AMENABLE SEMIGROUPS AND ERGODICITY

A thesis submitted to
Lakehead University
in partial fulfillment of the requirements
for the Degree of

Master of Science

by

Hing-chiu Chan

1972



ProQuest Number: 10611579

Ali rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10611579
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346



D-25 Y6

THEsES
M. Se..
/F73
CAET

e : .
opyright @ 1972 Hing-chiw Chan

Canacdcia
n Theses on M:c‘.r-c'Fi'lm Neo 16713

189221



ACKNOWLEDGEMENT

I wish to thank my supervisor, Professor Peter F. Mah,
for his advice, encouragement and patience during the prepara-

tion of this thesis.



ABSTRACT
For each u-measure preserving map ¢ from a measure
‘space (X,A,u) into itself, the operator T defined on the

Hilbert space L2(X,A,ﬁ) by
TE(x) = f(»(x)),

for each f in Lz(X,A,ﬁ) and x in X, is a unitary operator.

The mean ergodic theorem of voﬁANeumann asserts that the arith-

metic means Tn_= %- iil Ti of the iterates '{Ti}:=1 converges
strongly in _LZ(X,A,ﬁ). This was extehded to Lp(x;A,u), 1 <p <=, by
Riesz. Then Yosida and Kakutanivgéneraliied the above results to
Banach spaces. They proved that if T is a bouﬂded linear opera-

tor on a Banach space'theﬁ the arithmetic means .{Tn(b)}, b

in B, converges strongly to by if (i) sgpl[Tn|[< © and

(ii) by 1is a weak cluster point of {Tn(b)}. .- |

Eberlein has defined a semigroup S of bounded linear

operators on a Banach space B to be ergodic if there is a net

{A_} of averages of 'S such that the (i) sgp[[AnH <=, and
(ii) the nets {An(s—l)} and '{(s—I)An} converge to 0 for
each s in S. From this definition, one can show that if by
is weak cluster point of {An(b)}, b in B, then {An(b)} “con-
verge§ to by. Then, with Eberlein's definition of ergodicity,
one can paraphraselthe héan ergodic theorems of von Neumann, Riesz,
Yosida and Kakutani as an assertion that the uniformly bounded

cyclic semigroups generated by a bounded linear operator on a

~ii-



Banach space is ergodic. One of the prime interest of this the-
sis is to bring in a result of M. M. Day which characterizes those
semigrogps which arerergodic when they are represented as a uni-
formly bounded linear operators from a Banach space into itself.
These turn out to be the class of all amenable semigroups, i.e.
those semigroups S which have a non-negative translation invari-
ant linear functional of norm one on the Banach space of all
bounded real-valued functions on S. Since the class of amenable
semigroups includes the class of all Abelian semigroups, the
theoremsrof von Neumann, Riesz, Yosida and Kakutani follow from
Day's result.

A great portion of this thesis is devoted to the
study of these amenable semigroups. Results by various authors

on the characterizations and combinatorial properties of these

amenable semigroups are given. -
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INTRODUCTION

Let (X,A,u) be a ag-finite measure space and ¢ be a
u-measure preserving bijection from X onto X. The mapping T

from the Hilbert space LZ(X,A,ﬂ) into itself defined by
(1) TE(x) = £(¢(x)),

for each f in Ly(X,A,u) and each x in X, is a unitary

operator. The mean ergodic theorem of J. von Neumann stated that,

for each f in Lo(X,A,u), the arithematic means Tnf = (n+1)-1

n
i=0

on the spectral theory of unitary operators on Hilbert spaces. It

T'f converges strongly in Lo(X,A,u). His proof was based

was then observed by F. Riesz that if T 1is defined on Lp(X,A,u),
as in (1), where 1 < p < «, then _{Tnf} converges strongly on
LP(X,A,u), for each f in Lp(X,A,u). (Note that, for the case
p=1, the assumption that u(X) < « is needed.) At the same
time, Yosida [30], Yosida and Kakutani [31] proved, independently
from F. Riesz, that if T is a bounded linear operator from a
Banach space B into itself such that sgp!ITi|l< « and, for b
in B, the arithematic means Tnb = (n+l)'1 2120 Tib has a sub-
sequence converges weakly to bg, for some by in B, then
'{Tnb} 'conVerges strongly to bg in B. Their result thus sub-
sumed Riesz's result. If we consider n + T" as a representation
of the additive semigroup of all non-negative integers as bounded

linear operators from B . into itself, then the mean ergodic theorem



may be considered as a result concerning the strong convergence
of the means of this representation. This lead to a more general
formulation for semigroup of operators by Alaoglu and Birkhoff
[1]. It was Eberlein [8] who observed that ergodicity of a semi-
group S of bounded linear operators ffom a Banach space B in-
to itself really depended on the existence of a net {A )} of av-
erages of S such that {An} is uniformly bounded and

lim An(s-I) =0 = lim (s—I)An, for each s in S. Notice that

the convergence of thé nets {An(s-I)} and {(s-I)An} in differ-

ent topdlogies gives rise to different strength of ergodicity.

Say S is weakly, strongly and uniformly ergodic if '{An(s-I)}

and '{(s—I)An} converge, for each s in S, to 0 in the weak,

strong and uniform operatof topology of the space of all bounded

linear operators from B into B, respectively. One of the pur-

poses of this thesis is to bring in a result of M. M. Day which
characterizes those semigroups which are ergodic (weakly, strongly,

“and uniformly) when represented (or anti-represented) as uniformly bounded
linear operators from a Banach space B into itself. These are
precisely the so called amenable semigroups,i.e. those semigroup

S in which there is a non-negative linear functional u of norm

one on the space of all bounded real-valued functions on S such

that u 1is invariant under left and right translations. In such

a case, the various strengths of ergodicity are equivalent. The

second purpose of this thesis is devoted to the studies of these .



amenable semigroups. Various characterizations, combinatorial
properties, and ekamples'of amenable semigroups are given.
} The organization of this thesis is as follows: Chap-

ter I §1, presents some basic concepts of functional analysis
which w¢.Wi11 use throughout this thesis. Then, in §2, we list
some prbperties of the two function spaces, m(S) and £;(S) of
a non-void set S, which we will encounter frequently in the
subsequent chapters.

The second_Chapter is devoted to a survey of some re-
sults on amenable semigroups. Definitions of means, invariant
means and their propefties are given in §1. In §2, we introduce
the Arens product on m(Sj* which renders m(S)* a Banach alge-~
bra; and use this to facilitate the study of invariant means. 1In
§3, we give various characterizations of amenable semigroups.
Combinatorial properties and examples of amenable semigroups are
given in §4.

In the final chapter, we bring in M. M. Day's result,
which shows that the class of all amenable semigroups is exactly those
that are ergodic when represented (or anti-represented) as uniformly

bounded linear operatorsfrom a Banach space into itself,



CHAPTER I = PRELIMINARIES

In this chapter we introduce some results on topological
vector spaces on which the proofs in subsequent chapters are based.
We assume that the basic concepts in general topology are familar
to the reader. The standard reference for these concepts is
[20]. Also, since the propositions given in this chapter are well-
known, we will not bring in all the proofs. Nevertheless, for
each proposition or theorem we state, at least one reference will
be given. The standard references for results in topological vec-

tor space are [7, 17, 18, 21, 28].

§1. Topological Vector Spaces.

First, we note that all topologies we consider through-

out this section are Hausdorff.

1.1, Definition. A topological vector space (E,7) 1is a vector
space E (real or complex) together with a topology Tt such that

the mappings (x+y) - x+y and (o,x) > ax are continuous.

It can be proved directly from the definition that, for
a topological vector space (E,t), the maps Yy > a+y for each
fixed a in E and y + ay for each fixed scalar a, o $ 0,
are homeomorphisms from E onto itself. Hence, the neighborhood
system of the origiﬁ determines the whole topology.

We say a subset A of a vector space is convex if

~Ax+(1-A)y 1is in A whenever x and y are in A and



0 <A <1. We are interested in those topological vector spaces
which have a base of neighbérhoods of the origin consisting of
convex sets. Such spaces are called locally'convex spaces, or
simply convex space.

A non-negative real-valued function p on a vector
sapce E is called a semi-norm if p(x+y) < p(x) + p(y) and

plax) = Ia]p(x), for all x and y in E and all scalar a.

1.2. Proposition. Let (E,t) be a.ZocaZZy convex space. Then

T 18 generated by a family of semi-norms.

Conversely, if {pi} iel <¢ a family of semi-norms on
a vector space E, the weakest topology that makes each Pis i
in 1, continuous is a locally eomvex topology for E. Moreover,
the topology generated by  {pi} iel <s Hausdorff if and only if

there is, for each x % 0, some p; such that p;(x) 0.
 See [28, Theorem 3 and Proposition 8, p. 15] for a proof.

In view of the previous proposition, every family of
semi-norms on a vector space determines a locally convex topology
on the space. Important examples of locally convex space are

’those'generated_by a single semi-norm p (we usually denote p(x)
by |lx]|) with the additional property that ||x|>0 if x # 0.
Such a semi-norm “ | is called a norm and the locally convex

space generated by Il | is called a normed vector space, or normed



space. If a normed space is complete with respect to the metric
generated by the norm, then it is called a Banach space.
A linear transformation T:E - F from a normed space

E into another normed space F is bounded if

IT]| = inf(]Tx]:x in E and [x| < 1}

exists and is finite. It is well-known that T  is bounded if

and only if it is gontinuous. (See {7, Lemma 4, p. 59].) Further-
more, the real-valued function |[[I|| defined as above on the vec-
tor space of all bounded linear transformations from E into F

is a norm.

1.3. Proposition. Let E and F be normed spaces and B(E,F)

be the normed space of aZbebunded linear transformations from E

into F. If F 1is complete, then B(E,F) <s also complete.
See [7, Lemma 8, p. 61] for a proof.

The importance of locally convex spaces is that they
have sufficiently many continuous linear functionals to seperate

points. This is a consequence of the Hahn-Banach Theorem.

1.4. Theorem.(Hahn-Banach) Let E be a real vector space and

P be a sublinear functional, Z.e. p 1is real-valued with
p(x+y) < p(x) + p(y) and p(ax) = ap(x)

for all - x and y in E and every o 2 0. For every real



linear functional § on a vector subspace H of E with f(ﬁ) < p(x),
for all x in H, there is a real linear functional £3 on E |

such that
folx) = £(x) and £(y) < p(y)

for each x in H and each y 1in E.
See [7, Theorem 10, p. 62] for a proof.

In this thesis, we are interested in the following forms:

of the Hahn-Banach Theoren.

1.5. Corollary. Let E be a real normed vector space and f be
any real continuous linear functional on a vector subspace H of
E. Then there is a real linear functional fu on E such that

fo(x) = £(x), for each x in H, and |lo]]= lIEl]-
See [7, Theorem 11, p. 62] for a proof.

1.6. Corollary. Let (E,t) be a real locally convex space and
let A and B be disjoint closed comvex sets in E. If A 1is
compact, then there is a continuous linear functional £ on E

" and constants ¢ and €, € > 0, such that
f(a) <c - e <c < f(b)

for every a in A and every b 1in B,

See [7, Theorem 10, p. 417] for a proof.



For each topological vector space (E,t) we denote by
E*, the dual space of E, the vector space of all continuous
linear functionals on E. For each f in E*, define a semi-

norm p. on E by
pe(x) = [£(x) |
for all x in E. Then the family ’{pf:f in E*} of semi-
norms determinesra locally convex topology on E, namely the
weakest topology that makes each Pes f in E*, continuous.
If (E,t) 1is a locally convex space, then by Corollary 1.6 and
Proposition 1.2, this topology is Hausdorff. We call this topo-
logy the weak topology, or simply w-topology, on E induced by
E* and denote it by o(E,E*). In this topology, a net '{xn} in
E converges to x in o(E,E*) if and only if lim f(xn) = f(x),
for each f in E*. In this case, we say '{xn} converges weakly
to x and write w- Lim X = X.
- n ‘n

In general, o(E,E*) is weaker than the original topo-
logy t on E. However, for a convex set A in E, the closure
of A in 1t is the same as the closure of A in o(E,E*). For

future references, we put this down formally in the following

proposition in a more general form.

1.7. Proposition. Let E be a vector space. Suppose that E s

given two locally convex topologies Tty and <t such that the

dual spaces ofb E with respect to these topologies are the same.



Then, a convex set in E <s closed in 7ty 1if and only if it is

closed in 15.
See [7, Corollaryl4, p. 418] for a proof.

Let '{Ei} be a family of vector spaces. Then the full
direct product I E, of '{Ei} forms a vector space under the
ie : :

operations ((xi),(yi)) > (x;+y;) and (a, (x)) > (ox,).

1.8. Proposition. Let '{(Ei,Ti)}iEI be a family of locally con-

vex spaces. Then the full direct product E = 1_ E. together

jel . 1 )

with the product topology Tt of the topologies T4 forms a loc-
ally convex space.

Moreover, the weak topology o(E,E*) on E <induced by

E* is exactly the product topology of the topologies a(Ei,E;).
See [21, (17.13), p. 160] for a proof.

Let (E,t) be a locally convex space. For each x in

E, we define a semi-norm Px, on E* by

PO = [£00]

for all f in E*. If £ + 0 in E*, then there is an x in
E such that Px(f) = |£(x)] > 0. Hence, the family {Px:x in E}
induces a Hausdorff locally convex topology on E¥*, called the

we;k*-toyology, or simply u*ftopology, on E*, and is denoted by

o(E*,E). 1In this»topology, a net V{fn}' in E* converges to t
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1im

n fn(x) = f(x), for each x in

in o(E*,E) if and only if
E. In such case, we write m*-lim fn'= f.

Let E be a normed space. By Proposition 1.3, we know
that E* 1is also a normed space. Let E** denote the continuous
dual of E* with respect to the norm-topology on E*. Sometimes,
we call E** the second dual of E. Consequently, together with
the norm-topology on E*, the space E* has the w-topology
o(E*,E**) induced by E** and the w*-topology o(E*,E) induced
by E. In general, o(E*,E) is weaker than o(E*,E**) while
o(E*,E**) is weaker than the norm-topology on E*.

Let (E,%) and (F,u) Dbe locally convex spaces and
T:E + F be continuous and linear. For each f in F*, define
T*f in E* by

T*£(x) = £(Tx)

for all x in E. Since T and f are continous and linear,
T*f 1is the composition of two continuous linear maps. Hence,
T*f is in_ E*. Thus, the linear transformation T*:f = T*f from

F* into E* is well-defined. We call T* the adjoint operator

of T.

1.9. Proposition. Every adjoint operator is w*-w*-continuous.

See [7, Lemma 3, p. 478] for a proof.

Let E be a normed space. Proposition 1.3 shows that
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E* is a Banéch.space. -It is known that the closed unit ball
{x* in E*:| x*|| < 1} in E* is not always compact in the nomrm
topology.

1.10. Theorem.(Alaoglu) Let B* be the continuow dual of a

Banach space B. Then the closed unit ball is compact in the w*-

topology of B*.
See [7, Theorem 2, p. 424] for a proof.

