
AN EXPLICATIVE STUDY AND EXTENSIONS OF 
THE PEARSON SYSTEM OF FREQUENCY CURVES 

A thesis submitted to 
Lakehead University 

in partial fulfillment of the requirements 
for the degree of 
Master of Science 

by 

Prabhubandhu Das 

1973 



ProQuest Number: 10611581 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

ProOuest 
to 

ProQuest 10611581 

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 - 1346 



D-fi,7S^ 

■y^73>' 

Copy r.3 tnt © \RV3 p|r-^bK\-4.ioocv^^lr\UL r>o.3 

^Vies^3 orv ^AVcv*©■PO Vvv NIo, IfeTIT^ 

201TS4 



PREFACE 

This study would not have been possible without the 

learned guidance of Dr. Lawrence Keith Roy, who proposed and 

directed this thesis. I am thankful to Dr. Roy on whose rich 

scholarship I have always drawn. 

The cooperation of the Lakehead University Main Library 

and the Library of the Department of Mathematical Sciences have 

made this study possible. My thanks are due to the staff of the 

above mentioned libraries. 

1 



CONTENTS 

Page 

PREFACE            ...      1 

ABSTRACT OF THE THESIS ..................      ii 

SYNOPSIS AND SCOPE OF THE THESIS     . . v 

CHAPTER I: AN INTRODUCTORY STUDY OF THE PEARSON SYSTEM 
OF FREQUENCY CURVES .......     1 

Introduction      1 
1. Frequency Distributions and Curves    1 
2. The Significance and Importance of Frequency 

Curves       ........... 2 
3. Historical Background in the Formulation of 

Pearson System of Frequency Curves    3 
4. Pearson*s Differential Equation Constituting 

the Pearson System of Frequency Curves ...... 4 
5. Derivation of Pearson's Differential Equation 5 
6. Evaluation of the Constants of Pearson's 

Differential Equation: Method of Moments .... 10 
7. Specification of the Pearson System of 

Frequency Curves      13 
8. An Expression for the Criterion K     18 
9. Criteria For U-Shaped, Bell-Shaped and J- 

Shaped Curves ........ .................. , . . . . 18 

CHAPTER II: CRAIG'S TREATMENT OF THE PEARSON SYSTEM OF 
FREQUENCY CURVES     ... 23 

Introduction       23 
10. Craig's New Exposition and Treatment For the 

Pearson System of Frequency Curves    23 

CHAPTER III: SOME INTERESTING FEATURES OF PEARSON CURVES . 66 

Introduction     66 
11. Definition of a Bell-Shaped Curve ........... 66 
12. Points of Inflexion of Bell-Shaped Curves ... 67 
13. Some Observations ... ........ .. ........... .. . 70 
14. Limitations of the Bell-Shaped Pearson Curve 70 
15. Definitions of Range for Bell-Shaped Curves . 72 
16. 2och' s Theorem  73 
17. Importance of Zoch's Theorem    74 



Page 

18. Computation of the Constants: A Modification 
of the Method Of Moments      75 

19. A Study of Type II Curves: Method of Maximum 
Likelihood ...................... . . .......... 80 

20. Occurence of Pearson's Type II Distribution 
in Thompson's Criterion for the Rejection of 
Outlying Observations ..... o . 84 

21. Development of Pearson's Type III Function by 
Bernoulli's Series ...........           85 

CHAPTER IV: CLASSICAL ORTHOGONAL POLYNOMIALS ASSOCIATED 
WITH PEARSON'S DIFFERENTIAL EQUATION ........ 89 

22. Introduction      89 
23. A Review of the Classical Polynomials ....... 89 
24. Romanovsky's Investigations     92 
25. Definitions of the Polynomials Pn(x) and 

Pn(k,x)       93 
26. Some Polynomial Theorems Concerning the Solu- 

tion of the Differential Equation (,77)   94 
27. Recurrence Relations Involving.P^+iCx), ^n Cxj 

and Pn_l(x) and Their First Derivatives ..... 97 
28. Derivation of the Classical Polynomials ..... 98 

CHAPTER V: EXTENSIONS OF THE PEARSON SYSTEM OF FREQUENCY 
CURVES   ...............   107 

29. Introduction and Summary    107 
30. Solution of the Differential Equation (112) 

in the Form (113)    108 
31. Important Continuous Probability Laws   109 
32. Deductions of the Probability Laws of Section 

31 as Special Cases of f(x) as Given by 
(ll3) ....      115 

33. Observations on the Previous Results ........ 124 
34. Direct Deductions of All the Pearson Curves 

From f(x) in (113)     124 
35. An Extension of Pearson's System    129 
36. Another Extension of Pearson's System by 

Edwin D. Mouzon       . 145 
37. Conclusions (Due to Karl Pearson) ......... . . 151 

BIBLIOGRAPHY .                . 153 



ABSTRACT OF THE THESIS 

This thesis studies the Pearson System of Frequency 

Curves from the following four standpoints: firstly, an introduc- 

tory and simplified study of the derivations and characteristics 

of the curves; secondly, some interesting features of the curves; 

thirdly, classical polynomials connected with Pearson's Differen- 

tial Equation, and fourthly, extensions of the system of curves. 

In Chapter I, an introductory study of the curves is 

outlined. In Chapter II, a simplification in the study of the 

curves, as mentioned above, has been attempted by using the two 

parameters a3 (a3^ = Bi, 014 = B2 Pearson's notation) and 

2 6 —3 B 
^ In fact, the use of these two parameters outlines 

the whole of our discussion in Chapter II. The derivations and 

characterizations of the curves under the Pearson System are made 

in terms of these two parameters a3 and 6. As a result, the 

various formulae that arise are relatively simple in form and 

easy to use. 

In Chapter III, the bell-shaped Pearson curves are 

studied in detail. Also an alternative for the method of moments 

in the computation of the constants in the Pearson differential 

equatioii is studied. Interesting studies of Type II and Type III 

curves are also Hade. 
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Chapter IV is devoted to the study of the classical 

polynomials due to Hermite, Jacobi, Tschebycheff, Legendre and 

Laguerre in relation to the Pearson differential equation. 

Chapter V is allocated to the study of two Extensions 

of the Pearson System of Frequency Curves. The differential equa- 

tion 

d log f(x) ^ Yofyix+Ypx^ 
dx 

where YO >Yi JY2 ^.re real numbers, and its solution in 

the form 

f(x) = Cx^^ Ca-i+a.2x)^^ (bi+b2X>^^ 

where C,ri ,aj ,a2,r2jbi ,b2,r3 are real parameters, as also the 

differential equation 

d log f(x) _ x-a  
dx bo+bix+b2x2+b3x3 

are basically used for this purpose. As a matter of fact, the 

afore mentioned differential equation and its solution outline 

the major part of our discussion in Chapter V. Under certain 

conditions the solution of the differential equation in the given 

form is used to derive five curves whose parameters depend on the 

first seven moments. The Pearson curves are shown to be solutions 

of a special case of the above mentioned differential equation. 

iii 



Ten extensions of the Pearson system as derived from 

the second differential equation are also studied. 
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SYNOPSIS AND SCOPE OF THE THESIS 

As this thesis is primarily concerned with the study 

of frequency curves, it is quite relevant to begin with the de- 

finition of a frequency curve for a ready reference. Next, in 

logical importance, comes the study of historical background 

which led to the formulation of the Pearson curves. A brief 

analysis for the historical background in the formulation of 

Pearson System of Frequency Curves is thus called for. As the 

differential equation 

d log y i ^ _ x+a 
dx ” y dx ~ bo+bix+b2x2 

which is extended to the forms: 

d log y ^ YQtYix+Y2X^ ■ 
dx 6OX+6IX^+62X^ 

and d log y _    x-a  
dx bo+biX+b2X^+b3X^ 

later, constitutes the basis of our present discussion, it would 

be interesting to sketch a method which leads to the derivation 

of the above-mentioned differential equation named after 

Karl Pearson. Hence a brief discussion on the same ensues. 

Thereafter follows the study of the solutions of the 

differential equation and specification of the curves accordingly. 

V 



and this is the hub of our discussion in Chapteis I and II. 

The synopsis and scope of the thesis in Chapters III 

and IV are already indicated in the 'Abstract of the Thesis'. 

It will be relevant to observe in this section that the Bessel 

Function with the differential equation 

x^J"(x)+xJ'Cx) + Cx^-n^)J Cx) - 0 

cannot be obtained as a special type of P^(k,x) [to be de- 

fined and discussed in Chapter IV]. 

The axle of our discussion of Chapter V rests on the 

second and third differential equations as mentioned above and 

their solutions. All the important continuous probability dis- 

tributions are deduced from the solution of the second differen- 

tial equation, as a by-product of the main discussion. Also, 

all the twelve types of Pearson curves are derived from the 

same. As an observation on the previous results, the connections 

between the Inverse Gaussian Distribution and the Pearson Type VI, 

and also Case 5 of extension are interesting to note. The dis- 

cussion ends Up with the Extensions of the Pearson System and re- 

lated observations and results followed by some conclusions. 

vi 



CHAPTER I 

AN INTRODUCTORY STUDY OF THE PEARSON SYSTEM OF FREQUENCY CURVES 

INTRODUCTION 

In this chapter we give an introductory study of the 

Pearson System of Frequency Curves. We start with the definition 

of a frequency curve for a ready reference, then the historical 

importance of the Pearson system of frequency curves and a method 

of derivation of the Pearson differential equation 

dy _ ap+aix 
y dx hg+bix+b^x^ 

follow. 

The chapter ends up with the discussion of the method 

of computing the constants involved in the afore mentioned diff- 

erential equation in terms of the first four moments of the dis- 

tribution, followed by the specification of the Pearson curves 

from Type I to Type XII. Criteria for the U-shaped, Bell-shaped 

and J-shaped curves for the Pearson system are also discussed, 

and the graphs of all the twelve types of Pearson curves are 

attached. 

1. FREQUENCY DISTRIBUTIONS AND CURVES 

If statistics are arranged so as to show the number of 

times, or frequency, with which an event happens in a particular 

1 
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way, then the arrangement is a frequency distribution. 

It is necessary to have a name for the formula used to 

describe such distributions, and the term 'frequency curve^ is 

adopted for the purpose. 

2. THE SIGNIFICANCE AND IMPORTANCE OF FREQUENCY CURVES 

Statistics tend towards a smooth series as the total 

number of cases is increased, and from this it can be seen how 

naturally practical statistics lead to the conception of a fre- 

qUency-cUrve to describe the smooth distribution that would be 

obtained if an infinite supply of homogeneous material were avail- 

able for investigation. In other words, such curves would give 

an approximation to the total 'population' of which the particular 

case investigated was a sample. 

A frequency-curve can be interpreted to give a frequency 

corresponding to every value of the independent variable along the 

whole range of the distribution, and will not restrict us to a few 

more or less arbitrary groups as is necessary with actual statistics. 

In the work in mathematical statistics a large number 

of the problems that require study involve data properly classi- 

fied into groups and about which further information is sought. 

This data is often classified to form a frequency distribution. 

The frequency distribution when grouped may appear to lie on a 

certain curve. If it can be shown that this curve is a mathematical 
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curve, i.e. one for which we are able to set up an equation, then 

this frequency' distribution can be readily examined and studied. 

3. HISTORICAL BACKGROUND IN THE FORMULATION OF PEARSON SYSTEM 
OF FREQUENCY CURVES 

It is well recognized that the normal curve of error 

has played a prominent role in the development of the theory of 

Mathematical Statistics, Although it can describe more or less 

accurately many frequency distributions possessing a limited 

degree of skewness, there are many others in which it fails. In 

the decade from 1890 to 1900, it became well established experi- 

mentally that the normal probability function is inadequate to 

represent many frequency distributions which arise in biological 

data. To meet the situation it was clearly desirable either to 

devise methods for characterizing themost conspicuous departures 

from the normal distribution or to develop generalized frequency 

curves. 

The problem of developing generalized frequency curves 

has been attacked from several different directions. Gram (1879), 

Thiele C1889), and Chariier (1905) in Scandinavian countries; 

Pearson (1395) and Edgeworth (1896) in England; and Fechner (1897) 

and Bruns (1897) in Germany have developed theories of generalized 

frequency curves from viewpoints which give very different degrees 

of prominence to the normal probability curve in the development 

of a more general theory. 



Pearson's curves, named after th.e English biometrician 

Karl Pearson, WhiciL are Tsridely different in general appearance, 

are so well known and so accessible that we shall take no time to 

comment on these as graduation curves for a great variety of fre- 

quency distributions, but we shall attempt to indicate the genesis 

of the curves with special reference to the methods by which they 

are grounded on or associated with underlying probabilities. 

As already indicated, historically this sytem of curves 

was developed to generate frequency distributions of observational 

data which could not be represented by the Normal curve. Latterly, 

however, the system has been used increasingly to represent pro- 

bability distributions whose moments are known but for which the 

mathematical equations are either undetermined or not expressible 

in simple form. 

4. PEARSON'S DIFFERENTIAL EQUATION CONSTITUTING THE PEARSON 
SYSTEM OF FREQUENCY CURVES 

Pearson* showed in a series of three articles from 

1895-1916 how he obtained the equations of twelve distinct 

curves and this was done by considering the differential equation 

— -Z. = aQ+aix 
y dx bQ+bix+b2X^ 

* Karl Pearson, "Mathematical contribution to the Theory of Evolu- 
tion," Philosophical Transactions, A, Vol. 186 (1895), pp. 343-414; 
also "Supplement to a Memoir on Skew Variation," Phil. Trans. A, 
Vol. 197 C1901), pp. 443-456; also "Second Supplement to a Memoir 
on Skew Variation," Phil. Trans., A, Vol. 216 (1916), pp. 429-457. 
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and solving it, after assigning particular values to the parameters 

>3-1 ,bo;,bi, and b2 • 

Equation Cl) also be put in the forms 

dClog y) ^ xta xra „  a-x 
dx bp+bix+b2x2 bo+bix+b2X^ bo+biX+b2x2 

(la) 

so that the independent parameters are a,bo,bi and b2- 

5. DERIVATION OF PEARSON'S DIFFERENTIAL EQUATION 

Considering the obvious characteristics of frequency dis- 

tributions, we find they generally start at zero, rise to a maxi- 

mum, and then fall sometimes at the same but often at a different 

rate. At the ends of the distribution there is often high contact. 

(Mathematically, high contact means that all the differential co- 

efficients vanish at the point of contact.) This means, mathema- 

tically, that a series of equations y = f (x) , y = <() (x) , etc., 

must be chosen, so that in each equation of the series ^ = 0 

for certain values of x, viz at the maximum and at the end of 

the curve where there is contact with the axis of x. 

The above suggests that ^ ; then, if 

dy 
y = 0, 2^ = 0, and there is, therefore, contact at one end of 

the curve, while if x = - ^ ^ = 0, and we have the maximum 
a^^ cix 

we require. So long as F(x) is general the form assumed for 

^ is extremely general and includes cases when ^ may not be 



zero when Y zero. If FCx) is expanded by Maclaurin's theorem 

in ascending powers of x, we have 

dy ^ y(.aQ+aix) : ^ 
dx bQ+biX+b2x2+. .. ^ 

Thus, we see that a differential equation, viz (2), is derived, 

which is analogous to the differential equation (1) of the previous 

section. 

It would be possible to obtain constants in the differ- 

ential equation (2) by using a greater number of terms and retain- 

ing b3,b4, etc., but there are strong practical objections to 

such a course. Besides the increase in arithmetical work, the 

gain in introducing additional constants is small because the 

higher moments are untrustworthy. CBecause the higher the moment 

the more liable it is to error when deduced from ungraduated ob- 

servations; this is clear, when we remember that the ends of the 

experiences are multiplied by the highest numbers and their powers.) 

Karl Pearson has shown that ”we might easily on a random sample 

reach a 7th or 8th moment havirg half or double the value it actu- 

ally has in the general population. Constants based on these high 

moments will be practically idle. They may enable us to describe 

closely an individual random sample, but no safe argument can be 

drawn from this individual sample as to the general population 

at large, at any rate so far as the argument is based on the con- 

stants depending on these high moments.'’^ In some acturial 

1 "Skew Correlation and Non-Linear Regression", Drapers’ Co. Res. Mem. 
1905, p. 9. 
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statistics where there are as many as 100,000 cases, it might be 

worth while to go as far as the next term of the series, but even 

here the value of the work is discounted because any other 

smaller body of statistics on the same subject could not be com- 

pared satisfactorily with the result. For practical purposes it 

is probable that the equation taken as far as b2 will be suffic- 

ient, and we shall confine our attention to the forms thus obtained. 

In this context, it will be interesting to see how 

equation (2) can be obtained up to the x^ term in the denominator 

from the elementary propositions in the theory of probability. 

The chance of getting r white balls from a bag contain- 

ing np white and nq black balls the usual notation) in 

drawing s balls one at a time without replacements is given by 

where (sCr) is the number of combinations of s things taken 

r at a time and (nPs) is the number of permutations of n 

things taken s at a time. 

From C3), we write 

s! (np) ! (nq) i (n-s) ! 
^r r!(s-r)! (np-r)! (nq-s+r)! n! 

(np)!(nq)i(n-s)I si 
(np-r) ^ (nq-^s+ryI n I r I (s-r) ! 
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^ ^ ^r+l~'^r Ctaking D ^ 4^, Mihexe the symbols have their 

usual meanings) 

I r Vin li f ) Ch -s l t s i 
n! (np-r^l) I (nq s+r+l) ! (r+1) ! (s-r-1) I 

_   1   
^ (np-r)I(nq-s+r)!rI(s-r)! 

(np) 1 (nq) I (n-s) ! s I  [ 1 
nl(np-r-1)I(nq-s+r)Ir!(s-r-1)! (nq-s+r+1)(r+1) 

dy s+nps-nq-l-r(n+2) 
dx ^ ' (r+1)(r+l-nq-s) 

"S 
1 ^ { 

(np-r)(s-r) | 

(4) 

The expression for y^ in (3) is a term of a hyper- 

geometric series. We represent the terms of this series as or- 

dinates of a frequency polygon, and find the slope of a side of 

the frequency polygon. Thus, we make r = 0,1,2,...,s and ob- 

tain the s+1 ordinates YQ,y^,72J•••at unit intervals. 

At the middle point of the side joining the tops of ordinates 

y and y we have •'X ■'x+1 

X = r + i > = I (5) 

From (5), we can write 

y 1, vr T Cjlp-r) Cs^-r) 
2 ^r (r+1)(r+l+nq-s) 

* 

+ 1 

— nps+nq+1 - s+r (nq+ 2 -np 2 s) + 2r ^ 
2 ^r (r+1) (r + iVnq-s) ' 
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Taking C4}^C6} , and taking r = x ^ by means of 

(5), we have 

1 dy _ 2s+2nps~2nq^2-^ C2x-1) (ri-^2)   ■ 

^ nps+nq+l-s+[x - yjCnq+2-np-2s)+2 jx - yj 

which may be put in the form 

„ f71 
y dx bo+biX+b2x2 ^ ^ 

From C7), we observe that the slope of the frequency 

polygon, at the middle point of any side, divided by the ordinate 

at that point is equal to a fraction whose numerator is a lin- 

ear function of x and whose denominator is a quadratic function 

of X. 

The differential equation (1) gives a general statement 

of this property. It is more general than (7) in the sense that 

the constants of (7) are special values found from the law of 

probability involved in drawings from a limited supply without 

replacements. One of Pearson's generalizations therefore con- 

sists in admitting as frequency curves all those curves of which 

(1) is the differential equation without the limitations on the 

values of the constants involved in C^). 



