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ABSTRACT

This thesis is a study of.the applications of Regular Triaﬁgulér_'
Splines to the.ﬁiQériate'approximation problem. bur’primafy interes£_ f
will concern the nﬁmeriéal approximation of functions in two variableé?“
‘and implementation of the mathematical theories as working programs:oﬁ |
high éﬁeed compﬁters,

Cﬁapter I contains background information on thenhistory.and(dev-
elopment of bivariate (multivariate) approximétipn théory;‘.chapterjII,
contains the statement of the specifié pfpblems:we are concerhédfwith
in this thesis.

fn Chapte; IIT we present the major ideas related to triangular
spiines. QA convenient coordinate'systém called barycéntric’coofdinates
is introduced as well as the basic element of the space’ Sﬁ’z' of
quartic splines.

In Chapter IV we consider the problem of trangforming the theory
of triangu;ar spline Interpolation, as developed by Proféssor P.
Frederickson, to a working computer progfam. An algorithm is given
and numerical results of its use when applied to certain functions.

Chapter.v contains a Quasi—interpoiation scheme using;triangular
splines, an error analysis of it and>numerical results of its implef
mentation. Treating this scheme we were confronted with the extra-
polation problem. Consequently, we discuss certain extrapolation
schemes. |

Finally,_Chap;ef VI contains some remarks on interpolation and-
quési-interpolation and énother algorithm fdr interpolation‘is pre-

sented.

o
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CHAPTER I

HISTORICAL SURVEY

1.1 The Bivariate Interpolation Problem

The problem of the numerical-approximation of functions in two
variables (or more) is relatively new compared to the corrésponding
one for one:Variéble. Except for certain direct generalizations of
the latter case it was only during the past‘two or three decades that
a considerable‘degree of development_took place. There are several
reasons why the development of this problem was delayéd; In our
opinion the following two are the major ones.

A. Size of the problem. The size of the problem increases
for two dimensions essentiaily from the computational point of view.
Roughly we would say that the size of the bivariate problem is n?
where the corresponding one dimensional problem is of size n. If,
for example, we think of f(x) as a smooth and well behaved function
when it is adequately approximated by a polynomial of degree 99, with
100 coefficients, then we must consider f(x,Y) as smooth and well
behaved when it is approximated by a polynomial of degree 99 in each
variable, which requires 10,000 coefficients. Obviously, in the
latter case we are confronted with a tremendous problem as far as
handling 10,000 coefficients is concerned. ~Besidés, the detefminatiqn

of these coefficients requires the inversion of a 100 by 100 matrix



in the line case, but a 10,000 by 10,000 matrix in the two dimen-
sional case. It is only recently,lwith the development of high-
speed computers, with their huge stbrage capacity, that it has
been feasible for numéricai'analysts to attempt these problems.

B. Variety of regions. 1In the univariate case we have,
when practical algprithms afe under considerations, exactly one
region to‘cohsidgr, the finite interval. It hés‘éxagtly two bound-
ary points. In the bivariate case, though, we have a great variety
of regions and boundaries. The contrast'is even- stronger when we
consider the points at which information about the function f
is given. In the one dimensional case these points divide the
interval into subintervals, for they are simply ordered. In the
two dimensional case a wide variety of patterns might be considered,
and it is not obvious which is optimal. The problem of cdnstruction
of approximating formulas, as wéll as the problem of finding error
estimates or convenient expressions for remainders of approkimating
formulas, becomes much more difficult with the yariety of regions.

In the next section we establish some notation to be used in
the rest of this paper. Section 1.3 contains a selection of classi-
cal bivariate approximation methods, most of which are extensions
of the corresponding one dimenéional methods. Sections 1.4 through
1.6 discuss briefly several approximation methods developed during
the past decade or so, almost exclusively with the use of piece-

wise polynomial functions (splines).



1.2 Notation

We wiil be con;erhed with the approxiﬁation of a continuous
reél valued fuﬁction defined on a bounded domain .Q in kz' wi;h
:boundary 29. For simplicity we will assume that @ is a suﬁset—
of the square [0;1] x [0,1]. If a = (k,ﬂ)i is a 2—tup1e with non-

negative integer:components we define the differential operator

a _ (k&) _ 23 )
p* = D v ¢ S(1.2.1)

with |a| = k + £.
cqa (m,n) . .

We will denote by C (2) the space of all functions f
such that D(k‘z)f exists and is continuous for all 0 < k <m,
0 < £ <n; and by CS(Q)' the space of all functions f such that
D*f exists and is continuous for all «a, [a] < s, on the set Q.

Denote by .Pm n(Q)_ the space of,polynomials_of‘degree not eiceeding'

‘m,
m inj x and n in y; .and by Pk(ﬂ) the space of polynoﬁials of
degree k iﬁ x,y. Thus f e P, () if and‘Qn1yfif. fe Ck*l(ﬂj

and Df =0 if |a| =k + 1.

The notion of approximation becomes precise only when we
eétablish.a,measure bf deviation of the approximating funCtiQn fromA
the giyen function. This measure of deviation 'is required td'satisfy,
tﬁe pfoperties of norm. We assume that the reader isbfamiliaf with
the basic theory of normed linear spéces, finitely or infinitely

dimensioned. We will denote by LP(Q), p 2 1 the completion of

the space C(Q) under the norm ||-Hp defined as follows



el = TGP, 1spee a2
and
Ilfl Im ;'z.u.b.l.f(x‘,y)‘l, 7(1'.2.73.)‘ " »1’:,
(x,y) € @

Use Will also be made of the Sobolev Spéce"WE(Q), This is the

 comp1étion of the space. CS(Ql -under the norm  1 -||P s defined,by

b4

1l o= = [I0%e]] lspse (1.2.4)
PsS yl<s 'p’ B

1.3 Classical Bivariate Approximation Methods

The most familiar'example of bivariate approximation is of'
course the first (m+1) x (m+2)/2 terms in the Taylor expansion

of f(x,y) about (xg,yg). That is, for every function f defined

1

on an open and convex set: @ with f e cmr (@) and (xp,Yp), (x,y) €

2, we have
k L
(x-x0) " (y-yo)

£y = fxosyo) + = YT etgyg) —r— —r—+ R, (13.D)
1<k+L<m ’ ) ‘

‘where ° Rm is the remainder of the approximation and is bounded by

k 2
‘ (3( K} ' o (X‘-X@) - (Y"-yO) _
sup T ﬂD > f(g,m) i Vil ﬂ (1.3.2)

’(E,n) k+8=m+1




with (g;n) éitUated on the line joining ‘(xo,yo) to (x,y),

‘ EG} 16.5.1],_ Ho&éVer,'there'are certain disadVantages té this method;;;
It is hérd,.fdr example, to obtain satiéfaétory error estimates forfr
the remainder expression. If f has barfial derivatives of all

~orders on  9> then:£he Taylor's series.:

(X-Xojk ‘(’)’-)’0)K

£xoy0) + = DDy ,ye) —5 i (1.3
2 ke - ! o

may fail to converge for any (x,y) other than (x0,y0). Even if
the series does converge fof a particular (x,y), then it still may
be that the series (1.3.1)' does not converge to.thé value f(x,y).

A well knoWniexamplé of such a function is
£(x,y) = exp(-1/(x2+y?))

Partial derivatives of all orders are continuous éverywhere; but at
the point (0,0) all vanish.

In contrast to the Tayior theorem, the well known Weierstrass
approximation theorem assures us we can approximate uniformly functions
which are merely continuous. This theorem holds for functioﬁs in n

variables [29, theorem 8]. We will state it for the bivariate case.

Theorem (Weierstrass). If Q <Zs closed and bounded and f e C(Q),
then for every e > 0 'fhere extst m =m(e), n = n(e) and a poly-

nomial P € Pyn such that

>

[epll_ << (1.3.3)



If 49 is the space: [0 1] x [0, 1], then the geherélized_

-_Bernsteln polynomlals are glven by

m ﬁ m- k K R .
(% y) = (k)(ﬂ)f(m ) (1 )" (1- B (1.3.4)
: k O K ST
The proof is almost the same aslinvthe oné»dimeﬁsibnal case -~ [30,

Tﬁéorem 2.1].
‘Staﬁcu [35; Seétibn:S]”presents é'simplé eipressioﬁ~for thé re;

main&er of the approximation of f by Bernsteinfs polynomia}s't1.3.4);

(2, O)f D(O’z)f and 'D(z’z)f' . )  He

when - D are continuous on . He

proves that thevremainder in this case is given by

R(E) = - XL p0g(y ) - YO 50D g(g
x(1=X)y(1-y) (2,0 0 (1.3
- T ,.‘f(:«i,n) (1.3.5)

for some poiht '(£,nj ;-Q;

The ﬁfoblem of interpblapioﬁ appears to present a 1afgef>variety.
of treatment. The ﬁost commonly used methods for deriﬁing‘polynomial
interpolatibn'formulas are those of'extendingito two Variables'ihe
fofmulas of Newton, Lagrange, Bessel, Everett; etc., in which forwéfd,
central and backward differences are used. |

Let u§; for example; genérate‘the Newton'é interpdlation formula
with divided.differences when the data points are arranged at the

intersections of a rectangular mesh, {(Xi’yj)’ i=0, 1,j;.., m;



j=0,1, ..., n} [36, Section 19]. The divided difference with
reSpect to x, formed with'tﬁe argumenfs_ XQ0s X1 «oos xk; ‘and with:
~ respect to vy, formed with the arguments Yo, Y15 +ves Yp is df the';'>a
order k + £ and we denote it by
frp = £(X0s XI5 ooes X3 Y05 Y15 wees ¥p)-
‘We also write
X, (x) ; (x-x0)"-(x—xk_i); Yz(y)A=,(y-yo)"'(yey£;1);
with Xp = Yo = 1.
For fixed -y* applying Newton's one'dimenéibnal formu1a4we get

m
z
k=0

f(X,Y} = Xk(x)f(xﬁyxiy"-)Xk;Y) ;‘xm+1(x)fcx’x0’--kyxn;Y)‘

and by the same formula

m+1

n g . , :
f(XO’x1)~--)Xk;Y) = ZZ YK(Y)fk£~+ Yn;lf(x09xi,f"’xm;YIYO:-‘-yn)
0 . e ‘
so that
£(x,y) = p0,Y) + R (1.3.6)
m n .
where p(x,y) = I I Xk(x)Yﬂ(y)ka 1s the interpolating polynomial
R k=0 £=0 . o
and R the remainder, givenv
R = X COFCGX0, X5 Y]+ Y O)EGG Y0uY15- 2 0Y,0Y)
7 Xy Y O E O X0, X5 Yoo,y ) - .3



It is easy to see that p(x,y)_ interpolates f(x,y).,,qu ifx'(xisYi);j}
0 <i fAm, 0 <j < n, is one of the'data points then R=0 since o
Xpe1 (%) = Yo Or5) = 0. We also have -

g m n_ ,

‘m
X, (x.)f, ,
k=0 kY1 kﬁ_

n
I Yoy
g=0 €737

n : o o
Eb Yz(yj)f(xi; Y0,Y1s--5Yp)

£

£(x;57,) -

Similgrly one.éanlobtaiﬁ.the other kiﬁds_of polynomial interpoléﬁing,

formﬁias. -
‘Approximation of periodic functions in two vériables i; also

an easy extension. The idea is to approximaté f by*trigénometric

polynomials in each variable. If f(x,y) is a periodic.confinuous_r

function of period 2m in both variablés, then, given any € > 0,

there exist m = ﬁ(e), nj# n(e) and a trigonometric polynomial

Tm,h(X’Y)' such that
ey - 1, G ll, <. - (1.3.8)

28, p. 87].
The theoretical development of least-squares techniques encounters;

no difficulty when extended to functions of two or more variables.



