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ABSTRACT 

This thesis contains a study of higher dimensional numerical 

quadrature, especially two dimensional Gregory quadrature. 

In Chapter I we discuss the problem of approximation 

and integration, the reasons why numerical quadrature has been 

developed and review some important numerical quadrature formulas. 

Chapter II contains some fundamental concepts, including 

some useful notations on higher dimensions, barycentric coordinates, 

homogeneous representation of polynomials, the Newton-Cotes poly- 

nomials, and integration and differentiation in barycentric coor- 

dinates . 

In Chapter III we present a generalization of Newton- 

Cotes quadrature to higher dimensions over k-simplices. Our 

generalization is based on the properties of the Newton-Cotes lat- 

tice and the Newton-Cotes polynomials. A rather complete list 

(up to 13^ order) of two dimensional Newton-Cotes quadrature 

formulas over triangles as well as some three dimensional Newton- 

Cotes quadrature formulas over tetrahedra are given. 

In Chapter IV we apply the concept of the hexagonal k- 

partition of unity, developed by Professor P.O. Frederickson, 

to construct some two dimensional Gregory quadrature formulas. 

The general derivation of aimth order Gregory quadrature formula 

over a plane region with piece-wise linear boundary is given. 

Particularly, the Gregory quadrature formulas of the first three 
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orders over some special regions are computed. 
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CHAPTER I 

INTRODUCTION TO NUMERICAL QUADRATURE 

.n 

1.1 APPROXIMATION AND INTEGRATION 

Let be 9. compact set in (R“, and let G[J^] be a 

linear space of real continuous functions on It may be 

C [^^], the space of all real continuous functions on but 

usually is not. Denote by I : G[f2] IR the linear operator 

1(f) = f(X)dX. (1.1.1) 
Q 

Even in one dimension, where some elementary functions have ele- 

mentary anti-derivative, it is necessary to consider approximations 

to the operator I because not all functions can be integrated 

in closed form. Even when integration in closed form is possible, 

it may not be advantageous, for one must use tables of special 

functions in the end, and these are only approximate. Another 

reason we develop the rules for approximate integration is to al- 

low us to integrate a function given only at a finite number of 

points. Additionally, in recent years it has become possible to 

force a computer to perform a lot of calculations in a rather 

short time, and approximate integration may be both faster and 

more accurate than integration using paper and pencil and tables 

of special functions. 

We will consider numerical quadrature (which we sometimes 
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call numerical integration, or mechanical quadrature or approxi- 

mate integration) of the form 

k 
(1.1.2) 

with icf) = + R(f). (1.1.3) 

Here is also a linear operator on G[S^] . We will say that 

is a numerical quadrature of order h+1 if R(f) = 0 for all 

f the set of all polynomials in X, of degree less than or equal to k. 

The basic problem of numerical quadrature is concerned 

with choosing the coefficients a^ (and the lattice points X.j), 

so that will be a close approximation to 1(f) for a 

large class (a subclass of G[^^]) of functions f. "How to choose 

these coefficients a^-?" is a question naturally asked. We will 

find some answers in the pext two sections. 

If we have several formulas (several sets of a.j), then 

we always wish to know how accurate each formula is, which one is 

better, and how to compare them. Thus, a measure of errors is 

necessary. Usually, we measure the errors in terms of norms or 

seminorms. A noivn ||*|| on a linear space L is a functional 

such that, for all feL,geL and a e IR, 

Ilf > 0 (1.1.4) 

II f|| = 0, only if f = 0, (1.1.5) 
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Uf|l= l«l l|f||. Cl.1.6) 

and l|f-g||< llf||- lull. (1.1.7) 

rf (1.1.5) is not satisfied, then ||* 11 is called a seminorm, 

and we will always denote it by 1*1. 

Given any f e G[J2] and 1 < p < «>, define 

f|l = " P If, , 
Q I 

pii/p 

and lf| m.p , I |DU|P)'/P; 
i I =m / 

(1.1.8) 

and for p = <», we define 

f II = sup |f(x) I . 
P XeQ 

Cl.1.9) 

and him p ° , , 1 h=m 
DU 

Then it is clear || • || is a norm on while !•[ is 
" " p ' 'm,p 

a seminorm, and we refer to I *| as the mth order L ’‘Sobolev, 
' 'ina>P —■ p ^ 

seminorm. In particular, if Q cz^, then for p = ", [f 
■m,p 

(m) 
f (X) 1/F 

hl_ „ = sup 
XeJ2 

f^”hx) , for p 4 

1.2 ONE DIMENSIONAL NUMERICAL QUADRATURE 

Many types of one dimensional numerical quadrature are 
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given in the standard text books on numerical analysis, such as 

those by Conte and deBoor [3], Davis and Rabinowitz [5], 

Frdberg [7], Hildebrand [11], Isaacson and Keller [15], Ralston 

[21] and others. In this section, we will only discuss three 

types of formulas: Gregory type, Newton-Cotes type and 

Gaussian type. Other types of formulas, the reader can find from 

the above references or other books or papers. In particular, we 

will not discuss minimum norm quadrature as discussed by Sard 

[22] and others. 

(I) Neioton-^Cotes formulas (closed type) 

There are many derivations of this type of formula. We 

only show two of them, algebraic and interpolatory. Let f be 

a function defined on the interval [a,b]. For simplicity, we 

assume [a,b] = [0,1]. The formula over an arbitrary interval 

[c,d] can be obtained by multiplying a constant l/(d-c) times the 

coefficients a^ (for [a,b]). Let a = XQ < Xi < ...< Xj^ = b 

and x.-x. , = —, i = 1,2,...,k. Let 
1 1-1 k 3 y i 

1(f) = f (x)dx (1.2.1) 
a 

k 
NCj^(f) = I a.f(xp. 

i=0 
(1.2.2) 

and 1(f) = NCj^(f) + R(f). (1.2.3) 
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(A) A Igehvaia Deri-vatvon 

Let f = . Then (1.2.2) becomes 

k 

I 
i=0 

a .X. 
1 1 

j . 1 

j + 1 
(1.2.4) 

for j = 0,1,...,k. 

This linear system has a unique solution if the coefficient matrix 

(x^^) is non-singular. Let M = (x^^), then the determinant of 

M is called a Vandeimonc^ deterrni.riant (see [15]) and it can be 

easily evaluated to yield, 

k-1 / k 

det M = n n (x,-X.) 

j=0 1i=j+l ^ ^ , 

This shows M is non-singular. 

(B) Interpotatory Der'ivat'ion 
. k x-x. 

Let P-(x) = n ——— , and we call this the k-degree 
1 ^ ^ .1 . X. -X. ' 

j=0 

Newton^-Cotes polynomial,. (Sometimes, we also call this the 

• • k 
Lagrangian interpolation polynomial.") We note that I(P.(x)) = 

NC.(P.(x3) = y a. 
k 1 j“o ^ 

compute the coefficients, a^.) For example, when k = 1, this is 

the trapezoidal rule with ao = ai = j , and when k = 2, this 

is the Simpson's formula with ag = a£ = ^ and ai ^ . Denote 

by T and S the trapezoidal rule and the Simpson's formula 

'•(x.) = [ 
j=0 

a.d. = 
3 3 

(This is the way we 
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respectively. The errors of these are bounded by 

iR^Cf) 

or 

and |R^C£) 

or 

or 

Note that these formulas (1.2.5) and (1.2.6) can be obtained by 

computing the Peano kernal and applying the Peano Theorem. See 

Peano [17], Sard [22], and Davis and Rabinowitz [5, pp. 108-112], 

(II) Newton-Cotes formula (open type) 

In the derivation of the Newton-Cotes formula, we con- 

sider the two end points a and b, and the formula is referred 

to as the Newton-Cotes formula of closed type. An open type formula 

is obtained when these two end points are not used. (Sometimes, 

we also call this the Steffensen's formula. See Davis and 

Rabinowitz [5, p. 32].) Formulas of open type are used for the 

integration of ordinary differential equations. Let = 

k-^1 
^ a.f(xO* Then, when 
i=l ^ ^ 

< ^ (b-a) 

Cl.2.5) 

- 72 

(b-a) (fl^ (1.2.6) 

< ^ (b-a) 
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k = 3, ai = a2 I RCf)l f I h2(b-a) Ifl^ „ 

k = 4 a 2 — and. a 2 i and |R(f)| i^h^Cb-a) 

k = 5 

(b-a) |f|4 

(See Davis and Rabinowitz [5, p. 32].) 

(Ill) Gregory type formula 

This type formula can be computed by several different 

methods. We may refer to the recent paper of Phillips [19] and 

the standard texts such as those by Froberg [7], Hildebrand [11], 

Ralston [21] and others. Frederickson in [6] defines a k-parti- 

tion of unity and derives the formula using this concept. 

Denote f(x.) by f.. Then let r J 

b m 

a 
f(x) I a f + R(f) 

j=0 ^ ^ 

k-1 m-1 
+ I f. +R(£). Cl.2.7) 

j=l ^ 

We may write G, for the set of coefficients {a.} = 
1C 1 
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i = 0,l»...,k-l. Note that the set Gj^ represents 

the kth order Gregory formula. For example, when k = 1,2,3, 

they are 

and 

Gi = 

G2 = 

G3 = 

11 1 1 11 1^ 
12' 12J' 

1 23 , 1 23 
6 , 24 ' ' *•*'^* 24 

respectively. 

Note that Gj is the trapezoidal rule; and G3 is exact on 

^^(x). Moreover, the error of f e C^[a,b] is bounded by 

We observe that G3 is nearly three times better than S on 

C^[a,b] by (1.2.6) and (1*2.8), for h small. It is not as good 

as S on C^[a,b], as evaluation of the Peano error estimate 

shows. 

^G3^^^' - 192 

(IV) Gauss%an type foTmuta 

This is a rather different type formula from the above 

two. The basic idea is to find a formula including the coefficients 

a^ and the lattice points x^ (for a given number of lattice points), 

which is optimal; that is to find an,integer m and a formula such 

that m is the largest integer for Which there exists a formula 
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that IS exact on . There are many different derivations. 

For example, the orthogonal polynomial derivati0«.>.the algebraic 

derivation, and the continued fraction derivation. 

