dx

llvol 12
(1.
>  Pmin (v!(x))2 dx
40 0

Pmin (1
2 7y

WH())I2 + (vo(x))2 dx

p .
22 Jlvol 12

This completes the proof.
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1.6. The Rayleigh-Ritz-Galerkin (RRG) method

From theorem 1.4.1 we know that the solution of (1.3.2)-
(1.3.4) 1is equivalent to the minimization of ¢(v) in (1.4.1).
Thus instead of solving (1.3.2)-(1.3.4) directly, we could,

alternatively, concentrate on the following problem ([371, [40], [561):

Given f ¢ H-1[0,1]

find the function u* e H[0,1] s.t.
(1.6.1) < g

o(u*) < ¢(v) for all v e Hé[O,l]

{ where ¢ is defined in (1.4.1)

For this kind of problem, a simple yet efficient

method was proposed by W. Ritz in [49] in 1908.
Ritz's method has been used widely in applied mechanics ([101,[35],
[(441). In 1915, B. G. Galerkin ([23], [301) proposed a method in
solving BVP. It is well known that Ritz's method is a special case
of Galerkin's method ([8], [371,[40]). For the self-adjoint
elliptic problems the two methods are equivalent.

,Ritz's method is to approximate u* by a u* from an affine

h

subspace Sh g in the sense that @(u;) is minimum over S
14

h,g
([41, [371, [40]1). More precisely, to approximate u* by a sequence

of more accurate solutions u* ¢ Sh , such that

by n'd
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(1.6.2) ¢(u;1) > ¢(u;2) S eeeeacen
and
(1.6.3) ;ig @(u;n) = o(u*)

where for fixed n

(1.6.4) @(u;n) < @(vhn) ¥ Vhy € Shpeg

The Galerkin method is to approximate u* by any ug € Shn,g which

satisfies

(1.6.5) (Lug,vy, ) = (£,v, ) Y vy, € Shy,o

More precisely, to approximate u* by a sequence of more accurate

. . 3 .
solution up € Shn,g with the properties

(1.6.6) Shn,g c Shm,g if n<nm
and
(1.6.7) (Lu;k,vhk) = (f,uhk) Y Vhg € Shy, 0

(cf. [371, [401).

The proof that (1.6.4) and (1.6.6) are equivalent is similar

to the proof of Theorem 1.4.1.
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Let S be a closed affine subspace and let u¥ € S be
h, h h,g
the RRG solution to u* in the sense that u; minimizes @(vh)

over S, g° The following theorem concerning the minimization
14

property of the error e = u* - uf (note that e e H}[0,1]1) in

the energy norm is equivalent to Theorem 1.1 of [56, pp.391,

Theorem 1.6.1

i) ug minimizes a(u*-vy,u*-vy) over Sh,g’ i.e.

(1.6.8) a(u*-uf,u*-uf) = lggn a (u*-vy,u*-vy)
h*~*h,qg
(ii) L(u*-u;,vh'o) = 0 ¥ vh,0 € Sh,o0

In particular, if Sh,g = H;[O,IJ, then

L(u*,vg) = (£f,vq) Yvge Hé[O,l]

Theorem 1.6.1 is fundamental to the Ritz theory. The Ritz method
provides us with an idea that we -could approximate u* from a close
affiﬁe‘subspace Sh,g' The problem we are now facing is: 'how do

we construct the Ritz solution (equivalently, the Galerkin solution) ?"

This is essential because for a method to be practical, it has

to be constructive.
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The construction of the Ritz solution is based on the choice of

an affine subspace Sh g° Since the difference of any elements in
’

S is in S , it is clear that S is a shift of S
h,0 h

h,g

we have Sh,g =g + Sh'0

Suppose that the dimension of Sh,O is m-1 , then it has a basis

h,g /0’

» where g € Sy o .

{¢.}?;% such that every element u € S can be represented in
X n-1 h,O h,O

n,0 = izlai¢i. Then U, € Sp,g C2D be written as
m-1
CHA =g+ z-ai¢i . In the finite element method, the tuial functions
' i=1

¢i are piecewise polynomials (spline functions, cf. 1.9). We shall

call ¢, , i=1,-"--,m-1, ginite efements when they are taken to

the form u

be spline functions.

The basic steps in the finite element method are:

(1) The conversion of the operational form of the problem to the

variational form as we have discussed in section 1.4. .

(i1) The construction of the spline trial functions. This is the.
main subject of section 1.8. .

(iii) The computations of the stiffness matrix and the solution of

the discrete large linear system. This will be discussed in Chapter

2 and Chapter 5 respectively.

The convergence rate of the RRG (finite element) approximation

is the main topic of Chapter 4.
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The next section is devoted to the Peano Kernel Theorem. We

find that it is very useful in the error analysis.

1.7. The Peano Kernel Theorem

The Peano Kernel Theorem was due to G. Peano in his
paper [43] in 1914. It is a very useful tool in the evaluation of
the error functional either in interpolation or quadrature ([51, [12],

£491, [571).

Theorem 1.7.1 (Peano)

Suppose the linear functional
(1.7.1) E :c?0,11 >R
has the property that

1.7.2) E(p) =0 VYpep™, m<n

m+

1
Then there exists a function Km+ such that, for £ e C [0,11,

1

* 1

1.7.3) E(E) = [ Ky yq (6) £
0

(t) dt

Furthermore, the Peano Kernel Km+1 is of the form

(1.7.4) Kopq(t) = n%— Ex(x-t.)l:,1
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. . e Lo .
(The subscript x is used to indicate that Ex(x-t)i is a function

of x).