Theorens related to such technlques have been proved in. even more
_general spaces [16 Chapter I] - | : . | ;‘ |

o Let f(x,y) be a: functlon deflned on ffi,l],x:[ziél]:h We
hcon51der [16] sets of functlons {gi(x),, i =hi; 2;-:;;§:n};
'{hj(Y)s_ j = 1;:2, .;., n} teneet pfoducts‘bf'them ‘{gihj,-
‘h1'§ ig5‘m, 1 <j <n}. It is easily proved [31] that‘ifvh{gi}h
ana'h{hj}‘_are'orthonetmal Sets‘of funettene‘éo are'{gihi}}h wg'new v.

consider'an< approximation of f by»theilinear.form :

o S | o
L({f z z ..2.(x)h. R . 1.3.9)
(‘) i1 50 13g1( )‘J(y) I  )
with the functionals a5 to be determined so that l]lffL(f)1]é*f

-is minimiied.' Although this extenSion is theoretieaily easy,
&ifficulties arise whenhone;attempts to compnte the Cbefficients,
: baijb in ordet to evaluate b(f). | |

' In methods discussed so far, the extension of the appfoximation
theory frem the one dimensional case to the biVariate one preeentsn-
no major thebreticalrdiffieulties; HoWever,hthe generalizatien of
the Tchebycheff thebryvtoﬂfunCtions_ofamore than one'variabie faiiéh
to follon this pattern. The basic preblemuis that there are no
tTchebycheff sets‘of'functions of more'than'one'variable» Hence, by
the absence of these the b1var1ate Tchebycheff theory is . con51der—_
ably changed - | o

The ex1stence of best Tchebycheff approx1mat10ns is easy to

fpreve¢ However,“these may not be unlquely determlned,,.
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More on mu1t1var1ate Tchebycheff approx1mat10n can be found in '

the hork of Rice [SI] [32]

1.4 Piecewise Polynomial Approximation Methods

Durihg the past two deéédes many numerical-anaiysts»interested '
.1n approx1mat10n problems were attracted by spline functlons Y.A
'spllne [24] is a mechan1ca1 device, ‘used by draftsmen to draw a
smooth curve, consisting of a strip or rod of some flexible matefiai
constrained fo pass thrqugh specified points. Thé'mathematical spling;u
is a piecewise polynomial of dégtee' n with continuous (n—l)st
derivative. We are all familiar with lingar splinesr (i;e. broken
line joiniﬁg tabular points) which are inefficient for approximation
probiems. Cubié splines (n=3) are closely reléted to the draffs-
man's spline aﬁd are the simplest ones. for which good results have
~been obtained.

Consider the partitioned interval [xo,xN]'

Xg < X1 < ... < XN

with the following set of ordinates prescribed
YO: Y15 -« yN'

We seek a function‘NC(x) e-Cz[xO,x ‘such that

n]
Clx;) =y, i=0,1, ..., N

and C coincides~with a cubic in each subinterval [xi;l;xi]. We
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write C”(xi) = Mi.‘ Then from the linearity of the second derivative

on [xi_l,xi], i=1, 2, ..., N we get
T *Ri0
C"(x) = M]-l h + Mi 5 (]_.4_’1)
’ i i
where h. = X. - x. ..
1 1 i-1
Integrating twice (1,4.1), we obtain
(x;-x)3 (x-x;_)° M, h? x.-x
C(x) =M,  —  + M, — ¢ (y, - =1
. i-1 6h. i 6h. i-1 6 h.
: i i i
MihT XX
.\ (yi_ - ) . (1.4.2)
i

This is the cubic spline on the interval [xi—l’xi]' The quantities
M., 1i=20,1, ..., N can be easily evaluated [see 1, Chapter 21]
from continuity conditions Qf c, Cf, and C" on the mesh points,
and additional end conditions.

Cubic splines have been extensively studied during the past two
decades as well as generalizations of them. Most of this material
has been standardized [1], [24] and [33]. Shumaker's recent biblio-
graphy on applications, generalizations or extensions of cubic splines,
is a list of more than 800 references.

The theory of splines has also been extended to several dimensions.
The extension to bicubic splines was initiated by Birkhoff and
Garabedian [5] and elaborated upon by deBoor [9] and Ahlberg, Nilson,

Walsh {1]. If f 1is a function given together with its normal
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derivative %%— on the boundary of a rectangular domain in the
(x,y)fplane,ahd values of f are also given on a rectangular grid
of points (xi,-yj), 1 <ig<m, 1< 3j<n, the authors in:[S]

succeed in fitting a smooth and analytically simplé surface inside

each rectangle R..:x

i3 %501 < x < xi, yj_1 <y < yj. The edges of

the rectangles Rij are pieces bf one-dimenSional cubic splines
f(xi,y) and f(x,yj) passing through the given points, along the
coordinate lines x = xi,- y = yj.

However, the first truly successful extension was made by
deBoor [9]. He proved both the existence and ﬁniqueness of certain

bicubic splines of interpolation. These are tensor products of one

dimensional cubic splines ¢m(x), wn(y).

I J
B E Bty (00, 6) (1.4.3)
Now given the values
fij = f(xi,yj) i=0,1, ..., I; 3 =0,1, ..., J,
_ n(1,0) - -
piJ =D f(xin) 1 = Os I’ ) = 0) 1, bl J’
(1.4.4)
_ p(0,1) - .- |
glj =D f(xiy_]) 1 = 0, 1’ s Is J = 0: J,
- n(l,1) - .5 =
sij =D f(xiyj) i=0,1; 3 =0,J.

the author proves (Theorem 2) that there exists‘exactly one bicubic

spline f(x,y) of the form (1.4.3) which satisfies (1.4.4).
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The bicubic spline interpolation scheme of deBoor, descriﬁed
above, has become the ciassic scheme for rectangular regions. Carlson
and Hall in a series of three_recent,pabérs [11], [12] and [13].treat‘
the same préblem in more general rectangular polygons, right triangles
and L-shaped domains-fespectively. They also give sharp error bounds,
the best known so far. The main result proved in the first of them
is the following: Let (R,wn) be a uniformiy;partitioned rectangle
such that each mesh.line contains an even number of mesh points.
Assume that the values (1.4.4) are given. Then there exists a func-
tion Vf € S%(R,n), the space of bicubic splines over. (R,m), such

that

00y gk, g2 (1.4.3)

&Ym= om

and

D(r,S)vf - p(Tss)g

at the respective values and points specified in (1.4.4).

Analogous results are proved in [12] and [13].

1.5 Blending-function Approximation Techniques

Another family of methods for bivariate interpolation is that
treated in [6], [7], [20], [21], [22], [23], etc. This is inter-
polation on curve networks; i.e. these methods interpolate to func-

tions given along mesh lines. They are usually referred to as
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"blending-function" techniques. The first work in this difection was
done by Coons. Forest elaboratéd on it and Gordon extendéd and gen-
eralized it. Coon's "patch surface'" methods solve the following-
problem: Given the values of ihe p - 1 normal derivatives, for

any fixed integer p, along the four edges of the unit squaré con-
struct a surface which interpolates all éf thes conditions. ‘éirkhoff
and Gordon [7] charapterizéd these surfaces by proving the following

result: The Coon's surface V(x,y) which interpolates f(x,y) and
P le
Bﬁp-l
[0,1] x [0,1] is the unique solution to the generalized ndraftsman's"

the first p - 1 normal derivatives on the boundary of.

equation
p(2P>2P) £y vy = 0 (1.5.1)

It is understood that Coon's blending-techniques are local in the
sense that interpolation on larger networks is obtained by joining
surface patches.

In contrast to these, Gordon [23] presents biénding function
schemes which are global. The blending functions in this case are

two sets of functions
M N
{¢i(x)}i=0 and {wj(y)}j=0

which play the role of blending together the various curves compris-
ing the network. The following main result (Theorem 3.1) is proved

in [23].
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Let F(x,y) be an arbitrary bivariate function and ’{¢i(x)}?=0,:

{wj(y)}?=0 be two families of blending functions such that

(0 if k £ i

6. (%) =+ |

1Tk i1 if k =i
0 if £ # j

V. (y,) = ‘

e T

Then the function V(x,y) given by -

M

VG,Y) = E £(x )6, ()
i=0 j

M N

™=

0
(1.5.2)

interpolates f(x,y) along the lines x = x; 1=0,1, ..., M
and y = yj (j =0,1, ..., N).

This method has been applied by General Motors for the construc-
tion of dies for auto bodies.

Barnhill, Birkhoff and Gordon [6] give another blending scheme
treating the interpolationrproblem of constructing a smooth function
which assumes given boundary values and derivatives on the edges of

a triangle T. This scheme is built up from projectors Pi which

interpolate in the x, y, z - space between parallels to the ith

side of T. Additionally for any values p 1, 2, ... the inter-
Polating function f(pi)f interpolates to f ¢ CSP(T) and to the

first p - 1 derivatives of f, and if f e C4p(T) the error of
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approximation is of order 0(h3p)’ when h is the diameter of

T.

1.6 Other Bivariate Approximation Methods

In this section we consider interpolation formulae which are
particularly useful in the variational solution of‘boundary valué
problems.

Birkhoff, Schulfz and Vafga [8] present a general_theory of
HermitéiinterpQ1ation on a rectangle. They obtain sharp errors
for derivatives of ihterpolation errors for functions in one vari-
abierand extend these results to bivariate functions defined on
rectangular domains R. The interpolated functions f belong to

the space
sPoTRY = {£0x,y) 0P 1 D)g ¢ L. (R), 0<ic<p; p:3)¢ ¢ Oy,
0 <i+ jc< p}

p . . . : :
If p2m-1,2m—1(X’Y) is the piecewise Hermite Interpolate of f(x,y) €
s ps2m and p=w x ' a partition of R, with 1 =

max{m,n'}, they prove that

l|D(k,£)(f_pgm—l,2m—l)||r s KK (1-6-1)

for all 0 <k, £<m with 0 <k + £ <2m -1, K some constant.
Zlamal [38], [39] proved interpolation theorems on a triangie

for polynomials of the second, third and fifth degree. He considers
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all triangulations of the domain € and he proveé that given 6
values at the vertices of the triangle and the mid points of its

sides, there exists a qﬁadratic polynomial
p(x,¥) = aj + asx + agy + ayx? + agxy + agy? (1.6.2)

assuming the above given values at the corresﬁonding points, which
is.Uniquely.determined. Constructing such polynomiéls for each
triangle it turns out that we obtain a continuous and piecewise
differentiable function. For cubic interpolation formulae he assumes
10 values to be given on each triangle. The values of the function
and its first derivatives at the three vertices and as tenth the
value of f at the center of mass of the triangle.

Zenisek [37] generalizes the above methods to higher degree .
interpolating polynomiais.

Many other papers were written with significant results in
this direction during the past few years and many others are still
appearing in the literature. We single out Hall [25] and Babuska

[2], [3] and [4].



CHAPTER I7T

NOTATION AND PROBLEM FORMULATION

Introduction. In the bicubic Interpqlatidn scheme developed by
deBoor, the rectangulatioh of the domain under discussion is of
significant importance as bicubic splines_have rectangdlar domains
of definition. In our case, of Triangular Splines, friangulatipns
and triangles are the basic elements of the discussion. The next
section contains definitions regarding thesevnotiohs, as we recall

them from [18], and leading to the statement of our problem.