6. EVALUATION OF THE CONSTANTS OF PEARSON»S DIFFERENTIAL 
EQUATION: METHOD OF MOMENTS 

Pearson’s differential equation (1} is readily redu- 

cible to equation (7} of th.e previous section. So, the indepen 

dent constants of Pearson’s equation (7) are a,bo,bi, and b£ 

In this section, we outline a method of determining these con- 

stants in terms of the first four moments of the distribution. 

To do this, we have from equation (7), 

Cbo+bix+b2X^) ^ ^ 

n dy 
X (bo+hix+h2Xdx ~ 

n 
y(x+a)x dx 

“ {nbox^ ^+Cn+l)bix^ 

+Cn+2)b2X^^^}ydx = 
n+lj 

yx dx + 
n, 

yax dx 

integrating by parts. 

If at the ends of the range of the curve 

0 1 ^ 2 ^ ^ ) y 

vanishes, we have, remembering = nj yx dx. 

-nbQy^_l-(n+l).biy^-Cn+2)b2w;^j = 

aw^H-nbav^^^+Cji+l)biu^+(B+2)b2y^^l = (8) 
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Now putting n = Q, 1,2,3, we get from (.8), 

ay^+biU^+2h2Ui* = -Ml 

ay^+2boM][+3biP^+4b2P^ = -U^ 

ay^+3bQy^+4b^y^+5b2PjJ " "^4 

Then bearing in mind that the result of making y^ = 0 

is to change the origin of the system to the mean of the distribu- 

tion, and treating y^ ~ l» have from (9), 

a+bj = 0 

bo+3b2y2=-y2 
(io) 

ay2+3b]^y2■*’4b2y2 ~ -Ps 

ay3+3boy2+4biy3+5b2y4 = -y4 

From (10)j the three equations in bo,bi,b2 are 

bg+Obi+3y2b2 = ~y2 

Obo.+2y2bi+4y3b2 = -y3 (H) 

3y2bo+3y3bi+5y4b2 = -y4 

[replacing a by-b^ from the first equation of (10)]. 

Using Cramer's method in CH) > have 

bo -^2 Q 

-li3 

SUg 

0 3U2 

2p2 4^3 

3U3 5U^ 
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bi = 1 -M2 

Q -us 

3vl2 ^-Vi4 

3]42 

4P3 

5^4 

bo = 1 0 

0 2U2 

3y2 3ys 

-^2 

-ys 

-^4 

Q 

2U2 

3U3 

0 

2M2 

3y3 

3^2 

4^3 

5^4 

3^2 

4ys 

3U4 

Cl 2) 

where ; 1 0 3p2 

0 2^2 4^3 

3^2 3^3 3^4 

10^2^4 - 18^2^ - 12]J3^ ^ 0 

From Cl2), we have 

Up 04^2^4-3^3^) 
10y2y4“18u2- -12y 3^ 

h = - y.^Cy4+3y2^) 
^ l5y2y4-18y2^-12y3^ 

K - 2y2y4-3y3^-6y2^ 
^2 ■ 10y2y4-18y23-12y32 

(12a) 

Since from the first equation of Cl)> a = -bi, hence the con- 

stants a, bo,bi,b2 of the differential equation (7) are deter- 

mined in terms of the moments y2,y3,y4 as given by (12a). 

If in Cl2a) , we put 

61 = y3Vyz^ 

62 = yy/yz^ 

(13) 
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then we get from Cl2a) 

^ X0p2g2V>22^18y2^-126IP2^^ ^ 2C5^2“6ai-9) 

- ^^^^CB2 + 3) 
■ ^(502-631-9) (14) 

is = 202~^3I^ 
^ ^ 2(562-601-^9) 

The expressions for a,bo,bi and b2 in (14) simplify 

our discussion in specifying the members of the Pearson system 

of frequency curves as we shall see in the next section. 

7. SPECIFICATION OF THE PEARSON SYSTEM OF FREQUENCY CURVES 

The specification of the Pearson’s system of frequency 

curves, which are the solutions of the differential equation (7), 

depends naturally upon the nature of the roots of the equation 

b2X^+bix+bo = 0 (15) 

where bo ^ 0 (we shall prove this later). 

Now the roots of Cl5) are 

-bi-n/bi^-4bQb2 „ , -bi--/bi^~4bQb2 
2b2 2b,2 

Evidently therefore the nature of the roots of C15) depends upon 

/bi2^l3Qt>2, or in other words, upon hi^/C4bob2). 
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t). 
Thus, , < 0 bo and b2 are of opposite signs 

4DQD2 

Under this condition, the roots can be shown to be real and of 

opposite signs as follows: 

^bi + /b]^2_4bob2 > 0 

^ /bi2_4t>ob2 > bi 

^ bi^-r4bob2 > b^^ 

-4bob2 > 0 

which gives the result. 

bv^ J;— < 0 ^ the roots of (15) are real and of opposite 
4bob2 

signs. 

This criterion, as we shall see later, gives one of the 

main types of curves - called Type I by Karl Pearson. Now 

4bnb 

bi 2 
^ > 0 bo and b2 are of the same sign 

QD2 

and 
4bob2 

< 1 ^ bi^-4bob2 < 0 (by means of the above condition) 

b ^ 0 < < 1 the roots of (15) are imaginary 

These criteria lead to the second main type (Pearson Type IV) of 

Now, by means of the above arguments, it is easy to 

curves. 
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see that 

hi ^ 
4bob2 

> 1 

^ the roots: are real and of the same sign 

These conditions lead to the third main type (Pearson's Type VI) 

of curves. 

This really covers the whole field* but in the limit- 

ing cases when one type changes into another we reach simpler 

forms of transition curves. 

Thus, when 
4bob2 

is large (theoretically infinite) 

which means 

 Ob b2 0 (because bo -f 0) 

Consequently -bi-/bi^-4bob2 i.e. One root of (15) is 

This condition leads to Type III curves. 

When 
4b - ij the roots of (15) are equal and we 

0D2 

get Type V curve. 

When 4b'^~b J ~ ^be roots of (15) are equal in mag- 

. nitude but opposite in sign. Under this condition, we get Type 

II curve. 

If in the last case bj = b,2 = Q, we reach what we 

shall call the ’normal curve of error’: this name is open to 

some objection just as are the other names given to it. (e.g. 
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Probability curve, Gaussian curve, etc.). Then again the expres- 

sion for — 4^ = \ may be reducible to th^e form 
y dx dx - 

aVCb^+bfx) 

and perhaps a straight line for the frequency curve (cf. Types 

VIII, IX and XI), while if the expression reduces to a constant 

the curve is the ordinary geometrical progression which we are 

pleased to find as a special case of a system of frequency 

curves because we are already familiar with it in the theory of 

probability in connection with sequences from coin tossing, etc. 

From the above discussion, it is obvious that .j-- 
4bob2 

plays the fundamental role in characterizing the Pearson system 

of frequency curves. We shall call bi^/(4bob2) as *the criter- 

ion' and denote it by K. Before we express this 

K - 

“ 4bob2 

in terms of the expression in (14) in the next section, it will 

be of great use to write down the types, equations and the diff- 

erential equations of all the members of the Pearson system of 

frequency curves. 



TYPE EQUATION DIFFERENTlAL EQUATION 

II 

m 

* TV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

xn: 

T = TQI 1 + 

mi 

ai 

X 

az 

'm2 
- yCaij-a2) 

dx (iLi +x} [a2-x} ■ 

where — = — 
ai az ’ 

y = yo 1 - -gT* 
x^ \ m dy _ -2mx 

y = 
-YX , X 

yoe 

iTa 

2\-m 

y - To M- ^ 

y = yox Pe ^ 

y = yoCx-a)^2^-qi 

-varctan— 
e a 

y = yo© 

X 

2^' 

11 X 
y == yo 11 + - 

y = yo 
1 X 1 + — 

a 

-m 

1 
y = - 

a 

y = yo.x 
-m 

y ^ ya SLo TX 

& 
dx 

dy 
dx 

= 1:1^ 
a+x y 

-2mx-va 

dy _ Y~PX 
dx x2:- y 

dx 

dx 

Sz. 
dx 

dx 

dx 

dx 

qia+(q2-qi)x 

X 

x-^-ax 

y 

-m 
a+x 

m 
a+x 

= + 
a 

m 

y 

y 

dy ^ pCai+a2+2x3 
dx . Cai +x} Caz-x) ^ 

Table I Pearson Curves 
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8. AN EXPRESSION FOR THE CRITERION 

Using the expressions; for b.a,tii and ba in ^14}, we 

get 

= 1LL_. = 
4bQb2 4(262 S1 —6) (432^ 1) 

Cl 6) 

This may have any value from to «>. The following diagram 

summarizes the discussion in section 7. 

K=-.oo K=^0 K=1 

K negative 0<K<1 

K=«> 

K>1 
Type I Type IV Type VI 

Type III Normal curve Type V Typ® m 
when 62=3 
Type II (VII) 
when 62^3C>3) 

9. CRITERIA FOR U-SHAPED, BELL-SHAPED AND J-SHAPED CURVES 

The Type I curve will be: 

(i) U-shaped if mj < 0, m2 < 0 

(ii) bell-shaped if mj > 0, m2 > 0 (17) 

(iii) J-shaped if either mi < 0, m2 > 0 or mi > 0, m2 < 0 

If mi is negative and m2 is positive the curve is 

J-shaped; it starts at an infinite ordinate, falls rapidly and 

runs out at x = a2. And conversely, if mi > 0 and m2 < 0 

we have a reversed J-shaped curve. 

If both mi and m2 are negative, the curve is U-shaped, 
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starting and ending with infinite ordinates. 

Tn th.e J- and U-shaped curves, though the limiting or^ 

dinate is infinite, the area is; finite. 

The Tjrpe II curve would be U-shaped when the exponent 

is negative and the Type III curve would be J-shaped if ya were 

negative. Otherwise, Type III is usually bell-shaped* 

In Type VI curve, > c\2 Cto be proved later). If 

(\2 is negative, the curve is J-shaped. 

The attached graphs are rough illustrations of the 

Pearson curves for particular positive values of the parameters. 
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PEARSON FREQUENCY CURVES 

TYPE I 

where 
m\_m% 

TYPEH 

TYPEm 

TYPE IV 

A skew curve of imVimitcc! range at both ends, roughly 
described in general apjjcarancc as a slightly deformed 
normal curve 
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PEARSON FREQUENCY CURVES 

TYPE V 

TYPE VI 

TYPE VII 

y=*yo« . 

The normal frequency curve. 

TYPE VIII 

This type degenerates into an equilateral hyperbola 
when /» = !. 
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PEARSON FREQUENCY CURVES 

TXPE IX 

T 

X 

This type degenerates into a straight line when m—1. 

TYPEX 

This type is Laplace’s first frequency curve while the 
normal curve is sometimes ciUed his second frequency 
curve. The curve is shovm for negative values of ±a:/<r. 

TYPE XI 

TYPEXH 



CHAPTER II 

CRAIG'S TREATMENT OF THE PEARSON SYSTEM OF FREQUENCY CURVES 

INTRODUCTION 

This chapter gives a study of the Pearson curves in 

terms of the two parameters and 6., as indicated by 

C. C. Craig. The parameters a3 and 6 are defined, and the 

properties and specifications of all the twelve types of Pearson 

curves are studied in full detail in terms of these two parameters 

only. 

we have opportunity to observe how the study of the well-known 

and time-honoured Pearson curves is simplified strikingly when 

characterized and specified in terras of the two parameters. 

10. CRAIG'S NEW EXPOSITION AND TREATMENT FOR THE PEARSON SYSTEM 
OF FREQUENCY CURVES 

In a paper in the Annals of Mathematical Statistics [6], 

Cecil C. Craig has expanded the treatment of the Pearson system 

of frequency functions by making the two parameters 

With the progress of dicussion, and also in conclusion 

> 0^4 = 62 iri Pearson's notation) 

and 

23 
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fundamental in the discussion. The criteria for the different 

members of the system of functions are expressed very simply in 

terms of a3 and S. 

(A) A CLUE FOR THE EXPRESSION FOR 6 IN (18) 

In fact, the clue lies in the expression (16) of sec- 

tion 8. If we use 

32+3 

which is contained in the expression in (16), we find that 

1^ s: 3l (,32-+3) _ 3l (32+3) 
4bob2 4aC432-33i) “ 46(2B2-33i-6+2B2+6) 

_ 3iC32+3) _ 3i 
4^[:($2+35 <5 + 2(32+3)] 46(6+2) 

i. e. _tlL_ = 
4bob2 46C6+2) 

(19) 

Thus we see that the expression in (16) is strikingly simplified 

in (19) by means of the expression for 6 in (18). 

(B) DETERMINATION OF THE CONSTANTS OF PEARSON'S DIFFERENTIAL 

EQUATION (1) 

Craig uses the differential equation (i) in the form 

1 dy _ a^t 
y dt ” bQ+b;Lt+b2t2 

(20) 
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For this differential equation, the recursion formula for moments 

similar to is obtained from 

[y Cl>a+bit+b2t2) 

r I2 
yfnbQt^ +Cn+l)bit^+Cn+2)b2t^^ ]dt = 

f^2 
(ayt^-yt^^^)dt 

(21) 

which Can be written in the form 

aa +nbna , + Cn+l)b]a +Cn+2)boa = OL ^ (22) 

assuming 

Ci) range of variation of t is [-^i >-^2] 

Cii) the first expression in (21) vanishes 

(iii) the first (n+1) moments over the range exist. 

Also, using the same procedure as in section (6) 

•f.2 y 
t^ydt = -^ = a (23) 

a" "" 

where = 1J2. We clearly see from (23) that 

ag = 1, Oil - 0, and a£ = 1 (24) 

Equation (22) together with (24) lead to the determina- 

tion of a,bg,bi, and b2 of equation (20) as follows: 

u _ 4g2-3gi 
2C5g2-6gi-.-9) 
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2(532-66.1-9} 
(25) 

_ 26261 
'2 2 (.562-661-9) 

These are obtained from (.14) of section 6 with a slight rearrange- 

ment of sign. 

Now to express (25) in terms of a3 and 6 we have, 

using (.18) . 

1 _ 262-561-6+262+6 
0 “ 2[2(262-36i-6)+62+3] 

6.(62+3)+2(32+3) 
2[26(62+3)(62+37 

6 + 2 
2(1+26) 

Similarly, 

bi 
0^3 

2(1+26) 

h2 
6 

2(1+25) 

(26) 

a = 
2(1 + 2 6) 

For (26) to he valid The case in which 
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6 = - Y included in the discussion of the transitional 

types of functions. 

(C) RANGE OF THE ADMISSIBLE VALUES OF 6 

In this section, it is interesting to see that 

-^2 < 6. < 2. (27) 

Proof: We have. 

f(f)(t^ + At) ^dt 
-f-l 

‘'^2 
f(t)[t^+2At^+A^t^]dt 

J-i, 

~ oti| + 2Aot3+A^cx2 

= U4 +2Aa3+A^ [by (24)] 

0 

*.* f(t) > 0 for -f-i < t < A £ iR 

(>^+^3)^+(0^4-0^3^) ^ 0 

Now choose 

< U4 

^ 4a4-5a3^ _ 4(a4-ct3^)-^Q^3^ 0 
^ 04+3 a4+3 

and 

04+3 

a4 + 3 
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Then, 

-2+k;i 
4a4-i-3a3^ 2 _ 2ai^~3a^ 

ct4+!5 0L4+3 
6: 

2.k. -2 3(a3^+4) _ 2d4-r>3a3^—6 _ ^ 
a4+3 a4 + 3 

- 2 < 6 < 2 

bo + 0 [by C26)] 

for any Pearson frequency function possessing moments of the 

fourth order. 

CD) INTEGRATION OF (20) AND DEVELOPMENT OF THE VARIOUS FORMS OF 

y = f(t) 

To do this, we make use of the following assumptions: 

(i) Over the range of variation of t, we must have f(t) > 0 

(ii) The area under the curve y = f(t) over the range of varia- 

tion must be finite. This being true then we always determine 

the constant of integration so that this area is unity. 

(iii) The range in each case is taken as the maximum one for 

which (20) and (22) may be secured, and which contains the point 

t = 0. 

(iv) It is sufficient throughout to take a3 > 0 since the 

curve for a3 = -k(k > 0) is only a reflection of that for 

= k through the line t = 0. 

We will use the relations (26) as definitions of a,bo 
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and b2 in terms; of a3 and 6. Using the values of a and 

tlie b's given by any choice of 0*3 and S', we solve (20) . If 

the solution is such that for it (22) may be derived, then the 

relations (26) are valid when and 6 have their usual mean- 

ings. 

For convenience, let us denote: 

the conditions for the validity of (22) (a) 

(a) THE NORMAL FREQUENCY FUNCTION , (TRANSITIONAL TYPE VII) 

a3 = 6 = 0 a = bi = b2 = 0, bo = 1 [by (26)} 

Equation (20) becomes. 

L. ^ 
y dt 

-t 

or, y = ce 

The range of y = f(t) is (-oo,«.) and so 

ce dt = 1 

or, 2c ce dt = 1 ('.* the function is an even 
^ function) 

or, 2c -Z‘ 
dz/2 = 1 

0. 
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or, 2o/z —— = 1 

or, c = 1 
/2TT 

fCt) - 
1 2 

e 7^ Type VII 

conditions (a) are satisfied for above f(t). [Check: 

n 
bot“f(t) 

1 , n 2 
-oo /2TT ^ 

= 0; a 
n+1 /2TT 

n+1 2 
t e dt 

2 
/2TT 

#oo 
n+1 2 . -4-1 

t e dt exists.] 

(b) TRANSITIONAL TYPES III AND X 

The conditions are, 

for Type III, a3 :(= 0, 6 = 0 

for Type X, a3^ = 4, 6 = 0 

Now 6 = 0 ^ bg = 1, bj = 0, b2 = -a [by (26)] 

For Type III, equation (20) becomes 

i. e. 

or. 

]_ dy 
y dt 

1 dy 
y dt 

dy ^ 
y 

1 
A+1 dt 

1+At 
A+t 
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or, log cy = -log(A+t) - A dt 

= log(A+t) -At+A^log(A+t) 

1 rrA -At, = log[(A+t) e ] 

A 2 _ I _A t 
or, y = £(t) = k(A+t) e , k = constant of 

integration to be determined. 

Range of f(t) is C-A,«>) and so 

f(t)dt = 1 gives 
J -A 

/-A -Atj^ , 
CA+t) e dt = 1 

-A 

Put X = A+t ^ t = x-A, dx = dt, the limits are 0, 

So from above. 

roo o 

A2-1 -A(X-A), 
x e dx = 1 

0 

or, k e 
O 

A^ A^-1 -AXJ 
x e dx = 1 

Put Ax = z dx = ^ dz 

ke 
A2 

A^ -1 , 
z \ - z , 1 
A ! 

e dz 7“ dz 
A 

= 1 

0 
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or. 
keA' A^-1 ^-2 

e dz = 1 

or, 
k eA^ 

TA^ 
rCA^) = 1 

or. 

,A2 -A2 
A e 

r(m 

AA^ -A2 A e 

~rWT 
A2-1 -At 

fCt) = ™ -fT>-Tirr CA+t) e Type III 

Since A^-1 > -1, conditions (a) are satisfied. [Check; 

1 r A ^ A^ -1 -At I «> kCA+t) e I = Oi %+x = k 
-.A 

/•A -Atj^ . ^ T (A+t) e dt exists.] 

SHAPE OF THE CURVE £(t) 

A2 > 1 ^ 
^3- 

1 a3^ < 4 ^ f(t) is bell-shaped 

A^ < 1 > 4 £(t) is J-shaped with an infinite ordinate 

at t = -A [By conditions (ii) and (iii) in (17).] 