Let E be a normed space and E* and E** be the dual
and the second dual of E, respectively. For each x in E,
define a map Q from E into E** by

x(f) = £(x),

for x in E and f» in E*. Since Qx depends linearly and
continuously on f, Qx 1is in E**, By the.Hahn-Banach Theorem,
Q is one-to-one and preserves norm. Hence, Q is an embedding
of E into E**. This map Q is called the natural embedding
of E into E**. We summarize the above in the following proposi-

tion:

l;llf Proposition. The mapping Q:E ~ E** as defined above from

a normed space E  into its second dual E** <is an isometric
isomorphism from E into E**, That s, Q is linear, one-to-

one and x| = lx]l, for at?z x in E.
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See [7, Theorem 19, p. 66] for a proof.

1.12. Pr0position. Let Q be the natural embedding of a Banach

space B into B**. Then QB <s dense in B** with respect to

the w*-topology o(B**,B*) of B**,

For a proof, see [7, Corollary 6, p. 425].

8§2. Two Special Banach Spaces,

We give in this section some.properties of two special
Banach spaces which we will encounter throughout this thesis.

Let S be a non-void set. We denote by m(S) the real
Banach space of all bounded real-valued function on S with the

norm defined by
(2.0.1) [| £]l = sup{|£f(x)]:s in s},

for each f in m(S). Let £1(S) denote the real Banach space of
all real-valued functions ¢ on S, such that Xsésl¢(s)| exists

and is finite, with the norm defined by
(2.0.2) bl = Y gle) ],

- for each ¢ in £;(S). Here, the sum zsle¢(s)l means

lim : |
g s€0|¢(s)l, where the limit is taken with respect to the
directed set E of all finite subsets of S ordered by set in-

clusion. It is well-known that if ¢ is in £;(S), then the

support of ¢, {s in S:¢(s) + 0}, is countable. (See [15,
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Theorem 1, p. 19].)

In the following, we give the notations of some special

elements in m(S) and £;(S) which will be used throughout this

thesis.

2.1. Notations. Let S be a non-void set and let. m(S) and

£,(S) be the Banach spaces defined as above.

(2.1.1) For each subset A in S, define 1A in m(S) by
lA(s) =1 if s in A and lA(s) = 0 otherwise. In particular,

we write 1 = IS rand 1s = l{s}’ for each s in S.

(2.1.2) SuppoSe f and g are in m(S). We write f > g if
f(s) > g(s), for each s in S. In particular, when f > O,

where O is the zero function in m(S), we call f is non-nega-

tive.

2.2. Theorem. The mapping J:f +~Jf from m(S) into £,(S)*
defined by

JE@) = L GE(S)e(s),
fbr' f in m(S) and ¢ in £1(S) is an isometric isomorphism

-fyom m(S) onto £,(S)*. That is:

(2.2.1) J is onto, one-to-one and linear;

(2.2.2) bell = €L

for each. £ in m(S).
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See [18, Theorem 20.20, p. 353] for a proof.

In view of Theorem 2.2 and Proposition 1.1, the next

corollary is evident.

2.3 Corollary. The mapping Q:£,(S) » m(S)* defined by, for each

¢ in L£,(S) and each £ in m(S),

QI (B) = F  E(s)e(s),
is a natural embedding of £;(S) into m(S)*.

Another topology on the function space m(S) which will
be useful in the later chapters is the pointwise topology. The
pointwise topology on m(S) is the relative toplogy of the product
topoiogy on the product space sgS Rs, ‘where for each s, Rs is
the reals with the usual topology. In this topology, a net {fn}'
in m(S) converges to f in m(S) if and only if.limfn(s) = f(s),
for each s in S; and we say '{fn} converges- pointwise to f.
Moreover, this topology is Hausdorff and is weaker than the w*-
topology on m(S), since the evaluation map is a linear functional
on m(S). However, they agree on any norm-bounded set in m(S).
This follows easily from an application of Theorem 1.10 and [20,

Theorem 2, p. 220]. We put this down formélly in the following

proposition.

2.4. Proposition., Let A be a norm-bounded and w*-closed set in
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m(S). Then the w*-topology and the pointwise topology of m(S)

agree on A.



CHAPTER I1 AMENABLE SEMIGROUPS

The study of amenable semigroups began when Hausdorff
[16] showed that no means exist on the space of all bounded real-
valued functions on the surface of the 3-sphere which is invari-
ant under rotation. Then, Banach [4] showed that there is a mean
on the space of all bounded real-valued functions on the positive
integer which is invariant under translations. J. von Neumann
ekplained that the reason of the failure of the first case is the
excessive non-commutativity of the rotation group of the 3-sphere,
since there are plentiful of non-Abelian subgroups of the rotation
group. Then M. M. Day [5] brought the subject to attention in
his study of the ergodicity of bounded operator semigroups.

The main purpose of this chapter is to display the pro-
perties of amenable semigroups. In the first section of this
chapter, we give the definitions and basic properties of means and
invariant means. In 82, we show how an associative multiplication
can be defined on the Banach space m(S)* so that m(S)* forms
a Banach algebra. Then, we use this to facilitate our studies of
the set of invariant means.  The third section is devoted to the
various characterizations of amenable semigroups. Finally, in

84, we bring in some combinatorial properties of amenable semigroups.

1. Means and Invariant Means.

This section is devoted to the properties of means on
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m(S); and especially those that are invariant under translations.
First, we give a definition of a mean on m(S).

Let S be a fi%ed non-void set.

1.1. Definition. An element u in m(S)* is called a mean on

m(S) if

(1.1.1) inf{£(s):s in S} < u(f) < sup{f(s):s in S},

for each £ in m(S).

The following proposition gives some equivalent condi-

tions for a linear functional on m(S) to be a mean.

1.2. Proposition. If u s a mean on m(S), then it satisfies

the following properties:

(1.2.1) u(f) 2 0 if £ 2 0;
(1.2.2) u(l) = 1;
(1.2.3) I ull = 1.

Conversely, if w in m(S)* satisfies any two of the

eonditions (1.2.1), (1.2.2) and (1.2.3), then u -isba mean.
Proof. Suppose u 1is a mean on m(S). Then (1.2.1) and (1.2.2)
follows from the following inequalities:

u(f) > inf{f(s):s in S} > 0,

if £ > 0; and
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1= inf{1(s):s in S} < ﬁ(l] < sup{1(s):s in S} = 1.
Since (1.2.2) holds, it follows that

a.2.4 L= Jwa@| < [lull izl = 1wl
Fo: any f in m(S), it follows from the definition of a mean

that
-sup{-f(s):s in S} < u(f) < sup{f(s):s in S}.

Thus, |u(f)| < sup{|f(s)]:s in S} = [|f]| . Consequently,

| ul] < 1. Cémbining this with (1.2.4), we have || u]|= 1.
Conversely, suppose u in m(S)* satisfies (1.2.1) and

(1.2.2). From (1.2.1), we have u(f) < u(g) whenever f < g.

For each f in m(S), let o = inf{f(s):s in S} and

B = sup{f(s):s in S}. Since al<f<Bl, it follows from (1.2.2)

that

o = ap(l) < u(f) < Bu(l) = B.

Hence, u 1is a mean on m(S).
Suppose now that u satisfies (1.2.1) and (1.2.3). It
is sufficient to show that (1.2.2) holds. Since l'é 0, by

(1.2.1) and (1.2.3), we have
0 <u() = [w@| < |Jwull 1l = 1.
On the other hand, by (1.2.1), it follows that

u(f) < supl{f(s):s in S},
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for each f 'in m(S). In particular,
u(-1) < sup{-1(s):s in S} = <1.

Hence, u(1) = -p(-1) > -1 and (1.2.2) holds.

Finally, suppose u satisfies (1.2.2) and (1.2.3). To
prove that u is a mean it is sufficient to show that u satis-
fies (1.2.1). Let f > 0 in m(S) be arbitrary and let
B = sup{f(s):s in S} = |ff]] and o = inf{f(s):s in S}. Then,

by (1.2.3)

u(Bg1l-£f)

kel Il B1-£])

|| B1-£]
sup{B-f(s):s in S}

B-u(f)

fl 1A

B + sup{-f(s):s in S}

B-o

Thus, u(f) 2 o > 0 whenever f > 0.

1.3. Definition, Let ¢ be in £;(S). Then, ¢ is called a
countable mean on § if
(1.3.1) ¢(s) > 0, for all s in S;
(1.3.2) Lest(s) = 1.
A countable mean ¢ on S 1is called a finite mean on

S if its support, {s in S:4(s) # 0}, is finite.

1.4, Proposition. If ¢ in &£;(S) <is a countable, or finite
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mean on S, then Qb, where Q <is the natural embedding of

£1(S) into m(S)*, is a mean on m(S).

Proof. If ¢ 1is a countable, or finite, mean on S, then since
¢(s) > 0, for all' s in S, and ZSES¢(S) =1, we have | ¢]} = 1.

Since Q is isometric, |[[Q¢ll = |l¢]l=1. If £ > 0, then

W) = I gt (s)E(s) 2 0.

By Proposition 1.2, Q¢ is a mean on m(S).

1.5. Remark. If ¢ 'is a countable mean, or a finite mean, on S,
then we call Q¢ 'a countable mean, or finite mean, on m(S). Let
¢ denote the set of all finite means on S. Then Q& 1is the set
of all finite means oﬁ m(S). Since Q is an isometric isomor-
phism between £;(S) and m(S)*, we use ¢, instead of Q¢,

for the set of all finite means on m(S) when no confusion
arises. Since, for each s in S, 1s is a finite mean on S,

¢ 1is non-void. Moreover, if ¢ and o are finite means and

0 <a <1, then

Ysegled (s)+(1-a)a(s)]
Lot (s)+] o (1-a)a(s)

]

a Jo gb(s)+(1-0) I co(s)

a+(l-a)

=1
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and a¢(s)+(l-a)o(s) > 0, for all s in S. Also, the support
of d¢+(1—a)c is finite. Hence, d¢+(1—d)o is a finite mean and

¢ 1is convex.

1.6. Theorem. Let M be the set of all means on mn(S). Then M

is non-void, convex and w*-compact.

gzggg: By Remark 1.5, the set ¢ of all finite means on S is
not empty. Also, by Proposition 1.4, ¢ C M. Hence, M is non-
void.

| To prQVe that M is convex, let u and A be means

on m(S). If 0 <a <1, then

au(1l) + (1-a)a(1)

a+(l-a)

[au+(1-a)A] (1)

L

=1

and, if f > 0,

1}

[au+(1-a)A] (£) = au(£)+(1-a)r(f) 2 O.

This shows that au+(l-a)A is a mean and hence M is convex.
Since the unit ball of m(S)* is w*-compact (Theorem
1.1,10), we show that M is w*-compact by proving that M is

m*—closéd in the unit ball of m(S)*. Let A{un} be a net in M

: 1im
*_ =
such that o u u. Then

n() = 1
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whenever f > 0. Hence

o

Also, for each n, un(f) >

u(f) = 1111”‘ W () >0 if £

v

0. Evidently, u is a mean and it

follows that M is w*-~closed in the unit ball.

1.7. Proposition. The set ¢ of all finite means on mn(S) <is

w*-dense in M.

Proof. Suppose on the contrary that there is a u in M such
that u is not in the w*-closure of &. Since the w*-closure of
¢ is also convex, by Corollary 1.1.6, there is a @*-continuous
linear functional on m(S)* which seperates ¢ and u. However,
the w¥-continuous linear functionals on m(S)* are exactly m(S).
Consequently, there is a f in m(S) and constants ¢ and e,

€ > 0, such that
sup{¢(f):¢ in ¢} < c-e<c < u(f).

In particular,

sup{f(s):s in S} 'sup{le(f):s in S}

sup{¢ (£) : ¢ in ¢}

1A

IA

c - e <c <u(f).

This contradicts that u 1is a mean. Thus, ¢ is w*-dense in M.
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" From now on, let S always be a semigroup, i.e. a non-
void set S together with an associative binary operation
(s,t) > st on S. For each s in S, the semi-group structure
induces two linear operators Zs and Y, on m(S) into itself

defined by, respectively,
Zsf(t) = f(st) and st(t) = f(ts),

for each f in m(S) and t in S. Since lﬂsf(t)| < || £]] and
Iy @) | < [ £l] , for all t in s, £ and y £ are in m(S).
Also, it is easy to check that the mappings lszf -+ st and

ys:f -+ st; fop éach s in S, are linéar and bounded by 1.
Furthermore, the adjoint operator Z; and Y; of ZS and Yoo
for each- s in S, is also bounded by 1. Also, it follows
directly from the definition that zst = ztzs, Yop = YgVeo

L;t = lzﬂz and y*

= koK .
st = Yivs for every s and every t in S.

1.8. Definition. Let S be a semigroup. A mean u on m(S)

is called left [right] invariant if u(f) = u@ B ) = ulv NI,

for every f in m(S) and every s in S. An equivalent defini-
tion is that u is a left [right] invariant mean if ﬂ; = u[ygu =],
for each s in S. If u 1is both left and right invariant, then

it is called a two-sided invariant mean, or simply an invariant

mean.

1.9. Definition. A semi-group S is called a left [right] amenable
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semigroup if the space m(S) admits a left [right] invariant mean.

If m(S) admits an invariant mean, then S is called amenable.

Examples of amenable semigroups are Abelian semigroups,
solvable groups and finite groups. The proofs of these facts will

be given in §4 of this chapter.

Let u be a left [right] invariant mean for the left
[right] amenable semigroup S. By Proposition 1.8, there is a
net {¢ } of finite mean which converges to p in the w*-topology
of 'm(S). Since every adjoint operator is w¥*-w*-continuous (see

Proposition 1.1.9), for each s in S, we have

lim
R

lim
fw*-""vEo, = vin = ul.

Consequently, we have

m*-}im(£;¢n°¢J

u

0 [w*_lim(

n

Yib,-0,) = 01,

snn

for every s in S. An immediate question is whether the exist-
ence of such a net which satisfies the above condition is suffic-

ient for the amenability of S. First, we define the followings.

1.10. Definition- Let {un} be a net of means on m(S). Then
{un} is called w*-convergent [norm-convergent] to left invariance

if
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11m lim

| ezu -u |l = 0]

( Sun—un) =0 [
for each s iﬁ S.

1.11. Proposition- Suppose that '{un} 18 a net of means on m(S)

such thatvm*-lim poo= ﬁ [n

n St u_ = yl].. Then u <s a left or

n ‘n
right invariant mean if and only if '{un} 18 w*-comvergent [norm-

éonvergeﬂt] to left or right invariance respectively.

Proof. We prove only the case of left invariance. The necessity
follows from the previous discussion. The sufficiency follows

from the identities

=
]
€
y

o lim . lim ., .
[u = n- w = 0= LR o= L],
for all s in S.

1.12. Corollary. If '{un} s a net of means which is w*-conver-
gent to left [right] invariance then every w*-cluster point of

‘{uh} i8 a left [right] invariant mean.

Proof. If u is a w*-cluster point of {un}, then there is a
subnet '{ﬁk} of {un} such that w*-lim Wi = M. By Proposition

1.11, u is a left [right] invariant mean.

1.13. Corollary. 4 semigroup S is left [right] amenable if and

only if m(S) admits a net '{¢n} of finite means which is w*-
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convergent to left [right] invariance.

Proof. The Corollary follows from Theorem 1.6, Pfopositions 1.7,

1.11, and Corollary 1.12.