2.1 Notation and Definitions

Definition 2.1.1

By a'tfiangulation of the plane we mean a covering of the plane
by arbitrary triangles such that the open triangles are disjoint,
the union of closed triangles is the plane and any two adjacent
triangles have a common side.

We will denote by T(Rz) the set of all triangulations of

the plane.

Definition 2.1.2

By a regular triangulation T e T(R?) we mean a triangulation
of the plane which is invariant under any translation of the plane

which takes one vertex into another. The restriction of T to

18
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2 = [0,1] % [0,1] will be a regular triangulation of Q if the
boundary of Q does not intersect any open triangle of T.

Consider now a uniform partition of [0,1]° of mesh h. This
will give rise to a square mesh in Q [see Fig. 2.1, a] which to-
gether with the indicated diagonals of the subsquares gives rise
fo a regular‘triangulation of Q. We denote this by Tn if 1/h =
n. In Fig. 2.1, b we have a different mesh size on each axis.

We denote by T
m,n

this triangulation if we have m respectively
’ . .

n subintervals in the x respectively vy axis

Fig. 2.1

We are especially interested in regular triangulations in which
every triangle is equilateral [see Fig. 2.1, c] because most of our
computations are simplified. In this case the square domain takes

the form of a skewed parallelogram.
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When we speak of a triangulation T in the rest of this paper

we mean a regular triangulation. We will also denote by 'LT the

set of vertices of all the triangles of the. triangulation T.

Definition 2.1.3

Let T be a triangulation of Q. We denote by Sn’q(T) the

set of all functions f such that

pld1:¢e ¢ oy, 0<i

IA
Q

and f e Pn on each open triangle of T. Any function in Snfq(T)
will be referred to as a regular triangular spline.
In this paper we will exclusively work with the space S4’2,

referring to its elements as quartic splines.

Definition 2.1.4

An element B of Sn’q(T) is called a normal basic spline if

it has compact support and

Z  B(x,y) =1
(x,y) el '

We define the convolution b+*g of any real-valued function g

defined on 'LT with b, a function defined in Q, by the equation

(bxg) (x1,x2) = . 2 b(x1-y1,X2-y2)g(¥1,¥2) (z.1.1)
(ry1,y2)ely

We recall one more definition from [18].



21

Definition 2.1.5

We say that the normal basic spline B ¢ Sn’q(T), n>1,q20
is k-exact if Bsg is in Py ‘whenever g is the restriction to

L. of an element of P

T k-

2.2 Problem Formulation

The questions we are concerned with in this thesis are inter-
polation and quasi-interpolation, using triangular splines.

The periodic interpolation problem was treated by P. Frederickson
[18]. Existence and under addifidnal conditions uniqueness théqrems
were proved and error bounds were given.

We are inferested in constructing and carrying out an algorithm
which solves the above problem; i.e. given the function f defined
in @ and periodic, with period 1 in both variables and the space
Sn’q(T), Th a triangulation of €, find a spline s € Sn’q(T)
which interpolates f on LT’

In Chapter V a local approximation scheme is introduced called
quasi-interpolation. This scheme is defined so as to be of the same
order of approximation as interpolation is.

We are concerned first in doing an error analysis of this scheme
and next in constructing and carrying out an algorithm that solves it.
Subsequently, the previous considerations led to the natural problem

of seeking the existence of any relation between interpolation and

quasi-interpolation. This was done in Chapter VI.
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Since most of our work was the construction and application of:
algbrithms we found it a necessary part of our problem, to introduce
ideas an& convenient ways of.bridging the éap between theoretic
developments and actual computation. Thié is done in Chapter III.
P. Frederickson [18] introduced most of these ideas, butronly to an

extent that served his theoretical development.



CHAPTER ITI

COORD INATE SYSTEM, NORMAL BASIC QUARTIC

3.1 Barycentric coordinates

As it will become clear in the rest of this thesis, the moSf
convenient coordinatersystem associated with T, , in describing
triangular splines and computations involving them; is the bary-
centric cdordinate system. = By barycentric coordinates for the tri-
angle with vertices A? B and. C we mean the three affine functions

a, 8 and vy defined by

a(A) = B(B) = y(C) =1 (3.1.1)

and

a (BC)

1]
=]

B(AC) = v (AB)

i.e. each takes the value 1 at one vertex and vanishes on the opposite
side.

It is obvious now that
a+ B+ vy =1 (3.1.2)

holds at the three vertices of the triangle. Therefore it holds at
every point of the triangle. Consequently, this identity reduces
the number of the three functions o, B8 and vy required to deter-

mine any point on the triangle ABC to only two of them.

23
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In order to see how the barycentric coofdinates facilitate the
treatment of triangular splines we must consider them in connection
with a global coordinate system. Let, as in Fig. 3.1, x, y be the
global coordinate system in such a way that two of the sides of'the
equilateral triangles constituting the regular triangulation  T£,

1

h = o of the domain Q' under consideration, are parallel to x,

y. Let also

S - -

Fig. 3.1
P(x,y) be a point in the triangle ABC. Consider now the numbers
i = [nx], j = [ny] (3.1.3)

with [+] denoting the integer part function. It is easy to see
that the point (%3 %J is A, and the'barycentric coordinates of the
point P in ABC are

Y = nx - i

>
1]

ny - j (3.1.4)

and a=1-nx -ny + i + j
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If the point P(x,y) 1is in the triangle BCD its barycentric co-

ordinates are

B =1 - (nx-i)

Yy =1 - (ny-j) (3.1.5)
and
§=nx+ny -1i-3j -1
Consider now the integer
k = [nx+ny-i-j] (3.1.6)

which indicates on which of the two above triangles the point P
lies. If k =0 respectively 1 the point is in the triangle ABC
réspectively‘BCD.

From the above discussion we conclude the following: Given a

point (x,y) on §' there is a triangle'with vertices

i+l i_ i j+1
G s & L) and (5

ivk ek

n

where the point lies, with i, j and k given by (3.1.3) and

(3.1.6). Additionally if k = 0 respectively k =1 its bqrycentric
coordiantes on the triangle it belongs to are given by (3.1.4) respective-
ly by (3.1.5). The barycentric coordinate vy in (3.1.4) and B8 in

(3.1.5) are given as functions only of x. We define

I
=]

nx - i if k »
u = (3.1.7)
Ll - (nx-i) if k

]
—
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and similarly

]
(e}

;ny -3 if k

- (3.1.8)
U1 -y if & o

1]
—

The pair (u,v) provides two of the barycentric coordinates of the
point (x,y) 1in the triangle it belongs. We will refer to these
two as the basiec barycentric coordinates.

Let us now consider a triangular spline f ¢ SZ’q ‘and defined
on Q- f is a piecewise polynomial and f e Pﬂ on each triangle.
Thus f will have an expression of the form

Lz t
f(x,yJ = Z I b
: t=0 s=0

t-s s
s+t (t+1)/2 X y (3.1.9)

on each triangle. Using the basic barycentric coordinates of each
triangle (3.1.7) and (3.1.8) the spline can be given by the unique

expression

£t
f'(u,v) = I z
t=0 s=0

t-s s '
as+t(t+1)/2 u v (3.1.9)

on each triangle. For computation purposes we employ the following
notation of the spline: We think of it as a four dimensional array

F such that

F(i,j,k,*) = (ag,a1,as,... ,a(£+1) (£+2)/2) (3.1.10)

with  (ag,a1,a,.-.,8(p41)(p+2),2) the vector of the coefficients of the
expression (3l1.9)' when the spline f 1is given by that expression

on the triangle specified by the triple of integers (i,j,k) given
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by (3:1.3) and (3.1.6). It is cIearAnow that

R = R G110

where (for £ = 4).’

Vi v = (1,u,v,u?,uv,v?,ud,u?v,uv?,v3,u* udv,u?v2,uvd,v*) (3.1.12)

For later reference we derive here the formulas that give the first
and second normal derivatiVe of the function f(d,B,Y): defined on
the equilateral triangle  ABC of side h (see fig. 3.2). For the

normal derivative of the function f along any side we have
: ae ‘ : A : y

A

But -along the side BC

3h V3h \ .
A : C > X
Hence - Fig. 3.2
of 2 9 1 9f _ 1 of .
= (- =+ >t F ) (3.1.13)
on /3h Ja 2 98 2 9y v
Using these formulas we can get
the second nOrmaliderivative'along
the side BC.
2 2 2 2 2 2 1 32
9cf _ 4 9°f . %’gsf L 13 f 3°f  acf L 13 f 1 (3.1.14)

an2  3hZ?  3a2 * 32 328 a3y 2 agay
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Clearly now, interchanging the role of a, B respectiveiy a,. Y we

can obtain the normal dérivativesfalong‘thé side ‘AC respectively AB. "

3.2 The Basic Quartic-Spline

In this section we present the basic quaftic spline. Since ourli
subsequent work involves exclusively quartic splines a good undérstaﬁd—;i
ing of this section is suggested.

Let Tn be é regu}ar tfiangulation of_ R2 consisting of equi-;
lateral triangles, as ip Fig. 2.1.c. The baéic quartic spline iﬂ.

S4,2

, denoted by Q, as introduced by Professor Frederickson, has
hexagohal sﬁpport of side 2h. 1In Fig. 3.3 this spline is shown
centered at the point A = (2,2). In this case its support is the

convex hull of the points (2,2) + 2ho_, s = 1, 2, ...,A6 where
w, = (COS(ZFS/G), sin(2ws/6)) (3.2,1)

In the same Figure the triangies which consist the support of the
basic quartic spiine have been labeled by the triple of integers
(i,j,k) as described in the previous séction. The point (0,0) is
the origin of the g}obal coordinate syétem. Professor Frederickson
[18] has given Q - on the triangles ABC, BCD and BED. Using the

notation of (3.1.10) we have

12Q(2,2,0,+) = (6,0,0,-12,-12,-12,8,12,12,8,-1,-2,0,-2,-1)
12q(2,2,1,+) = (0,0,0,0,0,0,2,6,6,2,-1,-2,0,-2,-1) (3.2.2)
12Q(2’330,') = (1:'2"'4:0’6’6,’230"6:‘4:'13'2,0;2:1)
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Fig. 3.3

Evaluation of Q in the remaining 21 triangles of .its support
is the problem we consider now. The fact that Q is symmetric with
respect to all symmetries of the hexagon, which is its support, will
be used.

Notice that there are three classes of triangles in the support
of Q. Those occupying the inside hexagon of side h, those having
one vertex on the boundary_andvthose having one side on the boundary.
The triangles ABC, BCD, and BED on which Q is given by (3.2.2) are
representatives of these three classes. '

Let us now generate Q on AB'C' being in the class of ABC.

We consider the point R in AB'C' and its symmetric P in ABC
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with respeét to one of the a*is of symmetry of the hexagonal suppo?t};r
We denote the barycentric cooxdinates of the point P in ABC fés%
_pectively - R in AE'C‘ Byb a, B and 'y Trespectively a', B', y'.
‘Their basic coorainates are  Y,‘B reépectivély‘ B', a'. Besides

we havé,
R a =a', Yy =8' and B8 = YfA= 1 -a' - B'".

Hence

QR) = Q(P) = Q(2,2,0,%)V,

,B

Q(2,2,0,°) Vg, _,

]

-Q(2,2,0;-)'VB'.’1_G,._B. (3.2.3)

Q(2,2,0,+) M-V

B"ul

Q(Z,l ’0, ') .v

B'!a|

where M is a matrix such that

=M

VB',l—o&'—B' 'va’av

It turns out that the matrix
M = ROT-<REF -

where
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0
0

ROT

1
-3

0
-1

2
6
-12

3 0
-4

1

-4 6 12 6 -4 -12

-4

~
wn
TN
X}
L
|
o —~ O o
S o~ ()
o O ]
o © —
- O O
O =~ O
O O ~
- O
o -
~1
i
© 29
=
3 =

0 0 0 0 1
c 0 O 0
0 0

1
i 0 0

e

0 1 06 0 O
1 6 0 0 0O
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'The above two matrices ROT and REF are not any random ones. We had

anticipated that simple transformations on the coordinates would give

the result (3.2.3). By this result we mean obtaining'iQ at the

triangle (2,1,0)

Q(2,1,0,+) = Q(2,2,0,-)-M.