Proof: Suppose that E is defined on Ll[O,l], then by the Riesz
representation theorem there exists a function Ky € L.C0,1]

such that

1
(1.7.5) E(f) = Jo Kp(t)f(t) dt

If f e C![0,11 and p0 e77(E) (the null set of E) then
1

(1.7.6) E(f) = [-Ky(0)£(t)1] + J Ky (£)£'(t) dt
0

where

t
(1.7.7) Ky(t) = —JO Ko(s) ds

Let f = ¢ (non-zero constant), then f' =0 and k;(0) =0,

these imply that 0 = E(c) = K;(t)-c hence Kj;(1) = 0. Thus (1.7.6)

becomes

1
(1.7.8) E(E) = jo Ky (£)f' (t) dt
By induction, assume that there is a Kk+1’ k < m, such that

' [k+1]
_ k+
(1.7.9) E(f) = jo Kk+l(t)f (t) dt
Let
xk+1

(1.7.10) f(x) =

(k+1) !
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then
(1.7.11) Ece) =0, £y =1, and 521 = o
Define
1
(1.7.12) Kk+2(t) = —IO Kk+1(s) ds

then we have

1
_ [k+11] 1 [k+2]

(1.7.13) E(E) = [-Kk+2(t)f (t)]o + Jo Kk+2(t)f (t) dt
From (1.7.10) and (1.7.11), we have 0 = Kk+2(1)-1 + 0
thus

! [x+2]
(1.7.14) E(f) = Jo Kk+2(t)f (t) dt
Hence, there is a K such that

m+1
' [m+1]
_ m+
E(f) = JO Km+l(t)f (t) dt

To evaluate Km+l(t), let us consider a function ft € Cm-1 such
that ft[m:l € L,[0,1] and f£m+ljfr) = St(T),

then from (1.7.3)

(1.7.15) E(£,) = Kpp(®)
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[m+1]
t (

By integrating f 1) m+l times, we have

(t-t) 5
(107016) ft(T) = —,—"{i—i‘
Thus
K (t) = L (T~t)m
m+l m! T +

This completes the proof.

1.8. The Peano-Sard Kernel Theorem

A. Sard in [48] and [49] generalized the Peano Kernel
Theorem and developed the theory of best approximation especially

on the topic of best quadrature formulae.

Let T : Hk[o,ll + A c Hk[O,IJ be a bounded linear operator

such that
(1.8.1) Tu = u for all u e ?m cA
then T can be viewed as an approximation of the identity mapping I.

d

Define the error function

From (1.8.1) we have
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EQ?m) = 0 . For such an approximation T, we say that it is exact for

polynomial of degree m or call it a m-exact approximation to I .

Theorem 1.8.1 (Peano-Sarxd)

Let E : Hk[0,11<+ HkEO,ll be a bounded linear function

such that EQﬁm) = 0 , then there exists K : [0,1Ix[0,11 » R

m+1
such that
! [m+1]

(1.8.2) E(w) = [0 Km+l(-,t)w (t) dt
Furthermore,

R | m
(1.8.3) Km+ (-,t) = ﬁT-ET((T_t)+)
Proof :

For each k = 0 ; consider for each x ¢ [0,1] , the proof is

similar to the proof of Theorem 1.7.1 .

Sn,k "

Lemma 1.8.1 If l(0 € and K,(t) = Efﬁ'Km(t) » then

K, e STTUETcel (1.9.)).

Proof :

n'k' { uec | 3 1s.t. u) € ?n'[xi-l’xi) }

[:xi"'l ’xi)

] ' L.
so if ueSt * , then Qg_e ck'-L

1 -
dt kt > -1



20

n'-1
and QE.I e P Ex; _10%4)

dt i

[x;_q0%3)
We shall make use of the Peano-Sard Kernel Theorem in Chapter 2
to investigate the errors of the quadratures; and the applications
of the Peano Kernel Theorem will be discussed in detail in Chapter 4.
Now we go on to discuss spline functions and spaces of spline functions.

which will be used in the thesis.

1.9. Spline Functions

A draftsman's spline is a mechanical tool, consisting of
a strip of wood or some flexible material, used by draftsman to draw
a smooth curve to pass through specified points, called knots.

The idea of a mathematical spline came from the drafts-
man's spline. The term spline function, first used by Schoenberg
([50]1) in 1946, is intended to suggest that the graph of such a
function is similar to a curve drawn by the draftsman's spline
which is approximately a cubic spline function. However, a

generalization of this idea leads to the following definition:

L

Definition 1.9.1 A spline function (of degree m and q times

differentiable, 0 < q <m) is a function s which satisfies the

the following properties:
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. . ] . e
(i) bltxi-l’xil ¢ P [x;_;»x;1  i=1,--+,n

(1.9.1)

(ii) s e €9[0,11

(cf. [11, [331, [501)

We shall denote by s?’q[O,l] the class of spline functions
defined on . If I is of regular mesh h, we shall denote S?’q[o,ll

by sﬁ’qto,lj.

Remarks

(i) When q = m-1 , the definition is the same as that of
Schoenberg in [50].

(ii) The above definition extends for q = -1 . A spline
s € Sﬁ’_l is a piecewise polynomial with discontinuities at the

knots.

(iii) It follows from the definition that 5(q+1) € L2[0,1]

and S(q) is absolutely continuous. Thus s ¢ Hq+1[0,1] .

1.10. Approximation by Splines

1.10a. Introduction

Polynomials have long been used to approximate func-
tions, partly because they are simple and can be easily handled.

