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ABSTRACT 

This thesis is a study of the applications of Regular Triangular 

Splines to the bivariate approximation problem. Our primary interest 

will concern the numerical approximation of functions in two variables, 

and implementation of the mathematical theories as working programs on 

high speed computers. 

Chapter I contains background information on the history and dev- 

elopment of bivariate (multivariate) approximation theory. Chapter II 

contains the statement of the specific problems we are concerned with 

in this thesis. 

In Chapter III we present the major ideas related to triangular 

splines. A convenient coordinate system called barycentric coordinates 

4 2 
is introduced as well as the basic element of the space of 

quartic Splines. 

In Chapter IV we consider the problem of transfoririing the theory 

of triangular spline Interpolation, as developed by Professor P. 

Frederickson, to a working computer program. An algorithm is given 

and numerical results of its use when applied to certain functions. 

Chapter V contains a Quasi-interpolation scheme using triangular 

splines, an error analysis of it and numerical results of its imple- 

mentation. Treating this scheme we were confronted with the extra- 

polation problem. Consequently, we discuss certain extrapolation 

schemes. 

Finally, Chapter VI contains some remarks on interpolation and 

quasi-interpolation and another algorithm for interpolation is pre- 

sented. 
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C H A P TER I 

HISTORICAL SURVEY 

1.1 The Bivariate Interpolation Problem 

The problem of the numerical approximation of functions in two 

variables (or more) is relatively new compared to the corresponding 

one for one variable. Except for certain direct generalizations of 

the latter case it was only during the past two or three decades that 

a considerable degree of development took place. There are several 

reasons why the development of this problem was delayed. In our 

opinion the following two are the major ones. 

A. Size of the problem. The size of the problem increases 

for two dimensions essentially from the computational point of view. 

Roughly we would say that the size of the bivariate problem is n^ 

where the corresponding one dimensional problem is of size n. If, 

for example, we think of f(x) as a smooth and well behaved function 

when it is adequately approximated by a polynomial of degree 99, with 

100 coefficients, then we must consider f(x,y) as smooth and well 

behaved when it is approximated by a polynomial of degree 99 in each 

variable, which requires 10,000 coefficients. Obviously, in the 

latter case we are confronted with a tremendous problem as far as 

handling 10,000 coefficients is concerned. Besides, the determination 

of these coefficients requires the inversion of a 100 by 100 matrix 

1 
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in the line case, but a 10,000 by 10,000 matrix in the two dimen- 

sional case. It is only recently, with the development of high- 

speed computers, with their huge storage capacity, that it has 

been feasible for numerical analysts to attempt these problems. 

B. Variety of regions. In the univariate case we have, 

when practical algorithms are under considerations, exactly one 

region to consider, the finite interval. It has exactly two bound- 

ary points. In the bivariate case, though, we have a great variety 

of regions and boundaries. The contrast is even stronger when we 

consider the points at which information about the function f 

is given. In the one dimensional case these points divide the 

interval into subintervals, for they are simply ordered. In the 

two dimensional case a wide variety of patterns might be considered, 

and it is not obvious which is optimal. The problem of construction 

of approximating formulas, as well as the problem of finding error 

estimates or convenient expressions for remainders of approximating 

formulas, becomes much more difficult with the variety of regions. 

In the next section we establish some notation to be used in 

the rest of this paper. Section 1.3 contains a selection of classi- 

cal bivariate approximation methods, most of which are extensions 

of the corresponding one dimensional methods. Sections 1.4 through 

1.6 discuss briefly several approximation methods developed during 

the past decade or so, almost exclusively with the use of piece- 

wise polynomial functions (splines). 
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1.2 Notation 

We will be concerned with the approximation of a continuous 

real valued function defined on a bounded domain in with 

boundary 8^2. For simplicity we will assume that is a subset 

of the square [0,1] x [0,1]. If a = (k,£) is a 2-tuple with non- 

negative integer components we define the differential operator 

8x 
(1.2.1) 

with |a| = k + f.. 

We will denote by (fi) the space of all functions f 

such that D ' exists and is continuous for all 0 < k < m, 

0<t<ji; and by (S2) the space of all functions f such that 

D^f exists and is continuous for all a, |a| < s, on the set Q. 

Denote by space of polynomials of degree not exceeding 

m in x and n in y; and by the space of polynomials of 

k+1 
degree k in x,y. Thus f e P^(^2) if and only if f e C (fi) 

and D°^f = 0 if |a|=k + 1. 

The notion of approximation becomes precise only when we 

establish a measure of deviation of the approximating function from 

the given function. This measure of deviation is required to satisfy 

the properties of norm. We assume that the reader is familiar with 

the basic theory of normed linear spaces, finitely or infinitely 

dimensioned. We will denote by Lp(Q), p > 1 the completion of 

the space C(Q) under the norm ||*||p defined as follows 
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i |f| L = C//(f(x,y))P)^''P, 1 < p < «. (1.2.2) 

and 

I|f|1^ = X.u.b|f{x,y)| (1.2.3) 

(x,y) £ Q 

s Use will also be made of the Sobolev space 

s completion of the space C under the norm 
'p,s 

P,s ^ riD“fi I , 1 s p s 
|a|<s P 

This is the 

defined by 

(1.2.4X 

1.3 Classical Bivariate Approximation Methods 

The most familiar example of bivariate approximation is of 

course the first (m+1) x (m+2)/2 terms in the Taylor expansion 

of f(x,y) about (xo,yo)* That is, for every function f defined 

TIl'^" 1 on an open and convex set with f £ C and (xo,yo), (x,y) £ 

we have 

f(x,y) = f(xo,yo3 + 
l<k+f.<m 

(xo ,yo) 
(X-XQ)^ (y-yo)^ 

k! u 
+ R m Cl.3.1) 

where is the remainder of the approximation and is bounded by 

sup I 
k+£=m-*-l 

CO 
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with (C,n) situated on the line joining (xo,yo) to (x,y), 

[26, 16.5.1]. However, there are certain disadvantages to this method. 

It is hard, for example, to obtain satisfactory error estimates for 

the remainder expression. If f has partial derivatives of all 

orders on ^2 then the Taylor’s series 

may fail to converge for any (x,y) other than (xo,yo). Even if 

the series does converge for a particular (x,y), then it still may 

be that the series (1.3.1)’ does not converge to the value f(x,y). 

A well known example of such a function is 

Partial derivatives of all orders are continuous everywhere, but at 

the point (0,0) all vanish. 

In contrast to the Taylor theorem, the well known Weierstrass 

approximation theorem assures us we can approximate uniformly functions 

which are merely continuous. This theorem holds for functions in n 

variables [29, theorem 8]. We will state it for the bivariate case. 

Theorem (Weierstrass). If Q is closed and bounded and f e C(^2), 

then for every e > 0 there exist m = m(e), n = n(e) and a poly- 

f(xo,yo) + ^ H^"'^^f(xo,yo) 
i<k+f 

k! ~~n 
(1.3.1) 

f(x,y) = exp(-l/(x2+y2)) 

nownriat pep such that 

(1.3.3) 
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If ^ is the space [0,1] x [0,1], then the generalized 

Bernstein polynomials are given by 

111 II 

Cx,y) = Z I (“)(")fC 

k=o £=0 

m n 

P 
m ,n 

(1.3.4) 

The proof is almost the same as in the one dimensional case [30, 

Theorem 2.1]. 

Stancu [35, Section 8] presents a simple expression for the re- 

mainder of the approximation of f by Bernstein's polynomials (1.3.4), 

for some point (Cjh) e 

The problem of interpolation appears to present a larger variety 

of treatment. The most commonly used methods for deriving polynomial 

interpolation formulas are those of extending to two variables the 

formulas of Newton, Lagrange, Bessel, Everett, etc., in which forward, 

central and backward differences are used. 

Let us, for example, generate the Newton's interpolation formula 

with divided differences when the data points are arranged at the 

when and are continuous on He 

proves that the remainder in this case is given by 

R(f) 

(1.3.5) 
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j = 0,1, ..., n} [36, Section 19]. The divided difference with 

respect to x, formed with the arguments XQ, x^, ..., x^^, and with 

respect to y, formed with the arguments yo, yi, ..., y^ is of the 

order k + Z and we denote it by 

fj^^ = f(xo, xi, x^; yo, Xi, ».., y^) . 

We also write 

Xk(x) = Cx-xo3*’^*(x-x^_j); Y^(y) = Cy-yo];*-(y-y£^j) 

with XQ = YQ = 1. 

For fixed y applying Newton^s one dimensional formula we get 

m 
f(x,y> = Z X (x)f(xo,xi 

k=0 
v>x^;y) \+iWfCx,xo 

and by the same formula 

f(xo,Xi,...,x^;y) = Z Y^(y)f^^ + 
1=0 

kl .\;yryo 

so that 

f(x,y) = p(x,y) + R (1.3.6) 

m n 
where p(x,y) = Z Z X, (x)Y«(y)f, « is the interpolating polynomial 

k=0 1=0 

and R the remainder, given 

Yj,+iCy)f(x: yo./i.•••./„.y) 

- \+l WYn^^Cy)f(x,xo,... ,x^; y ,yo, ■ ■. .Yj^} (1.3.7) 
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It is easy to see that p(x,y) interpolates £(x,y). For if Cx^,yj), 

0 < i < m, 0 < j < n, is one of the data points then R = 0 since 

X ,(Xi) = Y -(y.) “ 0. We also have m+I^ n+1 3 ; 

m n 

p(x. ,y.) = ^ X, (X )Y„(y )£,^ 
1 J k=o -e=o ^ ^ 

n m 
Z Y„(y ) E X. (X )f . 
1=0 ^ ^ k=0 ^ 

n 

^ Y„(y.)f(x ; yo,yi,-.-,yp) 
1=0 

= f(x..y.). 

Similarly one can obtain the other kinds of polynomial interpolating 

formulas. 

Approximation of periodic functions in two variables is also 

an easy extension. The idea is to approximate f by trigonometric 

polynomials in each variable. If f(x,y) is a periodic continuous 

function of period 2TT in both variables, then, given any e > 0, 

there exist m = n(e), n = n(e) and a trigonometric polynomial 

T (x,y) such that 

l|f(x,y) - j,(x,y)U^ < e (1.3.8) 

[28, p. 87]. 

The theoretical development of least-squares techniques encounters 

no difficulty when extended to functions of two or more variables. 



Theorems related to such techniques hav0 been proved in even more 

general spaces [16, Chapter I]. 

Let f(x,y) be a function defined on [-1,1] x [T-1,1] . We 

consider [16] sets of functions {g^ (x) i = 1, 2, .. ., m} , 

th.(y), j = 1, 2, n} and tensor products of them {g.h., 
J T J 

1 < i < m, 1 < j 5 n}. It is easily proved [31] that if {g^} 

and {h.} are orthonormal sets of functions so are {g.h.}. We now 

consider an approximation of f by the linear form 

m n 
L{f) = 2: Z a. .g. (x)h. Cy) 

i=l j=I 13 1 
(1.3 

with the functionals a^^ to be determined so that ||f-L(f)||2 

is minimized. Although this extension is theoretically easy, 

difficulties arise when one attempts to compute the coefficients 

a., in order to evaluate L(fl. 
13 

In methods discussed so far, the extension of the approximation 

theory from the one dimensional case to the bivariate one presents 

no major theoretical difficulties. However, the generalization of 

the Tchebycheff theory to functions of more than one variable fails 

to follow this pattern. The basic problem is that there are no 

Tchebycheff sets of functions of more than one variable. Hence, by 

the absence of these the bivariate Tchebycheff theory is consider- 

ably changed. 

The existence of best Tchebycheff approximations is easy to 

prove. However, these may not be uniquely determined. 
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More on multivariate Tchebycheff approximation can be found in 

the work of Rice [31], [32] . 

