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ABSTRACT OF THE THESIS

Thié:thesis studiés the Pearson $ystém of Freduency
Curves from the fﬁllowing.four standpoints: ufirstiy, an introduc-
rtory aﬁd Simplified study of the derivations and characterisfic$
of the quryes;vsecondly,,some interesting features of the curyeé;
thir&ly; classical pol&nomiéls conhected-with‘PQaréon's ﬁifferen—.
tial Equétion, and foﬁrthly, éitensions 6f the system of_curves.

In ChapteriI, an introductbry Study‘of the curves is
outlined. In Chapter II, a simplificatioh in fhe study Qf,the
curves, as mentibned’above, has been attempted by using the two
pax"é;.metersir'r‘vcrurg(ogz‘.= By, ay = B, in Pearson's notation) and
.2'82-38146

Bo+3 T o " :

the whole of our discussion in Chapter II. The derivations and

S = In fact, the_use of these two parameters outliﬁes
éharécteriiatioﬁs of the curves under the Pearson Sfétem are made
in terms of théSé’two‘péfaméters ‘o3 and §. As a result, the
various formulae¥thaf arise are relatively simple in form and
easy to use. -

| In Chapter'IiI)'the”beil—shaped‘Pearsoh'curves are
studied'in detail. Also an alternative for the method of moments
in' the computation of the constants in the Pearson differential
equatibnfis’gtudied. _Interesting studiés'of‘Typé_II and Type III

curves are also made.



Chépter,IV>is devoted to the study of theiclaésicél-
polynomials due'tolHermite,’JaCobi;.TschebyCheff; Legehdie aﬁ&
1‘Laguérre'in relation'to the Peaern differentiallequatioﬁ.

Chapter V is allocated to the study of two Exten51ons
,of the Pearson System of Frequency Curves. The d1fferentlal equa--
‘tion

d log £(x) _ Yoryix+ypx2
dx ’ SpXx+81X2+8,x3

where ,yg,yi,yZ,Gbsél,Gé‘ are real numbers, andiits solution'ip

the form'
f(x) Cx 1(a1+an ) 2(b1+b2x) 3

where C rl,al,az,rz,bl,bz,rg are real parameters, aS‘alsQ the

d1fferent1a1 equation-

d log f(x) X-a
- dx bo+b1x+b2x2+b3x3

are basically used for this purpose. As a matter of fact; the
afore mentioned differential equatiqh’énd its solution outline
the major part'of“ourvdiscussion in Chapter V. Under certain
conditidns the.solqtion of therdifferential_equation in the given
form is used fo derive five curves whose parémeters depend on the
first seven moments. The Pearson curves are shown.to;be solutions

of a special case of the above mentioned differential equation.

-

iii



Ten extensions of the Pearson system as derived from

the second differential equation are also studied.



~ SYNOPSIS AND SCOPE OF THE THESIS

A5'this‘theSis is primarily cohcerned_wifh the study
'of,freqdéncy'cﬁrVes, it is quite relevant to begin.ﬁith thé de-
- finition of‘a frequency curve for a ready reference; Next, in
‘logical importance, comes the Stﬁdy éf histoﬁical background
which led.to thé forﬁulatibn‘éf fhe Pearson curves.  A.brief_;
analysis for the historical background in the fbrmulation of
Pearson SyStem of Frequency Curves:is‘thus calle& fér.' As the

differential equation

dlogy _ldy ___ xta
~dx y dx T bp+byx+byx?

which is extended to the forms:

d log y _ yo+yiX+y,x?

dx Sox+81X2+8,x3
and dlogy _ x-a
dx bg+b1x+byx2+b3x3

later, constitutes the basis of our present discussion, it would
be interesting to sketch a method which leads to‘the derivation
of the above-mentioned differential equation named after

 Karl Pearson. Hence a brief.discussion on the same ensues.
ﬂTheféaftef folloﬁé-the‘studyiof the solutidns of the

differential équation.and specification of .the curves accordingly,

v



and this is the hub of our discussion in Chaptes I and II.
iThe_synopsis and scope'bf the thesis in Chaptéfs,III'.

and IV’are”alreédy iﬁdicate& in fhe"Abstract of the Thesis;.

It will be:relevant to,observe in this section thét.the Bessel

Function JHCXJ with the differential équation
2T T 2_n2 -
X Jn(x)fonCX)f(x n)J (x) =0

cannot be Q@taiped'as a spe;iai type of Pn(k,i)‘v[to be de-
fined and digcussed ih Chapter IV].

| The axle of oﬁf discussion of‘Chaptér‘V rests on the
second and‘third &ifférentiai éQuétions as mentioned above and
their solutions. All the:importéht continuous probabiiity dis-
tributions are deduced from the solution of the second differen-
tial equation, as a by-prodﬁct of the main discussion. Aiso,
all the twelve types of Pearson curves are derived from the
same. As an observation on the_previoué results, the connections
between the Inverse Gaussian Distribution and the Péarson Type VI,
and also Ca$¢ 5iof extension are.intereéting'tb note. The dis-
cussion endsup'ﬁith‘the Ex;ehéionsgf-thelPearSOn System and re-

lated bbservations and results>folqued by some'conclusions}

vi



CHAPTER I

AN INTRODUCTORY STUDY OF THE PEARSON SYSTEM OF FREQUENCY CURVES

‘INTRODUCTION‘

In this chapter we give an introductory study of the
Pearson System of FrequencyVCurves. We start witﬁ the definition
of a frequency curve for a ready reférence, then the historical
importance of the Pearson system of frequency curves and‘a method

of derivation of the Pearson differential equation

[«

ay
dx

dgt+ta X :
‘b0+b1x+b2x2'*

<=

follow.

Tﬁe chapter ends up with the discussion of the method
of computing the constantsrinvoifed inlthe aforé_mentioned diff-
erential eqﬁatibn in terms of the first four moments of the dis-
tribution, followed by the specification of the Pearson curves
from Type I»to Type XII. Criteria for the U‘shaped, Bell-shaped
and J-shaped curves for the Pearson system are also discussed,
and the graphs of all the twelve types of Pearson curves are

attached.

1. FREQUENCY DISTRIBUTIONS AND CURVES
If statistics are arranged so as to show the number of-

times, or frequency, with which an event happens in a particular



way, then the arrangement is a fréquency distribution.
It is necessary to have a name for the formula used to
describe such distributions, and the term 'frequency curve' is

adopted for the purpose.

2. THE SIGNIFICANCE AND IMPORTANCE OF FREQUENCY CURVES

Statistics tend towards a smooth series as the total
number of cases is increased, and from this it can be seen how
naturally.practical statistics lead to the conception of a fre-
quency-curve to describe the smooth distribution that would be
obtained if an infinite supply of homogeneous material were avail-
able for'investigatiOn. In other words, such curves would give
an approximation to the total 'population' of which the particular
case investigatéd was a sample.

A frequency-curve can be interpreted to give a frequency
corresponding to every value of the iﬁdependent variable along the
whole range of the distribution, and will not restrict us to a few
more or less arbitrary groups as is necessary with actual statistics.

In the work in mathematical statistics a large number
of the problems that require study involve data properly classi-
fied into groups and about which‘further information is sought.
This data is often élassified to form a frequency distribution.
The frequency distribution when grouped may appear to lie on a

certain curve. If it can be shown that this curve is a mathematical



curve, i.e. one for which we are able to set up an equation, then

this frequency distribution can be readily examined and studied.

3. HISTORICAL BACKGROUND IN THE FORMULATION OF PEARSON SYSTEM
' OF FREQUENCY CURVES :

It is.well recognized.that the normal curve of error

hés played a prominent role in the development of the‘tﬁeory of
Mathematical Statisticé. Although it can describe more or iéss
aécurately many frequency distribqtions possessing a limited
degree of skewness,_theré are many chersvin which it fails. In
the decade from 1890 to 1900, it became well estabiished experi-
mentally thét the norﬁal'probability function is inadequate to
represent many frequency dlstrlbutlons wh1ch arise in biological
data. To meet the situation it wasclearly de51rab1e either to
devise methods for characterizing themost conspicuous departures
from the normaljdistribution or to develop generalized frequency
curves. |

- The prbblem of-developing geperalizéd frequency,curves
has been attacked from sevéral‘different directionsi Gram (1879),
Thiele (1889), andVCharlier (1905) in Scandinavian countries;
Pearspn (1895)'énd Edgeworth (1896) in England; aﬁd Eechner (1897)
and Bruns (1897) in Germany_haQe developed theofies of generalized
frequency cuiyes from viewpoints which give vefy differentvdegiees
of prominence to the normal probability cuive in the development

of a more general theory.



”Pearsonlé'curves, named after the English biometrician
Karl Pearsdn; ﬁhich;ére'ﬂidely-différent in'géheral appearance;"
are so well known and‘Sovéccessible‘thétwe shall take:hd time to
comment 6n theée as graduation curves for a gréat vafiety of fre-
quencyv&istributioﬁs,_but we shali attempt to indicateﬂthe‘genesis
of the curves with special ieference to the mefhods by which they
are grounde&'on or associated with underlying probabilities.

As alreadybindicated; historicaiiy this‘sytgm’of curves
was developed to generate frequency distributions of observatibnal
data which could not be }épfeéehted by the Normal curve. 'Latterly,
however; the'system has been used'ingréasihgly‘toaréﬁresent pro-.
bability distribufions whose moments are known but for whicﬁvth§ 
mathematical equations are either undetermined or not expressibie

in simple form.