The above transformations ROT and REF are rotation and reflection of

the coordiantes. By:rotation of the coordinates o, B and ¥y (cidck-

wise rotation about. the center of mass of the triangle ABC) we have

o > B8, B~ Y'-and Y >oa=1-8 -7y (3.

and by reflection (about the axis’Vertical to BC through the vertex

A) we have

B>y, v>B and a - a. (3.

Having now a polynomial f(y,B) = F(i,j,k,')'vY and applying

,B

the transformations (3.2.6) respectively (3.2.7) on its coordiantes

we get
f'(l"B"Y.:Y) = F(i’j’k?.).vl’B“Y v
= F(l,J,k,')'ROT‘VY,B
respectively
419 = F{3 H k ) oV
£"(B,v) = F(i,j,k,) Ve v
= F(1,j,k,*) “REF-V

Y,8"

2.6)

2.7)
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REMARK: We note that (ROT)3 = I and (REF)2 = I, where I is

the identity matrix. This cqrresponds fo the fact that if we‘appi;‘
three rotations or two reflections on the coordinates, the pquﬁomial
Tremains unéhanged{ Thus the operators ROT and_REF generate a group

G of six elemeﬁts | éu
ROT, REF, ROT+REF, REF+ROT, ROT+ROT, I (3.2.8)

' These éix elements of G are precisely the operators ,M”;we
need in order to generate Q on the remaining 21 triangles. Start-
ing with Q(2,2,d,-) or Q(2,2,1,+) we generate 'Q on the other
five triangles belonging to the class of the triangles ABC or BCD.
In the class of BED there are twelve triangles. However, the six
elements of G geherate Q on all of them starting with Q(2,3,0,-);'

In Appendix I we list an A.P.L./360 function QUARTICSPL which
creates Q 1in all of its support. It is stored as a (4,4,2,15)
array and i$ also displayed in the same Appendix as QUARTIC.

Differentiability of Q is easily checked. Obviously it is
twice differentiable on the inside of each triangle. Applying
formulas (3.1.13) and (3.1.14) we can establish that Q is twice
differentiable everywhere on its support. For later reference we
note that Q has the value of 1/2 at the center of its support and

1/12 at the six other lattice points inside the boundary.

3.3 Evaluation of Splines

The purpose of this section is mainly to describe a subroutine
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which carries out the evaluation of splines. This subroutine callgd
EVAL has been written in FORTRAN and displayed in Appendix II. It
is designed to evalﬁate a quartic spline at a pOint of its domain
and when this domain is a rectangle.

Let T
m,n

be fhe triangulation of the rectangle where the
2 ) . .

quartic spline is defined. Lg will gonsist of the points (xi,yj),
0<is<m 0=xj<n. The spline is paSSed_into thé subroutine in its
array form i.e. as a four dimenSionél array SPL(iD,JD,Z,lS) Qhere

ID =M, JD =N. It is easy now to see, from formula (3.1.11), that -
in order to evaluate the spline at the point (x,y) we neéd deter-
mine the triangle which the point lieslih and the two barycentric
coordinates of the point in that tfiangle. In the subroutine this
information is obtained as follows: The pair of numbers X and

Y (X = (x—xQ)/(xm—xo), Y = (y-yo)/(yn-yo)) is passed to the sub-
routine. It is easy to see now from the discussion in 3.1 that

the integers

K = [A]
L = [B]
and
M = [A+B-K-L]

where A =X . ID and B =Y . JD, determine the triangle, while

M- (A-K) |

c
n

and

|M-(B-L) |

<
|1}
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are the barycentric coordinates of the point in the speéified'tri—
angle.

Pfopér fuﬁctions are employed in FORTRAN to perform therabéve—
operatibns.

The subroutine can also be easily adapted‘for the evaluation

of higher order splines.



CHAPTER IV

INTERPOLATIONioF PERIODIC FUNCTIONS

4.1 Quartic Interpolation Operator

As it was stated in 2.2 our task in this chapter . will be a
demonstration of the feasibility qf constructing an algorithm
that solves the periodic interpolation problem. The descripfion -
of the algorithm will be given and numerical results of its imple-
mentation will be presented.

We‘are going to make use of Sﬁfz .as the space of interpolating
splines. Quartic splines, being piecewise polynomials of degree 4,
could be of more practical value than any other splines. The work
of section 3.3, where the construction of the basic normal quartic
spline was done, will be very helpful in the numerical part of this
chapter.

The function we are going to interpolate will be in the space
c™(®R?2), m > 4 and periodic on R? with period 1 in both variables.
The fact that any function defined on a bounded subset of R? can
be extended’to a periodic function on R2, with period set a
rectangle covering its domain, allows us to use periodic spiines
as interpolating splines for such functions. On the other hand
the choice of the period set to be the domain Q = [0,1] x [0,1]

was made only for convenience in computations.

36
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Let T,, h >0 ‘be a regular triangulation of Q. We will
deﬁote by S(f) the quartic spline interpolant of £; i.e., we
have
S(f) ¢ sﬁ’z @)
and (4.1.1)

S(f) (X’Y) = f(X)Y)': (X,Y) € LT

We denote by f° and Q° the restriction to L, of f and

Q respectively. The sﬁline inferpolant S(f) of f 1is given

[18] by
S(£) = Qvf" (4.1.2)

where £ is the solution of the system

£° = Q°xf " (4.1.3)
According to (2.1.1)
Qv
S(£) (x1,x3) = z Q(x1-y1,X2-y2)f (¥1,y2) (4.1.4)
(y1,y2)elg

Additionally the quartic spline operator S .is 3-exact [18], (see

definition 2.1.5).

4.2 ‘Mathematical description of the algorithm

It is clear from (4.1.2) that the construction of the interpolating
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spline requires two operations:‘ The solution of the system (4.1.3)
to obtain f  and the convolution of f  with the normal basic
quartic spline Q.

The solution of the system f° = Q°*fm is not an easy task.
We are faced with a tremendous prbblem. In order to show the
magnitude of it we will consider the mesh size h = 1/32 (the
smallest we use in our implementatioﬁ later on). Obﬁiously, .f
is given in 1024 points in this case and the system (4.1.3) has
1024 equations with 1024 unknowns..

It is really not feasible to invert a 1024 x 1024 matrix by
Gauss elimination. The number of operations (multiplications and
divisions) needed to triangularize an n x n matrix and solve the

triangular system is [27]

ELEE:EJ and ‘Eiﬁill (4.2.1)
3 2
respectively. When n = 1024 these numbers are slightly larger
than 3.5 x 108 and 5.2 x 105. The size of the matrix also dis-
courages us of considering some well known iterative schemes al-
though we have to deal with a sparse matrix.
It seems that tﬁe Fourier transform provides an optimum way
for solving the system under discussion. We define the Fourier
transform [18] of the function g defined on LT by
g~(x) = h2/3/2 ¥ e—2nix*yg(y) (4.2.2)

yelp
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Obviously, this is an extension of the usual Fourier transform.
It follows immediately that the inverse Fourier transform of g 1is

given by
g (x) = g°(-x) (4.2.3)

Furthermore, the operation of convolution transforms into pointwise

multiplication by means of
(bxg)~ = (2/h2/3)b"-g" (4.2.4)
Using formulas (4.2.2) and (4.2.4) now, equation (4.1.3) gives
£ = [£°°/(2Q°"/h2V3) 1" (4.2.5)

In order to evaluate the above formula we only need take the
Fourier transform of f° and Q° and the inverse transform of
their pointwise division. The number of operations required to
carry out the Fourier transform of f° or Q° using the Cooley-

Tukey algorithm, and when n = " [15], is

Tmlog n. (4.2.6)
Hence in the above case where n = 210 the whole number of -

operations required to evaluate the expression (4.2.5) is

3(2.n.10) + n = 61.n

< 6.25 x 10"

After we obtain the solution fw to the system (4.1.3) the

next thing for the construction of the spline is to carry out the
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convolution of Q with fm. This is done with the use of formula
(4.1.4).

In Chapter VI we develop an/iterative'scheme for the solution
of the system (4.1.3). We leave the discussion of it to that chapter

because we need introduce quasi-interpolation first.

4.3 Implementation of the.algorithm

Let Tn’ n > 1 be a regular triangulation of & (® consideréd
in the skewed form of Fig. 2.1.c) and £f° be given at the lattice LT.
"From the computational point of view and in order to construct

the spline interpolant (4.1.2) we need two subroutines which will

carry out the two operations described in the previous section,

namely the fourier transform of f°, Q° and f°"/Q°" and the con-
volution of f% with Q. We name them FASTF and CONVOLP respectivley.
The first one was taken from [34] and translated into Fortran. Pass-
ing f° respectively Q°, in the form of a one-dimensional array

into the subroutine it returns f°~ respectively Q°". Note that

Q° is 0 everywhere except

Q°(0,0) = % and Q°(0,1) = Q°(1,0) = Q°(0,n) Q°(1,n) = Q°(n,0)

Q°(n,1)

i
[\S] R and

N :
After f  has been evaluated, and we have a main program which
would do the pointwise division of f° and Q°, the subroutine

CONVOLP is called (see Appendix ITI).
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ID;JD

SPL
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Input for CONVOLP

fw as an n x n array.

The basic quartic spline as a 4 x 4 x 2 x 15 array.

It is being read into the program as displafed in Appendix I.
(Note that in this Appendix Q is multiplied by a factor of
12).

The number of subintervals we want to construct the inter-
polating spline in the direction x and y respectively

1 < ID, JD < n.

Qutput of CONVOLP

the interpolating spline as an ID x JD x 2 x 15 array.

From (4.1.4) we note that, in order to construct the interpolating

spline SPL on the boundary triangles of Q, we need values of £

. . . . . . s . g
on lattice points outside . But since f 1is periodic so is f . 1In

the s

ubroutine CONVOLP instead of extending FTL to an (n+2) x (n+2)

array to include the required values of fm, we employ the modulo
q ploy

funct

REORD

point

from

EVAL

ion (mod(n+1)) on the subscripts of FT1L.

Additional subroutines that we used in the program are: FUNCT,
ER, EVAL and NORM. Subroutine FUNCT created f° at the lattice
s LT for the test function we used.

REORDER was used in connection with FASTF and it was again taken

[34]. 1t permutes data from reverse binary to normal order.

was described in section 3.3. Finally, NORM subroutine was



42

¥

y

[ START
5, /
‘ P e

L .
-

(?W,'{{FQIJ;YJ=1(1)N}; T=1(1)N}

EXECUTE
FASTF (F,N)

{1Q0 5, J=1(1)N}, T=1(1)N} < 0
1
; Q11«7
- 1
Q) , = Q0 < QOp = QO « QOYy « O, < 15

s

EXECUTE
FASTF (Q0,N)

:

FTIL  ;=FOT| ;<QOT

Fd

({{{{QIJKL, L=1(1)15}, K=1(1)2}, J=1(1)4}, I=1(1)4}
1 .

