
INTERPOLATION AND QUASI-INTERPOLATION
USING TRIANGULAR SPLINES

A thesis submitted to
Lakehead University

In Partial Fulfillment of the Requirement
for the Degree of
Master of Science

by
Athanase (Tom) C. Tsekouras

1973

ProQuest Number: 10611585

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProOuest 9*
ProQuest 10611585

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

-M‘Sc.

7973
-;W

c. /

CopyH0h+ © i<^73 A+haoase CTO»VI') C. T'sekouras’'

Canadian Theses on Mici^cfilm NJo,
' '4

ACKNOWLEDGEMENTS

I would like to thank my supervisor. Professor P. 0. Frederickson

for his advice and encouragement during the preparation of this paper.

1

ABSTRACT

This thesis is a study of the applications of Regular Triangular

Splines to the bivariate approximation problem. Our primary interest

will concern the numerical approximation of functions in two variables,

and implementation of the mathematical theories as working programs on

high speed computers.

Chapter I contains background information on the history and dev-

elopment of bivariate (multivariate) approximation theory. Chapter II

contains the statement of the specific problems we are concerned with

in this thesis.

In Chapter III we present the major ideas related to triangular

splines. A convenient coordinate system called barycentric coordinates

4 2
is introduced as well as the basic element of the space of

quartic Splines.

In Chapter IV we consider the problem of transfoririing the theory

of triangular spline Interpolation, as developed by Professor P.

Frederickson, to a working computer program. An algorithm is given

and numerical results of its use when applied to certain functions.

Chapter V contains a Quasi-interpolation scheme using triangular

splines, an error analysis of it and numerical results of its imple-

mentation. Treating this scheme we were confronted with the extra-

polation problem. Consequently, we discuss certain extrapolation

schemes.

Finally, Chapter VI contains some remarks on interpolation and

quasi-interpolation and another algorithm for interpolation is pre-

sented.

ii

TABLE OF CONTENTS

Page

CHAPTER I HISTORICAL SURVEY 1
1.1. The Bivariate Interpolation Problem 1
1.2. Notation . . 3
1.3. Classical Bivariate Approximation

Methods 4
1.4. Piecewise Polynomial Approximation

Methods 10
1.5. Blending-function Approximation

Techniques 13
1.6. Other Bivariate Approximation Methods .. 16

CHAPTER II NOTATION AND PROBLEM FORMULATION 18
2.1. Notation and Definitions 18
2.2. Problem Formulation 21

CHAPTER III COORDINATE SYSTEM, NORMAL BASIC QUARTIC 23
3.1. Barycentric coordinates 23
3.2. The Basic Quartic Spline 28
3.3. Evaluation of Splines ... 33

CHAPTER IV INTERPOLATION OF PERIODIC FUNCTIONS 36

4.1. Quartic Interpolation Operator 36
4.2. Mathematical description of the algor-

ithm 37
4.3. Implementation of the algorithm 40
4.4. Numerical results 43

CHAPTER V QUASI-INTERPOLATION USING QUARTIC

SPLINES 45
5.1. Introduction 45
5.2. Quartic Quasi-Interpolant Operator 46
5.3. Error Analysis 49
5.4. An Algorithm for Periodic Quasi- Inter-

polation and Numerical Results 54
5.5. Extrapolation 57
5.6. Non-periodic Quasi-interpolation.

Algorithm and Numerical Results 61

CHAPTER VI REMARKS ON INTERPOLATION AND QUASI-
INTERPOLATION 65

6.1. Relation of Quasi-Interpolation to In-
terpolation 65

6.2. An Iterative Scheme for Interpolation,
Algorithm and Numerical Results 70

iii

Page

APPENDIX I Function QUARTICSPL and QUARTIC display 73
APPENDIX II Subroutine EVAL 77
APPENDIX III Subroutine CONVOLP 79
APPENDIX IV Subroutine EQUASI 80
APPENDIX V Subroutine CONVOL 88
APPENDIX VI Subroutine ITERAT 90

BIBLIOGRAPHY . . 92

IV

C H A P TER I

HISTORICAL SURVEY

1.1 The Bivariate Interpolation Problem

The problem of the numerical approximation of functions in two

variables (or more) is relatively new compared to the corresponding

one for one variable. Except for certain direct generalizations of

the latter case it was only during the past two or three decades that

a considerable degree of development took place. There are several

reasons why the development of this problem was delayed. In our

opinion the following two are the major ones.

A. Size of the problem. The size of the problem increases

for two dimensions essentially from the computational point of view.

Roughly we would say that the size of the bivariate problem is n^

where the corresponding one dimensional problem is of size n. If,

for example, we think of f(x) as a smooth and well behaved function

when it is adequately approximated by a polynomial of degree 99, with

100 coefficients, then we must consider f(x,y) as smooth and well

behaved when it is approximated by a polynomial of degree 99 in each

variable, which requires 10,000 coefficients. Obviously, in the

latter case we are confronted with a tremendous problem as far as

handling 10,000 coefficients is concerned. Besides, the determination

of these coefficients requires the inversion of a 100 by 100 matrix

1

2

in the line case, but a 10,000 by 10,000 matrix in the two dimen-

sional case. It is only recently, with the development of high-

speed computers, with their huge storage capacity, that it has

been feasible for numerical analysts to attempt these problems.

B. Variety of regions. In the univariate case we have,

when practical algorithms are under considerations, exactly one

region to consider, the finite interval. It has exactly two bound-

ary points. In the bivariate case, though, we have a great variety

of regions and boundaries. The contrast is even stronger when we

consider the points at which information about the function f

is given. In the one dimensional case these points divide the

interval into subintervals, for they are simply ordered. In the

two dimensional case a wide variety of patterns might be considered,

and it is not obvious which is optimal. The problem of construction

of approximating formulas, as well as the problem of finding error

estimates or convenient expressions for remainders of approximating

formulas, becomes much more difficult with the variety of regions.

In the next section we establish some notation to be used in

the rest of this paper. Section 1.3 contains a selection of classi-

cal bivariate approximation methods, most of which are extensions

of the corresponding one dimensional methods. Sections 1.4 through

1.6 discuss briefly several approximation methods developed during

the past decade or so, almost exclusively with the use of piece-

wise polynomial functions (splines).

3

1.2 Notation

We will be concerned with the approximation of a continuous

real valued function defined on a bounded domain in with

boundary 8^2. For simplicity we will assume that is a subset

of the square [0,1] x [0,1]. If a = (k,£) is a 2-tuple with non-

negative integer components we define the differential operator

8x
(1.2.1)

with |a| = k + f..

We will denote by (fi) the space of all functions f

such that D ' exists and is continuous for all 0 < k < m,

0<t<ji; and by (S2) the space of all functions f such that

D^f exists and is continuous for all a, |a| < s, on the set Q.

Denote by space of polynomials of degree not exceeding

m in x and n in y; and by the space of polynomials of

k+1
degree k in x,y. Thus f e P^(^2) if and only if f e C (fi)

and D°^f = 0 if |a|=k + 1.

The notion of approximation becomes precise only when we

establish a measure of deviation of the approximating function from

the given function. This measure of deviation is required to satisfy

the properties of norm. We assume that the reader is familiar with

the basic theory of normed linear spaces, finitely or infinitely

dimensioned. We will denote by Lp(Q), p > 1 the completion of

the space C(Q) under the norm ||*||p defined as follows

4

i |f| L = C//(f(x,y))P)^''P, 1 < p < «. (1.2.2)

and

I|f|1^ = X.u.b|f{x,y)| (1.2.3)

(x,y) £ Q

s Use will also be made of the Sobolev space

s completion of the space C under the norm
'p,s

P,s ^ riD“fi I , 1 s p s
|a|<s P

This is the

defined by

(1.2.4X

1.3 Classical Bivariate Approximation Methods

The most familiar example of bivariate approximation is of

course the first (m+1) x (m+2)/2 terms in the Taylor expansion

of f(x,y) about (xo,yo)* That is, for every function f defined

TIl'^" 1 on an open and convex set with f £ C and (xo,yo), (x,y) £

we have

f(x,y) = f(xo,yo3 +
l<k+f.<m

(xo ,yo)
(X-XQ)^ (y-yo)^

k! u
+ R m Cl.3.1)

where is the remainder of the approximation and is bounded by

sup I
k+£=m-*-l

CO

5

with (C,n) situated on the line joining (xo,yo) to (x,y),

[26, 16.5.1]. However, there are certain disadvantages to this method.

It is hard, for example, to obtain satisfactory error estimates for

the remainder expression. If f has partial derivatives of all

orders on ^2 then the Taylor’s series

may fail to converge for any (x,y) other than (xo,yo). Even if

the series does converge for a particular (x,y), then it still may

be that the series (1.3.1)’ does not converge to the value f(x,y).

A well known example of such a function is

Partial derivatives of all orders are continuous everywhere, but at

the point (0,0) all vanish.

In contrast to the Taylor theorem, the well known Weierstrass

approximation theorem assures us we can approximate uniformly functions

which are merely continuous. This theorem holds for functions in n

variables [29, theorem 8]. We will state it for the bivariate case.

Theorem (Weierstrass). If Q is closed and bounded and f e C(^2),

then for every e > 0 there exist m = m(e), n = n(e) and a poly-

f(xo,yo) + ^ H^"'^^f(xo,yo)
i<k+f

k! ~~n
(1.3.1)

f(x,y) = exp(-l/(x2+y2))

nownriat pep such that

(1.3.3)

6

If ^ is the space [0,1] x [0,1], then the generalized

Bernstein polynomials are given by

111 II

Cx,y) = Z I (“)(")fC

k=o £=0

m n

P
m ,n

(1.3.4)

The proof is almost the same as in the one dimensional case [30,

Theorem 2.1].

Stancu [35, Section 8] presents a simple expression for the re-

mainder of the approximation of f by Bernstein's polynomials (1.3.4),

for some point (Cjh) e

The problem of interpolation appears to present a larger variety

of treatment. The most commonly used methods for deriving polynomial

interpolation formulas are those of extending to two variables the

formulas of Newton, Lagrange, Bessel, Everett, etc., in which forward,

central and backward differences are used.

Let us, for example, generate the Newton's interpolation formula

with divided differences when the data points are arranged at the

when and are continuous on He

proves that the remainder in this case is given by

R(f)

(1.3.5)

7

j = 0,1, ..., n} [36, Section 19]. The divided difference with

respect to x, formed with the arguments XQ, x^, ..., x^^, and with

respect to y, formed with the arguments yo, yi, ..., y^ is of the

order k + Z and we denote it by

fj^^ = f(xo, xi, x^; yo, Xi, ».., y^) .

We also write

Xk(x) = Cx-xo3*’^*(x-x^_j); Y^(y) = Cy-yo];*-(y-y£^j)

with XQ = YQ = 1.

For fixed y applying Newton^s one dimensional formula we get

m
f(x,y> = Z X (x)f(xo,xi

k=0
v>x^;y) \+iWfCx,xo

and by the same formula

f(xo,Xi,...,x^;y) = Z Y^(y)f^^ +
1=0

kl .\;yryo

so that

f(x,y) = p(x,y) + R (1.3.6)

m n
where p(x,y) = Z Z X, (x)Y«(y)f, « is the interpolating polynomial

k=0 1=0

and R the remainder, given

Yj,+iCy)f(x: yo./i.•••./„.y)

- \+l WYn^^Cy)f(x,xo,... ,x^; y ,yo, ■ ■. .Yj^} (1.3.7)

8

It is easy to see that p(x,y) interpolates £(x,y). For if Cx^,yj),

0 < i < m, 0 < j < n, is one of the data points then R = 0 since

X ,(Xi) = Y -(y.) “ 0. We also have m+I^ n+1 3 ;

m n

p(x. ,y.) = ^ X, (X)Y„(y)£,^
1 J k=o -e=o ^ ^

n m
Z Y„(y) E X. (X)f .
1=0 ^ ^ k=0 ^

n

^ Y„(y.)f(x ; yo,yi,-.-,yp)
1=0

= f(x..y.).

Similarly one can obtain the other kinds of polynomial interpolating

formulas.