For the bell-shaped curve, the mode (position of the 

maximum ordinate) is obtained from 

f’(t) = 0 

V rA? / A ^^A^-2 -At .. .-^A^-1 - .. 
'-7 (A^-l)(A+t) e +(A+t) (-A)e 

-At 
0 

A^ -1 
A-t-t 

A 

t = 
1 
A 
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Now, 

f"(t3 
t = 

1 
" A ^ 

dt 
r, rA -At IkCA+t) e 

L 
-1 

A+t 
- A 

A 

, d -At At+1 
k -rzri (A+t) e v - 

dtj ^ A+t 
L J A 

1 d r/'A ^^A^“2 -Aty.., , ^ i 
= -k ^ [(A+t) e CAt+1)] 

A 

dt £Ct)l 
At+l 
A+t 

1 
A 

= -£'(t) 
! At+1^, 
A+t 1- - i - fCt) 

^ “ A 

(A+t)A-At-l 
(A+t) 

f ^ A^-1 
= 0-k A - ^ e — YTT 

d A / 

= -keCA^-l) 'A -i' 
"■ A 

A^-3 

< 0 

=> £(t) is maximum at ^ ~ " A * 

A 

The mean of f(t) is given by 

m = tf(t)dt/ f Ct) dt 
-A 

•oo.- 

t£Ct)dt [Since denominator = 1] 
•' -A' 
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A^-l -At 
ktCA+t)- e 

-A 

= ke 
A2 

(x^A)x^ ^dx, [x=A+t] 

= ke 
A^ i 

r“ 7 
^ k -^Ax, ^ 
X e dx-A 

k?- -1 -Ax j 
X e dx 

= ke 
.oF -Ax 
A "^ X e 

L -A 

-Ax *2 1 

^■r A^x dx-A 

0 0 

>00 ^5 

' A^-1 -Ax, 
X e dx 

0 

integrating the first integral by parts. 

Therefore from above, m = 0 

Mean - Mode = 0 - 
1 1 aq 
A A 2 

For A2 = 1 4 = 4, 

f (t) = 

-1 -t -t 
1 • e e _ e 

rco e 
Type X 

whcih represents a J-shaped curve with the range (-1,°°) [By 

condition (iii) in (17)] 

For A^ ^ 1 4^ 4 4, the function has been designated 

type III. 

Cc) DISCUSSION OF THE THREE MAIN TYPES CTYPES I, IV AND VI) 

« f 0 4 h2 + 0 [hy (26)] 

Consequently 
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ba+hit+b2t^ b2Ct-ri): Ct-^T2), ri =|= 0, r2 =|= 0 

(ba ^ 0) where 

ri = 

and T2 = 

-bj +*^bi ^ -4bob2 

2b2 

-^b-»/bi^-4bob2 
2b2 

or, in terms of a3 and 6, 

= +V/D 

26 

r - 
^^2 ■ 26, 

~VD 

D = a32-46(d + 2) 

[By means of C26) ] 

Also Ti ^ r2 in general; ri = r2 is a special case. 

Now we have 

a-t a-t 1 i A B 
+ 

bo.+bit+b2t2 b2 C-t-ri) Ct-r2) b2 t-ri t-r2 (say) 

So a-t = A(t-r2)+B(t-r]^) 

t = ri a-r^ = A(ri-r2) A = a-ri 

^1-^2 

t = r2 ^ a-r2 = ACr2-"i*i) ^ B = 
a-r. 
r2-ri 

(28) 
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a-t 
bo+bi t+li2t^ 

a-r a-r^ 
b2(ri-^2) t-ri b2.CT2-ri) t^ri 

Ml m2 
t-Ti t-T2 

where 

mi = 
a-^ri 

b2 (ri-^r2) 

j a-^T2 
= bn?^D' 

(29) 

Thai the solution of (20) can be put in the form 

y = £(t) = c(t-ri)®i(t-r2) m2 (30 

c = integrating constant to be determined 

Expressing mi and m2 in (29) in terms of a3 and 

6, by means of (26) and (.28) , we have 

m, = 1+6 a3 1+26 
6 " 6 

(31) 

mo = - 
1+6 a3 1+26 

6 Tfr " ~6 

Then, by (28) 

(1) for 6 < 0, the r's are real and opposite in sign 

(ii) for 6; > 0 and 013^ < 46.(6+2), the r’s are complex 

(iii) for 6' > Q and > 46,(_6+2) , the r’s are real and 

of the same sign. 



37 

Thus we can see how the discussion in section 7 is 

simplified by Craig. 

The three conditions together with the additional con- 

dition that a3 =j= 0 give rise respectively to the main types of 

frequency functions designated types 1, IV and VI. 

MAIN TYPE I: 

Craig's conditions for this curve are 

-1 < 6 < 0, S ^ j 

C2+36)a32 =1= 4(1 + 26)2(2+6) 

Now, for a3 > 0 [By hypothesis (iv) of section 10(D)] we see 

that 

ri < 0, T2 > 0 r^ < 0 < r2 

and that |r^| < |r2| 
[By (28)] 

The range is (ri ,r2) and equation (30) is written 

y = f(t) = c(t-ri)^^ (r2-t)"^^ Type I 

The area under the curve over this interval, i.e. 

(t-ri)"^^ Cr2-t)"^^dt 
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is finite only when mi+1 > 0, HI2+I ^ 0, and in these cases, 

moments of all order exist. Conditions: (a) are also satisfied 

accordingly. 

Now 

m^+l 

m2+l 

[By (31)] 

Therefore, in the present case, since 

Cmi+l)(m2+l) > 0 

then i+<s;' a- 
D 

> 0 

a' 
This implies that 1 - > 0. 

So that 1 t % >°- 

Now 

mi = - 
1 + 6 

1 - ^ 7^ 
- 1 

So -1 < 6: <- j 4 0 < 1+6: ^ 0 < (*.• -6. > 0) 0 < - 
1+6 

1 + ^ < ^ < 1 
Q 

? 0 ^ 1 
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Therefore mi < 1 «3 
7W 7F 

< 0 Csince a3 ^ 0) for the 

above interval of <5:. 

For ~ < 6; < 0, 

nil > G ^ - L a3 
1 ^ 1 

^ i < 6 4 -1 < 26 -> -CI+6) <64- ^ > 0 

(since 6 < 0) 

Therefore - |l - > 1 

- 1 
a 

1 + 5 
r • l+<5 . (since - —r— > 0 

4 - ^ > 1 - ^ 
1+5 

1 + 
6 

1+5 
1 + 26 
1+5 

zi> (l + 5)a3 < (l + 25)v^ 

(l+5)^a3^ < (1+25)^D 

^ Cl‘*"5)^a3^ < C1'*’25)^ [a3^-45 (5 + 2) ] [By (28)] 

^ [ (l+5)^“(l+25)^]a3^ < -45, (.5 + 2) (1 + 25)^ 

C2+35.) C-5)ot3^ < -45 (2+5) (1 + 25) ^ 

^ C2+35)2a3^ < 4C2+5) (1+25)2 (since -6 > 0) 

That is mi >0 for ^ < 6. < 0 



'■< 4C2+6.) Cl+26.)2 

Similarly, m2 > 0 for < 6: <, 0 

^ C2+35pa32 > 4(2+6) a+26;)2 

2 
Noto; 6 < ^ ^ 3i5. < -2 2(1+6,)+6 < 0 

^2(1+6} < -6 ^ 1+6, < (~6.) 

:=d - i [since -6. > 0] 

\ I.Or f'i.r'V 1 + 26 1+6. i 1+26, < -Cl+d), -> - < — 

2 Next we want to show that for 6 < - j 

mi < - 1+26 1 + ^ m-| < 0 

Proof: To determine whether 

1+26 

1+26. 

note that 

> or <0 for 6 < - 

1 >0 ^ 1 + 26 > 0 6 > - 
0, z 

-6, < 
1 = 1 
2 6 

This is a contradiction since -6 > 4 
6 * 

So ■LtjA < Q for 6 < ^- i . That is mi < 0. for 6 < - ^ 
6' o ^ o 

2 
Similarly, m2 < 0 for 6; < ^ and this implies that 

a Type I curve is U-shaped. [By condition (i) of (17).] 

Next, note that 

C
M
 
ltr>
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r2-ri > 0 and b2 ^ Q according as 6 > -j [By, (26) ]. 

So ri < a < r2 for all U or bell-sfiaped curves only. [By (29) 

and (17) .] 

The sign of a in th.e differential equation (20) is 

always opposite to that of «3 for curves with a mode. This is 

important for graphs, and interesting to note. 

Finally, to determine the constant G, we have, by 

hypothesis (ii) of section 10(D), 

To integrate, let t-ri = z so that the limits become 

0 to r2-ri, and 

C (t-ri)"'l(r2-t)%t = 1 

(t-ri)”’i(r2-t)^2dt 

rr2-ri 
[(r2-ri)-z]’’^2dz z 

0 

0 

(r2-r 1 )"‘2 (^2-ri )”^^^ (1 (r2-ri) dy 

o: 
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= (r 2 1^ ^ 6 1 +1 >iH2+1) 

Therefore C = .mi+mo+I 
6Cmi+l, m2+l}(r2-ri) ^ ^ 

MAIN TYPE IV 

Craig's conditions are 

tt3 f 0 

& > 0 

a3^ < 46(6+2) 

In this case, by (28), 

ri = i/T 
^ 26. 26. 

= -r+is 

To = -r-is 

where r = - , s = , and -D > 0. By (31), 

1+6 aq 1+26, 
mi =   --,.1^   ^ 6, i/-D 6 

1+6 iotq 1+26 _ vi 
6 

- m. 

and similarly m2 = - m, where v = '' 

1+26" m =    . By (30}, the solution y = f(,t) becomes: 
6’ 
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y = G[C Ct+r] ^ds} 

VI VI in -i. —_ jjj 
{ Ct+r) +1$:} ^ 

Vi 
_ ft+r-is\T~r <2 2T"Jn 

= ^ I Ct+r} W] . 

Now setting t+r = R cos 0, s = R sin 6, we get 

' \ — 
t+r ^ds 2 
t+r+is I 

^ , -i0 
cos 0-i sin 0 12 _ \2 

! T ' 

^ .vtan 
v0 I t+r 

= e = e 

icos 0+i sin 0 

-1 s I vw 
1 vtan 

i e“. / 

-1 t+r I 

= e 

The above solution becomes 

VIT 

y = f(t) = ce^ [(t+r)^+s^] ^e 

1 
vtan s 

Type IV 

Now m = 
1 + 26 

> 0 (for 6 > 0), V and a3 are of opposite 

signs by our hypothesis, and 

VTT 
- vt an 

-1 t+r I -VTT 

e < e 
S I 2 

' e (v:< 0) 

and the range of f (d) is • 

In the previously discussed cases in which d < 0, if 

the area under the curve was finite, moments of all order existed 

In the present case, the area and the first four moments are al- 

ways finite, but this may fail to be true of moments of higher 

orders. 

The integral 
n 

t fCt).dt, which represents the n-th 
J _.O0; 

moment for the distribution given by fCt), is 
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r°»- n ^-vtan 
t+r 

dt, k = ce 

V7T 

IT 

This integral exists if 

2m > n+1 (32) 

Now 6. > 1 1 + 26: > 3 < 3 V m < 3 

So, by (32), n+1 < 2m. 

n+1 <6 n < 5 

n < 4 for which moments are finite, and 

for n = 5 the moments are infinite. 

By (.32) , in order that the n-th moment exists, we must 

have 

2+46 
n+1 

2+(3-n)6 > 0 

2 > Cn-3)6 

6 < 
2 

n-3 
(33) 

Pearson designated as 'heterotypic' those members of 

his system of frequency curves for which the eighth moment failed 

to exist. Cin such a case the standard deviation of the fourth 

moment in samples would be infinite.) 
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It was apparent that conditions, (a) were satisfied 

for -1 < (S < 0. (It will appear later that the case in whcih 

6 = - j is no exception.] For 5. > 0, it will be seen that it 

is generally true, as in the present case, that the formulae (22) 

and (26) can be derived if a- exists, that is if 
n+2 ’ 

6 < -^ [By (33)] 

To determine the constant C, we have 

IT ^ -rl t+r 
,2-"“ — 

[Ct+r)2+s2]”' 
dt = 1 

. 7T -1 t+r 
Putting <}> = 2 ~ —g— so that the limits become IT to 0 

and 

Then 

-1 t+r TT ...,v ^ 
tan -j- = - <j> -V cot (|) = 

(t+r) +s^ = s^ [l+cot^cf)] = s^cosec^fj) 

Also t+r = s cot ^ 

t+r 
2 • 

dt = -s cosec^(j)d(j) 

We get ultimately 

C 

or 

or 

’0 

•' TT 

. V(i) 
e 

2m 2m 
s COsec 

(-6 

2m-1 
vtj) . 2m-r-2 

e sin 

S 

C 
,2m-l GC2m^2,v) = 1 

cos.ec^({))d(l) = 1 

= 1 



or C 
2ra-l 

s 
GC2m-2,v) 

fir 
where GC2m-2,v) = 

.. 2ni-2 . V(j) j , 
sin (f>e d{|) 

MAIN TYPE VI 

The conditions of Craig are 

as =1^ 0 

6 > 0 

as^ > 46C<5.+2) 

C2+3d)as2 :|= 4(1+26) (2+6) 

Note: 

The last condition for a Type VI curve due to Craig is 

not, as a matter of fact, an additional constraint as shown by 

L. K. Roy [26]. Its significance is also clarified by him in 

the same. 

The equation of the frequency curve is 

y = C(t-ri)"^l (t-r2)^^ 

PROPERTIES OF THE CURVE: 

(,i) r^ < 0 -as+Zo" <0 --as < ■-/ a^ ^ as + ZU" >2/D 

-Cas+v^ < 
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^ - Cot 3+^ < 0 

-) ^2 0 [Since 5 > 0] 

Note also that since a3 > /d, then a3 > 0. Thus is oppo 

site in sign to ri and t2. 

Main Type I.] 

(y) a-T2 = b2(T2-^i)% ^ ^ [Since b2 > 0, r2-r^ < 0, HI2 < 0 

Cvi) a-r^ = b2(rj-r2)m^ has the same sign as m]^. 

(vii) a < 0 (Since a3 > 0, 6 >0) 

(viii) The range of f(t) is (r^,«). 

(ix) > 0 the curve is bell-shaped [Since m2 < 0] 

(x) m^ < 0 -V the curve is J-shaped 

(ii) |r2| > |ri| 

(iv) m^ J 0 according as (1+6) < 1+26 or according as 

C2+36:)a32 < 4(2+6) (1+26)2 [As in 

> t = a is to the left of t = r^. 

(xii) = C t^(t-ri)"‘Ht-r2)"^^dt 
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exists if 

- Cini+m2l > n+1. 

2 
This implies that ^ ^ ^ 

V ^ 2 
-/ 2 + g > n 

^ n < 3 + I 

=> n < 4 [by (27)] 

Thus the first four 

moments always exist. 

= 0 

y = 0 

If the origin is shifted to the point t - r , we have, 

writing 

t-r2 = 2, ^l"^2 “ ^ 

for the type VI function 

y = f(z) = cz^^Cz-ot)™^ Type VI 

with the range . 

Finally we have. 

z^^C^-a)^^dz = 1 
a 

z ^Cz-a)”^^dz - 1 where k = -m2 > 0 

a 
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Cz-a} 
mi 

dz “ 1 
a 2 

mi 

a 

dz = 1 

/•«> 11 »nii ,mi-kj^ - I) dz = 1 

a 

mi 
jl .. Ij dz = 1 

a 

a 
Put — = X, then 

ro , „ ,mi+m2 

1 

j. dx = 1 

0 

Cn^l+1 J-mi-m2-l) = 1 [3(m,n) = 3(n,m)] 

C := 
^mi+m2 + lg^^^^j^, -mi -m2-l) 

(d) TRANSITIONAL TYPE II 

The conditions are 

ag = 0 

-1 < a < 0 

6 j: - i 
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In this case, by C2S), 

= . <0 

_ -■/ -SCS+2) ^ _ 
1-2 j- 0 

So Ti = -r2. 

By C31), 

1 + 2& > j. mi = m2 = - —— < according as 6 ^ • 

The frequency function in this case is evidently a 

special case of Type I. 

Setting ri= -r2 = s 

and mi = m2 = M, 

the frequency function takes the form 

y = CCs^-t^)^ Type II 

PROPERTIES: 

(i) It is symmetrical about the axis of t. 

(ii) The range is C-s,s). 

(iii) -1 < 6 < - i ^ mi = m2 < 0 the curve is U-shaped. 

(iv) " (S < 0 ^ mi = m2 > 0^ the curve is bell-shaped. 

Cv) As in Type I, the area and moments do not exist for 

6 < -1. • 

Finally, to evaluate C, we have 
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put 

Then 

(s^Tt^)%t = 1 
-s 

2C 
M 

= 1 

'o 

2C Cs+t}^(s-t)^dt = 1 

s^t = z s+t = 2s-z. 

2C 
f’O MM 

C.2s-z)^z^C-dz) = 1 
s- 

2C 
w .. i . \ M M,^ .M ! , z 

z (2s) 1 - 
2s 

dz = 1 

CC2S)^2 
^ M I ^ z '^dz = 1 

. ' ^ ' 27 0 ' 

C(2s}‘ 
2^ Ml z^^ 

Z ,1 - nT I cLz = 1 
0 ^ ‘ 

C (2s)^ C2s)\^(l-x)^(2s)dx = 1 

2M+1 
C(2s) a(M+l,M+l) = 1 

C;2s)®''^gCM+l,M+l) 
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(e) TRANSITIONAL TYPE VIT (DUE TO CRAIG) 

Craig's conditions for tHis curve are 

U3 = 0 

6: > 0 

The frequency function in this case is obviously a special case 

of type IV, with 

= 0 s 0 
^ ^ 26 6 

1+26. 
V = 0, m = — > 0. 

The equation is 

y = C(s2+t^) Type VII 

This equation could also be derived from the Type II function by 

noting that s = is and M = -m. 

The range of the curve is • For 6 > 2/5, the 

curve is heterotypic [By (33)]. 

To determine C, we have 

Cs2 + t2)-"'dt = 1 

2C (s^+t^) ^dt = 1 

2C 
2m-l 

^2 2m-2^j-r, 
COS; 6de[t=stan0] 
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2 [ . 
"2mJ ^2ra-2 " - | 2m-2 
s l 

2m-2. cos 0d0 

2ra-l 
C = 21 

2m-2 

or, in another way, we can write 

-2m 
y = cs 1 + s2 

-m 

12 -1 
Put 1 + —>T* = z 

'2tdt —9 =;-z dz 

dt — . “ ^ dz 
2t ? 

dz 
rn , IV2' 
2 hr -1 s 

2(l-z)^^^z^ 
dz 

So the required integral equals 

2Cs 
-2m 

(l+t^/s^)dt 

2C ,.-\s 
2ra 

s 
z'“ 'v(l-z) f dz 

C m-3/2 -V2 
2m^l z ^(l^z) '^dz 

2m-1 
1 1 

“ ■ 2’ 2 
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rim - Ijr(l) 
2m-l ' r Cm) 

c r(m-^i^ 
2m-1 = 1 

rCm) 

C = 
2m-l ^ s r (m) 

TT ^f2m-l 

2 I 

(f) TRANSITIONAL TYPE V 

Craig’s conditions are 

aa 4 0 

6 > 0 

= 46(6+2) 

^ D = 0 

The type V function can be derived as a limiting form of 

type VI function. 