Let [a,b] = [-1,1], and let x. g [-1,1], i = 0,l,...,k-l, 
k-1 ^ 

be distinct. Let F(x) = n Cx^x.), then for any f(x) e‘J^(x), 
j=0 ^ 

we have 

k-1 , m-k 
f(x) = J f(x )P^" . + J a x^FCx), 

i=0 j=0 ^ 
(1.2.9) 

k-1 
I V k-1 1 

since f(x) - I /FCx) is a polynomial of degree 
i=0 

(x) 
m-k 

at most m-k and hence of the form ^ a.x^. See Frbberg [7, 
j=0 ^ 

p. 182]. It follows that 

a. - 
pk-1 . (1.2.10) 

and R(f) = 
m-k n 
I a. x^F(x)dx, 
j=0 J ■'-1 

(1.2.11) 

by (1.1.2) and (1.1.3) when n = 1. We may choose x^ in such a 

way that R(f) = 0 if f e^^^~^(x). That is 

i 
x*^F(x)dx = 0, if j < k. (1.2.12) 

-1 

But this is true if and only if F(x) = XPj^(x) for some X ^ 0, 

where F|^(x) is the Legendre polynomial of degree k. Thus the 

points x^ are the roots of Pj^. (See Froberg [7, pp. 185-186].) 
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1.3 HIGHER DIMENSIONAL NUMERICAL QUADRATURE 

As we mentioned in section 1.2, we can find easily most 

of the one dimensional numerical quadrature formulas in the books 

on numerical analysis, but only a few of these books contain any- 

thing on higher dimensional numerical quadrature. The only book 

on higher dimensional numerical quadrature is by Stroud [25], and 

we refer to it frequently. Stroud also provides a rather complete 

bibliography at the end of his book. From the bibliography in 

[25] we conclude that before 1953, only about 40 papers had ap- 

peared. By 1973, just two decades later, about 400 papers had 

appeared. Thus, most of the work on this subject has been done in 

the past two decades. The reasons for delay of this subject may 

be due to the large variety of regions for integration, and the 

large size of computations. Since high speed computers have been 

developed, this last difficulty is no longer so important. 

One type of formula in higher dimensions can be con- 

structed easily by taking combinations or products of formulas 

for regions of lower dimensions. But it is not possible to con- 

struct the product formulas for any arbitrary region. We only 

can construct these formulas for some special regions; for in- 

stance, the n-cube, the n-sphere, and so forth. For more details, 

the reader should consult [25, Chapter 2]. In the following, we 

will discuss some non-product methods for constructing formulas, 

including Newton-Cotes formulas, Gregory formulas and Gaussian 
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formulas. 

(r) Newton-Cotes type formula 

One type of region in IR for k-dimensional Newton- 

Cotes quadrature is the k-simplex. We will define the k-simplex 

and the k-dimensional Newton-Cotes quadrature on the k-simplex 

in Chapter 2 and Chapter 3 respectively. Our generalization of 

Newton-Cotes quadrature to higher dimensions is based on the 

Newton-Cotes lattice and the Newton-Cotes polynomials, which we 

will define in Chapter 2. The coefficients of the quadrature are 

represented in terms of Stirling numbers. For more details, see 

Chapter 3. Sylvester [29] and Nicolaides [14] also worked on this 

type of formula; Sylvester gave a derivation similar to ours, 

but on a more complicated path, and he also gave some examples 

for Newton-Cotes quadrature of closed type as well as open type 

in two and three dimensions. We will review and discuss [29] 

in Chapter 3. 

(11) Gregory type formula 

We will define a hexagonal k-partition of unity on 

(R^ and derive the mth order Gregory type quadrature by using this 

in Chapter 4. The regions we will consider are the plane 

regions with piece-wise linear boundary. We will discuss these in 

detail in Chapter 4. Sobolev and some other Russian authors have 
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developed the theory of formulas wi^th a regular boundary layer 

in recent years. The formulas they construct agree in some cases 

with ours. 

ClII] Gaussian type formula 

Radon was the first person to construct integration formu- 

las in higher dimensions by using the theory of orthogonal poly- 

nomials. Recently, some other authors, like Stroud, Davis, Peirce, 

Tyler, Hammer etc. also had obtained some additional results about 

integration formulas and orthogonal polynomials. 

on a plane region by finding three linearly independent third 

order orthogonal polynomials which have seven common zeros. If 

these zeros are distinct, then they are the lattice points for the 

formulas. For example, when he takes the unit square 

{(x,y) : -1 ^ x,y i 1), the lattice points he finds are (0,0), 

lattice points are the six vertices of a regular hexagon of side 

y^ with center (0,0). 

In [30], Tyler also computes some formulas of this type, 

for example, he has an eight point fifth order formula on the 

In [20], Radon constructs seven point fifth order formulas 

(0,±t) and (±r,±s), where 

with coefficients ^ ^ 7 63 9 with coefficients respectively. Note that these 

rectangle with (vertices (±a,±b) and) 

and 
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Stroud [26] constructs the second order formulas with 

n+1 points for some regions in E . For example if the plane 

region is the unit square, then the lattice {x^} 

II fl 
V6 ’ ^ 2 I * )/ coefficients j ; 

or {X|} =|(1,1), J * “3‘|> j“9 » o'|j with coefficients 

[T ' I • IT}: T)’ (* I ’ °) ’ 
coefficients , 3, i|. He also constructs the third order 

^ n I- T 
formulas with 2n points for some regions in E . In [27], 

Stroud gives some fifth order formulas with n^ + n + 2 points 

for some regions in In [28], he gives a rather complete 

theory of Gaussian type formula. 



CHAPTER II 

BASIC CONCEPTS 

2.1 PRELIMINARY NOTATIONS 

k+1 
Let us denote by <R Euclidean (k+1) dimensional 

space, with elements X = CXQ,x^. ,Xj^) . We will refer to an ele- 

ment i = fi ,i as an index vector, where 
O i k' — ’ 

/N denotes the set of natural numbers {0,1,2,...}. 

The following notations are useful: 

k+i . k+1 
(Nl) For X = CXQX^,...,X^) e tR and 1 = (1^,1^,. .. ,ij^) £/N 

define 

X i 

(N2) Define 

vCi) _ .(io)v(il) 
A - XQ Xj (ik) 

ij-1 
where X E , i e and x^^j^ = il (x.-C), j = 0,l,2,...,k 

J £=0 ^ 
is the ij_^ factorial polynomial in x^ . 

(N3) Define 

5Ci) _ gCio^s^^l) 
j ” jo ji ’ 

.k+1 (U) where i,j £ IN and S. , t - 0,1,2,...,k is the j»th 

Stirling nuxnber of the first kind and order i^. 

14 
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V+1 
(N4) For i,j e IN , define 

k 

|i| = I ij 
j=0 J 

and 
1 io il 
I = I I • 

j=0 ji=0ji=0 
f. 

In the notations Y and 

I iT=n 
to non-negative integers. 

■? ’ i| <n 
the summations are restricted 

In particular, (N1)-(N4) are related by: 

Lemma 2.1.1 = 5! 
j-0 ^ 

(2.1.1) 

Proof (1) _ 
0 '1 

/ 1, 

(ik) 

Jo=o 
Jo 0 L ji 1 

i Jl=0 

Ih 
(ik) vJk 

\ 

y X: 
,4=0 

I I ■■■ I 

jo=0 ji=0 ik=° 
Jo Jl 

= I 
j=0 ^ 

. k+1 
We will also use the elements l e IN as subscripts. 

thus {X^.} will denote a collection of points in IR 
k+1 as 1 
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k+1 
ranges over a given subset of (N ; and {a^} will denote a 

collection of scalars. 

Moreover, 

(N5) Define il = ig! i^! ... i^^I 

k+1 
where 1 - (iQ,i^,...,ij^) e iN . 

,k+l 
(N6) For i e IN , r e (N, define the mutt'inomiaZ aoeffi.oient by 

ft • if ^ = Ii|. 
Otherwise 

(N7) ^(X) denotes the set of all polynomials of degree less 

than or equal to m, in k+1 variables ,x^,... ,Xj^; the 

space spanned by {X^ : |i| < m>. 

2.2 BARYCENTRIC COORDINATES 

In the previous section, we had defined the notations for 

k+1 k 
[R . For elements in IR , they work precisely the same as those 

k+1 — k 
in ffl . Denote by X the elements in IR , and by X the 

elements in . A special subset = {ci- = (a ,a ,...,a,), 
V OIK 
r •, k+1 

a.=l - ) a.} of(R will also be used in this section and 

“ i=i " 
the following sections. 

In this section, the concept of barycentric coordinates 

will be treated. 

Suppose that A,B and C are three non-colinear points 

in the plane. Every point Q in the convex hull of A,B and C 



17 

can be represented as 

Q = aA + + yC, (2.2.1) 

for a unique triple of non-negative real numbers (OI,3,Y) satis- 

fying 

a+3+Y = 1. (2.2.2) 

Definition 2.2.1 Given three non-colinear points A,B and C 

in the plane^ define the baryoentrio coordinates with respect to 

Aj B and of an arbitrary point Q e to be the unique 

triple in A^ satisfying (2.2.1). 

We observe that a,0 and Y 3.re illustrated in 

Figure 2.2.1. 

ct(A) = 3(B) - Y(C) = 1, (2.2.3) 

and a(BC) = 3(AC) = y(AB) = 0. (2.2.4) 

Graphically, a, 3 and Y a^re 

Figure 2.2.1 
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The barycentric coordinate system is one generalization 

of the usual orthogonal x-y coordinate system, since we may take 

a = X, 3 = y and y = 1-x-y. 

More generally, suppose A^,A^,..., and A^ are (k+1) 

affine independent points in IR . i4 k-^simptex © with vei>t^oes 

Ao,Ai,... and Aj^, is the convex hull of these (k+1) points, 

k 
Every point Q e © can be represented as 

k 

Q = I a.A. (2.2.5) 
i=0 

for a unique (k+1)-tuple of non-negative real numbers 

(a^ ,a^,... satisfying 

k 
I a. = \ (2.2.6) 

i=0 ^ 

Definition 2.2.2 Given k+1 affine^independent points AQ,AJ,’'* 

and Aj^ in JR , define the barycentria coordinates with respect 

to AQ> AJ ... and Aj^j for an arbitrary point Q e to be 

the unique (k+l)-twpZe in A^ satisfying (2.2.5) and (2.2.6). 