However, evaluation of a high degree polynomial will not be that
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simple; to interpolate a function f with a polynomial p of
degree n at m points, m < n+l , we need to evaluate n+l
unknowns which are the coefficients of p . Due to the accuracy
of the digital computer, for a fairly large n , the round off
errors by the computer will be of considerable significance; also,
wvhen one fits a high degree polynomial to a large number of data
points, the result is often rather undulated. There is now evidence
that in many circumstances a spline function is a more adaptable
approximating function than a polynomial involving a comparable number
of parameters. It has been shown that a variety of problems of best
approximation turn out to have as a solution spline function ([13],
{511, [52] ). Many other properties such as '"minimum curvature" ([361])
and '"'smoothest interpolation' ([131, [32], [36], [51]) have been
widely investigated. Spline functions have been used widely in smooth-
ing datas ([45]) , approximation of linear functions ([52]) and
solving differential equations ([31], {59]5 . The theory of finite
element method is one of the many successes of the spline fUnctions
in the application on solving boundary value problems.

In the next two sections, we shall discuss the spline spaces

1,0 - 3,2
Sif aqd Sh .
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1.10.b. The Spline Spaces

1.10b.1  The space Si'o

An s ¢ Si’o is a spline function which
is continuous over [0,1] and reduces to a linear function in each
interval [xi_l,xi] s 1=1,°"",n .
. . 1,0 . 1,0

The dimension of Sh is n+1 . Thus Sh has a

basis {¢.}, _ of n+l elements.
1°1=0

n

A basis {¢i} shown in fig. 1.10.1 , is

i=0 °’
defined as
X-X; 4
( t x e [x. .,x.1 t =
i-1771 h
i1
(1.10.1) ¢ (x) = i -t oxoe Doxg ] €=
. 0 otherwise
4 ¢ ¢
|
|
|
1 1 1
|
0 h xi_1 X; X 1-h 1
Fig. 1.10.1

This space of functions has been used for a long time as interpola-

tion functions.
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1.10b.2 The space Si'z

An s € Si’z is a cubic spline with continuous second
derivative. This function has an important property that it is

analogous to a curve drawn by the draftsman's spline. ([11, [501,

The dimension of S;'z is n+3. To construct a basis
3,2 . .
for Sh , we introduce four additional knots x_z,'x_l, X and
X 4o such that X_, < X_3 <'x0 =0 and 1 = X < X 11 < X o
n+l

" Define the functions {B,}] ] , called basis B-splines ([11], [17],

£181, [511) by

. 3,2
(1) Bi € Sh
(1.10.2) (ii) Bi is identical to zero outside Cxi-z’xi+l)
(i1) By (x; ;) = Bi(x;,,) =0
) _ _1
Bxjy) =8 () =7
Bi(xi) =1
By the constraints in (iii), we have
3
(= x € Ix; 2% 4]

- leze3 L o3e2 L3¢ -
4(3t 3t -3t -1) X € [xi_l,xi]

‘ = _ 3.2, 3.3
(1.10.3) B,(x) = < 1 -3t + 3¢ X € [xi,xi+1]
a-1t)8

2 X € Ixg,10%540]

L 0 otherwise
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where t, 0 <t <1, is a local variable defined by

. !

k k-1

(1.10.4) t

for x ¢ ka_l,xkl

The graph of Bi(x) is shown in fig. 1.10.2

B, (x)

Fig. 1.10.2

1.10c. Quasi-Interpolation

Quasi-interpolation was first introduced by C. de Boor
and G. Fix in [14] and was generalized by P.0. Frederickson in
[25]. The problem can be stated as follows : for each f ¢ Ck[0,1] .

k,k-1

Ck+1[0,1] -+ Sy . such that Fﬂf , which called a

let wa :

quasi-interpolant of £, has the following properties :

(i). Fuf is local in the sense that its value at a point x
" depends only on the values of f in a uniformly small
neighbourhood of x .
(ii) Fy reproduces polynomials; Fu(p) =p VP e'?k .

(iii) F f - £ = 0@ Yy .
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The explicit forms of F;f were given in [14] which are
written in the linear combinations of the k-degree B-spline (A

B-spline basis for gkl

). As indicated in [251, quasi-interpolations
have two strong advantages over interpolations. The first of these
is ease of computation and the second advantage is that strong error

estimates,very nearly sharp, are easy to obtain for almost any norm,

The idea of (ii) is a source of motivation for the works in Chapter 3.



CHAPTER 2

THE FINITE ELEMENT SOLUTION

2.1. The Discrete Linear Systems due to the Piecewise Linear Approximation

We have shown in section 1.5 that the exact solution to
(1.3.2) - (1.3.4) 1is equivalent to the finding of a u* ¢ H;l[O,l]

which minimizes &(v) over H;[o,l] . The RRG approach in section

1.6 is to approximate u* by u* g from an affine subspace Sh g
’ 14

such that & (u* g) is minimum over Sh g " In this section, we
’ ’

shall construct uﬁ g by using the affine subspace Si'g . A set
r ’

of trial functions is taken to be {¢i}z=o which has been defined

in 1.10b. . From section 1.6, an element u € Sl’o can be written
h,g h,g
1,0 1,0 .
= L .
as u = gtu where g € Sh,g and U o € Sh,o ; since

g € Sérg , it can be taken as
r

g = 8obo(x) + g1¢,(x)

Thus
n-1
2.1.1) U g T Bedpl) + izlaicbi(x) *+ g9 (X)
The coefficients a;, are to be determined so that <I>(uh g) is
minimum. From (1.4.1), we have
! T 2 v 2
= '
e (u, ) Jo eI (] 39102 + Al () a4, ()
n
- 2(i;0ai¢i(x))f(x)} dx
) P g )
= a a, .+ aa.B . -2 a.f,
k=0 j=0 ¥ i3 k=0 j=o X I K«I 42533

27
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vhere a, =g, , a =g, and

1

[ Ay - fo PG4y (X164 (x) dx
1
2.1.3) { By - JO A0 ¢, ()94 (x) dx
1
k fj = Io f(X)¢j(X) dx k;j = 0,°c°,n
(Note that Ak,j = Aj,k s Bk,j = Bj,k )

Thus (2.1.2) can be written as

n n n
(2.1.4) o ) = ) a.(]} a A gt D) asB 5 - 2f)