VI g ot i A S 4 S b 1 e ket

N,

EXECUTE
CONVOL (FTIL,Q,N)

o 2w

LLTLSP s

Fig. 4.1
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T

L=1(1)15}, K=1(1)2}, J=1(1)N}, I=1(1)N} }~nm~“f
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used to calculate the L, Lz and L_ norms of the error function
e(x,v) = £(x,y) - S(£)(x,y); i.e., calling FUNCT and EVAL at the same
set of poiﬁts {(xi,yj); 1<isk, 15 j < £} we produééd an.érrbr
array which we passed to the subroutine NORM to compute the above norms.
An illustration in flow chart form of the main routine is given in

Fig. 4.1. The4correspondence between parameters used in the flow chart

(program) and actual ones is the following

Q . for basic quartic
FO. >> f°
.QO0 :>> Q°
N >> n

FOT >> f°~
QOT >> QO A

FTIL >> f

4.4 Numerical results

The test function we used implementing the above algorithm was
f(x,y) = (1-cos2nx)+(l-cos2ny)/4 (4.4.1)

which is periodic on R2 with period 1 in both variables.

i L
16 327

(n=8, 16 and 32). The error function was evaluated at the 4 x n?

Three different mesh sizes were tried, namely %3 and

points
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k 1 £ 1 k 1 £ 3 k 3 L. 1 k 3 L 3
G 4n’ n 4n)’ (n 4n’ n an)’ (n Tan n Z—J and (- + 4n’ n 4n)
(4.4.2

with 0 <k, £<n-1

Table 4.1 contains the norms L;, L, and L_ -obtained.

Table 4.1
Na ,
L;\ 1/8 1/16 1/32
-4 ' -5 -6
Ly | 5.379915x107" | 2.652338x10 1.549839x10
=3 -5 : -6
L, | 1.825893x10 9.587575x10 5.731885x10
4 | 6
L_ | 6.673183x10 3.295835x10 1.936131x10

The above numerical results compare fairly well with the theoretical
ones obtained by Professor Frederickson. He proved in [18] that if
f e Cm(Rz), m > 4, the order of approximation by quartic splines is
4. Thus one should expect the error to decrease by a factor of 16
when the mesh size is cut down by half. As a matter of fact the data
of table 4.1 give even larger factors.
All the above calculations were carried out in double precision

arithmetic on the IBM/360 computer at Lakehead University..



CHAPTER 'V

QUAST-INTERPOLATION USING QUARTIC SPLINES

5.1 Introduction

Our motivation for this Chapter comes from the paper [10] by
deBoor, C; and Fix, G. J., and>[19] by Frederickson. We outline the
problem treated by the authors in [10]: Lét, 2 be a region in Rn,
7 a partition of R" into réctangleS'and Si (k 2 1) the corres-
ponding spacerof spline functions of degree k - 1. The authors
explicitely construct for each function in Wi(ﬂ) a spline F“f € Si
which they call the spline interpolant of f with the following |
properties:

(1) FTT is local in the sense that the value of Fﬂf at a
‘'point x depends only on the values of f in a uniformly small
neighbourhood of x.

(i1) FTT reproduces polynomials; Fﬂ(xy) = xY,|y| < k. Finally

they prove that this approximation scheme is of order k.
.
F £ -f=d(|" (5.1.1)

In the rest of this chapter we derive a Quasi-interpolation scheme

using Quartic Triangular splines.

45
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5.2 Quartic Quasi-Interpolant Operator

,Let"Th

is equilateral with the origin being a point in LT. For f ¢ Cn(Rz),

be a triangulation of the plane in which every triangle

n 2 4 we shall determine a spline . Shf € 54’2 with properties

- v . - . - -
(1) Sh is local as F" in (1)
(ii)* Sh reproduces polyhomials p € P3.

Moreover, it will be of the form

S, D) = T £(y) Qx-y) (5.2.1)
yeLT

where x ='(x1,x2), y = (y1,y2) and

£~ (y) = HEE) (v) (5.2.2)
6
= wof(y) + ¥ wu _fly+ho)
s=1
with the constants Mg» S = 0, 1, ..., 6 invariant with respect to
x and h, and ws given as in (3.2.1).
In section 5.3 we will prove that
| I8, £-£1 1, < K|£]uh® (5.2.3)

where K 1is a constant and |f|, is the Sobolev seminorm defined by

4
If]y = sup sup {] = (i) coskesin4—keDk’4_kf(x)I}‘ (5.2.4)

xef2 6 k=0
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Property (i)' is obviously satisfied by (5.2.1). We will
determine the constants Mo, S =0,1, ..., 6 so that property .
(ii) is satisfied as well. This can be done in a straightforward

algebraic way. Let p(xl,xé) e P3..

p(X1,Xp) = ag+aXi+asXp+agXjtayXiXp+ asxs+agXitayxixp+tagXixs+tasxy (5.2.5)

We want
S () = et P00 QU = PG
or by 5.2.2
| 6 |
PG) = I (op()*+ I w p(x+hu))) Qly-x) (5.2.6)
yeLT s=1 ‘

Since the constants u, o are invariant with respect to x and h,

equation (5.2.6) is valid when x = (0,0) and h = 1. Hence,

6
p(0,0) = ag = I (uoao+ I n plw))Qly)
eL s=1
y T,
Taking into consideration that Q(0,0) = %3 Q(ws) = Il- s =1, 2,

., 6 and Q(y) = 0 for any other y € L when Q 1is centered

T’
at (0,0), after equating thercoefficients aj, j=0,1, ..., 9
in the above equation, we obtain the following éystem of equations

(omitting the two redundant ones)
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U2 +  uj - M5 - Hg =0
- ¥ - M2 + Uy + g =0

Mo+ M1+ dup + dug + uy + dus + dug =0

(5.2.7)
Mg +  up + Tup + U3z +  uy + Tug +  Ug =0
Ho +- dup + dup + pg + 4y + dus v ug = 0
M1 + SHp + W3 - My - Sus - pg =0
24uy + 24p, +  pg - 24wy, - 24pg - ug = 0
The nontrivial solution of the last seven equations of this
system is
k A
Mo = 3k, w1 = Mz = M3 = My T U5 = W = - g, keR
Substitution in the first one gives the following solution
ug = 3/2
(5.2.8)
Bl = Mo = U3 = Wy = Mg = pg = - 1/12
With these values formula (5.2.2) becomes
6
£ (y) = H(f) (y) = 3/2 f(y) - 1/12 = f(y+hws) (5.2.9)
s=1
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It is clear that given 'f on the lattice‘points. LT’ f~ can
be easily derived by this formula. Let us now turn agaiﬁ to the -
finite.domain . Obviously, givén £ on‘the grid points VLT iof
a regular triéngulation Th of Q; formula (5.2.9)“cannot give
£~ on the boundary grid-poiﬁts. .This would require values of f
on grid points outside @. Additionally, if.one,is to construct
Shf over fhe whole'region 2 he would need £~ r(as we point out
on 5.3) outside © as well. If f is periodic the above problem
is not hard to overcome. Actually in this case as we shall see ip
section75.4 the quasi—ihterpolation scheme is ﬁuch easier than inter-
polation from the computation point of view.

However, in the general case one is led naturally to extra-
polation of f£7. |

Our next section is devoted to an error analysis of the Quasi-

interpolation scheme.

5.3 Error Analysis

Let f EVCn(Q), n >4 and Th be a regular triangulation of

Q. We assume that all fourth order derivatives of f are bounded
on 2 and denote by M the seminorm |[f|, of f defined by

(5.2.4). We denote by S f the quasi-interpolant of f on @

h
as given by (5.2.1).

Theorem: Given f with the above assumptions then
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1|f-shf||m < 0.420 Mh* (5.3.1)

-

Proof: Given any point x = (x1,x,) € Q we choose a point y; =

(¥11,¥12) € Ly such that
|x-y1| = min{|x-y|:yeL,} (5.3.2)

(see Fig. 5.1). Therefore, the point x iies in a hexagon of side
—%h centered at y;. Our error analysis will be based on thé assump-
tion that x 1lies in one of the tWere'right triangles making up the
above hexagon. Let this be the triangle ABC (see Fig. 5.1) which we
will denote by U. As it will become clear, the choice of any one of

these triangles will give the same result. This is due to the symmetry

|y and the symmetry of the basic normal quartic

of the seminorm

spline Q. 23 22 21‘
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Let us denote by f£*(z) the third order Taylor's expansion of

f about x. Then

£(z) = £f*(z) + R(2) (5.3.3)

with
3 . .
£5(z) = I DY (x)(x-z)%a! (5.3.4)

' a}=0

and
R(z) = = DYF(x+6(x-2)) (x-2)%/a! (5.3.5)
al=4

for some 8, 0 <6 < 1.
The error between the function f and its quasi-interpolarnt at

the point x - is

F0O - (S, (0 = £(x) - £2(x) + £5(x) - (8,£) (0 + (S, £%) (x) - (S, ) (%)

(S,£%) (x) - (8,£) ()

(ShR) (x) (5.3.6)

since f(x) = f*(x) from (5.3.3) and f*(x) = (Shf*)(x) - because the
operator S reproduces polynomials of degree 3,

Expanding (5.3.6), using (5.2.1) and (5.2.2), we get.

| | | - | |
[f@-5,0 0] = | = GRO- 35 T RO*)IUx-)]
yeLT s=1
6
= | TROIG QM- 15 = Qlxse_-y))|
yeLT s=1

6
) HRW)I(% Qx-y)+ T%‘ ZIQ(x+ws-y)) (5.3.7)

yaLT s=

A
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In order to obtain a bound for this expression we need bounds

for R(y) and Q(x-y) when vy ‘is a lattice point. From (5:3{5)

we get
4 ; , :
. : k,4-k . . k 4-k Tip
R | s | 208 e gy ey R @0 1]
k=0 . :
' k 4-k
4 - (x1-y11) (x2-y12)
1 4. (k,4-k J
s |z @t e, ‘ Tlx-z ]
k=0 |x-z|% -
M ‘
4 < ar l)(—ZI‘l+ Q_(5.3.8)_
Where z' = x + B(X—z)v and |x-z| is the distance between the
points x and z. Now if we define
r(z) = sup|x-z|* (5.3.9)
xeU
we get
M ,
IR(2) | < g7 *(2) (5.3.10)

Using this inequality we can have bounds for R(y), y ¢ LT. Obviously
R(y) can be nonzero for every Yy e LT. But the values of Q are zero
when the distance between x and y‘ or Yy - w, is greater than Zh.
There are 27 points y; € LT, i=1, 2, ..., 27 such that the distance
Ix-yil or |x-(yi—ws)| for some x, is less than 2h. 1In Fig. 5.1
these points have been labeled'by the numbers i, 1 =1, 2, ..., 27
instead of Y- If we consider a point y ¢ LT outside the support

of these 27 points, then the basic quartic spline centered at that

point or any of the six lattice points surrounding it will be zero at

any point x e U,
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For these 27 points we can obtain numerical values of
r(y,), i=1,2, ..., 27 [5.3.10] and

q(yi) = sup Q(x-yi), i=1,2,...,27 (5.3.11)
xelU .

When, for example; i=1

r(y;) = (g h)* = 5 h*

L
9
- 1
and q(y1) = 5 .

In the following display we give ail the constants Ai such’
that r(yi) = Ail'i‘+ and the constants q(yi) (in parenthesis) .cor-

responding to the 27 points i of Fig. 5.1.