4. PEARSON'S DIFFBRENTIAL EQUATION CONSTITUTING THE PEARSON
SYSTEM OF FREQUENCY CURVES

Pearson* showed in a series of three articles from
1895-1916 how he obtained the equations of twelve distinct.

curves and this was dOné“by considering the differential equation

o

dx ba+b1X+b2X_Z

Y - _ag+a)x (1)

<=

* Karl Pearson,."Mathematical contribution to the Theory of Evolu-
tion," Philosophical Transactions, A, Vol. 186 (1895), pp. 343-414;
also '"Supplement to a Memoir on Skew Variation," Phil. Trans. A,
Vol. 197 (1901}, pp. 443-456; also "Second_Supplement to a Memoir
on SkeW'Variation," Phil. Trans.; A, Vol. 216 (1916), pp. 429-457.



énd SOlving it, after aSsigning patticular vaiues to the parameters
ag,a;,bg,by, and by.
A ’Equation (1j may also be put in the forms
d(’_log"l)"l":‘ X+a . X-a . a-x
dx . bg+byx+byx "~ bp+byx+byx? bo+b;Xx+b,x2

(12)

so that the independent parameters are a,by,b; and b,.

5.  DERIVATION OF PEARSON'S DIFFERENTIAL EQUATTION

Considering the obviéus_characteristics éf frequency dis-
tributions, we find;fhey generally start at zero, rise to a maxi-
mum, and then'fa11 sometimes at the same but often at a different
rate. At the énds of the distribution there is often high.cohtact.
(Mathem;ticélly,‘high contact meanS’that.all the differential co-
efficients Vahish at the point of contact.) This means, mathema-
tically, that a series of equations y = f(x), y = ¢(x), etc;,
must be chosen, so that in each equa;ion of the series %%~= 0
for certain values of  X, viz at the maximum and at the end of
the curve where there is contact with the axis of x.

The above suggests that dy _ Xﬁiﬂ:ﬂlil—; then, if

dx F(x) -
y =0, %%-= 0, and there is, therefore, contact at one end of
the curve, while if x = - %ﬂ', '§¥~= 0, and we have the makimum
. L -

we require. So long as F(x) is general the form assumed for

Z%" is extremely general and includes cases when §¥» may not be



zero when y is zero. If F(i)*.is eXpanded by Maclaurin's theorem

in ascending powers of x, we have

dy _y(agrax). (2)
dx  bg+byx+byxZ+... '

Thus,‘wé see that a differential equation, viz (2), is derived,
which is anaiogous,tq the differential equatioﬂ fl) of the previous
sectidn.

It‘would be possible to obtain constants in.the differ-
ential equation (2) by using_a greater number of terms and retain-
ing bj,by,. etc., but there are strong practical objections‘to
such a coufSe. Besides the increase in arithmetical work, th¢
gain in introducing addifipnal'constants is small because the
higher moments are untruétwortﬁy. tBeéause the higher the moment
the more liablé it is to error when deduced from ungraduated ob-
servations}lthis;is‘clear, when we[remembervthat.the ends of ﬁhe,
experiences are multiplied by the highest numbers and their powers.)
Karl Pearson has shqwn that "we might easily on a random sample
reach a 7th or 8th momenﬁ having half or double the value it actu-
ally has in the general population. .Constants based on these high
moments will be practicaliy idle. They may enable us to describe
closely an individual random sample, but no safe argument can be
drawn Ifrom this individual sample as to the general pOpulation
at large, at any rate so far as the argumént is based on the con-

stants depending on these high moments."l In some acturial

T ""Skew Correlation and Non-Linear Regression', Drapers' Co. Res. Mem.
1905, p. 9. | | |



statistics where there are as many as 100,000 cases, it might be
worth while to go as far as thelneit term of the series, but even
here the valué’of the wprk is‘&iscounted bécause'any other
smalier body éf_statisficsion:the Same squect éoﬁld not bé'come
péred satisfactorily with the result. For practical purposes it
is probable that the equation taken as far as-‘bz will be suffic-
ient, and we shall confine our attention‘to'the forms thus obtainéd.
In this conteit,‘it will be interesting to see how
equatiqn (2) can be oBtained up to the x2 term in the denominator
from the eleméntary.prdpbsitidﬁs’in thé‘theory bf probabilify;
'The chance ofrgettihé T white balls‘from a bag contain-
ing nb white and  nq black balls'(in_the'ﬁSUal'notation) in

drawing s balls one at a'time'without feplaceménts is given by -

= (scry {2pPR) (nds x) S ®

Yr
where (sCr) is the number of combinatioﬁs of s things taken
r at a time and (nPs) is the number of'pérmutations of n
things taken s at a time.

From (3), we write

st (np) ! (nq)! (n-s)!
yi;—_r!{s-r)! (np-1)! (nq-s+r)! n!

(np) ! (ng) ! (n-s) !'s!
(np-r)} I (ng-s+r) Inlr!(s-r)!




- %%;4 Yrel Yy (taking D A A; where thé.symbolsAhave their

usual meanings)

- CﬁP]!thQJlj(néslfsif[ "? """ 1 m o
- n! ' (np-r-1)! (nq-s+r+1) ! (r+1) ! (s-r-1)!

1 .
= Cnp—r)!(nq—s+r)!r!(sar)!]

3

- (np)!(ng) ! (n-s)!s! N 1 - 1 -
n!(np—r—l)!(nq—s+r)!r§(s-r—l)! iCHQ-S+T+1)(Tf1) _-(np-r)(s-r)f
dy s+nps-nq-1-r(n+2) (4)

1.€. ax ¥ Yp- (r+1) (r+1-nq-s)

The expression for y, in (3) is a term of a hyper-
geometric series. We represent the terms of this series as or-
dinates of a frequency polygon, and find the slope of a side of
the freQuency polygon. Thus, we make r =0,1,2,...,5 and ob-
tain the s+i -ordinates yo;yl,yé;..‘;ys at unit intervals.

At the middle point of the side joining the tops of ordinates

Ve and Ypre1® We have
T

1 1,
X =T+ 3y =3 (YY) (5).

From (5), we can write

y = Vyi'[Cnp;r)(ser) . IJ

(r+1) (xr+1+ng-s)

8| —

_ nps+nqg+l-s+r(nq+2-np-2s)+2r? (6)
Yy (r+1) (r+1+nq-s) - b

NI



by means of

‘ij—*

Taking (4):(6), and taking r = * -

(5), we have

25+2nps 2nq-2- (Zx 1) (n+2)
nps+nq+1—s+{x.- —J(nq+2-np 25)+2(x - —J

o
a3

which'may_be put in the form

-%'%¥' b6+g:§+béi2 (7)

F?@m (7), we observe that the slope of the frequency
polygon, at the'middle point of any side, divided by the ordinate
at,that point is equal to a fraction whose numerator is a lin-
ear functioﬁ of x and whose‘denominator:is-a quadratic function
of x.

The differehtiai equation (1) gives a generalrstatement
of_thié property. If is more general than (7) in the sense that
the constants of (7) are special values found from the law of
probability invélved in drawings from a iimited supply without
replacements. . One of Pearson'srgeneralizations therefore con-~
sists in admitting as frequency cufves.all those curves of which
(1) is-the differential equation without the limitations on the

‘values of the constants involved in (7).
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6. EVALUATION OF THE CONSTANTS OF PEARSON'S DIFFERENTIAL
'EQUATION: METHOD OF MOMENTS |

PearSOn’s differential equation (1) is readilyAreduf
cible to équation (7) of the previous section. So, the indepen-
dent constants ofnPéarsonls equation (7) aie a;Bo,bi,' and b,.
Iﬁ this section, we outline a method df determining theSe con-
stants in terms of the first four moments of the distribution.

To do this,.ﬁe have from equation (7),

(bo+brx+box?) GL = y(x+a)

jx’-"(b0+mx+_bzx21 %» dx = JY (x+a)x"dx

x" (bo+byx+bpx?)y - J{nbox*‘l+Cn+1)b1x“

+(n+2)bzxnf1}ydx = Jyxn+ldx + jyaxndx
integrating by parts.

If at the ends of the range of the curve

x" (bg+byx+byx2)y

. . n, .
vanishes, we have, remembering -uﬂ = Jyx dx,

1

-nbouﬁ_l-(ﬂ+1)b1uﬂ*cn+2)bzu' = ur'l+1+aun

n+1

auﬂ+nbaur'l_-h1+ (n+1)b, “i'1+ (_n+2)_bzu1;+l = —,p]!i_‘_l (8)



,11

Now putting n % 0,1,2,3, we get from (8,

A
4By #2430, 1 = g o)
au+Zoyu e3b Ui u) = u; ’
au3+3bgi+4byu L45b, ! = u)

Then bearing in mind that the result of makiﬁg ut =0
is to change the origin of the system to the mean of the distribu-

tion, and treating u6'= 1, we have from (9),

~a+b; = 0

Bo+3bouy=-up -
(10)

apy+3bjup+4bouy = -ug

- auz+3boup+4bjuz+Sbouy = -uy
From (10), the three equations in bg,b;,by; are
bg+0b;+3usby = -uyp

Obg+2upby+4ugby = -uj (11)

Sugbo+3uzby+5uyby = -uy

[replacing a be-bl from the first equation of (10)].