521 The Arens Product.

In this section, we introduce the Arens product defined
on m(S)* which makes the Banach space m(S)* into a Banach
algebra. Moreover, under this product, the set of all means on
m(S) forms a semigroup. First, we give the definition of a

Banach algebra.

2.1. Definition. A Banach algebra B 1s a Banach space together
with a binary operation (b;,by) - bj-bp which satisfies the

following properties:

(2.1.1) (bl-bz)'b3 bl'(bz‘b3);

(2.1.2) bl'(b2+b3) bl’b2+b1'b3

u

and  (bp+bz) by = by+by+by+by;

(2.1.3) a(by by)

(aby) *by = by - (abs);

ool I w21l

for all bi’ i=1, 2,3, in B and all scalars a.

(2.1.4) | by b, ]

IA

Let S be a semigroup and let ¢ and o be two ele-

ments in £;(S). Define a function ¢o on S by

¢a(s) =} ¢(x)o(y),

iy=s
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for all s in S. Since
Yoes |40 | = I gl ogt Yo

< Loesliyes oG 1o |

resle@ | L glom |

ol 1l ol

¢c 1is well defined and is in LI(S). Hence (¢,0) -~ ¢0 1is a

binary operation on £,(S).

2.2. Proposition. The Banach space £1(S) wunder the binary opera-

titon (¢,0) +'¢o defined above forms a Banach algebra. Further-
more, the mapping s - 15 18 a semigroup isomorphism from S in-

to the multiplicative semigroup of the Banach algebra £,(S). That

18, 1., = lslt; for all s and t 1in S.
Proof. Since || ¢0l|= Zsesl¢c(s)| < ll¢|l||o”, for any ¢ and

a in 4£;(S), condition (2.1.4) holds. The properties (2.1.2)
and (2.1.3) of Definition 2.1 follows directly from the distribu-
tive law and commutative law of the reals, respectively.

For the assoéiativity, let ¢,0 and ¢ be in £;(S).

For each s in S,

$0(s1)Z(s2)

[(¢0)2](s)

z5152=s

25152=s[2t1t3=51¢(t1)0(t3)]C(Szl
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= Z(tit3)52=s[¢(tl)dfts)]C(SZ)

Leytpmsd G L o oy, 0(ta)e(s2)]

[}

j2t1t2=s¢(t1)oc(tz)

[$(o2)]1(s) .

Hence, £;(S) is a Banach algebra.
Finally, let s and t be in- S. Then
11,0 = I

=;1i213(X1)1t(X2)-

Hence, lslt(x) =1 if X = st and. lslt(X) = 0 otherwise.

Thus, lslt = 1 This completes the proof.

st’

In [2], Arens showed B&w an associative multiplication
can be defined on the second conjugate B** -of a Banach algebra
B. This multiplication makes B** into a Banach algebra and ex-
tends the multiplication in B. In this thesis, we are interested
in the special case when B 1is the Banach algebra £;(S).

Now, we follow Arens' procedure in defining a multiplica-
tion in £;(S)**. It consists of three steps:
(A) For each f in £,(8)* and ¢ in £,(S), define a func-

tion £ « ¢ in £;(S)* by

fx$(0) = £(¢0),
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for all a in Ki(S).
(B) For each p in £;(S)** and £ in £,(S)*, define a func-
tion u * £ in £;(S)* by
uxf(¢) = u(f*¢),
for each ¢ in £;(S).
(C) For each pair A and u in £,(S)**, define A = Q in
Ly (S)** by
A*u(£) = A(urf),

for all f in £,(S)*.

2.3, Remark. We remark that the above operations are well-defined.
First, it follows easily from the fact that £;(S) is a Banach
algebra, the function f * ¢ defined in (A) is in £;(S)*. Also,

the following properties can be checked easily:

(2.3.1) | £xoll < 1l £1] 1 ol ;
(2.3.2) fx(p+0) = f*¢p+fx0;
(2.3.3) (F+g)vd = Fxprgro;
(2.3.4) Fe(0d) = a(£46) = (af)w

for all f and g in £;(S)*, all ¢ and o in £;(S) and
all scalars «a.

Using these properties, we can prove that the function
defined'in (B) is indeed in 4£,(S)*. Furthermore, the following

properties follows immediately from the properties (2.3.1) to
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(2.3.4):

(2.3.5) lusgll < Wull | €1
(2.3.6) x (F+g) = prfusg;
(2.3.7) ue(@f) = a(urE) = (ou)*£,

for every ﬁ in £;(S)** and all f and g in £,(S)* and
all scalars a.

Finally, suppose that A*u _is the function defined in

(C). Then by (2.3.6) and (2.3.7), A+u is linear. By (2.3.5),

we have
()| = 1A |
< Il gl
< Il Dull Il
Hence, A*u is in £;(S)** and
(2.3.8) Fasull < Dl

for all X and wu in £;(S)**.

Therefore, the operation = is well-defined. Hereafter,

we called = the Arens product.

2.4. Lemma. Let A and u be in L,(S)** and £ in £,(5)*.

Then

(2.4.1) (Axp)«f = A (u*£) .

Proof. For each f in £;(S)* and all ¢ and o in £,(S),

we have
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[(£+4)x0] (%) = [£x6] (ot)
£l (o) ]
f[(¢0§c]

[£x¢0] (2),

f

for every ¢ in £,(S). Thus (f*¢)*c = fx(¢o). It follows that,

for each. 4 in £,(8)**, f in £;(S)* and ¢ in £,(S),

[*£)*¢] (0) = nsf($o)
u (£440)
ul (£%¢) *o]

Tu* (£44)1 (),

for every o in £;(S). Hence (p*f)*¢ = ux(f*¢). Then, this

equality implies that

Axp (£%¢)

Afur (£x¢) ]

AL (ue£) 4]

AL (u*£)*¢]
[A*(u*£)]1(9)

[*)*£] (4)

for all A and u in £;(8)** and each f in 4£;(S)* and for

every ¢ in £;(S). Hence, (2.4.1) holds.

2.5. Theorem, The Banach space L£,(S)** together with the Arens
product forms a Banach algebra. Moreover, the natural embedding

Q:£1(3)=+-£1(s)**' 18 an isometric isomorphism from the Banach
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algebra £,(S) 1into X£;(8)**. That is,

(2.5.1) Q is one~to-one and linear;
(2.5.2) Hasll = Il oll 5
(2.5.3) Q(¢0) = Q¢*Qo,

for all ¢ and o in £,(S).

Proof. Let w,A» and u ©be elements in £;(S)**. By (2.4.1) of

Lemma 2.4, we have

[w*A] (u*£)
w[Ax (u*£)]
w[ (A*u) *£]
[wx(A*u) ] (£),

[ (w*A)*u} (£)

i

for each f in 51(8)*. Hence, the Arens product is associative.
For the distributivity of the Arens product, we first

claim that, for all A and p in £;(S)** and each f in

2y (8)*,

A(x+ﬁ)*f = Axf+uxf.

If ¢ is in £,(S), then

[O+u)*£](6) = [A+u] (£%4)
A(E*¢)+u (£%4)

[A*f+u*f] (9) .

Hence, the assertion is true. Now, for all w,A and yu in

£;(S)**, from the above claim, we have
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Tux a1 (E) = o[(ap)*£]
= q[i*f+;*f]
= 6 (A*E) +u (u*£)
= [w*a+wrn] (£)
and
[wA)«ul () = [w*A] (u+£)

w () +A (u£)

[wsu+a*n] (£) ,

for all f in £;(S)*. Thus the distributivity of the Arens pro-
duct is proved.

For the property (2.1.3) of Definition 2.1, we let A
and y be in £;(S)** and o bea real number. From (2.4.7),

it follows that

[a A+ 1 (£) = [a*u] (af)
Alu*(af)]
Ala(u*£)]

[Qak)*u](f)

nooon

and

ALu*(af)]
AL Cap) *£]

Ia* ()1 (£,

[e(Axu) 1 (£)

for every f in £;(S)*. Thus,
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“C’**ﬁ) = (@A)*u = ?\*(a#).

Combining with (2.4.8) of Lemma 2.4, we have that
£1(S)** is a Banach algebra.

Finally, since Q is an isometric isomorphism from the
Banach space £;(S) into £1(S)**, it only needs to prove condi{

tion (2.5.3). For all ¢ and in £,(S) and f in £5(S)*,

Qa

[£x$] (o)
Qo (£%¢)

= Qo*£(4)
= Q4 (Qo*£)
= Q¥*Qu(£).

Q(¢a) (£) = £(¢0)

This completes the prodf.

2.6. Remark. In view of the last theorem and Theorem I.2.2, we

have that m(S)* 1is a Banach algebra with the Arens product as
multiplication. Furthermore, if f is in m(S) and s in S,
then

f*lS(t) = f(st) = Lsf(t); and

le*f(t) = le(ﬂtf) = f(ts) = ysf(t),

for all t in S. Hence, we have

(2.6.1) f*ls = £Sf and le*f = st

It follows that, for each u in m(S)* and £ in m(S),



35

(2.6.2) BEu(£) = w+E(s) and yEu(f) = weQl_(£),

for each s in 8.

2.7. Definition. Let ¢ be in £;(S). We define two linear

operators £, and Yy from m(S) into itself by,

¢
(2.7.1) £,(£)(s) = Q (v H); and

(2.7.2) Y, () (s) = QoL ),

for each s in S and each f in m(S).

2.8. Remark. We remark that the above definitions are well-de-
fined. Observe that |£¢(f)(5)l.=|Q¢(st)| < I £ll Il ¢|] and

v, )] = || < [[£]] [[o]l . Hence, vy, £ and £ f are

in m(S). The linearity of £, and vy, follows directly from

¢ ¢

the linearity of Q¢, ts and Y- Hence, £, and Yy, are lin-

¢ ¢

ear operators. Furthermore,
(2.8.1) e,

(2.8.2) v,
for each ¢ in £;(S).

ll o]l and

Iell,

1A

IA

2.9. Lemma. Let £ be in m(S) and ¢ in £,(S). Then we have

(2.9.1) té(f) = fx¢

Proof. If ¢ is in #£;(S) and £ is in m(S8), then by (2.6.1)

we have

B4£(s) = Q¥ (v )
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= Q¥ (QL _*£)
Q¢ls(f)
f*x¢ (s).

This completes the proof.

2.10. Theorem. Let ¢ in £,(8) and A in m(S)* be fired.
Then the mappings,

(2.10.1) w > Qb*u;  and

(2.10.2) B> A,

are w*-w*-continuous from m(S)* into itself.

Proof. To prove that w - Q¢*u is w*-w*-continuous, we first
claim that ﬁgu = Qp*u, for each u in m(S)*. Let f in m(S)
be arbitrary. Then the assertion follows from the following equali-

ties:

z¢*a(f) g[ed,(f)]
ul[fx¢]
n*f(4)
Qo (uxf)

Qb*u(£) .

Hence, by Proposition I.1.9, the adjoint operator u + Q¢*u = K;u

is w*-w*-continuous.

Finally, to prove that u - u*\ 1is w*-w*-continuous,

let ‘{ﬁﬁ} be a net in m(S)* such that m*—lim u, = u. Then,
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for each f in m(S),

lim Clim L

ST sA(E) = T ()
= ﬁ(k*f)
= ueA(£)

and this proves that Q - ﬁ*x is w*-w*-continuous.
2.11. Lemma. If A in m(S)* satisfies that L;A = X, for each
s in S, then
uxd = u(1)a,
for all w in m(S)*.
Proof. Suppose that X satisfies that g;x = A, for each s
in S. Observe that, for each £ in m(S), Axf(s) = ACKSf) = A(f).

Hence Axf = A(f)1. It follows that, for each ¢ in £,(S) and

£f in m(S),

WA (£) = u(A(£)1)

n(Aa(f).

This finishes the proof.
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2.12. Theorem. Let M be the set of all means on m(S) and let
LIM and RIM be the set of all left and right invariant means,
respectively. Then, with respect to the Arens product,

(2.12.1) M s a semigroup;

(2.12.2) If LIM Zs non-void, then LIM forms a two-sided
ideal of M, Z.e., LIM«MCLIM and M«LIMELIM. Moreover, for each

A tnLIMand u 1in M,

WA = A
(2.12.3) If RIM is non-void, then RIM forms a left ideal of
the semigroup M, that is
'M*RIMEBIM;
(2.12.4) If LIM and RIM are non-void; then LIM*RIM consists

of two-sided invariant means.

Proof. To prove that M forms a semigroup, it is sufficient to
show that M is closed under the Arens product. Let u and A

be in M. Since 1*1s =1, for all s in S, we have

*1(s) u(1*1) = w(1) = 1. This implies that Axu(l) = A(u*l) =

A1) = 1. Furthermore,

1= [asn@)] < [ asull < (1Al Ful = 1
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‘Hence, Axp(l) = [lk*ﬁ“.= 1, and, by Proposition 1.2, A*p is

a méan. Consequently, M 1is closed under the_Arens product.
Suppdse that LIM is non-void. Let A be a left invari-

ant mean ahd_ ﬂ in M. Then, by Lemma 2.11, we have Q#A = u(1)A

= A and hence M*LIMELIM. Furthermoré; to prove that Axu 1is

also in LIM, we first claim that (ﬂ*f)*lg = ﬁ*(f*ls), for each

f in m(S) and each s in S. Let t be in S. Then by (2.6.2)

of Remark 2.6, we have
[us (££101(t) = ulfxl ] = uxf(st) = [GxH)=1](2),

and this proves our assertion. Therefore, for each s in S and

each £ in m(S),

[su] (£+1)
Afu+ (f*ls)]
Al (u*f)-*lS]

LM urf]

£ D] (6)

1 . N

Afuxf]

CAxu(f)

and hence A#u is left invariant. Thus, we have LIM«MCLIM and

(2.12.2) is established.

Now, let u be in RIMand A in M. For each f in

m(S) and all s and t in S, we have

ey £(t) = ulL, (v D]
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]

MY @, 0)]
u[L, ]

u£(t)

[

and hence H*st = u*f, It follows from the following equalities:

el (v )
ALy £]
Aus£]
Axp(f)

v [A*u] (£)

that Asu is in RIM. Thus, M«RIMCRIM.
Finally, if RIM and LIM are non-void, then, by (2.12.2)
and (2.12.3) that

LIM«RIMcLIM M RIM.

Hence, LIM«RIM consist of two sided invariant means.

2.13. Corollary, If a semigroup is both left and right amenable,

then it is amenable.

Proof. This is an immediate consequence of (2.12.4) of Theorem

2.12.

83. Characterization of Amenable Semigroups.
Work has been done on characterizing amenable semigroups.
In this section, we first collect all the necessary and sufficient

conditions on a semigroup to be left amenable. Similar results
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for the case of right amenable semigroups holds with some minor
‘exceptions. Finally, we prove the “"Fdlner's condition' and "strong
-Félner's condition''for amenable semigroups,

Before we go into the main theme of this section, we

give some necessary definitions.

3.1. Definition. A representation [or anti-representation] T of
a semigroup S over a normed space X 1is a semigroup homomorphism
[or anti-homomorphism] s > Ts from S into the semigroup L(X,X),

of all bounded linear operators from X into X. That is,

TSt = TsTt [or TSt = Tth]’

for all s and t in S. If sup{lITS” s in S8} < », then T
is called bounded.