We will develop some basic differentiation operators in bary- 

centric coordinates in Section 2.5, and thus another treatment of bary- 

centric coordinates is introduced. Let A^, i = 0,1,...,k be (k+1) 

affine independent points in R (and hence these (k+1) points form 

k 
an affine basis in (R ). Denote by <A,B> the inner product of two 

vectors A and B. For i = 0,1,...,k, define 
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A! ^ I o)Ci,s)CA.-Aj (2.2.7) 
^ s+i ^ ^ 

where the coefficients o)(i,s) are chosen to satisfy the follow- 

ing k equations: 

I <A.-A^,A.^A > o)(i,s) = 1, (2.2.8) 
Sf 1 

for r = 0,1, ,i-l,i+l,...,k. 

The linear system (2.2.8) has a unique solution, since the k 

vectors A^-A^ are linearly independent, if and only if the k+1 

vectors A^^, j = 0^,...,k are affine independent. Then 

<A’,A.-A > = 1-6T. (2.2.9) i' 1 r 1 ^ ' 

It follows immediately that 

<A!,A -A > = (6?-6y). 
1* s r '“1 

(2.2.10) 

For I — k 0,1* •••>k, t f i and X e (R , define 

<A!,5T-A.> = a,. I t 1 

Now, we want to show that 

k 
y <A!,r-A^> A. - r, 

• n 1 t 1 * 1=0 

and I <A' X-A > = 1. 
i=0 

It is clear that they are true for X = A^, 

(2.2.11) 

(2,2,12) 

(2.2.13) 

k. But A , r * r = 0,1,..., 
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k 
r == 0,1,...,k are (k+1) affine-independent points in (R , that 

k 
is they form an affine basis in ffl , and hence (2.2.12) and 

(2.2.13) are true for all X e /R^. Therefore, (2.2.11) satisfies 

(2.2.5) and (2.2.6), and the (k+l)-tuple (ao > • • • >^j^) is the 

k 
barycentric coordinate for the point X in fR . Particularly, 

when k = 2, we simply write A, B and C for A2 and AQ, 

and a, 3 and y for pti, 0.2 respectively. 
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2.3 HOMOGENEOUS REPRESENTATION OF POLYNOMIALS 

in the previous section, we had defined the barycentric 

coordinates « in IR . We will show in this section that the 

set HBB = : i e |1| = n} forms a basis for . 

Lemma 2.3.1 The set HBB forms a basts for . 

Proof 

—i k l-r-l 
We observe that the set BB = {it : 1 e U , 11 | < n), 

  n k 
cc = (ot^ ... ,ap , is a basis for (R ) . Thus, to prove 

that HBB is a basis, it is sufficient to prove that 

HBB BB. For Gt^ e HBB, we have 

i 
a = 

/ 

(2.3.1) 

where i = (io.T). j = (jo,I) and |T+J| = |T| + |J| < n. 

This implies HBB ^ BB. On the other hand, i£ e BB, 

then 

(2.3.2) 
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where i* « CO,T) and |1'+j *= |T| + |j| = n. 

Hence HBB ^ BB. This shows HBB is a basis for . 

We call the basis HBB the homoger^ous haryoentric basis for 

. Suppose that P is a polynomial in . Then P 

can be represented uniquely by 

P = y a^«.’ (2.3.3) 
|l|=n 

We call this representation of P the homogeneous baryoentria ^ 

representation of P. 

2.4 NEWTON^OTES POLYNOMIALS AND INTERPOLATION 

k k Let 0 be a k-simplex in R with vertices 

i = 0,1,...,k, and let tL = (aQ,aj,.., ,Uj^) be the barycentric 

coordinates with respect to this k-simplex. Let IH^, i=0,l,...,k be the 

k hyperplane which contains the k vertices Aj, j = 0,1.,.,i-l,i+l,..,k, of ID . 

Denote by IH. i = 0,1,...,k, j = 0,1,,..,n, the hyperplane which is 

parallel to |H. and such that the distance from A. to IH. . is 11 11,3 

d., where d. is the distance from A. to W.. Note 1* 1 1 1 

that = IH. , i = 0,1,...,k. Denote by ILn the set of 
1^0 1 ^ "th 

points at which these hyperplanes ^ intersect, and we call this the n de-‘ 
k , • . 

greeHewton-Cotes lattice for the k-simplex O (while Nicolaides 
Y 

[14] calls this the nth order principal lattice for P ). There 

are n+k 
k points in Pn (this can be shown by induction on k); and for 

each point ~ e Ln, there is a polynomial of degree n with the form 

p"c*) = (n«)f^l (2.4.1) 
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We call these polynomials the nth degTee Newton-Cotes polynomials 

V 
on P . Note that 

P" li) = (2.4.2) 

for all — £ ILn. Here, 6^ is defined by 1, if the vectors i ,j , are equal and 0 
n j 

otherwise. 

Lemma 2.4.1 The set of polynomials P^, 1/n e Ln given in (2.4.1) 

forms a basis for rc«o. 

Proof 

We know that the number of P^ is | j • Thus, to prove 

this set is a basis for ?"( a.) , it is sufficient to prove 

that these polynomials are linearly independent (since the 

n+k 
6B of Lenuna 2.3.1 has members). Suppose that 

I C.P^U) = 0 (2.4.3) 
i * * 
—etin 
n 

This means (2.4.3) is identically equal to zero for all 

k i 
4 e A . In particular, take ~ ^ e then (2.4.3) be- 

comes 

0+...+0+CjPj(i| +0. ..+0 = C. = 0, 

hence C^. = 0 for all ~e (Ln. This proves the lemma. 

We call this basis the nth degree Newton-Cotes basis (NCB) for 

In particular, when k = 1,2, the NCB is simply the 
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Lagragian haaia and the triangular haais for and "5^(R^) 

respectively. 

We can now give an easy constructive proof for the in- 

terpolation theorem for which Nicolaides [14] provides a long 

proof. 

Theorem 2.4.1 (Interpolation Theorem) Given any function f on 

k _n JQ the ksimplex D , there is exactly one polynomial P e *5 (R ) 

which interpolatea f on the nth degree Newton-^Cotes Lattice 

Ln. 

Proof 

Let PCa) = I Then it is obvious that p(flt) 

is a polynomial of degree n, and p(^) = 

+...+0 = From Lemma 2.4.1, we know that 

{P^ : ~ e Ln} is a basis for ') , thus every polynomial 

in can be represented uniquely in terms of this 

basis, and hence P((t) is unique. 

2.5 INTEGRATION AND DIFFERENTIATION IN BARYCENTRIC COORDINATES 

In this section, we will develop two formulas for inte- 

i i ^ i grating monomials a B y and % over any arbitrary triangle 

and simplex respectively; and some basic differentiation operators, 

for example Vf and Af, in barycentric coordinates. 
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Let K denote the area of an arbitrary triangle ABC 

in the plane and let a, 3 and y be the barycentric coordinates 

with respect to triangle ABC. Let i,j,Z denote any three non-negative integ-er 
eys. 

Lemma 2.5.1 ill U121 (2.5.1) 

Proof 

We begin by using an affine transformation to map the 

triangle ABC into the triangle (IjO), (0,1), (0,0), The 

Jacobian of this transformation is -pri- . Thus, it is suf- 

ficient to prove the formula for this special triangle, or to 

prove that 

.1-a 

0 
(l-a-3)'^d3da i!j!£l 

(i+j+£+2)! . (2.5,2) 

Let h(iJ,j,f.) 
■y 

0 

(w-3)'^d6 

where u = l~a. 

(2.5.3) 

Then, integrating by parts, we have 

h(y,j,iD = h(u,j-l,£+l) (2.5.4) 

Repeating this procedure (j-1) times. 

h(y,j,£) = h(u,0.j+£) 
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. j III wzyr I 

_ jit! j+t+1 
(j+t+1)! (2.5.5) 

Now, the formula becomes, 

.1 ,1"0£ 
a^B^(l-o-B)'-d6da = 

0 ^ 
da 

_ jUl 
" TFWi h(l ,i, j+f.+l) 

_ jl£!i! 
" (i+j+£+2)1 » (2.5.6) 

using formula (2.5.5) a second time. Thus, the Lonma is 

proved. 

In particular, we have 

a a' a3 a^3 a BY a a^3 2Q2 a""B a^BY 

JJABC 
12 

L- 
10 

1_ 
30 15 

1_ 
60 90 

1 
180 

Table 2.5,1 

Let V denote the volume of an arbitrary k-simplex D 

k 
in R with the barycentric coordinates cl = (a^ ,aj,... ,aj^). 

Let i = (iQ,i^ ji^,... ,ij^) denote any (k+1) non-negative inte- 

gers. 



26 

L^mna 2.5.2 , ^dV = V 
0 nrfWT (2.5.7) 

Proof 

Use an affine transformation to map the k-simplex t)^ 

into the simplex with vertices (1,0,...,0), (0,1,0,...,0), 

...,(0,0,..,,0,1) and (0,0,...,0). The Jacobian of this 

transformation is . Thus, it is sufficient to prove the 

formula for this special simplex, or to prove 
k-3 

1 .i-ao °^i 

0 *^0 •'o 0 

i 1 
(|l|+k)! ' (2.5.8) 

k-2 
where w = 1 - ot - • 

i=0 ^ 

We will prove this by induction. For n = 2, this is simply 

the previously proved Lemma. Suppose this formula has been 

proved for k-1. Then 
k-3 

i-ao ,1-1 “i 

0 

i=0 

-1, l"a. 