Using Cramer's method in (11), we have

bo = [-u2 0 3y, 1 0 3y,

e 3wy Bu 3u,  3u, . Su,



by = | 1
T
3u2
by = | 1
| 0 2up
sz
where | 1 0 3u,.
0 ZU2 4u3_
3up  3ug

~From (12), we have

b; =

b2;=

Since from the first

stants a, bg,b,b,

SHy

12

/// )
4us '/;// a
Sy | 3uz
v |
=My ‘/// 3“2

U (4uony =3u32)

'10u2u4—18u23—12u32

Ha (uy+3u,2)

3U3

IOUZUq518u53—12p32

2upuy=3u3%-6up°

equation of (1),

~10U2H4—18UZ3f12U32

a =

-b1,

4&3‘

Suy

(12)

'3H2

4us.
3y

= 10uguy - 18up% - 12u32 4 0

(12a)

hence the con-

. of the differential equation (7) are deter-

-mined in terms of the moments u,,us,Hy as given by (12a).

If in (12a), we put

B1 u32/U23

iy /Hp?

82

(13)
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then we get from (12a)

: 'IOUZSZUQ ~1817°-1281 1 2(56,-681-9)
L L /E(8+3) ‘
by = -a =~ 3758,-66.-9) (14)
P2

7 2(582-681-9)

The expressions for a,by,b; and bzv in (14) simplify
our discussion in Specifying the members of the Pearson system.

‘of frequency curves as we shall see in the next section.

7.  SPECIFICATION OF THE PEARSON SYSTEM OF FREQUENCY CURVES
The specification of the Pearson's system of frequency
curves, which are the solutions of thevdiffefential equation (7),

depends naturally upon the nature of the roots of the equation
box%+bjx+bg = 0 (15)

where by # 0 (we shall prove this lafer).

Now the roots pf'CIS) are

-by+vbyZabgby, o =by=vby2-4bgby
‘ - 2by : 2by

Byident1y~théref0re the nature of the roots of (15) depeﬁds’upon

Vby2-4bgb,, or in other words, upon b2/ (4bgb,).
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2
2-< 0 = by and by, are of opposite signs.
Under this condition, the'rdots caane shown to be real and of

.opPOSite'Signs és fdliOWs:
5 /517bob; > by
=2 Bi2*4b0b2 > b2
= -4bgby > 0
~which gives_the_regulf.

PR
dbgb,

signs.

<0 3 the roots of (15) are real and of opposite

This criterion, as we shall see later, gives one of the

main types of curves - called Type I by Karl Pearson. Now .

L2
4bgé2> 0 = by and b, are of the same sign
and Z%%E—-< 1 2 b1254b0b2'< 0 (by means of the above condition)
b2 : : .
. 0 < 4b0é2 < 1 = the roots of (15) are imaginary

These criteria lead to the second main type (Pearson Type IV) of
curves.

"Now, by means of the above arguments, it is eaSy to
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see that

Tbgb, ~ 1

§> ‘the roots are real and of the same sign.
These conditions lead to the third main type (Pearson's Type VI)
of curves..
This really,éoveis the whole field, but in the limit>
ing cases when one fyPe changes into another we reach simpier

forms of transition curves.
. : .2 :
Thus, when Z%%B;‘ is large (theoretically infinite)

which means

b2 : S
Z%BBE.* w = by, + 0 (bgcause :bO + 0)
-by-vb12-4bgby| . > . .
Consequently ‘ 5, — + o j,e. one root of (15) is .
This condition leads to Type III curves.
2 :
When —Pl—+-= 1, the roots of (15) are equal and we
4bgbp . :
get Typé.V curve.
b1t _ 5 s , . .
When 5,5, - 0, the roots of (15) are equal in mag

nitude Bﬁt oppqSite in §ign. Under this condition, we get Type
II curve. |

If in the last case by = by = 0, we reach what we
shall call the ;hormal curve of error': this name is open to

some objection just as are the other names given to it. (e.g.
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jom 1dy _d(log y) . _
sion for ya&x T & may be reducible to the form
at/ ('b'-é;+b{;c)

and perhaps a straight'liné‘for the ffequenCy curve (cf. Types
‘VIII{ IX ahd.Xi), while if the eipfession reduces to a constant
the éurve is the ordinary geometfical progression which we are
_ pleased to find as a special case of a‘system of,freqﬁency
-curves because we are already fgmiiiar with it in the £heofy of
pfobabiiity:ﬁlconnectibn with éequences from coip tossing, etc.
From therébove discussion,_it is obvious that %%%EZ
plays the fundamental roie in characterizing the Pearson system
of fréquenc& curves. We shall call b12/(4bgby) as 'the criter-

ion' and denote it by k. Before we éxpressvthis

in terms of the expression in (14) in the next section, it will
be of great use to write down the types, equations and the diff-
erential equations of all the members of the Pearson system of

frequency curves.
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. TYPES”fffffffffEQUATIOfofffffffjlfDIFFERENTIALCEQUATION
; < X X dy* v(aj+as)
S Yﬁ(?”f 53) (1 *‘zgin dx = Tar) a1 7

where FYEiay (=v,say)

L x2 \m | dy _ -2mx
P IT y=vyo |l - gz dx " aZxz Y

_fy)‘( X .Y"’l. d -yX

| : '2\—m Xld
v - 1+ X e—varctanan dy _ -2mx-va
: Yy =Yo 52] dx = azexz 7Y

_ -P. v dy _ y-px
v Yy = Yox "e dx %2 7

i - x2 - )
' _ - 20 dy _ _x
\VII Yy = Yo¢ 1dx oz Yy
%VIII y = inl + -a—) a‘; = e y
. m
_ : X\ dy m
IX y = YO{]- + a-j a—}-(— = Py y
1 2 | dv 1
= 2 T ay -+ L
X y=g°¢ dx =57
XI = x-!n iz = - El_
Y = Yo dx X y
I |y = yol 23X y . plaj*rap+2x) -
XI;..‘ y...YQ{azﬁx AU ,_.,dx,v,(ai+x1(azex)_x..

Table I Pearson Curves
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8. AN EXPRESSION FQR THE CRITERION «
Using thé'e%pfesSions»for bg,B; and by in'Ci4), we

- get

g =H'blz ) ""@1£§2+312: | _ %)
© 7 4bgby ~ 4(2B,-381-6) (48,-381) :

This may have any value from -« to «. The following_diégram

summarizes the discussion in section 7.

(= o0 <=0 c=1 =
K _negative ’~ ' O<k<1 ‘ K>1
Type I ' Type IV Type VI
Type I1I Normal curve Type V Type III
when 8,=3

Type II (VII)
when 82§3(>3)

9.  CRITERIA FOR U-SHAPED, BELL-SHAPED AND J-SHAPED CURVES
‘The Type I curve will be:
(i) U-shaped if my; < 0, mp < O
(ii) bell-shaped if m; > 0, my > O (17)

(1iii) J-shaped if either mjy < 0, my > 0 or m; > 0, my < O

If m; is negative and mp is positive the curve 1is
J—shaped; it starts at an infinite ordinate, falls rapidly and
runs out at x = a,. .And conversely, if m; > 0 and mp; < O
we have a reversed J-shaped curve.

If both m; and m, are negative, the curve is U-shaped,
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stérting and ending wifh‘infinite ordinates.

thrfhe Jﬁ»and'U}shAped chves;.tHOUgh‘phe limiting or-
dinate is infinite; the'érea is finiée.

The Typé IT curve would be U-shaped when the exponent
is negative aﬁd the Type III curve would be Jmshaped if ya were
negative. Otherwise, Type III is usually bell—sﬁaped{ |

In Type Vi‘curve;_'q1'$ q, (to be provéd later). If

'qé is negative, the curve is J-shaped.

- The attached graphs'ére'rough illustrations of the

Pearson curVes_for particular positive values of the parameters.
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PEARSON FREQUENCY CURVES

TyrE 1

- y=yn(1 +?—:">~I(l-— ‘j—a)nj’ ’

where

@ a4 40 —xa X
Tyee II .
2 m
’“?"(“I*)

- .
Xe-q =g

Xa-Q 0
Tyre IV
...-’ - ,V z
y=yo(1+a_2) g—rerctan-
A skew curve of unlimited range 2t both ends, roughly

deseribed in general appearance as a slightly deformed
normal curve ‘
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PEARSON'FREQUENCY CURVES

Tyre VI
\d

The normal frequency curve.

Tvee VIII

5’=3'0(1+’§)m :

Xs-1 [4]

This type degenerates into an equilateral hyperbolé.
when m=1,
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PEARSON FREQUENCY CURVES

Y
-
y=yq(1+;) .
. X
X=-g ¢}

This type is Laplace’s first frequency curve while the
normal curve is sometimes called his second frequency
curve. The curve is shown for negative values pf +x/a.

Type XTI

Y

034 X

X=-ay [4] . x=ay X



CHAPTER 1T

CRAIG'S TREATMENT OF THE PEARSON SYSTEM OF FREQUENCY CURVES

INTRODUCTION

This chapter gives a study of the Pearson curves in
terms of the two parameters o3 and &, as indicated by
C. C.-Craig, The parameters aj and § are defined, and the
properties and specifications of all the twelve types of Pearson
curves are:studied in full detail in terms of these two parametefs
6n1y.

