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ABSTRACT 

For each y-measure preserving map from a measure 

space CX,A,u) into itself, the operator T defined on the 

Hilbert space L2(X,A,y) by 

Tf(x) = fC4>(x)), 

for each f in L2(X,A,y) and x in X, is a unitary operator. 

The mean ergodic theorem of von Neumann asserts that the arith- 

metic means T = — T^ of the iterates {T^}? , converges 

strongly in L2(X,A,y). This was extended to Lp(X,A,y), 1 < p < », by 

Riesz. Then Yosida and Kakutani generalized the above results to 

Banach spaces. They proved that if T is a bounded linear opera- 

tor on a Banach space then the arithmetic means {T^(b)>, b 

in B, converges strongly to bo if (i) supl|T^||< «» and 

Cii) bo is a weak cluster point of {T^(b)}. 

Eberlein has defined a semigroup S of bounded linear 

operators on a Banach space B to be ergodic if there is a net 

{A^} of averages of S such that the (1) sup[| A^|| < «», and 

(ii) the nets {A^(s-I)} and {(s-I)A^} converge to 0 for 

each s in S. From this definition, one can show that if bo 

is weak cluster point of {A^(b)}, b in B, then {A^(b)} con- 

verges to bo* Then, with Eberlein*s definition of ergodicity, 

one can paraphrase the mean ergodic theorems of von Neumann, Riesz, 

Yosida and Kakutani as an assertion that the uniformly bounded 

cyclic semigroups generated by a bounded linear operator on a 

-ii- 



Banach space is ergodic. One of the prime interest of this the- 

sis is to bring in a result of M. M. Day which characterizes those 

semigroups which are ergodic when they are represented as a uni- 

formly bounded linear operators from a Banach space into itself. 

These turn out to be the class of all amenable semigroups, i.e. 

those semigroups S which have a non-negative translation invari- 

ant linear functional of norm one on the Banach space of all 

bounded real-valued functions on S. Since the class of amenable 

semigroups includes the class of all Abelian semigroups, the 

theorems of von Neumann, Riesz, Yosida and Kakutani follow from 

Day's result. 

A great portion of this thesis is devoted to the 

study of these amenable semigroups. Results by various authors 

on the characterizations and combinatorial properties of these 

amenable semigroups are given. 

-'ll!- 
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INTRODUCTION 

Let (X,A,y) be a a-finite measure space and (j> be a 

U-measure preserving bijection from X onto X. The mapping T 

from the Hilbert space L2(X,A,ii) into itself defined by 

CD Tf(x) = f(^Cx)), 

for each f in L2(X»A,y) and each x in X, is a unitary 

operator. The mean ergodic theorem of J. von Neumann stated that, 

for each f in L2(X,A,y), the arithematic means T^f = (n+1)"^ 

r n i 
2, ^_Q T f converges strongly in L2(X,A,y) . His proof was based 

on the spectral theory of unitary operators on Hilbert spaces. It 

was then observed by F. Riesz that if T is defined on Lp(X,A,y), 

as in (1) , where 1 < p < then converges strongly on 

L (X,A,y), for each f in L (X,A,y). (Note that, for the case 
P P 

p = 1, the assumption that y(X) < «» is needed.) At the same 

time, Yosida [30], Yosida and Kakutani [31] proved, independently 

from F. Riesz, that if T is a bounded linear operator from a 

Banach space B into itself such that T^JI < «> and, for b 

in B, the arithematic means T b = (n+1)”^ T^b has a sub- 

sequence converges weakly to bo> for some bo in B, then 

{T^b} converges strongly to bo in B. Their result thus sub- 

sumed Riesz's result. If we consider n T^ as a representation 

of the additive semigroup of all non-negative integers as bounded 

linear operators from B into itself, then the mean ergodic theorem 
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may be considered as a result concerning the strong convergence 

of the means of this representation. This lead to a more general 

formulation for semigroup of operators by Alaoglu and Birkhoff 

[1]. It was Eberlein [8] who observed that ergodicity of a semi- 

group S of bounded linear operators from a Banach space B in- 

to itself really depended on the existence of a net 

erages of S such that is uniformly bounded and 

lim ^ (s-I) = 0 = (s~I)A , for each s in S. Notice that 

the convergence of the nets (A^Cs-I)} and {(s--I)A^} in differ- 

ent topologies gives rise to different strength of ergodicity. 

Say S is weakly, strongly and uniformly ergodic if {A^(s-I)} 

and {(s-I)A^} converge, for each s in S, to 0 in the weak, 

strong and uniform operator topology of the space of all bounded 

linear operators from B into B, respectively. One of the pur- 

poses of this thesis is to bring in a result of M. M. Day which 

characterizes those semigroups which are ergodic (weakly, strongly, 

and uniformly) when represented (or anti-represented) as uniformly bounded 

linear operators from a Banach space B into itself. These are 

precisely the so called amenable semigroups, i.e. those semigroup 

S in which there is a non-negative linear functional M of norm 

one on the space of all bounded real-valued functions on S such 

that y is invariant under left and right translations. In such 

a case, the various strengths ofergodicity are equivalent. The 

second purpose of this thesis is devoted to the studies of these 
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amenable semigroups. Various characterizations, combinatorial 

properties, and examples of amenable semigroups are given. 