Here r\ = X2 = -r (say) 

Hence from type VI function we get 

y = C (t+r)^2 (t+r-a)”^^ [z = t-r2 = t+r] 

1+26 
6 

[a = ri-r2 
/D 

6 ] 

Now we proceed to find 
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lim 11 - 
IKO 

1+6 aq 1+26 

J_ I 
t+r I 

= lim 
D-+0 

= lim 
IHO 

= lim 
b+O 

1+6 do 

I ^ \~rw 
1-« 

t+r 

r } 

1 - 
6 
t+r 

1+6 
1 .““3 
70=; 

1 - 

1 
6 
t+r 

, 1+6 
, 1 -j „ ot 2 

, 1+6 
1 

= ie 

= e 

6(t+r) V 

(1+5) 
62(t+r) 

= e 

(m-1) , 
t+r 6 i 1+6 = m-1 i 

(m-1) 
t+r 2r 

r = 2.6 ; 

= e 

2r(m-l) 
t+r 

The frequency function for type V becomes 

2r (m-1) 
. .-2m t+r 

y = C(t+r) e Type V 

We could also get the same equation by solving the differential 

equation 



for this case. 

1. ^ - a-t 
y dt ~ b^Tt+tT^ 

PROPERTIES OF THE CURVE 

(1) r has the same sign as (013 > 0). 

(ii) m = 2 + ^ 
o 

(iii) The range is (-!*>“) • 

Civ) The curve is always bell-shaped. 

(v) For the existence of the n-th moment, we must have 

4+2/6 > n+1 

which leads to the same conclusions as in the Type IV or VI. 

To evaluate C, 

C 
■00 

^ -r 

. -2m 
(t+r) e 

2r Cm-1) 
t+r 

dt 1 

Put MHLTI) 
t+r 

z. The limits become °° to 0. . 

Also 
-2r(m-1) 
(t+r)2 dt = dz 

dt 
(t+r)^ 
2r(m-1) dz 

[2r (m-1) ] ^dz 
z22r(m-1) 

-2r(m-l) 

So we have. 

2r (m-1) 
2r(m-l) -,-2m 

-z dz 
7 = 1 
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2m-2 ^.Zj 
z e dz 1 

C[2rCm-l}]^'^rC2m-10 = 1 

^ ■ where 2m-l > 0. 

(g) TRANSITIONAL TYPE VIII 

The conditions are 

«3 + 0 
6 < - ^ 

(2+36)a32= 4(1+26)2(2+6) 

The frequency function in this case is a special case 

of type I in which mi < 0 and m2 =0. 

By type I, 6 < - j 

mi <0. 

Now m2 = 0 mi = ^= -2m, so that the frequency 

function becomes 

y = C(t-ri)"^"^ Type VIII 

PROPERTIES: 

(i) The range is (ri,r2). 

(ii) The curve is J-shaped with an infinite ordinate at t = ri 

and a finite one at t = r2- 
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To determine C, we have from type I, 

C  — 

_ r(2^2m) 1 
r(l-2m)r(l) * .l-2m (r2-ri) 

= (l-2m)! 1  
(-2m)! . -2m (r2-ri) 

= l-2m 
f . 1 - 2m 
(ra-ri] 

(h) TRANSITIONAL TYPE IX 

Craig's conditions for this type of curve are 

“3 =1= 0 

- |< 6 < 0 

(2+36)a3^ = 4(1+26)2(2+6) 

This is also a special Type I function where = 0 

and m2 = -2m > 0. 

The curve is 

y = C(r2-t) Type IX 

PROPERTIES: 

(i) The range is (ri,r2) 

(ii) The curve is J-shaped with a finite ordinate at t = r2 



c*.* -2m > 0) . 

(iii) C has the same value as in Type VIII, that is 

^ I _2m 

Ci) TRANSITIONAL TYPE XI 

Craig’s conditions are 

a3 =(: 0 

0 < 6 < 2/5 

(2+36)a32 = 4(1+25)2(2+5) 

The function is a special type VI where 

m2 - 0 and m£ = -2m < 0 (for 0 < 6 < 

The frequency function is obviously 

y = C(t-r2)'^“ Type XI 

PROPERTIES 

(i) The range is (ri,°°). 

(ii) The curve is J-shaped with a finite ordinate at t = ri 

and an infinite one at t = r£. 

Ciii) The C is found from the C for Type VI with m2 = 0, 

m2 = -2m. 

O
l| 

K
) 



So c 
1  r(2m) 

rCl)r(2m-l)(ri^r2)^'^"' 

2m-1 

Cri^r2) l-2m 

Cj) TRANSITIONAL TYPE XII 

Craig's condition is 

5 
1 
2 

Now if ^ the values of a,bo,b]^,b2 become in- 

determinate as we see from (26). In this case, we set the values 

of a,bQ,bi,b2 as obtained in (26) in the differential equation 

(20) and from its limiting form as 6 derive the func- 

tion appropriate to this case in the following way. 

We get from substituting (26) into (20) 

- . - ■■ _ t 
^   2(1 + 26)   

y dt 2+6 6 2 
2(1 + 26) 2(1 + 26) ^ 2(1 + 26) ^ 

a3+2(l+26)t 
(2+6) +0^3 t+6t^ 

Now 6 
1 . 

gives: 

1 dy 
y dt 

as + O 
■ - 

t^.-2a3t-3 
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2a- 
Ct-rj) (t-'r2) 

where _ 2a^-i/4g^ 2-M2 ^ 
«3‘ 

Tn = 2 “ ^3 + i/aQ^+3 

Then the above equation can be written as 

1 <iy _ 2 
y dt “ ^“3 

FA B 

L 
t-rn t-r 2 

where A = 
rn-r 

and B = 
1-^2 ;r2-ri 

so that we get 

dy _ 2qq r 1 
y r2-Xi t-r^ t-r 1 J 

OtI t- ̂ 2 t-r^j 

m 
Integrating, y = C ’ (t-r^)*"^ (t-r2)^^. 

where 
"^2 """1 = 7^:^ 

Since a3 > 0, then r2 > 0. 

Now = ^3 - /a3^+3 < 0. 

So r2 > 0 > r^. 

Thus IT2I > II• 

Also m2 = -mj > 0. 

Va3^+3 



62 

Therefore ultimately the frequency function becomes 

y = C'Ct-ri)"™2Ct-r2) 

m2 

m2 

b-r2 
t-n I 

or, y=C I E2Z1 * 

I t-ri 

\ m2 
Type XII 

the range being (ri,r2). 

This curve is J-shaped. The frequency function in this 

case could also be derived as a special case of the Type I func- 

tion in which 6 = - Hence 

C   .1  
Cr2-ri)6Cl-m2,l+m2) * 

using in type I, mi -m2. 

(k) Finally, we note that for a3 = 0, the Type XII curve re- 

duces to 

y = C [Since m2 = 0 for a3 = 0] 

thus including the rectangular distribution function among the 

Pearson system. 

C^) A SYNOPSIS OF THE STUDY IN CHAPTER II 

6. = 0; tt3 = 0 —) Normal frequency function 

»3 0 ^ Type III 

013^ = 4 Type X 
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-1 < d < 0, d =1= - tt3 

6 > 0; > 46Cd+2) 

< 46(d+2) 

-1 < 6 < 0, 6 =1= - a3 

6 > 0, tt3 = 0 

= 46(6+2) 

<5 < - ot3 f 0 

- j < 6 < 0; aj :j= 0 

0 < 6 < j; OI3 0 

S = - J-, 03 f 0 

“3 = 0 

=)= 0 Type I j 
^(2+3d)a32 4 4(1+26)2(2+6) 

Type VrJ 

-> Type IV 

= 0 -> Type li 

^ Type VII 

^ Type V 

+6) 

-> ry^e XIIJ 

Rectangular distribution 

^ Type VIII i 

-> Type IX 

Type XI 
(2+36)U32 = 4(1+26)2(2 

(m) SOME CONCLUSIONS 

The scheme in the previous section shows how the new 

exposition for the Pearson system of frequency curves by C. C. Craig 

possesses marked advantages in unity, clarity and elegance in 

specifying the curves in terms of the two parameters 6 and aa. 

The definition of 6 is given by (18) in terms of and a4, 

while the definitions for a3(=/iY) and a4(=32) 3-^® obtained 

from (23). 

In the above mentioned specification of the curves as 

outlined in the previous section, we see that 
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6 e (-..1, 2/5) . 

By (33) , it is inferred that for all twelve types of 

Pearson curves 

2 
6 < ^ [using n = 8 in (33)] 

ensures the existence of eighth moment. 

J-^SHAPED, U-SHAPED, AND ’’COCKED-HAT” CURVES 

The following page contains a diagram showing transi- 

tion from two separated blocks of frequency through U-shaped and 

J-shpaed curves to the more common ’’cocked hat” shapes. 

(1) represents two separted blocks of frequency develop- 

ing into U-shaped curve in (2). The horizontal line of (3) is, 

as it were, the bottom piece of the U-curve and the Type VIII 

curve of (4) is like part of the U-curve. (5) and (6) are limits 

when straight lines are reached. (7) is Type IX and (8) is the 

exponential. The next two curves (9) and (10) are J-shaped curves 

of Types III, and I, and (11) is Type (XII). From this we pro- 

ceed to Types, I, III, IV, V and VI, curves of the ’’cocked hat” 

shape, three examples being given in (12), (13) and (14). 
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CHAPTER III 

SOME INTERESTING FEATURES OF PEARSON CURVES 

INTRODUCTION 

In this Chapter, we have a detailed study of the bell- 

shaped Pearson curves . Another method than the method of moments 

for computing the constants in the Pearson differential equation 

is developed. 

A study of Type II curves by the method of maximum like- 

lihood is outlined [4], while it is interesting to see how 

Pearson's Type II curve occurs in Thompson's criterion for the 

rejection of outlying observations, This indicates a practical 

application of Pearson's Type II curve. 

The Chapter ends up with the development of Pearson's 

Type III curve from Bernoulli distribution, also indicating how 

the normal curve of error can be obtained as a limiting case of 

the Type III curve as the skewness approaches zero. 

11. DEFINITION OF A BELL-SHAPED CURVE 

A bell-shaped curve is a continuous curve which starts 

at zero (or zero as a limit), rises to a single maximum, at 

which maximum point the first derivative is zero, and then falls 

to zero (or zero as a limit). 

Or, analytically, y = G(x) is a bell-shaped curve if 

66 
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G(xi) = GC^z) = 0 and if G' CP) = 0 and G"(P) < 0 where G(x) 

is continuous and does not vanish in the interval from xj to 

X2 and P is a unique point in this interval. 

12. POINTS OF INFLEXION OF BELL-SHAPED CURVES 

A discussion of the points of inflexion beings out the 

limitations of the bell-shaped Pearson curves in the most strik- 

ing manner. 

Consider the differential equation (20) of Chapter II 

in the form 

dy ^ yCx-A) 
dx b2X^+biX+bo 

(34) 

If we put x-A = X i.e. shift the mode to X = 0, We get 

dy yX 
dX ■ fB2X2fBiX+Bo 

(35) 

the + or - sign is taken according to the type of the curve. We 

shall show that BQ < 0 later. 

Since in the Type III curve = 0 and in the "Normal 

Curve" both B^ = 0 and B^ = 0 it would be of advantage to 

consider the general case 

dy _ yX 
dX F(X) 

(36) 
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in place of (35), where F(X) is a rational integral function of 

degree n, and then consider n = 2 for Pearson curves. 

By C36D, ^ [X2+F(X)-XF'(X)] (37) 

For points of inflexion of y, 

= 0 

X +F(X)-XF'CX) = 0 (38) 

[By (37)] 

The equation (38) is always of the same degree as F(X) 

except when F(X) is linear or constant. Thus we get the follow- 

ing theorem: 

Theorem I: If y = G(X) is a solution of (36), then the number 

of points of inflexion of y[=G(x)] cannot exceed the degree of 

F(X) when F(X) is of degree greater than one. 

Hence for Pearson's bell-shaped curves the maximum 

number of points of inflexion is two, that is, a Pearson bell- 

shaped curve has at most two points of inflexion, and no more. 

Now F(X) can be written in the form 

F(X) = . .+B2X^+BIX+BO (39) 

d^y 
dX2 

By (39) , equation (38) becomes 
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(l-n)B X^+(2-n)B ^+(3-n)B „X^~^+... 
n n-1 n~2 

+ (r-n3Bj^^^^X^~^'*‘^+. . .-3B4X‘+-2B3X3 + (1-B2)X2+BO = 0 (40) 

Thus from C40) , we have the following theorem: 

Theorem II: The coefficient of the linear term of X in the 

equation of the points of inflexion is zero. 

Now for the 'formal Curve" and Type III, we have 

B, = B3 = B, = ... = = 0 

Hence the points of inflexion of these two types of curves, as is 

easily seen from (40) , are given by 

X = ±/^ (41) 

Again for types I and 11, B2 > 0 and 

B = B, = ... = B =0 
3 4 n 

and the points of inflexion are 

[By (40)] 

And for types IV, V, VI and VII, B2 < 0 and 

0 
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and the points of inflexion are at 

[an obvious modification of C42)] 

13. SOME OBSERVATIONS 

(i) In some of these types of curves it may happen that the 

abscissae of the points of inflexion though real will be beyond 

the range of the curve. 

(ii) Thus types lit and VI may have 1 or 2 points of inflexion, 

the single point of inflexion occuring when 

> range of the curve in the direction that 
the range is limited. 

Ciii) Type II may have 0 or 2 points of inflexion, as there will 

be no real point of inflexion when B2 > 1. 

(iv) Type I may have 0, 1 or 2 points of inflexion. 

(v) Types IV, V, VII and the ’’Normal Curve’* always have 2 and 

only two points of inflexion. 

(vi) By (41) , Bo < 0. 

14. LIMITATIONS OF THE BELL-SHAPED PEARSON CURVES 

Consider the three hypothetical histograms as given 

in the attached diagram. All these are bell-shaped yet none of 

them will be closely fitted by any of the Pearson curves. 
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Fia. 3 
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In section 12, we have seen that when one of the eight 

bell-shaped Pearson curves (types I, II, III, IV, V, VI, VII and 

the '^Normal Curve”) has two points of inflexion then the abscissae 

of these two points of inflexion are equidistant from the abicissa 

of the mode. 

In figure 1, a point of inflexion will be at abscissa 

b and another at abscissa a, M is the abscissa of the mode. 

Now since (b-M) =j= (M-a) none of the Pearson curves will fit 

this histogram closely. 

In figure 2, points of inflexion occur at abscissae 

a,b, and c. Since a Pearson curve can have at most two points 

of inflexion, no Pearson curve will fit this histograms closely. 

In figure 3, there are four points of inflexion and no 

Pearson curve will fit this histograms closely. 

15. DEFINITIONS OF RANGE FOR BELL-SHAPED CURVES 

Definition 1: If a bell-shaped curve has the value of 

zero at two finite points, one on each side of the maximum (mode), 

it is said to be of limited range in both directions, or briefly, 

of limited range. 

Definition 2: If a bell-shaped curve has the value of 

zero at only one finite point it is said to be of limited range 

in one direction, or, of unlimited range in one direction. 
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Definition 3; If a bell-shaped curve has the value of 

zero only at that is, at no finite points, it is said to be 

of unlimited range in both directions, or simply, of unlimited 

range. 

16. ZOCH'S THEOREM 

In this section, we state the theorem due to Richmond 

T. Zoch [32] (with a corollary) without proof. The usefulness of 

this theorem in relation to our present disucssion will be brought 

out in the next section. 

THEOREM: If F(x) is a polynomial with real coefficients and 

y = G(x) is a bell-shaped curve which is a solution of the diff- 

erential equation 

^ [Equation (36) of section 12] 

then the necessary and sufficient condition: (i) that G(x) is 

of unlimited range in both directions is that F(x) = 0 has no 

real roots; (ii) that G(x) is of limited range in one direction 

is that all the real roots of F(x) =0 lie on the same side of 

A; (iii) that G(x) is of limited range in both directions is 

that at least one real root of F(x) =0 lie on one side of A 

and one on the other. 

Corollary: F(x) < 0 throughout the range of y. 
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17. IMPORTANCE OF ZOCH'S THEOREM 

Suppose we have some statistics which we wish to grad- 

uate and the statistics are of such nature that we would expect a 

bell-shaped curve, rather than a J- or U-shaped curve, and we de- 

sire the best fit. 

If we use a curve which is a solution of the differen- 

tial euqation (34) [the Pearson curves being special cases] to 

fit the statistics and if in computing the constants for the 

curve one of the following cases arises: 

(a) UQ .j: 0 when this constant is computed 

or (b) BQ i 0 when the origin is shifted to the mode 

or (c) a root is located within the range of the statistics 

then it means that: 

(i) A mistake may have been made in the computation; thus 

Zoch's theorem provides a rough check on the work of computa- 

tion. 

(ii) If no mistake has been made in the computation it may in- 

dicate that the bell-shaped Pearson curves will not closely fit 

the statistics and that some other graduation curves be used, 

e.g. the Gram-Chariier Types A or B might be tried. 

(iii) If no mistake has been made in the computation it may 

happen that one of the bell-shaped Pearson curves will give an 

excellent fit but a different method than or a modification of 
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the Method of Moments (as in Chapter I) should be used to compute 

the constants. 

18. COMPUTATION OF THE CONSTANTS: A MODIFICATION OF THE METHOD 

OF MOMENTS 

In the differential equation (34), put 

x-A = X dx = dX, X = X+A and we get 

dy _ yX 
dX ■ b2CX+A)2+bi(X+A)+bo 

yx 
b2X2+ (2Ab2^"b ) X+ (A2b2 "^Ab +bQ) 

(44) 

Now 

b2 = B2 

2Ab2+bi = Bi 

A^b2 "•‘Ab 2+b Q = BQ 

(45) 

:A ^ yx  
dx B2X2+B1X+B0 

(46) 

^ ^ yC^-A)  .47^ 
dx B2(X-A)2+BI (X-A)+BO ^ 

It is seen from C34) and C47) that for a particular 

curve B2,BI and BQ, are constants, that is, their values do 

not change with a change of the origin, but the values of bi and 
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bg do change with a change of origin. 

From (47) 

y(x-A)dx = [82(x-A)^+Bi(x-A)+Bo]dy 

fX-2 
e^^y(x-A)dx = 

X2 
e’^^ [B2Cx-A)^+Bi (x~A)+Bo]dy (48) 

If y = G(x) is a solution of (47) such that G(x ) = G(x ) = 0, 

then (48) becomes: 

fX2 

Xi 
e^^y(x-A)G(x)dx 

= B- 
X2 

Xl 

|-^2 _2AX+A^] G ’ (x) dx+Bi 
X2 

nx 
e (x-A)G'(x)dx 

+ B( 
X2 

xi 

e’^^G ’ (x)dx C49) 

Noting that 

fX2 

X 
e^^x^G'(x)dx = e’^^x^G(x) 

X2 fX2 
G(x) [2xe’^^+x^ne’^^]dx, 

xi •'xi 

etc., we get from (49), remembering G(xj) = G(x2) = 0, 

X2 
xe^^G(x)dx-A 

fX2 

Xl 

e’^^G(x)dx = B2 

Xl 

fX2 
-2 xe^^G(x)dx 

Xl 
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n 

+ n 

+ Bi 

X2 

xi 

(x)dx+2A 

r^2 
Cx) dx - n 

XI 

fX2 

xi 

fX2 

xi 

e^^G Cx] dx-A^ri 

xe^^G Cx) dx+Ai) 

rx2 

Xl 

X2 

Xl 

e^^G(x)dx I 

e^^G(x)dx 
1 

- Bon 

fX2 
e^^G(x)dx (50) 

Xl 

Now if we put 

I = 
X2 

Xl 

e^’'GCx)dx = (51) 

where f(n) = Xin+X2 +X3 ^ + (52) 

then (50) becomes 

dn 
- AI = B. 