During the past two decades many numerical analysts interested 

in approximation problems were attracted by spline functions. A 

spline [24] is a mechanical device, used by draftsmen to draw a 

smooth curve, consisting of a strip or rod of some flexible material 

constrained to pass through specified points. The mathematical spline 

is a piecewise polynomial of degree n with continuous (n-l)st 

derivative. We are all familiar with linear splines (i.e. broken 

line joining tabular points) which are inefficient for approximation 

problems. Cubic splines (n=3) are closely related to the drafts- 

man's spline and are the simplest ones for which good results have 

been obtained. 

Consider the partitioned interval [XQ,XJ^] 

1.4 Piecewise Polynomial Approximation Methods 

with the following set of ordinates prescribed 

yo. yi. 

We seek a function C(x) e C^[xo,Xj^] such that 

C(Xi) = y^, i 0, 1 • • • > N 

and G coincides with a cubic in each subinterval [x. ,,x.]. We 
1-1 
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write C"(x^) = . Then from the linearity of the second derivative 

on i = 1, 2, , N we get 

C»'(x) M. 
1 

x-x 
i-1 

Cl.4.1) 

where h. = x. - x., 
1 1 1-1 

Integrating twice (1.4.1), we obtain 

(x.-x)^ (x-x. T)^ M. ^h? X,-X 
-v w 1 1-1 . 1-1 1. 1 

C (x) = M.   + M.  7-r  + (y. T - —7 ) -i:— 
1-1 6h. 1 6h. *^1-1 6 h. 

M.h? x-x. , 
, 1 1-1 

" ^ -h— 
(1.4.2) 

This is the cubic spline on the interval [x^ ^,x^]. The quantities 

, i = 0, 1, N can be easily evaluated [see 1, Chapter 21] 

from continuity conditions of C, C, and C" on the mesh points, 

and additional end conditions. 

Cubic splines have been extensively studied during the past two 

decades as well as generalizations of them. Most of this material 

has been standardized [1], [24] and [33]. Shumaker's recent biblio- 

graphy on applications, generalizations or extensions of cubic splines, 

is a list of more than 800 references. 

The theory of splines has also been extended to several dimensions. 

The extension to bicubic splines was initiated by Birkhoff and 

Garabedian [5] and elaborated upon by deBoor [9] and Ahlberg, Nilson, 

Walsh [1]. If f is a function given together with its normal 
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derivative on the boundary of a rectangular domain in the 

[x,y)-plane and values of f are also given on a rectangular grid 

of points (x., y.)> 1 < i $ m, 1 < j < n, the authors in [5] 

succeed in fitting a smooth and analytically simple surface inside 

each rectangle R..:x. , < x < x., y. ^ < y < y.. The edges of 
^ ij i-1 i "^3-l j 

the rectangles are pieces of one dimensional cubic splines 

f(x^,y) and f(x,y^) passing through the given points, along the 

coordinate lines x = x., y = y.. 
1 J 

However, the first truly successful extension was made by 

deBoor [9]. He proved both the existence and uniqueness of certain 

bicubic splines of interpolation. Tliese are tensor products of one 

dimensional cubic splines d) (x3 , ip (y) . r - m ’ n ^ 

I J 
Z Z 

m=0 n=0 
6 (p (x)ijj (y) 
mn m ^^n^ 

(1.4.3) 

Now given the values 

f. . 
ij 

i=0,l, j=0, 1, ...,J, 

13 
i=0, I; j=0,l, ...,J, 

i=0, 1, j=0,J, 

(1.4.4) 

s. . = D^^’^^f(x.y.) 
ij ^1^3 

i = 0, I; j = 0, J 

the author proves (Theorem 2) that there exists exactly one bicubic 

spline f(x,y) of the form (1.4.3) which satisfies (1.4.4). 
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The bicubic spline interpolation scheme of deBoor, described 

above, has become the classic scheme for rectangular regions. Carlson 

and Hall in a series of three recent papers [11], [12] and [13] treat 

the same problem in more general rectangular polygons, right triangles 

and L-shaped domains respectively. They also give sharp error bounds, 

the best known so far. The main result proved in the first of them 

is the following: Let (R,TT) be a uniformly partitioned rectangle 

such that each mesh line contains an even number of mesh points. 

Assume that the values (1.4.4) are given. Then there exists a func- 

2 
tion e SX(R,7T), the space of bicubic splines over (R,ir) , such 

that 

I iD^k,^) (V^_f^ I 1^ = , 0 < k, I ^ 2 (1.4.3) 

and 

o(r,s)^^ = 

at the respective values and points specified in (1.4.4). 

Analogous results are proved in [12] and [13]. 

1.5 Blending-function Approximation Techniques 

Another family of methods for bivariate interpolation is that 

treated in [6], [7], [20], [21], [22], [23], etc. This is inter- 

polation on curve networks; i.e. these methods interpolate to func- 

tions given along mesh lines. They are usually referred to as 
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’■blending-function" techniques. The first work in this direction was 

done by Coons. Forest elaborated on it and Gordon extended and gen- 

eralized it. Coon^s "patch surface" methods solve the following 

problem: Given the values of the p - 1 normal derivatives, for 

any fixed integer p, along the four edges of the unit square con- 

struct a surface which interpolates all of these conditions. Birkhoff 

and Gordon [7] characterized these surfaces by proving the following 

result: The Coon's surface V(x,y) which interpolates f(x,y) and 

gP-lf 
the first p - 1 normal derivatives ^ on the boundary of 

[0,1] X [0,1] is the unique solution to the generalized "draftsman's" 

equation 

j^(2p,2p) ^ 0 (1.5.1) 

It is understood that Coon's blending-techniques are local in the 

sense that interpolation on larger networks is obtained by joining 

surface patches. 

In contrast to these, Gordon [23] presents blending function 

schemes which are global. The blending functions in this case are 

two sets of functions 

^j=0 

which play the role of blending together the various curves compris- 

ing the network. The following main result (Theorem 3.1) is proved 

in [23]. 
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M 
Let F(x,y) be an arbitrary bivariate function and 

4'.-(y) be two families of blending functions such that 

if k ^ i 

if k = i 

i f ^ j 

if f = j 

Then the function V(x,y) given by 

M . M M N 
V(x,y) = E f(x ,y)4) (x) + E f(x,y )i|;. (y) - E E f(x ,y.)(j) (x)iij (y) 

i=0 ^ ^ j=0 ^ ^ i=0 j=0 

J j 

fO 

u 

0 

(1.5.2) 

interpolates f(x,y) along the lines x = x^ (i = 0, 1, ..., M) 

and y = y^ (j = 0, 1, ..., N). 

This method has been applied by General Motors for the construc- 

tion of dies for auto bodies. 

Barnhill, Birkhoff and Gordon [6] give another blending scheme 

treating the interpolation problem of constructing a smooth function 

which assumes given boundary values and derivatives on the edges of 

a triangle T. This scheme is built up from projectors which 

interpolate in the x, y, z - space between parallels to the ith 

side of T. Additionally for any values p = 1, 2, ... the inter- 

polating function f(p^)f interpolates to f e C^^(T) and to the 

first p - 1 derivatives of f, and if f e C ^(T) the error of 
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approximation is of order 0(h^^), when h is the diameter of 

T. 

1.6 Other Bivariate Approximation Methods 

In this section we consider interpolation formulae which are 

particularly useful in the variational solution of boundary value 

problems. 

Birkhoff, Schultz and Varga [8] present a general theory of 

Hermite interpolation on a rectangle. They obtain sharp errors 

for derivatives of interpolation errors for functions in one vari- 

able and extend these results to bivariate functions defined on 

rectangular domains R. The interpolated functions f belong to 

the space 

sP^^(R) = {f (x,y) e (R) , 0 < i < p; e C®(R), 

0 < i + j < p} 

If P2^ ^ piecewise Hermite Interpolate of f(x,y) e 

p r 
, p > 2m and p = IT x TT’ a partition of R, with TT = 

max{TT, IT ’ } , they prove that 

(f-pP 
2m-1,2m 

. I ! 2m-k-f _l) I 1^ < KCTT) (1.6.1) 

for all 0<k, Z < m with 0<k + f<2m-l, K some constant. 

Zlamal [38], [39] proved interpolation theorems on a triangle 

for polynomials of the second, third and fifth degree. He considers 
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all triangulations of the domain 0. and he proves that given 6 

values at the vertices of the triangle and the mid points of its 

sides, there exists a quadratic polynomial 

p[x,y) = ai + U2X + a3y + a^x^ + asxy + aey^ (1.6.2) 

assuming the above given values at the corresponding points, which 

is uniquely determined. Constructing such polynomials for each 

triangle it turns out that we obtain a continuous and piecewise 

differentiable function. For cubic interpolation formulae he assumes 

10 values to be given on each triangle. The values of the function 

and its first derivatives at the three vertices and as tenth the 

value of f at the center of mass of the triangle. 

Zenisek [37] generalizes the above methods to higher degree 

interpolating polynomials. 

Many other papers were written with significant results in 

this direction during the past few years and many others are still 

appearing in the literature. We single out Hall [25] and Babuska 

[2], [3] and [4]. 



CHAPTER II 

NOTATION AND PROBLEM FORMULATION 

Introduction. In the bicubic Interpolation scheme developed by 

deBoor, the rectangulation of the domain under discussion is of 

significant importance as bicubic splines have rectangular domains 

of definition. In our case, of Triangular Splines, triangulations 

and triangles are the basic elements of the discussion. The next 

section contains definitions regarding these notions, as we recall 

them from [18] , and leading to the statement of our problem. 

2.1 Notation and Definitions 

Definition 2.1.1 

By a triangulation of the plane we mean a covering of the plane 

by arbitrary triangles such that the open triangles are disjoint, 

the union of closed triangles is the plane and any two adjacent 

triangles have a common side. 

We will denote by T^(R^) the set of all tri angulations of 

the plane. 

Definition 2.1.2 

By a regular triangulation T e T(R2) we mean a triangulation 

of the plane which is invariant under any translation of the plane 

which takes one vertex into another. The restriction of T to 

18 
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r<: = [0,1] X [0,1] will be a regular triangulation of U if the 

boundary of Q does not intersect any open triangle of T. 

Consider now a uniform partition of [0,1] of mesh h. This 

will give rise to a square mesh in [see Fig. 2.1, a] which to- 

gether with the indicated diagonals of the subsquares gives rise 

to a regular triangulation of We denote this by if 1/h = 

n. In Fig. 2.1, b we have a different mesh size on each axis. 

We denote by ^ this triangulation if we have m respectively 

n subintervals in the x respectively y axis 

Fig. 2.1 

We are especially interested in regular triangulations in which 

every triangle is equilateral [see Fig. 2.1, c] because most of our 

computations are simplified. In this case the square domain takes 

the form of a skewed parallelogram. 
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UTien we speak of a triangulation T in the rest of this paper 

we mean a regular triangulation. We will also denote by the 

set of vertices of all the triangles of the. triangulation T. 

Definition 2.1.5 

Let T be a triangulation of We denote by the 

set of all functions f such that 

^ c(i^) , 0 < i < q 

and f e on each open triangle of T. Any function in 

will be referred to as a regutar tv'tongutar spl'ine, 

4 2 
In this paper we will exclusively work with the space S ^ , 

referring to its elements as quartic splines. 

Definition 2.1.4 

An element B of S^’^(T) is called a normal basic spline if 

it has compact support and 

E B(x,y) = 1 
(x,y)eL^ 

We define the convolution b*g of any real-valued function g 

defined on with b, a function defined in by the equation 

(b*g)(xi,X2) = E b(xi-yi,X2-y2)g(yi,72) (2.1.1) 
(7l,72)eL^ 

We recall one more definition from [18]. 
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Definition 2.1.5 

We say that the normal basic spline B e n > 1, q > 0 

is k-exact if B*g is in whenever g is the restriction to 

L„ of an element of P, . 
T k 

2.2 Problem Formulation 

The questions we are concerned with in this thesis are inter- 

polation and quasi-interpolation, using triangular splines. 