With,the'progress Qf dicuésion, and also in gonclusion,
we have opportunity to observe how the study of the well-known
and time—honoured Pearson curves is simplified s;rikingly when

characterized.and'specified'in terms of the two parameters.

10. CRAIG'S NEW EXPOSITION,AND TREATMENT FOR THE PEARSON SYSTEM
OF FREQUENCY CURVES

In a paper in the Annals of Mathematical Statistics (6],
Cecil C. Craig has expanded the treatment of the Pearson sYstem

of frequency functions by making the two parameters

_ag(a32 = B1, oy = B in Pearson's notation)

and

2042303226 [ 285-38{-6
g = Buiees (_ a3t (18)

23
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fundamental in the discussion. The criteria for the different
members of the system of functions are expresséd very simply in

terms of a3 and &.

(A) A CLUE FOR THE EXPRESSION FOR & 1IN (18)
‘In fact, the clue lies in the expression (16) of sec-

tion 8. If we use

5 < 2B2-381-6

which is contained»in the expression in (16), we find that

o 12 _Bi(Ba*3) - B1(8p+3)
= Tbgb, - 46(48,-3B7) _ F8(2B,-361-6+26,%6)
= 81(Bp+3) B B1
48[ (Bp+3)8+2(Bo+3)]  48(6+2)
. b 2 0{.3 .
fe. =gl = w0 (19)

Thus we see that the expression in (16) is strikingly simplified

in (19) by means of the expression for & in (18).

(B) DETERMINATION OF THE CONSTANTS OF PEARSON'S DIFFERENTIAL
EQUATTON (1)

Craig uses the differential equation (1) in the form

dy | a-
o N (20)

o,

<]
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For this differential equation, the recursion formula for moments

. similar to (8) is obtained from

[y (g by t+b,t2) "1
’ £2

L5 ! _
- J Y[nbotn'l+(n+l)b1tn*(n+2)b2tn+1]dt = J (aytn—ytn+1)dt
-2, -2y
(21)
which can be written in the form
aan+nboan_l+(n+l)b1un+Cn+2)b2an+l =a (22)
assuming
(i) range of variation of t is [-£1,£,]
(ii) the first expression in (21) vanishes
(iii) the first (n+1) moments;bver the range exist.
Also, using the same procedure as in section (6)
£y "
J tlydt = —% =a_ (23)
-1’,1 a
where o2 = u,. We clearly see from (23) that
ag = 1, a; = 0, and a, =1 (24)

-Equation (22) together with (24)'1ead'to the determina-~

tion of a,bg,b;, and by of équation (20) as follows:

_ 485-36

bo = 3758, 68197
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B (Bp+3) -
b1 = 2(58,-68,-97 © @ (25)
b, = 232&551f6

2(562-681-9)

‘These are obtained from (14) of section 6 with a slight rearrange-
ment of sign.
Now to express (25) in_terms of a3 and & we have,

using (18).

285 -387 ~-6+285 +6
0 2[2(2B5-3B1 -6)+Bo+3]

6 (Bp+3)+2(B2+3)
2[28 (B2+3) (B2+3)

§+2
2(1+28)

Similarly,

%3 (26)
2(1+26)

8

by = 31ezsy

a = ~ __ a3
2(1+2¢8)

For (26) to be valid § % -~ %—. The case in which
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§ = -,%- will be included in the discussion of the transitional

types of functions.

(C) RANGE OF THE ADMISSIBLE VALUES OF §
In this section, it is intefesting to see that

-2 < & < 2. (27)

Proqf: We have, -

25 :
J f(t) (t2+xt) 24t
-2,

2
= j . £(t) [t*+2xt3+22¢2]dt
-2, | .

= a4f21a3+kzd2:
= ay+2ragea? by (24)]
£ 0
f(t) > 0 for -£; <t <L X e iR

= (A+a3) 2+ (ay-a3?) £ 0

= angi oy
- . : 2
_ _ 4oy-3032 4(ay-ag®)ras?
Now choose ky = ag+3 oy +3 -
and k, = M.> 0

(1]++3
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Then,
40423032 2d;-3652 _ .
Bt Trves TR
e o 3(as?+4) | 204-3a3%-6 _ .
2-kp = 2 - ay+3 oL +3 =G

D L 2<§ <2
> by + 0 [by (26)]

for any Pearson frequency function possessing:moménts of the

fourth order.

(D) INTEGRATION OF (20) AND DEVELOPMENT OF THE VARIOUS FORMS OF
y = £(t) '

To do this, we make use of the following assumptions:
(i) Over the range of variation of t, we must have f(t) > 0
(i1) The area under the curve y = f(t) over the'range of varia-
tion must.be finite. This being true then we always determine
the constaﬁt of integration so that this area is unity.
(iii). The range in each case is taken as the maximum one for
which (20) and (22) may be secured, and which contains the point
t = 0. |
(iv) It is sufficient throughout to take ,aé > 0 'since the
curve for a3 = -k(k > 0) is only a reflection of that for
a3 = k through the line t = 0.

We will use the relations (26) as ‘'definitions of a,by
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b1  and by in terms: of a3 and 6; Using the values of a and
the b's given by any choice df az and §, we solve‘(ZO). If
the solution is sﬁch that for it (22) may be derived, then the
relations_(26) are valid when _dg, and & have their usual mean-
ings.

For convenience, let us denote:
the conditions for the validity of (22) ()

(a) THE'NORMAL FREQUENCY FUNCTION . (TRANSITIONAL TYPE VII)

a3 =8 =0 a=b; =by,=0,bg=1[by (26)]

. Equation (20) becomes

e L
Q—-]C-L
<
]
1
r+

or, y = ce

The range of y'z f(t) is (-»,») and so

t2

J ce 2 dt =1

or, 2c J ce dt =1 ('." the function is an even
0. function)

o}
il
N
(g]
—
8
(¢
]
N
N
[aW
N
]
]
-
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or, 20/5? {gi =1

or, ==
t2
e s 1 2
o ftt) = 7? e

Type VII

conditions (a) are satisfied for above f(t). [Check:

12 - t2
n 1 .n_2 [ _ . 1 n+l 2
bgt f(t)l_w = m»t e o T 0; 0Ln+1 = o J_mt e
2 n+l 2 ‘ .
Nors [ t e dt exists.]
0
(b) TRANSITIONAL TYPES III AND X
The conditions are,
for Type III, a3 ¥+ 0, 8§ =0
for Type X, a3? = 4, 6‘= 0
Now 6 =0 % by =1, b; =0, by = -a =“%i- [by (26)]
. For Type III, equation (20) becomes
- 23 _
1dy "7 °°
y dt 1+ 23 ¢
2
. 11
o=+t _
1dy _ "(A } _ . 1#At
tee yde — 1 (&= 2/as] = - 5%

A
or, éz—= —~v1 dt - Al
b

rt
A+t LA+tg

dt

dt
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B} ; A
or,‘ log gy = -log(A+t) - A J {1 ”K;f_;dt

o= log(A+t)_14At+A210g(A+t)‘

2—-. -
= log[(A+t)A e At]
. 2_ -
A 1e At, k = constant of

or, y = £(t) = k(A+t)

integration to be determined.

(-A,») and so

Range of f(t) is
roo
f(t)dt = 1 gives
JA
r oo . 2_ -
k| Aty TeAtgr - 1
J -A .

= x-A, dx = dt, the limits are
So from above,
(2] 2— B ~
'k_J XA 1e A(X<A)dx =1
70
. 2 (o] 2_} _
or, keA J xA 1e Axdx =1
0

Put Ax = z dx = l—dz



32

A2 2 1 _ :
or, kﬁé—»[ VaA 1e“?dz =1

A 0 -

A2

or, S rm?) -1

A

2 _A2
or ~AAA e.A
il = -F(Az),
X

A

2—- -
fe) = 2oy (art)A 1At

Type I1I

Since A%-1 > -1, conditions (a) are satisfied. [Check:

0

2.1 - o : : 21 -
kart)r Lo Atl_A =05 o, =k f__A (art) A 1eTAL

dt exists.]

SHAPE OF THE CURVE £(t)

A2 > 1 a;"z >1 % az? < 4 D £(t) is bell-shaped

A2 <1 7 a32 > 4 2 f(t) is J-shaped with an infinite ordinate
at t = -A [By condifidns (ii) and (iii) in (17).]
For the bell-shaped curve, the mode (position of the

maximum ordinate) is obtained from

f'(t) =0
5 a2-1) Ay 2 A (A L Ly e A < o
A+t
e=-1
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Now,
: . d' f AZ-1 -At[A2-1 o
£1(t) 1 4 ixasn? ( = LA 1
S —‘K-< 0 T dt _L A+t ' = -3
oaf 1 At At+l
= -k S (_A+t) J _ 1
dtL A+t (It = iy
« d A2-2 -At :
B LA o) | PR §
: d [At+1
= -.__—z f(t)( _ 1
aw | A+T int = - %
~ At+1 (A+t)A-At-1
- -ft(t)!—:z—ﬂt _ %7- £(t) o7 e = - %_
2_
. JAZ-1 o g |
= 0-k A - + € 717
A - 2]
- TR
1 A2-3
= -ke(A2-1)(A - K)

< 0

> £(t) dis maximum at t = -

==

The mean of f(tj is given by

(=)

fw tf(ﬁ)dt/J f(t)dt
A -A

=
1

]

J tf(t)dt [Since denominator = 1]
A
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@ ) 2_ _
= I kt(A+t1A- 1e Atdt
-A
2 [ . . 1 - - .
= keA J (xéA)xA 7le-Axdx,[x=A+t]
o _
2 @42 A A2 1 Ay
= keA ] J xA e'AxdxaA J xA 'le Axdx
L0 0 .
o[ AZ_-Ax | © CAX 2 0 (P a2 4 A
= kel {x _X + J eA a2xA laxoa JOXA 1o AXgx

integrating the first integral by parts.
Therefore from above, m = 0

,-.- Mean — MOde =0 —‘( - l ‘):

For A2 =1 2 a32 = 4,

f(t) = — =2 Type X

whcih represents a Jgshapéd curve with‘the range (-1,») [By
condition (iii) in (17)]
For A2 $# 1 =% a32 4 4, the function has been designated

type III.