The organization of this thesis is as follows: Chap- 

ter I §1, presents some basic concepts of functional analysis 

which we will use throughout this thesis. Then, in §2, we list 

some properties of the two function spaces, mCS) and ‘£■1CS) of 

a non-void set S, which we will encounter frequently in the 

subsequent chapters. 

The second chapter is devoted to a survey of some re- 

sults on amenable semigroups. Definitions of means, invariant 

means and their properties are given in §1. In §2, we introduce 

the Arens product on mCS)* which renders m(S)* a Banach alge- 

bra; and use this to facilitate the study of invariant means. In 

§3, we give various characterizations of amenable semigroups. 

Combinatorial properties and examples of amenable semigroups are 

given in §4. 

In the final chapter, we bring in M. M. Day’s result, 

which shows that the class of all amenable semigroups is exactly those 

that are ergodic when represented (or anti-represented) as uniformly 

bounded linear operators from a Banach space into itself. 



CHAPTER I PRELIMINARIES 

In this chapter We introduce some results on topological 

vector spaces on which the proofs in subsequent chapters are based 

We assume that the basic concepts in general topology are familar 

to the reader. The standard reference for these concepts is 

[20]. Also, since the propositions given in this chapter are well 

known, we will not bring in all the proofs. Nevertheless, for 

each proposition or theorem we state, at least one reference will 

be given. The standard references for results in topological vec- 

tor space are [7, 17, 18, 21, 28]. 

§1. Topological Vector Spaces. 

First, we note that all topologies we consider through- 

out this section are Hausdorff. 

1.1. Definition. A topological vector space (E,x) is a vector 

space E (real or complex) together with a topology T such that 

the mappings (x+y) x+y and (ot,x) ax are continuous. 

It can be proved directly from the definition that, for 

a topological vector space (E,T), the maps y a+y for each 

fixed a in E and y ->• ay for each fixed scalar a, a 4 0, 
are homeomorphisms from E onto itself. Hence, the neighborhood 

system of the origin determines the whole topology. 

We say a subset A of a vector space is convex if 

Xx+Cl~X)y is in A whenever x and y are in A and 
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0 1 ^ We are interested in those topological vector spaces 

which have a base o£ neighborhoods o£ the origin consisting o£ 

convex sets. Such spaces are called locally convex spaces* or 

simply convex space. 

A non~negative real--valued £unction p on a vector 

sapce E is called a semi-norm i£ pC^+y) < p(x) + p(y) and 

p(ax) = |alp(x), for all x and y in E and all scalar a. 

1.2. Proposition. Let CE»T) he a looalty convex space. Then 

T ts generated by a famtty of semi-’norms. 

Conversely^ if {p^} iel is a family of semi-norms on 

a vector space E^ the weakest topology that makes each p^^ i 

in I, continuous is a locally convex topology for E. Moreover^ 

the topology generated by {p^} iel is Hausdorff if and only if 

there isj for each x ^ 0^ some p^ such that 

See [28, Theorem 3 and Proposition 8, p. 15] for a proof. 

In view of the previous proposition, every family of 

semi-norms on a vector space determines a locally convex topology 

on the space. Important examples of locally convex space are 

those generated by a single semi-norm p (we usually denote p(x) 

by l|x|| ) with the additional property that ||x||>0 if x ^ 0, 

Such a semi-norm || || is called a norm and the locally convex 

space generated by || || is called a normed vector space, or normed 
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space. If a normed space is complete with respect to the metric 

generated by the norm, then it is called a Banach space. 

A linear transformation T:E F from a normed space 

E into another normed space F is bounded if 

||T|| = inf{||Tx|:x in E and ||x|| < 1} 

exists and is finite. It is well-known that T is bounded if 

and only if it is continuous. (See [7, Lemma 4, p. 59].) Further- 

more, the real-valued function |[T|| defined as above on the vec- 

tor space of all bounded linear transformations from E into F 

is a norm. 

1.3. Proposition. Let E and F be normed spaces and B(E,F) 

be the normed space of att bounded ttnear transformations fromB 

into F. If F is complete^ then BCE,F) is also complete. 

See [7, Lemma 8, p. 61] for a proof. 

The importance of locally convex spaces is that they 

have sufficiently many continuous linear functionals to seperate 

points. This is a consequence of the Hahn-Banach Theorem. 

1.4. Theorem.(Hahn-Banach) Let E be a real vector space and 

p he a suhlinear functionaly i,e, p is real-valued with 

pCx+y) < pCx) + p(y) and pCotx) = apCx) 

for all ■ X and y in B and every a > 0. For every real 
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linear funationdt f on a vector suhspace R of E with fCx) < pCx)j 

for all X in there is a real linear functional fo on E 

such that 

foCx) = f(x) and f(y) < p(y) 

for each x in H and each y in E. 

See [7, Theorem 10, p, 62] for a proof. 

In this thesis, we are interested in the following forms 

of the Hahn-Banach Theor em. 

1.5, Corollary« Let IE. be a real normed vector space and f he 

any real continuous linear functional on a vector subspace H of 

E. Then there is a real linear functional fo on E such that 

fflW = for each x in H, and |lfoll= !|fll- 

See [7, Theorem 11, p. 62] for a proof. 