The periodic interpolation problem was treated by P. Frederickson 

[18]. Existence and under additional conditions uniqueness theorems 

were proved and error bounds were given. 

We are interested in constructing and carrying out an algorithm 

which solves the above problem; i.e. given the function f defined 

in and periodic, with period 1 in both variables and the space 

S^^^(T) , Tj^ a triangulation of fi, find a spline s e S^’^(T) 

which interpolates f on 

In Chapter V a local approximation scheme is introduced called 

quasi-interpolation. This scheme is defined so as to be of the same 

order of approximation as interpolation is. 

We are concerned first in doing an error analysis of this scheme 

and next in constructing and carryirg out an algorithm that solves it. 

Subsequently, the previous considerations led to the natural problem 

of seeking the existence of any relation between interpolation and 

quasi-interpolation. This was done in Chapter VI. 



22 

Since most of our work was the construction and application of 

algorithms we found it a necessary part of our problem, to introduce 

ideas and convenient ways of bridging the gap between theoretic 

developments and actual computation. This is done in Chapter III. 

P. Frederickson [18] introduced most of these ideas, but only to an 

extent that served his theoretical development. 



CHAPTER III 

COORDINATE SYSTEM, NORMAL BASIC QUARTIC 

3.1 Barycentric coordinates 

As it will become clear in the rest of this thesis, the most 

convenient coordinate system associated with T^, in describing 

triangular splines and computations involving them, is the bary- 

centric coordinate system. By barycentric coordinates for the tri- 

angle with vertices A, B and C we mean the three affine functions 

a, 3 and y defined by 

a(A) = 3(B) = Y(C) = 1 (3.1.1) 

and 

a(BC) = 3(AC) = Y(AB) = 0 

i.e. each takes the value 1 at one vertex and vanishes on the opposite 

side, 

It is obvious now that 

a+3+Y=l (5.1.2) 

holds at the three vertices of the triangle. Therefore it holds at 

every point of the triangle. Consequently, this identity reduces 

the number of the three functions a, 3 and y required to deter- 

mine any point on the triangle ABC to only two of them. 

23 
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In order to see how the barycentric coordinates facilitate the 

treatment of triangular splines we must consider them in connection 

with a global coordinate system. Let, as in Fig. 3.1, x, y be the 

global coordinate system in such a way that two of the sides of the 

equilateral triangles constituting the regular triangulation Tj^, 

h = ^ of the domain under consideration, are parallel to x, 

y. Let also 

.12 3 
y = 0. y = —y = —vy = — ^ ^ n n n X 

7 
1 

P(x,y) be a point in the triangle ABC. Consider now the numbers 

i = [nx], j = [ny] (3.1.3) 

with [•] denoting the integer part function. It is easy to see 

that the point (^, ^) is A, and the barycentric coordinates of the 

point P in ABC are 

Y = nx - i 

3 = ny - j (3.1.4) 

- nx - ny + i + j and ot = 1 
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If the point P(x,y) is in the triangle BCD its barycentric co- 

ordinates are 

and 

3 = 1 - (nx-i) 

Y = 1 - (ny-j) 

6=nx + ny-i-j -1 

(3.1.5) 

Consider now the integer 

k = [nx+ny-i-j] (3.1.6) 

which indicates on which of the two above triangles the point P 

lies. If k = 0 respectively 1 the point is in the triangle ABC 

respectively BCD. 

From the above discussion we conclude the following: Given a 

point (x,y) on Q' there is a triangle with vertices 

(■ 
i + 1 
n 

and 
.i+k i+k. 

where the point lies, with i, j and k given by (3.1.3) and 

(3.1.6). Additionally if k = 0 respectively k = 1 its barycentric 

coordiantes on the triangle it belongs to are given by (3.1.4) respective- 

ly by (3.1.5), The barycentric coordinate y in (3.1.4) and B in 

(3.1.5) are given as functions only of x. We define 

^nx - i if k = 0 

Ll - (nx-i) if k = 1 
u (3.1.7) 
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and similarly 

fny - j 

\,1 - (ny-j) 

if k = 0 

if k = 1 
(3.1.8) 

The pair (u,v) provides two of the barycentric coordinates of the 

point (x,y) in the triangle it belongs. We will refer to these 

two as the basic haTycentrio coordinates. 

Let us now consider a triangular spline f e and defined 

on Q* f is a piecewise polynomial and f e on each triangle. 

Thus f will have an expression of the form 

f Cx,y) 

I 
E 

t=0 

t 

sfo 

t-s 
X 

s 
y (3.1.9) 

on each triangle. Using the basic barycentric coordinates of each 

triangle (3.1.7) and (3.1.8) the spline can be given by the unique 

expression 

f’(u,v) 
I t 
E E 

t=0 s=0 
^s+t (t+l)/2 

t-s s 
U V (3.1.9)’ 

on each triangle. For computation purposes we employ the following 

notation of the spline: We think of it as a four dimensional array 

F such that 

= C^o >ai ,a2,. . . (3.1.10) 

with C^oj5^(f+1)(f+2)/2^ vector of the coefficients of the 

expression (3.1.9)' when the spline f is given by that expression 

on the triangle specified by the triple of integers (i,j,k) given 
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by (5.1.3) and (3.1.6). It is clear now that 

£V(u,v) = FCi,j,k,-)-\^^ (3.1.11) 

where (for f. = 4) 

^ = (l,u,v,u^,uv,v^,u^,u^v,uv^,v^,u^,u^v,u^v^,uv^,v^) (5.1.12) 

For later reference we derive here the formulas that give the first 

and second normal derivative of the function f(a,3,Y) defined on 

the equilateral triangle ABC of side h (see fig. 3.2). For the 

normal derivative of the function £ along any side we have 

M. 
9n 

But along the side BC 

9g 
9n 

Hence 

9f 9g 9f 9B 9f 9y 
9^ 9n W ^ 97^ * 

2 93 _ 9Y _ 1 

/3h V3h ‘ 

y 

9f ^ 2 , 9f 1 9f 1 9f 
9n 9g 2 93 2 9Y^ 

(5.1.13) 

Using these formulas we can get 

the second normal derivative along 

the side BC 

9^f 4 1 1 1 1   =   [  + 2" +     -   + j 

an^ 3h2 ^ ^ ay^ aa33 aaay ^ aaav 
(3,1.14) 
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Clearly now, interchanging the role of a, B respectively a, y we 

can obtain the normal derivatives along the side AG respectively AB. 

3.2 The Basic Quartic Spline 

In this section we present the basic quartic spline. Since our 

subsequent work involves exclusively quartic splines a good understand- 

ing of this section is suggested. 

Let be a regular triangulation of consisting of equi- 

lateral triangles, as in Fig. 2.1.c. The basic quartic spline in 

4 2 
S ’ , denoted by Q, as introduced by Professor FrederickSon, has 

hexagonal support of side 2h. In Fig. 3,3 this spline is shown 

centered at the point A = (2,2). In this case its support is the 

convex hull of the points (2,2) + 2ho)^, s = 1, 2, ..., 6 where 

03^ = (cos(2TTS/6) , sin(27Ts/6)) (3.2.1) 

In the same Figure the triangles which consist the support of the 

basic quartic spline have been labeled by the triple of integers 

(i,j,k) as described in the previous section. The point (0,0) is 

the origin of the global coordinate system. Professor Frederickson 

[18] has given Q on the triangles ABC, BCD and BED. Using the 

notation of (3.1,10) we have 

12Q(2,2,0,-} = (6,0,0,-12,-12,-12,8,12,12,8,-1,-2,0,-2,-1) 

12Q(2,2,1,0 = (0,0,0,0,0,0,2,6,6,2,-1,-2,0,-2,-1) (3.2.2) 

12Q(2,3,0,O = (1,-2,-4,0,6,6,2,0,-6,-4,-1,-2,0,2,1) 
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Evaluation of 0 in the remaining 21 triangles of its support 

is the problem we consider now. The fact that Q is symmetric with 

respect to all symmetries of the hexagon, which is its support, will 

be used. 

Notice that there are three classes of triangles in the support 

of Q. Those occupying the inside hexagon of side h, those having 

one vertex on the boundary and those having one side on the boundary 

The triangles ABC, BCD, and BED on which Q is given by (3.2.2) are 

representatives of these three classes. 

Let us now generate Q on AB*C’ being in the class of ABC. 

We consider the point R in AB'C’ and its symmetric P in ABC 
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with respect to one of the axis of symmetry of the hexagonal support. 

We denote the barycentric coordinates of the point P in ABC res- 

pectively R in AB'C* by a, 3 and y respectively a*, 3’, Y*. 

Their basic coordinates are y, 3 respectively 3*, a*. Besides 

we have 

a = a', y = 3' and 3 = y^= 1 - a* - 3^. 

Hence 

Q(R) = Q(P) = Q(2,2,0.O-V^^g 

= Q(2,2,0,-)*Vg,^^, 

= Q(2,2,0,-)-Vg,^^_^,_g, (3.2.3) 

= Q(2,2,0,.)-M-V3,^^, 

H Q(2,1,0,.)-V3.^„. 

where M is a matrix such that 

^3',l-a’-3' ^ ^’^3',a’ 

It turns out that the matrix 

M = ROT-REF 

where 
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ri 

ROT = 

0 

0 

-1 

0 

0 

-2 

0 

0 

0 

0 

0 

0 

0 

■4 

0 

1 

-1 

0 0 

1 0 

-2 1 

0 0 

0 0 

1 0 

0 0 

0 0 

0 0 

1 0 

-4 6 

0 

■1 

2 

0 

0 

■2 

0 

0 

0 

3 

12 

0 

0 

0 

0 

0 

0 

0 

-4 

0 

0 

1 

0 

0 

0 

3 

■12 

0 

-1 

2 

0 

0 

-2 

6 

■12 

1 

-1 

1 

0 0 

1 0 

-2 0 

3 0 

-4 1 

0 

-1 

2 

I (3.2.4) 

-3 -3 

6 4 

1 ; 

■1 j 
1 I 

■1 1 
LJ 

and 

REF 

0 1 

1 0 

0 0 1 0 

0 1 0 

1 0 0 

0 0 0 1 

0 0 10 

0 10 0 

10 0 0 

0 

L 

0 0 0 0 1 

0 0 0 1 © 

© © 1 0 0 

0 1 © © 0 

1 0 0 0 0 

(3.2.5) 

1 
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The above two matrices ROT and REF are not any random ones. We had 

anticipated that simple transformations on the coordinates would give 

the result (3.2.3). By this result we mean obtaining Q at the 

triangle (2,1,0) 

Q(2,l,0,-) = Q(2,2,0,-)-M. 

The above transformations ROT and REF are rotation and reflection of 

the coordiantes. By rotation of the coordinates a, 3 and y (clock- 

wise rotation about the center of mass of the triangle ABC) we have 

a 3, 3 Y and y->a = l- 3- Y (3.2.6) 

and by reflection (about the axis vertical to BC through the vertex 

A) we have 

B Y> Y 3 and a a. (3.2.7) 

Having now a polynomial f(Y,3) = F(i,j,k,*)’V ^ and applying 
YyP 

the transformations (3.2.6) respectively (3.2.7) on its coordiantes 

we get 

f'(l-6-Y,Y) = 

= F(iJ,k,0-ROT-V^ g 

respectively 

PaY 

= F(i,j,k,*)*REF»¥ , 
YJ»P 
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REMARK: We note that (ROT}^ = I and (REF)^ = I, where I is 

the identity matrix. This corresponds to the fact that if we apply 

three rotations or two reflections on the coordinates, the polynomial 

remains unchanged. Thus the operators ROT and REF generate a group 

G of six elements i 

ROT, REF, ROT-REF, REF-ROT, ROT-ROT, I (3.2.8] 

These six elements of G are precisely the operators M we 

need in order to generate Q on the remaining 21 triangles. Start- 

ing with Q(2,2,0,*) or Q(2,2,l,«) we generate Q on the other 

five triangles belonging to the class of the triangles ABC or BCD. 