Furthermore, if X = m(S) and TS is Zs or Yo for
s in S, then they are called regular left or right representa-

tion respectively.

Let T be a representation (or anti-representation) of
S over a normed space X. For each element ¢ in £,(S) with

finite support, we define a linear operator T¢ on X by
Ty = Lsesgt()Tg-

In particular, for the regular left and right representation,

“and 2, coincide with those in Definition 2.7.

T ¢
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3.2. Lemma. Let T be a bounded representation [or anti-repre-
sentation] of S over a normed space X. Then, for each ¢ and

o in £1(8) with finite supports and for each scalar o,

(3.2.1) Tora = Ty * Tl

(3.2.2) Td¢ = aT¢;

(3.2.3) T, Il < mff el

where M = sup{ || Tsll:s in S};

(3.2.4) Ty = TgTy [or T, = T.T].

Proof. The conditions (3.2.1) and (3.2.2) follows directly from

the definition.

Since M = sup{I]TS]I:s in S}, we have
11,0 = I, g0,

. leesylll Tl

1A

Ilellm,

1A

and hence (3.2.3) holds.

Finally, for (3.2.4), we prove only the case of anti-
representation. Since the support of ¢o is contained in fhe
product of the supports of ¢ and of o, ¢o has finite support

and T¢0 is defined. Hence

T

40 = Lxesto(ITy

Z;cészst=x¢(s)°(t)'rst
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Teresh (SDO(OIT, T

1

'CzteSQCt)Tt}czseS¢(S)TS)

T()'Tq)

and this establishes (3.2.4).

Let (E,t) be a locally convex space. For each subset
A of E, we denote by Cy(A) the convei hull of A; by
-CL(A) the t1-closure of A. We will write 1-CLCy(A) for
1-CL(Co(A)). If E is a normed space, we use CL(A) for the

uniform closure of A.

3.3. Notation. Let T be a representation [or anti-representa-
tion] of S over a normed space X.

(3.3.1) For each x in X, by the orbit of x in X,
we mean the set

0(x) =A{Ts(x):s in S}.
In particular, for the regular left and right representation, we
write, for each f in- m(S), write LO(f) for {st:s is in S}
~and RO(f) for {st:s e S}, respectively.
(3.3.2) Let _KX denote the linear span of the set
{i-TS(X):x is in X and s is in S}. For the regular left

representation, we write K for Km(S)'
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3.4. Definition. A semigroup S is called right stationary if,
for each f in m(S), there is at least one constant function in

w* ~CLCoRO(F) .

3.5. Lemma. Let S be a right stationary semigroup. Then, fbf
each a in S and £ in m(S), there is amean u on m(S)
such that, for each s in S, |
(3.5.1) p[ls(f-ﬁaf)] = 0;

(3.5.2) g*(f-taf) = 0.

Proof. Let f in m(S) and a in S be arbitrary. Since §

is fight stationary, there is a net '{¢h} of finite means such

that w*_lzm y¢ f = ¢l1, for some constant c¢. For each s in
n

S,

lim — 1lim
n Y¢n(fﬂﬂaf)(5) = [Y¢nf(s)-y¢nf(as)]

c-c
= 0.

By Proposition 1.7 and Theorem 1.6, there is subnet {¢k} of
'{¢n} and a mean u such that w*-lié Q¢k = u. Then, for each
s in S,

‘ ey lim
W (£-£,0] = 1™ Qo [£_(£-£,6)]
lim
ot Y, (£-£ £)(s)
k ¢k a

= 0
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and this proves (3.5.1).

To establish (3.5.2), we observe that, for each s in

we(£-L,6) (5) = u[(£L,D)*1 ]

1]

u[e, (£-£,9)]
= 0'
This completes the proof.
By an affine map F on a vector space E into E it-
self, we mean a function F on E that satisfies

F[dk+(1-a)y]

oF (x)+(1-a)F M,

whenever x and y are in E and 0 < a < 1.

3.6. Theorem, Let S be a semigroup. Then the following condi-
tions dre eqyivalent:

(3.6.1) S e left amenable;

(3.6.2) there is a net '{¢n} of finite means on m(S)
that is w*-convergent to left invariance;

(3.6.3) there i1s a net {¢n} of finite means on m(S)
that is norm-convergent to left invariance;

(3.6;4) for every anti-representation '{Ts:s in S} of S

over a normed space X with ‘IITslls 1 for each s ¢ S,

dist(0,C0(x)) = dist(0,x+K,),
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for every x in X;

(3.6.5) dist(0,14K) = 1;

(3.6.6) inf{h(s):s is in S} < 0,
for every h in K;

(3.6.7) sup{h(s):s is in S} > 0

for every h in K;

(3.6,8) there is a net '{¢n} of finite means on S such
that, for all £ in m(S), '{Y¢ f} converges pointwise to a con-
stant function; "

(3.6.9) S is right stationery;

(3.6.10) every,répresentdtion of S as continuous affine

maps from a compact convex set in a locally convex space into it~

self has a common fixed point.

Proof. We prove the theorem by proving (3.6.1) -+ (3.6.2) > (3.6.3)}
+ (3.6.4) > (3.6.5) » (3.6.1);(3.6.1) > (3.6.6) > (3.6.7) - (3.6.5);
(3.6.1) » (3.6.8) + (3.6.9) -+ (3.6.1); and (3.6.8) > (3.6.10) »
(3.6.1).

That (3.6.1) implies (3.6.2) foilows immediately from
Propositions 1.7 and 1.11.

To show (3.6.2) implies (3.6.3), let ES =£1(8), for
each s in S. Then, by Proposition I.1.8, E = Js Es with the

product topology Tt of the norm-topologies on ES is a locally

convex space and the w-topology o(E,E¥) of E is ekactly the
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product topology of the w-topology c(ES,E§) of Es. Define a
linear transformation T:£;(S) - E by

T() = (b-1 8} o>
for each ¢“ in £;(S). The linearity of T follows from the
fact that £;(S) is a Banach algebra. Since the set ¢ of all
finite means is convek, T[®] is convex. By Proposition I.1.7,
we have t-CE(T[¢]) = w-CL(T[¢]). The condition (3.6.2) implies
that 0 is in w-CL(T[¢]) and hence in t-CE&(T[¢]). Thus, there
is a net '{¢n} in ¢ such that '{T(¢n)} converges to 0 in .
It.follows from the continuity of the projections that 'f¢n-ls¢n}
converges to O in the norm—topoiogy of £;(S), for each s in
S. This establishes (3.6.3). This result is originally due to
M. M. Day [5]. But his proof is complicated and the foregoing
proof is due to Namioka [26].

Now, to prove (3.6.3) implies (3.6.4), recall that, for
all subset A and B in a normed space X, dist(A,B) =
inf{lla—b":g in A and b in B}. Let x in X be arbitrary.
Fof each y = XS€S¢(S)TS(X) in Cp0(x), it follows from the

following sets of equalities

y=x-x+y

x =~ §_ ()% + I__ob(s)T (x)

x + [ o $05) (T (x)-x)
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that CQO(;()‘ C X + Ky and hence
(2) dist(0,Cq0(x) > dist (0,x+K) .

To show the reverse inequality, let {¢n} be a net of finite
means such that '1® l¢4.-1.¢ || = 0, for each s in S. For
. n ‘n “s'n
m

every € > 0, let ~yizi=1xi'Ts.(xi)’ xl in X and s; in
1

S, 1 <i<m, bein Kx such that
| x+yll < dist(0,x+Kk) + e/2,
Let n be such that, for all i=1, 2, ..., m,
||¢n-1si¢n1|< e/2mM,

where M = max{|| xill:l < i <m}). By Lemma 3.2, we have

llT¢n(y)ﬂ = | T¢n[2121xi'Tsi(xi)]|'

= g2, xp-t, T, 1
n n Si
< LhlT, o Gl
<L ¢n--ls}nll I x, I
s Lo le -1 [IM
< ef2,
Hence,

I, all= I, oo, |
<l e+ T, Wl
< [l ll Il xeyll+ er2
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< dist(O,x+KX) + €.

Thus, we have shown that, for'every- e > 0, there is a ko = T¢ (X)

. . . n
in CgO0(x) such that llxoﬂ < dist(O,x+Kx) + €. Consequently,

we have

(b) dist(0,Cq0(x)) = inf{| y|| :y is in Cq0()}

A

dist(o,i+Kx)

and, combining inequalities (a) and (b), (3.6.4) follows. This
result is due to Glicksberg [12] and the proof above is due to
Granirer [13].

To prove (3.6.4) implies (3.6.5), since '{ﬂszs is in S}
is an anti-representation of S and l]Zslls 1 for each s, we
have 1 = dist(0,CoQ(1)) = dist(0,1+K).

Now, we prove (3.6.5) implies (3.6.1). The condition
(3.6.5) implies that 1 is not in K. By an application of the
Hahn—Banagh Theorem (See [7, Lemma 12, p. 64]), there is a u in
m(S)* such that u() =1 and u(h) = 0 for all h in K,
with | u]] = 1/dist(0,1+K) = 1. By Proposition 1.2, u is a mean.
Since f —-Zsf is in K, for each f in m(S) and s in S,
u(f-ﬂsf) = 0 and hence p is a left invariant mean.

To prove that (3.6.1) implies (3.6.6), let u be a left
invariant mean. Then ﬁ(h) = 0, for all h in K. By the de-

finition of means on m(S), we have

inf{h(s):s in S} < u(h) = 0,
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for each h in K.
To see that (3.6.6) implies (3.6.7), we observe that
sup{f(s):s in S} = - inf{—f(s):sr in S}, for all f in m(S).

Then, for each h in K, -+h is in K and hence
sup{th):s in S} = - inf{-h(s):s in S}'z 0.

This result is due to Dixmier [6].
Now, we show that (3.6.7) implies (3.6.5). Since
1 =1+0 is in 14K, dist(0,1+K) is at least one. By (3.6.7),

we have, for each h in K,

Pt
A

< 1 +{sup h(s):s in S}

1A

sup{1+h(s):s in 8}

1A

‘sup{|1+h(s)|:s in S}
|| 1+h]]

and hence 1 < dist(0,1+K). " This establishes (3.6.5).

To show that (3.6.1) implies (3.6.8), let u be a left
invariant mean. By Proposition 1.7, there is a net {¢n} of
finite means such that w*—lim Q¢n = p. Hence, for each f in
m(S) and t in S,

lim "~ lim B _
Hencé, this establishes (3.6.8).

That (3.6.8) implies (3.6.9) follows from Proposition

1.2.4 that '{Y¢ f} converges pointwise to constant if and only if
n
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it converges to a constant function in the w*~topology of m(S).
Then, (3.6.8) becomes formally stronger than (3.6.9).
Now, we prove (3.6.9) implies (3.6.1). For each f in

m(S) and each a in S, let
K(f,a) = {¢ in M:¢[£S(f~£af)] - 0, for all s in S}.

By Lemma 3.5, K(f,a) is non-void, for each f in m(S) and
each a in S. If Y ='{f1,...,fn} is in m(S) and
' n

_ . o _ ) _A |
F {al,...,an} is in S, then define K(Y,F) i=1K(fi,ai).
First we claim that K(Y,F) ' is non-void. By Lemma 3.5, we know
that if n =1, then K(Y,F) is not empty. AssumeAthat there

n-1 _

isa y in fZH K(f;,a;,). Then, let A be in K(u*f ,a ).

Observe that, for each w in M, each g in m(S) and each s

in S, m*tsg = Kq(m*g)- Hence, by (3.5.2) of Lemma 3.5, we have

Mol (5L, £)] = At (£, £,))
A [Ks (u*fi—zaifi)]

]

=0,

for 1 < i< n-1, and.

Asull (£ -L. £)]
n

S(EnL, £01 = AL (wrE £, (ur£))]

n
=0,
for every s in S. Thus, Afﬁ is in K(Y,F). Consequently,
the family & = {K(f,a):f in m(S), a in S} has finite inter-

section property. Let f be in m(S) and a in S. For each
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s in S, define h_S = Es(f—laf). Then hS is a w*-continuous
linear functional on m(S)*. It follows that K(f,a) = Mf}(égsh;l(ﬂ))
is w*-closed in M. By the w*-compactness of the set M, € has
non-empty intersection. Let ﬁ be in (]{c:c is in ¢}. For

each f in m(S) and s in S, ﬂ is in K(f,s) and by (3.5.2)

of Lemma 3.5,
weu(E-L£) = ulus(£-L )] = 0

Hence, u*u is a left invariant mean. Moreover, for any A in
M, As«p will be a left invariant mean also. This result is due
to Mitcheil [25] and the above proof is due to Granirer and Lau
[14].

We now prove that (3.6.8) implies (3.6.10). Suppose
that '{¢n} is a net of finite means such that '{Y¢ f} , for
each f in m(S), converges pointwise to a constanz. Let S
be represented as continuous affine maps from a compact convex set
C in a locally convex space E into C itself. For gach ¢
we define the affine map Fn by Fn(x) = Zs€s¢n(s)s(x), for
each x in C. Since. C is convex,: Fn(x) is in C, for each
x in C. Hence Fn is well-defined. Fixed a y in C. By
the compactness of C, there is a subnet '{Fk(y)} of {Fn(y)}
and a yg in C such that lim Fk(y] = yg. (Note that, for each
f in m(S), the correspopding subnet i{y¢ f} converges point-

k
wise to: a constant function also.) For each A in E*, we define
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£

compact and A is continuous, fkv'is in m(S). Also, for each

on S by fACS) = A(s(y)), for each s in S. Since C is

t in S and each k,

URACEPNENOIENC

= Zsescb}k(s)_f}\ (ts)
= Teegti (A (Es ()
= MJ gty (S)ts()]
= Mt g0 ()]
= A[t(F (7],
Since ‘{y¢ fk} converges pointwise to'a constant, say o, we
k
have
a = 1li<m Y¢kf’\ (t)
= 1R e r o))
= Atlyo)].
Hence, for any sp in S, [so(yo)]l = [s(so(y0))] = a, for

each s in S. Since E 1is locally convex, it has enough con-
tinuous linear functionals to seperate points. Therefore, it
follows that s(sg(yg)) = sg(yo), for each s in §, and hence
so(yp) 1s a common fixed point for S. This result is due to

Day [5] and the foregoing proof is due to Mitchell [25].
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To see (3.6.10) implies (3;6.1), observe that

'{ngs is in S} is a representation of S as continuous affine
maps from the w*-compact convex set M in m(S)* into M it-
self.‘ Then the common fixed point is a left invariant mean on

n(s).

For any finite set A, we denote by [A] the number of

elements in A.

3.7. Definitién. A semigroup S 1is said to satisfy the Fdlner's
condition if, for each finite subset F of S and each € > 0,
there is a finite subSet A of S such that

(3.7.1) |sA N\ A] < e]A],

for each s in 8.

In [9], Flner showed that a group is left amenable if
and only if it satisfies the Flner's condition. This condition
was generélized to left amenable semigroups as a necessary condi-
tion by Frey in his thesis [10]. His proof was complicated and
here we bring in Namioka's elegant proof.

Let S be a semigroup throughout this section. For
each finite set A in S, define a finite mean wy on S by
By = T%T-lA, where 1A is the characteristic function of A.

Such finite means are called arithmatic means.