Beg k=0 * 3=0 j=0

The variables are ayjs°*-<;apn-3 . Thus

(201.5) Q(uh’g) = @(al,'°°,an_l)

To determine aj; , i =1, *+,n-1 , such that @(uh g) is minimum,
’

3d

we solve FYvile 0 , and obtain a system of linear equations :
1
n
(2.1.6) kzoak(Ak'i+Bk'i) = f; i=1,"°++,n-1
Let Mi'j = Ak,j + Bk,j s then (2.1.6) becomes
n
(2.1.7) kzoakMk’i = £, i=1,,n-1

Since aj, = gy and a, = g; are fixed, (2.1.7) is a linear system

of n -1 wunknowns. It is
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n-1
(2.1.8) ZlakMk,i‘ = £ -eMy,y e M
= Fy i=1,-+++,n-1
Let .
© ( M = (Mk,l)T (=01 0 1 <k,i<n-1
Mo = ( MO,l, ..... ’M()pn“l )T
Mn = (Mn,l’ ...... ,Mn'n_l )T
. = T
(2«.109) 4 a = ( ay,c°°" ’an-l )
T
f = ( fl’ ..... "fn_l )
T
F = ( Fl’ ..... an-l )
C f - gOMO - gnMn ]T

rd
1

Then (2.1.8) can be written as

]
-n

(2.1.10) Ma

If the boundary conditions (1.3.4) were homogeneous, i.e. gp =8 =0,

then the linear system would be.

f

(2.1.11) Ma

The matrix M is positive definite since for all a , there
exists a u € Hé[o,ll such that a'Ma = (Lu,u) > 0 . It follows
from (2.1.3) that M is symmetric.

The §inite efement (RRG) solution has been constructed if the



30

linear system (2.1.10) (or equivalently (2.1.11) for homogeneous
boundary conditions) has been solved. The solving of (2.1.10)

(or (2.1.11)) will be discussed in Chapter 5.

We shall evaluated M for constant p and q . From (2.1.3),

we have

=
!

(2.1.12)

>~}
|

i,j - Q(¢'l’¢j)

After some calculations, we have

-1 l3-i] =1

_ P ..

(2-1-13) Ai,:] = 'l-'-l- 2 J =1
0 otherwise
1 [i-1] =1

gh ..

(2.1.14) Bi,j = 7;— 4 j =1
0 otherwise

By using (2.1.13) and (2.1.14), the matrix M is of the form

ol \r 4 -~

2 -1 0 0 4 1 0

-1 2 -1 0 4
M = Bl 0o -1 2 -1 L anfo 4
h 6
-1
-1 2 1 4

J g A



31

For the right-hand side vector F , we have

Fpo= - C-Ba By

Fy = f4 i=2,v+,n-2
i} P, qh
Far = Toy - (-5 * % )

For general p(x) and q(x) ; M is either obtained by exact integration
or by quadrature formulae which we shall discuss in the subsequent

sections.

2.2. Best Quadrature Formulae

2.2a. Introduction

In (2;1.3), there are integrations namely
1 1

L - [ fwam e, L@ - fo PG} (x)6](x) dx

1
and Ii,jCQJ = j q(x)¢i(x)¢j(x) dx . Beside performing the actual
0

integrations, we could approximate these integrations numerically.
Especially, when the analytical solution is not possible to obtain,

then an approximation will be become necessary. There are several

—ways to approximate these integrations. For example, to approximate
I;(f) , we could interpolate f by a spline s and then integrate

I;(s) exactly ([81,[341,[56]); or we could :pproximate [,(f) by
jzoajf(gj)¢i(£j) . However,
in the subsequent sections, we shall extend Sard's approach on

a quadrature rule H; of the form H;(f) =
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quadrature formulae to obtain best quadratures for a more general
1

type of integrations, namely T(g) = f g(x)w(x) dx , where w(x)
Q

is a weight function.

Let

1
(2.2.1) T(g) = IO g(x)w(x) dx

Consider a discrete approximation Q to T , or quadrature formulae,
of the form

N
(2.2.2) Q) = ) a;8(E;)

i=0
If w(x) =1, x e [0,11, then (2.2.1) - (2.2.2) reduces to the
case which considered in detail by A. Sard in [48] and [49].

Assume that Q is m-exact (exact for:?m). Define the erton

gunctional E : Hm+l[0,11,+ R by

(2.2.3) E(g) T(g) - Q)

0 . Thus we could apply the Sard

1l

From the assumption, EC?m)

kernel theorem that there exists a function Kp+1 such that

1
(2.2.4) E(g) = IO Km+1 (t)g[m+l](t) dt
and
(2.2.5) Kma1(8) = - B, ((x-0)})

1 N
— [ Tx-t)] - ‘Xoai(&;i-t)f 1
l:
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Then by applying the HOlder inequality on (2.2.4), we have,

for p,q 21 with %—+ %-= 1,
» ! 3 ¢ rme1l 5
(2.2.6)  [E@)] = {JOIKm+1(t)lth}q {J g™ e) [Pae)®
Q
1
= K 1, - g™,

Equality holds for the function g with the property

a
(2.2.7) g[m+1](x) = sgn(Km+l(x))|Km+l(x)|p (a.e. for p = 1)

In particular, there exists a function g* ¢ Hm+l[0,1] such that

(2.2.8) (g hP - = k1
Thus from (2.2.6) and (2.2.7)
* = . KLLm+1]
(2.2.9) [E(g®)| = Ile+l|lL |lg | .
Define
1
(2.2.10) Nelll = g™ JIIL