0 " (2A-nD I 

dl 
+ Bi Ani - l+n ^ j -Boni (53) 

Again, by means of (51) and (52), (53) becomes 

f(n)-A = B2[(n-2)f’(n)-n{f^^(n)+f”(n) +(2A-n)] 

+ Bi[CAn^i)- f'(n)]-Bon (54) 

Finally equating coefficients of n^^n^,n^ and n^ from both 

sides of (54), we get 



A "'A+B ^ 

A2‘*'BO ^ 1 1 1^ — Oj 

(55) 

A3 +2X2B]^ —4AB2A2'*‘4B2A3+4B2AA2 “ 0, 

Ai^+3B]^ A 3-6AB2X 3 + 5B2 AL|.+6B2 A2^+6B2A j A 3 = 0 

Since we can compute the moments from the raw statistics 

and the semi-invariants A^ from the moments, we may regard 

A2,A3 and A4 in these equations as knowns and the Bo,Bi,B2, 

A and A^ as unknowns. But the origin has not yet been speci- 

fied. Let the origin be placed at the mean where yi = Ai = 0. 

As A2,^3,A4,BQ,Bi and B2 are unchanged by a change of origin, 

we have: 

Bi-AO-2AQB2 = 0, 

A2"^BQ-AQB]^+AQ^62+362A2 ~ o> 

(56) 

A3 + 2B2 A2 “4Aoh2A2"^4B2A 3 = 0, 

A4+3B]^A3-6AQB2A3+ 5B2A4+6B2A2^ ~ 0 

Now define 

bjl = B1-2A0B2, (57) 

b2^ = B2 
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^ from (56) 

bi^-Ao = 0, 

X2+bQ^+3b2^^2 “ 0> 
(58) 

A3+2b]^ ^X2'*'4b2^ A3 = 0, 

A4+3bj^ ^ A3+5b2^ A4+6b2 ^ A2^ = 0 

Reversed transformation of (57) ^ 

82= b2^, 

Bi = bii+2Aob2^, (59) 

^0 = bg^+Ag (bi l+Aob2^) . 

The above theory suggests the following procedure for 

computing the constants of a frequency curve: 

First the moments are computed about an arbitrary ori- 

gin, then the semi-invariants (or alternatively the moments about 

the mean), then the equations (58) are solved, and then by means 

of equations (59), the 82,81 and Bg are computed. 

Next we solve the quadratic equation 

B2X^+BiX+Bg = 0 

The character of the roots of this equation indicates 

which type to use and it is unnecessary to compute the criterion. 

The constants of the frequency curve are simple functions of the 



80 

roots of the above quadratic equation and can be readily found by 

integrating the differential equation (47), being careful to 

write the solution as a function of 

X = x-A. 

19. A STUDY OF TYPE II CURVES: METHOD OF MAXIMUM LIKELIHOOD 

The object of this section is to study the distribution 

of the estimates of the parameter of location (m) for Pearson's 

type II curve, estimated by the method of maximum likelihood from 

small samples. 

Before entering into the topic under discussion it will 

be useful to review some elementary facts regarding the curve. 

We shall first take the general equation for the curve in the 

form 

y = yo < 1 - 
(x-m) 

a2 (60) 

and determine the effect of variation of the constants. The sig- 

nificance and definition of m will be given later. 

(i) p = 0 ^ y = yo, a straight line. 

r (x-m)^ 1 
(ii) p = 1 ^ y = yo ) 1 - !'■ ^ -— r » ^ parabola with y = yo at 

1 j 
the point x = m, and the intercepts with the axis of x are 

at the points x = mfa. 

r o 2 
2 i 

(iii) p = 2 y = yo ><11 - —J , a fourth degree curve in 
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X with, double intersection with the axis of x at the points 

X = mfa. 

And so on. 

Since (60) is a probability curve. 

rm+a 

m-a 
ydx = 1 

^ Yo 

m+a I IP 
1 .o-20ir dx 

m-a L 
a2 i 

To 
/ z2 P\ 
1 - jdx (z ^ x-m) 

•' -a 1 f 

= 2yo 
0 

2 ^ P 
1 -|i|"dz 

= 2ayo cos^P^^Ode (z = a sin0) 

Now, 

= 1 

•TT 2 

0 

n.j. /if M 2 
cos 6d0 = 

n+1 

2 n+2 (61) 

Combining the last two results, we have 

^ /F rCp+i) 
2ayo 

rP.f 
= 1 

3 

4 Xo = 
^ 2) 

iv^rTp+TJ 

and hence equation (54) becomes 
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r(p+5/2) 
av^Cp+l) 

Cx-in)2 |P 
C62) 

Next we define the parameters m, a and p in (62) as follows: 

m is parameter of location, 

a is parameter of scaling, 

p is parameter of shape. 

Then we consider the likelihood function L together with its 

first and second partial derivatives with respect to m. We 

have from (62) 

L = n log 
r (pH-5/2) 
a/rTr (p+1) 

n f (x. -m) ^ 1 

P I log i 1 - —^2 -I 
i = l - ^ 

(63) 

and so 

= 2p J 
i=l 

6^L 
6m2 

n 
= -2p I 

i=l 

X. -m 
1 

a^ - (Xj^-m)2 
- 0 

a^+ (x j^-m) ^ 

[a2 -(xi-m)2] 

(64) 

(65) 

Now we consider the effect of variation of the parameters 

a and p upon our estimate ift of m. From (64) it is easily 

seen that the estimate ifl will be independent of p, for any 

particular sample. This is not the case when we consider a, 

however, for any change in a allows a change in the variance 
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of ift for the particular sample. 

The variance of the distribution is by (62) 

2^ 2r(p-t-3/2) 
a/irF Cp+1) 

0 

1 ^ 
^ ■ 15- 

dx 

= 2a^r(p+5/2) 
/7rr(p^i^ 

TT/2 
[cos^^^^ 6-cos^^^^e]de 

2p+3 [By (61)] 

Hence 

2 a' = X and n having usual 
X n n(2p+3) ’ 

meanings. 

We shall now calculate the limiting form of the vari- 

ance of ift. Fisher [9] has proved that if the distribution of 

optimum statistics is normal the variance of an optimum statistic 

is equal to the negative reciprocal of the mathematical expecta- 

tion of the second partial derivative of the logarithm of the like- 

lihood with respect to the parameter in question. 

We may therefore write 

= -4npr(p+5/2) 
a/WT Cp+l ) V 

^ (a^+x^) 
(a2-x2) ^ 

0 ^ 

1 - 

2 IP 
' dx 

-4npr(p+3/2) 
aAr (p+l) " 0 

(2 cos^^ ^0-cos^^ ^9)d0 

[x = a sin 0] 
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2np p + y 

aii(p-iy [By (61)] 

a 
m 
2 _ CP-1) 

npC2p+l) 

The efficiency of the mean is then 

^ 2 

E = 
ift = Cp-l)C2p+5) 

p(2p+l) 

C66) 

(67) 

20. OCCURENCE OF PEARSON^S TYPE II DISTRIBUTION IN THOMPSON’S 
CRITERION FOR THE REJECTION OF OUTLYING OBSERVATIONS 

In an interesting paper published in the Annals of 

Mathematical Statistics, William R. Thompson [29] has sug- 

gested a new criterion for the rejection of outlying observations. 

If ,x^,. . . represent a series of observed values 

of a variable x, and 

N N _ 

X = I (x.)/N, = I (x.-X)2/N 
i=l i=l ^ 

then Thompson writes 

T . = (x. -x) / s . 
1 1 

He then shows that if x. is an observation arbitarily 

selected from a random sample of size N from an infinite nor- 

mal population, then the elementary probability distribution of 

T IS 
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N-4 

2 
(68) 

This is a symmetrical limited range distribution of Pearson's 

Type II. 

21. DEVELOPMENT OF PEARSON’S TYPE III FUNCTION BY BERNOULLI'S 

SERIES 

Consider the Bernoulli series 

Where p is the probability that an event will happen in a 

single trial, and q = 1-p is the probability that it will fail 

to happen. 

the ordinate corresponding to x successes (x = 0,l,2,...r), 

we may plot the (r+1) points (x,y ). Through these (r+1) 

points we may imagine a curve that can be represented by an 

analytic function. 

r 
(69) 

x=0 

Representing by 

y. X 

r-x X 
P 

y. X 
r-x X 

P 

Since 
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then 

so that 

Y. x+1 

:y 

x+1 

Xx 

r 
x+1 

qx+q 

r-x-1 x+1 
q P 

(70) 

This is the difference equation of the continuous curve 

Now, from C70) 

x+1 = lEza -X 
rp+q+Cq-p)x (71) 

The mean of any two consecutive ordinates (y^ and will 

be considered as approximately equal to the ordinate 
. i, 

2 
midway between them. The slope of the line joining any two 

points (x,y ) and (x+1, y O is also approximately equal 

to the tangent at the point midway between these two on the con- 

tinuous curve and the error resulting from this approximation would 

be zero if the curve were a parabola. Under these two assumptions, 

equation (71) may be written as 

D 
*x^x+l/2 

X + 1 
2 

= 2(rp-q-x) 
rp+q+(q-p)x 

(72) 

The right side of (72) is the derivative of log y at 

(x + -j, point Cx,y^) this derivative 

the point 

is 

d 
3x Clog y) 

= 2[rp-q-(x-y2)] 
rp+q+Cq-^p) (x-l/2) 
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so that 2^ Clog y) - - ^1' (x-rp)(q-p) 
rpq+g- + -==  

(73) 

Now setting 
^ = “3’ 

then by (73) , 

x-rp 
Vrpq 

(log y) = 
- “2. + t 

2 

1 + ^ t j. f 2 L 4pqr 

(74) 

Now if rpq is so large that ^ is relatively insignificant 

and may consequently be neglected, equation (74) becomes 

_ ^ 
d n ^ 2 
3F y) = 

+ t 

1 + ^ t 
2 

(75) 

Next, integrating (75) we get 

I ^ aqt \ 0tq2 
y = 70 1 + ^ ■ 

4 -1 . ^ t 
as 

(76) 

which is Pearson’s Type III frequency curve. 

Thus, equation (76) has been obtained without resorting 

to the method of moments. 

We conclude this chapter by showing that the normal 

curve of error is the limit of Type III curve as the skewness 

approaches zero. 
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By (76), 

logeX = logpXo + —^ - 1 log 
013^ 10 

1 + ^ t X + 2 ^ «3 

^ loggCy/yo) as' 
- 1 

1 
^ t - - ^ 

2-H2 34-3 
+ 1 . 

3 8 i «3 

i t f(a3t) 

lim log!— 
a3^0 

1 ^ 

- - t2 
2 

yoe 

which is the normal curve of error, t being expressed in stand- 

ard units. 



CHAPTER IV 

CLASSICAL ORTHOGONAL POLYNOMIALS ASSOCIATED WITH PEARSON'S 
DIFFERENTIAL EQUATION 

■4. 

22. INTRODUCTION 

In a paper in the Annals of Mathematical Statistics, 

E.H. Hildebrandt [11] has established the existence of a general 

system of polynomials P^(k,x) associated with the solutions of 

Pearson's Differential Equation 

1 = a-Q+aix ^ N . . 
y dx bo+biX+b2x2 D ^ ^ 

N and D being polynomials in x of degrees not exceeding one 

and two repsectively with no factor in common. 

It is shown that the polynomials P^(k,x) = them- 

selves satisfy certain differential equations and a recurrence 

relation* The classical polynomials of Hermite, Tschebycheff, 

Legendre, Laguerre, and Jacobi are special types of P^(k,x). 

The classical polynomials are employed extensively in 

statistical theory, and this chapter is devoted to the study of 

the aforementioned polynomials. 

23. A REVIEW OF THE CLASSICAL POLYNOMIALS 

Before entering into the main topic of discussion, it 

will be helpful to have a review of the classical polynomials. 

89 
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(i> HERMITE POLYNOMIALS H^(x) : 

The Hermite polynomials have the following 

properties 

(b) - 2xH^(x) + 2nH^_^Cx) = 0 (78) 

Cc) H^JCx) - 2xH^(x) + 2nH^Cx) = 0 

(ii) JACOBI POLYNOMIALS J^Cx,a,$): 

The Jacobi polynomials J^(x,a,3) are defined as 

follows: 

T r >1-3 <1^ r 1^+0^-ln >n+3-lT J (x,a,3) = X (1-^x) ^ —- [x (1-x) ^ ] (79) 
^ dx^ 

a,3 real. 

The nth Jacobi polynomial satisfies the second order 

differential equation 

x(l-x)JJ|(x,a,3) + [3“Ca+l)x] J'^(x,a,3) + (a+n)nJ^(x,a,3) = 0 (80) 

(iii) LAGUERRE POLYNOMIALS L^(x): 

The Laguerre polynomials defined by 

L (x) = e X d 
n 

dx 
n 

, n -X. 
(x e ) (81) 
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The recurrence relation and the differential equation for the 

Civ) TSCHEBYCHEFF POLYNOMIALS P^Cn,x): 

The Tschebycheff polynomials are developed from the 

differential equation 

1 

and the differential equation involving the nth Tschebycheff 

polynomials P^(n,x) is 

Laguerre polynomials are respectively 

I<n+i W-C2n+l-x)Ln(x)+n2L^_l(x) = 0 (82J 

and L ' (x) -nL ’ T (x) +nL ^ (x) = 0 
n^ ^ n-1 ^ ^ n-^1 ^ 

(83) 

(l-x2)P^(n,x)-xP^(n,x)+n^P^(n,x) = 0 (85) 

(v) LEGENDRE POLYNOMIALS P^(n,x): 

The Legendre polynomials P^(n,x) are defined by 

(86) 

The corresponding differential equation is 

(1-x^) y*’-2xy'+n (n+1) y = 0 (87) 
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n real. [or -j^ y when expressed in first (88) 

order differential equation, as we shall see later] 

and the differential equation involving P^(n,x) is evidently 

(x2-l)P^’Cn,x)+2xP'(n,x)-nCn+l)P (n,x) = 0 (89) 
n n n 

24. ROMANOVSKY»S INVESTIGATIONS 

Romanovsky [25] gave a study of the relations between 

some of the Pearson curves and the above mentioned polynomials as 

outlined below: 

(i) The normal curve of error requires the use of Hermite poly- 

nomials. 

(ii) Type I and Type II (which is a special case of type I) 

curves involve the Jacobi polynomials. 

(iii) Type III curves involve the Laguerre polynomials. 

(iv) The generalization of the Type IV curve gives the polynomial 

P^(m,x) = (a^+x^)*"e^® [ (a^x^) (90) 
dx 

where 0 = arctan — . 
a 

These polynomials have properties similar to the other 

polynomials as discussed above, that is 

P , (n+l,x) = [2(n+l-m)x-va]P (n,x)+2n[n+l-m] (a?»-x^)P (n,x) (91) 
n*"j. n n 

and 
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Ca^+x^)P”Cn,x) + [2Cl-ni)x-va]P^(n,x)-nCn+l-2m)P^(n,x) = 0 (92) 

(v) For the Type V curve Romanovsky finds the polynomials 

P Cp.x) = C- Cx-P*2«e-^/*) 
dx 

with 

P^^^(n+l,x) = [(2n+2-^p)x+Y]P^(n,x)+n(2n+2-p)x2p^_^(n,x) 

and x^P^(n,x) + [x(2-p)+Y]P^(n,x)-n(n+l-p)P^(njX) = 0 

(93) 

(vi) Finally for the Type VI curve Romanovsky gets the poly- 

nomials: 

Pn(-qi>q2>x) = (x-a) ^^x^l [(x-a)^2'^”x"^l'^”] 
dx 

and the relations 

P^^^(n+l,x) = [(-qi+1)(x-a)+(q+l)x]P^(n,x)+x(x-a)P^(n,x) 

x(x-a)P^'(n,x) + [(-qi+l) (x-a)+ (q2+l)x]P^(n,x)-n(n+l+q2-qi)P^^(n,x) = 

25. DEFINITION OF THE POLYNOMIALS P (x) AND P (k,x) 

The polynomials Pj^Cx) and P^(k,x) are defined by 

Hildebrandt as follows: 

(94) 
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and (95) 

P (k,x) 
n 

where y is a non-identically vanishing solution of the differ- 

ential equation (77), that is 

26. SOME POLYNOMIAL THEOREMS CONCERNING THE SOLUTION OF THE 

THEOREM I: If y is a non-identically zero solution of (77), 

then Pj^(x) is a polynomial of degree at most n. 

Proof: By Induction. 

It is obvious that the theorem holds for n = 1, Pi(x) 

N, by definition. 

Now, from (77) 

y dx ~ D ' dx ~ D T 

DIFFERENTIAL EQUATION (77) 

being 
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CN2^D’+N*D)y [By (77)] 

Now since D' is linear and N' is a constant, obviously the 

right side of 

— = N^-ND’+N'D 
y dx^ 

is at most of degree 2. 

Assume now that the theorem is true for m = n, and we 

have 

D"^^= P fx)y 
dx 

n n 
(96) 

Differentiating once, we get 

.n 
nD 

1 j^+l 
n-lo' + D" ^ I 

j n j n+1 
dx dx 

t dP (x) 
P (X) ^ + "1^ y 
n dx dx 

1 jn+1 j .n dP (x) ^ d ^ ^ pp ^ ^ ^ p n  
j n+1 n dx j n dx 
dx dx 

^ By (77) and (96), 

dP (x) 

Pn+iWy = NP^(x) y-nD «P^(x)y+D - y 

n+1 jn+1 dP (x) 
^ 5i_Z = Np (x)-nD*P (x)+D —^  
y dx n n dx 

So the right side of the above equation is obviously a polynomial 
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of degree at most n+1. This proves the theorem. 

From above, we have the relation 

Pn+iCx) = P^Cx)CN-nD‘) + D 
dP (x) 

n 
dx 

(97) 

Relation (97) enables us to write down the successive polynomials 

PjCx), P2(x), P3(x), ... etc. as follows: 

Pl(x) = N, 

dPi (X) 

P2CX) = (N-D')PiCx)+D —3^ 

= N2-ND'+N'D, 

d?2(x) 
P3CX) = (N-2D')P2(X)+D —3— 

= N 3 -SN^D' +3NN 'D+2ND ' 2 - 2N 'D 'D -NDD", 

and so on. 

More generally we have: 

THEOREM II: If y is a non-identically zero solution of (77), 

then P^(k,x) is a polynomial in x of degree at most n. 

PROOF: The proof can be attained exactly in a similar way as 

adopted in the proof of Theorem I. But the following lemma sim- 

plifies the proof in this case. 

LEMMA: If y satisfies the differential equation (77), then 

k 
D y, where k is any real number, satisfies a differential 
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equation of the same type, namely 

N+kD» 
D (DV) 

PROOF: Let u = 

^ log u = k log D + log y 

:^L^ = k . 1 . ^ == N-fkP » 
u dx D y dx D 

[By (77)] 

Now it follows from the lemma that any result which we derive con- 

cerning the polynomials immediately extensible to the 

polynomials P^(k,x), by replacing N by N+kD*. 