3.8. Lemma Let ¢ be a finite mean on S. Then there is a
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finite family {Aj,Az,...,A_} of finite sets in S with
Aj €A 1 < i ¢<n, and a finite set '{Al,Kz,s..,Ah} of posi-
tive real numbers with Zizl Ay =1 such that
T '
¢ = Li-1 A¥a. -
1

Proof.  Suppose ¢ is a finite mean on S. Let 0 < 3 < a, <
be the distinct values of ¢. Let Ai ={s in' S:a. < ¢ (s)},
1< i<nm. Then each A; is finite and A, ; CA

Since lAl“A = 1,,

©-
!

~.allA1+(a2-a1)1A2...+(an-an_1)1An

n .
Zizl AiuA.’
1

where A1 = a;|A;| and A = (a;-a; )IA;l, 2 <1i<n Since

0<a <...<a we have 1. >0, 1< i < n. Furthermore,

et
1

- ESeS¢(S)

n,
= Zsaszi=l Ai‘,‘Ai(s_)

n .
Zi=1- Ai(zs'es“Ai(s)

This finishes the proof.
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For s and t in S, we denote by s !t the set con-

sisting of all x in S such that SX = t.
3.9. Lemma. Let A be a finite subset of S. Then, for each
s in S,
[1uy-u,d () = [ANsTIe|/[A] if t € SANA
= -1/]A| if t € A\sA
= (JANsT1t]-1)/]A] if t € AQsA
=0 otherwise .
Proof. Observe that, for s and t in S,
lsuA(t) - st=t“A(x)

 Bresmion®

JANS™1e]/|A].

If t is in sAM, then t = sa, for some a in A and sa

is not in A. Hence

[gugud (8 = (JANSTIe]/[AD) - 0 = A0S 1e|/]A].

Suppose that t is in A\sA. Then lsuA(t) = 0 and
p(t) = 1/|A|. Hence, [lsuA-uA](t) = -1/|A|. Finally, if t

is in ANsA, then

AN s 1t|/]A| - 1/7]A]

(JANs™1t]-1)/]A].
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This completes, the proof.
3.10. Corollary, Let A be the same as in Lemma 3.9. Then, for
each s 1in S,
| 1gupom, 1l = 2lassal/lal.
Proof. From Lema 3.9, we have

1 m,- All= Feeg 11111 () |
= Fresnallgity] ®) |
* Leesana gm0
ceansal [1gHa ] () ]

* ]
=1 e_c,,,\\AlAf\s’ltl/ |a]
Z

-1
* zts:A\sA TAT

B 2‘tG:sAnAIAmS“-ltI/IAI+thsAf\A!Ans“lAl/l-‘\l

1 1
- ZtesAﬂA TaT ™ ZteA\sA [AT

|ANs™1t|/|a]l-1sanAl/[A]

z'c.E:sA

|AssAl/|Al

+

1-|ANsA|/|A]+|axsal/ Al

(IA]-1ansal+|aNsa])/|Al

C(IANsA]+[ANsA|+]|ANsA ]+ [ANsA]) /|A]
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= 2|assAl/{a],
for each s in S. This proves the Corollkary.
3.11. _Ii(e_rn;m_a;. Let ¢ in ¢ be e:x:pressed as 'm Lema 3.8. Then,
for each s 1in S,
Fgo-sll= T2 3, lsa o, 1/ Iay

Proof. Let s in S be arbitrary. Since ¢ = Xizlli“A- as in
: _ i

Lemma 3;8, we have
_¢n ‘ _
1s6-¢ = Zi=1‘icls“Ai‘“Ai)

o n .
Let B = gl(Aj\sAj). Then, by Lemma 3.9, for each i, 1 < i < n,

J
. Xi(lsuAi-—uAi) (¢) 20, if t is in S\B. Hence, Is¢(t) -¢(t) > 0.
For every i and. j, either AiC- Aj or Aj CAi, and hence

'sA.CsA. or sA.CsA.. Therefore
i j j i -
(sAi\Ai) N (Aj\sAj) = ¢,

for all i and j, 1<4i, j <n. But for each i, SANA; < S\B.

Consequently,
I 1g0-¢ll = Ly glie(®)-0 ()]

> T eanp(1ed (86 (£))
o :
i=lliczteS\BllsuAi“uAi](t))
) ,

2 Lot Geesana, [Tsha, -4 1 (D)

1 1 1 1
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By Lemma 3.9, it follows that

” 1 4) ¢“ 2 Z.:v.-~1 i ZtesA;\A..[lsuA..*uAv.A] O

2 "*1{ 1(EtesA \A 'A (\S‘lt“IA D

> §.0 501 l]sA\A I/IA |
This finishes the proof.

3.12. Theorem, If S is Zef% amenable, then S sattsfies the

F&Zner s condition.

Proof. Let F =.{sl,sz,...,sk}. Since S is left amenable, by
'Theorem‘3.6, there is a finite mean ¢ on S such that
I]ls¢~¢" < e/k, for all s in F. Let ¢ = 21 1A “A as in
Lemma 3.8. Then it follows from Lemma 3.11 that
e4k>lll R EDN. PilsAnal71a

J

for 1 < j < k. Choose A = A;  such that
0

Z |s AjNA; 17144 = l‘fiﬁn{z ,1|s ANA|/|A, |}.
Then, for each m, 1 < mls k,
e> L5 ool
2 Zj=’1zi=1"il’*j"‘i\“"i|/|A1|
=-Ziflki(z.5‘|s.A§\A.|/[A.|)

2 L 1(21 1185 aal/1a])
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At n., .vk
Q2 g syanalzial

“i=1"1i

koo aal/la
Zj=llsjA\A|/lA|

[N

|s ANA[/[A].
Thus, |s A\A| < e]A], for all ‘s, in F.

For the case of right amenable semigroups, if we change
the inequality |sA\A] < e|A] in the Fdlner's condition to

|As\A| < €|A|, then the last theorem still holds.

3.13. Reémark. The F¢1nér‘s condition is not sufficient for a
semigroup to be left amenable. Since every finite semigroup satis-
fies fhe F¢lner's condition trivially (simply fake A = S) but

not every finite semigroup is ieft amenable. For example, take

t = tt. Define f on S

S = {s,t} with st =s = ss. and ts

1. Then h

by £(s) = 0 and f(t) [f-ﬂff]-[f-ﬂsf] = Zsf—ﬂtf

~is in the linear span of {Lsf—fis eSS and f € m(S)}. Since
sup{h(s):s in S} = -1 < 0, by'Theorem 3.6, S is not left amen-

able.

Now, we discuss a stronger condition on S which is

suffiéient for S to be left amenable.

3.14. Definition. A semigroup S is said to satisfy the strong
‘Félner's condition if, for each finite subset F of S and each

e > 0, ‘there is a finite subset A of S such that
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|asA| < e|a],

for all s in F.

5.15. Theorem. If S satisfies the strong Fdlner's conditioh,'
then there is a net of arithmetic means that is norm-convergent

to left invariance and hence S 1is left amenable.

Proof. Let ] be the family consisting of pairs (n,F), where n
is a natural number and F 1is a non-void finite subset of S.
Define a partial order < on. )} by (n,F) < (m,H) if and only
if FcH apd m > n. For each o = (n,F) inA z, let Ao be
such that IAC\SAUI < %JACI, for all s in F. Then, by Corol-
lary 3.10, for each s in S and every € > 0, there is a

op = (ng,Fp) in Z, ‘where %; <¢ and s in Fgp, such that

whenever o = (n,F) > op,
I 1y vy Il = 2lagnan,l/la|

<

A
BN BIv

< g,

Hence ~{uA }oeZ is norm-convergent to left invariance and this
o

completes the proof.

3.16. Proposition. In a left cancellative semigroup, the strong
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Fdlner's condition is equivalent to the Flner's condition.

Proof. Let A be a finite subset of a left cancellative semi-

group S. For each As in S, we have ISAI = |A]. Hence
[sA\A| = |sA|-|saANA| = |A]-|saNA] = |A\sA|

and the proposition is now clear.

3.17. Corollary. & left cancellative Semigroup is left amenable

if and only if it satisfies the strdngAFélner's eondition.
PrOOf;‘ The cdrollary follows from Prbposition'3.16 immediately.

3.18. Remafk. The questiéﬁ whether or not every left amenable
semigroup,satisfies the strong F¢1ner's conditioen depends on
Sorenson's conjecture: Any right cancellative left amenable
_semigroup must also be ieft cancellative. (See [3, Theorem 6, p.
591.]) To see this, let S be a left amenable semigroup; Define
a relation R on S by sRt, s and t in ‘S, if and omnly if
there is a u in S such that su = tu. Observe that any two
right ideal of S iIntersect (see proposition 4.14 of next sec-
tion) so that ‘R is well-defined and is a congruence relation;
i.e. R is an equivalent relation such that sRt implies asRat
and saRta, for each a in S. (See [22] and [12, Lemma 2, p.
'371].) Then, the set S/R, of all'congruence classes of R,

with the binary operation defined by §'§'= §§; for all X and
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y in S/R, is a right cancellative left amenable semigroup.
(See PrOpositién 4.3 of neit section.) Assume that the Sorenson
conjecture is valid. Then S/R is left cancellative and hence
satisfies'the strong F&lner's condition. For each s ih S,

let S be the congruence class that contains s. Then, for each
finite set F in S and each e > 0, there is a finite set A
in S/R such that |ANsA] < ¢|A|, for each s in F. Then, one
can "1ift" the set A back to A, say, in S- such that

{AxsA| < ¢|A[, for each s in F. Thus, S satisfies the strong
Fglner's condition. To see the "lifting" of the set A, let A
be a set of,represehtatiV¢s of elements of A. Observe that
[ANsA| > |A\sA| and -]A| = |A|]. If |A\sA| = |A\SA|, for each

s in F; then we are done. If there is an s in F such that
|ANsA| > |A\SA|, then there are a and b in A such that

a = sb. Since A is finite, there amea; most finitely many re-

lations of the form so mentioned above which holds with s in F

and a,b in A. Let 5;'= s.b. (i=1, 2,..., m) be an enumera-

i1

tion of all of them. Then, there are u;, u,, ..., u, in S

such that a;u ...uy = sibiul...ui, 1 <i<m Let

.eou 2 in A}. Since S/R has right cancellation, we
have [A] = |&y| < |Ag] < |A] = |K] and hence |Ap| = |A]. Let

u=uu..u. If au = sbu, for some a, b in A and s in

for

F, then a = sb and hence a = a;, b=b; and s-=s,,

some i=1, 2, ..., m. Now, we have au)...u, = sbu;...u; and
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thus au = (aul...ui)(ui+1,..um) = (sbul"‘ui)(ui+1"'um) = sbu.
Consequently, ﬁglhave #hown that; for any s in F and for any
au, bu in Ao, au = sbu implies au = sbu. Hence

]Ao\sAol = |AQ\SAg|, for each s in F. But, [AQ\SAo| = |A\SA].
It follows that |Ag\sAg| < e|Ag|, for each s in F. However,
the Sorenson's conjecture has not been proved, or disproved, yét;

and it becomes a very interesting problem.

§4. Combinatorial Results.

In this section, first we show that one can get new
amenable groups from any given amenable groups throughlthe
fdllowing.processes: (1) by takiﬁg the subgroups of amenabie
groups; (2) bf taking the quotient groups of amenable groups;
(3) by takihg’the‘extension groups of amenable groups; (4) by
taking the dirgct limit of amenable groups.  Then we prove that
finite groups and Abélian groups are amenable; and free groups on
two, of more, generators are not amenable. This leads to the fol-
lowing unsolved problems stated by Day [5]: (i) whether every
amenable group can be'obtained from finite groups and Abelian
groups through these four processes; and (ii) whether the family
of all groups with no non-Abelian free subgroups is exactly the

family of all amenable groups.

4.1. Proposition. If a semigroup is both left and right amenable,
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then it is amenable.
Proof. This has already been observed in Corollary 2.13.

4.2. Prbposition. A left [right] amenable group G <is right

[left] amenable; hence is amenable.

Proof. Let u be a left invariant mean on m(G). Define a lin-
- ear operator T:m(G) + m(G) by Tf(x) = £(x1), for each f in
m(G) and x in G. It follows easily from the definition of T
that T 1is linear and ]ITfllé'" f|l, for each £ in m(G).

Let T* be the adjoint operator of T and p be a left invari-
ant mean on m(G). Observe that Tl =1 and Tf > 0, if £ > 0.
Hence T*u(l) =1 and T*u(f) > 0 if £ > 0. Thus, T*p is a
mean. Moreover, T(Yxf) = Kx-le, for each f in m(G) and

each x in G. It follows that
Ty £) = u(T(r, £)) = w(& 1T = u(TE) = T*u(f),

for each x in G and each f in m(G). Consequently, G is

right amenable.

4.3. Proposition. A homomorphic image of a left amenable semi-

group is left amenable.

Proof. Let h:S - T be a semigroup homomorphism from S onto T.
Suppose that S 1is left amenable. Let T be represented as con-

tinuous affine maps from a compact convex set K in a locally
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convex space E into K itself. Then, {h(s):s € S} is a re-
presentation of S over K. Hence, there is a common fixed peint
kg, say, for all h(s), s in S. But h 1is onto. Thus, kyp

is a common fixed point of all t in T. By Theorem 3.6, T is

left amenable.

4.4. Corollary. Every factor group of an amenable group is amen-
~able.

- Proof. The quotient map is a surjective (onto) homomorphism.

4.5. Proposition. Every subgroup of an amenable group is amenable.

Proof. Let H be a subgroup of an amenable group G. For eacﬁ

x in G, let X be an arbitrary but fixed element in the right
coset HX' Hence, for every x in G, there is a unique h  in
H such that i = hxf. Define a linear operator T:m(H) -+ m(G)

by 'Tf(k) e f(hx), for each £ in m(H) and x in G. Since
hx ~is uniquely determined and f is bounded, Tf is well-de-

fined and is in m(G). Furthermore, for any f and g in m(H)

and for any scalar o and B8,

T[af+8g] (x) [df+6g](hx)

af (h )+8g(h,)

an(X)+BTgCX)

[o«T£+8Tg] (x) ,
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for each x in G. Therefore, T is linear. It follows from
I T£]l = sup{[£(h ) |:x is in G}
<l
that T, isvbounded;. Morgqver, for any a in H and x in G,
a; = ha¥§§7= hai;' (since 5§'=_i), and hence ah, =h_ . Con-
sequently,

T(f;zaf)(i)' 'Tf(x)-Tczaf)cx)

T£(x) —f(ahx)

Tf (x) "f(hax)

1]

T£(x) -T£ (ax)

[T£-£_Tf] (x),
for each f in m(H) and a in H. It follows that T maps

Km(H) into Km(G)‘ Since G is left»gmenable, by (3.6.7) of

Theorem 3.6, we have
vsup{h(x):k in H} > sup{Th(x):x in G} > 0,

for each h in Km(H) and hence H is left amenable.

4.6. Remark. Not every subsemigroup of a left amenable semigroup

is left amenable. For eXample, let S be a non-left amenable
semigroup. Let S' = SU{o} with so = os = o, for all s in
S'. Then, the mean p defined by u(f) = f(0), for each f in

m(S) is a left invariant mean and S is not left amenable.
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Furthermore, it is not even true that a subsemigroup of an amen-

able group is left amenable. (For the details, see [19].)