Note that |||g|||p =0 if g e ", so we do not distinguish

| |p is a norm on Hm+l[0,1]APm

fand g if £ - g ¢ P™, then

(2.2.6) can he written as

(2.2.11) [E@| =< || m+lIlL
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Hence if E : Hm+l + R annihilates polynomials of degree m, then

the Lq-norm of E is given by

(2.2.12) HEH, = 11K 1)
q m q

In particular,

@) If p=«, q=1, we have

@1 = [yl -lell,
(2.2.13)

HEl = TRy, 11,

(ii) If p=2,q=2, we have

E@1 = 1K, 01 sl
(2.2.14)

HEL, = Syl

Different quadratures have different Kernel functions for the
error functionals. We shall denote by EQ if the dependency of E
on Q is to be emphasized. Following [48] and [49] , we have the

following definition:

Definition 2.2.1 Let Q(N,m,{éi}r;_l') (abbrev. Q) be the class of

m-exact quadrature Q to T of the form (2.2.2). Qb € Q is called
the best quadrature (w.r.t. Q) if

min
(2.2.15) HE pllo = geq HEQ,
The subsequent sections are devoted to the evaluation of the best
quadratures for I, , I! and 1.

12 74, i,j

~
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1
2.2b. Best Quadrature for I f(x)¢i(x) dx
0

1
Let Ii(f) = [ f[x)¢i(x) dx , 1 <1 < n-1, where
0

¢i s 1 <1i<n-1, is defined in (1.10.1). Since ¢k(x) = ¢(x-kh) ,
‘where t  xel-ho0l t=XP
¢(x) = e
1-t x € [0,h] t = T

h
we only need to evaluate one quadrature formula for Ip(f) = f f(xX)e(x) dx ;
' -h

this quadrature applies to Ii R B

Notation :

i) QO(N,m,{Ei}?=1) : the class of m-exact quadrature Qp of

Io of the form (2.2.2).

N
i=1

(ii). QB : the best quadrature formula w.r.t. QD(N,m,{Ei} ) .

The following is a list of quadrature formulae which are best
in each class of quadratures. The bounds for the error functionals

are computed via the Peano-Sard kernel theorem.

The best quadrature in the class 0p(1,1,{0}) is
b
Qo (£f) = h-£(0)
2
If f e H°[0,1] , then

lEH)]| = o.osss-hs-llf"llL&[O,lj

and

h23, £
|[E(£)] < 0.0891<h [l uLz[O,IJ
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. . N h h .
Ihe best quadrature in the class QO(Z,I,{-ggi&) is
b = h. }l .}.l. h

If f e H2[0,1], then

IA

.h3. 1
|E(f)]| < 0.0542-h3-||£ lle[o,1]

and
0.0570+h2 5.

IA

[E(E) | £ ro,17

The best quadrature in the class QQ(Z,S,{—g%vg%J) is

b h h h .. h
£ = —ef(-— S f(—
Qo (£) 5 £ /6) Mt
If f eH?[0,1] , then
h3. 1
|E(£)| < 0.0282+h |f'||Lw[0,1]
and
. 2‘50
[E(£)| < 0.0267¢h llf"|]L2[o,1]

If £ eH"[0,1] , then

0.00162+h5-

| £

IA

Eo)| “N Lo 11

and

IA

.|+.5. [41
|E(f)| < 0.00178-h RE: ||L2[0,11

This is an example of a Gaussian Lype best quadrature formula .
It shows that there exist two-point best quadratures which are exact

for 3 . An disadvantage of this quadrature is that we have to place

the weights at +h/v6 . Another way to obtain higher order quadratures
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is to place the weights at more points.

The best quadrature in the class 0Qj(3,3,{-h,0,h}) is

h 10h h
f = -—.f - _—‘f —
If £ e 200,11, then
. 30 T
|[E¢E)| < 0.0409-h3-]|f iato.11
and
|[ECE)| < 0.0381+h2-5.||fn

I
L,lo,11

If f e H*'[0,11 , then

A

r . 5' f[41
[E(£)] < 0.00417-n5-]] IILw[o,11

and

A

wnke5. ] 1el4]
|E(£)] < 0.00404+h || £ ||L2[0,1]

Herbold, Schultz and Varga [34] obtained the same quadrature by
interpolating f by a quadratic (Lagrange) polynomial p and then

integrating I,(p) exactly.

The best quadrature in the class Qg(3,3,{—%u0,%}) is
b = Deehy B h b
If fe H2[0,11 , then

[EE)| < 0.0151~h3-||f"|[Lw[0 11

and

. 2.5. 1
|EE)]| < 0.0135-02-5[[£"]] o
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If f e H*'[0,1] , then

4]
|ECE)| < 0.00104-h5- [ [£L 1||Lm[0’1]

n2-5.1 1041
[ECE)| < 0.00107-n2"5-[ €45 o 14

1
2.2c. Best Quadrature for fo p(x)¢i(x)¢5(x) dx

In1(2.2.2), if we take w(x) = ¢i(x)¢3(x) , then we have

I . (@ = jo P(X)¢i(x)¢3LX) dx .

i3
We need only to consider two cases : (i) |[j-i| =1 and (ii) j =1

since I} . () =0 Vpe HC0,21 , Yk 20 if [j-i] > 1 .

2.2c.1. The Case [j-i] =1, 1 <1i,j < n-1

For j = i-1 , we have

ih
(2.2.16) I' . . () = ..AZJ p(x) dx
1,i-1 h (i-1)h

This case hqs been considered in detail in Sard [49].

The quadrature for I is valid for Ii . i =2 ,0¢e,n-1

1,0 i-1 °?