1.6. Corollary. Let (E,T) be a real locally convex space and 

let A and B be disjoint closed convex sets in E. If A is 

compact^ then there is a continuous linear functional f on E 

and constants c and e > such that 

fCa) < c - e < c < f(b) 

for every a. in k and every b in B. 

See [7, Theorem 10, p. 417] for a proof. 



8 

For each topological vector space (E,T) we denote by 

E*, the dual space of E, the vector space of all continuous 

linear functionals on E. For each f in E*, define a semi- 

norm p^ on E by 

Pf(x) = |f(x)| 

for all X in E. Then the family E*} of semi- 

norms determines a locally convex topology on E, namely the 

weakest topology that makes each p^, f in E*, continuous. 

If CE,T) is a locally convex space, then, by Corollary 1.6 and 

Proposition 1.2, this topology is Hausdorff. We call this topo- 

logy the weak topology, or simply w-topology, on E induced by 

E* and denote it by a(E,E*) . In this topology, a net 

E converges to x in a(E,E*) if and only if ~ 

for each f in E*. In this case, we say converges weakly 

. j lim 
to X and write a>- x = x. 

n n 

In general, aCE,E*) is weaker than the original topo- 

logy T on E. However, for a convex set A in E, the closure 

of A in T is the same as the closure of A in a(E,E*). For 

future references, we put this down formally in the following 

proposition in a more general form. 

1,7. Proposition. Let E be a vector space. Suppose that E is 

given two tocatty convex topologies xj and X2 such that the 

dual spaces of E with respect to these topologies are the same. 
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Therij a convex set tn E is closed in xj if and only if it is 

closed in X2. 

See [7, Corollatyl4, p. 418] for a proof. 

Let {E^} be a family of vector spaces. Then the full 

direct product H E. of {E.} forms a vector space under the 
iel ^ ^ 

operations CCx^),Cy^)) (x^+y^) and (a,Cxp) (ax^) . 

1.8 . Proposition» Let ^ ^ family of locally con-- 

vex spaces. Then the full direct product E = II E. together 
iel ■ ^ 

with the product topology x of the topologies x^ forms a loc- 

ally convex space. 

Moreovery the weak topology a(E,E*) on E induced by 

E* is exactly the product topology of the topologies o(E^,Et). 

See [21, (17.13), p. 160] for a proof. 

Let (E,x) be a locally convex space. For each x in 

E, we define a semi-norm P on E* by 
* X 

P^Cf) - |fCx)| 

for all f in E*. If f ^ 0 in E*, then there is an x in 

E such that P (f) = |fCx)l > 0. Hence, the family {P :x in E} 

induces a Hausdorff locally convex topology on E*, called the 

weak*-topology, or simply 4>*-topology, on E*, and is denoted by 

a(E*,E). In this topology, a net converges to t 
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in a(E*,E) i£ and only if ~ ^Cx), for each x in 

1 im 
E. In such case, we write u>*~ f = f. 

n n 

Let E be a normed space. By Proposition 1.3, we know 

that E* is also a normed space. Let E** denote the continuous 

dual of E* with respect to the norm-topology on E*. Sometimes, 

we call E** the second dual of H. Consequently, together with 

the norm-topology on E*, the space E* has the a>-topology 

aCE*,E**) induced by E** and the -topology o(E*,E) induced 

by E. In general, a(E*,E) is weaker than a(E*,E**) while 

a(E*,E**) is weaker than the norm-topology on E*. 

Let CEJT) and (F,y) be locally convex spaces and 

T:E F be continuous and linear. For each f in F*, define 

T*f in E* by 

T*fCx) = f(Tx) 

for all X in E. Since T and f are continous and linear, 

T*f is the composition of two continuous linear maps. Hence, 

T*f is in E*. Thus, the linear transformation T*:f T*f from 

F* into E* is well-defined. We call T* the adjoint operator 

of T. 

1.9. Proposition. Every adjotnt operator is ui*-()i*--oontinuous, 

See [7, Lemma 3, p. 478] for a proof. 

Let E be a normed space. Proposition 1.3 shows that 
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E* is a Banach space. It is known that the closed unit ball 

{x* in E*:|| x* || <1} in E* is not always compact in the norm 

topology. 

1.10. Theorem. (Alaoglu) Let B* he the eonttnuoie duat of a 

Banaeh space B. Then the etosed unit batt is compact in the 

topotogy of B*. 

See [7, Theorem 2, p. 424] for a proof. 

Let E be a normed space and E* and E** be the dual 

and the second dual of E, respectively. For each x in E, 

define a map Q from E into E** by 

Qx(f) = f(x), 

for X in E and f in E*. Since Qx depends linearly and 

continuously on f, Qx is in E**. By the Hahn-Banach Theorem, 

Q is one-to-one and preserves norm. Hence, Q is an embedding 

of E into E**. This map Q is called the natural embedding 

of E into E**. We summarize the above in the following proposi- 

tion: 

1.11. Proposition. The mapping Q:E E** as defined above from 

a normed space E into its second dual E** is an isometric 

isomorphism from E into E**. That isj Q is linearj one-to- 

one and _ |)QX|| = l|x||, for all x in E. 
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See [7, Theorem 19, p. 66] for a proof. 

1.12. Proposition. Let Q he the natural emhedd'ing of a Banach 

space B tnto B**. Then QB ts dense tn B** with respect to 

the -topology aCB**,B*) of B**. 