4.7. Proposition. Let H be a normal subgroup of G. Theh, G

is amenable if and only if H and G/H are amenable.

Proof. Thé necessity follows immediately from Proposition 4.5 and
Corbllary 4.4,

. Conversely, suppose that H and G/H are amenable.
Let {Ts:s in G} be a representation of G as continuous affine
ﬁaps from a compact}convei set K in a locally ponvei set E in-
to K. Since H is amenable, the set K; of all k in K such
that Th(k) = k, for each h in H, is not empty. Also, Kg
is cpnvei.and is closed in K so that Ky is a compact convex
set in E. For each 'X in G, let i denote the coset xH in
G/H. For each i in G/H, we define a continuous affine map
T; on Ko by Ti(k):'Tx(k), for each k in Kq. If x =y,
then y lx is in H and hence Ty_lx(k) = k, for each k in

Ko. Thus,
00 = T, = T, 00 = TS0,

for every k in Kg. Hence, T is well-defined. Also, since
H is a normal subgroup of G, for each h in H and x in G,
there_is an s in H such that hx = ;s, It follows that, for

eaéh i in G and each h in H,
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T, [To()] = ThITi(k)] = T IT (K] = T (k) = To(k),
for each k in Kg and some s in H. Hence; T;~‘maps Ko
into itself. Consequently; '{Tifi‘ in G/H} is a representation
of G/H as continuous affine maps from Ko into Kg. Hence,
there is a ko in Ko such that T, (ko) = T;(ke) = kg; for each
x in G. By Theorem 3.6, G 1is left amenable and hence is amen-

able.

Let G,, i=1,2,3, begroups. If a:G ~ G, and
B:G3 » G3 are group hombmorphisms such that g is onto and
«(Gy) = Ker(B) = g"1(e3), where ez is the identity of Gj,
then G; % G, 8 Gz 1is called an eiact'sequence. Given any exact
sequence like aone,'the group G, 1is called an extension of
G; by G;. (See [24, p. 460].)a Since Ker(ﬁ) is a normal sub-
group of G; (see [24, Theorem. 23, p. 106]) and d(Gl) = Ker(g),
GI/Ker(d) is isomorphic to Ker(B) (see Theorem [24,'Theorem'22, P.
105]). On the other hand, B is onto implies that G,/Ker(B) is
isomorphic to G3. Consequently, if G, and Gz are amenable,
then Proposition_4}3 andFCorollary 4.4 imply Ker(8) and
Gz/Ker(B) are amenable. Hence,,according to Proposition 4.7,
G, is also amenable. Thus, we have shown that extensions of

amenable groups are amenable.

4.8, Proposition. SuppOse~that,A{Si}ieI 18 a family of subsemi-
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groups of semigroup S such that (a) S = LJ{Si:i e I} and (b)
for all i and j in I; there s a k in I such that
SiUSj C Sy. If,‘ for each i 1in I,’ Si‘, is left amenable, then

S s left amenable.

Proof. Let S be represented as continuous affine maps from a
convex compact set K in a locally convex space E info K it-
self. Suppose that each Si is left amenable. Then, for each

i, the set Ki of all common fixed points for Si in K is not
empty. Also, ‘Ki is clqsed in K. By the property (b) we have,
for.any i and j in I there is an- m in I such that

KmC__ Kiﬂl(j. Hence, the family {Ki:i in I} of closed subsets
in K has finite intersection property. It follows from the com-
pactness of K that [\{Ki:ive I} is non-void. Consequently,

SA has a common fiked point and hence, by Theorem 3.6, S is left

amenable.

4.9. Corollary. A group G is amenable if and only if every

finiteZy generated éubgroup of G <s amenable.

Proof. "By Proposition 4.5, the necessity is evident. The suffic-

iency follows from Proposition 4.8.

4.10. Proposition. The full direct product of finitely many

rumber of left amenable semigroups is left amenable.
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 ££22£: We prove only that the full direct product of two left
amenable semigroups is left amenable. Then the'rest of the proof
follows from induction. Let 8; and S, be left amenable semi-
'groups. Suppose that ﬂi is a left invariant mean on m(Si),
i=1,2. For each f in m(81§82) and each fixed s in S1,
define_fS in m(S3) by fs(t) = f(s,t), for each t in S,.
Since f is bounded, llfslli I £, for each s in Sj,and
hence f_ is in m(Sp). For each f in m(S1xS;), define £~

on S; by f£7(s) = uz(fs), for each s in S;. Since

[f"(s)ll < I»I}u’zH I fsll g"||f|] , £~ is in m(S;). Define a lin-
ear functionél >ﬁ on m(SleZ)K by Q(f) = u; (£7), for‘each £
in m(8;xS,). If f =g in m(S;xS;), then fs = g¢» for all

s in S; and Hence f~ = g~. Thus, u is well—défined. Observe
that, for any f and g in m(S;xS;) and any scalars o and

B, [af+6g]s = afs+sgs, for each s in S;. It follows that
[af+Bg]~ = af~+8g~ and hence ﬁ ‘is linear. Moreover, if f > 0
is in m(S;xS,), then fs > 0 and hence f~(s) = uz(fs) > 0,

for each s in S;. Thus, p(f) >0 if £ > 0. Also,

lslxsz“ = ls1 so that u(lslxsz) = ul(lsl) = 1. By Proposition
1.2, uy is a mean on m(S;xS,). Finally, to prove that u is a

left invariant mean, let (a,b) be in S;xS, and f in m(S;xS,).

Then

(tca’b)f)s(t) = f(as,at) = Lb('fas) t),
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for every (s,t) in S$1%S,. Thus, it follows from the following

equalities:
o, pD) ) = ﬁsz‘(a;b)f)sl
= w2y (£, )]
= by [£, ]
= £~ (as)
= £, (5 (),

that

e, €l = mlE, D7)

i

w2, (£7)]

ﬁl[f”]

u(),

for each f in m(S;xS;) and (a,b) in S;xS,. Hence, S1xS,

is a left amenable semigroup.

4.11. Proposition._The weak direct product of a family of amen-

‘able groups is amenable.

- Proof. Let {Gi}ieI be a family of amenable groups. Recall that
the weak direct product ZGi' of ‘{Gi}ieI is the subgroup of the
full direct product igI Gi which consists of all elements(xi)iEI
such that x; = ei for all but finitely many indices. Let A be

the family of all non-void finite subsets of I. For each ¢ in
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A, let Sq = iqui. Then, by Proposition 4.10, Sq is amenable.

Moreover, IG, =(J{Sd:c in A} and, for any- 03 and o, in A,

SCIU S &5 Hence, by Proposition 4.8, G, is amenable.

g2 — o1U0y°

4.12. Proposition. The direct limit of amenable group is amenable.

Proof. Let ’{Gi}isr be a family of amenable group which is in-

deked'by a directed set (I,<) such that (1) whenever i < j

in I, there is a group homomorphism fij:Gi -> Gj such that

f..af.. = f. if i<j and j <k; (2) for each i in I,

jk Tij ik

fii is the identity map on _Gi into itself. Let N be a sub-

set of ZGi, the weak direct product of 4{Gi}, consisting of
those (xi)isI for which there is an index j (depending on

(xi)iel) such that (a) i < j whenever Xy + e; and (b) such

that {fij(xi):1 < j} é {ej}, where e, is the identity of G,
for each i in 1I. First, we claim that N is a normal subgroup

of EGi. Let (xi)ieI agd (yi) be in N. Then there are

iel

ind ces 'j and k in I (depending on (xi). and (yi)

iel iel’

respectively) such that (xi) and .(yi)iel satisfy (a) and (b).

iel
Let m in I be such that j<m and k <m. If i<m such
that i < j or 1i < k, then we have fim(xi) =~fjm(fij(xi)) =

. -1y = -1 - D W
e, or f. (y;) = [f, (f,,())] [ (] e,

If i'g m such that either i < j or i < k does not hold, then

Fymes)

. = e, .= e.. w ve f. (x.y.1l) = e whenever
X e; or y, =e Hence, we have lm( Vi ) '’

i

. ; . .
i<m 'If x;y;' e, then x; $e; or y; t e, and hence
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i<j or i< k. Thus, in either case, i < m. Therefore, we
have shown that N is a subgroup of ZG;. Now, to prove that N
1s‘normal, let (xi)iEI be in N and (yi) be in EGi. " Suppose
j in I is such that (xi)i.EI satisfies (a) and (b). If

yilxiyi { e;» then x, $ e; and hence i < j. If i <j, then

1

-1, = [f -1 :
we have fij(yi xiyi) = [fij(yi)] fijtyi) ej. Hence, N is
normal. Since the direct limit of A{Gi}ieI is the factor group
G, = ZGi/N, (see [21, p. 10]), by Proposition 4.10 and Corollary

4.4, G_ 1is amenable.

We have shown in Proposition 4.5 and Remark 4.6 that
every subgroup of an amenable group is amenable but not every sub-
semigroup of a left amenable semigroup is left amenable. In the
following proposition, we give a suffiéiént condition for a sub-

semigroup of a left amenable semigroup to be left amenable.

4.13. Proposition. Suppose that H <is a subsemigroup of S. If

u is a left invariant mean on m(S) such that u(lH) > 0, then

H s left amenable.

Proof. For each .f in. m(H) we define a linear operator
T:m(H) > m(S) by Tf(s) = f(s) if s in H and Tf(s) = 0
otherwise. The linearity of T follows easily from the defini-
tion. Also, ||Tf||< || £]|, for each £ in m(H), hence T

is bounded by 1. Define ﬁo on m(H) by
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wo(£) = u(TH/u(1y),

for each f in m(H). If £3> 0 in m(d), then Tf > 0 and
hence ﬁo(f) > 0. Moreover,. ﬁo(lH) = 1. Hence, by Proposition
1.2, ﬁo is a mean on m(H). To prove that ﬁo is left invariant,
we claim that ‘ﬁ[T@ESf) -‘zs(Tf)] = 0, for each s in H and

f in m(H). Then, if our assertion is valid, ﬁ[TC&sf)] =
u[Cs(Tf)] = g(Tf) Vand hence ﬂocasf) = ug(f), for each s in

H and f in m(H). Now, to prove our assertion, let f be in
m(H) and s in H. Define g = T(2_f) f,£s(Tfj; For the same
s, let E = sflﬂn[S\H]. For every £ and h in m(S), define
fh in m(S) by. fh(t) = £(t)h(t), for each t in S. Then
glE(t) =g(t), if t in E and g(t) = 0 otherwise. For each
t in S, there is at most one eleﬁent.in '{sit:i =1, 2, ...}
that belongé to E. Since if i; is the smallest integer sﬁéh
that sit is in E = s”lHA(S\H), si+kt is not in SQH and
hence_islnot in E, for any integer k 2 1. Therefore, for every
integer n > 0, we have 212 si E(t) <1, for all t in S.

Since u 1is left invariant,

i

nu (1) iz 1 u(ﬁ 1:)

nE;2; £gilg)

u(1)
= ]_,

1A

for allzinteger n > 0. Hence ﬁflE) = 0. Since g = glE, we
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have g < |l g||1;. It follows that [u(g)| <uCllell1p) = ||zl
ﬁ(lE) = 0. This proves our aésertion and hence completes the

proof.

4.14. Proposition. Let S be a left amenable semigroup. Then

fhe'fumily of all right ideals of S has fiﬁite intersection

property.

Proof. Assume the contrary that there are two right ideals H
and R such that HNR = ¢. Let a bein H and b be in R.

Define f ='1Hf1R' Then @af =1 and be = -1. But h = be—
Kaf is in X and sup{hCS):s € S} = -2. Hence S 1is not left

amenable. This completes the proof.

4.15. Definition. A subset H of a semigroup S is called left
thick if for any finite subset F of S, there isan s in S
" such that FsQ;}L If, addition, H is a subsemigroup of S,

then H is called a left thick subsemigroup.

This concept of left thick subsets is due to Mitchell
[25]. Let H be a left ideal of S and F be a finite subset
of S. Then, Fs C H, for any s in H -Hence, every left
ideal is left thiék. in a left amenable semigroup S, every
right ideal is left thick. Suppose that H is a right ideal of
S. For any finite set F of S, by Proposition 4.14, we have

HN(L, sS) 4 6. It follows that [} s71H 4 ¢, where
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s 1H = {teS:st € H}, Consequently, there is a t in £:¥ s 'H
such that Ft CH. Hence, H is left thick.

Suppose that H is a left thick subset of S. For
each finite subset F of S;, by definition, there is an s in
§ such that FsCH. If s is not in' H, then there is a t
in S such that (Fs{J{s})t C H. Consequently, there is an st

in H such that F(st) € H. Hence, for any finite subset F of

S, there isa s in H such that Fs CH.

4.16. Proposition. Let T be a Zéf% thick subsemigroup of S. If

S 28 left amenablé, then there ig a left inbariant mean u  on

m(S) such that ﬁ(lT) =1 ‘and hence .T 1is left amenable.
Conversely, if T is left amenable, then S is left

amenable also.

Proof. Suppose that S is left amenable. Then, by Theorem 3.6,

my 6 e |l=o,

there is a net {¢ } of finite means such that
o o sta"Ya

for each s in S. For each s in S, there is an Sy "in S
such that F s CT, where F_ =>{S€S:¢a(s) $ 0}. Then, each
¢d}sd is a finite mean with support in T. Since ZI(S) is a

~ Banach algebra, we have, for each s in S,

F1g0o,1s 20015 1=l age1g et |

o a a

I as%-%)lsdll

J A

I 1do-0,11 11 1sdll
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= 1o s |l -

s'a ‘o
Hence, {¢dls.}' is norm-convergent to left invariance also. By
the w*-compactness of the set of all means, there is a w*-cluster
point, say ﬁ, of ‘{¢als.}. Moreover, u(ITi = 1, since each
¢alsa has support in T.a It follows from Corollary 2.13 that
p is a left invariant mean on m(S). This completes the proof.
Now, suppose that T is left amenable. Recall that
for any finite subset F of S, we can always find a t in T
such that Tt CT. Let S be represented as continuous affine
map from a compact«convei set K in a locally convex space into
itself. Since T 1is left amenable. There is a k € K such

that t(k) = k, for each t in T. Now, for each s in S,

there is a t in T such that st is in T. Hence,
s(k) = s(t(k)) = st(k) = k.

Thus, S has a common fixed point and is left amenable. This

completes the proof.

4.17., Proposition. A finite semigroup S tis left amenable if .

and only if it has a unique minimal right ideal R. Then R is
the union of disjoint minimal left ideals Ll’Lz""’Ln of S
such that each L 18 a group and is isomorphis to each other.
o1 . . . .
Moreover, B = TI;T.EsﬁLiIS’ 1 <i<n, s a left invariant mean

and each left invariant mean is a convex combination of the M
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Proof. Suppose, first, that S is left amenable. Let ¢ be the
family of all right ideals of S. Since S is finite, ¢ is
finite. Since the intersection of two right ideals is a right
ideal, it follows from Proposition 4.14 that [1¢ is non-void

and is é right ideal. By definition, f\@ is the unique minimal
right ideal.