0 

,ik-l 

0 
k-3 

“i i=0 a JO.. ,aj^k-2h(v . ij.)daj^_2 •' 
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k-3 

li, ! 
k-1 k Tv^ViTT J 

fl"a» “i 

0 •' 

i=0 jo ^^k-2 
O.Q . . -\^2 

I k-2 

1 - y a. 

i=0 V 

^“k-2*‘ 

^k-l'^k‘ iol---ik-2l^ik-l^yl^l 
(i +. . .+i, ' +i,+l+k-l)l 
^ 0 k-1 k 

- > 
■ C|l|+k)! 

by formula (2.5.5) and induction hypothesis. Hence, the for- 

mula is true for all k, and the proof is completed. 

k k i 
Suppose Q is an open subset of R and f : R ^ R*^ . 

Then the different'ial of f at X in is a linear transforma- 

tion dfCX) such that 11 f(X+U)-f(X)-df(X}U|| = e(U), 

that is, such that for all e > 0, there exists an 6 > 0, such 

that II f(X+U)-£(Xj-df(X)U|| < ell U|| if ||U||<6. When j=l, 

then there is a vector Vf in R^, such that <df (X)U> = <U *Vfe, 

and we call Vf the gradient of f. (Note that the Laptaoian 

Af of f is defined by Af = V^f = V(Vf).) 

The operators (Vf and Af) in this section will only 

be discussed in two dimensions. Let ABC be an arbitrary tri- 

angle on the plane. Let ct,3 and y be the barycentric coordin- 

ages with respect to this triangle. Then, when k = 2, (2.2.10) 

and (2.2.11) become. 
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<A*,A-C> = <A',A-B> = 1, 

<A»,B-C> ;= <A**C-B> = 0, (2.5.9) 

<A»,X~C> ^ <A*,X’-B> = a(5T), X* e 

Similarly, for B* and C*. 

Since a(X) is linear, we have 

a(X) = a(C)+<Va,X-C> = <A’,X-C>, 

that is Va = A’. 

Since = ia^”^g^y'^A'+ja^3^ ^y'^B*+f.a^g^y"^ *, 

i i 'C- i i -f 
and Aa g*'y = V*Va g-'y , therefore we have 

Aa^g^y^ = [i(i-l)a^^g^y^A*+ija^ ^g^ ^y'^B^ + if.a^ ^g^y"^ ^C^]A’ 

+ [ija^”^g^'^y'^A'+j (j-l)a^g^ ^y^B*+j-^a^g^ ^y^ ^C']B’ 

+ '+j£a’-6^ '+^(£-1)O^6\'^‘^C ' ]C ' 

= [i(i-l)a^*^B\^|| A' ll 2+j(j-l)o^6^'Vll B'll 2+£C^-l) 

+ [2ija^ ^8^ ^Y^A'B'+2i£a^ ^A'C'+2j£a^B^ ^Y^ ^B'C] 

(2.5.11) 

In particular, if ABC is the equi-lateral triangle of side h, 

then 

IIA'IP = IIB'IP = l|C-r = 3^ , 

A'B'= A'C = B'C = - 3h2 . and 
(2.5.12) 



Thus (2.6.11) becomes 

^ [i(i-l)a^*^6\^+j(j-l)aV"V+-£(-£-i)a''6\ ij -t-2 
3h2 

.. i-loj-1 Z .« i-l-j £-1 A. ioj-1 £-ln r TZA -ija 3*^ Y 3*^Y -£301 3*^ Y ]• (2.5.13) 

The following table shows the values of AP for 

i i £ 
P = a 3‘'Y i 0 ^ i+j+£ < 4 and h = 1, for an equilateral tri- 

angle. 

a^3 U^3Y a a' a 3 a"^3 ot3Y a 
2o2 a^3 

AP 8a j (6-a) 16a^ 4 (2a3'-ot^) j(ot-3)^ ^23Y“2aY-2a3-ot^) 

Table 2.5.2 



CHAPTER III 

HIGHER DIMENSIONAL NEWON-COTES QUADRATURE 

One dimensional Newton-Cotes quadrature as well as other 

one dimensional quadrature formulas have been generalized to higher 

k 
dimensions. Our region in H for k-dimensional Newton-Cotes 

quadrature is the k-simplex. The generalization is naturally ob- 

tained by making use of the nice property of the Newton-Cotes 

polynomials. 

3.1 DEFINITION, DERIVATION AND EXAMPLES 

In this section, we will define k-dimensional Newton- 

k 
Cotes quadrature over k-simplex in R , and derive the Newton- 

Cotes coefficients by using explicit intergration formulas for 

the Newton-Cotes polynomials. Finally, we will give some examples, 

k k 
Let D be a k-simplex in R with barycentric coor- 

dinates a = (a^ ,a^,... and let Ln be the nth degree 

k 
Newton-Cotes lattice for D . For any continuous function f 

defined on this simplex, we let 

1(f) (3.1.1) 

In(f) I (3.1.2) 

30 
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and 1(f) = In(f)+R(f), (3.1.3) 

where = ^{^)* 

The expression in (3.1.2) is called the Y-d'imens'tonat Newton- 

k 
Cotes quadrature of order n+1 with respect to 0 , and the co- 

efficients a. are called the (n+l)s£ order Newton-Cotes oo- 

efftoients, if R(f) = 0 for f e 

Lemma 3.1.1 The Newton-Cotes ooefftotent a^ in (3.1.2) has 

the following representation: 

where V 

Proof 

is defined in P.25. 

jlkl 
(|jl+k)! 

X V (3.1.4) 

If f is the Newton-Cotes polynomial P^ (which is given 

in (2.4.1)) then == <5j, and hence 

i(p") = 

^Cn 
n 

.1 
a. 6 . 
J J 

a. 
1 

Using Lemma (2.5.1), formulas (2.4.1), (3.1.1) and (3.1.2), 

we have 

T,P?(«)dcC 

1 
TT 

, (nci)^dct 
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= JL 
1! 

s.v (i) 

J=0 Jo^ 

dc(i) I n^S] 
J=0 ^ 

jlk! 
(|3|+k)! X V. 

This completes the proof. 

We observe that there are / n+k 

1 " 
coefficients a. in 

(3.1.4), for given n; and a., = a^., if 1* is a permutation 

of 1. In particular, when k = 1, a^ are simply (one dimen- 

sional) Newton-Cotes Coefficients, which give the trapezoidal rule 

when n = 1 and Simpson*s rule when n = 2. When k = 2 and 

3, the following two tables show these. 

n dxa • 1 

1,0,0. 

2,0,0 
1,0,0 

3,0,0 
2,1,0 
1,1,1 

30 
40 
20 

4 4,0,0 
3.1.0 
2.2.0 
2,1,1 

0 
4 

-1 
8 

1 
45 
45 
45 

5,0,0 
4.1.0 
3.2.0 
3.1.1 
2.2.1 

11 
25 
25 
25 
25 

1008 
1008 
1008 

126 
1008 
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0 
3 

-9 
3 
8 
3 

-9 

1 
70 

280 
35 

105 
35 

140 

167 
2989 
3577 

16121 
539 

-343 
4459 

343 

32400 
259200 
259200 
129600 
51840 
12960 
25920 
25920 

0 
368 
-52 
704 

1136 
83e 

-361 
32 

-1448 
1472 

1 
14175 

1575 
14175 
14175 
14175 
4725 

675 
14175 
14175 

■30861 
3789 

59136 
123200 
35200 
61600 

985600 
197120 
985600 
246400 
70400 

1925 
985600 

17600 

10 10 
9 
8 
8 
7 
7 
6 

0 
5315 
-685 
9475 

545 
175 

-2665 

299376 
21384 

299376 
6237 
3 $64 

21384 
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6.3 
6,2 
5,5 
5.4 
5.3 
4.4 
4,3 

2675 
-10075 

5213 
12995 
23465 
-2225 
4225 

149688 
74844 
33264 

299376 
149688 

10692 
74844 

11 11,0 
10,1 
9.2 
9.1 
8.3 
8.2 
7.4 
7.3 
7.2 
6.5 
6.4 
6.3 
5.5 
5.4 
5.3 
4.4 

112601869691 
427251287 

293140085533 
855139549 

-330209 
-185146093 
166165549 

1316243203 
121572209 

-46343 
-284191127 
-164310619 
989706311 

3563087 
17011511 

-16449829 

60684263640000 
110335024800 

35307207936000 
11887948800 

82555200 
2641766400 

11887948800 
5943974400 
1981324800 

16982784000 
1132185600 
1698278400 
2830464000 

226437120 
53071200 

106142400 

12 12,0 
11,1 
10,2 
10,1 
9.3 
9.2 
8.4 
8.3 
8,2 
7.5 
7.4 
7.3 
6.6 
6.5 
6.4 
6.3 
5.5 
5.4 
4.4 

0 
1042 

-53737 
18608 

150382 
324 

■1248201 
M§S2 

-13347 
241068 

56256 
209136 

2^16112 
8208 

-528401 
-378944 
329256 
130S12 

-286581 

1 
79625 

1751750 
875875 

1576575 
7007 

7007000 
875875 

79625 
875875 
875875 
875875 

7882875 
875875 
875875 

7882875 
875875 
875875 
700700 

Table 3.1.1 Triangular Newton-Cotes Coefficients 
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Table 3.1.2 Newton-Cotes Coefficients on the Tetrahedra 

3.2 REVIEW AND DISCUSSION 

There are several papers which have been written on the 

generalizations of Newton-Cotes quadrature to higher dimensional 

cases as we mentioned in section 1.2. In this section, we will 

discuss and review the paper [29] of Sylvester. 

k k 
For a given k-simplex D in R , with vertices 

A^, i = 0,1,...,k, Sylvester defines the simplex coordinates 

Cl = (ttQ,a^,... ,ap (we call them the barycentric coordinates) of 

an arbitrary point Q in D (we define ct for any point Q in 

k k 
R ) in terms of the volumes of sub-simplices and k-simplex 

V 
D . That is, he defines 

V. 
, i = 0,1,2,...,k, 

k k 
where is a sub-simplex in R , with vertices , j = 0,1, 

...,i-l,i+l,*..,k and the point Q; and V^, i = 0,1,,..,k and 
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V are the volumes of these simplices respectively. It is clear 
k 

that J ci. =1, since the sum of the volxnnes of all sub-simplices 
i=0 ^ 

k k 
0^, i = 0,1,...,k is equal to the total volume of fi) . In most 

cases, the volumes of simplices in R are not easy to compute. 