For a proof, see [7, Corollary 6, p. 425]. 

§2. Two Special Banach Spaces . 

We give in this section some properties of two special 

Banach spaces which we will encounter throughout this thesis. 

Let S be a non-void set. We denote by m(S) the real 

Banach space of all bounded real-valued function on S with the 

norm defined by 

(2.0,1) II f II = sup{[f(x)|:s in S}, 

for each f in m(S). Let (S) denote the real Banach space of 

all real-valued functions <|> on S, such that exists 

and is finite, with the norm defined by 

(2.0.2) IHl = 

for each cj) in (S) . Here, the sum ^^^^ins 

aS where the limit is taken with respect to the 

directed set J of all finite subsets of S ordered by set in- 

clusion. It is well-known that if (p is in -(-i (S) , then the 

support of 4, (s in S:<j)(s) 4 is countable. (See [15, 
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Theorem 1, p. 19].) 

In the following, we give the notations of some special 

elements in m(S) and i(S) which will be used throughout this 

thesis. 

2.1, Notations. Let S be a non-void set and let m(S) and 

£l(S) be the Banach spaces defined as above. 

(2.1.1) For each subset A in S, define 1^ in m(S) by 

l^(s) = 1 if s in A and = 0 otherwise. In particular, 

we write 1 = 1^ and 1 = 1, for each s in S. S s is}' 

(2.1.2) Suppose f and g are in m(S). We write f > g if 

f(s) > g(s), for each s in S. In particular, when f > 0, 

where 0 is the zero function in m(S), we call f is non-nega- 

tive. 

2.2. Theorem. The mapping J:f Jf from m(S) into -fj(S)* 

defined hy 

df(4») = " 

for f in m(S) and in -^i(S) is an isometric isomorphism 

from m(S) onto -(j(S)*. That is: 

(2.2.2) J is ontOy one-to-one and tinear*; 

(2.2.2) ||jf|| = l|f|L 

for each; f in m(S). 
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See [18, Theorem 20.20, p. 353] for a proof. 

In view of Theorem 2.2 and Proposition 1.1, the next 

corollary is evident. 

2.3 Corollary. The mapping Q:£i(S) m(S)* defined by^ for each 

4> in (S) and each f in m(S), 

QW)C£) = l3^gf(s)4.(s), 

is a natural embedding of {S') into m(S)*. 

Another topology on the function space m(S) which will 

be useful in the later chapters is the pointwise topology. The 

pointwise topology on m(S) is the relative toplogy of the product 

topology on the product space n R , where for each s, R is 
seS s s 

the reals with the usual topology. In this topology, a net 

in m(S) converges to f in m(S) if and only = f(s), 

for each s in S; and we say converges- pointwise to f. 

Moreover, this topology is Hausdorff and is weaker than the u>*- 

topology on m(S), since the evaluation map is a linear functional 

on m(S). However, they agree on any norm-bounded set in m(S). 

This follows easily from an application of Theorem 1.10 and [20, 

Theorem 2, p. 220]. We put this down formally in the following 

proposition. 

2.4. Proposition. Let A he a norm-abounded and -closed set in 
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m(S). Then the -to-potogy and the pointiHse topology of mCS) 

agree on A. 



CHAPTER II AMENABLE SEMIGROUPS 

The study of amenable semigroups began vvhen Hausdorff 

[16] showed that no means exist on the space of all bounded real- 

valued functions on the surface of the 3-sphere which is invari- 

ant under rotation. Then, Banach [4] showed that there is a mean 

on the space of all bounded real-valued functions on the positive 

integer which is invariant under translations. J. von Neumann 

explained that the reason of the failure of the first case is the 

excessive non-commutativity of the rotation group of the 3-sphere, 

since there are plentiful of non-Abelian subgroups of the rotation 

group. Then M. M. Day [5] brought the subject to attention in 

his study of the ergodicity of bounded operator semigroups. 

The main purpose of this chapter is to display the pro- 

perties of amenable semigroups. In the first section of this 

chapter, we give the definitions and basic properties of means and 

invariant means. In §2, we show how an associative multiplication 

can be defined on the Banach space m(S)* so that m(S)* forms 

a Banach algebra. Then, we use this to facilitate our studies of 

the set of invariant means. The third section is devoted to the 

various characterizations of amenable semigroups. Finally, in 

§4, we bring in some combinatorial properties of amenable semigroups. 

1. Means and Invariant Means. 

This section is devoted to the properties of means on 
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m(S); and especially those that are invariant under translations. 

First, we give a definition of a mean on mCS). 

Let S be a fixed non-void set. 

1.1. Definition. An element y in mCS)* is called a mean on 

mCS) if 

Cl-I.!) inf{f(s):s in S} < yCf) < sup{f(s):s in S}, 

for each f in mCS). 

The following proposition gives some equivalent condi- 

tions for a linear functional on m(S) to be a mean. 

1.2. Proposition. If y is a mean on m(S)j then it satisfies 

the foVlcAi)ing properties: 

(1.2.1) y(f) > 0 if f > 0; 

(1.2.2) y(l) = 1; 

Cl.2.3) II y 11 = 1. 