(0= - === -49(0) - ~ - - - 81(0)
/ \ / AN 7/
E . 4 Y Vs N\
7 » / N
. / h / \
’ \"; \\ '/ N
441, 169, 1 . |
T i TS 7 16,(’3’_271') S ‘”‘43(0\)
/! A 4 AN s
7 . ) * 4 \ N 4 A \
;0 B / g, s N
361 oy o .49, Ly 192y gty .
160 1612 Lgsg) —— = Gz — - - - 4900
’ ’ \\ / \‘ s N\ ~ N
¢ £ h e AN ‘ N ; ~.
361 49, 1 "1,1 63 ) 1 .
—g{W—-~—-—ﬁT? ~~~~~~ §Q§-——“"“1ﬁmﬂ““““ lf%yﬂ - '?(m
N\ r N y -, ‘( \ \\ S
N\ . N / lf \ / 7
) N s ~ . \ / N /
. . - / N : s A
256, 49 . 1 16, 26 3 AP
=5 (0~ - 5 (13 5102~ — ~ ~9ggx) - — = — 49(0)
“ ., {J . a \ /
// A ! N\ //
/ " % W E ’
’ . # b - 7
361 169 *169

ZH0) == - O - e = EE(0) - - - - - -49(0)
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Using the'above data for R(y) - and Q(xfy), we caléulated the

expression (5.3.7) with .an A.P.L. function to get
|£(x)- (5, £) (x)| < 0.420 Mh*

Hence the proof of the Theorem is complete.
The above error analysis is valid when  f~ 1is exact. However,

as we mentioned in the previous section, construction of S f over.

h
the whole region Q- reqﬁires values of f~ on and outside the
boundary of Q. If these values are not available exactly (see

section 5.5), the above error anlaysis is valid only on an interior

sub-region'of Q@ whose distance from the boundary of & is 2h.

5.4 An Algorithm for Periodic Quasi-Interpolation and Numerical

Results

‘The spline interpolant S f of Quasi-Interpolation is much

h
easier to compute than the one for interpolation. The two major
steps again are evaluation of £~ and convolution of f~ with
Q. However, f~ given explicitely by

6

f"(y) = 3/2 f(y) - 1/12 ¢ f(y+hws), y € LT'

s=1
provides no difficulty in its computation esPeéially in the periodic
case we examine here.

Suppose that the period set of f is @ and £° is given on

LT of the triangulation Tn of Q. As we mention in (4.3) if £~
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is given on this same set of points, then the subroutine CONVOLP con-
struct S
cts 1/

ﬁf over all of Q.
In order to evaluate £~ on the above set of points we extend
" f° by periodicity to a set of (n+2) x (n+2) points. .This in the
program méans extending the'arréy of n % n points to an arrayvof
(n+2) x (n+2) points in such a way that thé first and the (n+2)-nd
columns respectively rows of the new array are equal to the nth and
the first cblﬁmns respectively row§ bf the previbus array. In Fig.
5.2 we give a flow chart of the main program we used. FO is the.
given n x n arréy f° ‘while FON »fhe extended (n+2) x (n+2) one.
Although quasi-interpolation and interpolation are of the same -
order of apprdximation,Aquasi-interpolation is less accurate than
'inteipolation. This is our penalty for less computational work and
was found experimentélly. We applied interpélation.and quasi-inter-
polation to the periodic function (4.4.1), given on Q@ at the same
iattice points. Table 5.1 lists the norms obtained using quasi—
interpolation for the'above function, corresponding to the norms
of table 4.1 with the error function evaluated again at the set

of points (4.4.2). The subroutines,FUNCT, EVAL and NORM are being

~used here without change.

Table 5.1
h
L 1/8 1/16 1/32
L, | 6.401972507x10°3 | 4.806234811x107 | 3.146364385x10"
L, | 7.344676049x10"> | 5.490275040x10™* | 3.588237140x107>
L | 1.588539084x1072 ' 1,177%34939xlq“3 | 7.601211366x107
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f/ﬂ~+\\\\
( START J’
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N\ 3 & .

N

l“N,{{FOIJ,'J=1(1)N}, I=1(1)N}

—————

— S ,
| {{FON, 1, J=2(1)N+1}, I=2(1)N+I}+{{FOIJ, J=1(1)N}, J=1(1)N}
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' |
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rﬁ?{{QIJKL, L=1(1)15}, K=1(1)2}, J=1(1)a}, T-1(1)4}]

EXECUTE
-t CONVOLP (FTIL,Q,N) -

[

{{{{SP ;s L=1(1)15}, K=1(1)2}, J=}F}?N}i‘1;1(l)N} ]

5 T
3
STOi/)
\“'."’ »

Fig. 5.2
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5.5 Extrapolation

It;became'clear from the discussipn:in sections 5.2 and 5.3
that the construction of the qua§i—interpoiént of £ on Q requires
values of £~ on the boundary lattice points and-lattice points
outside Q.- If‘_f is not periodic these values of £~ ére not
available-éxactly. In this section wefseek an approximate solution
of this problem by extrapolation. |

Let Q@ be a finite domain and Th} a regular triangulation
of it. Let also the function f ¢ Cn(Q),-_n > 4. Mo;ivated
by Secfion 5.2 we will seek a linear operator G with the follow-
ing property:

(i) G will be exact‘for polynomials'of degree thfeé;
ie. (GE)(y) = £°(y), vy ¢ LT when f e P3.

We will also require that G is local.

An existence theorem for extrapolating operators of bivariate
functions f e C™(Q) was proved by P. Frederickson [19]. Here
we will make use of a ten point scheme |

A, B, C, D, E, F, H, K, L and M to .
v/ \/
*---V-_._‘R

entrapolate f~ at the points A, /N
\

B, C, D, P, Q, R, etc. [see Fig. 5.3].
This triangular scheme fits very

well our quasi-interpolation problem

on rectangular domains. Obviously,

it fits it equally well on triangular,

hexagonal, or L-shaped domains.
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Starting with the'point“P we define the extrapolated value.

of £~ :at P rby

(GE) (P) = WI£(A) + upf(B) + uaf(C) + wf(D) + usf(E)
‘ ' (5.5.1).
+ g (F) + u7f(H) + ugf(K) + ugf(L) + wpof M)

with the functionals M i=1, 2, ..., 10 to be evaluated so
that pfoperty (i) would be satisfied. Assume (for ease of compu-
tation) that P is the origin, and f isbthe polynomial (5.2.6).

From propefty (i) and equatibn (5.2.10) we have
(Go) (P) = p~(P) = 3/2p(P) - 1/12(p(Q)+p(C)+p(D)+p(Q")+p(S) +p(0))

Hence (5.5.1) becomes

(Gp) (0,0) = 3/2P(0,0)-1/12(P(0,1)+P(1,0)+P(1,-1)+P(0,-1)+P(4130)+P(-1,1)
= u1p(1,1) + upp(1,-2) ++++ + u1op(4,-2).
Equating corresponding coefficients 2., i=0, 1, ..., 9 1in this

identity we obtain the following system
My, = b (5.5.2)

where up = (ul, Hos v ooy ulO): bp = (l, 0, 0, _1/3) 1/6; '1/3’

0, 0, 0, 0) and



59

1 1 1 1 8 8 8 27 27 64

1 -2 o -1 0 -8 -4 -9 -18 -32

The solution of the system (5.5.2) is

N

7 7 7 17 17 2

-t T T~ D)

12’ 12° 12° ~ 3

3 2

3
VI VI v O VL

o\ -

VRS
bp = g -

All the above computations were carried out in APL/360. The

polynomials

3

p(i,j) = ag+aji+asj+azi®+ayijragj?+agid+ayi?j+agij?+agqj’

are easily manipulated when they are given as the product of the

vectors

A = (aO »21,42,43,aL4,a5,35,a7,48 ’a9)

and V. . as in (3.1.12).
) 1,]
Now in order to obtain UQ’ MRs Has etc. we need the corre-

sponding vectors bQ’ bR’ bA’ etc. But we have

(5.5.3)
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bg = gTV1,0 - I%‘(V0,0+Vo,1+V1,1+V1,0+V1,-1fvo,-1)
and similarly for the others. Consequently
uQ = M_le

The values of s i=1, 2, ..., 10 we obtained for these'pointé are
=G0 S o P e P (5.5.4)
R Y 11 T e
R N T
s b L LS Lb 5.5.7

By‘symmetry now we get u and M- We have forrexample

Q> Yr'> M

7 1 5

I R AR R 1
YT e 3 T 13 120 T 12 12

DU U A
2’ 12° 12° 6
having always in mind the point at which each of the functionals
ui operates.

The order of approximation of the above extrapolation schemes
is 4, when the function f 1is four times differentiable on a
domain Q' such that Q<& Q@' and the point at which we extra-

polate f~ 1s in Q'. This comes from the fact that G is

exact for polynomials of degree three.
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5.6 Non-periodic Quasi-interpolation. Algorithm and Numerical

- Results

In this section we cbhstruct and carry out an algorithm for
‘quasi-interpolation on a rectangﬁiar domain when the function under
considération is not (necessarily) periodic. The results of
- section 5.4 are applied for the eyaiuation of f£f7.

We will consider ggain the rectangular domain §,Ta regular
triangulation of @ such that the»number'of the lattice points
LT in © is m x n (with a uniform mesh in both directions).

We will assume f e-Cn(Rz), n >4 and 'f° given on the above

m x n lattice points of Q. In Fig. 5.4 we illustrate @ as the
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parallelogram with the unbroken lines. We will refer to the eXtended
parallelogram by ‘Q‘.

In order to constrﬁét tﬁé spline quasi—ihterpolant Sf of 'f
on 2 we need f* at alillattice pdints of Q' texcept the lower
left corner and the upper right corner). Using formgla (5.2.10) we
can evaluate.it at all inside lattice points of Q. For'the boundary
points of Q and the outside ones‘we willAmake use of the extrapola-
ting schemes described in 5.5. For all the points labeled by P in
Fig. 5.4 wé use the scheme found for the point P in Fig. 5.3 with
coefficients (5.5.3). For the points denoted by C we can use either
the C-scheme or the D-scheme of Fig. 5.3. We consider the average
of these two and obtain a twelve point scheme (see Fig. 5.5) with

coefficients in the same order as the points in the Fig. 5.5.
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G2 - (5.6.1)

There are still 7 points in the lower left and upper right
corner‘reépectively, and 4 points in each one of the other two
corners at which f~ should be evaluated at. We labeled them with
the corresponding letter scheme of Fig. 5,3,

In Appendix IV we list the subroutiﬁe EQUASI which carries
out all the above evaluation of f~. The array FU = £° énd
the dimensions IF = m, JF = n are passed to the subroutine B
and the array FT = £~ with dimensions ‘IFT = IF + 2, JFT =:JF + 2
is returned. First f~ 1is evaluated on the inSide points. Then
specifying appropriate parameters it evaluates, using the same program
segment, the P and C points of the two leftmost and rightmost
columns. The same is done for the lower two andrupﬁéf two rows,
for the two 7 point corners and for the two 4 point corners.“ We
would likeito mention at this point that when subroutine EQUASI
is called the array FT should be initialized to 0. This is
because the subroutine was made to serve an iterative scheme
we are going to describe in Chapter VI. In Appendix V we
list the subroutine CONVOL which carries out the convolution of
f~ with Q in the non-periodic case described in this section.