Conversely, let R be the unique minimal right ideal.
For each s in S, sR is also a right ideal. If sRNR = ¢,
then there is a minimal right ideal H, say, such that H C sR
and HNR = ¢. But since R is unique, this can not be. Hence,
sRNR ¥.¢. Since‘ sRAR 1is a right ideal contained in R, we
have sRMR = R and hence |R\sR| = 0, for each s in S.

Thus S satisfies the strong Fdlner's condition and is left amen-
able.

Now, to prove the second‘part of the proposition, we
claim that the union of all disjoint minimal ‘left [right] ideals
of S is a right [left] ideal. To see this, let L1,L2,...Ln
be alllthe disjoint minimal left ideals of S and H‘=vigﬁLi‘

For each s in S, Lis is a left ideal, 1 < i < n. Hence
Lss EzLj, for some j, 1 < j <n. Let L =’{teLi:ts € Lj} E;Li.
Then, for any x in S, (Xt) is in Li’ for each t in L,
and fot)s = x(ts) is in Lj' Thus, xt is in L and xL CL.
But Li is minimal. It follows that L = Li and Lis = Lj‘

Consequently, Hs C igl Lis‘ Cc jgl Lj =H and H is a right ideal.
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Similarly, we can prove that the union of all disjoint minimal
right ideals is a left ideal. Now, let R be the unique minimal
right ideal of S. Ey the above claim, R is_aléo a left ideal.

Let L.,... L and H be defined as above. Then H is a right

n’
ideal and hence H D R. For eéch i, 1 <1i<n, RLi is a left
idéal, since R 1is a left ideal, and RLi Cc Li' It follows that
RLi = Li'. But, on the other hand, since R is a right ideal, we
haQe Li = RLi_SEl{, for each i, 1< i < n. Consequently,

H = igﬁ Li CR and thus H = R. To prove that each L, is a
group, we observe that every cancellafiVe finite semigroup is a
group. (See [17, Theorem 9.16, p. 99].) We now prove that each
L,  satisfies the cancellation.laws. ‘For each s in R, sRCR.
But sR is a right ideal. Thus sR = R and R has left cancel-

lation. Hence, Li.QEII has left cancellation, for each

i < n. On the other hand, for each s in Li’ 1 <i<n,

1A

1
Lis E_Li and Lis is a left ideal. Therefore, Lis = L.,
1 <i<n. Thus,: Li has right cancellation also, 1 < i < n.
It follows that L. 1is a group, 1 < 1 < n. Let ey be the

» 3 <n, be

(2

i
identity of Li’ 1 <i<n. Let i and j, 1 <
arbitrary. Since Liej = Lj’ the mapping h:t > tej is a one-
to-one map from. Li onto L.. For any s and t in Li’ we

J
have

h(ét) = ('st)ej = s(tej) = s(ej(tej)) = (sej)(tej) = h(s)h(t)
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and h is an isomorphism. Consequently, Li is isomorphic to
Lj for any 1 <1i, j < n.

wa, to prove that #i ¥.Tt§T~ ZSeLils’ 1<ic<n,
is a left invariant mean, we first claim that th; = L;, for
each t in S and each i, 1 < i < n. Then, ’ﬁiCth) = TffT
ZSeLif(ts) = TtiT-ZtSEtLifcts) = ui(f). To prove:our claim,
observe that tL, C L., for each i. If ta = tb, for some a
and b in Li’ then ta = t(eia) = t(eib) = tb. But te, is in
Li and hence (tei)a = (tei)b implies that a = b. This proves
that tLi'= Li’ for each t in S.

Finally, we prove that each left invariant mean of m(S)
is a'convex combinétion of the ﬁi’ Let ﬁ be a left invariant
mean of m(S). Since S 1is finite, each mean is a finite mean

and u = ZszSu(s)ls' By Proposition 4.16, u(lR) = ZSERp(s) =1

and thus y = ZSERu(s)ls. Since R = ﬁg& Li’ we have

T ifl ZseLiu(s)ls. For each ‘1 < 1 < n, observe that

21, > 1ei and Zsalei > 1, for each s in L;, vhere s 1

is the inverse of s in, Li (since £sls(ei) =1 and Ls_llei(s) =1,
the ihequalities.hold when x and t in S are such that sx = x
and'%s-lt = e, respectively). It follows that ﬁ(ls) = ﬁ(ﬂsls)

2 u(lei) and ﬁ(lei) = Q(Es;liei) > ﬁ(ls) and ﬁ takes a con-

. ) N " n ..
stant value on each L.. Thus, we have y = Ei=1(“(1ei)ZSeLilsi)

= Zizlu(le.)ILilui' Since u is a mean, we have
. %4
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=
|

= Foeskimr () L luy ()
-

n -
Zi:lu(lei)[Li!EseSui(S)
—-— ‘ n ' A
- 2i=1uc*1e~)|Li|'
i
Since u(le.)ILi]a 0, 1 <1i<n, ﬁ is a cOnvei combination of

s <
the . PR

4.18. Corollary. 4 finite semigroup S is amenable if and only
if it has a unique minimal left ideal L and a unique minimal
right ideal R such that R = L. Then there is precisely one

two-sided invariant mean on S.

Proof. The first part of the corollary is clear from Proposition

4.18. The unqiueness of the invariant mean follows from the fact

the each left [right] invariant mean is of the form

: 1
ﬁ'zseLls [N'XssRls]’ where N = |R| = |L].

4.19. Corollary. 4 finite left cancellative semigroup S is left
amenable. If, in addition, S <is a group, then it has a unique

nvariant mean.

Proof. Since a left cancellative finite semigroup S has only

one right ideal, namely S itself, by Proposition 4.17, S is
left amenable. If S 1is a group, then it has only one left ideal

S and one right ideal S. By Corollary 4.18, the invariant mean
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is unique.

4.20. Proposition. Free semigroup [group] on two, or more genera-

tors is not amenable.

Proof. Let S be a free semigroup generatéd by a and b. De-
fine a bounded real-valued function f on S by f(s) =1 if

s 1is a word begins with a and f£(s) = 0 otherwise. Then, the
function h = Ebfﬂﬁaf = Cbe*f)-QEaf-f) is in K. Hence
sup{h(s):s in S} = -1 < 0 and, by (3.6.7) of Theorem 3.6, S

is not left amenable.

'4.21. Corollary. The full direct product of amenable group is not

necessary amenable.

Proof. Since the free group on two generators is isomorphic to a
subgroup of‘the product group of a family of finite groups (see
[23, Corolléryrs.zi]] énd finite groups are amenable, it follows
from Proposition 4.20 that there is a family of amenable groups
whose full direct product contains a non-amenable subgroup. By

Proposition 4.5, this full direct product is not amenable.

One can show that Abelian semigroups are amenable by an
easy application of the Markov-Kakutani fixed point theorem [7,
Theorem 6, p. 456], or by showing that Abelian semigroups satisfy

the Dixmier criterion ((3.6.7) of Theorem 3.6) as given in [17,
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Theorem 17.5, p. 231]. However, we choose to give a new proof of
this fact by showing that Abelian semigroups satisfy the strong
F$1ner's condition, i.e. given any finite subset F and any

€ > 0, there is a finite set A such that [A\sA| < eIAI; for
each s in F. Our proof is longer but we find that it has some
merit in the fact that our proof will yield an eiplicit method of
constructing the set A in the strong FQlner's condition, and
thus also a method of constructing a net of finite means converg-
ing to left invariance in norm (see Proposition 3.15).

We first prove the following two lemmas.

4.22. Lemma. Let A be a finite:subéet_of a semigraup S. Sup-
pose s is in S. Then a necessary and sufficient eon&ition Sfor
IsA| = |A| is that -sa - sb implies a =Vb, for a and b

in A. Furthermore, if |sA| = |A|, then |[sB| = |B| for all

subset B of A.

Proof. We observe that |sa| < |A] is always true. Then

IsA[ < |A] if and only if there are a and b in A such that

atb and sa=sb. The Lemma is now clear.

 4.23. Lemma. Let A be a finite subset of a semigroup S. If
's 18 an element in S and k s a positive integer such that
(4.23.1) IA] = |sA] = ... = |s*MA]; and

(4.23.2) sT(A\sA) csAMA, for 1 < j < k-1,



85

then we have

(4.23.3) k]A\sA| < |A].

Proof. Let B = A\sA. First we claim that s'BNs’B = ¢, for

0<i, j<k-1 and i} j. (Note that sOB = B.) Since

IA

L}

-
I

A\sA, we have BN sA = ¢. By (4.32.2), it follows that

s’B CSANA CsA, for 1 i < k-1, Hence, BNs'B CBMNsA = ¢.
Now, suppose that siBf)sjB +‘¢, for some i % j and 1<i,

j < k-1. Then there are a and b in B such that ‘sia‘=“$j5;1 3

Assume that i < j. Then we have sIb = s'(s?™*b). Since

k-1, by (4.23.2), s?7'b e s?7'BCsANA CA. Also,

—
1A
[

CIA

L1
IA

a is in B CA; hence a is in A. Since IsiAl = |A] and

= s*(s? ), by Lemma 4.22, we have a = sJ‘lb. This

7]
[
Y
]
wn
.
o
]

contradicts that BNs? 1B = ¢. Thus, our assertion is proven.

To establish the inequality (4.23.3), we obServe that
BUsBU...Us* 18 ca,

since BEA and siB CsANACA, for 1 < i < k-1. Hence, by
our assertion, |B| + |sB|. + ... + Isk'lBI < |A]. since |ANsA| =
IBI:= IsiBl, 1 <1i< k<1, we have 'kIA\sA{ < IAI. This finishes

the proof.

Let S be an Abelian semigroup. For each finite sub-

set B = {b1,b2,...,bn} in S and each integer k, we denote by

k

B~ the finite subset of § consisting of elements in the form
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1.

JA

n
n and . |, i 2
Z-P"l‘ p-

% for a and b

by'b,%...b-M, where 0 < i, <k 1<p

L]
1l

Here we use the convention that ab? = a

in S. Also, we want to point out that the set BX here does

not represent the usual set '{bibz...bk:bi e B, i=1, 2, ..., k}.

4.24. ‘Theorem. Every Abelian semigroup satisfies the strong

Flner's condition; and hence is amenable.

Proof. Let S be an Abelian semigroup. Let F = {s1,53,...,5}

be an arbitrary finite subset of\-S and ¢ > 0 be given. Then
there is a positive integer . k such that 0 < %—< e. Define
Ay = FK, Then, for each j, 1< j < n,

AQ\SjAO g (F\{Sj})k.

Sihce for any m, 1 ¢ m < k, s?(F\{sj})k E.Fk = Ay, where

j=1, 2, ..., n, we have s?(F\isj})k £§5jA0’ for all

m .5 k-1. Thus, for all j =1, 2, ..., n and all

]}
o
-
N
-

m=1,2, ..., k-1,
s?(Ao\sjAo) C SjAo nAo.

If lA0|>=ilS?AQI, for all 1<j<n and 1 <m<k, then it

‘follows from Lemma 4.23 that
1
|Ao\SjAol % lAol < €Aq],

for all 1 < j < n. However, if S 'is not cancellative, then this

need not be the case. If |s?A0| < |Ag|, for some j, 1 <j<n,
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and some m, 1 <m < k, then we shall modify the set Ap to
have the desired properties. Let u = $152+ .S, . By the commuta-
tivity of S, we have uP = sP sﬁ, for p=1, 2,

lio,f
+1

Since Ay is finite, in fact |Ag| < ok, '{IAgupl}p:l is a

non-increasing sequence of integers bounded above by nk+1 and

below by 1. Hence, there is an integer p, say, such that
JAguP| = JaguP*l] = ... = |Aou

First, we claim that Is?Aoupl = leupl, for all 1 < j <n and

1 <m < k. We observe that

|Agu®] 2 |sJAuP| = [ (s} 8T p) (s?+1...$2)sl;Aoupl
= [u"aguP| = [AGuP™| = [aguP],

I Aoupl ’ for

for 1 <j<n and 1 <m< k. Hence Is?Aoupl

all j, 1<j<n, and m, 1 <m< k, Let A Aoup. For each

IA

j, 1< 3j <n, we have
ANsSA = Aoup\sjAoup < (Ao\sjAo)up.'
Hence, when 1 <m < k-1 "and 1 < j < n,
ST (ANsA) < sT((Apns.Ag)uP)
J J - J J
= (SW[AO\S.AO))UP
J J -
c (SjAoﬂAo)up
C_— SjAoupn Aoup
= s.A/A.
s AN
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By‘Lemma 4.23, we have IA\sJ.AIA < % fA] < €|A], for all j =1,

2, ... n. This completes the proof.

4.25. Remark. In general, one does not have much control on the
size of the set A in the strong Félner's condition. However,
if S is infinite and cancellative, then we can choose A to be
arbitrarily large. To be more precise, given any e > 0 and dis-
joint finite sets F and G, we can find a set A such that

(i) |AvsA| < e]A], for each s in F, and (ii) A DFUG3G.

To see this, note that if S is cancellative then, for each fin-

ite set F CS and each € > 0, the set A = Fk, where
0 €_%-< €, satisfies that |A] = IsmAl, for each s in F and

1 <m < k-1. Now, the above claim can be easily accomplished by

taking A = (F{lG)k.
4.26. Coroliarz. Every solvable group is amenable.

Proof. The corollary follows immediately from Proposition 4.16

and Theorem 4.24.



CHAPTER III  ERGODIC THEORY

Ergodic theory is an outgrowth of a problem in statis-
»tical mechanics and Hamiltonian dynamics. A mechanical system is
said to be "ergodic'" if the time averages of its certain physical
quantity converges to a constant as the time interval gets longer
and longer. The physical assumption made on the system to ensure
it to be ergodic is known as the "ergodic hypothesis'". The mean
ergodic theorem was first investigated by J. von Neumann [29]. It
is an operator generalization of a very simple phenomenon: If a
is a compiei number, then tﬁe arithematic means s _(a) = n_lxizlai
converges when Idf < 1; converges to 0 when |a 1 1;  and
- diverges when |d|‘> 1. J. von Neumann generalized this for one
parameter unitary groups in Hilbert spaces:. Next, Riesz [27] and
Yosida [30] proved that if T is a bounded linear operator from
a reflexive Banach space B into itself with |[T[|< 1, then
(1) the sequence '{An}, where An = nflzilei, converges strongly
to a projection P; (2) PT = TP = P; (3) the range of P. is
the sét of all fixed points of T and the null space of P is a

closed linear subspace spanned by all elements b - Tb, b in B.

Note that S = {Th:i = 1, 2, ...} forms an Abelian semigroup under
functional composition. Furthermore, |[T']]< ||T||*< 1, for
i=1, 2, ... . In this thesis, we are interested in the case

when S is a set of bounded linear operators from a Banach space
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B into itself with sup{||s]:s in S} < » such that S forms
a semigroup under functional composition. We call S a bounded
operator semigroup of B. For each b in B, the set 0(b) =
{s(b):s in S} is called the orbit of §. A linear operator A
on B 1is called an average of S if, for each b in B, A(B)
is in 'Clﬂoo(b), the unifbrm closure of the convex hull of O(b);
and A is called a finite average of S if A(b), for each b

in B, is in Co0(b), the convex hull of 0(b).