In particular, relation (97) becomes: 

dP (k+l,x) 
P^^^Ck+l,x) = [N+(k-n+l)D']P^(k+l,x)+D "   (98) 

For k = n, (98) 

dP (n+l,x) 
Pj^^^(n+l,x) = CN+D')P^(n+l,x)+D "■   (99) 

27. RECURRENCE RELATIONS INVOLVING P ^ (x), P (x) AND P ,(x) 
n+1 n n-1 

AND THEIR FIRST DERIVATIVES 

From (77) ^ ^ 

Taking the nth derivative of both sides by Leibnitz's theorem and 

noting that = Oj we get 
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D j... ,y. +nD' D" i--4^ = N ^ + nN- 1- ■ ^ 
j n+1 , n 2I 
dx dx 

j n-1 n j n-1 
dx dx dx 

n Multiplying throughout by D , we get 

,n+l 1 ,n-l 
D"^1 +D"CnD'-N) +D" D"-nN'! = 0 

j n+1 ^ ^,n2 n-1 
dx dx 1 dx 

By definition, the above formula becomes: 

Pn+1 CnD' -N) (x) y+n 
n-1 
^ D"-N» DP , (x)y = 0 2 n-1 ^ 

' n -1 
P , (x) + CnD»-N)P (x)+n DP '(x) = 0 n+1 n 2 I n-1 C100> 

^ By (97), 

dP Cx) 
n 
dx 

n / N» - D" P n Cx) n-1 ^ ^ 
(101) 

or, replacing n by n+1. 

dx = Cn+1) - 5- D"1P (X) 
2 n 

(102) 

= (n+1) (a -nb^DPj^Cx) [By (77)] 

28. DERIVATION OF THE CLASSICAL POLYNOMIALS 

(i) HERMITE POLYNOMIALS: 

The equation (102) is the generalized form of the one 
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for the Hermite polynomials, namely 

dH^Cx) 
  = 2nH , (x) 

dx n-1 

Relations (97) and (101) may now be used to obtain a second order 

differential equation. 

Differentiating (97), 

P^^l(x) + (nD»’-N»)Pn(x) + (nD»-N)P^(x)-D'P^(x)-DP”Cx) = 0 

^ By (101) , using n+1 for n, 

(n-l)D” 
DP^»(x) + [N- (n-1) D * ] Pr (x) -n N P (x) = 0 

n 
(103) 

Now it is readily seen that the relation for the Hermite poly- 

nomials 

H’’(x)-2xH» (x)+2nH (x) = 0 

is a special case of (103) . 

(ii) JACOBI POLYNOMIALS: 

By definitions in section 25, and section 23 (ii), it 

follows that the Jacobi polynomials J^(x,a,3) is a special type 

of P (k,x) with 
n 

N E (-g-a)x+a, 

D E x(l-x) , 
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n = k+1 

•n 
Proof: J^(x,a,6) = x^*“ci-x)4— [x"'^“^(l-x)"'"®’^] 

dx 

Jfc.lCx.a.B) [x“Cl-x)-{x(l-x)}-i 
X (1-^) dx 

k+1 
■ <^n B 

a ° B [D''X“C1-X) 
x“Cl-x) ® dx*^^ 

Now, put 

y = x“(l-x)^ 

-x“eCi-x)‘‘'Vx“-'-ci-x) 
-1. a-l 

dx 

= X“(1JC)P L ^ « 
1-x X 

= y i 
I(-g-a)x+g ] _ N 

x(l-x) J = y D 

That is y = x°^(l-x)^ satisfies (77). 

Therefore by (104), 

^ j.k+1 , T D d: ; ^ 
yrra-® 

jjCk+l)-k jk+1 
—^ ^CD X) 

= P^^^Ck.x) 

(104) 

(105) 



101 

(iii) TSCHEBYCHEFF AND LEGENDRE POLYNOMIALS: 

Using the lemma and replacing N by N+KD*, we can 

write (i03) for the polynomials P^(k,x) and P^(n,x) as: 

DP"Ck,x) + [N-(n-k-l)D']P»{k,x)-n |N' - D" P (k,x) = 0 

(106) 

and 

DP^ (n,x) + (N^* D *) (n, x) -n N 
n+1 

D' Pj^Cn,x) = 0 (107) 

Now we can easily recognize (92), the last equation of (93), and 

the last equation of (94) of section 24, and also (80) of section 

23 (ii) as special cases of (107). 

Some further illustrations of (107) are the Tschebycheff 

and Legendre polynomials. 

For the Tschebycheff polynomials, the differential equa- 

tion (84) implies (85), [By (107)] and for the Legendre polynom- 

ials (86), (87) or (88) implies (89) [By (107)]. 

(iv) LAGUERRE POLYNOMIALS: 

Just as in formula (100) giving a recurrence relation 

for the polynomials P^(x), we now obtain the same for the poly- 

nomials P (n,x) . 

We have ^ (D^^^y) = (k+l)D'(D^y)+D^^^y' 
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= [N+(k+l)D»]D y [By (97)] 

Taking nth derivative of both sides 

d^^^ k+1 d^ k (D^ V) = [N+(k+l)D»] ^ (D>) 
dx dx 

jn-1 . 
n[N' + (k+l)D"] (D y) 

dx^ ^ 

Multiplying both sides by and writing (D^y) 
dx 

n 

= P^(k,x)y, by definition, we get 

Pn^l(k+l,x) = [N+Ck+l)D’]P^Ck,x)+n[N‘+(n+l)D"]D.P^ n(h,x) (108) 
n n-1 

Letting k = n gives 

P^^j(n+l,x) = [N+(n+l)D']P^(n,x)+n[N'+(n+l)D”]D-P^_j(n,x) (109) 

a recurrence relation similar to (100). 

Equation (109) can be written again in a form similar to (97). 

Putting N+kD' for N in (101), we get 

dP (n,x) 

dx 

^ Pj^,l(n,x) 

= n I N’ + D” i P ^ (n,x) 
- 2 n-1 

i I 

dP^(n,x) 

dx 

substituting in (109), we get 
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[N+ (n+1] D»] Cn ,x) + N*+(n^l}D** 

N • + D« 
D 

dP^Cn,x) 

dx 

(110) 

Now in looking over the relations existing for the 

Laguerre polynomials, we show that the relation 

P*(n,x)-nP* ,(n,x)+nP T(n-l,x) = 0 
n'' * ^ n-1 ’ n-1 ' ^ 

for the Laguerre polynomials P^(n,x) is a special case of an- 

other form of formula (110). 

To show this, we proceed as follows: 

Differentiating (110) gives 

dP ^(n+l,x) dP (n,x) 

~~ diT' [N' + (n+l)D"]Pj^(n,x) + [N+(n+l)DV] - 

N«+(n+l)D» 

N' + D'» 

dP (n,x) 
D 

n 
dx 

N*+(n+l)D* 

N. ^ IBIHD" 
D 

d^P (n,x) 
n 
dx^ 

d^P^(n,x) 
Substituting from (107) for     above, we get 

dPn+i ("■'I dP (n,x) 

= [N' + (n+l)D'»]P^(n,x)4-[N+(n+l)D’]   

N'+(n+l)D» N»+(n+l)D> 

^ , (^^+1) n.t * * . Cn+1) N' + D” 

dP (n,x) 
.(N.D-) ^ a 

n+1 
D'»+N» P (n,x) 

n 
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dp , T Cn+l ,x) 

dk " " Cn+l) IN Cn+1) D*T Cn ,x) 

+ {N+Cn+1}D' } 
NV+ (n+l)D^^ 

n+1 

dP^Cn,x) 

dx 
(111) 

Now, bearing in mind that for the Laguerre polynomials the diff- 

erential equation is of the form 

dy _ a-x 
dx "" X * 

we find that substitution of x for D and (a-x) for N 

reduces (111) to 

P^^^(n+l,x) = -(n+l)P^(n,x)+(n+l)P^(n,x) 

or, P^^^Cn+l,x)-(n+l)P^(n,x) + Cn+l)P^(n,x) = 0 

which is similar to (83). 

(v) SOME FURTHER OBSERVATIONS AND CONCLUSIONS: 

The first four of the following results were obtained 

by Frank S.. Beale [2] as an extension of Hildebrandt*s results; 

1. P„,iCk,x) [N+ (k-n) D ' ] Ck ,x) +DP^ (k, X) 

2. P' ,(k,x) 
n+1^ ^ ^ 

3. P^,i(k,x) 

= (n+1) N* + D” I P (k,x) 
2 n ^ 

[N+Ck-n)D»]P^Ck,x)+n j N' + D" j DP^ ^(k,x) 

L J 



105 

2k-ii+i 
' 2 »• • • Cn+1) 

2k-ii+l 
2 D’MP (k,x) = 0 

I n ’ 

N*+(n+l)D" 
• N( p-cn,x} 

N' + D" J 

Comparing P^(k,x) with the Rodrigues* formula repre- 

sentation of the classical orthogonal polynomials for n = k+1. 

for all the classical orthogonal polynomials. This enables us to 

associate a first order differential equation of the form (77) with 

the classical orthogonal polynomials. Then the result 5 above 

leads us to derive the well-known and time-honoured second order 

differential equations of the same type. The recurrence relations, 

pure and involving first derivatives, may be obtained by means of 

results 1,2,3 and 6 above. The results 1-4 were used by 

Frank S. Beale to derive some interesting theorems concerning 

common zeros of P^(k,x) and D. In particular, result 4 above 

gives the points of inflexion for each polynomial concerned, and 

result 6 leads us to derive the relation (83) for the Laguerre 

polynomials as already shown in the preceding section. 

To conclude this chapter, it can be safely said that 

the well-known, widely studied and the time-honoured classical 

we may determine expressions for N and I) in equation (77) 
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orthogonal polynomials may be studied in a simpler and more sys- 

tematic way by means of the study as outlined in this chapter. 

Since the classical polynomials are employed extensively in stat- 

istical theory, the significance of the study in this chapter is 

obvious. 



CHAPTER V 

EXTENSIONS OF THE PEARSON SYSTEM OF FREQUENCY CURVES 

29, INTRODUCTION AND SUMMARY 

The differential equation 

d log f (x) ^ YQj-YlX+Y2X ; 
dx 6OX+6IX2+62X^ 

(112) 

where Yo»Y 1 JY2><SQand 62 are real numbers, and its solu- 

tion in the form 

f(x) = cx^^(ai+a2^)^^(l3i‘‘‘l52x)^^ (113) 

where a,ai,a2,bi,b2,ri,r2 and r3 are real parameters, are 

fundamental in the discussion of this chapter. 

First we show that the following distributions 

(i) Uniform, (ii) Normal, (iii) Exponential, (iv) Gamma, (v) Cauchy, 

(vi) Student*s t (vii) (viii) X, (ix) Rayleigh, (x) Maxwell, 

(xi) F, (xii) Beta, (xiii) Inverse Gaussian and (xiv) Pareto, 

are special cases of f(x) in Cl13) with suitable values of the 

parameters of f(x). 

Then we show that the differential equation (112) with 

the solution (113), or, a function as given by (H^) leading to a 

differential equation of the form (112) gives rise to a Pearson 

curve under certain specified conditions. We shall specify these 

107 
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conditions and use the differential equation (112) to derive five 

curves whose parameters depend on the first seven population 

moments. The Pearson curves are shown to be solutions of a 

special case of the differential equation (112). Another extension 

of the Pearson's Differential Equation (la) in the form 

d log f(x) _   x-a 
(112a) 

dx bo+bjX+b2x2+b3x3 

and the curves associated with it are also discussed. 

30. SOLUTION OF THE DIFFERENTIAL EQUATION (112) IN THE FORM (113) 

To begin with our present topic of discussion, we first 

derive the solution of the differential equation (112) in the 

form (113). 

To do this we proceed as follows: 

R.H.S. of (112) ^ 
1 j Yo+Ti x+YoX 
X 1 6O + <SIX+<S2X2 

L ^   Ax+B   

^ Cao+aix)(3O+3IX) 
> [6O+6IX+62X^ = (ao+otix) (3^ + 3jx) ] 

1 + B 
ao+aix 3O+3IX | 

A 
X x(ao+aix) x(3o+3ix) 

= 1 + ^ + ■—.fj.-- 
x X ao+uiX 

B B< 

3o+3iX 

D3 + Car ^ 
X ao+ajx 3o+3iX ' 

choosing the constants suitably, 
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Integration of (112^ gives: 

log £(x) = Cl log X + C logCao+“ix)+D log(0o+^ix)+l^^g E 

C C D 
^ £(x) = Ex ^ (ao+oiix) (3O+3IX) 

Thus we see that the differential equation (112) has 

its solution of the form (113). For our present disuession, we 

would use the form of f(x) as given by (113). 

31. IMPORTANT CONTINUOUS PROBABILITY LAWS 

We shall see that by giving particular values to the 

parameters of £(x) in (113) we are able to tobain some import- 

ant continuous frequency functions that are evidently special 

cases of £(x) in (113). But before going to do this, a brief 

account of these continuous frequency functions will be helpful 

towards our present purpose. 

(i) THE UNIFORM PROBABILITY LAW: 

The uniform probability law over the interval a to b, 

where a and b are any finite real numbers such that a < b, 

is specified by the probability density function 

f (x) - 7-^ for a < X < b 
^ b-a 

0 otherwise 
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(ii) THE NORMAL PROBABILITY LAW: 

The normal probability law with parameters m and a 

where < m < «> and a > 0, is specified by the probability 

density function 

,, , I f Qxj = —7?^ e -o° < X < “ 
crv^TT 

Ciii) THE EXPONENTIAL PROBABILITY LAW: 

The exponential probability law with paramter A, in 

which X > 0, is.specified by the probability density function 

f(x) = Xe for X >0 

= 0 otherwise 

(iv) THE GAMMA PROBABILITY LAW: 

The gamma probability law with parameters r and A, 

in which r = 1,2,... and A > 0, is specified by the probabil- 

ity density function 

fW = CAx)^~^e~^^ for x> 0 

= 0 otherwise 

Note: Ciii) is a special case of (iv) with r = 1. 
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(v) THE CAUCHY PROBABILITY LAW: 

The Cauchy probability law with parameters a and 3, 

in which < a < «» and 3 > 0, is specified by the probability 

density fiinction 

f(x) < X < °°. 

Cvi) STUDENT’S DISTRIBUTION: 

Student's distribution with parameter n = 1,2,... 

(also called Student's t-distribution with n degrees of freedom) 

is specified by the probability density function 

f(x) 
1 r[(n-H)/2] 

V^n-IT r (n/ 2) 
1 

(n+l)/2 

[Note: Student's distribution with parameter n = 1 coincides 

with the Cauchy probability law with a = 0 and 3=1.] 

(vii) THE X^-DISTRIBUTION: 

The -distribution with parameters n = 1,2,... and 

6 > 0 is specified by the probability density function 

f (x) __1  ^Cn/2)-l^-(x/2a2) 

2"'‘^a”rCn/2) 

0 for X < 0 

[Note: The X^-distribution with parameters n and a = 1 is 
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called the -distribution with n degrees of freedom. The X^- 

distribution with parameters n and a coincides with the gamma 

distribution with parameters r = n/2 and X = l/2a^. To define 

the gamma probability law for non-integer r. We replace (r-1)! 

by r(r).] 

Cvii€) THE X -DrSTRlBUTION : 

The X-distribution with parameters n = 1,2,... and 

a > 0 is specified by the probability density function 

2(n/2)^^^ n-1 -(n/2a^)x^ ^ „ 
 X e ^ ^ for X > 0 

a”r(n/2) 

= 0 for X < 0 

[Note: The x-<iistribution with parameters n and a = 1 is 

often called the X-distribution with n degrees of freedom. The 

relation between the X^ and X distributions is given by the 

following: If X has a X^ distribution with parameters n and 

a, then Y = /x/n has a X-distribution with parameters n and 

a.] 

(ix) THE RAYLEIGH DISTRIBUTION: 

The Raleigh distribution with parameter a > 0 is 

specified by the probability density function 
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fCx) 
y (x/a) ^ 

for X > Q —ry ^XQ 

0 for X < 0 

[Note: The Rayleigh distribution coincides with the X-distribu- 

tion with parameters n = 2 and a = OL/2.] 

(x) THE MAXWELL DISTRIBUTION: 

The Maxwell distribution with parameter a > 0 is 

specified by the probability density function 

[Note: The Maxwell distribution with parameter a coincides 

with the X-distribution with parameters n = 3 and a = a/3/2.] 

(xi) THE F-DISTRIBUTION: 

The F-distribution with parameters m = 1,2,... and 

n = 1,2,... is specified by the p.d.f. 

f(x) for X > 0 

0 for X < 0 

(ra/2)-l 

0 for X < 0 
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Cxii) THE BETA PROBABILITY LAW: 

The beta probability law with parameters a and b, in 

which a and b are posotive real numbers, is specified by the 

p.d.f. 

1 ^“lri ^b~l „ , 

’ 0<X<1 

where BCa,b) 

= 0 

,1 
a-1,- ^b-lj 

y (1-y) dy 

“'o 

otherwise 

(xiii) INVERSE GAUSSIAN DISTRIBUTION: 

The family of probability density functions 

f(x) = [X/2TTX3] ^^^exp[-A(x~y) V2vi^x] , u, A > 0 

for a variate x and parameters y and A, with x,y,A each 

confined to C0>°°) is called the Inverse Gaussian distribution. 

The expectation of x is y, while A is a measure of relative 

precision. 

Cxiv) PARETO'S DISTRIBUTION: 

In certain kinds of economic statistics, we often meet 

truncated distributions. Thus for example in income statistics 

the data supplied are usually concerned with the distribution of 

the incomes of persons whose income exceeds a certain limit XQ 
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fixed by taxation rules. This distribution, and certain analogous 

distributions of property values, sometimes agree approximately 

with the Pareto distribution defined by the relation 

PCX > x) = M. 
X 

a 
, (x > Xo> a > 0) 

The frequency function of this distribution is 

a+l 
f(x) = 

a 
xo X 

= 0 

for X > Xi 

for X < Xi 

The mean 
OL 

is finite for a > 1, jnd is then equal to 

a 
median of the distribution is 2 XQ. 

32. DEDUCTIONS OF THE PROBABILITY LAWS OF SECTION 31 AS SPECIAL 
CASES OF fCx) AS GIVEN BY (113) 

(i) To deduce the Uniform Distribution with parameters 

a < X < b, we take 

C = 
b-a 

, ri = r2 = rg = 0, 

and the result is obvious. 

(ii) To get the Normal Distribution with parameters -oo < m < «> 

and a > 0, we first take 

1 •^ra^/2a^ 
C ri = 0, r2 = rs = r 
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Then we get from , 

f (x) = e"™ { (ai+a2x) (bi+b2x) 

1 _-m^/2a^ 
{aibi+(aib2+a2bi)x+a2b2X^} 2il* 

Next we take 

aibi =1, aib2+a2bi - , a2b2 - - r • 2Q2 

\ 1 -m^/2a^/. Thus fCx) =^72f® 
«UC 1 ^2 
ra^ 2ra^ 

a/2T 
1 -mV2a2r 1 

e + r 

L ■ 

mx x^ \ I ^ 
^ ■ 2^\ ! 

Now letting r ^ <», we get ultimately 

2 

f(x) = 

mx yj 

1 -m^/2a^ ~ 2o'^ r„. ^ . L x 
e [Since lim 1 + — ] n ? 

u>°° I a 
TTH 

X, 
e ] 

a 
1 
7^ ® 

1 /x-m*^ 
■2 1a 

which is the result as desired for -c» < x < «>. 

(iii) For the Exponential Probability Law with parameter X > 0, 

we take 

C = A, ri = 0 = r2, bi = 1, b2 = - 
A 
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We then have 

fCx} 
T3 

I 

Now letting r3 -> «>, we get 

fCx) = 

which is the requited result for x > 0. 