- s . ' - 1!
(cf. 2.2b.) , and for the case when j = i+l , since Ii—l,i Ii,i—l

the same quadrature applies, so we shall evaluate the quadrature

)
for 11,0
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Notation :

. ' , N 1
(i) Qi,OCN’m’{Ei}i=1) : the class of m-exact quadratures Ql,O of

the form (2.2.2) of Ii 0

N

P 1b R §
(i) Ql,O : the best quadrature w.r.t. Ql,O(N’m’{gi}1=1)

The best quadrature in Qi d(S,S,{O,%ah}) is the Simpson's rule :
b4

Q o @ = - PO - gP@ - P

If f ¢ H2[0,11 , then

A

0.0123<h-

|ECE) | 1€ ro.11

and

IA

|ECE) | o.o1sz-hﬂ-5-||f"||L2[o’11

If f e H*[0,11 , then

IA

.n3. {41
|[E(E)| =< 0.000347-h3||f lleEO,ll

and

IA

[4]
|E(£)| < 0.000464-hZ-5-||f ||L2[0,1]

2.2c.2. The Case j =i, 1<1i,j<n-1
For j = i , we have

1! = L

(i+1l)h
i I p(x) dx
’ h?.

(i-1)h
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For notational simplicity, we shall evaluate the best quadratures by

considering

1 1 h
IO,O(p) = F j_h P(X). dx

(This case can be found in Sard [491).

Notation :

(1) Qé,O(N’m’{gi}§=1) : the class of m-exact quadrature 6,0

of the form (2.2.2) of Ié 0 -

b

. _ ' N
(ii) QO,O : the best quadrature w.r.t. QO,OCN’m’{Ei}'

1=1)

The best quadrature in Qé 0(3,3,{-h,0,h}) is the Simpson's rule :

1 4 1
05 o @ = 3P + 5p(0) * spp(h)
If f e H2[0,11 , then
e | = 0.0087n | forl o 1
and
)| = 0.0861h0-5+ | [pr]] o

If f ¢ H*[0,1] , then

IA

4
|E) | 0-0111°h3'||P[ ]lle[o,lj

and

IA

|E(p)| < 0.0105-h%-3-||p

[41]
HLon,ll
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1
2.2d. Best Quadrature for IO q(x)¢i(x)¢j(x) dx

If we take w(x) = ¢i(x)¢j(x) in (2.2.1) , then we have

1
Ii j(q) = f q(x)¢i(x)¢j(x) dx ; we need only to consider two cases :
? 0

@A) |j-il =1 and (i) j =1 .

2.2d.1 The Case |j-i] =1, 1 <i,j €n-1

In this case , we need only to evaluate the quadratures
for 11’0 , which is

1 h
L @ = -};;fo q(x) - (h-x) *x dx

Notation:

. N )
1) Qi,O(N,m,{gi}i=l) (abbrev. Qi,O) : the class of quadratures

m-exact Q of the form (2.2.2) of I1 0
2

1,0
(ii) QE,O : the best quadrature w.r.t. Qi,O(N,m,{gi}?=1)

The following is a list of best quadratures in each class Q1 0"
2

The best quadrature in the class Q_1 0(1,1,{%}) is
5

Qll’,otq) = %‘q(g-)
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If q ¢ H2[0,1] , then

IA

|E(q) | 0.00417+h2+||q"

lle[O,ll
and

IN

1ECa) | 0.00616-h1‘5~[lq”|ILZEO,II

h

The best quadrature in the class Q_1 0(5,3,{0,§3h}1 is
® @ = aea© + Bl 4 qm
1,0+ 60 i 60 2 60

If q e H2[0,1] , then

IA

IE(q) | 0.00189‘h3‘[lQ"||Lm[0,11

and

IA

H .h2.5. '
IE(Q)l 0.00246+h !|Q'i!L2[0,11

If q ¢ H“[O,l] , then

I

_ 41
|E(qQ) | 0.0000496-h5-||q[ l'Lw[O,l]

and

IA

0.0000676-h"-5-

4
|ECQ) | |a" ]'|L2to,1]

2.2d.2. The Case j =i, 1 <1i,j < n-1

As before, for notational simplicity, we shall consider

1 [° 1 (R
IO’OLq) = H.f—h q(x)* (x+h) dx + H'[o q(x)* (h-x) dx
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Notation :

(1) QO’O(N,m,{Ei}§=l) (abbrev. QO,O) : the class of m-exact quadra-

ture of the form (2.2.2) of I

Q0,0 0,0 °
b

(i1) QO,O : the best quadrature in QO’O(N,m,{gi}§=1)

The following is a list of best quadratures in each class QO 0 -
2

The best quadrature in the class QO 0(1,1,{0}) is

0y ol@ = Za()

If q e H?[0,1]1 , then

@] < 0.0334-n% o) gy

and

[EC@| < 00325025 [q" || o g

The best quadrature in the class QO 0(5,3,{—§30,24) is
>

b 2h h 6h 2h h
C2)

Q0 @ = f5ral-x) + 157a(0) + 3574

If q e H2[0,1] , then

A

lECq)I 0'0223'h3.‘[q"|le[0’1]

and

A

lE(q)l 0'0246.h2.5.|Iq”||L2[O,11
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If q e H*[0,1]1 , then

Cal
lE@] = 0.000085-0% 431 (o

and
|ECq)| < 0.0001050-h*"°-

C41
la lleEO,ll

The best quadrature in the class QO 0(3,3,{-h,0,h}) is
3

18h h
@ = g5waC-h) + a0 + gprat)
If q e H?[0,11 , then
3 '
E@] = 0.02190% [la" Il _go ;5
and
[E@] = 0.0208+h%>- lqnl|LzuL1]

If q ¢ H”[O,l] , then

A

5 [a]

and

A

. 4
E@] = 0.00196-h* " 1"l o 1

We shall end this Chapter by concluding that, as far as we know,
the best quadrature formulae in Section 2.2b, except the best quadrature

in Q4(3,3,{-h,0,h}), and Section 2.2d are new.