Converselyy if y in m(S)* satisfies any two of the 

conditions (1.2,1), (1.2.2) and (1.2.3), then y is a mean* 

Proof. Suppose y is a mean on ra(S). Then (1.2.1) and (1.2.2) 

follows from the following inequalities: 

y(f) > inf{f(s):s in S} > 0, 

if f > 0; and 
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1 = inf{lCs);s in S) < vi(l) < sup{l(s):s in S} = 1. 

Since [1,2,2') holds, it follows that 

Cl.2.4) 1 = IvCDl 1 l| p|M|l|l= II Mil. 

For any f in mCS) , it follows from the definition of a mean 

that 

-sup{-fCs) :s in S} < ii(f) < sup{f(s):s in S}. 

Thus, [uCf) I < sup{|fCs)|:s in S} = ||f|| . Consequently, 

II p|l < 1. Combining this with (1.2.4), we have || y || = 1. 

Conversely, suppose y in m(S)* satisfies (1.2.1) and 

(1.2.2). From (1.2.1), we have y(f) < y(g) whenever f < g. 

For each f in m(S), let a = inf{f(s):s in S} and 

3 = sup{f(s):s in S}. Since al<f<gl, it follows from (1.2.2) 

that 

a = ay(l) < y(f) < 3y(l) = 3. 

Hence, y is a mean on ra(S). 

Suppose now that y satisfies (1.2.1) and (1.2.3). It 

is sufficient to show that (1.2.2) holds. Since 1 > 0, by 

(1.2.1) and (1.2.3), we have 

0 < MCI) = IMCDI < II M|1 ||I|| = 1. 

On the other hand, by (1.2.1), it follows that 

yCf) < sup{f(s):s in S}, 
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for each £ in mCS) . In particular, 

^ sup{-lCs):s in S} = -1. 

Hence, yClJ = > -1 and Cl.2.2) holds. 

Finally, suppose y satisfies (1.2.2) and (1.2,3). To 

prove that y is a mean it is sufficient to show that y satis- 

fies (1.2.1). Let f > 0 in mCS) be arbitrary and let 

3 = sup{f(s) :s in S} = |lf|| and a = inf{f(s):s in S}. Then, 

by (1.2.3) 

3-y(f) = y(3l-f) 

< IHl II Bi-fll 
= II Bl-£|1 
= sup{3-f(s):s in S} 

= 3 + sup{-f(s):s in S} 

= 3-ci 

Thus, y(f) > a > 0 whenever f > 0. 

1.3. Definition. Let 4> be in (S) . Then, <() is called a 

countable mean on S if 

(1.3.1) <(>(s) > 0, for all s in S; 

Cl.3.2) 

A countable mean on S is called a finite mean on 

S if its support, {s in S:(|)(s) 0}, is finite. 

1.4. Proposition. If c|) vn tiCS) 'is a countable^ or finite 
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mean on Sj then Q<|>^ where Q is the natural embedding of 

ti(S) into mCS)*j is a mean on iiiCS) . 

Proof, If 4> is a countable, or finite, mean on S, then since 

<|)(s) > 0, for all s in S, and =1, we have || <j> [| = 1. 

Since Q is isometric, || Q4> || = || 4>|| = 1. If f > 0^ then 

Q'(>t£) = I^^gctCsDfCs) > 0. 

By Proposition 1.2, Q(|) is a mean on m(S) . 

1.5, Remark. If 4> is a countable mean, or a finite mean, on S, 

then we call Q4> a countable mean, or finite mean, on mCS) . Let 

$ denote the set of all finite means on S. Then Q^> is the set 

of all finite means on mCS). Since Q is an isometric isomor- 

phism between ZiCS") and m(S)*, we use $, instead of Q$, 

for the set of all finite means on mCS) when no confusion 

arises. Since, for each s in S, 1^ is a finite mean on S, 

^ is non-void. Moreover, if (p and o are finite means and 

0 < a < 1, then 

= a+(l-a) 

1 



and acj)(s) + Cl-a)cyCs) > 0, for all s in S. Also, the support 

of a(f»+Cl-«)a is finite. Hence, a(|)+Cl-«)c? is a finite mean and 

$ is convex. 

1.6. Theorem. Let M be the set of att means on m(S). Then M 

is non-voidj convex and ui*-oompaat, 

Proof. By Remark 1.5, the set 4> of all finite means on S is 

not empty. Also, by Proposition 1.4, $ CM. Hence, M is non- 

void. 

To prove that M is convex, let p and X be means 

on m(S) . If 0 < a < 1, then 

[ay+(l-a)X](l) - ay(l) + (l-a)X(l) 

- a+(l-a) 

= 1 

and, if f > 0, 

[ap+(l~a)X](f) = ap(f) + (l-a)X(f) > 0. 

This shows that ap+(l-a)X is a mean and hence M is convex. 

Since the unit ball of m(S)* is co*-compact (Theorem 

1.1.10), we show that M is o)*-compact by proving that M is 

oj*-closed in the unit ball of m(S)*. Let ^ ^ 

such that y = y. Then 
n n 



Hence Also, for each n, > 0 whenever f > 0. 

1 

y(f) = ^ ^ ^ Evidently, y is a mean and it 

follows that M is 03*-closed in the unit ball. 

1,7. Proposition. The set $ of alt finite means on m(S) Is 

-‘dense In M. 