(iv) For the Gamma Probability Law with parameters r = 1,2, 

and A > 0, we take 

A^ c = •(F-iyr • ri = r-l, T2 = 0. bi = 1. b2 = - 

Then 

fCx) = 
A .r-1 

r Cr-l)! 1^3 

Letting t3 ^ «>, we get the required result as 

■C i" 'i ^ "v ^ ^ Ax f(x) = (fliyi C^x) e for X > 0 

(v3 To deduce the Cauchy Probability Law with parameters 

-oo < a < and B > 0, we take first 

" il" ’ ^1 = = ^3 = -1 

whence we get 



118 

TTg. * (a\+a2x) (bi+b2x) 

1 ^ 1 
irg * [a'lb 1 + Ca 1 b2+a2bi)x 

Next we take 

aibi = 1 + , 3Lih2+Si2^i - “2a/3^ 

Then we have 

fw = ^ 
■» (,.|-S 

which is the result for -oo < x < «>. 

(vi) To get Student's Distribution with n 

we take first 

C = 
I—1 1 r\ 2 I 

pi n III 
, ri = 0, r2 = T3 = 

We get 

= 7m [aibi+ Caib2+a2bi)x+a2b2X^] 

Next we take 

a^bi = 1, aib2+a2bi = 

a^h2^ 

, a2b2 - i/3^ 

r 
degrees of freedom. 

-(n+l)/2 

-(n+l)/2 

0, a2b2 - ^ 

whence 
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~(n+l)/2 

which is the desired result for < x < <» 

(vii) For the deduction of the -distribution with parameters 

n = 1,2,... and a > 0, we take 

C = 
n 

= IT - 1, r2 = 0, hi = 1, 

2a^r 

so that we have in this case 

1 
f(x) =   

2 ^^a^rCn/2) 
X 

- 1 
1 - 

r3•2a^ ^1 

Letting r3 -> «> we get the required result as 

f(x) = —7^5   - 
2^/^a^rCn/2) 

-V 
.2 I - (x/2a^) ^ ^ ^ 

X e for X > 0 

(viii) To get the x-distribution with parameters n = 1,2,... and 

a < 0, the following substitutions are obvious at the first in- 

stance : 

C 
a^rCn/2) 

n-1, r2 = rg = r 

so that we have 
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f(x) ^ [aibi + Caib2+a2bi)x+a2b2X^]^ 

0 r(n/2) 

Then we put 

aibi — 1, aibo+aobi -* 0, apbo — ~ 
n 

2a2r 

and accordingly we get 

f(x) = ^n-1 

0"r(n/2) 
1 - 

nx2 y 

2a2r ) 

Now letting r we get finally 

f(x) = ^Cn/2)”^^ ^n-1 ^-(,n/2a^’)x^ 
o”r(n/2) 

which is the required result for x > 0. 

(ix) For the Rayleigh Distribution with parameter a > 0, the 

obvious substitutions are 

C = ^, ri = 1, T2 = T3 = r 

whence we get 

f(x) = ^x [aibi +(aib2+a2bi)x+a2b2X^] 

Next we take 

a]^b]^ — 1, a^^bp+apbj — 0, apbp and accordingly 2a2r 
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we get 

f (x) = X 
a' 

1 - 
ii_V 
2a2r] 

Not letting r -> «> we have 

^ - 7 (x/a)2 
£(x) = 2- e ^ 

which is the required result for x > 0. 

(x) To get the Maxwell Distribution with parameter a >0, we 

have 

4 1 
C = -F* • —T-, = 2, r^ = 0, bn = 1, bo = 

"7=* * 3"> ^ 1 / 7T ^ a2r3 

whence 

f (x) = —- X- 
TTa- 

1 - 1 o!’^3 x2] 

Letting r3 ->■ oo, we get 

f (x) = x2e 
•/7Ta3 

-x2/a2 

which is the required distribution for x > 0 

(xi) To deduce the F-distribution with parameters m = 1,2,... 

and n = 1,2,..., we take 

T. /m+n\ 

C = 

■1 ji'-ii 
^ ’ (m/n)"’'^^, ri = ( ^] ^ 1, r2 = 0, bi = 1, 
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b.2 = m/n, r3 
m+n 

2 

and we get 

fW = 
_1  
m+n)/2 

which is the required result for x > 0. 

(xii) For the Beta Distribution with parameters ajb > 0, we 

take 

C = 
B(a,b) where BCa,b) is already defined in section 31, 

r^ = a-1, r2 = 0, b^^ = 1 = -b2, r3 = b-1 

and we get 

f(x) = 
B(a,b) 

a-l,_ ^b-l 
X (1-x) 

which is the result as desired for 0 < x < 1. 

(xiii) To deduce the Inverse Gaussian Distribution with parameters 

A > 0, we take 

C ri+r2 = -3/2 

Thus we get 

(bi+b2x)’^3 
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Then we put 

^2 = ^3 = 

whence we get 

e,\ nr -3/2 Caj^b2+a2bj^)+a2b2X + —l—i- 

Finally, we put a^b2+a2bj = 1, a2b2 = " 

and accordingly we get 

f(x) = - 1 I \X . X, 1 
^ \j 2ITX3^ \ r 

r 1 

J 

X 
2r ' 

Letting r -> oo, we have ultimately 

XX ^ X 

__ _ xCx-u)^ 

2^ ® 

which is the required result for x > 0. 

(xiv) Lastly, to deduce the Pareto Distribution with parameter 

a > 0, we take 

C = aXQ^, r;^ = -Ca+1) , ^ ^ 0 

and we get 

fCx) = 
g 
XQ 

I xo ' 
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which is the required result for x > XQ. 

33. OBSERVATIONS ON THE PREVIOUS RESULTS 

For the Inverse Gaussian Distribution, it is interesting 

to take note of the fact that all the real parameters C, a^, a-2, 

bi, b2, ri, r2 and of f(x) in (113) have non-zero values. 

The same is the case for the x> Rayleigh and Maxwell Distribu- 

tions. In all other distributions as discussed, at least one of 

the parameters of fCx) in (113) is zero. 

In this context, it would be quite relevant to indicate 

that the relationship between the Inverse Gaussian Distribution and 

the Pearson Type VI Distribution was first studied by L.K. Roy in 

his M.Sc. thesis in Queen's University [26]. 

34. DIRECT DEDUCTIONS OF ALL THE PEARSON CURVES FROM f(x) IN (113) 

(i) Type I : 

y = yo 1 + ai 

mi 
1 - 

\^2 

a2 
where ai a2 

Substitutions are: C = yo, ri = 0, a = 1, a2 = —, r2 = mi, 
3-1 

bi = 1, b2 = - r3 = m2- 

(ii) Type II: 

y = yo 1 

9 \m x^ 

Obvious substitutions are C = XQ, ri = 0, r2 = r3 = m, ai = bi = 1, 
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a2 = a = -^2• 

(iii) Type III 

y = yoe 
-yx 1 + 

Ya 

The substitutions at the first instance are 

V 1 
c = Yo, ri = 0, a-i = 1, a£ = ~ ~ = 1, b2 = -, vs = 

1*2 
ya. 

whence 

Now letting r2 we get the result. 

Ya 

(iv) Type IV: 

y = Yo 

9 1 ^ 1 X 

1 + e a a2 

First we take c = yj, r^ = 0, a^^ = -kj, ^2 = 1, b2 = -k2» b2 = 1 

Then £ (x) = yj (x-k^^)^^ (^"^2)^^ 

Next we take k^^ = -p+iq, k2 = -p-iq Cp,q real) 

- r (v,r real) r2 = y- - r, rs = - 
2 

vi 
- r 

f(x) = y{[{(x+p)-^iq}' 

yi 
{ (x+p)+iq} 

yi 
2 

- r 

x+p+iq X [(x+p)^+q2] 
-r 

Then we put 
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and 

x+p = R cos 0 

q = R sin 9 

so that 

VI 

/ - \ 2 x+p-iq 
x+p+iqI 

cos 9-i sin 9 
cos 0+i sin 9 

VI 

» 2 

= e 
V0 

VI 

-i0 2 

1 / 
/ 

cot 0 = —-P- ^ tan 
q 2 " ® 

= 2S1£ ^ . e = tan-l ^ 
q 2 q 

-X V7T _ ^ -1 X+p . V7T ^ -1 X+p 
^ -X— - v0 = V tan —^ ^ v0 = - v tan —^ 

2 q ^ 2 q 

Thus from above, we have 

V7T 

f(x) = 7(5e^ [(x+p)^+q^]~^e q^ 

V7F 

f 2 -2r = 7(5© q 

I - "tan ^ 
1 ^ ^ \ e ^ 

q M 

Ultimately, putting 

VTT 

t 2 -2r 
70, = 76© q , p = 0, q = a, r = m 

we get the result. 

[Note: For type IV curve, the above written complex substitutions 

are justified with reference to our discussion in Chapter II.] 
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Cv) Type V; 

r = 7QX 

We write. 

- . - / ' r£ 
£Cx) = + a2| (bx+b2x)^^ 

• 1 ^ / 

Then we take C = yo, = -p, r2 - r3 = r so that 

r -jT 
fW = yox"P| (aib2+a2bi) + + a2b2x| 

^ J 

Next taking aib2+a2bi =1, aibx ~ ^ ^ > a2b2 = 0 and letting 

r -> <», we get the result. 

(vi) Type VI : 

y = yo(x-a)‘^^x'^i 

The obvious substitutions are C = yo, r^ = --qi, r2 = 0, b^ = -a, 

b2 = 1, rs = q2. 

(vii) Type VII : 

y = 
-X^/2<7^ 

The substitutions at the first instance are 

c = yo, = 0, T2 = >3 = r 

. fCx) = yo [aibi + Caib2+a2bi)x+a2b2x2]^ 
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Then* we take aibi = 1, aib2+a2bi = 0, a2b2 = 2a’^r * letting 

r -► we get tbe result. 

(viii) Type VI11: 

7 = 70 
/ «-in 

“rl 

The abvious substitutions are: C = yo> ri = r2 = 0, bi = 1, 

, 1 
t>2 ^3 = -m. 

(ix) Type IX: 

7 = 70 1 + 
m 

The substitutions are immediate. 

(x) Type X: 

± ^ n a 
y = — e 

o 

The substitutions are C = —, ri = ro = 0, bi = 1, bo = t —^ 

Next, letting r3 -> «», we get the result. 

(xi) Type XI: 

y = yox 
-m 

The substitutions are obvious 

Cxii) Type XII: 

7 = 70 
a^+x 
a2-x 
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The obvious substitutions are 

C = To, 3-1 = ai, a2 = 1 = -b2> bi = a2, T2 = p = 

35. AN EXTENSION OF PEARSON’S SYSTEM 

We have in (113) 

£(x) = 1 (a i+a2x)^2(b^+b^x)^ 3 

whence log f(x) = log C + log x > r2 log(a^+a2x)+r^ log(bj+b2x) 

Thus we can easily see that (113) can be expressed in the form 

d log f(x) ^ ^ ^ r^a^ r c^b ^ 
dx X a^^+a^x bj^+b2X 

f dx “ <SOX+(SIX2+62X^ 

which coincides with (112). 

Now we have, from above. 

(5oX+6iX^+52X^)df = (Yo+YiX+Y2^^)f^f 

(114) 
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which is obtained just 

Now set u* 
n 

integrating the L.H.S. by parts, 

x^f dx so that from (114), we get 

x"(5QX+5ix2+52x3)f-Cn+l)6oVJ^-Cn+2)5iu^^j^-(n+3) S2Pn+2 

Cll5) 

Now if the first term in (115) vanishes when limits are taken, 

then (115) ^ 

Pj!^[Y0'^Cn+l) 6Q]+Ujl^^l [Yl+(n+2) Cn+3) 62] = 0 (116) 

Now, f dx = 1. 

Then setting n = 0,1,2,3,4, in (116) we have 

Yo+5o+y[(Yl + 26i)+y^(Y2+362) = 0 

(YO+26Q) +Vi2 3 CT 2+462) 

y2C^o+2^o)'^y3C'Yi+46i) +y^ (^2+552) (117) 

y3 (Yo+4(So)+y4(Yl+S‘5i)+y^(Y2+662) = 0 

y4f^’7o+56o)+y5(Yi+66i)+y^(Y2+762) = 0 

Thus in (117) we have got six equations involving the 

six unknowns Yo5Yi,Y2>6Q,51 and 62 that come in the differen- 

tial equation (112), and these equations can be solved to deter- 

mine the unknowns in terms of the first seven moments yi,y2,y3, 

y4>y5>y6^y7* 
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These 5 eejuatlons can be used to obtain Yi ,Y2 >*^0 ^^1 > 

&2 in terms of YQ and tlie first six moments. Choice of the 

value of Yo is arbitrary Cbut YO 0) since we could have 

divided the numerator and denominator of the right side of (112) 

by Yo* 

(a) CONDITIONS FOR A PEARSON CURVE: 

The following conditions will give rise to a Pearson 

curve: 

1. Any or all of ai,a2,bi,b2 are zero. 

Proof: (i) a-i = 0, a2,bi,b2 =t= 0 

f(x) = Cx^^a2^x^^(bi+b2x)^^ 

= Ax^(bi+b2x)^^ 

which can be transformed into Pearson Type VI curve by assigning 

suitable values to the constants as appeared above. 

(ii) ai ^ 0, a2 = 0, bi,b2 =|= 0 

f(x) = Cx^^a^^(bi+b2x)^^ 

= Ax^^(bi+b2x)^^ 

Now similar arguments as in (i) 

(iii) a-i = 3-2 = 0, b]^,b2 =|= 0 

f(x) = Cx^^(bi+b2x)^^ 

Proceed as before, 

(vi) a^ = 0, bj = 0 f (x) is Type XI curve 
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(v) ai = b2 = 0 or a2 = bi = 0 ^ f(x) is a Type XI 

curve. 

(vi) aj = a2 = bi = 0 or ai = bi = b2 = 0 or ai = a2 

= bi = b2 = 0. 

Proceed as before. 

The last condition includes £(x) = 0 under the Pearson system as in Chapter I 

2. Both ai = bi and a2 = b2. 

Proof: Let a^ =b i= p, a2= b2 = q. Then f(x) = Cx^^(p+qx)^^^^^ 

= f(x) is Type VI 

3. At least one, but not all of ri,r2,r3 are zero (ri = r2 

= r3 = 0 eventually leads to the Uniform Distribution). 

Proof: (i) r^ = 0, r2,r3 ^ 0 

f(x) - C(ai+a2x)^^(bi+b2x)^^ 

which can evidently be transformed into Type I or II or XII by 

assigning suitable values to the constants involved. 

(ii) ri = r2 = 0 or r^ = r3 = 0 or r2 = T3 = 0 

^ f(x) is Type IX or XI. 

(b) SOME FURTHER OBSERVATIONS: 

(i) ai=0 or bi=0^^6o=0 

and a-i =0 or bi = 0 YO = 0 

Simply note that (SQ = a^bi and YO = aib^ri. Also 
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note that 6Q = 0 ^YQ = 0. 

(ii) 3-2 - 0 b2 = 0 ^2 = 0 

Note that 62 = a2b2. 

(iii) 62 = 0 ^ Y2 = 0 

Note that Y2 = <5.2 (ri+r2+r3) . i. 

Thus we get Pearson curves from (113) if and only if 

either 

(i) Yb = <5o = 0 

or (ii) Y2 = ^2 = 0 

We further observe that YQ may be zero while 6Q is 

not because of condition 3 of section 35(a) above. Nevertheless, 

this condition gives rise to Pearson curves. For non-zero YQ, 

and 62 we get non-Pearson curves, because in this case the 

differential equation (112) cannot be reduced to the form (20) in 

Chapter II (which gives Pearson curves as its solutions). 

(c) SOME SPECIAL CASES OF (112) AND ITS SOLUTIONS IN THESE CASES: 

Case 1: Yi = = 0 

The differential equation (1) under these conditions 

become 

= ^ q+'Y ix^ ^ Y o+Y 
X (5 0+52x2) x(x+d)(x-d) ^ [log £(x3] 
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where 

d = - -r^ > 0 C4 0 or «>, since $o4 0, 62 4 
; O 2 O 2 

From above, we have 

d A B C 

dx ^ ^ X ^ x+d ^ x-d 
(118) 

where 

Y.0 +Yix^ = A(x^-d^)+B(x^-dx)+C(x^+dx) 

9 A = 14^ , B = C = ^ ̂ Y, - IH52. i 
^ «0 / 

Integrating (118), 

log f(x) = log K+A log x+B log(x+d)+C log(x-d) 

^ £(x) = kx^(x^-d^)^ 

or, f(x) = kx^^(x^-d^)^^ (119) 

where mj = A, m2 = B are evaluated above 

Case 2: 6i = 0, - ^ > 0 
6.2 

The differential equation (112) becomes 

[log f(x)l = 
dx X(6O + 62X2) 
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YO+'YIX+Y9X , J / <5/0 
= —7 rv7~ ~ JT~ where d = - x(x+d)(x^^ V <5.2 

A B C 
= — +  1- + 

X x+d x-d 

where YQ+YIX+Y2X^ = A(x^-d^)+B(x^-dx)+C(x^+dx) 

^ A = ^Loiz B = i ir-> - - CJz 
' ^ K . * ^ 0 '2 X- x_> 

c = i IY 9 - ^ , 

2 «2 \/ «o I 

Integrating (120), we get 

f (x) = kx^(x+d)'^(x-d)^ 

^ f(x) = kx”^^ (x+d)*^^ (x-d)”^^ 

where mi = A, m2 = B, m3 = C are already evaluated above 

Case 3: Either - ^ > 0 or > 46n6,9. 
62 

From (112) , we have 

— rioB ffxil = ..-'r.o*T= A + ^ dx ^ ^ J X(x-dj) (x-d2) X x-d^ x-d2 

where 

1 1 2'-46n^9 ^ 
“  ' 26—^ real. 

Integrating (122) , we get 

fCx) = kx^(x-di:i®(x-d2)^ 

= kx"’lCx-di)”2(x-d2)™3 

where m^ = A, m2 = B, m3 = C are determined from (122), 

(120) 

(121) 

(122) 

(123) 

by the 
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usual method of partial fractions, as: 

A _ Yo 
^ - did2 

B = m2 = 
Y Q+Yidi+Y2di^ 

d1(d1-d2) 

C = m3 = 
Y Q+Yid2+Y 2^2^ 

^2 C^i -<12) 

Case 4: 6^ = 0, > 0 i.e. 6Q and 62 have the same sign 

i.e. either 6Q < 0, 62 < 0 or 6Q > 0, 62 > 0 

The differential equation (112) becomes: 

1., fM ■ 
62X( ix2 + 

Y 0 Y 

62X j v2 + x„ (v2 + 
62I 2|X + 5^1 

Y 
+ 

6 n j 26- 
2x 

x2 + ^ 
62 

(124) 

Now let 
1 A Bx+C 

= — +   

X X [x2 + |nl x2 + |il 

^A = -p=-B, C = 0 
OQ 

From (124) we get 

k log fCx) = 
7JL . i * 
5.0 X 5Q52 x2 + ^ 

6 o 

+ XiL 2x 
6 n 2 5^0 9 6 2 ^2 + HU 
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Integrating, 

log f (x) = ^ log X ^ tan'^ ^ + Xi^ log]x2 4- io 
. ^ v7 "tan 
0Q02 V OQ 25. '2 i 

+ log k 

f (x) = kx ro/^oj,z , /|Tta„-l 
I 0 2/ i ono9 /\/ on on 0^2 V OQ 

or, f(x) = Cx™^(x2-d^)™^exp[Citan ^(C2x)], (125) 

d having the same value as in Case 1, and choosing mi,m2,Ci and 

C2 in an obvious way. 