(c) DISCUSSION OF THE THREE MAIN TYPES (TYPES I, IV AND VI)

§40 = b, 40 [by (26)]

Consequently
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bgtbyt+byt? = by (t-r1)(t-r2), r1 $ 0, T2 § 0

(bg ¥ 0) where
1 = Tby

-b-vb; 2 44b0_52 ‘
: 2by

and ‘T,

or, in terms of a3 and §,

~a3+V/D

1 25

|

—a3-~vYD ,
I (28)

D = a3%-48(8+2)

[By means of (26)]
Also 1 + rp, 1in general; r; = T) is a special case.
Now we have

a-t  _ _a-t R Y N : (say)
bg+b;t+b,yt2 b2(t—r1)(tfr2) by Lt-ri t-rzj
So a-t = A(t-r,)+B(t-1;)
t =1y 3 a-r) = A(ry;-ry) o A = i;fiz
= A(rzfrli > B = 2t

ot
I

=T a-r -
) 3 a-r, =
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. Ta-t o ,;"'aeri' R & ;':"a;ré 1
o bg'l'bl t*bztz bo CI‘] ~Tr9) ~t-—r1- : B,zl(rz —:1‘1) t-ry

m
t—rl terz

where

a-ri

T b))

a—l‘z (29)

d = <
e M2 = by Grzr)
Theithe.solutiOn of (29i»can~be put in the form

’f(t) = c(t;rl)ml(t—rz)mz (30

il

y

integrating constant to be determined

Q
]

Expressing m; and my in (29) in terms of o5 and

§, by means of (26) and (28), we have

_ 148 o 1+28
= 'W% -
(31)

S I

Then, by (28]
(i) for & < 0, the r's are real and opposite in sign
(ii) for &6 > 0 and' ¢32 < 48(8+2), the r's are complex

(iii) for & > 0 and dgz > 45(8+2), the r's are real and

of the same sign. -
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Thus we can see how the:discussion in section 7 is
simplified by Craig.

The three conditions together with the additional con-
dition ihat a3 ¥ 0 give rise respectively to the main types of

frequency functions designated types I, IV and VI.

MAIN TYPE I:

Craig's conditions for this curve afe
az ¥ 0
-1<6<0, &% -~%-
(2+36)c32 § 4(1+25)2 (2+6)

Now, for d3 > 0  [By. hypothesis (iv) of section 10(D)] we see

that

ry < 0, Ty > 0 ry < 0 < To
P o [By (28)]
and that II‘]_ I < lrzl

The range is (r;,rz) and equation (30) is written
y = £(t) = c(t-r)" "} (rp-t)"? Type I

The area under the curve over this interval, i.e.

("2 mj ¢ my
(t-ry) “(rp-t) “dt
T
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is finite only when mj+1 > 0, mp+1 > 0, and in these cases,

moments‘of_ail‘order exist. Conditions (a) are also satisfied

accordingly.

Now

Therefore, in the present case, since

- (m1+1) (mp+1) > O

2
i . H 2.
ilg&_ {1 2337 5
4 /

then
D

. 2
This implies that 1 - %> 0.

So that 1 >0.

S

Now

m; = —'1;6 {1 - %%: -1

[By (31)]

2 1eg < -8 = -‘1§§»< 1
= 0< -8

&
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Therefore m; < 1 “:75

above interval ofA .

For -

39

~1 = -:%%:<'0 (since a3 > Q) for the

< § <0,

L
2
m > 0 = - lgé"{l *’%%ﬁ > 1
q%<6é‘1<26%_(’1+6)<5j_1g6>0
(since € < 0).
Therefore - 1+6'(1 - %3) > 1
. § /D’
o 8 rein 1+
-1 - g >~ ToE (since = 5 0
v - 1o
e 1+8
. a - 8 1+26
A R vl v

That is m; > 0 for

(1+8)2a32 < (1+28)2[a32-45(6+2) ]

(2+38) 2032 < 4(2+8) (1+28)2

(1+8)as < (1+28)VD

(1+8)2a32 < (1+28)2D

[By (28)]

[(1+6)2-(1+28)2]as? < -48(5+2) (1+28)2

(2+38) (~8)ag? < -4§(2+8)(1+28)2

(since -6 > 0)

> < & <0
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> (23812032 < 4(240) (1+25)?

Similarly, m, > 0 for - %-<»& <0
5 (2436)2057 > 4(2+8) (1+26)2
Note:.. S<~2 B3 < -2 21k < 0

S 2(136) < 6 148 < 5 (-6)

= - 1;(3 < %— [si]?ce -5 > 0]
-'i> 1428 < -(1+8) «? - 1;;26 ¢ _l_g_(s_
Next we want to show that for § < ;.%

1+26 a : :
m1<—,‘8 ,(1+7%.);;>m1<0

Proof: To determine whether - 1;26 >or <0 fbr § < - %',
note that - 1;26 > 0 D 1+28 >v0 B s> -%—
This is a contradiction since -§ > §-= %‘.
So —~-1+26‘<0 for 6_<_$2~. That is m; < 0 for 6<—~3.

& 3 3
Similarly, m, <0 for &< -2, and this implies that
a Type I curve is'U-shaped. [By condition (i) of (17).]

Next, note that
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ro-ry >0 and by 20 according as ¢ S ,,%h [By. (26)].

So r; <a <1 for all U or beli—shaped curves only. [By (29)
and (17),1

The sign of a in the differential equétion (20) is
always opposite to that of a3 for curves with a mode. This is
important for graphs, and interesting to note.

Finally, to determine the constant“C, we have, by

hypothesis (i1) of section 10(D),

T2
C [ (t-rl)ml(rz—t)mzdt =1
S|

To integrate, let t-r; = z so that the limits become

0 to 1)-r;, and

“'1‘2
.M

(t-r)" (ry-1)"2dt

‘ry. .

rrz—rl ml‘ m2
o R (R R
0

my

g dz

my
= - 1_ -3
(ro-r1) Z ST Toory

JI‘2—~I‘1 ml

Q

1
= (Iz-rl)mz J (rZ'Tl)mIle(lwylmz(rz—r1)dy
. _

my+m,+1 (1 m m
L, J y '(1-y) dy
0

= (rp-11)
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my+mp+1

(ra-r1) B(my+1,my+1)

1

i Blmy+1, my+1)(rp-11)

Therefore  C my+my+1

MAIN TYPE TV

Craig's conditions are

0,3* 0

§>0

w32 < 48(8+2)

In this case, by (28),

r = -%§~+.ié;ﬁ,
= -r+is
r, = -r-is
where r=—°—2‘§-, s=—€.—D~, and -D » 0. By (31),
D EC PR U
1 § i/-D 3
= _'lgémég%;- lég§t= %1 -m,
and similarly m, = ;;%i;- m, vhere v = :2£%:§l~§%% and

142§
= .

m = By (30), the solution y = f(t) becomes:
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vi . vi o]

——-—m 5 Cvi {
4 =(%fCt+r)$1§}2 {(t+r)+is} 2 J
Cavd N
) Ci%;%i%gyi—iCt+r]2+$2]'m.
\

Now setting t+r = R'cos'e, s = R sin 8, we gef_

L v Vi i
ter-is) 2 _ fcos 6-i sin 8 12 _ [e 12
it*r+15' - \cos B+1 sin 0 j Tie
: : | ) L le'” |
-1 S A% 1 t+r
v e ] P e
= e = e = e e .
.. The above solution becomes
' ( t+T
un -1
7 _ p T VEER s }
y = £(t) = ce® [(t+r)%+s?] e Type 1V
1+28 o .
Now m. = 3 >0 (for 6 >0), v and a3 are of opposite

Signs by our hypothesis, and

VT -1 t+r -V
5 -vtan “s——} T
e’ <e e (v < 0)

I

and the range of f(t)' is  (-»,).

In the previously discussed cases in which & < 0, if
the area under the curve was finite, moments of all order existed.
In the present case, the area and the first four moments are al-
ways finite, but this may fail to be true of moments of higher
orders. |

The. integral - J tnf(ﬁ)dt, which répresents‘the n-th

moment for the distribution given by f(f), is
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~eo [(t*r)2+s2]™
This integral exists if
2m > n+l (32)

Now §>1 5142623 % 228 <5 v mcs

So, by (32), n+l < 2m.