In the class of BED there are twelve triangles. However, the six 

elements of G generate Q on all of them starting with Q(2,3,0,*)* 

In Appendix I we list an A.P.L./360 function QUARTICSPL which 

creates Q in all of its support. It is stored as a (4,4,2,15) 

array and iS also displayed in the same Appendix as QUARTIC. 

Differentiability of Q is easily checked. Obviously it is 

twice differentiable on the inside of each triangle. Applying 

formulas (3.1.13) and (3.1.14) we can establish that Q is twice 

differentiable everywhere on its support. For later reference we 

note that Q has the value of 1/2 at the center of its support and 

1/12 at the six other lattice points inside the boundary. 

3.3 Evaluation of Splines 

The purpose of this section is mainly to describe a subroutine 
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which carries out the evaluation of splines. This subroutine called 

EVAL has been vrritten in FORTRAN and displayed in Appendix II. It 

is designed to evaluate a quartic spline at a point of its domain 

and when this domain is a rectangle. 

Let T^ ^ be the triangulation of the rectangle where the 

quartic spline is defined. will consist of the points 

0 < i < m, 0 < j < n. The spline is passed into the subroutine in its 

array form i.e. as a four dimensional array SPL(ID,JD,2,15) where 

ID = M, JD = N, It is easy now to see, from formula (3.1.11), that 

in order to evaluate the spline at the point (x,y) we need deter- 

mine the triangle which the point lies in and the two barycentric 

coordinates of the point in that triangle. In the subroutine this 

information is obtained as follows: The pair of numbers X and 

Y (X = (x-xo)/Cx^-xo), Y = (y-yo)/(yj^-yo)) is passed to the sub- 

routine. It is easy to see now from the discussion in 3.1 that 

the integers 

K = [A] 

L = [B] 

and 

M = [A+B-K-L] 

where A = X .ID and B = Y • JD, determine the triangle, while 

U = |M-(A-K)I 

and 

V = |M-(B-L) I 
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are the barycentric coordinates of the point in the specified tri- 

angle. 

Proper functions are employed in FORTRAN to perform the above 

operations. 

The subroutine can also be easily adapted for the evaluation 

of higher order splines. 



C HAP TER IV 

INTERPOLATION OF PERIODIC FUNCTIONS 

4.1 Quartic Interpolation Operator 

As it was stated in 2.2 our task in this chapter will be a 

demonstration of the feasibility of constructing an algorithm 

that solves the periodic interpolation problem. The description 

of the algorithm will be given and numerical results of its imple- 

mentation will be presented. 

4 2 
We are going to make use of as the space of interpolating 

splines. Quartic splines, being piecewise polynomials of degree 4, 

could be of more practical value than any other splines. The work 

of section 3.3, where the construction of the basic normal quartic 

spline was done, will be very helpful in the numerical part of this 

chapter. 

The function we are going to interpolate will be in the space 

C™CR^}> m > 4 and periodic on R^ with period 1 in both variables. 

The fact that any function defined on a bounded subset of R^ can 

be extended to a periodic function on R^, with period set a 

rectangle covering its domain, allows us to use periodic splines 

as interpolating splines for such functions. On the other hand 

the choice of the period set to be the domain = [0,1] x [0,1] 

was made only for convenience in computations. 

36 
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Let Tj^, h > 0 be a regular triangulation of We will 

denote by S(f) the quartic spline interpo1ant of f; i.e., we 

have 

S(f) e (a) 

and (4.1.1) 

S(f)(x,y) = f(x,y), (x,y) e 

We denote by f° and Q° the restriction to of f and 

Q respectively. The spline interpolant S(f) of f is given 

[18] by 

S(£] = (4.1.2) 

a- 
where f is the solution of the system 

f° = Q°*f'^ (4.1.3) 

According to (2.1.1) 

S(f)(xi,x2) = E Q(xi-yi,x2-y2)f^(yi,y2) (4.1.4) 
(yi,y2)eL.j, 

Additionally the quartic spline operator S is 3-exact [18], (see 

definition 2.1.5). 

4.2 Mathematical description of the algorithm 

It is clear from (4.1.2) that the construction of the interpolating 
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spline requires two operations: The solution of the system (4.1.3) 

a- 'XJ 

to obtain f and the convolution of f with the normal basic 

quartic spline Q. 

a. 
The solution of the system f = Q *f is not an easy task. 

We are faced with a tremendous problem. In order to show the 

magnitude of it we will consider the mesh size h = 1/32 (the 

smallest we use in our implementation later on). Obviously, f 

is given in 1024 points in this case and the system (4.1.3) has 

1024 equations with 1024 unknowns. 

It is really not feasible to invert a 1024 x 1024 matrix by 

Gauss elimination. The number of operations (multiplications and 

divisions) needed to triangularize an n x n matrix and solve the 

triangular system is [27] 

n(n^-l) 
3 

and n(n+1) 
2 (4.2.1) 

respectively. When n = 1024 these numbers are slightly larger 

than 3.5 x 10^ and 5.2 x 10^. The size of the matrix also dis- 

courages us of considering some well known iterative schemes al- 

though we have to deal with a sparse matrix. 

It seems that the Fourier transform provides an optimum way 

for solving the system under discussion. We define the Fourier 

transform [18] of the function g defined on by 

g-(x;i = h2/3/2 E (4.2.2) 
yeUj, 



Obviously, this is an extension of the usual Fourier transform. 

It follows immediately that the inverse Fourier transform of g is 

given by 

g^'Cx) = g"C-x) (4.2.3) 

Furthermore, the operation of convolution transforms into pointwise 

multiplication by means of 

(b*g)'^ = C2/h2/3)b''-g'' (4.2.4) 

Using formulas (4.2.2) and (4.2.4) now, equation (4.1.3) gives 

f'^ = [f° V(2Q° Vh^/S)]'^ (4.2.5) 

In order to evaluate the above formula we only need take the 

Fourier transform of f° and Q° and the inverse transform of 

their pointwise division. The number of operations required to 

carry out the Fourier transform of f° or Q° using the Cooley- 

Tukey algorithm, and when n = r^ [15], is 

rmlog^n. (4.2.6) 

Hence in the above case where n = 2^® the whole number of 

operations required to evaluate the expression (4.2.5) is 

3(2.n.10) + n = 61.n 

< 6.25 X 10^ 

% 
After we obtain the solution f to the system (4.1.3) the 

next thing for the construction of the spline is to carry out the 
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o- 
convolution of Q with £ . This is done with the use of formula 

(4.1.4). 

In Chapter VI we develop an iterative scheme for the solution 

of the system (4.1.3). We leave the discussion of it to that chapter 

because we need introduce quasi-interpolation first. 

4.3 Implementation of the algorithm 

Let T^, n > 1 be a regular triangulation of (fi considered 

in the skewed form of Fig. 2.1.c) and £° be given at the lattice L^. 

From the computational point of view and in order to construct 

the spline interpolant (4.1.2) we need two subroutines which will 

carry out the two operations described in the previous section, 

namely the fourier transform of f°, Q° and f°^/Q°" and the con- 

. ^ 
volution of f with Q. We name them FASTF and CONVOLP respectivley. 

The first one was taken from [34] and translated into Fortran. Pass- 

ing f° respectively Q°, in the form of a one-dimensional array 

into the subroutine it returns f°" respectively Q°^. Note that 

Q° is 0 everywhere except 

Q°C0,0] = I and Q°(0,i;) = Q°d,0) = Q°(0,n) Q° Cl .n) = Q°(n,0) = Q°(n,l) 

1 
12 * 

After f has been evaluated, and we have a main program which 

would do the pointwise division of f° and Q°, the subroutine 

CONVOLP is called (see Appendix III). 
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Input for CONVOLP 

o- 
FTIL f as an n x n array. 

Q The basic quartic spline as a 4x4x2x15 array. 

It is being read into the program as displayed in Appendix I. 

(Note that in this Appendix Q is multiplied by a factor of 

12). 

IDjJD The number of subintervals we want to construct the inter- 

polating spline in the direction x and y respectively 

1 < ID, JD < n. 

Output of CONVOLP 

SPL the interpolating spline as an ID x jD x 2 x 15 array. 

From (4.1.4) we note that, in order to construct the interpolating 

'Xi 

spline SPL on the boundary triangles of 2, we need values of f 

on lattice points outside fi. But since f is periodic so is f . In 

the subroutine CONVOLP instead of extending FTL to an (n+2) x (n+2) 

array to include the required values of f , we employ the modulo 

function (mod(n+l)) on the subscripts of FTIL. 

Additional subroutines that we used in the program are: FUNCT, 

REORDER, EVAL and NORM. Subroutine FUNCT created f° at the lattice 

points L^ for the test function we used. 

REORDER was used in connection with FASTF and it was again taken 

from [34]. It permutes data from reverse binary to normal order. 

EVAL was described in section 3.3. Finally, NORM subroutine was 
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Fig. 4.1 



used to calculate the Li, Lo and L norms of the error function 

= f(x,y) - S(f)(x,y); i.e., calling FUNCT and EVAL at the same 

set of points {(Xj^,y^), 1 < i < k, 1 < j < £} we produced an error 

array which we passed to the subroutine NORM to compute the above norms. 

An illustration in flow chart form of the main routine is given in 

Fig. 4.1. The correspondence between parameters used in the flow chart 

(program) and actual ones is the following 

Q for basic quartic 

FO » f° 

QO » Q° 

N » n 

FOT » f°^ 

QOT » Q° ^ 

FTIL » f'^ 

4.4 Numerical results 

The test function we used implementing the above algorithm was 

f(x,y) = (1-COS27TX) • (l-cos27Ty)/4 (4.4.1) 

which is periodic on with period 1 in both variables. 

Three different mesh sizes were tried, namely and 
o ID d 2 

(n=8, 16 and 32). The error function was evaluated at the 4 x n^ 

points 
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± 1 I 1. ,k 1 £ 3. ,k Z t ^ , ,k 3 -t ^ 3. 
^ 4n^ n ^ 4n^ ’ ^n ^ 4n’ n ^ 4n^ ^ ^n ^ 4n^ n 4n^ ^n ^ 4n* n 4n 

with 0 < k, ^ < n - 1 

Table 4.1 contains the norms Lj, L2 and L obtained. 

(4.4.2) 

Table 4.1 

P 
1/8 1/16 1/32 

5.379915x10 
-4 

2.652338x10 
-5 

1.549839x10 
-6 

1.825893x10 
-3 

9.587575x10 
-5 

5.731885x10 
-6 

6.673183x10 
-4 

3.295835x10 
-5 

1.936131x10 
-6 

The above numerical results compare fairly well with the theoretical 

ones obtained by Professor Frederickson. He proved in [18] that if 

f e C^(R^), m > 4, the order of approximation by quartic splines is 

4. Thus one should expect the error to decrease by a factor of 16 

when the mesh size is cut down by half. As a matter of fact the data 

of table 4.1 give even larger factors. 

All the above calculations were carried out in double precision 

arithmetic on the IBM/360 computer at Lakehead University. 