Approximation of periodic functions in two variables is also

an easy extension. The idea is to approximate f by trigonometric

polynomials in each variable. If f(x,y) is a periodic continuous

function of period 2TT in both variables, then, given any e > 0,

there exist m = n(e), n = n(e) and a trigonometric polynomial

T (x,y) such that

l|f(x,y) - j,(x,y)U^ < e (1.3.8)

[28, p. 87].

The theoretical development of least-squares techniques encounters

no difficulty when extended to functions of two or more variables.

Theorems related to such techniques hav0 been proved in even more

general spaces [16, Chapter I].

Let f(x,y) be a function defined on [-1,1] x [T-1,1] . We

consider [16] sets of functions {g^ (x) i = 1, 2, .. ., m} ,

th.(y), j = 1, 2, n} and tensor products of them {g.h.,
J T J

1 < i < m, 1 < j 5 n}. It is easily proved [31] that if {g^}

and {h.} are orthonormal sets of functions so are {g.h.}. We now

consider an approximation of f by the linear form

m n
L{f) = 2: Z a. .g. (x)h. Cy)

i=l j=I 13 1
(1.3

with the functionals a^^ to be determined so that ||f-L(f)||2

is minimized. Although this extension is theoretically easy,

difficulties arise when one attempts to compute the coefficients

a., in order to evaluate L(fl.
13

In methods discussed so far, the extension of the approximation

theory from the one dimensional case to the bivariate one presents

no major theoretical difficulties. However, the generalization of

the Tchebycheff theory to functions of more than one variable fails

to follow this pattern. The basic problem is that there are no

Tchebycheff sets of functions of more than one variable. Hence, by

the absence of these the bivariate Tchebycheff theory is consider-

ably changed.

The existence of best Tchebycheff approximations is easy to

prove. However, these may not be uniquely determined.

10

More on multivariate Tchebycheff approximation can be found in

the work of Rice [31], [32] .

During the past two decades many numerical analysts interested

in approximation problems were attracted by spline functions. A

spline [24] is a mechanical device, used by draftsmen to draw a

smooth curve, consisting of a strip or rod of some flexible material

constrained to pass through specified points. The mathematical spline

is a piecewise polynomial of degree n with continuous (n-l)st

derivative. We are all familiar with linear splines (i.e. broken

line joining tabular points) which are inefficient for approximation

problems. Cubic splines (n=3) are closely related to the drafts-

man's spline and are the simplest ones for which good results have

been obtained.

Consider the partitioned interval [XQ,XJ^]

1.4 Piecewise Polynomial Approximation Methods

with the following set of ordinates prescribed

yo. yi.

We seek a function C(x) e C^[xo,Xj^] such that

C(Xi) = y^, i 0, 1 • • • > N

and G coincides with a cubic in each subinterval [x. ,,x.]. We
1-1

11

write C"(x^) = . Then from the linearity of the second derivative

on i = 1, 2, , N we get

C»'(x) M.
1

x-x
i-1

Cl.4.1)

where h. = x. - x.,
1 1 1-1

Integrating twice (1.4.1), we obtain

(x.-x)^ (x-x. T)^ M. ^h? X,-X
-v w 1 1-1 . 1-1 1. 1

C (x) = M. + M. 7-r + (y. T - —7) -i:—
1-1 6h. 1 6h. *^1-1 6 h.

M.h? x-x. ,
, 1 1-1

" ^ -h—
(1.4.2)

This is the cubic spline on the interval [x^ ^,x^]. The quantities

, i = 0, 1, N can be easily evaluated [see 1, Chapter 21]

from continuity conditions of C, C, and C" on the mesh points,

and additional end conditions.

Cubic splines have been extensively studied during the past two

decades as well as generalizations of them. Most of this material

has been standardized [1], [24] and [33]. Shumaker's recent biblio-

graphy on applications, generalizations or extensions of cubic splines,

is a list of more than 800 references.

The theory of splines has also been extended to several dimensions.

The extension to bicubic splines was initiated by Birkhoff and

Garabedian [5] and elaborated upon by deBoor [9] and Ahlberg, Nilson,

Walsh [1]. If f is a function given together with its normal

12

derivative on the boundary of a rectangular domain in the

[x,y)-plane and values of f are also given on a rectangular grid

of points (x., y.)> 1 < i $ m, 1 < j < n, the authors in [5]

succeed in fitting a smooth and analytically simple surface inside

each rectangle R..:x. , < x < x., y. ^ < y < y.. The edges of
^ ij i-1 i "^3-l j

the rectangles are pieces of one dimensional cubic splines

f(x^,y) and f(x,y^) passing through the given points, along the

coordinate lines x = x., y = y..
1 J

However, the first truly successful extension was made by

deBoor [9]. He proved both the existence and uniqueness of certain

bicubic splines of interpolation. Tliese are tensor products of one

dimensional cubic splines d) (x3 , ip (y) . r - m ’ n ^

I J
Z Z

m=0 n=0
6 (p (x)ijj (y)
mn m ^^n^

(1.4.3)

Now given the values

f. .
ij

i=0,l, j=0, 1, ...,J,

13
i=0, I; j=0,l, ...,J,

i=0, 1, j=0,J,

(1.4.4)

s. . = D^^’^^f(x.y.)
ij ^1^3

i = 0, I; j = 0, J

the author proves (Theorem 2) that there exists exactly one bicubic

spline f(x,y) of the form (1.4.3) which satisfies (1.4.4).

13

The bicubic spline interpolation scheme of deBoor, described

above, has become the classic scheme for rectangular regions. Carlson

and Hall in a series of three recent papers [11], [12] and [13] treat

the same problem in more general rectangular polygons, right triangles

and L-shaped domains respectively. They also give sharp error bounds,

the best known so far. The main result proved in the first of them

is the following: Let (R,TT) be a uniformly partitioned rectangle

such that each mesh line contains an even number of mesh points.

Assume that the values (1.4.4) are given. Then there exists a func-

2
tion e SX(R,7T), the space of bicubic splines over (R,ir) , such

that

I iD^k,^) (V^_f^ I 1^ = , 0 < k, I ^ 2 (1.4.3)

and

o(r,s)^^ =

at the respective values and points specified in (1.4.4).

Analogous results are proved in [12] and [13].

1.5 Blending-function Approximation Techniques

Another family of methods for bivariate interpolation is that

treated in [6], [7], [20], [21], [22], [23], etc. This is inter-

polation on curve networks; i.e. these methods interpolate to func-

tions given along mesh lines. They are usually referred to as

14

’■blending-function" techniques. The first work in this direction was

done by Coons. Forest elaborated on it and Gordon extended and gen-

eralized it. Coon^s "patch surface" methods solve the following

problem: Given the values of the p - 1 normal derivatives, for

any fixed integer p, along the four edges of the unit square con-

struct a surface which interpolates all of these conditions. Birkhoff

and Gordon [7] characterized these surfaces by proving the following

result: The Coon's surface V(x,y) which interpolates f(x,y) and

gP-lf
the first p - 1 normal derivatives ^ on the boundary of

[0,1] X [0,1] is the unique solution to the generalized "draftsman's"

equation

j^(2p,2p) ^ 0 (1.5.1)

It is understood that Coon's blending-techniques are local in the

sense that interpolation on larger networks is obtained by joining

surface patches.

In contrast to these, Gordon [23] presents blending function

schemes which are global. The blending functions in this case are

two sets of functions

^j=0

which play the role of blending together the various curves compris-

ing the network. The following main result (Theorem 3.1) is proved

in [23].

15

M
Let F(x,y) be an arbitrary bivariate function and

4'.-(y) be two families of blending functions such that

if k ^ i

if k = i

i f ^ j

if f = j

Then the function V(x,y) given by

M . M M N
V(x,y) = E f(x ,y)4) (x) + E f(x,y)i|;. (y) - E E f(x ,y.)(j) (x)iij (y)

i=0 ^ ^ j=0 ^ ^ i=0 j=0

J j

fO

u

0

(1.5.2)

interpolates f(x,y) along the lines x = x^ (i = 0, 1, ..., M)

and y = y^ (j = 0, 1, ..., N).

This method has been applied by General Motors for the construc-

tion of dies for auto bodies.

Barnhill, Birkhoff and Gordon [6] give another blending scheme

treating the interpolation problem of constructing a smooth function

which assumes given boundary values and derivatives on the edges of

a triangle T. This scheme is built up from projectors which

interpolate in the x, y, z - space between parallels to the ith

side of T. Additionally for any values p = 1, 2, ... the inter-

polating function f(p^)f interpolates to f e C^^(T) and to the

first p - 1 derivatives of f, and if f e C ^(T) the error of

16

approximation is of order 0(h^^), when h is the diameter of

T.

1.6 Other Bivariate Approximation Methods

In this section we consider interpolation formulae which are

particularly useful in the variational solution of boundary value

problems.

Birkhoff, Schultz and Varga [8] present a general theory of

Hermite interpolation on a rectangle. They obtain sharp errors

for derivatives of interpolation errors for functions in one vari-

able and extend these results to bivariate functions defined on

rectangular domains R. The interpolated functions f belong to

the space

sP^^(R) = {f (x,y) e (R) , 0 < i < p; e C®(R),

0 < i + j < p}

If P2^ ^ piecewise Hermite Interpolate of f(x,y) e

p r
, p > 2m and p = IT x TT’ a partition of R, with TT =

max{TT, IT ’ } , they prove that

(f-pP
2m-1,2m

. I ! 2m-k-f _l) I 1^ < KCTT) (1.6.1)

for all 0<k, Z < m with 0<k + f<2m-l, K some constant.

Zlamal [38], [39] proved interpolation theorems on a triangle

for polynomials of the second, third and fifth degree. He considers

17

all triangulations of the domain 0. and he proves that given 6

values at the vertices of the triangle and the mid points of its

sides, there exists a quadratic polynomial

p[x,y) = ai + U2X + a3y + a^x^ + asxy + aey^ (1.6.2)

assuming the above given values at the corresponding points, which

is uniquely determined. Constructing such polynomials for each

triangle it turns out that we obtain a continuous and piecewise

differentiable function. For cubic interpolation formulae he assumes

10 values to be given on each triangle. The values of the function

and its first derivatives at the three vertices and as tenth the

value of f at the center of mass of the triangle.

Zenisek [37] generalizes the above methods to higher degree

interpolating polynomials.

Many other papers were written with significant results in

this direction during the past few years and many others are still

appearing in the literature. We single out Hall [25] and Babuska

[2], [3] and [4].

CHAPTER II

NOTATION AND PROBLEM FORMULATION

Introduction. In the bicubic Interpolation scheme developed by

deBoor, the rectangulation of the domain under discussion is of

significant importance as bicubic splines have rectangular domains

of definition. In our case, of Triangular Splines, triangulations

and triangles are the basic elements of the discussion. The next

section contains definitions regarding these notions, as we recall

them from [18] , and leading to the statement of our problem.

2.1 Notation and Definitions

Definition 2.1.1

By a triangulation of the plane we mean a covering of the plane

by arbitrary triangles such that the open triangles are disjoint,

the union of closed triangles is the plane and any two adjacent

triangles have a common side.

We will denote by T^(R^) the set of all tri angulations of

the plane.

Definition 2.1.2

By a regular triangulation T e T(R2) we mean a triangulation

of the plane which is invariant under any translation of the plane

which takes one vertex into another. The restriction of T to

18

19

r<: = [0,1] X [0,1] will be a regular triangulation of U if the

boundary of Q does not intersect any open triangle of T.

Consider now a uniform partition of [0,1] of mesh h. This

will give rise to a square mesh in [see Fig. 2.1, a] which to-

gether with the indicated diagonals of the subsquares gives rise

to a regular triangulation of We denote this by if 1/h =

n. In Fig. 2.1, b we have a different mesh size on each axis.

We denote by ^ this triangulation if we have m respectively

n subintervals in the x respectively y axis

Fig. 2.1

We are especially interested in regular triangulations in which

every triangle is equilateral [see Fig. 2.1, c] because most of our

computations are simplified. In this case the square domain takes

the form of a skewed parallelogram.