Case 5: 61^ < 46Q62, > 0 2 ^ /I ^ 0 , ^ 

(112) log £(x) = 
^ I 2 0 62X|X2 + ^X + ^ 

YQ+Y1X+Y2X' 

62X 
26. * 4arr C4^o^2-.5i2) 

(126) 

But X + ^— = y ^ X = y 
^0 2 26 

X. = y _t> , b = 
26. 

dx = dy 

1 
467^ 

(126) 

(46062-61^) = a^ > 0 

= 7Q+YI (y-b)+Y2 (y-b)^ 
(y-b)(y2+a2) 
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CTQ -bYi+b^yz) + iyi-2hX2')y+X2y^ 
52(y~b) (y^+a^) 

ao+aiy+gpy^ 
SaCy-b) (y2+a2) 

the expressions for ao, and a2 being obvious from above. 

Now let 

_ By+C 
^2 Cy-b) (y2+a 2) y-b ^ y2-a 
qQ+q iy+a2Y' 

(127) 

A = Cao+qib+a2b2) 

= TQ^2 
5o 

B = a'2Vb^ (a^a2-ao-aib) 

= Y2 - 
YGA2 

C = ai+bB = Yi - Y0<^1 _ XEAL 
2 6 Q 262 

Hence integrating (126) by means of (127) , we get 

log f Cy-b) = A log (y-b) + B log(y^+a^) + — tan ^ ^ + log k 
<u £L Si 

(Int. const.) 

f(y-b) = k'Cy-b)^(y2+a^)^ exp — tan ^ — 

^ B 
-P f 1|A 1 f ^ ^ r- C —Ix'^'b f(x) = k'x — (6O+6IX+62X^)1 exp — tan   

Q 2 i 3. a 
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(128) 

Choosing the constants k, mi m2, Ci, C2 and C3 in an obvious 

way, where the constants A,B and C are already determined. 

Note: The cases in which Y2 “ 0 follow from the above five 

cases. 

Cd) A SYNOPSIS OF THE EXTENDED CASES:. 

Case 1; YI = 5i = 0, d real 

f(x) = Cx"^l(x2-d2)"^2 

Case 2: 61 ~ 0, < 0 

f(x) = Cx”^i(x-d)"^2(x+d)"^3 

Case 3: 

f(x) = Cx^l (x-di)^^(x~d2)^^ 

Case 4: cSi — 0, > 0 

f(x) = C]^x”*l (x2-d2)”^2exp[G2 tan~^(C3x)] 
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(e) TRANSITION BETWEEN THE EXTENDED AND THE PEARSON SYSTEMS 

(i) Pearson Type I and Case 3 of extension: 

Case ^ f(x) = Cx^^ (x-d2)“‘^(x-d2) 
.III' 

= C ■ x"*Mi - 1 
d mi^ m2 j di| I 

I m o 
X i ^ 
6-2 j 

= YoU + 

mif \^2 
a - 

■2| 

where 

> Type I 

Vo = c 
di ld2 '2 

(real) y d^ — —> ^2 — ^2^ iflj^ — Oj 

m2 =10]^, m2 = m2. 

Now mj = 0 ^ d^ = ° ^ Yo = 0 

and !LL = 5i2. A Yn+Tidi-t-Y^d, ^ Yn-^Yid7+y? aj a2 / di(di-d2)(-di) d2Cd2-di)d 
do+Yod_2_^ 

Yl(^il-ti2) = 0 (YO = 

Yl = 0 (*.* di =f d2) 

The differential equation (112) becomes 

d log f(x) ^ Y2^C 
dx 60+61X+62X2 
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(ii) Pearson Type II and Case 4 of extension: 

Case 4 ^ fM = 

L x2 1 
= yoti - IT I 

m 

^ Type II 

m c r -1V 
Where /Q = - — (real), = 0, d = a, m2 = m 

d 

TO - Yl “ ^ ^ (112), 

d log f(x) 
dx 

JL2: 
6 o’*" 62^^ 

(iii) Pearson Type III and Case 3 of extension: 

Case 3 ^ f(x) = yQx'^ljl - ^ U - 
x 

m. m 
[yQ as in (i)] 

Now taking = 0, d^ = ^ , d2 = -a, m3 = 

mo .ya 
f(x) = y^i |1 - -— ;1 + 
^ ^ -^0 1 m2 / s a ^ 

Letting m2 -»• «», 

f(x) = y^e ^^1 + ^ 
.ya 

^Type III 
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Now mi = 0 YQ = 0 

-> «> ^ di = d2 

1 + ■/ 51 ^ -4 6 Q 6 2 _ “ *51 -V 612^ -4 5 o 6 2 

262 ~ 262 

61^ = 45Q62 

(iv) Type IV and Case 5 of extension: 

Cl = yo> = 0, 6Q = 1, &i = 0, 62 = ^ , n^2 

C3 = 0, C4 = a give 

, -lx \-m -vtan — 
f (x) - YQ jl + ^ 

:^Type IV 

mi = 0 Yo = 0. 

The differential equation (112) becomes 

d log f(x) 
dx 

CYI+Y2^) 
x^+a? 

(v) Type V and Case 3: 

We write 

f(x) Cx«^i"^2| 1 - 

dil"^2 
(x-d2) 

m3 

Now C = yo, mi+m2 = -p, di m3 0 

-m, C 2 = - V, 
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P f (x) = 7QX P 1 - 

m3 = 0 YO"^y 1^2'^Y2^2^ ~ ^ 

m2 ->■ «> 7 dj “>■ 0 

(S3 ">'I/632-46Q62 

^ = 63^-46.0^2 

^ 6 Q62 — 0 

(Vi) 

(vii) 

sion. 

(viii) 

> So = 0 CV «2 + 0) 

Type VI and Case 3: 

Type VI follows directly from Case 3. 

Type VII can be obtained from all the five cases of exten- 

Type VIII and Case 2: 

Now m3 = 0 ^ Yo = 0 

C^* YO = 0) 
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(ix) 

(X) 

Type IX can be treated exactly in a similar way. 

Type X and case 5: 

Cl = «o =1, ± ^ . «2 = 0. mi = 0, C2 = 0 

^ y = a 
1 ± 

X 

om2 

m2 

Letting m2 ^ 

± ^ 
y = f(x) = - e 

mi = 0 Yo = 0 

m2 °° ^ Y2 ^ 00 

(xi) Type XI can be obtained from all the five cases of exten- 

sion . 

Cxii) Type XII follows from Case 3. 

Cf) DEDUCTION OF THE INVERSE GAUSSIAN DISTRIBUTION FROM CASE 5 
OF EXTENSION: 

In section 33 we have indicated that the Inverse Gaus- 

isan Distribution is Type VI Pearson, as proved by L.K. Roy. We 

conclude this chapter indicating how the Inverse Gaussian Distribu- 

tion can be derived from Case 5 of extension. 

In Case 5, we first put C2 = 0 which implies 
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61 + + 62^1 ^ 

--jX pL 
ml I 61 IX 

^6 

i^i 
X 

m- 

_ iiii+mp : ; p jm^ 
= Cx ^ ^ ; 1 + “^ + qx; ^ 

by means of obvious substitutions. 

Next take C = 
X X/u - \ 

-y 27® , ■ni*m2 = -.3/2, p = -_. 2ji2ni2 

^ fW = ^ « |i”^ 
V 27TX3 : m2 [ 2x 2y2 j 

Letting m2 ->■ CX5 j we get ultimately 

— Ji— + ^ 
^ J'/v - t2x 2p2/ 
2^® • ® 

A(x-y)2 

e' 2y2x 

which is the required Inverse Gaussian Distribution as discussed 

in section 31 (xiii). 

= rx 
\j 27rx ^ 

36. ANOTHER EXTENSION OF PEARSON'S SYSTEM BY EDWIN D. MOUZON 

In a paper in the Annals of Mathematical Statistics, 

Edwin D. Mouzon, Jr. [18] extended Pearson's Differential Equa- 

tion in the form 
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^ = -(x-ayy . 
dx "" bQ+biX+b2X^+b3X^ 

The recurrence relation (8) of section 6 in Chapter I, 

case, is transformed into 

(n+1)bi(n+2)b2UjT^^+ (n+3)" ^^n"^n+l 

and the set of equations (10) becomes 

0bQ+b]^ + 0b2+3]i2b3 — a 

bo+Obi+3y2t>2‘‘‘4y sbs = -y2 

0bQ+3y 2b 1 ■•■4y 3b2'^5y 4b 3 = avi2"y3 

3y2bo’^4iJ3bi + 5y 4b2 + 6]J5b3 = ay3-y4 

This set of equations enables us to determine bo,bi,b 

in terms of ]j2jy3jy4jy5 follows: 

bn = a 10 

-\12 0 3U2 

ay 2-^3 3^2 4y3 

ays-y4 4ys Syy 

3y2 

4ys 

5y4 

by 5 

/ 
/ 0 

1 

0 

3y2 

1 0 

0 3y2 

3y2 4y3 

4ys 5y4 

= A/A (say) , A =1= 0 

similarly, bi = B/A, 

b2 = C/A, 

63 = D/A (say). 

(129) 

in this 

(130) 

(131) 

, and b3 

3y 2 

4ys 

Syy 

by 5 

(132) 

where B,C,D are obtained for bi,b2,b3 in the numerator just 
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as A above for bQ. 

The differential equation (130) then becomes 

dy _ (x-a)dx _ A(x-a)dx 
y A Bx Cx2 Dx^ ~ A+Bx+Cx^+Dx^ ^ 

A A A. A 

The solution of the differential equation (134) depends on the 

nature of the zeros of the denominator of the right hand side, 

that is On the discriminant of the general cubic 

bo+biX+b2X^+b3X^ = 0 

which is 

lShQhih2h^-4hoh2^+hi^h2^-4hi^b2-27ho^hs^ (134) 

The cubic has 

(i) three distinct real zeros, 

(ii) one real, two. imaginary zeros, (135) 

(iii) at least two real and equal zeros 

according as 

(134) < 0 

We will expect, therefore, three general types of curves when 

integration is effected. The following classification was made 

by Edwin Mouzon: 

Class A [curves obtained under condition (i), 135] 

Class B [curves obtained under condition (ii), 135] 
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Class C [curves obtained under condition (iii)» 135] 

Under Class A, 

Type A-1: y = 

(al1 the 
zeros are 
positive) 

Type A-2: y = 

Ctwo positive 
and one nega- 
tive zeros) 

he got six curves, namely: 

yo 
1 ai I 

m^a 
1 

as 

msaa 

1 - 
^m2a2 

- y 

miai 

1 - 

moa?, 
X \ i, X 

a2 ' aa 

mgaa 

Type A-3: (Two negative and one positive zero) 

y yo 
1 - 

X 

K 

,miai 
1 + 

I 1 +   
\ as 

msas 

^|ni2a2 

a 2   

Type A-4: (All the three zeros are negative): 

y = yo 

i 1 + — 
J U2 

m2a2 

11 + 
X i (, 
— I 1 ai I \ 

X I 

as^ 

niaaa 

Type A-5: (Special Type A-3 when one negative zero = the positive 

zero) : 

1 
y = yo 
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Type A-6: CSpecial case of Type A-3 when one of the zeros is zero) 

y = Yo 

m2 
1 + 

a2 

1 + 
a3 

m3 

where the parameters in the equations of the curves are suitably 

adjusted. 

Under Class B, two curves were obtained, viz: 

Type B-1: (Two of the zeros are complex): 

-1 X 
y tan 

(x+C) ^“‘e 
^ y tan 2m ' M 

y = yo 
(m^+M^) 

m 

Type B-2: (When two of the zeros are pure imaginaries) 

-1 X 
o Y tan , .2m ao 

(x-ai) e ^ 
y = yo (x^+a2^)™ 

The parameters of the curves have suitably assigned values 

Under Type C, the following are the curves: 

Type C-1: (Two zeros are equal): 

y = yo 

EL. 

(l+x/k) ^ 
m2 
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Type C-2: (When all the zeros are equal): 

P-^ 

y = YQ e q(x-r)^ 

The parameters are suitably adjusted. 

The set of frequency curves as indicated above gives a 

better fit to the modal neighborhood of the data to which it is 

applied than is often found in the existing methods (as one dis- 

cussed in Chapter I), one example being given by E.D. Mouzon, tak- 

ing b3 = 0 in the extended Type A curves. Mouzon also observed 

that the bell-shaped (or ’cocked hat’) Pearsonian curves often 

yield a very poor fit to the data for a good number of distribu- 

tions derived from the financial ratios of public utility compan- 

ies, and furthermore, in some cases, on the left extremity of the 

distribution, the rise of the curve to the mode is too steep for 

a good fit, while the fit about the mode is of primary importance 

in much economic data. 

In Chapter I, the constants a,bo,bi and b2 were de- 

termined by equating the moments of the raw data to the moments of 

the theoretical distribution. The new assumption made by Mouzon 

is that the value of the constant, a, the mode, is determined 

first from the observed data, and equated to the value of the mode 

in the theoretical distribution. This method of procedure is par- 

ticularly adapted to economic data, as it assures a good fit about 
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the mode. 

If b = Q, equations C131) reduce to 

bi = a 

bo+3b2li2 = 

3biii2'’'4b2lJ3 = -^3+3^2 

the solutions of which give 

b -Vt2Vt3-^6ay2^ 
4 P3 

bi = a (136) 

t>2 
-y 3-2ap2 

4 P3 

Thus, we see that the constants are determined in terms 

of the mode, and the second, and third moments of the raw data. 

Evidently the expressions for bo,bi and b2 in (136) are much 

simpler than those in (12) of Chapter I. 

37. CONCLUSIONS (DUE TO KARL PEARSON): 

The theory of curves given by 

1_ dy_ _   x-a  
y dx bo+biX+b2X^+t)3X^+. . . 
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is worked out by Dr. David Heron, but Karl Pearson [25] did not 

publish that in the Biometrika because (a) good fits in the case 

of homogeneous material are as a rule found from using the first 

four moments, and because (b) of Pearson's profound distrust - 

based largely on experience of the different results for the fre- 

qeuncy curves obtained from different samples of the same material, 

when high moment coefficients are involved - of the use of high 

moments at all. 

In Karl Pearson's own statement, "I have a very firm con- 

viction that the mathematician who uses high moments may make in- 

teresting contributions to mathematics, but he removes his work 

from any contact with practical statistics."^ 

2 "Skew Correlation and Non-Linear Regression", Drapers' Co. Res. Mem. 
1905, p. 9. 



A SELECTED BIBLIOGRAPHY 

[1] Bateman, Harry, Higher Transcendental Functions, Bateman 
Manuscript Project, California Institute of Technology, 
Volume 1, 1953. 

[2] Beale, Frank S., "On the polynomials related to the differ- 
ential equation 

1. S[Z. - ap+a^x _ ^ " 
y dx bo+bxX+b2X^ “ D 

Annals of Mathematical Statistics, Volume 8 (1937), pp, 206-210. 

[3] Butkov, Eugene, Mathematical Physics, Addision-Wesley Publish- 
ing Company, 1968. 

[4] Carlson, John L., "A study of the distribution of means es- 
timated from small samples by the method of maximum likeli- 
hood for Pearson type II curve". Annals of Mathematical 
Statistics, Volume 3 (1932), pp. 86-95. 

[5] Chester, Clive R., Techniques in Partial Differential Equa- 
tions, International Series in Pure and Applied Mathematics, 
McGraw-Hill Book Company. 

[6] Craig, Cecil C., "A new exposition and chart for the Pearson 
system of frequency curves", Annals of Mathematical Statis- 
tics, Volume 7 (1936), pp. 16-28. 

[7] Cramer, Harold, Mathematical Methods of Statistics, Princeton 
University Press, 1961. 

[8] Elderton, William Palin, and Norman Lloyd Johnson, Systems 
of Frequency Curves, Cambridge University Press, 1969. 

[9] Fisher, R.A., "On the Mathematical Foundations of Theoretical 
Statistics", Phil. Trans. Series A, Vol. 222 (1922), pp. 327-328. 

[10] Henderson, Robert, "Frequency curves and moments". Transactions 
of the Acturial Society of America, Volume 8 (1904), pp. 30-41. 

[11] Hildebrandt, Emanuel Henry, "Systems of polynomials connected 
with the Chariier expansions and the Pearson differential 
and difference equations". Annals of Mathematical Statistics, 
Volume 2 (1931), pp. 393-411. 

153 



154 

[12] Eoehstadt, Harry, The Functions of Mathematical Physics, 
Wiley-Interscience, Volume XXIII. 

[13] Kendall, M.G., and Stuart A., The Advanced Theory of Statis- 
tics, Volume 1, Charles Griffen and Co. Ltd., 1958. 

[14] Kreyszig, Erwin, Advanced Engineering Mathematics, Ohio 
State University. 

[15] Lebedev, N.N., Special Functions and their Applications, 
Prentice-Hall, Inc., N.J., 1965. 

[16] Magnus, W., Oberhettinger, F., Soni, R.P., Formulas and Theo- 
rems for the Special Functions of Mathematical Physics, Third 
Edition, Band 52 Springer-Verlag Berlin Heidelberg New York 
1966. 

[17] McBride, Elna B., Obtaining Generating Functions, Springer 
Tracts in Natural Philosophy, Volume 21, 1971. 

[18] Mouzon, Edwin D., "Equimodal frequency distributions". An- 
nals of Mathematical Statistics, Volume 1 (1930), pp. 137-158. 

[19] Parzen, Emanuel, Modern Probability Theory and its Applica- 
tions, John Wiley and Sons, Inc., Publishers, 1967. 

[20] Pearson, E.S., and Hartley, H.O., Biometrika Tables for 
Statisticians Volume 1, Cambridge University Press, 1966. 

[21] Pearson, E.S., The Selected Papers of E.S. Pearson, University 
of California Press, Berkeley and Los Angeles, 1966. 

[22] Pearson, Karl, Tables of the Incomplete Beta-Function, Second 
Edition, Cambridge University Press, 1968. 

[23] Rainville, Earl D., Special Functions, The Macmillan Company, 
New York, 1965. 

[24] Rietz, H.L., Mathematical Statistics, The Carus Mathematical 
Monographs, Number Three, The Mathematical Association of 
America, The Open Court Publsihing Company, La Salle, Illinois. 

[25] Romanovsky, "Generalization of some types of the frequency 
curves of Professor Pearson", Biometrika, Vol. 16 (1924), 
pp. 106-117. 



155 

[26] Roy, Lawrence Keith, Some Properties and Applixaations of the 
Inverse Gaussian Distribution, Queen*s University, M.Sc. 
Thesis, 1967. 

[27] Roy, Lawrence Keith, "An extension of the Pearson systqn of 
frequency curves". Mathematical Report, #69-4, August, 1969, 
Department of Mathematics, Lakehead University. 

[28] Salvosa, Luis R., "Tablesof Pearson’s type III function". 
Annals of Mathematical Statistics, Volume 1 (1930), pp. 191- 
198. 

[29] Thompson, William R., "On a criterion for the rejection of 
observations and the distribution of the ratio of deviation 
to sample standard deivation". Annals of Mathematical Statis- 
tica. Volume 6 (1935), pp. 214-219. 

[30] Tweedie, M.C.K., "Statistical properties of inverse Gaussian 
distributions". Annals of Mathematical Statistics, Volume 28 
(1957). 

[31] Wasan, M.T., First Passage Time Distribution of Brownian Mo- 
tion with Positive Drift, (^een's Paper in Pure and Applied 
Mathematics, No. 19. 

[32] Zoch, Richmond T., "Some interesting features of frequency 
curves". Annals of Mathematical Statistics, Volume 6 (1935), 
pp. 1-10. 