Q and FTL = f" (an (m+1)x{(n+1) array) as evaluated by EQUASI
together with the dimensions of the spline ID =m -1, JD =n -1

are passed to the subroutine. It returns the spline SPLN as an
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ID x JD x 2 x 15 array. In our experiments we used the functions

£(x,¥) = (1-cos 2mx) (1-cos 2my) (5.5.:2)
and » - ‘
£(x,y) =7 (5.5.3)

In Table 5.2 respectively 5.3 we give the norms L;, L, and

L of thé error between the function (5.5.2) respectively (5.5.3)

and its quasi-intefpolant for two pairs of (m,n).  The error is

computed at the (4xm) x (4xn) points (ZEQ Z%J, .0.5 k < 4m - 1.
0 <& <dn - 1.
Table 5.2
E\Qn m=7,n-=29 m =15, n = 17
P AN : :
-5 -6
L, 0.63000 x 10 0.49587 x 10
L, 0.82900 x 10 0.63170 x 10°°
L 0.35740 x 10 0.25033 x 107>
Table 5.
x\m
Lp-n m=7,n=29 m = 15, = 17
L, 0.21827 x 10 0.15183 x 107"
L, | 0.24188 x 107 | 0.16758 x 107°
L | 0.73887 x 10 0.43018 x 107>




CHAPTER VI

REMARKS ON INTERPOLATION AND -QUASI-INTERPOLATION

6.1 Relation of Quasi-Interpolation to Interpolation

The piecewise quartic iﬁterpolating spline as well as the

quasi-interpolating one, were‘given by
S = Q*f~ (6.1.1)

where Q is the normal basic Quartic spline and £~ was the
solution of f° = f**Q° and f~ = H(f®) reépectively.

In Chapter 5 we noticed that the quasi-interpolation operator
had two strong advantagés over the interpolation one. The first
of these is ease of computation: indeed, there is no large system
of equations to be solved as the operator H is local. The
second advantage is theoretical very strong error estimates
are easy to obtain in the case of quasi-interpolation as was
done.in Section 5.3.

A nqtural question that arises now is the following: can
one start with quasi-interpolation coefficients f~ and improve
to get the interpolation ones? Or at least get an approximation
to them?

Let us consider the function £~ (4.2.5) for interpolation
f~ = [£°"/(20°"/h2V/3)]Y (6.1.2)
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and the corresponding one (5.2.8) for quasi-interpolation which wef

will denote by ff'
£70 = axf° (6.1.3)

where the function a is O _everywhere'eXCept

1

3
a(0) = i

5 and a(ws) = - s=1,2, ..., 6

We also know that
Q0) =+ and QChw ) = =, s =1, 2 6.
2 s 12’ ,.’ y ** >

and is zero everywhere else.

Consider now the discrete Laplacian V2 given by
v2(0) = -4 and VZ(hw ) = % s=1,2, ..., 6 (6.1.4)

and zero everywhere else.

It is clear that

° - 1 4+ Ly2 6.1.5)
8
and
1 o2 ’

a=I-§-_V (6.1.6)
with I being the identity
If we set

E =it (6.1.7)

then (6.1.5) and (6.1.6) become
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Q° =TI +E and a=1 - E (6.1.8)

Equation (6.1.3) now becomes

£ = £« (I-E) (6.1.9)
: ; V3h?2 .
and from equation 4.2.4, letting k = 5 equation (6.1.2) may
be written
f~ = k[£f°"/Q°"]
= £°x(1/Q°~W
= % (1/ (I+E™) (6.1.10)

Now, letting E" = E*En_l, we have

(1/(I+E)") =1 - E + E2 - E3 + ... (6.1.11)

Before we prove the validity of this expansion we notice that f£~!'
is the convolution of £° with the first two terms of the above

series and

£f°x (I-E) + f°x(E2-E3+...)

H
4
1

£51 & £°, (E2-E3+...) (6.1.12)

Another thing that becomes clear from (6.1.11) is the 3-

exactness of the spline interpolant. Indeed, the contribu-

tion of the terms

n 1 _2n
E =—n—v s n=2,3,...

8
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in (6.1.12), when f 1is a polynomial of degree three or less, will
be zero.
The convergence of the series in (6.1.11) can be verified as

follows: First we rewrite it
I -BE+E2-E3 + ... = (I—E)*(I+E2+E”+...).
So, we need prove that the series
I + E2 +E% + ...
converges. We consider the term EZ = ExE. The support of E? is

a hexagon of side 2h, and

21 - 5 1
2 = 2 = - -2 2 =
E (O) - 72) E (hws) 2) E (Zhws) 144)
while at the rest six lattice points of the hexagon E2 takes the
L
72°

Now if we define

value of

E"] = 3 [E"k;|
yeLT
then
2
B =z BP0 |
yeLT

2(n-1
| zE2mEZM D (yoy |
yeLT zeLT

2(1’1—1) [

A

[E2] - |E
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and
5
|Ez| =g
Hence
|T+E2+E%+...| < |1| + |E2] + |E%| +...
ER IR LI
=6
Obviouély
[e™|, < |E7

hence cohvergence of the series at any point yeLT is also trivial.

Now in order to obtain the equality -in (6.1.11) we first note

that
I" =k

because f£f°" = (f°+I)" = %—- f°~ « I". Secondly, if we take the
Fourier transform of the left hand side and multiply by (I+E)"

we get ‘1. Hence, starting with the right hand side we have

[(I+E)* (I-E+E2+...)]"

(I+B) "+ (I-E+E2-E3+...)" = ©

==

Hence the expansion (6.1.11) is valid.
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6.2 An Iterative Scheme for-Interpolation. Algorithm and Numerical

Results.

Our numefical results in Chapter 5 show that quasi-interpolation
is a fairly good approximation to interpolation. From (6.1.12) we
notice that taking more terms in the remaining series and convoluting
them with f£° we will get an even better approximation to interpolation.
Our object now will be to devise an iterative scheme suitable for

computation. The expansion (6.1.11) may be written

I - E+ E2 - E3 +e¢e = (I-E)* (I+E2+E%++.+)

1]

(I-E) + (I-E)*(E2+E3+---)

(I-E) + (I-E)*E2x (I+E2+E3+..+)

(I-E) + (I-E)*E2 + (I-E)*E2%E2% (I+E2+E%+-++)

Thus, the iterative scheme is

fag = £77 HE{ER, 1212, (6.2.1)

with f£j' = £7'.

Moreover, since
Q°*a = I - E2 and f° * a = f~!

the right hand side of (6,2.1) takes.the following form

£~1 + £ 14E? f°xa + £7' - ff'*Qo*a
1 1 1

£77 + (£°-£]'+Q°)xa

f:‘i"-l, + H(fo_fi'*Qo)
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Hence, the iterative scheme may be written

~1 - £ -
fi+1 fi + H(e), 1 1, 2, ... (6.
with
e = f9~f£'*Q° (6.
and
~U - F
fl £,

The implementation of this scheme is fairly straightforward.
We consider the non—periodic'case in order to incorporate the sub-
routine EQUASI described in section 5.5. Our iterative scheme
is being carried out by the subroutine ITERAT displayed in Appendix
VI. The m x n array f° is passed to ITERAT. This subroutine
internally calls subroutine EQUASI.to evaluate £7' ((m+2)x(n+2)
array). f~' ‘is convoluted with Q° and produces an m x n array
which is subtracted from f° to give e according to (6.2.3).
Subroutine EQUASI is called again to evaluate .H(e). The iteration
continues as long as the number of iterations is less than pre-
specified number and the norm j||e|[m remains greater than some
small number (10_8 was used in our experiments).

Using functions (5.5.2) and (5.5.3) we obtain the following
tables 6.1 and 6.2, corresponding to tables 5.2 and 5.3, applying

the above iterative scheme.

[N}
f—

.3)
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Table 6.1
S e
| m=7,19=0 m=15, n = 19
-5 -6
L, 0.24983 - 10 0.10139 x 10
L, | 0.55870 - 107> 0.22747 x 107°
L. | o.sa1858 - 107* | 0.20026 x 107°
Table 6.2
\Eﬁn\, m=7,n=09 m=15, n = 19
RSN
-5 -6
L 0.17767 x 10 0.26304 x 10
L, 0.36487 x 107> 0.33179 x 10°°
L 0.59297 x 102 0.26106 x 107>
Remark. The L_ mnorm in table 6.1 is greater than the

corresponding one in table 5.2. There is a simple reason for that:
As it was expected the largest error in table 5,2 (Norm L_) was
at a point close to the boundary of Q. Then carrying out the
iterative scheme, f{' converges to f~ on the internal lattice
points of Q@ where f~' 1is exact. However, the values of f;‘

on the rest of the lattice points are perturbed. This gave rise

to a higher error on a boundary point (table 6.1). Another reason
is the fact that for the function under consideration the seminorm

|£|, is very large |£]y > 1500.



APPENDTIX I

In this appendik we list the APL function QUARTICSPL which

gives Q (see section 3.2) on all of its support. QABC, QBCD

and QBED are the vectors (3.3.1)'. 1In statement [4] another

function GROUP is_éxecuted. This function creates the matrices

ROT and REF, and we omit it. The four dimeﬁsions of Quartic run

from 0-3, 0-3, 0-1 and 0-14. Following QUARTICSPL we display the

whole Q.

[1]
(2]
[3]
[4]
[5]
[6]
[7]
(8]
(]
[10]
[11]
[12]
[13]
[14]

V QUARTICSPL

QABC<6,0,0,(-12),(-12),8,12,12,8,(-1),(-2),0, (-2), (-1)
QBCD<«0,0,0,0,0,0,2,6,6,2,(-1),(-2),0,(-2),(-1)
QBED<1,(-2),(-4),0,6,6,2,0,(-6),(-4),(-1),(-2),0,2,1
GROUP

QUARTIC+ 4 4 2 15 p0

QUARTIC[2;2;0;]<QABC

QUARTIC[2;2;1;]<0BCD

QUARTIC[2;3;0;]<QBED

QUARTIC[2;1;0; J«QABC+.xROT+ . xREF
QUARTIC[1;1;1;]<QABC
QUARTIC[1;2;1;]«QABC+.xROT+.xREF
QUARTIC[1;2;0;]<QABC+.XREF+.xROT
QUARTIC([2;1;1;]«QABC+.xROT

QUARTIC[2;0;1;]<QBCD+.xROT+, xREF
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[15] QUARTIC[2;0;1;]<QBCD+.

[16] QUARTIC[1;1;0;]<QBCD

[17] QUARTIC[1;3;0;]<QBCD+

[18] QUARTIC[3;1;0;]<«QBCD+.

[19] QUARTIC[3;0;0;]<QBED+

[20] QUARTIC[0;2;0;]<QBED+.
[21] QUARTIC[3;2;0;]<QBED+.
[22] QUARTIC[Z;O;O;]+QBED+.
[23] QUARTIC[0;3;0;]<QBED+.
[24] QUARTIC[1;3;1;]<QBED+.

[25] QUARTIC[3;1;1;]<QBED+.

[26] QUARTIC[1;0;1;]<«QBED

[27] QUARTIC[0;3;1;]<«QBED+

[28] QUARTIC[0;1;1;]<QBED+.

[29] QUARTIC[3;0;1;]<QBED+
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xROT+ . xREF

. XROT+ . xREF

xROT

.XREF+. xROT+ . xREF

xROT
xREF
xROT+ . xREF
xREF+. xROT
xROT+ .xREF

xROT

.XREF+. xROT+.*XREF

xREF

.XREF+ . xROT

QUARTIC
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12
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APPENDIX IT

In this appendix we list the subroutine EVAL used for the
evaluation of Quartic splines. A detailed description of this

subroutine was given in Section 3.3.