CHAPTER 3

SUPERCONVERGENCE

3.1. Introduction

In [16], C. de Boor and B. Swartz showed that in solving a
‘certain BVP by a certain collocation method, the error at the knots
of the spline being employed is of much higher order than it can be
either uniformly or in L,. J. Douglas and T. Dupont in [19] discovered
the knot higher order phenomenon does occur when they approximated
certain TPBVP by the Galerkin method using the space S%’O; they used
the word ''Supenrconvergence! to represent this knot higher order
phenomenon. In [20], they demonstrated several methods to obtain
higher order convergence and extended the meaning of superconvergence
to include methods of obtaining higher order convergence. The
characteristic of their methods in [20] is A£ocal in the sense that
superconvergence results at‘a certain small number of subintervals.
However, motivated by [20]1, together with [14] and [25], we shall
introduce a method called ''global superconvergence via Local
quasi-invernse' in section 3.3 to obtain higher order convergence for

the solution of (1.3.3) with homogeneous (1.3.4).

For the sake of simplicity, in this chapter, we shall restrict

our discussion on the solution of (1.3.3) with homogeneous (1.3.4).

3.2. The Superconvergence Phenomenon at the Knots

The solution of (1.3.3) with homogeneous (1.3.4) by the

45
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Ritz method has been shown in section 1.5 and 1.6 to be equivalent
to the Galerkin solution. In this section, we shall modify the
proof in [21] to show the superconvergence phenomenon at the knots for

the RRG solution of (1.3.3) with homogeneous (1.3.4).

Let u be the true solution of (1.3.3) with homogenous (1.3.4).

Let u « 32’8 be the RRG solution to u in the sense that
(3.2.1) (pu!,v') + (qu,,v,) = (f,v.) Vv e Sm’O
h’ h h’'h ’"h h h,0
Let ¢ = u-uh , then
(3.2.2)  (p',v!) + (qg,v,) = 0 Vv es™O
T >"h 22 h h h,0

Let G(x,£) be the Green's function for (1.3.3) with homogeneous

(1.3.4), i.e.

1

(3.2.3) u(x) (£,6(x,°))
(Lu,G(x,+))

cpu',gg{x,-)> + (qu,G(x,+))

for sufficiently smooth u. In particular, the representation

holds for u € H3[0,11 , so that it can be applied to ¢ . Thus

(3.2.4)  o(x)) (p;',-g%(xi,‘)) + (4z,6(x;,°))

3G
(P‘;"a—g(xi")"’ﬁ) + (qz;,G(_xi,°)-vh)

m, 0
for all v, € Sh,O and
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(3.2.5)  Jex)| < ¢ g |- Ig£ (HESPR R
Yhe>n’a

where C = C(p,q)
If pe Hm+2[0,1] and q € Hm+lE0,1] , then

(3.2.6) Glx,,+) e H™M(Co,x.1) n Hm+l(£xi,1])
and

(3.2.7) JJ60xg, ) llymeiy o 4* ”G(Xi")lle+1[xi,1J < Cilp.a)

Sm,O

noo &ve not required to be differentiable
2

Since the functions in
at x = X5 it is clear ( by wusing Lagrange interpolation at

each interval ) that

inf ”G(x,°}—v I[ < C (p,q)-hm
(3.2.8) v éSm,o hiil 2
h h,0

It is known that ([81,[20]1,0211,(411])

k+1
(3.2.9) lldlo + h'”€”1 < C3 Ju "k+1°h
0<k<nm
From (3.2.5),(3.2.8) and (3.2.9)
(3.2.10) lex )] < ¢ @@ lull,,h™  osksm

Thus we have proved the following theorem:

Theorem 3.2.1 If the solution of (1.3.3) with homogeneous (1.3.4)

is such that u € Hg[o,ll , then the knot estimate (3.2.10) is valid,

i=1,%++, n-1
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Remarks:

(i) If the coefficients p(x) and q(x) are not smooth enough
for (3.2.7) to hold but are such that, for some j € [0,m] ,

Glx,,*) < Hj+l([0,xi]) n Hj+l([xi,1]) , then

(5.2.11)  Jetep] < Cs@oa llull, w0

IA
o
A
=

(i1) In particular, if k = m , then we have

lex)| < Celpoa@)+ flu |, -n*"

for i =1 ,¢¢¢+, n-1

(iii) It is worthwhile to mention that Wheeler in [60] made use

of (3.2.10) in showing that

].
lu || STl
w=>"*1ro,11

fil
I€ | = § ety

(3.2.12) el ro,17 % C7s@

where

£o,11

,u[k"l:l is absolutely

WP *r0,11 ={u ¢ 10,11 (k] }
continuous and u € Lp[O,l]

(see a similar result by Douglas, Dupont and Wahbin in [22] ).
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(iv) In particular, if m =1, i.e. u < Si’g , then we have
>

lc(xi)l < Cg(p,a)- Hu!lz'h2 1 <i<n-1
. ch2
“C ”wao,ll = Cg(P:q} “u”w°°32[‘0’11 h
k
and cllg + nillell, = cpe llull - h k=1,2
(v) If p=1 and q = 0 , the Green's function G(x,*) € Sl’o c Sm,O
. g 2 h,0 h,0 ’
hence S igg’o “G(x,-)-vh||1_= 0 ,which implies, (3.2.5), c[xi) =0,
h ~h,0

3.3. Global Superconvergence via Local Quasi-Inverse

In this section, we shall introduce a constructive method
to obtain a "global superconvergence' solution to (1.3.3) with
homogeneous (1.3.4) in the sense that the global error is of higher

order then the RRG solution in either the energy norm or H; norm.
The outline of the method is as follows :

Firstly, we solve (1.3.3) - homogeneous (1.3.4) by RRG (finite

1,0
h,0

We shall write the RRG method in an operational form by Rh .