1.1. Definition. A bounded operator semigroup S over a Banach
space B 1is said to be weakly, strongly, or uniformly ergodic
under a net {An} of averageé of S if, for each s in S,

(use 1 for the identity dperator on B)

2 . ‘ lim _ o _ lim o .
(1.1.1)  [weak] 0 B[An(s-I)(b)] =0=" ‘6[(5 I)An(b)],
for all B in B* and b in B,

lim _ . lim
(1.1.2) [strongj. 2 Ay s-D®| =0=""] (s-DA ® ],
for each b in B;
: lim _a L lim ~ -
(1.1.3) [uniform] ~ IIAn(s—I)I) =0="_ | (s I)An[l, res
pectively.

As an analog to Riesz and Yosida's results, we expect
that '{Ah} converges to a projection P; and the range space
of P is the set of all common fixed points of all s in S, and
the null space of P is the closed subsapce of B which is

spahned’by the set {(s-I)(b):s in S and b in B}. Hence,
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we define the following subspaces of B:
(1) £ is the set of all common fixed points of all s in S;
(ii) K is the linear span of the set '{(s-I)(b]:s € S and
b e B}; and CL(K) is the uniform closure of K in B.
Since the closure of a vector subspace is a vector subspace,
CL(K) is a closed vector subspace. Furthermore, the set of all
common fixed points is closed and it foliows from the followihg
equalities:

s(@a-sb] =.as(§) - Bs(b) = aa-Bb,
for each s in S, all a,b in S and all scalars o and B,

that £ is a closed_véctor subspace.

1.2, Lemma. Let S be a bounded operator semigfoup over a Banach

space B. If S is weakly ergodic under a net {A} of averages

of S, then

(1.2.1) ,An(b) =b, forall b in € and each n; hence
1M, oy L

A () = b;

(1.2.2) w-t2m A (b) = 0 <if and only if b is in K.

Proof. Suppose b is in £. Then CKCOO(b).=.{b}; Since
An(B) is in CLCy0(b), for each n, we have An(b) = b. Hence,
(1.2.1) holds.
For (1.2.2), we start with the sufficiency. Suppose
that by is in CL(K). Since, for each b in B, w—lim An(s-I)b

= 0, for each s in S, we have _w-lim Anb =0, if b 1is in
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K. Let .{ba} ‘be a met in K such that lim Iibaeb0'|= 0. Since

S is bounded, M = sup{||s|ks in S} <« and I]Anu <M, for
each n. Hence, sgp IlAnllﬁ M. Let B in B* be arbitrary.

For each e > 0, there is an a(e) such that llba-bol|< e/2M|| 8] -

Fix an a > a(e). Since 1zm

B[A (b )] = 0, there is an n(q,e)
such that B[Ah(bd)] < ¢/2 whenever n > n(d,e). Thus, whenever

n > n(a,e).

|8(A, (b0)) | = [B(A (bo-b )+A (b)) ]

|8CA, (bo-b,))+8(A, (b)) |

Jd4A

el Ayl Hbo-b, Il + /2
< €.

Hence, lim B[An(bo)] = 0, for any arbitrary B8 in -B*, and
this implies that w-lim An(bo) = 0.

Conversely, suppose b is not in CZ(K). Then b # 0
and b + C£(K) is a closed affine subspace of B. For each s
in S, s(b) =b - (b-s(b)) is in b + CL(K). Since affine sub-
spaces-are convex and b + CL(K) 1is closed, we have CﬂCdO(b) c
b + CL(K). Consequently, {A_(b)} gb + CL(K). But 0 is not
in b + C2(K) and, by Proposition I.1.7, b + CL(K) is weakly
close@. Therefore, ’{An(b)} will not converge to 0 weakly.

1

Thus, if w- im An(b) = 0, then b is in CL(K).

Hereafter, let S be a bounded operator semigroup over
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a Banach space B. Also, let F = @+CL(K), i.e., F = {ctkic e £

and k e cL)}.

1;3."Thcoreﬁ. If S s weakly ergodic under a net '{Ah} of
averages éf S, then

(I.S.If ¢f\C2(K) = {0}; and hence F = CeCL(K) Z.e., F
%8 the direct sum of £ and CL(K); |

a.3.2) w11 A (b) ewists if and only if b is in F;
(1.3.3) if P(b) = w-'" A (), foreach b in F, then
P s linear and Pl < SgpllAnlli sup{lislks in S};

(1.3.4) for each b iﬁ F -and‘ s tn S, we have

Ps(b) = sP(b) = P2(b) = P(b);

(1.3.5) P is a'projeétionlof F onto £ along CL(K);
that is, P(F) = ¢ and P(CL(K)) = {0};

(1.3.6)- for each b in F, CLCEO(MLYNE = {P(b)};

(1.3.7) F is closed.

Proof. We first prove the condition (1.3.1). Since £ and
CL(K) are vector subspaces, 0 is in ¢0CL(K). Suppose b is

1

in @€Nce). By Lémma’l.z, we have w- iﬁ An(b) = b and

lim A _

w="1 An(b) = 0; hence b = 0.
To see (1.3.2), suppose that m«lzm Ah(b) = by exists.

Then, for each s in §, (s~I)bg = w="i" (s=D)A_(b) = 0. Thus

sbg-bg = 0, for each s in S; hence b, is in f£. Consequently,

we have .
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lim ba) = o 11m
w- An(h*bu] 7 A (B) -~ bg

bg - by

0,
and, by Lemma 1.2, b -bg is in CE(K). Hence b = (b-bg)+bg
is in F = §eCL(K).

Conversely, suppose that b is in F. By (1.3.1),
b=>b; + by, for aunique b; in ¢ and a unique.‘bz in
CL(K). TIt follows from Lemma 1.2 that

11m A (bs )

I

i 11m A (b) o e llm A (b1) + w-

L}

b'1+0
= b.
Hence, w—lgé An(b) exists.

Now, we show that (1.3.3) holds. Since (1.3.1) holds,
P is well-defined and linear. Also, for each n, [ A ||[< sup
{|lslks in S} and hence s%p[IAnlls sup{ || s|l:s in S}. For
each b in F, '{An(b)} is a family of linear functional on B*.
Since, for each 8 in B*, '{B[An(b)]} is bounded and
glP(b)] = 11" B[A,(0)], we have P(b) is bounded. (See [7,
Theorem 18, p. 55].) Furthermore, IS[P(b)]I 5'S%p||8|lllAnllllbll
and hence ||P(b)|] < sgpl]AnllllblL It follows that
JIP||$\SgP||An!| < sup{|| s||:s in S}.

Now, we prove the condition (1.3.4). Since every bounded -
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linear transformation from a Banach space into itself is also

w*-w*-continuous, we have, for each s in S,

(s-DP() = (s-I)[w-"2" A_(b)]
= 011" (s-DA ()
=0

and P(s-1)(b) = w-"i" A_(s-1) (b)
= Q.

Hence Ps = sP = P. It follows that s(P(b)) = P(b), for each
b in F and each s in S. Hence P(b) is in £, for each
b in F. By Lemma 1.2, we have P2(b) = P(b), for each b in
F. Thus, P2= P and this proves (1.3.4).

To see the condition (1.3.5), notice that it follows
from (1.3.1), (1.3.2) and (1.3.4) that P is a projection. By
Lemma 1.2 we have P(CL(K)) = {0}.

| Now, we prove that (1.3.6) holds. Since, for each n,
’{An(b)},g_m-ctcoocb) = CLCy0(b), P(b) is in CECyO0(b). If bg
is in CLCEO(B)N E, then b - by is in CE(K). Hence

0 = P(b-bg) = P(B) - P(bg) = P(B) - by
and P(b) = by,

To show the condition (1.3.7), let b be in the clo-

sure of F. We claim that m-lzé An(b) eiists and hence, by

(1.3.2), b is'in F. Then F is closed. To prove this claim,
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let {b,} be anet in F such that lim llbd—b['= 0. Let

aa'= P(b,), for each a. By (1.3.3),we have
lag=a, Il < 11 2ll 1| oI,

for any indices o and y. Since ’{ba} is Cauchy, so is ‘{aa}.

It follows from the completeness of B that I;m a, exists.

Since '{a&} is'in @ and @ is closed, lim a =a, for some
a in @¢. Let ¢ in B* be arbitrary. For each ¢ > 0, there
is an o such that | b bl < e/3M]| ¢]| and |‘aa-all< e/3M
where M = sHp[]AnII. Thén, there is an n(a,e,$) such that
IIAn(ba)-aa||S /3]l ], whenever n > n(a,e,$). Then, whenever

n > n(a,e,$),

A

lota,)-a)| = loa,(o-b) | + [o(A (o2 )| + [¢(a -a)]|

a1l Al b-b I+ 1161l 1A (b -]

A

e 1ol Il 2 -all
<ef3 +¢/3 + /3
= e.
This implies that 1im ¢[An(b)-a] = 0, for any arbitrary ¢ in

B*. Hence w-lim An(b) = a and this completes the proof.

1.4. Remark. In the previous theorem, if we replace the weak
“ergodicity by strong ergodicity, then we will get the correspond-
ing results in the convergence in the norm-topology instead of

the weak‘topology. This theorem is essentially due to Eberlein
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[8].
The following theorem is due to Day [5].

1.5. Theorem. Let S be a semigroup. Then the following condi-
tions are equivalent:

(1.5.1) S s amenable;

(1.5.2) for any bounded representation M and anti-repre-
sentation T of S over a Banach space B, the operator semi-
 groups '{Hs:s iﬁ S} and {T_:s in S} are ergodic (veakly,
stfongly and uniformly) ; |

(1.5.3) " for the left and right regular representation of

S over the Banach space m(S), '{LS:S in S} and '{ys:s in S}

are ergodic (weakly, strongly and uniformly).

Proof. Since (1,5.2) is formally stronger than (1.5.3), it only
needs to prove that (1.5.1) implies (1.5.2); and (1.5.3) implies
(1.5.1).

‘We first prove that (1.5.1) implies (1.5.2). Suppose

that S dis amenable. Then, there is a net '{¢n} of finite

| 13 1i |
means on S such that :m llls¢n-¢n|[= ;m||¢nls-¢n||= 0. For
each ¢ , let H¢n = Zsss¢n(5)ns and T¢n = zses¢n(S)Ts' Then

'{H¢ } and '{T¢ } are nets of finite averages of {N_:s in S}
n n

and A{Ts:s in S}, respectively. Then, it follows from

Proposition I1I.3.2 that, for each s in S,
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Wy ety 1< Ml opto-oy
~and Aimgny -, < mlizge ol

where M = sup{||n Jks in S}. Hence, for each s in §,

L lm, n -m, |[~ im g J, T, |l= 0. Similarly,

11m n 9 : .
lim [|T.T, -T || ~ |IlT, -T_-T, ||= 0, for each s in 8.
n S ¢n n ¢n S ¢n ’

Thus,  {Hs:s in S8} and ) {Ts:s in S} are uniformly ergodic.
Consequently, they are also strongly and weakly ergodic.

Now, to provefthat (1.5.3) implies (1.5.1). Suppose
that '{YS:s in S} and '{Ls:s in S} are weakly ergodic.
Let K& and KY be the linear span of ‘{fqtsf:f in m(S) and
s in S} and '{f—st:f in m(S) and s in S}, respectively.
Let ¢Z and CY} be the sets of all common fixed points of Ls
and Yg» § in S, respectively. Let ¢ denote the subspéce of
all constant functions of m(S). By the ergodicity of
'{Ls:s in S} and {yg:s in S} and by the fact that ¢ c €£ﬂ ¢Y’
we have ﬁf)KK = ¢ﬂl<Y = {0}. Hence, 1 is not in K,. Since,
1=1+0 isin 1+K,, we have dist(0,14K,) = inf{|| 1+h[}:h -
in 'Ka} < 1. On the other hand, for each h in K,, '1 + h is

in F = §,eCL(K,). Since ||P']|5_$uP{ll£slks in S} <1, we

[ IaY

have 1 = IIP(1+h)I| I ell [l 1+h]j < || 1+h]], for each h in K,.

Hence dist(0,1+K£) > 1. Combining the twOAinequalities, we have

v

dist(o;lsz) =1 and hencé, S 1is left amenable. (See Theorem
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11.3.6.) Similarly, we have dist(0,14K ) = 1 and S is right

amenable. This proves that S is amenable.

1.6. Remark. (a) Observe that, as a consequence of Theorem 1.5,
the weak, strong and uniform ergodicity of S are equivalent.
(b) In the proof of Theorem 1.5, we actually proved that 'S is
uniformly ergodic under‘a net of finite averages of S. 1In such
a case, we say that S 1is restrictedly ergodic. If an operator
semigroup S is amenable when it is considered as an abstract

semigroup, then S is restrictedly ergodic.

The ergodicity of A{YS:S in S8} alone does not imply
the amenability of S; For example, let S be a semigroup with
more than one element such that st = s, for all s and t in
S. Since Yg = I, jfor each s in 8. {ys:s in S} is ergodic.
However, S 1is not left amenable. The following proposition

gives a special case when this works.

1.7. Theorem. If S is a semigroup such that the set )
'{lsf:s in S and f in ,m(S)}' spang m(S), then {Ys:s in S}

18 uniformly restrictedly ergodic if and only if S <s amenable.

" Proof. If S is amenable, then, by Remark 1.6 (b), '{ys:s in S}

is uniformly restrictedly ergodic.
Conversely, suppose that {Yszs in S} is restrictedly

ergodic. Then, as a consequence of the proof of (1.5.3) implies
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(1.5.1) in Theorem 1.5, S is right amenable. Let h{¢n} be the
net of finite mean such that, for each s in S,

1 .
oy STe Yo = 1) Yy Ys~Y, Il = 0.
n n

By Proposition I1.1.6, there is a subnet '{¢k} of '{¢n} converg-
ing to some mean u in the w*-topology of m(S). Also note

that 11m l]y Y. = 0, for each s in S. Then, for all

s and t in S and each £ in m(S),

0= 50 lrgry, (D), O @)
- 11“ vy, (B (ts)-v, (f)(t)l
k

- 11m

lQ¢kC£tsf)-Q¢k(Z £) |

1im
R LUV RIS )

lue e £-£.£)].

(Note that the thrid equality‘follbws from Definition II.2.7.)
Hence, Z;u(&tf) = uCﬂtf). Since {2 f:s in S and f in m(S)}
spaﬁs m(S), for each £ in m(S), f = 21 -1 5 1 for some

s; in S and fi in m(S), 1 <1i <n. Hence, for each s in

S, -

1*1 S. f1]

22u(£) = Lm(f,]
= Zi=1 gu(zsifi)
= ziiluczsifi)

u(f).
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Thus, S is left amenable.

1.8. Consequences. As observed in Remark 1.4 if we replace weak

ergodicity by strong ergodicity in Theorem 1.3, then the corres-
ponding results hold for convergence in the norm topology. Fur-
thermore, if there is a weak cluster point bO' of the net
{An(b)}, then, there is a subnet {Ak} of {An} such that

lim
w="y Ak(b) = by and

sbo) = s(w-1,™ A, (b))

o'y Ay )
= bO’

for each s in S. (Note that the second equality holds, since
the strong ergodicity implies weak ergodicity.) Hence, by
is in CLCo0(b)(1 F. Consequently, {An(b)} converges strongly
to ‘bo. Thus, with Theorem 1.5 and above remark, theorems of

von Neumann, Riesz, Yosida and Kakutani follow.
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