> n+l < 6 n<y»>5

»:§>n < 4 for which moments are finite, and
for n = 5 the moments are infinite.
By (32); in order that the n-th moment exists, we must
have

2+46
3

> n+l

2+(3-n)S > 0

2 > (n-3)8

(33)

Pearson designated as 'heterotypic' those members of
his system of frequency curves for which the eighth moment failed
to exist. (In such a case the standard deviation of the fourth

moment in samples would be infinite.)
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it was apparent that conditions (@) were satisfied
for -1 <& <0. (Itwill appeaf later that the case in whcih
§= - %- is no éiception.] ‘For & > 0, it will be seen that it
is generally true, as in the present case, that the formulae (22)

and (26) can be derived if dh+2 eXists,,that is if

6 <20 [By (39)]

To determine the constant C, we have
v(z-- tan™* Eﬂ%

2 S

e ‘ :

A7 dt = 1
‘ [ It 2es2]”

Putting ¢ = % - tan”! E%E. so that the limits become 7 to 0
and
= tr T _ tr
tan & — = — ¢ 7 cot § = ——.

Then (t+r) +s? = s?[l+cot?$] = s?cosec?d

Also t+r

s cot ¢

dt = -s cosec?¢d¢

We get ultimately

0 e_\)¢ 5
C [ T (-s cosec4¢)de = 1
T s cosec

. m
C vo . 2m-2 _
or SnT J e 'sin ¢do =1
.S a
or —CG(2m-2,v) = 1
2 1



46.

SZmél.'
°r. L= GV
- ' T 2m-2. vé
where G(2m-2,v) = j sin “oe Tdo.

MAIN TYPE VI

The conditions of Craig are

az ¥ 0
§ >0

a3z? > 48(85+2)
(2+38)a3? + 4(1+28) (2+6)

Note:

The last condition for a Type VI curve due’to Craig is
not, as a matter of fact, an additional constraint as shown by
L. K. Roy [26]. Its signifiéancé‘isralso clarified by him in
the same.

The equation of the frequency curve is

<
I

¢ (t-r)™ (t-r,)™

PROPERTIES OF THE CURVE:

(1) Ty <0 > -a3+/D < 0 5 -az < /D = az > /D ) az+/D >2/D

A

2 —(az+/D) -2VD
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2 ~(a3+/D) < 0
N1y <0 [Since §> 0]

Note also that since a3 > /D, then a3 > 0. Thus o3 is oppo-

site in sign to r; and 1rj.

(i1)  |ra] > |

(iii) mp = _'lgd‘ 0;}8-- '--.1?;26“ <0

AV
o

(iv) m according as (1+6) %% % 1425 or according as
(2+38)a3% $ 4(2+)(1+26)2 [As in

Main Type I.]

i

(v) a-r, = b, (r,-r;)m, > 0 [Since b, >_0,'r2-r1 < 0, My < 0.]
(vi) a-r; =b,(r;-r,)m has the s;me sign as m .

(vii) a< 0 (Since a3 > 0, § >0)

(viii) The range of f(r_;)t‘is (1) ,%).

(ix) m > 0 5 the curve is bell-shaped [Since m, < 0]

(x) m < 0 - the curve is J-shaped
S t=a is to the left of t = 1.

N _22(1+28) 2

(xi)  my+my = — "3

(xii) o =C J " (t-r1)™ (t-r,)"2dt
. r
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exists if

-(my+mp} > n+l.

+
o1
Vv

This implies that 4 n+1

orfro
\2
=

= 3 %

AN

3+

N

S n

= n <4 [by (27)]
Thus.the first four

moments always exist.

If the origin is shifted to the point t =T ,

writing
t—.rz = Z,

for the type VI function

y‘:
(@,=) .

with the range

Finally we have,

C J,zmz(z—a)mldz =1
(61

C J z-k(z*d)mldz =1

a

f(z) =

t=r, t=a t=r

we have,

r;-Tr, = Q,

cimz(z—a)ml Type VI

where k = -mp > O
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/M1 k-
. mj
o J zml'k(l %— dz = 1
o .
©_Mmj +m, 1 o mld 21
c Jz , ( Z) z =

Put %-= x, then

' +m S my | \
C JO { E‘_)ml 2 C].—X) ! i ?(-2‘; dx =1
X

i

o ‘
Cam1+m2+l I x_(m1+m2+2)(1—x)m1dx =1
0

my+mo+1
g1 tm2

C B(my+1,-m;-my-1) = 1 [B(m,n) = B(n,m)]

1.

am1+m2+16(m1+1,—m1—m2—1)

(d) TRANSITIONAL TYPE II

The conditions are

0L3 =0
-1 < § <0
§ + -1
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In this case, by (28),

‘rl

I
Y 8(6+2)
Ty = "—-—fg—~—-> 0
So 1] = -15
By (311},
my =my = ;;1;2& 2 according as § 2 - %—.

The frequency function in this case is evidently a
special case of Type I.
Setting 1= -r, = s
and m; =m, = M,

the frequency functiQn takes the form

y = C(sz—tz)M Type II

PROPERTIES:

(1) It is symmetrical about thé axis of t.

(ii) The range is (-s,s).

(iii) -1 < &8 < - %« Z>m; =mp, < 0 Z the curve is U-shaped.
(iv) - %—< § <0 :>rn1'= my, > 0 = the curve is bell-shaped.
() As in Type I, the area and moments do not exist for

§ < ~-1..

Finally, to evaluate C, we have
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S
C J (s2-e) M - 1
_.5~

& . :
2C (;s;z-.tZ)Mdt =1
0
2C | (s+t) (s-t) dt = 1
0

1

put s-t =z = s+t = 25-2Z.

(0
Then 2C (_25-.~z]MzM(_-dZ) =1

(S ; M
2 | Mot \1 ; —i) dz = 1

S .. M
M M z Vdz =1
C(2s) 2Jz &1El
0
2s gM
c(.2s)MJ M2 dr =1
|2s
0

C(_Zs)M JI(AZS)MXM(l—x)M(Zs)dx =1
0

¢ (2s) M g1 e1) = 1

) 1
(2s) 2M+1'5t (M+1,M+1)
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(e) TRANSITIONAL TYPE VII (DUE TO CRAIG).

Craig's conditions for this curve are

oz = 0

&> 0

The frequency function in this case is obviously a special case

of type IV, with

r=0,5=22-080), g .o, m=-12,
25 § y 5
The equétion'is
y = C(s2+t2) ™" Type VII

This equation could also be derived from the Type II function by
noting that s = is and M = -m.

The range of the cﬁrve_is (-»,»). For &6 > 2/5, the
curve.is heterbtypic [By (33)].

To determine C, we have

C J (s2+t2) Mdt = 1

-00

2C f (s2+t2) Mdt = 1
0

1.

2C 2m-1
s

Mo _ .
J coszm 2ede[t=stan_e]
- Q



53

2

¢ SZm«I IZm-Z -

- m-1
s

€=

2m-2

or, in another way, we can write

Put 1+§2->=-Z

dt

!

t
R

L

S
-1,y
2(1-2) 222

So the required integral equals
205~ j (1+t2/s?)dt
0

x [0 m-% -y s
iy I A G N
s 1

p 3 1
- M- 1 " 12

dz
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- C
2m-1 T'(m)
[y
T 2m-1 -
s T (m)
c SZm 1 I (m)
I pf2m-1]
|7 2]
(f) TRANSITIONAL TYPE V
‘Craig's conditions are
a3 $ 0
8§ >0
a3z = 48(6+2)
5> D=0

The type V function can be dérived as a limiting form of
type VI function.
‘Here ry =13 = -1 (say)

Hence from type VI function we get

C(t+r)m2(t-+r-a)mI [z = t-Ty = t+r]

y-

m; +m a m
C(t+r) 1 72 11 - ‘

t+r _
. 1+8 a3 1426
o\ AT
-2
= C(t+r) i1 - tfr [0 = T-T5 = éﬁ:]

Now we proceed to find



lim |1 4%
D>0
1+§ o
R
. §
= lim{l - —
t+T
>0 1
rr 1 .5 3
o wa T
= ].lm 1 - t'l'r R
D>0 | ;7
1+8
;,_' }_ 1 ~g'-6—-»-0L3
. s
= lmi 1 - oy *
D=0 i
r 1 7%30‘3
! §(t+r) |
!"
_ (1+8)
_ 52(t+r)
- (m-l) 9’—3—1 b
ttr § i 1+8 !
= e f—=m-1}
N
- (I::l;i) 21. . ar..i
= ir o= o
j A
2r(m-1)
- t+r
.. The frequency function for type V becomes
) 2r{m-1)
. -2m t+r
y = C(t+1) e Type V

We could also get the same equation by solving the differential

equation



for this case.

PROPERTIES OF. THE CURVE

(i) r has the same sign as a3 (a3 > 0).

. _ 1
(ii) m =2 + 3

(iii) The range is (-r,=).

(iv)  The curve is always bell-shaped.

) For the existence of the n-th moment, we must have

4+2/6 > n+l

which leads t0 the same conclusions as in the Type IV or VI.

To evaluate c, -

w _ 2r(m-1)
C J (tar) M e BT g¢
-r
Put 2£%§§11-4=,2, The limits become = to O..

A]‘.SO‘ :_?_I.‘..(_In_—_].'ldt = dz

(t+r)2
_ (t+r)? _ [2r(m-1)]%dz
GERS 2r(m-1) dz = - z22r (m-1)
So we have,
T r'2r(m-1)7q2m s dz
CJ 2r (m-1) | z 5 e~y =

1

= -2r(m-1) g§~
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Cl2r@m-1)11 2" J 22272y, 21

0

Clzrm-111"#r(2n-1) =1

o . [2rw-p1®™!