20

UTien we speak of a triangulation T in the rest of this paper

we mean a regular triangulation. We will also denote by the

set of vertices of all the triangles of the. triangulation T.

Definition 2.1.5

Let T be a triangulation of We denote by the

set of all functions f such that

^ c(i^) , 0 < i < q

and f e on each open triangle of T. Any function in

will be referred to as a regutar tv'tongutar spl'ine,

4 2
In this paper we will exclusively work with the space S ^ ,

referring to its elements as quartic splines.

Definition 2.1.4

An element B of S^’^(T) is called a normal basic spline if

it has compact support and

E B(x,y) = 1
(x,y)eL^

We define the convolution b*g of any real-valued function g

defined on with b, a function defined in by the equation

(b*g)(xi,X2) = E b(xi-yi,X2-y2)g(yi,72) (2.1.1)
(7l,72)eL^

We recall one more definition from [18].

21

Definition 2.1.5

We say that the normal basic spline B e n > 1, q > 0

is k-exact if B*g is in whenever g is the restriction to

L„ of an element of P, .
T k

2.2 Problem Formulation

The questions we are concerned with in this thesis are inter-

polation and quasi-interpolation, using triangular splines.

The periodic interpolation problem was treated by P. Frederickson

[18]. Existence and under additional conditions uniqueness theorems

were proved and error bounds were given.

We are interested in constructing and carrying out an algorithm

which solves the above problem; i.e. given the function f defined

in and periodic, with period 1 in both variables and the space

S^^^(T) , Tj^ a triangulation of fi, find a spline s e S^’^(T)

which interpolates f on

In Chapter V a local approximation scheme is introduced called

quasi-interpolation. This scheme is defined so as to be of the same

order of approximation as interpolation is.

We are concerned first in doing an error analysis of this scheme

and next in constructing and carryirg out an algorithm that solves it.

Subsequently, the previous considerations led to the natural problem

of seeking the existence of any relation between interpolation and

quasi-interpolation. This was done in Chapter VI.

22

Since most of our work was the construction and application of

algorithms we found it a necessary part of our problem, to introduce

ideas and convenient ways of bridging the gap between theoretic

developments and actual computation. This is done in Chapter III.

P. Frederickson [18] introduced most of these ideas, but only to an

extent that served his theoretical development.

CHAPTER III

COORDINATE SYSTEM, NORMAL BASIC QUARTIC

3.1 Barycentric coordinates

As it will become clear in the rest of this thesis, the most

convenient coordinate system associated with T^, in describing

triangular splines and computations involving them, is the bary-

centric coordinate system. By barycentric coordinates for the tri-

angle with vertices A, B and C we mean the three affine functions

a, 3 and y defined by

a(A) = 3(B) = Y(C) = 1 (3.1.1)

and

a(BC) = 3(AC) = Y(AB) = 0

i.e. each takes the value 1 at one vertex and vanishes on the opposite

side,

It is obvious now that

a+3+Y=l (5.1.2)

holds at the three vertices of the triangle. Therefore it holds at

every point of the triangle. Consequently, this identity reduces

the number of the three functions a, 3 and y required to deter-

mine any point on the triangle ABC to only two of them.

23

24

In order to see how the barycentric coordinates facilitate the

treatment of triangular splines we must consider them in connection

with a global coordinate system. Let, as in Fig. 3.1, x, y be the

global coordinate system in such a way that two of the sides of the

equilateral triangles constituting the regular triangulation Tj^,

h = ^ of the domain under consideration, are parallel to x,

y. Let also

.12 3
y = 0. y = —y = —vy = — ^ ^ n n n X

7
1

P(x,y) be a point in the triangle ABC. Consider now the numbers

i = [nx], j = [ny] (3.1.3)

with [•] denoting the integer part function. It is easy to see

that the point (^, ^) is A, and the barycentric coordinates of the

point P in ABC are

Y = nx - i

3 = ny - j (3.1.4)

- nx - ny + i + j and ot = 1

25

If the point P(x,y) is in the triangle BCD its barycentric co-

ordinates are

and

3 = 1 - (nx-i)

Y = 1 - (ny-j)

6=nx + ny-i-j -1

(3.1.5)

Consider now the integer

k = [nx+ny-i-j] (3.1.6)

which indicates on which of the two above triangles the point P

lies. If k = 0 respectively 1 the point is in the triangle ABC

respectively BCD.

From the above discussion we conclude the following: Given a

point (x,y) on Q' there is a triangle with vertices

(■
i + 1
n

and
.i+k i+k.

where the point lies, with i, j and k given by (3.1.3) and

(3.1.6). Additionally if k = 0 respectively k = 1 its barycentric

coordiantes on the triangle it belongs to are given by (3.1.4) respective-

ly by (3.1.5), The barycentric coordinate y in (3.1.4) and B in

(3.1.5) are given as functions only of x. We define

^nx - i if k = 0

Ll - (nx-i) if k = 1
u (3.1.7)

26

and similarly

fny - j

\,1 - (ny-j)

if k = 0

if k = 1
(3.1.8)

The pair (u,v) provides two of the barycentric coordinates of the

point (x,y) in the triangle it belongs. We will refer to these

two as the basic haTycentrio coordinates.

Let us now consider a triangular spline f e and defined

on Q* f is a piecewise polynomial and f e on each triangle.

Thus f will have an expression of the form

f Cx,y)

I
E

t=0

t

sfo

t-s
X

s
y (3.1.9)

on each triangle. Using the basic barycentric coordinates of each

triangle (3.1.7) and (3.1.8) the spline can be given by the unique

expression

f’(u,v)
I t
E E

t=0 s=0
^s+t (t+l)/2

t-s s
U V (3.1.9)’

on each triangle. For computation purposes we employ the following

notation of the spline: We think of it as a four dimensional array

F such that

= C^o >ai ,a2,. . . (3.1.10)

with C^oj5^(f+1)(f+2)/2^ vector of the coefficients of the

expression (3.1.9)' when the spline f is given by that expression

on the triangle specified by the triple of integers (i,j,k) given

27

by (5.1.3) and (3.1.6). It is clear now that

£V(u,v) = FCi,j,k,-)-\^^ (3.1.11)

where (for f. = 4)

^ = (l,u,v,u^,uv,v^,u^,u^v,uv^,v^,u^,u^v,u^v^,uv^,v^) (5.1.12)

For later reference we derive here the formulas that give the first

and second normal derivative of the function f(a,3,Y) defined on

the equilateral triangle ABC of side h (see fig. 3.2). For the

normal derivative of the function £ along any side we have

M.
9n

But along the side BC

9g
9n

Hence

9f 9g 9f 9B 9f 9y
9^ 9n W ^ 97^ *

2 93 _ 9Y _ 1

/3h V3h ‘

y

9f ^ 2 , 9f 1 9f 1 9f
9n 9g 2 93 2 9Y^

(5.1.13)

Using these formulas we can get

the second normal derivative along

the side BC

9^f 4 1 1 1 1 = [+ 2" + - + j

an^ 3h2 ^ ^ ay^ aa33 aaay ^ aaav
(3,1.14)

28

Clearly now, interchanging the role of a, B respectively a, y we

can obtain the normal derivatives along the side AG respectively AB.

3.2 The Basic Quartic Spline

In this section we present the basic quartic spline. Since our

subsequent work involves exclusively quartic splines a good understand-

ing of this section is suggested.

Let be a regular triangulation of consisting of equi-

lateral triangles, as in Fig. 2.1.c. The basic quartic spline in

4 2
S ’ , denoted by Q, as introduced by Professor FrederickSon, has

hexagonal support of side 2h. In Fig. 3,3 this spline is shown

centered at the point A = (2,2). In this case its support is the

convex hull of the points (2,2) + 2ho)^, s = 1, 2, ..., 6 where

03^ = (cos(2TTS/6) , sin(27Ts/6)) (3.2.1)

In the same Figure the triangles which consist the support of the

basic quartic spline have been labeled by the triple of integers

(i,j,k) as described in the previous section. The point (0,0) is

the origin of the global coordinate system. Professor Frederickson

[18] has given Q on the triangles ABC, BCD and BED. Using the

notation of (3.1,10) we have

12Q(2,2,0,-} = (6,0,0,-12,-12,-12,8,12,12,8,-1,-2,0,-2,-1)

12Q(2,2,1,0 = (0,0,0,0,0,0,2,6,6,2,-1,-2,0,-2,-1) (3.2.2)

12Q(2,3,0,O = (1,-2,-4,0,6,6,2,0,-6,-4,-1,-2,0,2,1)

29

Evaluation of 0 in the remaining 21 triangles of its support

is the problem we consider now. The fact that Q is symmetric with

respect to all symmetries of the hexagon, which is its support, will

be used.

Notice that there are three classes of triangles in the support

of Q. Those occupying the inside hexagon of side h, those having

one vertex on the boundary and those having one side on the boundary

The triangles ABC, BCD, and BED on which Q is given by (3.2.2) are

representatives of these three classes.

Let us now generate Q on AB*C’ being in the class of ABC.

We consider the point R in AB'C’ and its symmetric P in ABC

30

with respect to one of the axis of symmetry of the hexagonal support.

We denote the barycentric coordinates of the point P in ABC res-

pectively R in AB'C* by a, 3 and y respectively a*, 3’, Y*.

Their basic coordinates are y, 3 respectively 3*, a*. Besides

we have

a = a', y = 3' and 3 = y^= 1 - a* - 3^.

Hence

Q(R) = Q(P) = Q(2,2,0.O-V^^g

= Q(2,2,0,-)*Vg,^^,

= Q(2,2,0,-)-Vg,^^_^,_g, (3.2.3)

= Q(2,2,0,.)-M-V3,^^,

H Q(2,1,0,.)-V3.^„.

where M is a matrix such that

^3',l-a’-3' ^ ^’^3',a’

It turns out that the matrix

M = ROT-REF

where

31

ri

ROT =

0

0

-1

0

0

-2

0

0

0

0

0

0

0

■4

0

1

-1

0 0

1 0

-2 1

0 0

0 0

1 0

0 0

0 0

0 0

1 0

-4 6

0

■1

2

0

0

■2

0

0

0

3

12

0

0

0

0

0

0

0

-4

0

0

1

0

0

0

3

■12

0

-1

2

0

0

-2

6

■12

1

-1

1

0 0

1 0

-2 0

3 0

-4 1

0

-1

2

I (3.2.4)

-3 -3

6 4

1 ;

■1 j
1 I

■1 1
LJ

and

REF

0 1

1 0

0 0 1 0

0 1 0

1 0 0

0 0 0 1

0 0 10

0 10 0

10 0 0

0

L

0 0 0 0 1

0 0 0 1 ©

© © 1 0 0

0 1 © © 0

1 0 0 0 0

(3.2.5)

1

I .

The above two matrices ROT and REF are not any random ones. We had

anticipated that simple transformations on the coordinates would give

the result (3.2.3). By this result we mean obtaining Q at the

triangle (2,1,0)

Q(2,l,0,-) = Q(2,2,0,-)-M.

The above transformations ROT and REF are rotation and reflection of

the coordiantes. By rotation of the coordinates a, 3 and y (clock-

wise rotation about the center of mass of the triangle ABC) we have

a 3, 3 Y and y->a = l- 3- Y (3.2.6)

and by reflection (about the axis vertical to BC through the vertex

A) we have

B Y> Y 3 and a a. (3.2.7)

Having now a polynomial f(Y,3) = F(i,j,k,*)’V ^ and applying
YyP

the transformations (3.2.6) respectively (3.2.7) on its coordiantes

we get

f'(l-6-Y,Y) =

= F(iJ,k,0-ROT-V^ g

respectively

PaY

= F(i,j,k,*)*REF»¥ ,
YJ»P

33

REMARK: We note that (ROT}^ = I and (REF)^ = I, where I is

the identity matrix. This corresponds to the fact that if we apply

three rotations or two reflections on the coordinates, the polynomial

remains unchanged. Thus the operators ROT and REF generate a group

G of six elements i

ROT, REF, ROT-REF, REF-ROT, ROT-ROT, I (3.2.8]

These six elements of G are precisely the operators M we

need in order to generate Q on the remaining 21 triangles. Start-

ing with Q(2,2,0,*) or Q(2,2,l,«) we generate Q on the other

five triangles belonging to the class of the triangles ABC or BCD.