But, we know that the ratio of and V is simply the ratio 

of two distances from Q and to the (k-1)-simplex with ver- 

tices Aj, j = 0,1,...,i-l,i+l,...,k. 

Sylvester does not mention the Newton-Cotes lattice t.n 

for and his way of defining the interpolation polynom- 

ials (we call them the Newton-Cotes polynomials) is not clear. 

Finally, he applies the identity given in [2] to compute the co- 

efficients. We represent the Newton-Cotes polynomial as the pro- 

duct of factorial polynomials, and compute the Newton-Cotes coef- 

ficients in terms of Stirling numbers. Sylvester does not have a 

formula this explicit. In his paper, he lists two tables of ex- 

amples of close type Newton-Cotes formulas as well as the open 

type ones for triangles and tetrahedra. 



CHAPTER IV 

TWO DIMENSIONAL GREGORY QUADRATURE 

Our generalization of Gregory type quadrature to two 

dimensions is based on a special partition of unity, namely hexa- 

gonal k-partition of unity which we will define first, -the regions 

we will consider are the plane regions with piece-wise linear 

boundary. 

4.1 HEXAGONAL k-PARTITIONS OF UNITY 

In this section, we will define a hexagonal k-partition 

of unity and give some examples of it. In the later sections, 

we will see how they work for the derivation of two dimensional 

Gregory type quadrature. 

Suppose the plane is triangularly partitioned into a regular 

(i.e. equilateral) triangular grid of side h. Let r be the set of ver- 

tices of all triangles. Let H be a basic hexagon of side h 

with center C and vertices C+ho)^, s = 1,2,...,6, in r. For 

simplicity, we assume that C is the origin 0 of the plane. 

Denote by sym(H) the set of all symmetries of H, that is, 

sym(H) is the set of affine transformations which maps into 

itself, and permutes the vertices of H. 

Definition 4.1.1 A function R ie said to he a hexagonal 

k-~partition of unity if it satisfies the following four conditions: 

37 
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I *(X-Y) = t. C4.1.1) 
Yer 

f P(X)(ji(X)dX = P(0) p e‘5?'(R25. (4.1.2) 

(|.(ZX) = iKX), 2 e sym(H), (4.1.3) 

supp(4>) C H, (4.1.4) 

where supp((fr) = the support of 

Thus, the function (j> by (4.1.3) is symmetric with res- 

pect to the symmetries of H. 

We can. easily find some examples of hexagonal k-parti- 

tions. For example, ^ ^ ^ (where a, 3 and y are the 

barycentric coordinates with respect to ABC, one of the six tri- 

angles of the hexagon H with center C) is a hexagonal 3-parti- 

tion, and hence also is a hexagonal 1-partition. 

4.2 FORMULAS OVER GENERAL REGIONS 

We aro familar with (one dimensional) first, second and 

third order Gregory quadrature formulas Gi,G2 and G3 respec- 

tively. They are given in Section 1.2. 

Suppose we have a hexagonal k-partition of unity <|>. 

Let 0 be an arbitrary plane region with piece-wise linear bound- 

ary. Then a mth order Gregory type quadrature can be derived on 

this region provided m < k and is large enough to contain a 

regular triangle of side (m-l)h with vertices in r. We also 



39 

expect that the resulting quadrature formulas will in some cases 

agree with the formulas constructed by using the methods of 

Sobolev [23,24], 

From now on, the following notation (concept) will be 

used: if we say that the Intersection of two polygons A and B 

of C (A or B may be equal to i2) is empty, that is * AD B = 
n 

we mean that if A/^ B « T., with T« ^ T. = ♦ for 4 j* 
i=l ^ 

where is either an equilateral triangle of side h or a sub- 

triangle of an equilateral triangle of side h, then n « o. Let 

W = {Y e r : (Y+H) 0 0 = ♦}, where Y+H is a hexagon of side h 

with center Y, and let V = Y H 0. In particular, if U is a 

plane region that can be partitioned completely into an equilateral 

triangular grid of side h, then V «= W, Now if f is a contin- 

uous function on fl, then by (4.1.1) to (4.1.4), we have 

nf(X)dX = if f(X) I <KX-Y)dX (4.2.1.a) 
a JJa YeW 

= I ff f(X)*CX-Y)dX 
YeW 'h 

= I f I b(Z,Y)f(Z)+RY(f) 
YeWLZeV '' J 

I I b(X.Y)f(X)+Ry(f) 
YeWtXeV ’ . 

= I I b(X,Y)f(X)+R(f) 
YeW XeV 

" Z- aCX)f(X)+R(f) 
XeV 

(4.2.1.b) 

(4.2.1.C) 

C4.2.1) 
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where a(X) = ^ bCX,Y) 
YeW 

C4.2.2) 

and R(f) = I RyCf). 

YeW ’ 
(4.2.2. a) 

We note that, in (4.2.1.a), T «j)CX^Y) ^ 1, this is because 

YeW 

1 = I (|)CX-Y) =* I (|)(X^Y) + I (|)CX-Y) and (H+X) D (H+X-Y) = 
Yer YerNW YeW 

for Y e TvW, where (H+X) and (H+X-Y) are hexagons of side h 

with centers X and X-Y respectively, and hence by (4.1.4) 

4>(X-Y) = 0, for Y e r^W. We will construct b(Z,Y) in (4.2.1.b) 

so that (4.2.1.b) is true, in particular, we will construct b(Z,Y) 

in (4.2.1.b) (or b(Z,Y) in (4,2.1.c)) so that Ry(f) = 0 (and 

hence R(f) =0) if f eT™”^ for some m < k in IN, and such 

that for each Y e W, b(X,Y) is non-zero for only a small number 

of points X which are close to Y. 

a(X), X e V. Particularly, if the hexagon X+mH of side mh with 

center X, is contained entirely in for a given point X in 

Now, the problem is how to determine the coefficients 

V, then a(X) = —j h^, this is because we may consider 

Q = X+mH, and in this case V = W = (W), and hence 

f(Z)(KZ-X)dZ 
X+mH 

= b(X,X)fCX) 

= a(X)f(X) 
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if f 

The set of points X in ^thout the above property 

Vs 
(a(X) = —^ h^) is refe3^red to as: the regular boundary layer of 

Q. Now for any X e V, aCX) is given by formula C4*2.2). Hence, 

the problem becomes to determine the values of bCX,Y). The val^. 

lies of b(X,Y) should be found so that 

b(X,Y) >» I b"^(X,Y) 
TCT 

(4.2.3) 

and if f(X)4(X.Y)dX = ^ f(X)b^(X,Y) 
Jn XeV 

J 
lU 1 

for all Y e W, all f " and T is one of triangular 

partitions (a triangular partition is a collection of triangles 

which is a partition) of (Y+H)Ofi. For each Y e W, the sec- 

ond sum in (4.2.3) is only taken over a small number of points 

X in V which are close to Y (since for all other X, 

T 
b (X,Y) = 0, and this is because of our choice of k-hexagonal 

y 
partition 0), We will see (later on) how b (X,Y) is defined 

and why x is introduced when the actual con^iutation of b(X,Y) 

(and hence a(X)) is computed. 

Let V* ~ {X e V : X+H c and = V\V^. For a 

point Y in W, if (Y+H)O = Y+H. then Y e and b(X,Y) = ^ for 

XeV (the same reason as a(X) • ^ h^, see above). Otherwise Y e or 

Y c WW. Suppose Y is a point in W and the center of the 

hexagon Y+H. Let T be one of the six triangles of Y+H, such 

that TfiO # §> and let . a,3 and y be the barycentric coordinates 

with respect to this triangle. Let Vy be a (m~l)th degree Newton- 

Cotes lattice of points in V which are close to Y. Then, there 
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exists a set of Newton-Cotes polynomials P (a,3,Y) of degree m-1 
X 

on this Vy. (Note that fot each triangle T with the above 

properties, there corresponds a V™ and a set of polynomials 

on this Vy.) For example, if Y is the vertex of a 60® 

angle of fi such that (Y+HlH = ABY is a regular triangle of 

side h, as shown in Figure 4.2.1, then when m = 1,2,3, Vy are 

{Y}, {Y,A,B} and {Y,A,B,Xi,X2,X3> respectively. Usually, the 

set V® is not unique and sometimes it does not contain the point 

Figure 4.2.1 Figure 4.2.2 
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Y. For example> in Figure 4.2.2, the point Y is the center of 

the hexagon Y+H, but we may take Vy = {Y,Ai,A2>A3,A4,A5> or 

{Y,Ei,E2,E3,A3,A4>; and the point A0 is the center of a hexagon 

Ag+H, but = {Y,Ei,E2,£3,A3,A4> does not contain Ag. 

Now, let us return to the above special case in which 

Y is the vertex of a 60® angle of ^ and (Y+H)Oj^ = ABY = T 

as shown in Figiire 4,2.1. Note that T = {ABY}. Thus 

bCX.Y) = I b^CX.Y) = b^®^(X,Y) =f 
Tex JABY ^ 

(4.2.4) 

for X e Vy, and zero otherwise. 

ABY 
Py(J> , it is sufficient to Here <j> (X) * (f)(X-Y). To compute 

consider this for Y = C, is the origin of the plane. Hence, it 

is convenient to define 

<t>. . = ’’1,] TT^j ABC 
(4.2.5) 

From Lemma 2.5.1 and a hexagonal k-partition 4, we can get the 

1 5 values of 4). ., 0 < i+j < s < k. In particular, if <t> ~ r 

and s = 2, Table 4.2.1 shows these. 

1,1 0,0 1,0 0,1 2,0 1,1 0,2 

1,1 
1 

4J 
JL 
48 

Table 4.2.1 
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Two further properties of from (4.1.1) to (4 

(4.2.5) are 

> J 
I 

u+v=i 
(|) • z 

U.vfu,VH.] u 

for 0 < i+j < k, i,j > 0; 

and 

■(>..+ i ^ 
’ r+s+t=i» 

iljl 
(i+j+2)I ’ 

for 0 < i < i+j < k. 