T C2m-1J where 2m-1 > 0.

(g) TRANSITIONAL TYPE VIII

The conditions are

031{:0

§ < - =

2.

(2+38)as?= 4(1+268)2(2+6)

The frequency function in this case is a special case

of type I in which m; < 0 and m, = 0.

By type I, ¢& < -.%
—-_>m1 < 0.
Now m, = 0 my; = :3£1%2§1-= -2m, so that the frequency
function becomes
-2m
y = C(t-ry) Type VIII
PROPERTIES:
(1) The range is ,(rl,rzj.

(ii) The curve is J-shaped with an infinite ordinate at t = r;

and a finite one at t = r,.
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To determine C, we have from type I,

C= 1 .
: &(1;2m,1)(rz?r1)l‘2m

- [(2-2m) ) 1
r(1-2m)T(1) (Tz_rl)l-Zm

_ (-2m)t 1 |

- (-2m) ! _(rz_rl)l—Zm
(TzirlJl_zm

(h) TRANSITIONAL TYPE IX

Craig's conditions for this type of curve are

(!3*0

- %-< § <0

(2+38)az? = 4(1+28)2(2+6)

This is also a special Type 1 function where m; = 0
and mp = -2m > 0.

The curve is

y = C(fg—t)_zm Type IX

PROPERTIES:
(i) The range is (ri,r5)

(ii)  The curve is J-shaped with a finite ordinate at t = To
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¢ -2m > 0).

(iii) C has the same value as in Type VIII, that is

'1-2m

1-2m
(ra-r1)"

C =

(i) TRANSITIONAL TYPE XI

Craig's conditions are

0&3*0

0 <8 < 2/5

(2+38)a3? = 4(1+268)2(2+8)

The function is a special type VI where

m; =0 and my; = -2m < 0 (for 0 < § < é—).

The frequency function is obviously
-2m
y = C(t-ry) Type XI
PROPERTIES
(1) The range is (ri,®).

(ii) The curve is J-shaped with a finite ordinate at t = r;

and an infinite one at t = rjy.

1
o
-

(iii) The C is found from the C for Type VI with m;

my =,—2m.’
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So C= : ' 1;2;:; — = F(Z@) 1-—2m
(r1-r2) (1,2m-1) T(1)r(2m-1) (ri-r3) :
0 2m-1
- 1-2m
(r1-r7)
(j) TRANSITIONAL TYPE XII
Craig's condition is
1
§ = —~ 5
Now if § = - %3 the values of a,by,b;,b, become in-

determinate as we see from (26). In this case, we set the values
~of a,bg,b;,b, as obtained in (26) in the differential equatiqn
(20) and from itsylimiting form as § - - %3 we derive the func-
tion appropriate to this case in the following way.

We get from substituting (26) into (20)

. - — %3 __ ¢
1dy _ 2(1+28)
Y dt - 2+8 o3 ) 2
2(1+28) © 2(1+28) t T 2aezsy t
_.oag+2(1+28)t
T 7 (2+8)+azt+6t2
1. .
Now & = - 5 gives:
1 dy - o3+0 L 203
;V dt {2 o1 i 1 2 - tg.—v2a3t—3
- -2—) +oa3t -~ 5t

2
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203
(t-ry) (t-ry)

SRSV RT) o
where ry = Zag /3aq +12/=;a3?¢a32+3

Then the above equation can be written as

1dy ., [A B ]
y dt 2“3it-r1 T T, |
where A = and B = — !
T)-Tp ST TpeTy
so that we get
y r,-r; ‘t-T, t-ry |

ag 11 1
!7(132+3 ét—rz t-rij

Integrating, y = C'[t—rl)ml(t~r2)m2-
= _m. = O
where my = -My 7@;3:3

Since a3 > 0, then r, > 0.
Now T, = az - Yaz2+3 < 0.
So r, >0 > T).
Thus |r,| > |ry]|.

Also m, = -m; > 0.
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Therefore ultimately the frequency function becomes

Y = €' (t-r) T2 (t-p) "2

t-ro 2

t-r }

. i Mo
. - 5-t
or, Yy C (t-rl :

Type XII

the range being (r;,r2).
This curve is J-Shaped. The frequency function in this

case could also be derived as a special case of the Type I func-.

tion in which § = - %_ Hence
£ = (1'2-1‘1)81[1—m2,1+m2)’ uSing int}’pe I, m; = -mop.

(k) Finally, we note that for A“3.= 0, the Type XII curve re-

duces to
y =C [Since mp, = 0 for a3 = 0]

thus including the rectangular distribution function among the

Pearson system.

(€) A SYNOPSIS OF THE STUDY IN CHAPTER II

§ = 0; ag. = 0= Normal frequency function

ag + 0 P Type III

2

n
ELN

a3 = Type X
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=

-1 <&8§<0, 6 % - 11 a3 ¥ 0 = Type 1

I
2 ? (2+38)as? + 4(1+26)2(2+8)
§> 0; az2 > 485(8+2) 3 Type VIJ
a3? < 45(8+2) = Type IV
-1 <8<0, 86 - %; a3 =0 Type 11
§ >0, a3 =0 % Type VII
azc = 45(6+2) ) Type V
5§ < - %; as +'O- > Type‘VIIij
,%k 6<0;a§+(} 2 Type IX _
L, (2+38)az? = 4(1+26)2(2+8)
0 <8<z a3 0 > Type XI
8§ = - %g oz + 0 > Type XII
.a3 =0 :» Rectangular distribution

(m) SOME CONCLUSIONS

The scheme in.the previous.Section shows how the new
exposition for the Péarson system of frequency curves by C. C. Craig
possesses marked advantages in unity,'clarity and elegance in
specifying the curves in terms of the two parameters ¢ and o3.
The definition of & is given by (18) in terms of a3 and au;
while the definitions for aj3(=vVB}) énd ay (=82) are.dbtained
from (23). |

In the above mentioned specification of the curves as

outlined in the previous section, we see that
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§ e (<1, 2/5).

By (33), it ié inferred that for all twelve types of

Pearson curves

(5}
A
v N

[using' n =8 in (33)]
ensures the existence of eighth moment.

J-SHAPED, U-SHAPED, AND "COCKED-HAT" CURVES

The following page contains a diagram showing transi-
tion from two separated blocks of frequency through U-shaped and
J-shpaed curves to the more common "cocked hat' shapes.

(1) represents two separted blocks of frequency develop-
ing into U-shaped curve in (2). The horizontal line of (3) is,
as it were, the bottom piéce.ofﬂthe U-curve and the Type VIII
curve of (4) is like part of the U-curve. (5) and (6) are limits
when straight lings arerreached. (f) is Type IX and (8) is.the
exponential, The next two curves (9) and (10) are sthaped curves
of Types III, and I, and (11) is Type (XII). From this we pro-
ceed to Types, I, III, IV, V and VI, curves of the 'cocked hat"

shape, three examples being given in (12), (13).and (14).
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CHAPTER III

SOME INTERESTING FEATURES OF PEARSON CURVES

INTRODUCTION

i In this Chapter, we have a detailed study of the bell-
shaped.Peafson curves. Another method than the method of moments
for computing the constants in the Pearson diffefential equation
is developed.

A study of Type II curves by the method of maximum like-
lihood is outlined (4], whiie'i£.is-interesting to see how
Pearson's Ty@e II eufﬁe occursein Thoﬁpson's criferion for the
rejection of outlying observations, .This indicates a practical
applicetion of Pearson's Tyﬁe II curve.

The,Chapter ends up With the development of Pearson's
Type III curve from Bernoulli distribution, also indicating how

the normal curve of error can be obtained as a limiting case of

the Type III curve as the skewness approaches zero.

11. DEFINITION OF,ALBELL—SHAPED CURVE

A bell-shaped curve is a continuoﬁs curve which starts
at zero (or zero as a limit), rises to a single maximum, at
which maximum point the first derivative is zero, and then falls
to zero (or zero as a limit).

Or, analytically, y = G(ﬁ) is a bell-shaped curve if

66



67

G(x1) = G(X3) = 0 and if G'(P) = 0 and G"(P) < 0 where G(x)
'is continuous and does not vanish in the interval from x; to

x, and P is a unique point in this interval.

12. POINTS OF INFLEXION OF BELL-SHAPED CURVES

A discussion ofbthe points 6f»inf1exion beingsrouf the
limitations of thé bell-shaped Pearson curves in the most strik-
ing manner. -

Consider the differential equation (20) of Chapter II
iﬁ'the form’ - J o |

dy _ y(x-A)
3 bpxZebixby (34)

If we put x-A = X i.e. shift the mode to X = 0, we get

- Ldy _ yX , |
dX = #B,X2#BX+B; (35)

the + or - sign is taken according to the type of the curve. We
shall show that Bg < O later.

Since in the Type III curve B, =0 and in the '"Normal
Curve" both B, = 0 and B, = 0 it would be of advantage to

consider the general case

yX (36)

Q-Al (2N

i<
i

.-n‘

—~|

te)

]
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in place of (35), where ‘F(X) 'is a rational integral function of

degree n, ‘and then consider n = 2 for Pearson curves.