In the class of BED there are twelve triangles. However, the six

elements of G generate Q on all of them starting with Q(2,3,0,*)*

In Appendix I we list an A.P.L./360 function QUARTICSPL which

creates Q in all of its support. It is stored as a (4,4,2,15)

array and iS also displayed in the same Appendix as QUARTIC.

Differentiability of Q is easily checked. Obviously it is

twice differentiable on the inside of each triangle. Applying

formulas (3.1.13) and (3.1.14) we can establish that Q is twice

differentiable everywhere on its support. For later reference we

note that Q has the value of 1/2 at the center of its support and

1/12 at the six other lattice points inside the boundary.

3.3 Evaluation of Splines

The purpose of this section is mainly to describe a subroutine

34

which carries out the evaluation of splines. This subroutine called

EVAL has been vrritten in FORTRAN and displayed in Appendix II. It

is designed to evaluate a quartic spline at a point of its domain

and when this domain is a rectangle.

Let T^ ^ be the triangulation of the rectangle where the

quartic spline is defined. will consist of the points

0 < i < m, 0 < j < n. The spline is passed into the subroutine in its

array form i.e. as a four dimensional array SPL(ID,JD,2,15) where

ID = M, JD = N, It is easy now to see, from formula (3.1.11), that

in order to evaluate the spline at the point (x,y) we need deter-

mine the triangle which the point lies in and the two barycentric

coordinates of the point in that triangle. In the subroutine this

information is obtained as follows: The pair of numbers X and

Y (X = (x-xo)/Cx^-xo), Y = (y-yo)/(yj^-yo)) is passed to the sub-

routine. It is easy to see now from the discussion in 3.1 that

the integers

K = [A]

L = [B]

and

M = [A+B-K-L]

where A = X .ID and B = Y • JD, determine the triangle, while

U = |M-(A-K)I

and

V = |M-(B-L) I

35

are the barycentric coordinates of the point in the specified tri-

angle.

Proper functions are employed in FORTRAN to perform the above

operations.

The subroutine can also be easily adapted for the evaluation

of higher order splines.

C HAP TER IV

INTERPOLATION OF PERIODIC FUNCTIONS

4.1 Quartic Interpolation Operator

As it was stated in 2.2 our task in this chapter will be a

demonstration of the feasibility of constructing an algorithm

that solves the periodic interpolation problem. The description

of the algorithm will be given and numerical results of its imple-

mentation will be presented.

4 2
We are going to make use of as the space of interpolating

splines. Quartic splines, being piecewise polynomials of degree 4,

could be of more practical value than any other splines. The work

of section 3.3, where the construction of the basic normal quartic

spline was done, will be very helpful in the numerical part of this

chapter.

The function we are going to interpolate will be in the space

C™CR^}> m > 4 and periodic on R^ with period 1 in both variables.

The fact that any function defined on a bounded subset of R^ can

be extended to a periodic function on R^, with period set a

rectangle covering its domain, allows us to use periodic splines

as interpolating splines for such functions. On the other hand

the choice of the period set to be the domain = [0,1] x [0,1]

was made only for convenience in computations.

36

37

Let Tj^, h > 0 be a regular triangulation of We will

denote by S(f) the quartic spline interpo1ant of f; i.e., we

have

S(f) e (a)

and (4.1.1)

S(f)(x,y) = f(x,y), (x,y) e

We denote by f° and Q° the restriction to of f and

Q respectively. The spline interpolant S(f) of f is given

[18] by

S(£] = (4.1.2)

a-
where f is the solution of the system

f° = Q°*f'^ (4.1.3)

According to (2.1.1)

S(f)(xi,x2) = E Q(xi-yi,x2-y2)f^(yi,y2) (4.1.4)
(yi,y2)eL.j,

Additionally the quartic spline operator S is 3-exact [18], (see

definition 2.1.5).

4.2 Mathematical description of the algorithm

It is clear from (4.1.2) that the construction of the interpolating

38

spline requires two operations: The solution of the system (4.1.3)

a- 'XJ

to obtain f and the convolution of f with the normal basic

quartic spline Q.

a.
The solution of the system f = Q *f is not an easy task.

We are faced with a tremendous problem. In order to show the

magnitude of it we will consider the mesh size h = 1/32 (the

smallest we use in our implementation later on). Obviously, f

is given in 1024 points in this case and the system (4.1.3) has

1024 equations with 1024 unknowns.

It is really not feasible to invert a 1024 x 1024 matrix by

Gauss elimination. The number of operations (multiplications and

divisions) needed to triangularize an n x n matrix and solve the

triangular system is [27]

n(n^-l)
3

and n(n+1)
2 (4.2.1)

respectively. When n = 1024 these numbers are slightly larger

than 3.5 x 10^ and 5.2 x 10^. The size of the matrix also dis-

courages us of considering some well known iterative schemes al-

though we have to deal with a sparse matrix.

It seems that the Fourier transform provides an optimum way

for solving the system under discussion. We define the Fourier

transform [18] of the function g defined on by

g-(x;i = h2/3/2 E (4.2.2)
yeUj,

Obviously, this is an extension of the usual Fourier transform.

It follows immediately that the inverse Fourier transform of g is

given by

g^'Cx) = g"C-x) (4.2.3)

Furthermore, the operation of convolution transforms into pointwise

multiplication by means of

(b*g)'^ = C2/h2/3)b''-g'' (4.2.4)

Using formulas (4.2.2) and (4.2.4) now, equation (4.1.3) gives

f'^ = [f° V(2Q° Vh^/S)]'^ (4.2.5)

In order to evaluate the above formula we only need take the

Fourier transform of f° and Q° and the inverse transform of

their pointwise division. The number of operations required to

carry out the Fourier transform of f° or Q° using the Cooley-

Tukey algorithm, and when n = r^ [15], is

rmlog^n. (4.2.6)

Hence in the above case where n = 2^® the whole number of

operations required to evaluate the expression (4.2.5) is

3(2.n.10) + n = 61.n

< 6.25 X 10^

%
After we obtain the solution f to the system (4.1.3) the

next thing for the construction of the spline is to carry out the

40

o-
convolution of Q with £ . This is done with the use of formula

(4.1.4).

In Chapter VI we develop an iterative scheme for the solution

of the system (4.1.3). We leave the discussion of it to that chapter

because we need introduce quasi-interpolation first.

4.3 Implementation of the algorithm

Let T^, n > 1 be a regular triangulation of (fi considered

in the skewed form of Fig. 2.1.c) and £° be given at the lattice L^.

From the computational point of view and in order to construct

the spline interpolant (4.1.2) we need two subroutines which will

carry out the two operations described in the previous section,

namely the fourier transform of f°, Q° and f°^/Q°" and the con-

. ^
volution of f with Q. We name them FASTF and CONVOLP respectivley.

The first one was taken from [34] and translated into Fortran. Pass-

ing f° respectively Q°, in the form of a one-dimensional array

into the subroutine it returns f°" respectively Q°^. Note that

Q° is 0 everywhere except

Q°C0,0] = I and Q°(0,i;) = Q°d,0) = Q°(0,n) Q° Cl .n) = Q°(n,0) = Q°(n,l)

1
12 *

After f has been evaluated, and we have a main program which

would do the pointwise division of f° and Q°, the subroutine

CONVOLP is called (see Appendix III).

41

Input for CONVOLP

o-
FTIL f as an n x n array.

Q The basic quartic spline as a 4x4x2x15 array.

It is being read into the program as displayed in Appendix I.

(Note that in this Appendix Q is multiplied by a factor of

12).

IDjJD The number of subintervals we want to construct the inter-

polating spline in the direction x and y respectively

1 < ID, JD < n.

Output of CONVOLP

SPL the interpolating spline as an ID x jD x 2 x 15 array.

From (4.1.4) we note that, in order to construct the interpolating

'Xi

spline SPL on the boundary triangles of 2, we need values of f

on lattice points outside fi. But since f is periodic so is f . In

the subroutine CONVOLP instead of extending FTL to an (n+2) x (n+2)

array to include the required values of f , we employ the modulo

function (mod(n+l)) on the subscripts of FTIL.

Additional subroutines that we used in the program are: FUNCT,

REORDER, EVAL and NORM. Subroutine FUNCT created f° at the lattice

points L^ for the test function we used.

REORDER was used in connection with FASTF and it was again taken

from [34]. It permutes data from reverse binary to normal order.

EVAL was described in section 3.3. Finally, NORM subroutine was

42

Fig. 4.1

used to calculate the Li, Lo and L norms of the error function

= f(x,y) - S(f)(x,y); i.e., calling FUNCT and EVAL at the same

set of points {(Xj^,y^), 1 < i < k, 1 < j < £} we produced an error

array which we passed to the subroutine NORM to compute the above norms.

An illustration in flow chart form of the main routine is given in

Fig. 4.1. The correspondence between parameters used in the flow chart

(program) and actual ones is the following

Q for basic quartic

FO » f°

QO » Q°

N » n

FOT » f°^

QOT » Q° ^

FTIL » f'^

4.4 Numerical results

The test function we used implementing the above algorithm was

f(x,y) = (1-COS27TX) • (l-cos27Ty)/4 (4.4.1)

which is periodic on with period 1 in both variables.

Three different mesh sizes were tried, namely and
o ID d 2

(n=8, 16 and 32). The error function was evaluated at the 4 x n^

points

44

± 1 I 1. ,k 1 £ 3. ,k Z t ^ , ,k 3 -t ^ 3.
^ 4n^ n ^ 4n^ ’ ^n ^ 4n’ n ^ 4n^ ^ ^n ^ 4n^ n 4n^ ^n ^ 4n* n 4n

with 0 < k, ^ < n - 1

Table 4.1 contains the norms Lj, L2 and L obtained.

(4.4.2)

Table 4.1

P
1/8 1/16 1/32

5.379915x10
-4

2.652338x10
-5

1.549839x10
-6

1.825893x10
-3

9.587575x10
-5

5.731885x10
-6

6.673183x10
-4

3.295835x10
-5

1.936131x10
-6

The above numerical results compare fairly well with the theoretical

ones obtained by Professor Frederickson. He proved in [18] that if

f e C^(R^), m > 4, the order of approximation by quartic splines is

4. Thus one should expect the error to decrease by a factor of 16

when the mesh size is cut down by half. As a matter of fact the data

of table 4.1 give even larger factors.

All the above calculations were carried out in double precision

arithmetic on the IBM/360 computer at Lakehead University.

CHAPTER V

QUASI-INTERPOLATION USING QUARTIC SPLINES

5.1 Introduction

Our motivation for this Chapter comes from the paper [10] by

deBoor, C. and Fix, G. J., and [19] by Frederickson. We outline the

problem treated by the authors in [10]: Let Q be a region in R^,

n Ic
TT a partition of R into rectangles and S^ (k > 1) the corres-

ponding space of spline functions of degree k - 1. The authors

explicitely construct for each function in W^a spline F f e S^

which they call the spline interpolant of f with the following

properties:

(i) F is local in the sense that the value of F f at a
TT TT

point X depends only on the values of f in a uniformly small

neighbourhood of x.

(ii) F^ reproduces polynomials; F^(x^) = X^,|Y| < k. Finally

they prove that this approximation scheme is of order k.

F/ - f = (5.1.1)

In the rest of this chapter we derive a Quasi-interpolation scheme

using Quartic Triangular splines.

45

46

5.2 Quartic Quasi-Interpolant Operator

Let be a triangulation of the plane in which every triangle

is equilateral with the origin being a point in L^. For f e C^(R^3,

4 2
n > 4 we shall determine a spline S^f e S ’ with properties

(i) ' S, is local as F in (i)
^ h 7T ^ ^

(ii)’ reproduces polynomials p e P3.

Moreover, it will be of the form

(S f)(x) = Z f~(y) Q(x-y) (5.2.1)

where x = (xi ,X2) , y = (yi ,¥2') and

f~(y) = H(f)(y) (5.2.2)

6

= Fof(y) + ^ ygfCy+hw^)
S = 1

with the constants , s = 0, 1, ..., 6 invariant with respect to

X and h, and given as in (3.2.1).