Proof. Suppose on the contrary that there is a y in M such 

that y is not in the (o*-closure of Since the w*-closure of 

^ is also convex, by Corollary 1.1.6, there is a w*-continuous 

linear functional on m(S)* which seperates $ and y. However, 

the 0)*-continuous linear functionals on m(S)* are exactly m(S) . 

Consequently, there is a f in mCS) and constants c and e, 

e > 0, such that 

sup{4>(f) :<J) in < c-e<c < y(f) . 

In particular, 

sup{f(s):s in S} = sup{Ql^(f):s in S} 

< sup{(|) (f) :c|) in 

^ c - e < c < y(f) . 

This contradicts that y is a mean. Thus, $ is w*-dense in M. 
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From now on, let S always be a semigroup, i.e. a non- 

void set S together with an associative binary operation 

(s,t) -> St on S. For each s in S, the semi-group structure 

induces two linear operators and on m(S) into itself 

defined by, respectively, 

£^f(t) = f(st) and Y^f(t) = f(ts), 

for each f in m(S) and t in S. Since ]>t^f(t) | < || f|| and 

|y fCt) I < II f II , for all t in S, t £ and y f are in m(S) . 

Also, it is easy to check that the mappings ^^‘£ and 

Y^:f -V y^f, for each s in S, are linear and bounded by 1. 

Furthermore, the adjoint operator £* and y* of and y^, 

for each s in S, is also bounded by 1. Also, it follows 

directly from the definition that ^ ^ > Y ^ = Y y^j 

Z* = Z*t* and y* = y*y* for every s and every t in S. 

1.8. Definition. Let S be a semigroup. A mean y on m(S) 

is called left [right] invariant if y(f) = y(f.^f)[y(f) = y(Ygf)]j 

for every f in m(S) and every s in S. An equivalent defini- 

tion is that y is a left [right] invariant mean if f.* = y[y*y = y], 

for each s in S. If y is both left and right invariant, then 

it is called a two-sided invariant mean, or simply an invariant 

mean. 

1.9, Definition. A semi-group S is called a left [right] amenable 
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semigroup if the space mfS) admits a left [right] invariant mean. 

If m(S) admits an invariant mean, then S is called amenable. 

solvable groups and finite groups. The proofs of these facts will 

be given in §4 of this chapter. 

Let y be a left [right] invariant mean for the left 

[right] amenable semigroup S. By Proposition 1.8, there is a 

net of finite mean which converges to y in the o)*-topology 

of m(S) . Since every adjoint operator is -continuous (see 

Proposition 1.1.9), for each s in S, we have 

for every s in S. An immediate question is whether the exist- 

ence of such a net which satisfies the above condition is suffic- 

ient for the amenability of S. First, we define the followings, 

1.10. Definition • Let be a net of means on m(S) . Then 

Examples of amenable semigroups are Abelian semigroups. 

Consequently, we have 

{y^} is called w*-convergent [norm-convergent] to left invariance 

if 
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0)*-^^™ (e*y -^14 ) = 0 II e*p -y || = 0] 
n s n n ^ n “ s n n" 

for each s in S, 

1.11. Proposition« Suppose that ts a net of means on mCS) 

such that y - P y = y] .. Then y ts a left or 

vtght invariant mean if and only if ^-convergent [norm- 

co7rvergent'\ to left or right invariance respectively^ 

Proof. We prove only the case of left invariance. The necessity 

follows from the previous discussion. The sufficiency follows 

from the identities 

0)*~ 

lim 
n n 

*_lim 
n s n 

Ui”-' 

r lim 
[y = n~ y 

n n 
= n- 

lim 
n 

t* y = £*y]> 
s n S '* ^ 

for all s in S. 

1.12. Corollary. If <2 net of means which is w*-conver- 

gent to left [righf\ invariance then every -cluster point of 

{y^} is a left [right"] invariant mean. 

Proof. If y is a OJ*-cluster point of then there is a 

1 im 
subnet ^^n^ such that co*- ^ y^^ = y, By Proposition 

1.11, y is a left [right] invariant mean. 

1.13. Corollary. A semigroup S is left [right] amenable if and 

only if mCS) admits a net of finite means which is ui-^- 
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convergent to left [right] invariance. 

Proof. The Corollary follows from Theorem 1.6, Propositions 1.7, 

1,11, and Corollary 1.12. 

§2. The Arens Product. 

In this section, we introduce the Arens product defined 

on m(S)* which makes the Banach space mCS)* into a Banach 

algebra. Moreover, under this product, the set of all means on 

mCS) forms a semigroup. First, we give the definition of a 

Banach algebra. 

2.1. Definition. A Banach algebra B is a Banach space together 

with a binary operation (hi,b2) bj-b2 which satisfies the 

following properties : 

(2.1.1) 

(2.1.2) 

and 

(bi.b2)-b3 = bi-(b2*b3); 

bi•(b2+b3) = hi *b2+bi*63 

(b2+b3)-bi = h2*bi+b3*bi; 

(2.1.3) ot(bi *b2) = (ctbi) *b2 = bi • (ab2) ; 

C2.1.4) II bi .ball < II bill I ball, 
for all b^, i = 1, 2, 3, in B and all scalars a. 

Let S be a semigroup and let <|) and a be two ele- 

ments in (S) . Define a function on S by 

♦aCs) = , 



27 

for all s in S. Since 

= Ixesl^Wl 

= 11*11 lull. 
<f>a is well defined and is in (S) . Hence (<j>,o) -y <po is a 

binary operation on f-i (S) . 