Note that in Table 4.2.1 the first three values of <(>. . 
1 i j 

directly from these two equations, and the last three ..do 

but they are related by 

<I>1 ,1 + 24>O,2 = 4>ll+2«j>2,0 * 0* 

Now, let us compute the values of b(X,Y) in ( 

for Y, as shown in Figure 4.2.1, T = ABY and X e V^. 

m = 1, Vy ={Y}, then Py = 1 and 

7? ’’CX.Y) = = <l'o,o = 

1.4) and 

4> 
V ^U+l,V 

(4.2.6) 

S.j+t 

C4.2.7) 

follow 

not, 

^2,4) 

When 

(4.2.8) 



44 

when m = 2, = {Y,Ai,A2}, then Py = l-a-3 = a and 

Pg = 3 and 

2 1 
7fW 

<1>1,0 = 

* <I’O>0'"24)O,I= g- , if X = Y 

,1 = ^ , if X = A, or B 

(4.2.9) 

When m = 3, = {Y,Ai ,A2,Xi ,X2,Xa}, then Py ” T Cl“ot-3) (2-a-3), 

P^ = a(2-a-3), Pg = 3(2-a-3), P^> = - -jaCl-a), Pj^^ = a3 and 

PXg = - y 6(1-B), and 

X bCX.YD 

VO if 

X = Y 

X = A or B 

1 

f (4.2.10) 

X = Xi or X3 

X » X2 J • 

This formula is computed in the similar way as 

2 1 
ample, at the point X = B, ^ x b(X,Y) = 

(4.2.9). 

2 1 
7TW ABC 

For ex- 

(j)3(2-a-3) 

= 2(|)o,i-«J)i,i-(f)o,2 
1 
2^ • 

Note that the above three formulas can be represented 

symbolically in the following way. 



45 

(4.2.11) 

(4.2.12) 

(4.2.13) 



46 

Here, the double lines indicate the boundary of and the dashed 

circle indicates the center of the hexagon Y+H we consider. 

CSometimes, we also use ”**' to indicate the center of Y+H.) 

Now, consider Y e r is the vertex of a 120® angle of 

Q such that (Y+H)n = A1A5YUA2A5Y, where A1A5Y and 

A2A5Y are regular triangles of 

side h, as shown in Figure 4.2.3. In this case, we take 

Ti = {AIA5Y,A2A5Y> to be a triangular partition of (Y+H)n 
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If m = 1,2,3 and T e TI, then we may take Vy to be {Y}, 

{Y,AI,A2) and {Y,Ai,A£,A3,A4,A5> respectively. Then 

7§ t(X,Y) for Vy, m = 1,2,3 are 

(4.2.14) 

(4.2.15) 
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respectively. 

On the other hand, we may consider a 120® angle to be two adjoin- 

ing 60® angles with the same vertex Y. For example, in Figure 

4.2.3, angle A1YA2 is equal to the sum of angles A1YA5 and 

Then, it is natural to consider two sets of Vy for 

these two 60® angles repsectively, which have m points in com- 

mon (as shown in figure 4.2.3, for m = 3), and the values of 

b(X>Y) for X in either one of these Vy are given in (4.2.4) 
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except for those points X in both sets of Vy, where the 

values of b(X,Y) are double. For m = 1,2 and 3, 

•7^ ^ X b(X,Y) are 

(4.2.17) 

(4.2.18) 
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respectively. 

Generally, this procedure can be applied for any vertex 

Y of (or any point Y 'e V which is on the boundary of 

in which case we consider Y to be the vertex of a 180® angle 

of fi) provided that the values of b(X,Y) with respect to the 

sub-angles are known. For example, if we want to compute 

b(X,Y) for Y as shown in Figure 4.2.4, then we may divide 

the angle A1YA4 into three 60® angles A1YA2, A2YA3 and A3YA4; 
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Figure 4.2.4 

and Vy and jb(X,Y) for these angles are known, and hence 

b(X,Y) for the whole 180® angle are known. When m = 1,2, 

J^b(X.Y) are 

(4.2.20) 
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(4.2.21) 

respectively. 

We observe that, to compute b(X,Y) at this Y for a mth order 

1 
2 - 2m points, which is a large number 

2 points for m > 3. Thus, we do 

not like the higher order formulas at this Y obtained by the 

above procedure (by combining formulas of three angles). 

Consider the point Y in Figure 4.2.4, we may take 

T2 = {AIA2Y,A2A3Y,A3A4Y} to be a triangular partition of 

CY+H)n^^ and T e T2, and let Vy be the set of points in V 

with the properties mentioned before. When = {Y}, 
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Vy = {A2>A3,Y} a.nd Vy = {A^,A2»A3,A4,A5,Y} then ^ b(X,Y) 

are 

(4.2.22) 

(4.2.23) 
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(4.2.24) 

respectively. 

Let T = {Ti,T2,...,Tg} be a triangular partition for 

(Y+H)nfi for some given point Y in W. Sometimes, not all 

e T are regular. For example, consider a plane region 

which contains right angles. The points in V around a right 

angle are distributed in the way shown in Figure 4.2.5. 



55 

Figure 4.2.5 

We observe that we may take 13 = {A2A3Y,AoA3Y} to be a triangu- 

lar partition of (Y+H)/^ but A0A3Y is not a regular triangle. 

f Y i 1 
In which case, we must compute the integral yc|) a 3^ for 
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T= A0A3Y. As we mentioned before, it is sufficient to compute 

this for Y = C, the origin of the plane. 

Let ABC and ABC be the two triangles shown in 

the following figure, 

A-A 

Figure 4,2.6 

where B is the mid point of BC, 
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Let a,$ and x» and d,$ and y be the barycentric coordin- 

ates with respect to these two triangles respectively. Let 

6.1 = a(A), 62 = ot(B) and da = a(C), similarly for 

Yi,Y2 and Y3* Then it is clear that 

di 

3i 

Yl 

d2 

32 

Y2 

33 

Y3 

(4.3.25) 

with 

and 

J = 
1 
0 
0 

0 
1 
0 

0“ 
-1 

2 

0 

1 

0 

0 
1_ 
2 

2 

Let T be a given sub-triangle of the regular triangle 

ABC of side h. Then we may define 

2 1 
(4.2.5*) 

In particular, if T = ABC, then it is the case of (4.2.5). 

Here, we only consider T to be half triangle of ABC. We are 

interested in three types of half triangles. The values of 

., 0 < i < i+j ^ 2 for these half triangles are shown in 

the following table: 
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Table 4.2.2 

where 

These formulas are obtained by using the transformation formula 

(4.3.25) and the matrices J and and the value of 

T T T T 
<b. .. Additionally, A.^.+cb.^. = d>. . and cb.^.+cb.^. = <p. .. 

^1,3 ^1,3 ^1,3 ^1,3 ^3,1 ^1,3 

Now, return to the above example in which Y is the 
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vertex of a 90® angle of Q and (Y+H)nfi = A2A3YUA0A3Y as 

shown in Figure 4*2.5. For a third order formula, there are two 

sets of we may use when computing b(X,Y), they are 

■CAi ,A2,Y,A3,A4,A5} and {Y,Ei ,E2»E3,A4,Aa}. When we use the 

fitst set of V|, then 24 x ^ x b(X,Y) are 

(4.2.26) 
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and 24 x 

if we use 

7|^b(X,Y) are 

the second one. 

Another place we must use 4. . in Table 4.2.2 is when 
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computing the formula of b(X,Y) along one edge of a 90® angle 

of For example, in Figure 4.2.7 — 4.2.9, (Y+H)/^Q contains 

three types of half triangles and hence three different sets of 

X 
<j>. . will be used. 

Figure 4.2.7 

E4 

Figure 4.2.8 
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E4 

Consider (Y+H)nj2 in Figure 4.2.7, we may take 

T4 - {AIE3Y,A2EIY,E2EIY,E3E2Y} to be a triangular partition of 

(Y«-H)nJ2 and Vy = {Y,Ei,E2,E3,E4,E5}. Then we can compute 

24 X ^ b(X,Y) for X e and they are 

(4.2.28) 
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In Figure 4.2.8, we may take T5 = {AjEiY,AiE2Y,E2E3Y,E3E4Y,E4E5Y, 

E5E1Y}, to be a triangular partition of (Y+H)0^2 and 

Vy = {A3,EI,E2,AO,E5,A6> or {Ei,E2,A4,As,E3,AQ}. 

If we use the first set of V^, then 24 x •7^ ^ b(X,Y) are 

(4.2.29) 

If we use the second set of Vy instead of the first one, then 

24 X X b(X,Y) are 
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(4.2.30) 

2 1 We also like the formula of 24 x ^ ^ x b(X,Y) which is com- 

puted by taking the average of (4.2.?9) and (4.2.30), and it is 
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Now, let us consider Figure 4.2.9, we may take T5 = {AQAIEI,AQA2£2) 

to be a triangular partition of (Y+H)r\fi and two set of are 

the same as those for Figure 4.2.8. Thus we have three similar 

2 1 
sets of 24 X pry ^ X b(X,Y) (as those of Figure 4.2.8), and 

they are 



0
0

|l
->
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(4.2.32) 

(4.2.34) 
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Finally, sum all possible non-trivial bCX,Y) for 

X e V and Y e W, and get the coefficients a(X). The result- 

ing formula is a mth order Gregory type quadrature formula for 

In the next three sections, we will give some examples for 

two particular types of plane regions. 

4.3 FORMULAS OVER TRIANGLES 

Tn the previous section, the general procedures of the 

derivation of Gregory type quadrature of order m had been treated, 

for the general plane region with piece-wise linear boundary. 

Particularly, two kinds of such plane regions are interesting. 

One of them is a plane region that can be partitioned completely 

into a regular triangular grid of side h (and its vertices are 

in r). Some examples are an equilateral triangle, a regular 

hexagon, and a parallelogram with angles 60° and 120°. The most 

general type region we consider is the polygon with its vertices 

in Q. We will discuss the parallelogram region and the rectangu- 

lar region in the next two sections. In this section, we will 

show some Gregory type quadrature formulas on an equilateral 

triangle, and hence on an arbitrary triangle. 