In section 5.3 we will prove that

||S^£-f| 1^ < K|f|4h‘‘ (5.2.3)

where K is a constant and |fI4 is the Sobolev seminorm defined by

4
jf|4 = sup sup {] E (^) cos^9sin'^~^0D^’'^~^f (x) I}

xefi 0 k=0
(5.2.4)

47

Property (i)' is obviously satisfied by (5.2.1). We will

determine the constants s = 0, 1, ..., 6 so that property

(ii) is satisfied as well. This can be done in a straightforward

algebraic way. Let p(xi,X2) e P3.

2 2 3 2 2 3
p(xi,X2) = ao+aiXi+a2X2+a3Xi+a4XiX2+ a5X2+aeXi+a7XiX2+a8XiX2+a9X2 (5.2.5)

We want

S^p(x)

yeL QCy-x) = p(x)

or by 5.2.2

6
p(x) = Z (yoP(x)+ Z y p(x+ho))) Q(y-x)

yeL^ s=l
(5.2.6)

Since the constants y^ are invariant with respect to x and h,

equation (5.2.6) is valid when x = (0,0) and h = 1. Hence,

6
p(0,0) = ao = Z (yoao+ 2 P_pCw))Q(y)

yeL^^ s=l

Taking into consideration that Q(0,0) = ~ IT ^ 2,

..., 6 and Q(y) = 0 for any other y e L^, when Q is centered

at (0,0), after equating the coefficients a., j = 0, 1, ..., 9

in the above equation, we obtain the following system of equations

(omitting the two redundant ones)

48

PO ^2 \^3 U4 VI5 + P6 “ 1

P2 + ys P5 - U6 = 0

yi - P2 ^4 Vs = 0

yo ■*■ yi 4^2 4vi3 + VI4 + 4]J5 + 4u0 = 0

yo yi ■•■ "7y2 ys + y4 + 7^5 + y0 = 0

yo 4yi + 4y2 '*■ ya + 4^4 + 4^5 + U0 = 0

yi + 5y2 + ya - y4 - ^^5 - ye = 0

24\ii + 24y2 ya “ 24y4 - 24y0 - y0 = 0

The nontrivial solution of the last seven equations of this

system is

(5.2.7)

yg = 3k, = y2 = ya = y4 = ys = y0 = - 6'
k £ R

Substitution in the first one gives the following solution

yn = 3/2

yi = h2 = ya = yy = ys = ye = - 1/12

With these values formula (5.2.2) becomes

(5.2.S)

f'(y) = H(f)Cy) = 5/2 £(y) - 1/12 E f(y+hu)
s=l

(S.2.9)

49

It is clear that given f on the lattice points L^, f' can

be easily derived by this formula. Let us now turn again to the

finite domain Obviously, given f on the grid points of

a regular triangulation of ^2, formula (5.2.9) cannot give

f on the boundary grid points. This would require values of f

on grid points outside Q. Additionally, if one is to construct

Sj^f over the whole region S2 he would need f~ (as we point out

on 5.3) outside S2 as well. If f is periodic the above problem

is not hard to overcome. Actually in this case as we shall see in

section 5.4 the quasi-interpolation scheme is much easier than inter-

polation from the computation point of view.

However, in the general case one is led naturally to extra-

polation of f~.

Our next section is devoted to an error analysis of the Quasi-

interpolation scheme.

5.3 Error Analysis

Let f c C^(f2), n > 4 and be a regular triangulation of

^2. We assume that all fourth order derivatives of f are bounded

on S2 and denote by M the seminorm |f U of f defined by

(5.2.4). We denote by S^f the quasi-interpolant of f on

as given by (5,2.1).

Theorem: Given f with the above assumptions then

50

I L 5 0.420 Mh“ (5.3.1)

Proof. Given any point x = (xj,X2) e we choose a point y^ =

(yiltVll) £ such that

|x-yi| = min{|x-yI:yeL^} (5.3.2)

(see Fig. 5.1). Therefore,the point x lies in a hexagon of side

centered at yj. Our error analysis will be based on the assump-

tion that X lies in one of the twelve right triangles making up the

above hexagon. Let this be the triangle ABC (see Fig. 5.1) which we

will denote by U. As it will become clear, the choice of any one of

these,triangles will give the same result. This is due to the symmetry

of the seminorm and the symmetry of the basic normal quartic

spline Q. 23 22 21

51

Let us denote by f*(z) the third order Taylor’s expansion of

f about X. Then

with

£(z) = £*(z) + R(z) (5.3.5)

and

£*(z)
3
E D°^£(x) Cx-z)°^/a!

a I =0
(5.3.4)

R(z) = Z (x+0(x-z)) (x-z)“/a! (5.3.5)
|a|=4

for some 9, 0 < G < 1.

The error between the function f and its quasi-interpolant at

the point X is

f(x) - (Sj^f)(x) = f(x) - f*(x)> £*(x) - (Sj^f*)(x) + (S^f*)(x) - (Sj^£)(x)

= (Sj^f*)(x) - (S^f)(x)

= (Sj^R)(x) (5.3.6)

since f(x) = f*(x) from (5.3.3) and f*(x) = (S^f*)(x) because the

operator reproduces polynomials of degree 3.

Expanding (5.3.6), using (5.2.1) and (5.2.2), we get

6

s=
T

3
'2 ^

3

s=j

1

s

S=1

M -
S

,3.7

52

In order to obtain a bound for this expression we need bounds

for RCy) and Q(x-y) when y is a lattice point. From (5.3.5)

we get

R(z) Z (xi-yn)^(x2-yi2)^ Vk! (4-k)!
k=0

< —
- 4

(xi-yii)''(x2-yi2)^ ^
X-Z

k=0 x-z

5 4T (5.3.8)

where z' = x + 0(x-z) and |x-z| is the distance between the

points X and z. Now if we define

we get

r(z) = sup Ix-zI^
xelJ

(5.3.9)

|R(z)| S (5.3.10)

Using this inequality we can have bounds for R(y), y e . Obviously

R(y) can be nonzero for every y e L^. But the values of Q are zero

when the distance between x and y or 7 “ ^5 greater than 2h.

There are 27 points y^ e i = 1, 2, ...» 27 such that the distance

|x-y. I or |x-(y^-03^)| for some x, is less than 2h. In Fig. 5.1

these points have been labeled by the numbers i, i = 1, 2, ..., 27

instead of y^. If we consider a point y e outside the support

of these 27 points, then the basic quartic spline centered at that

point or any of the six lattice points surrounding it will be zero at

any point x e U,

53

For these 27 points we can obtain numerical values of

r(y^), i = 1, 2, 27 [5.3.IG] and

q(y,) = sup Q(x-y,), i = 1,2,...,27 (5.3.11)
xcU

\Vhen, for example, i = 1

rCyp = =

and q(yi) = j .

In the following display we give all the constants such

that r(y^) = A^h^ and the constants (in parenthesis) cor-

responding to the 27 points i of Fig. 5.1.

2||(0) 49/0)-

/ \ / N

\

- 81(0)

/ \

/ \

/ \

169. 1 .
16^324^

\ /

/
\

\

49(0)
/ \

/

/
\

361
16

CO)- lir JL. „
1642^

^(0) ^(^)

^co)

361

/

(0) ■

\

/
/

49 1
942-^

/
\

\

169

/
/

9 C^) - }324-’ f
\

\

i-(i-) 1 (—^)
94'' 492-'

' \ / \

/ \

\

49(0)

^^^192^

/
/

 9(~—) ~ - - - 49(0)
9^192'' ^192''

\ /

/

(0) 169
(0)-

\
\ /

- -49(0)

81(0)
/

9

54

Using the above data for R(y) and Q(x-y) , we calculated the

expression (5.3.7) with an A.P.L. function to get

|f Cx)- (S^f) (x) I < 0.420 Mh^^

Hence the proof of the Theorem is complete.

The above error analysis is valid when f~ is exact. However,

as we mentioned in the previous section, construction of S^f over

the whole region requires values of f~ on and outside the

boundary of If these values are not available exactly (see

section 5,5), the above error anlaysis is valid only on an interior

sub-region of Q whose distance from the boundary of T2 is 2h.

5.4 An Algorithm for Periodic Quasi-Interpolation and Numerical

Results

The spline interpolant S^^f of Quasi-Interpolation is much

easier to compute than the one for interpolation. The two major

steps again are evaluation of f" and convolution of f~ with

Q. However, f~ given explicitely by

6

fCy) = 3/2 f(y) - 1/12 E f(y+ho)^), y e
s=l

provides no difficulty in its computation especially in the periodic

case we examine here.

Suppose that the period set of f is SS amid f® is given on

L, of the triangulation T of SS, As we mention in (4,3) if f~

55

is given on this same set of points, then the subroutine CONVOLP con-

structs S,, f over all of Q.
1/n

In order to evaluate £~ on the above set of points we extend

f° by periodicity to a set of (n+2) x (n+2) points. This in the

program means extending the array of n x n points to an array of

(n+2) X (n+2) points in such a way that the first and the (n+2)-nd

columns respectively rows of the new array are equal to the nth and

the first columns respectively rows of the previous array. In Fig.

5.2 we give a flow chart of the main program we used. FO is the

given n X n array f° while FON the extended (n+2) x (n+2) one

Although quasi-interpolation and interpolation are of the same

order of approximation, quasi-interpolation is less accurate than

interpolation. This is our penalty for less computational work and

was found experimentally. We applied interpolation and quasi-inter-

polation to the periodic function (4.4.1), given on at the same

lattice points. Table 5.1 lists the norms obtained using quasi-

interpolation for the above function, corresponding to the norms

of table 4.1 with the error function evaluated again at the set

of points (4.4,2). The subroutines FUNCT, EVAL and NORM are being

used here without change.

Table 5.1

1/8 1/16 1/32

6.401972507x10 4.806234811x10
-4

3.146364383x10
-5

7.344676049x10 5.490275040x10 3.588237149x10
-5

1.588539084x10 1.177734939x10
-3

7.691211366x10
-5

56

{{FONjj, J=2(l)N-<-l}, I = 2Cl)N+lK{{FOjj, J=1(1)N), J=1(1)N}

{FONjj, J=2(l)N+l}-i-{FOj^j, J=1(1)N}

(FONN^2J> •J=2(1)N+1MFO^J, J=1(1)N}

{FONjj^, I = 2(l]N+lWFOjj^, I = 1(1]N}

{FONJ^J^^2> I = 2(1)N+1K{FOJ^, I = 1(1)N}

FON -*-FON FO -e-FON
l,N+2 12’ N+2,1 21

I {{FTlLjj, J=1(1)N}, I=1(1)N}^
i

\

i C3/2)KFONJ^^_J^^ - 1/12X(FONJ^^^J . ^

+ FON, + FON,^_ . + FON^ - , lyJ+2 1 + 2,J 1 + 2,J + 2-^

Fig. 5.2

5.5

57

Extrapolation

It became clear from the discussion in sections 5.2 and 5.3

that the construction of the quasi-interpolant of f on requires

values of f" on the boundary lattice points and lattice points

outside If f is not periodic these values of f"” are not

available exactly. In this section we seek an approximate solution

of this problem by extrapolation.

Let be a finite domain and Tj^ a regular triangulation

of it. Let also the function f e n > 4. Motivated

by Section 5.2 we will seek a linear operator G with the follow-

ing property:

(i) G will be exact for polynomials of degree three;

i.e. (Gf)Cy) = f'(y), ye when f e P3.

We will also require that G is local.

An existence theorem for extrapolating operators of bivariate

functions f e was proved by P. Frederickson [19]. Here

we will make use of a ten point scheme

A, B, C, D, E, F, H, K, L and M to

entrapolate f“ at the points A,

B, C, D, P, Q, R, etc. [see Fig. 5.3].