element) method using the space S to obtain the RRG approximation

uh.
.oyl 1,0 -
Thus Rh : Hylo,11 - Sh,o such that u, = Rh[u) . Note that uy

is a linear function of u .
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As soon as we know up , it is nice to know the inverse of
R , then we can compute u exactly. But, unfortunately, this is
impossible in general. However, motivated by C. de Boor and G. Fix
in [14] and P.0. Frederickson in [25], we know that we could make
use of an approximate. inverse (for more about an approximate inverse
of a linear operator, please refer to Benson [3]) of R, to obtain
a better approximate solution s of u . An easy type of an approxi-
mate inverse to compute is what we shall call a quasti-{nverse Q

of Ry ; thus we define s = Q~Rh(u)

In section 4.5 , we will obtain error estimates for the

error operator E = I - Q'Rh ;

Definition 3.3.1  ([14,pp.19]1, [25,pp.1591)

An approximation operator H : A < HK[0,1] + B ¢ HkEO,l] is
called a ALocal approximation operaton if (Hf)(x) is independent
of the function f outside a certain neighborhood of the point x .

To be more precise, we require a compact set K such that for
any f in A and any x in [0,11, [f(y) =0 Vy e x+k =>

(HEY (x) = 01.

Definition 3.3.2

Let v : A c HK[0,1] » B c HX[0,1] be a linear operator.

Q:B>Cc HX[0,11 , a linear operator, is a #-exact quasi-inverse
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of ¢y if (i) Q 1is a local approximation operator and

(ii) Qw(p) =p ¥ p e PL0,11.

In this thesis, we shall consider in particular, A = Hé[O,l] s

33,2

= ¢l,0 -
B =S no ? r=

h,o *C°

3and y =Ry . i.e. we shall make use of a
3-exact quasi-inverse of the RRG method to obtain a superconvergence
. . 3,2
approximation s e¢ S to u .
h,0

Let us go on to the construction of the superconvergence solution.

From (1.6.9) ,

(3.3.1) a(u—uh,wh) = 0 Y w, ¢ sﬁ;S
=> a(u-un,95) = 0 j=1,¢¢+*,n-1
=> a(u,$3) = a(un,¢j)
n-1
= 1 aica(bi,04)
(=1
n-1
where up = Z aj$; with aj which have been determined earlier
i=1
by Rh "
. 3.2 n+l
Qup) is in 87’7 , it can be written as Q(u,) = Y bB ,
h ooy K K

where {Bk}iil is a basis of $2’% (cf. 1.10b.2). We want

Q-R,, to reproduce p for p e:?g . By the Afocal property of
B 1in [xp_p,Xp4p1 (B is identical to zero outside (Xp_5,Xyky2))»

we could have @ to be a local approximation operator by defining

(3.3.2) b = opuy + B + a

u u
k-1 KB Kby



where uhi = uh(xi) . Note that
(3.3.3) Q) (x.) = b.  + b, + 1b = a, if uepd)
e “h” ) 473-1 j 475+1 j a*

for j =0,----,n-1

jag is of dimension 2, and {u%0(x) = x(1-x) , u%l(x) = x2(1-x)}

form a basis forﬁg . Q-Rh will reproduce p e?g if o and

B, ~are determined through :

QR W) () = ull(xp)
(3.3.4)

QR ' x) = ull(x)
where

u°°(xk) = kh(1-kh)
(3.3.5)

uOI(xk) = kZh2(1-kh)

After we have obtained the RRG solutions {aﬁo} and {aﬂl} ,

1 £k £n-1, the next step is to evaluate bgt, -1 <k<ntl , t=0,1,
k}Z:}l . These determine {bk};:il , and hence s 1is obtained.
From (3.3.3), (3.3.4) and (3.3.5), we have

and {ak,B

0 1

Q) = %bﬁ-l F bRl gbgey = Kh(-kn)
(3.3.6)
01 - Lo o1 , Lot - p2420q.
L Qull(x,) 7oL+ b0 4 2p0L k2h2 (1-kh)

A solution of (3.3.6) is
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00 = Zppcq. 2h?
b! Fkh(1-kh) + =5
(3.3.7) -1 € k € n+l
01 - 292021 2,03 _ 2,0
bk gk.h (1-kh) + gkh. gh

From (3.3.2), {ak’Bk}E;i are obtained by solving the linear systems :

(3.3.8) o ult o+ g ult 4+ g 0t = pot t = 0,1
k hk—l k hk k hk+l k

For k = -1,0,n,n+l , we need extrapolations as follows :
ot ot 0t .- 10t - -
(3.3.9) quho + Bkuh * oo uy bk k 1,0 t 0,1
1 2
ot ot 0t - pOt - -
(3.3.10) akuhn—z + Bkuhn—l Uy, bk k n,n+l t 0,1

Note that ugo = ugo = ugl = ugl = 0 , so we need only to evaluate
0 n 0 T

{uk,Bk} for k = -1,0,n,n+1 . The solutions of (3.3.8) - (3.3.10)

can be easily obtained by Gaussian elimination method.

For p a constant and q = 0 , {uk,sk}2:{l can be evaluated

by pen and paper calculation. The evaluation is as follows :

From (2.2.12) we have a(¢i,¢j) = %-A , where A 1is defined

in (2.2.13) . The RRG solution for u%% and u®! can be derived

from (3.3.1) with A :

(i) For u®l(x) = x(1-x)

00 = 500 00 _ 400 :
From (3.3.1) , a(uu ,¢j) E{ aj_1 + Zaj aj+1] , but from
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the definition, a(p°°,¢j1 =2ph, j=1,""",n-1 . The solution is
(3.3.11) aﬂo = kh(1-kh) 1<k <n-1

This fits Remark (v) in 2.2 .

(i) For ull(x) = x2(1-x)

. g . S 2:2 _ Pr_,o01 01 01
Similar to (i)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>