2.2. Proposition- The Banach space £-i (S) under the htnary opera- 

tion ((J)3 0) <1)0 defined ahove forms a Banach algebra. Further- 

more^ the mapping s 1^ is a semigroup isomorphism from S in- 

to the multiplicative semigroup of the Banach algebra t\ (S). That 

is^ 1^^ = ^s^t-* ^ ^ 

Proof. Since || 4>o\\ = - H H 

a in (S) , condition (2.1.4) holds. The properties (2.1.2) 

and (2.1.3) of Definition 2.1 follows directly from the distribu- 

tive law and commutative law of the reals, respectively. 

For the associativity, let <(>,o and C be in (S) . 

For each s in S, 

[C4>cj)c](s) = L _ _-<l>tJ(si)cCs2) SlS2“S 
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° ^Ctlt3)S2=sI'‘'ttl)a-Ct3}]C(S2) 

= [<I>(CJ^C)] (s) . 

Hence, (S) is a Banach algebra. 

Finally, let s and t be in S. Then 

= Ix=XiX2^s(^l^^t<^^2) • 

Hence, 1^1^(x) =1 if x = st and 1^1^ (x) = 0 otherwise. 

Thus, " ^st* completes the proof. 

In [2] , Arens showed how an associative multiplication 

can be defined on the second conjugate B** of a Banach algebra 

B. This multiplication makes B** into a Banach algebra and ex- 

tends the multiplication in B. In this thesis, we are interested 

in the special case when B is the Banach algebra Zi(S). 

Now, we follow Arens' procedure in defining a multiplica- 

tion in It consists of three steps: 

(A) For each f in ^i(S)* and ({> in (S), define a func- 

tion f * 4> in ^iCS)* by 

£*<|)Ca) = fC<l>cy), 
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for all a in (S) . 

CB) For each u in £.iCS)** and f in -tiCS)*, define a func~ 

tion y * f in by 

y*f((f>) = y(£*<j)), 

for each <() in -ti CS) . 

(C) For each pair X and y in define X * y in 

llCS)** by 

X*yCf) = XCvi*f), 

for all f in f.i(S)*, 

2.3. Remark. We remark that the above operations are well-defined. 

First, it follows easily from the fact that iCS) is a Banach 

algebra, the function f * <j> defined in (A) is in £i(S)*. Also, 

the following properties can be checked easily: 

(2.3.1) II £H|| s II £|| lull ; 

C2.3.2) f*C4)+a) = f*(j>+f*a; 

(2.3.3) (f+g)*4> = 

(2.3.4) f*(a(f)) = a(f*4») = (af)*c() 

for all f and g in £-iCS)*, all (j> and a in -ti (S) and 

all scalars a. 

Using these properties, we can prove that the function 

defined in Cb) is indeed in -fi(S)*. Furthermore, the following 

properties follows immediately from the properties (2.3.1) to 
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(2.3.4) : 

(2.3.5) 

(2.3.6) 

(2.3.7) 

II II s II nil II £|| ; 
lJ*(f+g) = y*f+y*g; 

y*Ca£) = a(y*£) = Cf^y)*£, 

£or every y in and all f and g in £i(S)* and 

all scalars a. 

Finally, suppose that X*y is the function defined in 

(C). Then by (2.3.6) and (2.3.7), X*y is linear. By (2,3.5), 

we have 

|x*y(f)l = |x(y*f)| 

s lull II V*£|| 

s lull II vll lull . 
Hence, X*y is in £i(S)** and 

(2.3.8) IU*u|l < lUII lull . 
for all X and y in f-i(S)**. 

Therefore, the operation * is well-defined. Hereafter, 

we called * the Arens product. 

2.4. Lemma. Let X and y be Ln £i(S)** and f in ^i(S)*. 

Then 

(2.4.1) (X*y)*f = X*(y*f). 

Proof. For each f in £2(2)* and all 4> and o in £1 (S), 

we have 
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[(£*<!>)*a] (C) = C«JC) 

= fUCac)] 

= f[C4>a)c] 

= [£*<J>a](c), 

£or every c in Xi (S). Thus = £*(<|)a). It £ollows that, 

£or each u in -CjCS)**, £ in £j(S)* and in £-i(S), 

[Qi*£)*4>] Ccj) = vi*£(<i>cy) 

= yC£*4>t?) 

= y I (£*({>) *a] 

= [y* (£*(}»)] Co) , 

£or every a in (S) . Hence Cy*£)*t(> = y*(£*<f>). Then, this 

equality implies that 

[(A*y)*£] (4>) = X*y(£*(|>) 

= X[y*(£*(j))] 

= X[(y*£)*(j)] 

= X[(y*£)*(j)] 

= [X*(y*£)J (<J>), 

for all X and y in £-i(S)** and each £ in ^i(S)* and for 

every in (S). Hence, C2.4.1) holds. 

2.5* Theorem, The Banach space ZiiS)** together with the Arens 

product forms a Banach algebra. Moreover^ the natural embedding 

Q:£l CS) ^iCS)** is an isometric isomorphism from the Banach 
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algebra CS) 'into , That 'is^ 

(2.5.1) Q one-to-one and lineccr; 

(2.5.2) llQ<l>ll= lull; 

(2.5.3) QC4>cr) = Q(|)*Qa, 

for all (p and o tn t\ (S). 