This triangular scheme fits very

well our quasi-interpolation problem

on rectangular domains. Obviously,

it fits it equally well on triangular,

hexagonal, or L-shaped domains. M

Fig. 5.3

of

Starting with the point P we define the extrapolated value,

f' at P by

CGf)(P) = yif(A) + y2f(B) + PafCC) + y4f(D) + ys^CE)

(5.5.IX

+ yefCF) + yyfCH) + ygfCK) + ygf(L) + yioE(M)

with the functionals y^, i=l, 2, 10 to be evaluated so

that property (i) would be satisfied. Assume (for ease of compu-

tation) that P is the origin, and f is the polynomial (5.2.6).

From property (i) and equation (5.2.10) we have

(Gp)(P) = p~(P) = 3/2p(P) - l/12(p(Q)+p(C)+p(D)+p(Q')+p(S)+p(0))

Hence (5.5.1) becomes

(Gp)(0,0) = 3/2p(0,0)-l/12(p(0,l)+p(l,0)+p(l,-l)+p(0,-l)+p(-l,0)+p(-l,l)

= yip(l,l) + y2P(l,“2) +••• + yioP(4,-2).

Equating corresponding coefficients a^, i=0, 1, ..., 9 in this

identity we obtain the following system

Myp (5.5.2)

where = (yi, y2, yio)> bp = (1, 0, 0, -1/3, 1/6, -1/3,

0, 0, 0, 0) and

59

M =

1

1

-1

1

-1

1

1

-1

1

-1

The solution of the system (5.5.2) is

1

3

-1

9

-3

1

27

-9

3

-1

1

3

-2

9

-6

4

27

18

12

-8

1

4

-2

16

-8

4

64

-32

16

-8

Vp = C- 1 23 23
6’ 12" 12"

7
12"

7
12"

7 17 17 2
iT’ TY’ I?’ ■ yh (5.5.3)

All the above computations were carried out in APL/360. The

polynomials

p(i,j) = ao+aii+a2j+a3i2+a4ij+a5j^+aei^+a7i2j+a8ij^+a9j3

are easily manipulated when they are given as the product of the

vectors

and V. . as in (3.1.12).

Now in order to obtain y^^, y^, etc. we need the corre-

sponding vectors b^, b^^, b^, etc. But we have

60

= I- V ^
Q = 2 ^1,0 - 12

and similarly for the others. Consequently

= M‘^b .
Q Q

The values of i=l, 2, 10 we obtained for these points are

5 = r- n il i _5.£_Z
4’ 12’ 12’ 4’ 2’ 4’ 12’ 3-^

= rli — - - -1 . h
4’ 6’ 12’ 4’ 4’ 12’ 2’ 12’ 4’ 3^

^3’ 6’ 12’ 12’ 12’ 12’ 2’ 12’ 12’ 6^

= r-i n M 5- - li'i
^ 6’ ^’12’ 4’ 4’ 12’ 2’ 12’ 4’ 6*^

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

By symmetry now we get Uoi> Rn i > have for example
K i5 U

= rl - JL -A -A i -Z. i'i
3’ " 12’ 12’ ■ 12’ 12’ 2’ " 12’ “ 12’ 6^

having always in mind the point at which each of the functionals

y^ operates.

The order of approximation of the above extrapolation schemes

is 4, when the function f is four times differentiable on a

domain Q' such that Q ^ 0,' and the point at which we extra-

polate f~ is in . This comes from the fact that G is

exact for polynomials of degree three.

61

5.6 Non-periodic Quasi-interpolation. Algorithm and Numerical

Results

In this section we construct and carry out an algorithm for

quasi-interpolation on a rectangular domain when the function under

consideration is not (necessarily) periodic. The results of

section 5.4 are applied for the evaluation of f~.

We will consider again the rectangular domain ^^,Ta regular

triangulation of ^ such that the number of the lattice points

L.J, in is m x n (with a uniform mesh in both directions).

We will assume f e C^(R^), n > 4 and f° given on the above

m X n lattice points of In Fig. 5.4 we illustrate as the

Fig. 5.4

62

parallelogram with the unbroken lines. We will refer to the extended

parallelogram by .

In order to construct the spline quasi-interpolant Sf of f

on 0, we need f'' at all lattice points of (except the lower

left corner and the upper right corner). Using formula (5.2.10) we

can evaluate it at all inside lattice points of Q. For the boundary

points of Q and the outside ones we will make use of the extrapola-

ting schemes described in 5.5. For all the points labeled by P in

Fig. 5.4 we use the scheme found for the point P in Fig. 5.3 with

coefficients (5.5.3). For the points denoted by C we can use either

the C-scheme or the D-scheme of Fig. 5.3. We consider the average

of these two and obtain a twelve point scheme (see Fig. 5.5) with

coefficients in the same order as the points in the Fig. 5.5.

/V

1/^4
/ ^

5 9 12

Fig. 5.5

63

^ 24’ ' 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24^ ^ '

There are still 7 points in the lower left and upper right

corner respectively, and 4 points in each one of the other two

corners at which f" should be evaluated at. We labeled them with

the corresponding letter scheme of Fig. 5.3.

In Appendix IV we list the subroutine EQUASI which carries

out all the above evaluation of f. The array FU = f° and

the dimensions IF = m, JF = n are passed to the subroutine

and the array FT = f~ with dimensions IFT = IF +2, JFT = JF + 2

is returned. First f~ is evaluated on the inside points. Then

specifying appropriate parameters it evaluates, using the same program

segment, the P and C points of the two leftmost and rightmost

columns. The same is done for the lower two and upper two rows,

for the two 7 point corners and for the two 4 point corners. We

would like to mention at this point that when subroutine EQUASI

is called the array FT should be initialized to 0. This is

because the subroutine was made to serve an iterative scheme

we are going to describe in Chapter VI. In Appendix V we

list the subroutine CONVOL which carries out the convolution of

f~ with Q in the non-periodic case described in this section.

Q and FTL = f~ (an (m+l)x(n+l) array) as evaluated by EQUASI

together with the dimensions of the spline ID = m - 1, JD = n - 1

are passed to the subroutine. It returns the spline SPLN as an

64

ID X JD X 2 X 15 array. In our experiments we used the functions

f(x,y) = (1-cos 2TTX) (1-COS 2TTy) (5.5.2)

and
f(x,y) = e^"^^ (5.5.3)

In Table 5.2 respectively 5.3 we give the norms L2 and

L of the error between the function (5.5.2) respectively (5.5.3)

and its quasi-interpolant for two pairs of (m,n). The error is

,_k _l

4m’ 4n
k f

computed at the (4xm) x (4xn) points (-j—, -j—^), 0 < k < 4m - 1.

0 < f < 4n - 1.

Table 5.2

m = 7, n = 9 m = 15, n = 17

0.63000 X 10

0.82900 X 10

0.35740 X 10

-5

-5

-4

0.49587 X 10

0.63170 X 10

0.25033 X 10

-6

-6

-5

Table 5.3

-\m Lp\n m = 7, n = 9 m=15, n=17

0.21827 X 10

0.24188 X 10

0.73887 X 10

-4

-4

-4

0.15183 X 10

0.16758 X 10

0.43018 X 10

-5

-5

-5

C HAP T E R VI

REMARKS ON INTERPOLATION AND QUASI-INTERPOLATION

6.1 Relation of Quasi-Interpolation to Interpolation

The piecewise quartic interpolating spline as well as the

quasi-interpolating one, were given by

S = Q*f'- (6.1.1)

where Q is the normal basic Quartic spline and was the

solution of f° = f~*Q° and f'' = H(f°) respectively.

In Chapter 5 we noticed that the quasi-interpolation operator

had two strong advantages over the interpolation one. The first

of these is ease of computation: indeed, there is no large system

of equations to be solved as the operator H is local. The

second advantage is theoretical very strong error estimates

are easy to obtain in the case of quasi-interpolation as was

done.in Section 5.3.

A natural question that arises now is the following: can

one start with quasi-interpolation coefficients f~ and improve

to get the interpolation ones? Or at least get an approximation

to them?

Let us consider the function (4.2.5) for interpolation

f~ = [f° V(2Q°"/h2/3)]'^ (6.1.2)

65

66

and the corresponding one (5.2.8) for quasi-interpolation which we'

will denote by f~*

£~» = a*f° (6.1.3)

where the function a is 0 everywhere except

3 1
a(0) = ^ and a(o3^) = - s = 1, 2, ..., 6

We also know that

Q(0) = j and Q(ho)^) = jy, s = 1, 2, ..., 6

and is zero everywhere else.

Consider now the discrete Laplacian given by

v2(0) = -4 and v2(ho3^) = j, s = 1, 2, ..., 6 (6.1.4)

and zero everywhere else.

It is clear that

Q° = I + i v2 (6.1.5)

and

a = I - v2 (6.1.6)

with I being the identity

If we set

lE ■= I""

then (6.. 1,5) and- (6,1,. 6) become

67

Q° = I + E and a = I - E (6.1.8)

Equation (6.1.3) now becomes

f-' = £°*(I-E) (6.1.9)

/5h2
and from equation 4.2.4, letting k = —^— equation (6.1.2) may

be written

£- = k[£°VQ°'']

= £°*(l/Q°-J^

= £°*(1/(I+E^)'" (6.1.10)

Now, letting E^ = E*E^ we have

(1/(I+E)")^ = I - E + E^ - E^ + ... (6.1.11)

Before we prove the validity of this expansion we notice that f~'

is the convolution of £° with the first two terms of the above

series and

£~ = f°*(l-E) + f°*(E2-E3+...)

= f~’ + £%(E2-E3+. . .) (6.1.12)

Another thing that becomes clear from (6.1.11) is the 3-

exactness of the spline interpolant. Indeed, the contribu-

E" = -1
8"

n = 2, 3,

tion of the terms

68

in (6.1.12), when £ is a polynomial of degree three or less, will

be zero.

The convergence of the series in (6.1.11) can be verified as

follows: First we rewrite it

I - E + £2 - E3 + . . . = (I-E)* (I+E^+E'^+. . .) .

So, we need prove that the series

I + E^ + E"^ + ...

converges. We consider the term E^ = E*E. The support of E^ is

a hexagon of side 2h, and

E2(0) = E2(hco^) = - E2(2h0)^D =

while at the rest six lattice points of the hexagon E^ takes the

value of

Now if we define

1E"| = E |E"(y)|

then

= E I E E2(y)E^^"‘^hy-z)
yeL^ zeL^

< |E^I•I

69

and

Hence

Obviously

I+E2+E^+..,| < |l| + |E^| + |E^| +...

, (|)2

= 6

IE^L ^ lE^I

hence convergence of the series at any point yeL,p is also trivial.

Now in order to obtain the equality in (6.1.11) we first note

that

I'' = k

because f°" = (f°*I)^ “ F * ^ ‘ Secondly, if we take the

Fourier transform of the left hand side and multiply by (I+E)"

we get 1. Hence, starting with the right hand side we have

(I+E)''-(I-E+E^-E3+...)''
k

k

[(I+E)*(I-E+E2+...)]

. I- = 1

Hence the expansion (6.1.11) is valid.

70

6.2 An Iterative Scheme for Interpolation. Algorithm and Numerical

Results.

Our numerical results in Chapter 5 show that quasi-interpolation

is a fairly good approximation to interpolation. From (6.1.12) we

notice that taking more terms in the remaining series and convoluting

them with we will get an even better approximation to interpolation.

Our object now will be to devise an iterative scheme suitable for

computation. The expansion (6.1.11) may be written

I - E + - E^ +•*• = (I-E)* (I+E^+E'++* • •)

= (I-E) + (I-E)* (E^+E3+*..)

= (I-E) + (I-E)*E^* (I+E^+E3+-• •)

= (I-E) + (I-E)*E2 + (I-E)*E2*E2*(I+E2+E^+---)

Thus, the iterative scheme is

f:’, = f'*’ +f:’*E^, i = 1, 2, ...
i+I 1 ’ " *

with f{' = f~.

Moreover, since

Q°*a = I - E2 and f° * a = £''

(6.2.1)

the right hand side of (6.2.1) takes the following form

f~I + fr’*E^ = f°*a + f7' - f7'*Q°*a
1 11^

= f7' + (f°-f7'*Q°)*a

= f7» + H(f®-f~’*Q°)

71

Hence, the iterative scheme may be written

= fT’ + H(e), i = 1, 2, ... (6.2.2)

with

e = (6.2.3)

and

.