Let ft = ABC be a given triangle of side nh with the 

property mentioned above. Initially, we assume that n ^ 1 for 

m = 1 and n > 3m-3 for m > 2. Note that the set V = ftAr is 

a nth degree Newton-Cotes lattice. For a mth order Gregory type 
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c 

Figure 4.3.1 

quadrature, we only need to compute a(X) for X are the 

points around each 60^ angle of Q and m points along the 

edges such that X+iH c but X+(i+l)H JO, i = 0,1,2,... ,m-l, 

since for all other X e V, a(X) = —j h^. For example, when 
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m = 3, the nine points around a 60® angle of Q are A,Ai,A2, 

A3>A4,A5,AS,A7 and AQ, and the three points along the edge of 

Q are like B2 (or or B3), B4 and B5 as shown in 

Figure 4.3.1. 

When m = 1, then a(X) = l * ^ X+H If 

X e but not a vertex of , then a(X) = ^ ~ 

formula (4.2.22). If X is a vertex of then a(X) = 

1 v^3* 
—2 by formula (4.2.11). Hence the first order Gregory 

quadrature formula over Q is 

1 

3 3 

3 6 3 

3 6 6 3 

(GTl) 

3 

3 6 

3 6 6 

13 3 3 

X 
with a common factor ^ h^. 

3 

6 3 

6 6 3 

3 3 3 1 

When m * 2, then we must compute a(X) for X = B2>B4 and 

A,AJ,A2 £^i^d A4. If we use formulas (4.2.2), (4.2.21), we have 

a(B2) = b(B2,B2)+b (B2>Bi)+b(B2»B3> = 

^(84) " b(B4 ,B4)'*’b(B4 >B2^'*’^^B4» B3) ” 

I + 1 ^ iS. h2 = X if 
8 48 48 2 ^ 2 ^ • 

1 + i_ + 1_ 
^ 2? ^ 

}/^ V.2 V >/3~ 2 
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2 1 
Thus, the formula of 24 x ^ for X along the edge 

of Q is 

24 
24 

**• 26 

...10 

24 24 ... 
24 24 ... 

26 24 
10 10 

(4.3.1) 

If we use formula (4.2.23) instead of (4.2.21), then we get the 

same formula as (4.3.1). If we use formulas (4.2.2), (4.2.21), 

(4.2.12), then 

a(A) b(A,A)+bCA,Ai)+b(A,A2D » 

a(Ai,) = b(A4,A4)+b(A4,A)+b(A4,Ai)+b(A4,A2)+b(A4,A3)+bCA4),A5) 

1*1 *1 * i_ * 1 L h2 - ^ X v2 
^ 24 24 24 2 " 24 2 ^ ‘ 

a(Ai) = b(Ai ,Ai)+b(Ai ,A)+b(Ai ,A3)+b(Ai ,A2) 

£ 1 . 1 
8 48 48 24 24 2 " ’ 

and a(A2) = a(Ai) = 

2 1 
Thus the formula of 24 x ^ — x a(X) for X around a 60® 

angle of (2 is 
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10 26 24 24 ... 
10 26 24 24 , . . 

11 28 26 26 
4 11 10 10 

(4.3.2) 

If we use formula (4.2.23) instead of (4.2.21), we have another 

2 1 
formula of 48 x x a(X) for X around a 60° angle of Q, 

and it is 

20 52 48 48 ... 
20 52 48 48 ... 

23 56 52 52 . .. 
6 23 20 20 .. . 

(4.3.3) 

This formula is computed in the same way as (4.3.2), for example 

a(Ai) 2 
h2. 

Hence, the two second order Gregory type quadrature formulas are 

(GT2i) and (GT22) where (GT2i) is obtained by using formula 

(4.3.2) for each angle of and formula (4.3.1) for the edges 

of Si, while (GT22) is obtained by using formula (4.3.3) in- 

stead of (4.3.2). Note that other second order formulas can 

also be obtained by taking the combination^ of these two formu- 

las. 

When m = 3, then using formulas (4.2.2) and (4.2.24), 

we have 
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a(B2) = b(B2iB2)+b(B2,Bi)+b(B2,B3) = L- L- 1_ 
12 “ 48 " 48 

^^2 - 1. X ^ 
2^ 24 2 ^ * 

= b(B4,B4)+bCB4,B2)+b(B4,B3) = |l + ^ ^ = aCB4) 

aCBs) - b(B5,B5)+b(B5,B2) == 

28 X ::Ih2 
24 2 ^ * 

1- h2 - H. X 2:1 
24 2 " 24 2 " • 

2 1 
Thus, the formula of 24 x 75^ ^ a(X) for X along the edge 

of £l is 

The formula of 

Q is 

36 
36 

31 
50 
6 

24 24 24 
24 24 24 

23 23 23 
28 28 28 
9 9 9 

96 1^2" ^ ^ for X 

• • • 

112 92 96 
112 92 96 

108 88 92 
128 108 112 
50 31 36 

(4.3.4) 

around a 60® angle of 

96 ... 
96 ... 

92 
112 
36 

(4.3.5) 

if we use formulas (4.2.2), (4.2.24) and (4.2.13). 

Hence, a third order Gregory type quadrature over Q can be ob- 

tained by fixing each angle of ^ by formula (4.3.4) and each 

edge of Q by formula (4.3.5). 
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Now, consider n is a small integer, say n = 1,2 or 

3. When n = 1, then the first order Gregory type quadrature is 

simply 

(4.3.6) 

from (GTl). Observe that it is also a second order Gregory type 

quadrature, since it also can be computed by formulas (4,2,2) and 

(4,2,12); and a second order Newton-Cotes type quadrature. (See 

Chapter 3 and Sylvester [29].) When n = 2, the another first 

order Gregory type quadrature is 
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if we use formulas (4.2.2), (4.2.11) and (4.2.22). On the other 

hand, if we use formulas (4.2.2), (4.2.12) and (4.4.21), then we 

get the same formula as (4.3.7), but is a second order formula. 

Moreover, if We use (4.2.23), instead of (4.2.21), we get another 

second order Gregory type formula. 

Note that, (4.3.7) and (4.3.8J are not the Newton-Cotes type 

formulas. When n = 3, we can easily get a third order Gregory 

type formula (and it is also a third order Newton-Cotes type 

formula) if we use formulas (4.2.2), (4.2.24) and (4.2.13), and it 

X -2 (4.3.9) 



75 

We observe that the above formulas also can be used for 

an arbitrary triangle ABC, but simply mulitplying by a constant, 

4 
the area of ABC times • 

4.4 FORMULAS OVER PARALLELOGRAMS 

Let ^ be the parallelogram, with angles 60° and 120°, 

we will discuss, which is shown in Figure 4.4.1. Gregory type 

quadrature of the first three orders over Q will follow from 

the formulas given in Section 4.2. We show them below. 

Figure 4.4.1 



Note that the formulas of a(X) for X along the 

edges and the 60® angles of ^ are the same as those of an 

equilateral triangles, which are given in Section 4.2 for 

m = 1,2 and 3. 

Cl) First order formula 

In this case, the formula is simple, since the regular 

boundary layer of is the set of points in V°, and 

a(X) = b(X,X) for all X e V. As we mentioned before in section 

4.2 that for any X,Y e V^, b(X,Y) = 1 x x h^, if X = Y 

and zero otherwise. If Y is the vertex of a 60® angle of 

then b(X,Y) = ^ X = Y and zero otherwise, from 

(4.2.11). If Y is the vertex of a 120® angle of Q, then 

h(X,Y) = *jx—xh^ if X = Y and zero otherwise, from 

(4.2.14). In the case of X e but not a vertex of Q and 

Y e V^, then b(X,Y) =* j x^J^ x h^ if X = Y and zero other- 

wise, from (4.2,22). Now, put these b(X,X) (and hence a(X)) 

together, we have the first order Gregory type quadrature formula 

over and it is, 

(GGl) 
3 6... 6 6... 6 3 

1 3 ... 3 3 ... 3 2 

with a common factor \ ^ ^ • 
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(II) Second order formula 

We only need to compute a(X) for X are the four 

points which around a 120® angle of like Ci,C2,C3 and Cg 

as shown in Figure 4.4.1. We may use formula (4.2.2), (4.2.15) 

and (4.2.21) when computing a(X) for X - C1,62,03 and Cg, 

and they are 

a(Ci) = iS. L- 1_ 
48 48 * 48 X ^ h2 = i X ^ h2 X 2 " 4 2 ^ > 

3 13 
8 4F 48 

X ^ h2 - li X 
2 ^ ” 24 2 " 

and a(Cg) = ^ 24 24 X h2 = — X ^ h2 2 n 24 2 " • 

2 1 Thus, the formula of 48 x ^ aCX) for X around a 120® 

angle of ^ is 

48 48 52 20 
48 48 52 20 

52 52 52 22 
20 20 22 12 

(4.4.1) 

If we use formula (4.2.23) instead of (4.2.21), we have another 

2 1 formula of 48 x x a(X) for X around a 120® angle of 

and it is 
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• • • • 

48 48 52 20 
48 48 52 20 

52 52 52 23 
.. . 20 20 23 10 

(4.4.2) 

Similarly, if we use (4.2.18) instead of (4.2.15), we have an- 

other two formulas of 48 x 
2 1 

vrw X a(X) for X around a 120* 

angle of Q and they are 

« • • • 

48 48 52 20 
48 48 52 20 

... 52 52 54 20 

...20 20 20 14 

and 

(4.4.3) 

48 48 52 20 
48 48 52 20 (4.4.4) 

• • • 52 52 54 21 
...20 20 21 12 

if we use (4.2.21) and (4.2.23) respectively. 

Hence, we have four Gregory type formulas of second 

order, GG2i, GG22, GG23, GG24, if we use formulas ((4.3.1), 

(4.3.2), (4.4.1)), ((4.3.1), (4.3.3), (4.4.2)), ((4.3.1), 

(4.3.2), (4.4.3)) and ((4,3.1), (4.3.3), (4.4.4)) respectively. 
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(GG2i) .* 
20 52 48 ... 

20 52 48 ... 
22 56 52 
8 22 20 

48 ... 
48 . .. 