SUBROUTINE EVAL(SPL,X.Y,SPXY,ID,JD)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
DIMENSION SPL(ID,JD,2,15)
A=X*1D |
B=Y*JD

1J=1

II=IDINT(A)

JJ=1D1NT(Bj
A2=A-DFLOAT (II)
B2=B-DFLOAT (JJ)

AB=A2+B2

IF (AB.LE.1D0) IJ=0
A1=DABS (DFLOAT (1J)-A2)
B1=DABS (DFLOAT (1J)-B2)

IF (II.LE.O) II=0

IF (II.GE.ID) II=ID-1

IF (JT..E.,0) JJ=0

IF (JJ.GE.JD) JJ=JD-1
K=1I+1

L=JJ+1

M=1J+1
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SPXY=SPL(K,L,M,1)+B1* (SPL(K,L,M,3)+BL* (SPL (K, L,M, 6)+
Bl*(SPL(K,L,M}O)+B1*SPL(K,L,M,iS))))+A1*(SPL(K,L,M,2)+B1*
*(SPL(K,L;M,S)+B1*tSPL(K,L,M,9)+B1*SPL(K,L,M,14))j+A1*(SPL
*(K,L,M,4)+B1*(SPL(K,L,M,S)fBi*SPL(K.L,M,13))+A1*(SPL(K,L,
*M,7);B1*SPL(K,L,M,12)+A1*SPL(K,L,M,11))))
RETURN |

END



APPENDTIX ITT1I

In this appendix we list subroutine CONVOLP used for periodic
interpolation and quasi-interpolation. The description of this

subroutine was given in Section 4.3.

SUBROUTINE CONVOLP(SP,FTIL,Q,ID,JD,IFT,JFT)
REAL*8 SP(ID,JD,2,15) ,FTIL(IFT,JFT) ”
INTEGER Q(4,4,2,15) |
IID=1ID+1
JJID=JD+1
DO 10 I=1,ID
DO 10 J=1,JD
DO 10 K=1,2
DO 10 L=1,15
10 SP(I,J,K,L)=0D0
DO 20 I=1,ID
DO 20 J=1,JD
DO 20 I1=1,4
DO 20 JJ=1,4
IM=MOD (II-(I+2),I1ID)
JM=MOD(JJ—(J+2);JJD)
DO 20 K=1,2
DO 20 L=1,15
20 SP(1,J,K,L)=(FTIL(IM,JM)*Q(II,JJ,K,L))/12+SP(1,J,K,L)
RETURN
END
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APPENDIX 1V

In this appendix we list subroutine EQUASI, It was described: i

almost satisfactorily in section 5.6.

SUBROUTINE EQUASI (FU,FT,IF,JF,IFT,JFT).
IMPLICIT REAL*8(A-H,0-Z),INTEGER*4 (I-N)
DIMENSION FU(IF,JF),FT(IFT,JFT)
DO 310 I=3,IF
DO 310 J=3,JF
310 FT(I,J)=(18%FU(I-1,J-1)-(FU(T,J-1)+FU(T-1,J)+FU(1-2,d)+
*FU (1-2,J-1)+FU(I-1,J-2)+FU(I,J-2)))/12+FT(I,J)

K=1

I11=3
JA=1
JB=2

I1=0

14

1}
&3]

L1=3
L2=1F-1
320 DO 330 I=L1,L2

I1=T1+1
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12=12+1

I4=I4+1}

II=1I+1
FT(II,JB)=(—5*(FU(IZ,K)+FU(I4,K))+26*FU(I,K)+FU(I4,L)+
*FU(Ii,L)+9*(FU(I,L)+FU(12,L))-3*(FU(I,M)+FU(11;M))-10*
*FU(12,M)+2* (FU(I2,N)+FU(I1,N)))/24+FT(11,JB)

330 FT(I1,JA)=(-2* (FU(IT,K)+FU (14,K))+23* (FU(I,K)+FU(12,K))-
*7*(FU(I,L)+FU(11,L))-42*PU(12,L)+17*(FU(Iz,Mj+FU(11,M)j- |
*8*FU(11,N))/12+FT (11,JA)

IF (K-1) 340,340,350

340 K=JF

L=JF-1
M=JF-2
N=JF-3
I1=2
JA=JFT
JB=JFT-1
11=3
12=2
14=0
L1=2
L2=IF-2
GO TO 320
350 K=1

L=2
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M=3

L2=JF-1
360 DO 370 J=L1,L2

J1=J1+1

J4=J4+1

JJ=JJ+1
FT(IB,JJ)=(=5* (FU(K,J2)+FU (K, J4))+26*FU (K,J)+FU(L,J1 FU(L,
*J4)+9% (FU(L,J2)+FU(L,J))-3* (FU(M,J)+FU(M,J1))-10*FU(M,J2)+2
*% (FU(N,J2)+FU(N,J1)))/24+FT(IB,JJ)

370 FT(IA,JJ)=(-2* (FU(K,J1)+FU(K,J4))+23* (FU(K,J)+FU(K,J2))-7*
* (FU(L,J)+FU (L,J1))-42*FU (L,J2)+17* (FU(M,J1)+FU(M,J2))-8*%
*FU(N,J1))/12+FT (IA,JJ)

IF (K-1) 380,380,390

380 K=IF

L=IF-1
M=IF-2

N=IF-3



390

400

JJ=2
IA=IFT
IB=1IFT-1
J1=3
J2=2
J4=0
L1=2
L2=JF-2
GO TO 360
K=1

I1=1
12=2
13=3
14=4

J1=1

M=2
A=FU(I1,J1)
B=FU(I1,J2)
C=FU(11,J3)
D=FU(I1,J4)

E=FU(I2,J1)
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F=FU(12,J2)

G=FU (12,J3)

H=FU(IS,J11

0=FU(I13,J2)

P=FU(I4,Ji)

FT(I1+L,J1+M)=(8*A+39*B-S*C—29*E—30*F+3*G+27*H+7%0-8*P)/12+
*FT(I1+L,J1+M)

FT(I1+L,J1+K)=(42*A+7*B-9*%C+2*D-63*E+6*F+G+37*H-3*0-8*P) /12+
*FT(I1+L,J1+K)

FT(I1+K,J1+M)=(—2*A+13*B~3*C+3*E+6*F+G-5*H—3*O+2*P)/12+FT
*(I1+K,J1+M)

FT(11+K,J1+K)=(8*A+5*B—7*C+2*D+5*E+6*F—G—7*H—O+2*P)/12+FT»
*(I1+K,J1+K)

FT(I1+K,J1+L)=(42%*A-63%B+37*C-8*D+7*E+6*F-3*G-9*H+0+2*P)/12+
~*FT(I1+K,J1+L)

FT (I1+M,J1+K)=(-2*A+3*B-5*C+2*D+13*E+6*F-3* (G+H)+0)/12+FT (I1+
*M,J1+K)

FT(I1+M,J1+L)=(8*A-29*B+27*C-8*D+39*E-30*F+7*G-5*H+3*0)/12+
*ET(I1+M,J1+L)

IF (M) 420,420,410

410 I1=IF

J1=JF

12=1F-1

J2=JF-1

I13=1F-2



420

430

J3=JF-2
14=1F-3
J4=JF-3
M=0

L=2

GO TO 400
I1=IF
Ji=1
J2=2
12=IF-1
13=1F-2

J3

It

3

I4=1F-3

A=FU(I1,J1)
B=FU(I2,J1)
C=FU(13,J1)
D=FU(I4,J1)
E=FU(I2,J2)
F=FU(I3,J2)
G=FU(14,J2)
H=FU(13,J3)

0=FU(14,J3)
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P=FU(14,J4)
Q=FU(I1,J2)
R=FU(I1,33)
S=FU(11,J4)
T=FU(12,J3)
U=FU(12,J4)
V=FU(13,J4)
FT(11+K,J1+K)=(16*A+5*(B+Q)+10*E-7*(c+Rj+6*(F+T)-14*H+2*(
*D+S)+4*P—(G+O+U+V))/24+FT(Il+K,J1+K)r
FT(11+K,J1+L)=(8*A+39*B-s*c-ég*Eu30*?+3*G+27*H+7*0-8*p)/12+
*FT (I11+K,J1+L)
FT(Il+M,J1+K)=(8*A+39*Q—5*R—29*E—30*T+3*U+27*H+7*V—8*P)/12+
*FT(11+M,J1+K)
FT (I11+M,J1+L)=(84*A+7* (B+Q) -126*E-9% (C+R)+6* (F+T)+74*H+2*
* (D+S) +G+U-3* (0+V) -16*P) /24+FT (I1+M,J1+L)
IF (M) 450,450,440
I1=1
J1=JF
12=2
J2=JF-1
13=3
J3=JF-2
T4=4

J4=JF-3



M=0
GO TO 430

450 FT(1,1)=0D0
FT(IFT,JFT)=0D0
RETURN

END
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APPENDTIX \Y

Here we list the version of the CONVOL subroutine which we

used in the non-periodic case of interpolation and quasi-inter-

polation. This is much more polished than the one we listed in

Appendix III. It is easier to program convolution thinking of

Q as having recténgular support. However, this introduces

umeccessary computation which we avoided here.

500

510

‘520

530

SUBROUTINE CONVOL (SPLN,FTL,IQ, ID,JD, IFT,JFT)
IMPLICIT REAL*S(A-H,0-7),INTEGER*4 (I-N)

DIMENSION SPLN(ID,JD,2,15),FTL(IFT,JFT),IQ(4,4,2,15)
DO 570 K=1,2

DO 570 IB=1,4

JL=MAXO(1,5- (IB+K))

JU=MINO (4,8~ (IB+K))

DO 570 JB=JL,JU

IF ((IB.EQ.1).AND.(JB.EQ.JL)) GO TO 530

IF ((IB.EQ.4).AND.(JB.EQ.JU)) GO TO 550

DO 520 I=1,1ID

DO 520 J=1,JD

ITL=T+4-TB

JTL=J+4-JB

DO 520 L=1,15
SPLN(I,J,K,L)=FTL(ITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L)
GO TO 570

DO 540 I=1,ID
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ITL=I+4-1B
DO 540 J=1,JD
JTL=J+4-JB
DO 540 L=1,15
540 SPLN(I,J,K,L)=FTL(ITL,JTL)*IQ(IB,JB,K,L)
GO TO 570
550 DO 560 I=1,ID
ITL=1+4-IB
DO 560 J=1,JD
JTL=J+4-JB
DO 560 L=1,15
560 SPLN(I,J,K,L)=(FTL(ITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L))/12
570 CONTINUE
RETURN

END



APPENDTIX VI

VIn this appendix we list subroutine ITERAT. The input of"
this subroutine is FI = f° with its dimensions IF and JE.
FTI = £~ with dimensions IFT and JFT 1is returned. ‘Subroutine
EQUASI is called once to give the initial f£~'. If the number of
iterations ITN is specified to be 0, 7' is returned. Otherwise
using ERR = e as was described in 6.2 we iterate to.gét a better

approximation to f7.

SUBROUTINE ITERAT (FI,FTI,ERR,IF,JF,IFT,JFT,ITN)
IMPLICIT REAL*S(A-H,0-Z), INTEGER*4 (I-N)
DIMENSION FI (IF,JF),FTI(IFT,JFT),ERR(IF,JF)
K=0
CALL EQUASI (FI,FTI,IF,JF,IFT,JFT)

100 K=K+1 B
IF (ITN-K) 140,110,110

110 DO 120 I=1,IF
DO 120 J=1,JF

120 ERR(I,J)=FI(I,J)-(6*FTI(I+1,J+1)+FTI(I+1,J+2)+FTI(I,J+2)+
FTI(I,J+1)+FTI(I+1,J)+FTI(I+2,J+1))/12
AINF=0DO
DO 130 I=1,IF
DO 130 J=1,JF
E=DABS (ERR (I,J))

130 AINF=DMAX1 (AINF,E)
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IF (AINF.LE.1D-8) GO TO 140
CALL EQUASI (ERR,FTI,IF,JF,IFT,JFT)
GO TO 100

140 RETURN

END
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