CHAPTER V 

QUASI-INTERPOLATION USING QUARTIC SPLINES 

5.1 Introduction 

Our motivation for this Chapter comes from the paper [10] by 

deBoor, C. and Fix, G. J., and [19] by Frederickson. We outline the 

problem treated by the authors in [10]: Let Q be a region in R^, 

n Ic 
TT a partition of R into rectangles and S^ (k > 1) the corres- 

ponding space of spline functions of degree k - 1. The authors 

explicitely construct for each function in W^a spline F f e S^ 

which they call the spline interpolant of f with the following 

properties: 

(i) F is local in the sense that the value of F f at a 
TT TT 

point X depends only on the values of f in a uniformly small 

neighbourhood of x. 

(ii) F^ reproduces polynomials; F^(x^) = X^,|Y| < k. Finally 

they prove that this approximation scheme is of order k. 

F/ - f = (5.1.1) 

In the rest of this chapter we derive a Quasi-interpolation scheme 

using Quartic Triangular splines. 

45 
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5.2 Quartic Quasi-Interpolant Operator 

Let be a triangulation of the plane in which every triangle 

is equilateral with the origin being a point in L^. For f e C^(R^3, 

4 2 
n > 4 we shall determine a spline S^f e S ’ with properties 

(i) ' S, is local as F in (i) 
^ h 7T ^ ^ 

(ii)’ reproduces polynomials p e P3. 

Moreover, it will be of the form 

(S f)(x) = Z f~(y) Q(x-y) (5.2.1) 

where x = (xi ,X2) , y = (yi ,¥2') and 

f~(y) = H(f)(y) (5.2.2) 

6 

= Fof(y) + ^ ygfCy+hw^) 
S = 1 

with the constants , s = 0, 1, ..., 6 invariant with respect to 

X and h, and given as in (3.2.1). 

In section 5.3 we will prove that 

||S^£-f| 1^ < K|f|4h‘‘ (5.2.3) 

where K is a constant and |fI4 is the Sobolev seminorm defined by 

4 
jf|4 = sup sup {] E (^) cos^9sin'^~^0D^’'^~^f (x) I} 

xefi 0 k=0 
(5.2.4) 
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Property (i)' is obviously satisfied by (5.2.1). We will 

determine the constants s = 0, 1, ..., 6 so that property 

(ii) is satisfied as well. This can be done in a straightforward 

algebraic way. Let p(xi,X2) e P3. 

2 2 3 2 2 3 
p(xi,X2) = ao+aiXi+a2X2+a3Xi+a4XiX2+ a5X2+aeXi+a7XiX2+a8XiX2+a9X2 (5.2.5) 

We want 

S^p(x) 

yeL QCy-x) = p(x) 

or by 5.2.2 

6 
p(x) = Z (yoP(x)+ Z y p(x+ho) )) Q(y-x) 

yeL^ s=l 
(5.2.6) 

Since the constants y^ are invariant with respect to x and h, 

equation (5.2.6) is valid when x = (0,0) and h = 1. Hence, 

6 
p(0,0) = ao = Z (yoao+ 2 P_pCw ))Q(y) 

yeL^^ s=l 

Taking into consideration that Q(0,0) = ~ IT ^ 2, 

..., 6 and Q(y) = 0 for any other y e L^, when Q is centered 

at (0,0), after equating the coefficients a., j = 0, 1, ..., 9 

in the above equation, we obtain the following system of equations 

(omitting the two redundant ones) 
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PO ^2 \^3 U4 VI5 + P6 “ 1 

P2 + ys P5 - U6 = 0 

yi - P2 ^4 Vs = 0 

yo ■*■ yi 4^2 4vi3 + VI4 + 4]J5 + 4u0 = 0 

yo yi ■•■ "7y2 ys + y4 + 7^5 + y0 = 0 

yo 4yi + 4y2 '*■ ya + 4^4 + 4^5 + U0 = 0 

yi + 5y2 + ya - y4 - ^^5 - ye = 0 

24\ii + 24y2 ya “ 24y4 - 24y0 - y0 = 0 

The nontrivial solution of the last seven equations of this 

system is 

(5.2.7) 

yg = 3k, = y2 = ya = y4 = ys = y0 = - 6' 
k £ R 

Substitution in the first one gives the following solution 

yn = 3/2 

yi = h2 = ya = yy = ys = ye = - 1/12 

With these values formula (5.2.2) becomes 

(5.2.S) 

f'(y) = H(f)Cy) = 5/2 £(y) - 1/12 E f(y+hu ) 
s=l 

(S.2.9) 
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It is clear that given f on the lattice points L^, f' can 

be easily derived by this formula. Let us now turn again to the 

finite domain Obviously, given f on the grid points of 

a regular triangulation of ^2, formula (5.2.9) cannot give 

f on the boundary grid points. This would require values of f 

on grid points outside Q. Additionally, if one is to construct 

Sj^f over the whole region S2 he would need f~ (as we point out 

on 5.3) outside S2 as well. If f is periodic the above problem 

is not hard to overcome. Actually in this case as we shall see in 

section 5.4 the quasi-interpolation scheme is much easier than inter- 

polation from the computation point of view. 

However, in the general case one is led naturally to extra- 

polation of f~. 

Our next section is devoted to an error analysis of the Quasi- 

interpolation scheme. 

5.3 Error Analysis 

Let f c C^(f2), n > 4 and be a regular triangulation of 

^2. We assume that all fourth order derivatives of f are bounded 

on S2 and denote by M the seminorm |f U of f defined by 

(5.2.4). We denote by S^f the quasi-interpolant of f on 

as given by (5,2.1). 

Theorem: Given f with the above assumptions then 
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I L 5 0.420 Mh“ (5.3.1) 

Proof. Given any point x = (xj,X2) e we choose a point y^ = 

(yiltVll) £ such that 

|x-yi| = min{|x-yI:yeL^} (5.3.2) 

(see Fig. 5.1). Therefore,the point x lies in a hexagon of side 

centered at yj. Our error analysis will be based on the assump- 

tion that X lies in one of the twelve right triangles making up the 

above hexagon. Let this be the triangle ABC (see Fig. 5.1) which we 

will denote by U. As it will become clear, the choice of any one of 

these,triangles will give the same result. This is due to the symmetry 

of the seminorm and the symmetry of the basic normal quartic 

spline Q. 23 22 21 
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Let us denote by f*(z) the third order Taylor’s expansion of 

f about X. Then 

with 

£(z) = £*(z) + R(z) (5.3.5) 

and 

£*(z) 
3 
E D°^£(x) Cx-z)°^/a! 

a I =0 
(5.3.4) 

R(z) = Z (x+0(x-z)) (x-z)“/a! (5.3.5) 
|a|=4 

for some 9, 0 < G < 1. 

The error between the function f and its quasi-interpolant at 

the point X is 

f(x) - (Sj^f)(x) = f(x) - f*(x)> £*(x) - (Sj^f*)(x) + (S^f*)(x) - (Sj^£)(x) 

= (Sj^f*)(x) - (S^f)(x) 

= (Sj^R)(x) (5.3.6) 

since f(x) = f*(x) from (5.3.3) and f*(x) = (S^f*)(x) because the 

operator reproduces polynomials of degree 3. 

Expanding (5.3.6), using (5.2.1) and (5.2.2), we get 

6 

s= 
T 

3 
'2 ^ 

3 

s=j 

1 

s 

S=1 

M - 
S 

,3.7 
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In order to obtain a bound for this expression we need bounds 

for RCy) and Q(x-y) when y is a lattice point. From (5.3.5) 

we get 

R(z) Z (xi-yn)^(x2-yi2)^ Vk! (4-k)! 
k=0 

< — 
- 4 

(xi-yii)''(x2-yi2)^ ^ 
X-Z 

k=0 x-z 

5 4T (5.3.8) 

where z' = x + 0(x-z) and |x-z| is the distance between the 

points X and z. Now if we define 

we get 

r(z) = sup Ix-zI^ 
xelJ 

(5.3.9) 

|R(z)| S (5.3.10) 

Using this inequality we can have bounds for R(y), y e . Obviously 

R(y) can be nonzero for every y e L^. But the values of Q are zero 

when the distance between x and y or 7 “ ^5 greater than 2h. 

There are 27 points y^ e i = 1, 2, ...» 27 such that the distance 

|x-y. I or |x-(y^-03^)| for some x, is less than 2h. In Fig. 5.1 

these points have been labeled by the numbers i, i = 1, 2, ..., 27 

instead of y^. If we consider a point y e outside the support 

of these 27 points, then the basic quartic spline centered at that 

point or any of the six lattice points surrounding it will be zero at 

any point x e U, 
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For these 27 points we can obtain numerical values of 

r(y^), i = 1, 2, 27 [5.3.IG] and 

q(y,) = sup Q(x-y,), i = 1,2,...,27 (5.3.11) 
xcU 

\Vhen, for example, i = 1 

rCyp = = 

and q(yi) = j . 

In the following display we give all the constants such 

that r(y^) = A^h^ and the constants (in parenthesis) cor- 

responding to the 27 points i of Fig. 5.1. 

2||(0)  49/0)- 

/ \ / N 

\ 

- 81(0) 

/ \ 

/ \ 

/ \ 

169. 1 . 
16^324^ 
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16 
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/ 
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94'' 492-' 

' \ / \ 

/ \ 

\ 
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^^^192^ 

/ 
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 9(~—) ~ - - - 49(0) 
9^192'' ^192'' 

\ / 

/ 

(0) 169 
(0)- 

\ 
\ / 

- -49(0) 

81(0) 
/ 
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Using the above data for R(y) and Q(x-y) , we calculated the 

expression (5.3.7) with an A.P.L. function to get 

|f Cx)- (S^f) (x) I < 0.420 Mh^^ 

Hence the proof of the Theorem is complete. 

The above error analysis is valid when f~ is exact. However, 

as we mentioned in the previous section, construction of S^f over 

the whole region requires values of f~ on and outside the 

boundary of If these values are not available exactly (see 

section 5,5), the above error anlaysis is valid only on an interior 

sub-region of Q whose distance from the boundary of T2 is 2h. 

5.4 An Algorithm for Periodic Quasi-Interpolation and Numerical 

Results 

The spline interpolant S^^f of Quasi-Interpolation is much 

easier to compute than the one for interpolation. The two major 

steps again are evaluation of f" and convolution of f~ with 

Q. However, f~ given explicitely by 

6 

fCy) = 3/2 f(y) - 1/12 E f(y+ho)^), y e 
s=l 

provides no difficulty in its computation especially in the periodic 

case we examine here. 

Suppose that the period set of f is SS amid f® is given on 

L, of the triangulation T of SS, As we mention in (4,3) if f~ 
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is given on this same set of points, then the subroutine CONVOLP con- 

structs S,, f over all of Q. 
1/n 

In order to evaluate £~ on the above set of points we extend 

f° by periodicity to a set of (n+2) x (n+2) points. This in the 

program means extending the array of n x n points to an array of 

(n+2) X (n+2) points in such a way that the first and the (n+2)-nd 

columns respectively rows of the new array are equal to the nth and 

the first columns respectively rows of the previous array. In Fig. 

5.2 we give a flow chart of the main program we used. FO is the 

given n X n array f° while FON the extended (n+2) x (n+2) one 

Although quasi-interpolation and interpolation are of the same 

order of approximation, quasi-interpolation is less accurate than 

interpolation. This is our penalty for less computational work and 

was found experimentally. We applied interpolation and quasi-inter- 

polation to the periodic function (4.4.1), given on at the same 

lattice points. Table 5.1 lists the norms obtained using quasi- 

interpolation for the above function, corresponding to the norms 

of table 4.1 with the error function evaluated again at the set 

of points (4.4,2). The subroutines FUNCT, EVAL and NORM are being 

used here without change. 