The implementation of this scheme is fairly straightforward.

We consider the non-periodic case in order to incorporate the sub-

routine EQUASI described in section 5.5. Our iterative scheme

is being carried out by the subroutine ITERAT displayed in Appendix

VI. The m X n array f° is passed to ITERAT. This subroutine

internally calls subroutine EQUASI to evaluate f ’ ((m+2)x (n+2)

array). f~' is convoluted with Q° and produces an m x n array

which is subtracted from f° to give e according to (6.2.3).

Subroutine EQUASI is called again to evaluate H(e). The iteration

continues as long as the number of iterations is less than pre-

specified number and the norm ll^lloo remains greater than some

-8
small number (10 was used in our experiments).

Using functions (5.5.2) and (5.5.3) we obtain the following

tables 6.1 and 6.2, corresponding to tables 5.2 and 5.3, applying

the above iterative scheme.

72

Table 6.1

m = 7, 19 = 9

0.24983 • 10

0.55870 • 10

0.41858 • 10

-5

-5

-4

0.10139 X 10'

0.22747 X 10

0.29026 X 10

-6

-5

Table 6.2

Remark. The norm in table 6.1 is greater than the

corresponding one in table 5.2. There is a simple reason for that:

As it was expected the largest error in table 5.2 (Norm L^) was

at a point close to the boundary of ^2. Then carrying out the

iterative scheme, f7' converges to f“ on the internal lattice

points of Q where f~’ is exact. However, the values of fT'

on the rest of the lattice points are perturbed. This gave rise

to a higher error on a boundary point (table 6.1). Another reason

is the fact that for the function under consideration the seminorm

|f|4 is very large |f|4 > 1500.

A P P E N D I X I

In this appendix we list the APL function QUARTICSPL which

gives Q (see section 3.2) on all of its support. QABG, QBGD

and QBED are the vectors (3.3.1)*. In statement [4] another

function GROUP is executed. This function creates the matrices

ROT and REF, and we omit it. The four dimensions of Quartic run

from 0-3, 0-3, 0-1 and 0-14. Following QUARTIGSPL we display the

whole Q.

V QUARTIGSPL

[1] QABG^6,0,0,(-12),(-12),8,12,12,8,(-l),(-2),0,(-2),(-l)

[2] QBGI>0,0,0,0,0,0,2,6,6,2,(-l),(-2),0,(-2),(-l)

[3] QBE[K1,(-2),(-4),0,6,6,2,0,(-6),(-4),(-1),(-2),0,2,1

[4] GROUP

[5] QUARTIG^ 4 4 2 15 pO

[6] QUART1C.[2;2;0;]^ABG

[7] QUARTIG [2; 2; 1;]^BGD

[8] QUARTIC[2;3;0;]^QBED

[9] QUARTIC[2;1;0;]M)ABC+.xR0T+.xREF

[10] QUARTIC [1; 1; 1;]^ABC

[11] QUARTIC [1; 2; 1;]^ABC+.XR0T+.XREF

[12] QUARTIC [1; 2; 0;]^ABC+ . xREF+ . xROT

[13] QUARTIC[2;1;1;]^QABC+.xROT

[14] QUARTIC [2; 0; 1;]^BCD+ . XRQT+ . xREF

73

74

[15] QUARTIC [2; 0; 1;]^BCD+. xROT+. xREF

[16] QUARTIC [1; 1; 0;]^BCD

[17] QUART IC [1; 3; 0;] ^BCD+. xROT+ . xREF

[18] QUARTIC [3 • 1; 0;]^BCD+. xROT

[19] QUARTIC [3; 0; 0;]^BED+ . XREF+ . xROT+. xREF

[20] QUARTIC[0;2;0;]-KJBED+.xRQT

[21] QUARTIC [3; 2; 0;]^BED+. XREF

[22] QUARTIC [2 ; 0; 0;]^BED+ . XROT+ . XREF

[23] QUARTIC [0; 3 ;0;]^BED+.XREF+. XROT

[24] QUARTIC [1; 3; 1;]«^BED+. XRQT+.XREF

[25] QUARTIC[3;1;1;]^BED+. XROT

[26] QUARTIC [1; 0; 1;]^BED

[27] QUARTIC [0; 3; 1;]^QBED+ . xREF+ . xROT+. xREF

[28] QUARTIC [0; 1; 1;]^BED+ . xREF

[29] QUARTIC [3 ;0;1;]^BED+.XREF+ .XROT

V

QUARTIC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000000000000000

00000 0 000000000

I *4 "2 6 6 0 "4 "6 0 2 1 2 0 "2 'l

75

0 0 0 0 0 0 0 0

1 “2 2 0 "6 0 2 6

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0

00 0 00000

1 "2 "4 0 6 6 2 0

0 0 0 0 0 0 2 6

600 "12 "12 "12 8 12

1 4 2 6 6 0 “4 "6

1 2 4 0 6 6 "4 "12

1 2 "2 0 "6 0 "4 0

0 0 0 0 0 0 0 0

00000000

1 2 "2 0 "6 0 "4 0

1 2 4.0 6 6 "4 "12

1 4 2 6 6 0 "4 "6

600 "12 "12 “12 8 12

0 0 0 0 0 0 2 6

1 "2 "4 0 6 6 2 0

00000000

0 0 1 2 0 0 0

0 "4 ~1 "2 0 4 2

0 0 "l "2000

0 2 0 0 0 "2 "1

0 0 0 0 0 0 0

"6 “4 "l "2 0 2 1

6 2 "1 “2 0 "2 "1

12 8 "l “2 0 “2 "l

12 "4 “1 "2 0 4 2

“6 "4 2 4 0 "2 "1

6 2 2 4 0 "2 "1

0 0 0 0 0 2 1

0 0 0 0 0 2 1

6 2 2 4 0 ’2 "1

"6 "4 2 4 0 "2 "1

12 "4 "l "2 0 4 2

12 8 "l "2 0 "2 "l

6 2 "1 "2 0 "2 "1

"6 "4 "l “2 0 2 1

0 0 0 0 0 0 0

76

0 0 0 0 0 0 0 0

0 0 0 00020

1 ~2 2 0 “6 0 2 6

0 0 000000

1 "4 "2 6 6 0 "4 "6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 000000

0 2 0 0 0 2 1

0 0 "1 ~2 000

0 "4 "1 "2 0 4 2

0 0 1 2 0 0 0

0 2 1 2 0 "2 "1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

APPENDIX II

In this appendix we list the subroutine EVAL used for the

evaluation of Quartic splines. A detailed description of this

subroutine was given in Section 3.3.

SUBROUTINE EVAL CSPL,X,Y,SPXY,ID,JD)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

DIMENSION SPL(ID,JD,2,15)

A=X*ID

B=Y*JD

U=1

II=IDINTCA)

JJ=IDINT(B)

A2=A-DFL0AT(II)

B2=B-DFL0AT(JJ)

AB=A2+B2

IF (AB.LE.IDO) IJ=0

A1=DABS[DFLOAT(IJ)-A2)

B1=DABS(DFLOAT(IJ)-B2)

IF (II.LE.O) 11=0

IF (II.GE.ID) II=ID-1

IF (JJ.LE.O) JJ=0

IF (JJ.GE.JD) JJ=JD-1

K=II+1

L=JJ+1

M=IJ+I

77

78

SPXY=SPL(K,L,M,1)+B1*CSPLCK,L,M,3)+B1*(SPLCK,L,M,6)+

B1*CSPLCK,L,M;0)+B1*SPLCK,L,M,15))))+A1*CSPL(K/L,M,2)+B1*

* CSPLCK,L,M,5)+B1* (SPL(K,L,M,9)+B1*SPLCK,L,M,14)))+A1*(SPL

* CK,L,M,4)+B1*(SPLCK,L,M,8)+B1*SPLCK.L,M,13))+Ai*(SPL(K,L,

*M,7)+B1*SPL(K,L,M,12)+A1*SPL(K,L,M,11))))

RETURN

END

APPENDIX III

In this appendix we list subroutine CONVOLP used for periodic

interpolation and quasi-interpolation. The description of this

subroutine was given in Section 4.3.

SUBROUTINE CONVOLP(SP,FTIL,0,ID,JD,IFT,JFT)

REAL*8 SP(ID,JD,2,15),FTIL(IFT,JFT)

INTEGER Q(4,4,2,15)

IID=ID+1

JJD=JD+1

DO 10 1=1,ID

DO 10 J=1,JD

DO 10 K=l,2

DO 10 L=l,15

10 SP(I,J,K,L)=ODO

DO 20 1 = 1,ID

DO 20 J=1,JD

DO 20 11=1,4

DO 20 JJ=1,4

IM=M0D(II-(I+2),IID)

JM=M0D(JJ-(J+2),JJD)

DO 20 K=l,2

DO 20 L=l,15

20 SPCI,J,K,L)=(FTIL(IM,JM)*Q(II,JJ,K,L))/12+SPCI,J,K,L)

RETURN

END

79

APPENDIX IV

In this appendix we list subroutine EQUASI, It was described

almost satisfactorily in section 5.6.

SUBROUTINE EQUASI(FU,FT,IF,JF,IFT,JFT)

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N)

DIMENSION FU(IF,JF),FT(IFT,JFT)

DO 310 1 = 3,IF

DO 310 J=3,JF

310 FT[I,J)=(18*FU(I-1,J-1)-(FU(I,J-1)+FU(I-1,J)+FU(I-2,J)+

*FU(I-2,J-l)+FUCI-l,J-2)+FU(I,J-2)))/12+FTCI,J)

K=1

L=2

M=3

N=4

11=3

JA=1

JB=2

11 = 0

12=1

14=3

Ll = 3

L2=IF-1

320 DO 330 I=L1,L2

11=11+1

80

81

12=12+1

14=14+1

11=11+1

FT(II,JB)=(-5*(FUCI2,K)+FUCI4,K))+26*FUCI,K)+FUCI4,L) +

FU(Il,L>+9 (FU(I,L)+FU(I2,L))-3*(FU(I,M)+FU(I1,M))-10*

FU(I2,M)+2(FU(I2,N)+FU(I1,N)))/24+FT(II,JB)

330 FT(II,JA)=(-2*CFU(II,K)+FUCI4,K])+23*(FUCI,K)+FU(I2,K))

7(FU(I,L)+FU(I1,L))-42*FU(I2,L) + 17*(FUCI2,M)+FUCI1,M))

*8*FU(I1,N))/12+FT(II,JA)

IF (K-1) 340,340,350

340 K=JF

L=JF-1

M=JF-2

N=JF-3

11=2

JA=JFT

JB=JFT-1

11=3

12=2

14=0

Ll = 2

L2=IF-2

GO TO 320

350 K=1

L=2

82

M=3

N=4

JJ=3

IA=1

IB=2

J1 = 0

J2=l

J4=3

Ll=3

L2=JF-1

360 DO 370 J=L1,L2

J1=J1+1

J4=J4+1

JJ=JJ+1

FT(IB,JJ)=C-5*(FU(K,J2)+FUCK,J4))+26*FU(K,J)+FUCL,J1 FU(L,

J4)+9(FU(L,J2)+FU(L,J))-3*(FU(M,J)+FU(M,Jl))-10*FU(M,J2)+2

**(FU(N,J2)+FU(N,Jl)))/24+FT(IB,JJ)

370 FTCIA,JJ) = (-2* CFU(K,Jl)+FU(K,J4))+23*(FU(K,J)+FU(K,J2))-7*

*(FUCL,J)+FUCL,Jl))-42*FU(L,J2)+17*(FU(M,Jl)+FU(M,J2))-8*

*FU(N,J1))/12+FT(IA,JJ)

IF (K-1) 380,380,390

380 K=IF

L=IF-1

M=IF-2

N=IF-3

JJ=2

IA=IFT

IB=IFT-1

Jl=3

J2=2

J4=0

Ll=2

L2=JF-2

GO TO 360

390 K=1

11 = 1

12=2

13=3

14=4

Jl = l

J2=2

J3=3

J4=4

L=0

M=2

400 A=FUC11,J1)

B=FU (II,J2)