52 
20 

• • • 

48 52 20 
48 52 20 1_ 

52 52 22 "" 48 
20 22 12 

(GG22)2O 5 

20 52 
23 56 
6 23 

48 ... 
48 . .. 

52 
20 

48 ... 
48 ... 

52 . . , 
20 

48 52 20 
48 52 20 ^ ^ ,2 

52 52 23 "" 48 "" 2 " 
20 23 10 

CGG23)2O-' 5 

20 52 
22 56 
8 22 

48 ... 
48 . .. 

52 
20 

• 

48 ... 
48 ... 

52 
20 

48 52 20 
48 52 20 X ^ X h2 

52 54 20 ^ 
20 20 14 

CGG24)2Q 32 48 ... 

20 52 48 . . . 
23 56 52 
6 23 20 

48 ... 
48 . .. 

52 
20 

• « 

48 52 
48 52 

52 54 
20 21 

20 
20 X 

21 
12 

2 
h2 
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(III) Third order formula 

In this case, we want to compute a(X) for the nine 

points around a 120® angle of like Ci,C2>C3,C4,C5,C8,Cg, 

Cl0*^11 as shown in Figure (4.4.1). We may use formulas (4.2.2), 

(4.2.24), and (4.2.16) or (4.2.19), and ^6 x ^ x a(X) are 

96 92 112 
92 88 112 

112 112 112 
36 33 50 

36 
33 
50 

10 

(4.4.5) 

or 

96 92 112 36 
92 86 112 35 

112 112 120 42 
36 35 42 16 

(4.4.6) 

these two formulas are computed in the same way as formulas 

(4.2.4). For example 

a(C4) = b(C4,Ci)+b(C4,C4)+b(C4,C0)+b(C4,C2) 

1_ i_ 
48 ‘ 48 2 

in formula (4.4.5). 
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Hence, we have the following two third order Gregory 

quadrature formulas (GG3i) and (GG32), 

CGGSi) 

36 112 92 96 ... 
31 108 88 92 

50 128 108 112 
6 50 31 36 

96 92 112 36 
92 86 112 35 

112 112 120 42 
36 35 42 16 

(GG32) 

36 112 92 96 
31 108 88 92 

50 128 108 112 
6 50 31 36 

96 92 112 36 
92 88 112 33 

112 112 112 50 
36 33 50 10 

where (GG3i) and (GG32) are obtained by using formulas ((4.3.4), 

(4.3.5), (4.4.6)) and ((4.3.4), (4.3.5), (4.4.5)) respectively. 

4.5 FORMULAS OVER RECTANGLES 

In Section 4.4, we had computed some formulas for 

Gregory type quadrature of the first three orders on the parallelo- 

gram. In this section, the rectangle with its vertices in r, 

will be treated, but we only compute third order formula; first. 
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second and higher order formulas will follow similarly. 

Figure 4.5.1 
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Consider the rectangle Cl as shown in Figure 4.5.1. 

We observe that along the horizontal edge of the formula of 

a(X) should be the same as those of the triangle and is given 

in formula (4.3.4). We can expect the formula of a(X) along 

the vertical edge of Cl will be the same as formula (4.3.4). 

In this case, we use formulas (4.2.2), (4.2.28), (4.2.31) and 

(4.2.34); and a(X) are 

aCAs) = 24 [bCA8.A8)+b(A8,AO+bCA8,A3)+b(A8.A9,)+b(A8.Aii) 

•b(A8,A7)+b(A0,Ai2) ] 

24 X h2 17 
16 

L- 
16 

19 19 
16 ^ 16 24 2 ^ * 

aCAg) = 24 X ^ h2[b(A9,A9)+b(A9,Aii)+b(A9,B3)+b(A9,A3)+b(A9,A4) 

+b(A9,A2)+b (A9,A7)+b(A9,A8) ] 

5 7 = 24 X ^ h2 22 i ^ 8 16 16 8 
1_ 1_ z. z. 
16 ■ 16 * 2 * 2 

28 X >,2 
^ T*' ’ 

and a(Aio) = 24 x Z!| h2 [b(Ai8,Aio)+b(Aio,A3)+b(Ai8.A4)+b(Aio,A9) 

■•■b(Aio»Aii)+b(Aio>A8) ] 

115 5 7 = 24 X h2 23 i/S .2 
24 - 
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Now, let us compute the coefficients a(X) for X 

around a right angle of which is shown in Figure 4.5.1. If 

we use formulas (4.2.24), (4.2.28) — (4.2.34) and (4.2.26), we 

get a third order Gregory type quadrature (GR3i). If we use 

(4.2.27) instead of (4.2.26), we get another formula (GR32). 

The formula (GR33) is computed by using average of (4.2.26) 

and (4.2.27) instead of (4.2.26) or (4.2.27). 

CGR3i) 

144 

448 

144 368 

448 384 

144 368 384 

442 384 384 

164 350 368 368 

462 448 448 448 

53 164 141 144 144 
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(GR32) 

144 

144 

147 

152 

53 

448 

448 

442 

486 

368 

368 

3 44 

152 

384 

3 84 

448 

384 ... 

384 

368 

448 

144 

368 ... 

448 

144 

CGR33) 

288 

288 

291 

316 

896 

896 

884 

948 

736 

736 

694 

768 

768 

896 

7 6 8 • • » 

768 . . . 

7 3 6 7 3 6 • • • 

896 896 • 

... 

106 316 285 288 288 
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Note that these formulas are computed in the similar way as 

above (when we compute the formula along the edge). For example. 

a(Bi) = b(B2,B2)+b(B2,Ai)+b(B2,B3)+b(B2,A2)+b(B2,Bi)+b(BijAs) 

+b(B2,A5) 

5 I 5_ 
8 " 8 ■ 16 16 

+ 2 + y + 2 
16 

16x24 

462 X 

aCAy) = b(A7,A7)+b(A7,A2)+b(A7,B3)+b(A7,A8)+b(A7,A6)+b(A7,A3) 

•bCAy ,Ag) +b(A7 ,As) 

11 11 L 1 
2 " 16 ^ 16 ■ 8 ■ 8 

1 19 . 
16 16 ° 

-Ilx 
384 2 " 

for (GR3i) and 

aCB2) 00 ^ 7 5 16 /3,, 
^^8*8'T5’"T5’^ 2 2) 384’‘ 2*^ 

1 /3 .2 
486 X 3gjx -5-h2, 

and a(Ay) = 11 1^+11 IIL^ 11 
2 ■ 16 16 " 8 " 8 “ 16 16 16 

16 /3 , 2 
X 3P- " — 

= 147 X 

for (GR32). 



87 

APPENDIX 

In this appendix, we list some working APL functions 

for computing the two dimensional Newton-Cotes coefficients a^. 

(See (3.1.4).) The function COD is the main function. If we type 

COD N, where N is a positive integer, then the output will be a 

m X 5 matrix, m > N, of which the first three columns represent 

the index vectors i, the fourth column represents d x a^., and 

the last column represents d, as shown in Table 3.1.1. Note 

that all functions in the list, except ST and PRODl (which are of 

)ORIGIN 1), are of )ORIGIN 0 (see Pakin [16, P.141]), and the 

matrix SN of Stirling numbers (which is computed by typing 

SN -e ST N) must be present in the active workspace before we 

use the main function COD. 
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V C^COD NiSiJ 
[ 1 D 
[2] I^COC N 
[3] L1:C<-C ,C0 
[4] -►( ( (pJ)CO] )>5^5+l)/Ll 
[5] ^:^(((pC')^5),5)pLC 

V 

V I^COC 1^ iNl',L\M%KiS\T 
[1] I^xS^Q 
[2] K^.K^COB N 
[3] L1:-^{KIS']<N1^N-KIS'] )/L3 
[ 4 ] -^L 5 
[5] L3:-^(KLS1<N1^N1-1)/L3 
[6] L5:L^,L^COB N1 
[7] T^O 
[8] L2:^(LlTl<M^N-LlT'}+KLSl )/L4 
[9] .KLSI^LLTI^M 
[10] L4:-^((pL)>!Z’^7’+l)/L2 
[11] ■^((pK)>S^S+l) /LI 
[12] I<-(((p ,J)v3),3)pJ 

V 

V C<-CO IiL;MiK;S;T;U;E;D 
[1] N^+/I 
[2] C^pK^L^M^O 
[3] U^Ill + p ,T<^lZp ,3^1103-]-] 
[4] L1:KLM^(N*L + K+M)^( IZ)x( IL )x( »M) 
[5] C^C,SNIS;KlxSNlT;LlxSNLUiMlxKLMxx/(L+K+P1+2)^1+\N+2 
[6] ->(S^K^K-x-l)/Ll 
[7] K^O 
[8] -»>(r>L^L+l )/Ll 
[9] L^O 
[10] -^(U>M^M+1) /LI 
[11] C^2^-^/C 
[12] V<-C GD : //+ 2 
[13] £'-^-£>[0] (?£>( ’5)x( I2’)x( »f/) 
[14] C^£*[0] ,£>[ l]x£'[i] 

V 
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V K^COB N 
[1] -^(/7>0)/Ll 
[2] K^O 
[3] -^0 
[4] L1:K*-(^(~1 + [N^3) ^1+\N 

V 

V D^A GD 
Cll Al^A 
C2] Bl^B 
[3] G^A GCD B 
[4] D^iAl^G) .Blv(7 

V 

V G^X GCD y;B 
Cl] -^((j^:<-U)>(7^1y))/Ll 
C2] L2:B^X 
[3] X^Y 
[4] Y^B 
[5] L1:X<-Y\X 
[6] -^{X>Q)/L2 
[7 ] G^Y 

V 

V S^ST N;P;IiII 
Cl] s*-((N-\-i) ,;/+i)po 
[2] 5C1;]-^5C ;l]^1.77pO 
[3] 5[2;2]-^-l 
C4] P-t- 0 1 
[5] II^-"2+I^3 
[6] LliSlI ,1) PRODl P ) , (71^ +JJ-1 )p 0 
C7] JI^JJ-1 
[8] (717+1 

V 

V P^Pl PRODl P2 
Cl] P^+/Cl]( (pP2) ,”l + pPl)p ,P2o . X (PI-HPI, (pP2 )pO ) 

V 
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