Table 5.1 

1/8 1/16 1/32 

6.401972507x10 4.806234811x10 
-4 

3.146364383x10 
-5 

7.344676049x10 5.490275040x10 3.588237149x10 
-5 

1.588539084x10 1.177734939x10 
-3 

7.691211366x10 
-5 
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{{FONjj, J=2(l)N-<-l}, I = 2Cl)N+lK{{FOjj, J=1(1)N), J=1(1)N} 

{FONjj, J=2(l)N+l}-i-{FOj^j, J=1(1)N} 

(FONN^2J> •J=2(1)N+1MFO^J, J=1(1)N} 

{FONjj^, I = 2(l]N+lWFOjj^, I = 1(1]N} 

{FONJ^J^^2> I = 2(1)N+1K{FOJ^, I = 1(1)N} 

FON -*-FON FO -e-FON 
l,N+2 12’ N+2,1 21 

I {{FTlLjj, J=1(1)N}, I=1(1)N}^ 
i 

\ 

i C3/2)KFONJ^^_J^^ - 1/12X(FONJ^^^J . ^ 

+ FON, + FON,^_ . + FON^ - , lyJ+2 1 + 2,J 1 + 2,J + 2-^ 

Fig. 5.2 
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Extrapolation 

It became clear from the discussion in sections 5.2 and 5.3 

that the construction of the quasi-interpolant of f on requires 

values of f" on the boundary lattice points and lattice points 

outside If f is not periodic these values of f"” are not 

available exactly. In this section we seek an approximate solution 

of this problem by extrapolation. 

Let be a finite domain and Tj^ a regular triangulation 

of it. Let also the function f e n > 4. Motivated 

by Section 5.2 we will seek a linear operator G with the follow- 

ing property: 

(i) G will be exact for polynomials of degree three; 

i.e. (Gf)Cy) = f'(y), ye when f e P3. 

We will also require that G is local. 

An existence theorem for extrapolating operators of bivariate 

functions f e was proved by P. Frederickson [19]. Here 

we will make use of a ten point scheme 

A, B, C, D, E, F, H, K, L and M to 

entrapolate f“ at the points A, 

B, C, D, P, Q, R, etc. [see Fig. 5.3]. 

This triangular scheme fits very 

well our quasi-interpolation problem 

on rectangular domains. Obviously, 

it fits it equally well on triangular, 

hexagonal, or L-shaped domains. M 

Fig. 5.3 
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Starting with the point P we define the extrapolated value, 

f' at P by 

CGf)(P) = yif(A) + y2f(B) + PafCC) + y4f(D) + ys^CE) 

(5.5.IX 

+ yefCF) + yyfCH) + ygfCK) + ygf(L) + yioE(M) 

with the functionals y^, i=l, 2, 10 to be evaluated so 

that property (i) would be satisfied. Assume (for ease of compu- 

tation) that P is the origin, and f is the polynomial (5.2.6). 

From property (i) and equation (5.2.10) we have 

(Gp)(P) = p~(P) = 3/2p(P) - l/12(p(Q)+p(C)+p(D)+p(Q')+p(S)+p(0)) 

Hence (5.5.1) becomes 

(Gp)(0,0) = 3/2p(0,0)-l/12(p(0,l)+p(l,0)+p(l,-l)+p(0,-l)+p(-l,0)+p(-l,l) 

= yip(l,l) + y2P(l,“2) +••• + yioP(4,-2). 

Equating corresponding coefficients a^, i=0, 1, ..., 9 in this 

identity we obtain the following system 

Myp (5.5.2) 

where = (yi, y2, yio)> bp = (1, 0, 0, -1/3, 1/6, -1/3, 

0, 0, 0, 0) and 
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M = 

1 

1 

-1 

1 

-1 

1 

1 

-1 

1 

-1 

The solution of the system (5.5.2) is 

1 

3 

-1 

9 

-3 

1 

27 

-9 

3 

-1 

1 

3 

-2 

9 

-6 

4 

27 

18 

12 

-8 

1 

4 

-2 

16 

-8 

4 

64 

-32 

16 

-8 

Vp = C- 1 23 23 
6’ 12" 12" 

7 
12" 

_7_ 
12" 

7 17 17 2 
iT’ TY’ I?’ ■ yh (5.5.3) 

All the above computations were carried out in APL/360. The 

polynomials 

p(i,j) = ao+aii+a2j+a3i2+a4ij+a5j^+aei^+a7i2j+a8ij^+a9j3 

are easily manipulated when they are given as the product of the 

vectors 

and V. . as in (3.1.12). 

Now in order to obtain y^^, y^, etc. we need the corre- 

sponding vectors b^, b^^, b^, etc. But we have 
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= I- V ^ 
Q = 2 ^1,0 - 12 

and similarly for the others. Consequently 

= M‘^b . 
Q Q 

The values of i=l, 2, 10 we obtained for these points are 

5 = r- n il i _5.£_Z 
4’ 12’ 12’ 4’ 2’ 4’ 12’ 3-^ 

= rli — - - -1 . h 
4’ 6’ 12’ 4’ 4’ 12’ 2’ 12’ 4’ 3^ 

^3’ 6’ 12’ 12’ 12’ 12’ 2’ 12’ 12’ 6^ 

= r-i n M  5- - li'i 
^ 6’ ^’12’ 4’ 4’ 12’ 2’ 12’ 4’ 6*^ 

(5.5.4) 

(5.5.5) 

(5.5.6) 

(5.5.7) 

By symmetry now we get Uoi> Rn i > have for example 
K i5 U 

= rl - JL -A -A i -Z. i'i 
3’ " 12’ 12’ ■ 12’ 12’ 2’ " 12’ “ 12’ 6^ 

having always in mind the point at which each of the functionals 

y^ operates. 

The order of approximation of the above extrapolation schemes 

is 4, when the function f is four times differentiable on a 

domain Q' such that Q ^ 0,' and the point at which we extra- 

polate f~ is in . This comes from the fact that G is 

exact for polynomials of degree three. 
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5.6 Non-periodic Quasi-interpolation. Algorithm and Numerical 

Results 

In this section we construct and carry out an algorithm for 

quasi-interpolation on a rectangular domain when the function under 

consideration is not (necessarily) periodic. The results of 

section 5.4 are applied for the evaluation of f~. 

We will consider again the rectangular domain ^^,Ta regular 

triangulation of ^ such that the number of the lattice points 

L.J, in is m x n (with a uniform mesh in both directions). 

We will assume f e C^(R^), n > 4 and f° given on the above 

m X n lattice points of In Fig. 5.4 we illustrate as the 

Fig. 5.4 
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parallelogram with the unbroken lines. We will refer to the extended 

parallelogram by . 

In order to construct the spline quasi-interpolant Sf of f 

on 0, we need f'' at all lattice points of (except the lower 

left corner and the upper right corner). Using formula (5.2.10) we 

can evaluate it at all inside lattice points of Q. For the boundary 

points of Q and the outside ones we will make use of the extrapola- 

ting schemes described in 5.5. For all the points labeled by P in 

Fig. 5.4 we use the scheme found for the point P in Fig. 5.3 with 

coefficients (5.5.3). For the points denoted by C we can use either 

the C-scheme or the D-scheme of Fig. 5.3. We consider the average 

of these two and obtain a twelve point scheme (see Fig. 5.5) with 

coefficients in the same order as the points in the Fig. 5.5. 

/V 

1/^4 
/ ^ 

5 9 12 

Fig. 5.5 
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^ 24’ ' 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24’ 24^ ^ ' 

There are still 7 points in the lower left and upper right 

corner respectively, and 4 points in each one of the other two 

corners at which f" should be evaluated at. We labeled them with 

the corresponding letter scheme of Fig. 5.3. 

In Appendix IV we list the subroutine EQUASI which carries 

out all the above evaluation of f. The array FU = f° and 

the dimensions IF = m, JF = n are passed to the subroutine 

and the array FT = f~ with dimensions IFT = IF +2, JFT = JF + 2 

is returned. First f~ is evaluated on the inside points. Then 

specifying appropriate parameters it evaluates, using the same program 

segment, the P and C points of the two leftmost and rightmost 

columns. The same is done for the lower two and upper two rows, 

for the two 7 point corners and for the two 4 point corners. We 

would like to mention at this point that when subroutine EQUASI 

is called the array FT should be initialized to 0. This is 

because the subroutine was made to serve an iterative scheme 

we are going to describe in Chapter VI. In Appendix V we 

list the subroutine CONVOL which carries out the convolution of 

f~ with Q in the non-periodic case described in this section. 

Q and FTL = f~ (an (m+l)x(n+l) array) as evaluated by EQUASI 

together with the dimensions of the spline ID = m - 1, JD = n - 1 

are passed to the subroutine. It returns the spline SPLN as an 
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ID X JD X 2 X 15 array. In our experiments we used the functions 

f(x,y) = (1-cos 2TTX) (1-COS 2TTy) (5.5.2) 

and 
f(x,y) = e^"^^ (5.5.3) 

In Table 5.2 respectively 5.3 we give the norms L2 and 

L of the error between the function (5.5.2) respectively (5.5.3) 

and its quasi-interpolant for two pairs of (m,n). The error is 

,_k _l 

4m’ 4n 
k f 

computed at the (4xm) x (4xn) points (-j—, -j—^), 0 < k < 4m - 1. 

0 < f < 4n - 1. 

Table 5.2 

m = 7, n = 9 m = 15, n = 17 

0.63000 X 10 

0.82900 X 10 

0.35740 X 10 

-5 

-5 

-4 

0.49587 X 10 

0.63170 X 10 

0.25033 X 10 

-6 

-6 

-5 

Table 5.3 

-\m Lp\n m = 7, n = 9 m=15, n=17 

0.21827 X 10 

0.24188 X 10 

0.73887 X 10 

-4 

-4 

-4 

0.15183 X 10 

0.16758 X 10 

0.43018 X 10 

-5 

-5 

-5 



C HAP T E R VI 

REMARKS ON INTERPOLATION AND QUASI-INTERPOLATION 

6.1 Relation of Quasi-Interpolation to Interpolation 

The piecewise quartic interpolating spline as well as the 

quasi-interpolating one, were given by 

S = Q*f'- (6.1.1) 

where Q is the normal basic Quartic spline and was the 

solution of f° = f~*Q° and f'' = H(f°) respectively. 

In Chapter 5 we noticed that the quasi-interpolation operator 

had two strong advantages over the interpolation one. The first 

of these is ease of computation: indeed, there is no large system 

of equations to be solved as the operator H is local. The 

second advantage is theoretical very strong error estimates 

are easy to obtain in the case of quasi-interpolation as was 

done.in Section 5.3. 

A natural question that arises now is the following: can 

one start with quasi-interpolation coefficients f~ and improve 

to get the interpolation ones? Or at least get an approximation 

to them? 

Let us consider the function (4.2.5) for interpolation 

f~ = [f° V(2Q°"/h2/3)]'^ (6.1.2) 

65 
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and the corresponding one (5.2.8) for quasi-interpolation which we' 

will denote by f~* 

£~» = a*f° (6.1.3) 

where the function a is 0 everywhere except 

3 1 
a(0) = ^ and a(o3^) = - s = 1, 2, ..., 6 

We also know that 

Q(0) = j and Q(ho)^) = jy, s = 1, 2, ..., 6 

and is zero everywhere else. 

Consider now the discrete Laplacian given by 

v2(0) = -4 and v2(ho3^) = j, s = 1, 2, ..., 6 (6.1.4) 

and zero everywhere else. 