. . P 2 ...... - .
By (36), ixy - TFogTz D+F 0 -XF' (0] (37)

For points of inflexion of .y,

X +F(X)-XF'(X) = 0 (38)

[By (37)]

The equation (38) is always of the same degree as F(X)
except when F(X) is linear or constant. Thus we get the follow-

ing theorem:

Theorem I: If y = G(X) is a solution of (36), then the number
of points of inflexion of y[=G(x)] cannot exceed the degree of
F(X) when F(X) is of dégree greater than one.

Hence for Pearson's bell-shaped curves the maximum
number of points of inflexion is two, that is, a Pearson bell-
shaped curve has at most two points of inflexion, and no more.

Now F(X) can be written in the form

F(X) = ann+Bn‘1thl+...+B2X2+B1x+BO (39)

By (39), equation (38) becomes
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» S | ‘ n-1 . n-2
Cl-n)BnX +(2an)Bnq1X +(3—n)Bn_2X +...

+e-m)B XM 3B,X%-2B3X34(1-B2)X24Bg = 0 (40)

Thus from (40), we have the following theorem:

Theorem II: The coefficient of the linear term of X in the
equation of the points of inflexion is zero.

Now for the '"Normal Curve'" and Type III, we have

Hence the points of inflexion of these two types of curves, as is

easily seen from (40), are given by

X = 2V -BO (41)

Again for types I and II, B, > 0 and

x = + /B (42)

[By (40)]

And for types‘IV, V, VI and VII, B, < 0 and
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and the points of inflexion are at

=t T (49

[an obvious modification of (42)]

13. SOME OBSERVATIONS

(1) In some of these types_of:CUrves it may haﬁpenvthat the
abscissae of the points of iﬁflexion though real will be beyond
the range of the curve. |

(ii)  Thus typéé 11T and VI may have 1 or 2 points of inflexion,

the single point of inflexion occuring when

> range of the curve in the direction that

{ [-Bg
the range is limited.

\ 1+B2 :

(iii) Type II may have 0 or 2 points of inflexion, as there will
be no real point of inflexion when B, > 1.

(iv) Type I may have 0, 1 or 2 points of inflexion.

(v) Types IV, V, VII and the '"Normal Curve" always have 2. and
only two points of infiexion.

(vi) By (41), Bg < 0.

14. LIMITATIONS OF THE BELL-SHAPED PEARSON CURVES
Consider the three hypothetical histograms as given
in the attached diagram. All these are bell-shaped yet none of

them will be closely fitted by any of the Pearson curves.
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F1a. 3



72

In section 12, we haVe seen that when one of the eight
bell-shaped Peafsoh'curves (types I, iI; IiI, v, V, VI, VII and
the "NbrmalVCurve“) ﬁas two points of inflexion then the abscissae
of theéértwo pOints.of inflexion are eqﬁidistant from the abicissa
of the mode.

In figure 1, a point of inflexion will be at abscissa
b and another at abscissa a, M 1is the abscissa of the mode.
Now since (b-M) +‘(M—a) none of the Pearson curves will fit
this histogram closely.

In figure 2, points of inflexion occur at abscissae
a,b, and c. Since a Pearson curve can have at most ‘two points
of inflexion, no Pearson curve will fit this histograms closely.

In figure 3, there:are four points of inflexion and no

Pearson curve will fit this histograms closely.

15. DEFINITIONS OF RANGE FOR BELL-SHAPED CURVES

Definition 1: If a bell-shaped curve has the value of
zero at two finite points, one on each side of the maximum (mode),
it is said to be of limited range in Both directions, or briefly,

of limited range.

Definition 2: If a bell-shaped curve has the value of
zero at only one finite point it is said to be of limited range

in one direction, or, of unlimited range in one direction.
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Definition 3: If a bell-shaped curve has the value of
zero only at. #=, that is, at no finite points, it is said to be
of unlimited range in both directions, or simply, of unlimited

range.

16. ZOCH'S THEOREM

In this section, we state the theorem due to Richmond
T. Zoch [32] (with a corollary) without proof. The usefulness of
this theorem in relation to our present disucssion will be brought

out in the next section.

THEOREM: If F(x) is a polynomial with real coefficients and
y = G(x) is a bell-shaped curve which is a solution of the diff-

erential equation

%%—: Zé%i?l- [Equation (36) of section 12]

then the necessary and sufficient conditioﬁ: (1) that G(x) 1is
of unlimited_fange in both directions is that_ F(x) = 0 has no
real roots; (ii) that G(x) 1is of limited range in one direction
is that all the real roots of F(x) = 0 1lie on the same side of
A; (iii) that G(x) 1is of limited range in both directions is
that at least one real root of F(x) = 0 1lie on one side of A

and one on the other.

Corollary: F(i) < 0 throughout the range of .
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17.  IMPORTANCE OF ZOCH'S THEOREM

Suppose we have some statistics which we wish to grad-
uate and‘the statistics are of'such nature that we would expect a
beli‘shaped cufve, réthér'than a J- or U-shaped curve, and we de-
sire the best fit.

If we use a curve which is a solution of the differen-
tialneuqation (34) [the Pearson curves being special cases] to
fit the statistics and if in computing the constants for the

curve one of the following cases arises:

(a) b, ¢ 0 when this constant is computed
or (b) Bo'* 0 when the origin is'shifted,to the mode

or (c) a root is located within the range of the statistics

then itgmeans that:

(i) A miétake may have been made in the computation; thus
Zoch's:theorem provides a rough check on the wqu of computa-
tion. |

(ii) Ifiﬁo_mistaké has been made in'the computation it may in-
dicate that the bell-shaped Pearson curves will not closely fit
the statistics and that some other graduation curves be used,
e.g. the Gram;Charlier Types A or B might be tried.

(iii) If no mistake has been made in thé computation it may
happen that one of the bell-shaped Pearson curves will give an

excellent fit but a different method than or a modification of
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the Method of Moments (as in Chapter I) should be used to compute

the constants.

18. COMPUTATION OF THE CONSTANTS: A MODIFICATION OF THE METHOD
OF MOMENTS

In the differential equation (34), put
x-A = X dx = dX, x = X+A and we get

dy yX_
dX b2 (X+A) 2+b1 (X'*‘AT"'bO

- X (44)
b2X2+(2Ab2+bl)X+(A b2+Ab1+b0)
Now
by = By
2Ab,+b; = By (45)
A2b,+Ab;+bgy = By
dy yX
? EX— - B2X2+B1X+BO (46)
> . YxA). (47)

dx ~ By (x-A)Z+B; (x-A)+B;

It is seen from (34) and (47) that for a particular
~curve By,B; and By are constants, that is, their values do

not change with a change of the origin, but the values of b; and
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by do change'with a change of ofigin;

From (47)

y(x-AJdx = [By (x-A)2+B, (x-A)+Bo]dy

5 ; . = s .
;>J %™y (x-A)dx = Juzenx[B2Cx-A)2+B1(x-A)+Bo]dY (48)
X1 X1

If y = G(x) is a solution of (47) such that G(x ) = G(x ) = 0,

then (48) becomes:

X2 nx ,
J e y(x-A)G(x)dx"
X1 =

, X2 ' ' X2 ;
= By J enx[xz-ZAx+A2]G'(x)dx+B1J enx(x—A)G'(x)dx
X X3

- B
+ By J ™G (x)dx (49)
X1 -

Noting that

Xz )
J ex26 1 (x)dx = e™x2G(x)
X1

X2 X2 nxX. o,  nX
o -] G(x)[2xe T+x“ne "]dx,
X1 X1

eté., we get from (49), remembering G(x;) = G(xy) = 0,

X2 . n* 3 . (X2 n* . . : X9 nx
J” xe G(x)dx—A'Jv e G(x)dx = By, |-2 J, xe G(x)dx
X1 X1 X1
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Xo . oL X o . . X2 . E
+ N J“ xzenxG(x)dx+2A f_‘enXG(x)dx-Azn,J. énxG(x)dx
X1 - RSS! S _
;r X2 - Xo. - Xo o .
+ Bl‘j— JhienxG(x)dx—n J~ xenXG[x)dx+An J enxG(x)dxé
L X1 ‘ X3 X3 i

- X9 nx s -
- Bgn I e "G(x)dx
X1

Now if we put

enxG(x)dx = ef(n)

X2
I=j
' X

1.

2 3

where - f(n) = Al”**Z.%T'+A3 gT‘+ <

then (50) becomes -

-

dI dI d21 |
B, [(n—Z) In " "anzt (2A-n)I§

dn Al =

a

| ' ar | |
Again, by means of (51) and (52), (53) becomes

£1(n)-A = Bo[(n-2)£' (n)-n{£'2(n)+£"(n) +(2A-n)]

+ By [(An-1)- £'(n)1-Bgn

(50)

(51)

(52)

(53)

(54)

Finally equating coefficients of n%,nl,n2 and n3 from both

sides of (54), we get
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AleA+Bi?2AB2+232xl = 0,
.'A2+36*A31+A232+31K1~2A32A1+332A2+32A12-= 0,
e (55)
A3+2A231'4A32A2+4le3+432xlkz‘: 0, i

Ay+3B1A3~6ABy N3 +5ByAy +6ByAp2+6BoA1As = O

Since we can'compute_thé moments from the raw statistics
and the semi-invariants Ai from the moments, we may fégard
A2,A3 and A, in these equations as knownsrand the By,B;,B,,
A and X; as ﬁnkndwns. But the origin has not yet been speci-
fied. Let the origin be placed at the me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>