C=FUC11,J3)

D=FU(I1,J4)

E=FUCL2,J1)

84

F=FU(I2,J2)

G=FUCI2,J3)

H=FUCI3,J1)

0=FUCI3,J2)

P=FU(I4,J1)

FT CI1 + L,J1+M)=C8*A+39*B-5*C-29*E-30*F+3*G+27*H+7*0-8*P)/12+

*FT(I1+L,J1+M)

FTCI1+L,J1+K)=(42*A+7*B-9*C+2*D-63*E+6*F+G+37*H-3*0-8*P)/12+

*FTCI1+L,J1+K)

FT(Il+K,Jl+M)=(-2*A+13*B-3*C+3*E+6*F+G-5*H-3*0+2*P)/12+FT

*(I1+K,J1+M)

FT(Il+K,Jl+K)=(8*A+5*B-7*C+2*D+5*E+6*F-G-7*H-0+2*P)/12+FT

*(I1+K,J1+K)

FTCIl+K,Jl+L)=(42*A-63*B+37*C-8*D+7*E+6*F-3*G-9*H+0+2*P)/12+

*FT(I1+K,J1+L)

FT(Il+M,Jl+K)=(-2*A+3*B-5*C+2*D+13*E+6*F-3*(G+H)+0)/12+FT(Il+

*M,J1+K)

FT(I1+M,J1+L)=(8*A-29*B+27*C-8*D+39*E-30*F+7*G-5*H+3*0)/12+

*FT(I1+M,J1+L)

IF (M) 420,420,410

410 I1=IF

J1=JF

I2=IF-1

J2=JF-1

I3=IF-2

85

J3-JF-2

I4=IF-3

J4=JF-3

M=0

L=2

GO TO 400

420 I1=IF

Jl = l

J2=2

I2=IF-1

I3=IF-2

J3=3

I4=IF-3

J4=4

L=0

M=2

430 A=FUCI1,J1)

B=FUCI2,J1)

C=FUCI3,J1)

D=FUCI4,J1)

E=FUCI2,J2)

F=FUCI3,J2)

G=FUCI4,J2)

H=FUC;I3,J3)

0=FUCI4,J3)

86

P=FU(I4,J4)

Q=FU(I1,J2)

R=FU(Ii;j3)

S=FU(I1,J4)

T=FU(I2,J3)

U=FU(I2,J4)

V=FU(I3,J4)

FT(I1+K,J1+K)=(16*A+5*(B+Q)+10*E-7*(C+R3+6*(F+T)-14*H+2*(

*D+S)+4*P-CG+0+U+V))/24+FTCI1+K,J1+K)

FTCI1+K,J1+L)=(8*A+39*B-5*C-29*E-30*F+3*G+27*H+7*0-8*P)/12+

*FT(I1+K,J1+L)

FT(I1+M,J1+K)=C8*A+39*Q-5*R-29*E-30*T+3*U+27*H+7*V-8*P)/12+

*FTCI1+M,J1+K)

FT(Il+M,Jl+L)=(84*A+7*(B+Q)-126*E-9*(C+R)+6*(F+T)+74*H+2*

(D+S)+G+U-3(0+V)-16*P)/24+FT(I1+M,J1+L)

IF (M) 450,450,440

440 11=1

J1=JF

12=2

J2=JF-1

13 = 3

J3=JF-2

14=4

J4=JF-3

L=2

87

M=0

GO TO 430

450 FTCl,l)=ODO

FTCIFT,JFT)=0D0

RETURN

END

APPENDIX V

Here we list the version o£ the CONVOL subroutine which we

used in the non-periodic case of interpolation and quasi-inter-

polation. This is much more polished than the one we listed in

Appendix III. It is easier to program convolution thinking of

0 as having rectangular support. However, this introduces

urmeccessary computation which we avoided here.

SUBROUTINE CONVOL(SPLN,FTL,IQ,ID,JD,IFT,JFT)

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N)

DIMENSION SPLN(ID,JD,2,15),FTL(IFT,JFT),IQ(4,4,2,15)

DO 570 K=l,2

DO 570 IB=1,4

JL=MAX0C1,5- (IB+K))

JU=MIN0C4,8-(IB+K))

DO 570 JB=JL,JU

IF (CIB.EQ.l).AND.(JB.EQ.JL)) GO TO 530

500 IF (CIB.EQ.4).AND.CJB.EQ.JU)) GO TO 550

510 DO 520 1=1,ID

DO 520 J=1,JD

ITL=I+4-IB

JTL=J+4-JB

DO 520 L=l,15

520 SPLN(I,J,K,L)=FTL(ITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L)

GO TO 570

530 DO 540 1=1,ID

88

89

ITL=I+4-IB

DO 540 J=1,JD

JTL=J+4-JB

DO 540 L=l,15

540 SPLNCI,J,K,L)=FTLCITL,JTL)*IQ(IB,JB,K,L)

GO TO 570

550 DO 560 1=1,ID

ITL=I+4-IB

DO 560 J=1,JD

JTL=J+4-JB

DO 560 L=l,15

560 SPLNCI,J,K,L)=CFTLCITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L)>/12

570 CONTINUE

RETURN

END

APPENDIX VI

In this appendix we list subroutine ITERAT. The input of

this subroutine is FI = with its dimensions IF and JF.

FTI = f~ with dimensions IFT and JFT is returned. Subroutine

EQUASI is called once to give the initial f~*. If the number of

iterations ITN is specified to be 0, f’ is returned. Otherwise

using ERR = e as was described in 6.2 we iterate to get a better

approximation to f~.

SUBROUTINE ITERAT(FI,FTI,ERR,IF,JF,IFT,JFT,ITN)

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N)

DIMENSION FI(IF,JF),FTI(IFT,JFT),ERRCIF,JF)

K=0

CALL EQUASI CFI, FT I, IF, JF, I FT, JFT)

100 K=K+1

IF (ITN-K) 140,110,110

110 DO 120 1=1,IF

DO 120 J=1,JF

120 ERRCI,J)=FI(I,J)-(6*FTI(I+l,J+l)+FTI(I+l,J+2)+FTI(I,J+2)+

FTI(I,J4-1)+FTI(I + 1,J)+FTI(I+2,J+1))/12

AINF=0D0

DO 130 1=1,IF

DO 130 J=1,JF

E=DABS(ERR(I,J))

130 AINF=DMAX1(AINF,E)

90

91

IF (AINF.LE.lD-8) GO TO 140

CALL EQUASI(ERR,FTI,IF,JF,IFT,JFT)

GO TO 100

140 RETURN

END

BIBLIOGRAPHY

[1] AHLBERG, J. H., NILSON, E. N., WALSH, J. L. "The Theory of
Splines and Their Applications". Academic Press 1967.

[2] BABUSKA, I. "Approximation by Hill Functions". Comm. Math.
Univ. Carolinae 11, 4 (1970).

[3] BABUSKA, I. "A Remark to the Finite Element Method". Comm.
Math. Univ. Carolinae 12, 2 (1971) 367-375.

[4] BABUSKA, I. "The Finite Element Method for Infinite Domains".
Math. Comp. 26, 117 (1972) 1-11.

[5] BIRKHOFF, G., GARABEDIAN, H. "Smooth Surface Interpolation".
J. Math. Phys., 39 (1960), 353-68.

[6] BIRKHOFF, G., BARNHILL, R. E., GORDON, W. J. "Smooth Inter-
polation in Triangles". GMR-1064, February 9, 1971.

[7] BIRKHOFF, G., GORDON, W. J. "The Draftsman’s and Related
Equations". J. of Approx. Theory 1 (1968) 199-208.

[8] BIRKHOFF, G., SCHULTZ, M. H., VARGA, R. S. "Piecewise Hermite
Interpolation in One and Two Variables with Applications to
Partial Differential Equations". Numer. Math., 11 (1968), 232
256.

[9] deBOOR, C. "Bicubic Spline Interpolation". J. Math. Phys.,
41 (1962), 212-218.

[10] deBOOR, C., FIX, G. J. "Spline Interpolation by Quasi-inter-
polants". J. Approx. Theory-to appear.

[11] CARLSON, R. E., HALL, C. A. "On Piecewise Polynomial Inter-
polation in Rectangular Polygons". J. Appr. Theory, 4 (1971)
37-53.

[12] CARLSON, R. E., HALL, C. A. "Bicubic Spline Interpolation and
Approximation in Right Triangles". J. Appr. Theory, to appear

[13] CARLSON, R. E., HALL, C. A. "Bicubic Spline interpolation in
L-shaped Domains". J. Appr. Theory, to appear.

[14] CHENEY, E. W. "Introduction to Approximation Theory". McGraw
Hill Book Company, New York 1966.

[15] COOLEY, J. W., TUKEY, J. W. "An Algorithm for the Machine
Calculation of Complex Fourier Series". Math. Comput. 19,

90 (1965), 297-301.

92

93

[16] DAVIS, P. J. ’’Interpolation and Approximation”. Blaisdell
Publishing Company, New York 1965,

[17] FERGUSON, J. C. ’’Multivariable Curve Interpolation”. J.
Assoc. Comp. Math., 11 (1964), 221-228.

[18] FREDERICKSON, P. 0. ’’Generalized Triangular Splines”. Tech-
nical Report, Lakehead University, 1970.

[19] FREDERICKSON, P. 0. ’’Quasi-interpolation, extrapolation, and
Approximation on the Plane”. Proc. o£ the Manitoba Conference
on Numer. Analysis. October 7-9, 1971.

[20] GORDON, W. J. ”Free-£orm Surface Interpolation Through Curve
Networks”. CMR-921, September 1969.

[21] GORDON, W. J. ’’Spline-Blended Surface Interpolation Through
Curve Networks”. J. Math. Mech., 18 (1969), 931-952.

[22] GORDON, W. J. ’’Bivariate interpolation through curve Networks”.
Notices of AMS, 15 (1968).

[23] GORDON, W. J. ’’Blending-function Methods of Bivariate and
Multivariate Interpolation and Approximation”. SIAM J. Numer.
Anal., 8 (1971), 158-177.

[24] GREVILLE, T. N. E. "Theory and Applications of Spline Functions”
Academic Press, New York 1969.

[25] HALL, C. A. "Bicubic Interpolation over Triangles”. J. Math.
Mech., 19 (1969), 1-11.

[26] HILLE, E. "Analysis”. Blaisdell Publishing Company 1966.

[27] ISAACSON, E., KELLER, H. B. "Analysis of Numerical Methods”.
John Wiley § Sons, Inc., New York 1966.

[28] LORENTZ, G. G. "Approximation of Functions”. Holt, Rinehart
and Winston”. New York 1966.

[29] MEINARDUS, G. "Approximation of Functions: Theory and Numerical
Methods”. Springer-Verlag New York Inc. 1967.

[30] RALSTON, A. "A First Course in Numerical Analysis”. McGraw
Hill Book Company.

[31] RICE, J. R, "The Approximation of Functions”. Volume 1, 2.
Addison-Wesley Publishing Company, Inc., 1969.

[32] RICE, J, T. ’’Tchebycheff Approximation in Several Variables”.
Trans. Amer. Math. Soc., 109, pp. 444-466.

94

[33] SCHOENBERG, I. J. "Approximations with Special Emphasis on
Spline Functions". Academic Press 1969.

[34] SINGLETON, R. C. "Algol Procedures for the Fast Fourier Trans-
form". Comm. ACM 11 (Nov. 1968), 773-777.

[35] STANCU, D. D. "The Remainder of Certain Linear Approximation
Formulas in Two Variables". J. SIAM Numer. Anal. Ser. B, 1
(1964) 137-163.

[36] STEFFENSEN, J. F. "Interpolation". Chelsea Publishing Company
New York, 1950.

[37] ZENISEK, A. "Interpolation Polynomials on the Triangle".
Numer, Math. 15 (1970) 283-296.

[38] ZLAMAL, M. "On the Finite Element Method". Numer. Math. 12
(1968) 394-409.

[39] ZLAMAL, M. "A Finite Element Procedure of the Second Order of
Accuracy". Numer. Math. 14 (1970) 394-402.