It is clear that 

Q° = I + i v2 (6.1.5) 

and 

a = I - v2 (6.1.6) 

with I being the identity 

If we set 

lE ■= I"" 

then (6.. 1,5 ) and- (6,1,. 6) become 
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Q° = I + E and a = I - E (6.1.8) 

Equation (6.1.3) now becomes 

f-' = £°*(I-E) (6.1.9) 

/5h2 
and from equation 4.2.4, letting k = —^— equation (6.1.2) may 

be written 

£- = k[£°VQ°''] 

= £°*(l/Q°-J^ 

= £°*(1/(I+E^)'" (6.1.10) 

Now, letting E^ = E*E^ we have 

(1/(I+E)")^ = I - E + E^ - E^ + ... (6.1.11) 

Before we prove the validity of this expansion we notice that f~' 

is the convolution of £° with the first two terms of the above 

series and 

£~ = f°*(l-E) + f°*(E2-E3+...) 

= f~’ + £%(E2-E3+. . .) (6.1.12) 

Another thing that becomes clear from (6.1.11) is the 3- 

exactness of the spline interpolant. Indeed, the contribu- 

E" = -1 
8" 

n = 2, 3, 

tion of the terms 
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in (6.1.12), when £ is a polynomial of degree three or less, will 

be zero. 

The convergence of the series in (6.1.11) can be verified as 

follows: First we rewrite it 

I - E + £2 - E3 + . . . = (I-E)* (I+E^+E'^+. . .) . 

So, we need prove that the series 

I + E^ + E"^ + ... 

converges. We consider the term E^ = E*E. The support of E^ is 

a hexagon of side 2h, and 

E2(0) = E2(hco^) = - E2(2h0)^D = 

while at the rest six lattice points of the hexagon E^ takes the 

value of 

Now if we define 

1E"| = E |E"(y)| 

then 

= E I E E2(y)E^^"‘^hy-z) 
yeL^ zeL^ 

< |E^I•I 
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and 

Hence 

Obviously 

I+E2+E^+..,| < |l| + |E^| + |E^| +... 

, (|)2 

= 6 

IE^L ^ lE^I 

hence convergence of the series at any point yeL,p is also trivial. 

Now in order to obtain the equality in (6.1.11) we first note 

that 

I'' = k 

because f°" = (f°*I)^ “ F * ^ ‘ Secondly, if we take the 

Fourier transform of the left hand side and multiply by (I+E)" 

we get 1. Hence, starting with the right hand side we have 

(I+E)''-(I-E+E^-E3+...)'' 
k 

k 

[(I+E)*(I-E+E2+...)] 

. I- = 1 

Hence the expansion (6.1.11) is valid. 
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6.2 An Iterative Scheme for Interpolation. Algorithm and Numerical 

Results. 

Our numerical results in Chapter 5 show that quasi-interpolation 

is a fairly good approximation to interpolation. From (6.1.12) we 

notice that taking more terms in the remaining series and convoluting 

them with we will get an even better approximation to interpolation. 

Our object now will be to devise an iterative scheme suitable for 

computation. The expansion (6.1.11) may be written 

I - E + - E^ +•*• = (I-E)* (I+E^+E'++* • •) 

= (I-E) + (I-E)* (E^+E3+*..) 

= (I-E) + (I-E)*E^* (I+E^+E3+-• •) 

= (I-E) + (I-E)*E2 + (I-E)*E2*E2*(I+E2+E^+---) 

Thus, the iterative scheme is 

f:’, = f'*’ +f:’*E^, i = 1, 2, ... 
i+I 1 ’ " * 

with f{' = f~. 

Moreover, since 

Q°*a = I - E2 and f° * a = £'' 

(6.2.1) 

the right hand side of (6.2.1) takes the following form 

f~I + fr’*E^ = f°*a + f7' - f7'*Q°*a 
1 11^ 

= f7' + (f°-f7'*Q°)*a 

= f7» + H(f®-f~’*Q°) 
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Hence, the iterative scheme may be written 

= fT’ + H(e), i = 1, 2, ... (6.2.2) 

with 

e = (6.2.3) 

and 

. 

The implementation of this scheme is fairly straightforward. 

We consider the non-periodic case in order to incorporate the sub- 

routine EQUASI described in section 5.5. Our iterative scheme 

is being carried out by the subroutine ITERAT displayed in Appendix 

VI. The m X n array f° is passed to ITERAT. This subroutine 

internally calls subroutine EQUASI to evaluate f ’ ((m+2)x (n+2) 

array). f~' is convoluted with Q° and produces an m x n array 

which is subtracted from f° to give e according to (6.2.3). 

Subroutine EQUASI is called again to evaluate H(e). The iteration 

continues as long as the number of iterations is less than pre- 

specified number and the norm ll^lloo remains greater than some 

-8 
small number (10 was used in our experiments). 

Using functions (5.5.2) and (5.5.3) we obtain the following 

tables 6.1 and 6.2, corresponding to tables 5.2 and 5.3, applying 

the above iterative scheme. 
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Table 6.1 

m = 7, 19 = 9 

0.24983 • 10 

0.55870 • 10 

0.41858 • 10 

-5 

-5 

-4 

0.10139 X 10' 

0.22747 X 10 

0.29026 X 10 

-6 

-5 

Table 6.2 

Remark. The norm in table 6.1 is greater than the 

corresponding one in table 5.2. There is a simple reason for that: 

As it was expected the largest error in table 5.2 (Norm L^) was 

at a point close to the boundary of ^2. Then carrying out the 

iterative scheme, f7' converges to f“ on the internal lattice 

points of Q where f~’ is exact. However, the values of fT' 

on the rest of the lattice points are perturbed. This gave rise 

to a higher error on a boundary point (table 6.1). Another reason 

is the fact that for the function under consideration the seminorm 

|f|4 is very large |f|4 > 1500. 



A P P E N D I X I 

In this appendix we list the APL function QUARTICSPL which 

gives Q (see section 3.2) on all of its support. QABG, QBGD 

and QBED are the vectors (3.3.1)*. In statement [4] another 

function GROUP is executed. This function creates the matrices 

ROT and REF, and we omit it. The four dimensions of Quartic run 

from 0-3, 0-3, 0-1 and 0-14. Following QUARTIGSPL we display the 

whole Q. 

V QUARTIGSPL 

[1] QABG^6,0,0,(-12),(-12),8,12,12,8,(-l),(-2),0,(-2),(-l) 

[2] QBGI>0,0,0,0,0,0,2,6,6,2,(-l),(-2),0,(-2),(-l) 

[3] QBE[K1,(-2),(-4),0,6,6,2,0,(-6),(-4),(-1),(-2),0,2,1 

[4] GROUP 

[5] QUARTIG^ 4 4 2 15 pO 

[6] QUART1C.[2;2;0;]^ABG 

[7] QUARTIG [2; 2; 1; ]^BGD 

[8] QUARTIC[2;3;0;]^QBED 

[9] QUARTIC[2;1;0;]M)ABC+.xR0T+.xREF 

[10] QUARTIC [1; 1; 1; ]^ABC 

[11] QUARTIC [1; 2; 1;]^ABC+.XR0T+.XREF 

[12] QUARTIC [ 1; 2; 0; ]^ABC+ . xREF+ . xROT 

[13] QUARTIC[2;1;1;]^QABC+.xROT 

[14] QUARTIC [2; 0; 1; ]^BCD+ . XRQT+ . xREF 
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[ 15 ] QUARTIC [ 2; 0; 1; ]^BCD+. xROT+. xREF 

[ 16] QUARTIC [ 1; 1; 0; ]^BCD 

[17] QUART IC [ 1; 3; 0; ] ^BCD+. xROT+ . xREF 

[18] QUARTIC [3 • 1; 0; ]^BCD+. xROT 

[19] QUARTIC [3; 0; 0; ]^BED+ . XREF+ . xROT+. xREF 

[20] QUARTIC[0;2;0;]-KJBED+.xRQT 

[21 ] QUARTIC [3; 2; 0; ]^BED+. XREF 

[22] QUARTIC [2 ; 0; 0; ]^BED+ . XROT+ . XREF 

[23] QUARTIC [0; 3 ;0;]^BED+.XREF+. XROT 

[24] QUARTIC [1; 3; 1;]«^BED+. XRQT+.XREF 

[25] QUARTIC[3;1;1;]^BED+. XROT 

[26] QUARTIC [ 1; 0; 1; ]^BED 

[ 27] QUARTIC [0; 3; 1; ]^QBED+ . xREF+ . xROT+. xREF 

[ 28] QUARTIC [0; 1; 1; ]^BED+ . xREF 

[29] QUARTIC [3 ;0;1;]^BED+.XREF+ .XROT 

V 

QUARTIC 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

000000000000000 

00000 0 000000000 

I *4 "2 6 6 0 "4 "6 0 2 1 2 0 "2 'l 
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0 0 0 0 0 0 0 0 

1 “2 2 0 "6 0 2 6 

0 0 0 0 0 0 2 0 

0 0 0 0 0 0 0 0 

00 0 00000 

1 "2 "4 0 6 6 2 0 

0 0 0 0 0 0 2 6 

600 "12 "12 "12 8 12 

1 4 2 6 6 0 “4 "6 

1 2 4 0 6 6 "4 "12 

1 2 "2 0 "6 0 "4 0 

0 0 0 0 0 0 0 0 

00000000 

1 2 "2 0 "6 0 "4 0 

1 2 4.0 6 6 "4 "12 

1 4 2 6 6 0 "4 "6 

600 "12 "12 “12 8 12 

0 0 0 0 0 0 2 6 

1 "2 "4 0 6 6 2 0 

00000000 

0 0 1 2 0 0 0 

0 "4 ~1 "2 0 4 2 

0 0 "l "2000 

0 2 0 0 0 "2 "1 

0 0 0 0 0 0 0 

"6 “4 "l "2 0 2 1 

6 2 "1 “2 0 "2 "1 

12 8 "l “2 0 “2 "l 

12 "4 “1 "2 0 4 2 

“6 "4 2 4 0 "2 "1 

6 2 2 4 0 "2 "1 

0 0 0 0 0 2 1 

0 0 0 0 0 2 1 

6 2 2 4 0 ’2 "1 

"6 "4 2 4 0 "2 "1 

12 "4 "l "2 0 4 2 

12 8 "l "2 0 "2 "l 

6 2 "1 "2 0 "2 "1 

"6 "4 "l “2 0 2 1 

0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 

0 0 0 00020 

1 ~2 2 0 “6 0 2 6 

0 0 000000 

1 "4 "2 6 6 0 "4 "6 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 000000 

0 2 0 0 0 2 1 

0 0 "1 ~2 000 

0 "4 "1 "2 0 4 2 

0 0 1 2 0 0 0 

0 2 1 2 0 "2 "1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 



APPENDIX II 

In this appendix we list the subroutine EVAL used for the 

evaluation of Quartic splines. A detailed description of this 

subroutine was given in Section 3.3. 

SUBROUTINE EVAL CSPL,X,Y,SPXY,ID,JD) 

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N) 

DIMENSION SPL(ID,JD,2,15) 

A=X*ID 

B=Y*JD 

U=1 

II=IDINTCA) 

JJ=IDINT(B) 

A2=A-DFL0AT(II) 

B2=B-DFL0AT(JJ) 

AB=A2+B2 

IF (AB.LE.IDO) IJ=0 

A1=DABS[DFLOAT(IJ)-A2) 

B1=DABS(DFLOAT(IJ)-B2) 

IF (II.LE.O) 11=0 

IF (II.GE.ID) II=ID-1 

IF (JJ.LE.O) JJ=0 

IF (JJ.GE.JD) JJ=JD-1 

K=II+1 

L=JJ+1 

M=IJ+I 
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SPXY=SPL(K,L,M,1)+B1*CSPLCK,L,M,3)+B1*(SPLCK,L,M,6)+ 

B1*CSPLCK,L,M;0)+B1*SPLCK,L,M,15))))+A1*CSPL(K/L,M,2)+B1* 

* CSPLCK,L,M,5)+B1* (SPL(K,L,M,9)+B1*SPLCK,L,M,14)))+A1*(SPL 

* CK,L,M,4)+B1*(SPLCK,L,M,8)+B1*SPLCK.L,M,13))+Ai*(SPL(K,L, 

*M,7)+B1*SPL(K,L,M,12)+A1*SPL(K,L,M,11)))) 

RETURN 

END 



APPENDIX III 

In this appendix we list subroutine CONVOLP used for periodic 

interpolation and quasi-interpolation. The description of this 

subroutine was given in Section 4.3. 

SUBROUTINE CONVOLP(SP,FTIL,0,ID,JD,IFT,JFT) 

REAL*8 SP(ID,JD,2,15),FTIL(IFT,JFT) 

INTEGER Q(4,4,2,15) 

IID=ID+1 

JJD=JD+1 

DO 10 1=1,ID 

DO 10 J=1,JD 

DO 10 K=l,2 

DO 10 L=l,15 

10 SP(I,J,K,L)=ODO 

DO 20 1 = 1,ID 

DO 20 J=1,JD 

DO 20 11=1,4 

DO 20 JJ=1,4 

IM=M0D(II-(I+2),IID) 

JM=M0D(JJ-(J+2),JJD) 

DO 20 K=l,2 

DO 20 L=l,15 

20 SPCI,J,K,L)=(FTIL(IM,JM)*Q(II,JJ,K,L))/12+SPCI,J,K,L) 

RETURN 

END 
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APPENDIX IV 

In this appendix we list subroutine EQUASI, It was described 

almost satisfactorily in section 5.6. 

SUBROUTINE EQUASI(FU,FT,IF,JF,IFT,JFT) 

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N) 

DIMENSION FU(IF,JF),FT(IFT,JFT) 

DO 310 1 = 3,IF 

DO 310 J=3,JF 

310 FT[I,J)=(18*FU(I-1,J-1)-(FU(I,J-1)+FU(I-1,J)+FU(I-2,J)+ 

*FU(I-2,J-l)+FUCI-l,J-2)+FU(I,J-2)))/12+FTCI,J) 

K=1 

L=2 

M=3 

N=4 

11=3 

JA=1 

JB=2 

11 = 0 

12=1 

14=3 

Ll = 3 

L2=IF-1 

320 DO 330 I=L1,L2 

11=11+1 
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12=12+1 

14=14+1 

11=11+1 

FT(II,JB)=(-5*(FUCI2,K)+FUCI4,K))+26*FUCI,K)+FUCI4,L) + 

*FU(Il,L>+9* (FU(I,L)+FU(I2,L))-3*(FU(I,M)+FU(I1,M))-10* 

*FU(I2,M)+2*(FU(I2,N)+FU(I1,N)))/24+FT(II,JB) 

330 FT(II,JA)=(-2*CFU(II,K)+FUCI4,K])+23*(FUCI,K)+FU(I2,K)) 

*7*(FU(I,L)+FU(I1,L))-42*FU(I2,L) + 17*(FUCI2,M)+FUCI1,M)) 

*8*FU(I1,N))/12+FT(II,JA) 

IF (K-1) 340,340,350 

340 K=JF 

L=JF-1 

M=JF-2 

N=JF-3 

11=2 

JA=JFT 

JB=JFT-1 

11=3 

12=2 

14=0 

Ll = 2 

L2=IF-2 

GO TO 320 

350 K=1 

L=2 
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M=3 

N=4 

JJ=3 

IA=1 

IB=2 

J1 = 0 

J2=l 

J4=3 

Ll=3 

L2=JF-1 

360 DO 370 J=L1,L2 

J1=J1+1 

J4=J4+1 

JJ=JJ+1 

FT(IB,JJ)=C-5*(FU(K,J2)+FUCK,J4))+26*FU(K,J)+FUCL,J1 FU(L, 

*J4)+9*(FU(L,J2)+FU(L,J))-3*(FU(M,J)+FU(M,Jl))-10*FU(M,J2)+2 

**(FU(N,J2)+FU(N,Jl)))/24+FT(IB,JJ) 

370 FTCIA,JJ) = (-2* CFU(K,Jl)+FU(K,J4))+23*(FU(K,J)+FU(K,J2))-7* 

*(FUCL,J)+FUCL,Jl))-42*FU(L,J2)+17*(FU(M,Jl)+FU(M,J2))-8* 

*FU(N,J1))/12+FT(IA,JJ) 

IF (K-1) 380,380,390 

380 K=IF 

L=IF-1 

M=IF-2 

N=IF-3 



JJ=2 

IA=IFT 

IB=IFT-1 

Jl=3 

J2=2 

J4=0 

Ll=2 

L2=JF-2 

GO TO 360 

390 K=1 

11 = 1 

12=2 

13=3 

14=4 

Jl = l 

J2=2 

J3=3 

J4=4 

L=0 

M=2 

400 A=FUC11,J1) 

B=FU (II,J2) 

C=FUC11,J3) 

D=FU(I1,J4) 

E=FUCL2,J1) 
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F=FU(I2,J2) 

G=FUCI2,J3) 

H=FUCI3,J1) 

0=FUCI3,J2) 

P=FU(I4,J1) 

FT CI1 + L,J1+M)=C8*A+39*B-5*C-29*E-30*F+3*G+27*H+7*0-8*P)/12+ 

*FT(I1+L,J1+M) 

FTCI1+L,J1+K)=(42*A+7*B-9*C+2*D-63*E+6*F+G+37*H-3*0-8*P)/12+ 

*FTCI1+L,J1+K) 

FT(Il+K,Jl+M)=(-2*A+13*B-3*C+3*E+6*F+G-5*H-3*0+2*P)/12+FT 

*(I1+K,J1+M) 

FT(Il+K,Jl+K)=(8*A+5*B-7*C+2*D+5*E+6*F-G-7*H-0+2*P)/12+FT 

*(I1+K,J1+K) 

FTCIl+K,Jl+L)=(42*A-63*B+37*C-8*D+7*E+6*F-3*G-9*H+0+2*P)/12+ 

*FT(I1+K,J1+L) 

FT(Il+M,Jl+K)=(-2*A+3*B-5*C+2*D+13*E+6*F-3*(G+H)+0)/12+FT(Il+ 

*M,J1+K) 

FT(I1+M,J1+L)=(8*A-29*B+27*C-8*D+39*E-30*F+7*G-5*H+3*0)/12+ 

*FT(I1+M,J1+L) 

IF (M) 420,420,410 

410 I1=IF 

J1=JF 

I2=IF-1 

J2=JF-1 

I3=IF-2 
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J3-JF-2 

I4=IF-3 

J4=JF-3 

M=0 

L=2 

GO TO 400 

420 I1=IF 

Jl = l 

J2=2 

I2=IF-1 

I3=IF-2 

J3=3 

I4=IF-3 

J4=4 

L=0 

M=2 

430 A=FUCI1,J1) 

B=FUCI2,J1) 

C=FUCI3,J1) 

D=FUCI4,J1) 

E=FUCI2,J2) 

F=FUCI3,J2) 

G=FUCI4,J2) 

H=FUC;I3,J3) 

0=FUCI4,J3) 
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P=FU(I4,J4) 

Q=FU(I1,J2) 

R=FU(Ii;j3) 

S=FU(I1,J4) 

T=FU(I2,J3) 

U=FU(I2,J4) 

V=FU(I3,J4) 

FT(I1+K,J1+K)=(16*A+5*(B+Q)+10*E-7*(C+R3+6*(F+T)-14*H+2*( 

*D+S)+4*P-CG+0+U+V))/24+FTCI1+K,J1+K) 

FTCI1+K,J1+L)=(8*A+39*B-5*C-29*E-30*F+3*G+27*H+7*0-8*P)/12+ 

*FT(I1+K,J1+L) 

FT(I1+M,J1+K)=C8*A+39*Q-5*R-29*E-30*T+3*U+27*H+7*V-8*P)/12+ 

*FTCI1+M,J1+K) 

FT(Il+M,Jl+L)=(84*A+7*(B+Q)-126*E-9*(C+R)+6*(F+T)+74*H+2* 

*(D+S)+G+U-3*(0+V)-16*P)/24+FT(I1+M,J1+L) 

IF (M) 450,450,440 

440 11=1 

J1=JF 

12=2 

J2=JF-1 

13 = 3 

J3=JF-2 

14=4 

J4=JF-3 

L=2 
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M=0 

GO TO 430 

450 FTCl,l)=ODO 

FTCIFT,JFT)=0D0 

RETURN 

END 



APPENDIX V 

Here we list the version o£ the CONVOL subroutine which we 

used in the non-periodic case of interpolation and quasi-inter- 

polation. This is much more polished than the one we listed in 

Appendix III. It is easier to program convolution thinking of 

0 as having rectangular support. However, this introduces 

urmeccessary computation which we avoided here. 

SUBROUTINE CONVOL(SPLN,FTL,IQ,ID,JD,IFT,JFT) 

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N) 

DIMENSION SPLN(ID,JD,2,15),FTL(IFT,JFT),IQ(4,4,2,15) 

DO 570 K=l,2 

DO 570 IB=1,4 

JL=MAX0C1,5- (IB+K)) 

JU=MIN0C4,8-(IB+K)) 

DO 570 JB=JL,JU 

IF (CIB.EQ.l).AND.(JB.EQ.JL)) GO TO 530 

500 IF (CIB.EQ.4).AND.CJB.EQ.JU)) GO TO 550 

510 DO 520 1=1,ID 

DO 520 J=1,JD 

ITL=I+4-IB 

JTL=J+4-JB 

DO 520 L=l,15 

520 SPLN(I,J,K,L)=FTL(ITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L) 

GO TO 570 

530 DO 540 1=1,ID 
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ITL=I+4-IB 

DO 540 J=1,JD 

JTL=J+4-JB 

DO 540 L=l,15 

540 SPLNCI,J,K,L)=FTLCITL,JTL)*IQ(IB,JB,K,L) 

GO TO 570 

550 DO 560 1=1,ID 

ITL=I+4-IB 

DO 560 J=1,JD 

JTL=J+4-JB 

DO 560 L=l,15 

560 SPLNCI,J,K,L)=CFTLCITL,JTL)*IQ(IB,JB,K,L)+SPLN(I,J,K,L)>/12 

570 CONTINUE 

RETURN 

END 



APPENDIX VI 

In this appendix we list subroutine ITERAT. The input of 

this subroutine is FI = with its dimensions IF and JF. 

FTI = f~ with dimensions IFT and JFT is returned. Subroutine 

EQUASI is called once to give the initial f~*. If the number of 

iterations ITN is specified to be 0, f’ is returned. Otherwise 

using ERR = e as was described in 6.2 we iterate to get a better 

approximation to f~. 

SUBROUTINE ITERAT(FI,FTI,ERR,IF,JF,IFT,JFT,ITN) 

IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N) 

DIMENSION FI(IF,JF),FTI(IFT,JFT),ERRCIF,JF) 

K=0 

CALL EQUASI CFI, FT I, IF, JF, I FT, JFT) 

100 K=K+1 

IF (ITN-K) 140,110,110 

110 DO 120 1=1,IF 

DO 120 J=1,JF 

120 ERRCI,J)=FI(I,J)-(6*FTI(I+l,J+l)+FTI(I+l,J+2)+FTI(I,J+2)+ 

FTI(I,J4-1)+FTI(I + 1,J)+FTI(I+2,J+1))/12 

AINF=0D0 

DO 130 1=1,IF 

DO 130 J=1,JF 

E=DABS(ERR(I,J)) 

130 AINF=DMAX1(AINF,E) 

90 
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IF (AINF.LE.lD-8) GO TO 140 

CALL EQUASI(ERR,FTI,IF,JF,IFT,JFT) 

GO TO 100 

140 RETURN 

END 
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