Proof. Let (*),X and y be elements in -fiCS)**. By (2.4.1) of 

Lemma 2.4, we have 

[(a)*X)*y] (f) = [u)*X] (y*f) 

= a>[X* (y*f) ] 

= w[(X*y)*f] 

= [(u*(X*y)] (f) , 

for each f in >ti(S)*. Hence, the Arens product is associative. 

For the distributivity of the Arens product, we first 

claim that, for all X and y in £.i(S)** and each f in 

^iCS)*, 

(X+y)*f = X*f+y*f. 

If <p is in Zi (S), then 

[(X+y)*f] (4>) = [X+y] (f*<{)) 

= X(f*(j))+y (f’^4) 

= [X*f+y*f](4). 

Hence, the assertion is true. Now, for all a>,X and y in 

f-2(S)**, from the above claim, we have 
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[(o*C^+u)](f) = 

= to[X*£+vi*f] 

= (X) (x*f)+ai Cy*£) 

= [oJ*X+a)*u] (£) 

and 

[ (w+X) *y ] C-£) = [o)+X ] (y * £) 

= w Cy+£)+x (y*f) 

= [a)*y +X*y] (£) , 

£or all f in £i(S)*. Thus the distributivity o£ the Arens pro- 

duct is proved. 

For the property (2.1.3) o£ De£inition 2.1, we let X 

and ]x be in £.i(S)** and a be a real number. From (2.4.7), 

it Follows that 

[a(X*y)](£) = [X*y](af) 

- X[y*Ca£)] 

= X[aCy*£)] 

= [CaX)*y](£) 

and 

[aCX*y)](£) = X[y*(a£)] 

= X[Cay)*£] 

= IX*Cay)](f), 

£or every f in ZiCS)*. Thus, 
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= (aX)*y = A* (ap) . 

Combining with C2.4.8) of Lemma 2.4, we have that 

is a Banach algebra. 

Finally, since Q is an isometric isomorphism from the 

Banach space -Ci (S) into it only needs to prove condi- 

tion (2.5.3). For all <() and a in CS) and f in -^i (S)*, 

Q(<l>Q)(f) = (cr) 

= QaCf*(J)) 

- Q<J*f(<i>) 

= Q<J>CQa*f) 

= Q(j)*Qa(f). 

This completes the proof. 

2 .6. Remark. In view of the last theorem and Theorem 1.2.2, we 

have that m(S)* is a Banach algebra with the Arens product as 

multiplication. Furthermore, if f is in m(S) and s in S, 

then 

= f(st) = £g£(t); and 

Ql^*£Ct) = Ql3(-e^£) = £(ts) = Ys^Cth 

for all t in S. Hence, we have 

(2.6.1) f*l = f. f and Q1 *£ = y f ^ s s s s 

It follows that, for each y in m(S)* and f in m(S), 
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(2.6.2) £*pCf) - H*fCs) and Y*y(£) ^ > 

for each s in S. 

2.7. Definition. Let 4> be in £i CS) . We define two linear 

operators and from m(S) into itself by, 

(2.7.1) (f) Cs) = Q<j> (Y3f) ; and 

(2.7.2) Y^Cf)(s) = QK^gf), 

for each s in S and each f in m(S) . 

2.8. Remark♦ We remark that the above definitions are well-de- 

fined. Observe that |f^(f)(s) | = iQ^jjCY^f) | 1 || f|| || II and 

|Y^(f)(s)| = |Q<|)('£3f)| < || f|l lUII . Hence, Y^j,f and are 

in m(S) . The linearity of and Y. follows directly from 
<p «P 

the linearity of Q4>, and Y^* Hence, and Y^ are lin- 

ear operators. Furthermore, 

(2.8.1) IU^I|<1U11; and 
(2.8.2) IIY^NIUII. 

for each (p in fi(S). 

2.9. Lemma. Let f he in m(S) and ({> in f-i (S). Then we have 

(2.9.1) l^Cf) = f*<P 

Proof. If <P is in f i (S) and f is in m(S) , then by (2.6.1) 

Uf(s) = Q(|)(Y3f) 

we have 
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= Q((.CQl3*f) 

= f*')> Cs) . 

This completes the proof. 

2.10. Theorem. Let cf) in (S) and \ in m(S)* he fixed. 

Then the mappings y 

(2.10.1) u ccnd 

(2.10.2) p y*X^ 

ctre in*^continuous from m(S)* into itself. 

Proof. To prove that y -> Q<{)*y is o)*-ui*-continuous, we first 

claim that £*y = Q4>*y, for each y in m(S)*. Let f in m(S) 

be arbitrary. Then the assertion follows from the following equali- 

ties; 

= U[f*<l)] 

s= y*f((j>) 

= Q<l)(y*f) 

= Q((>*yCf) . 

Hence, by Proposition 1.1.9, the adjoint operator y ->■ Q(j>*y = £*y 

is w*-w*-continuous. 

Finally, to prove that y y*X is O)*-(JJ*-continuous, 

let {y } be a net in m(S)* such that y = y. Then, 
n ^ ^ n ^n ^ * 
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for each f in mCS), 

lim 
n y^*X(£) 

lim 
n 

]4 (X*f) n ^ 

= HCX*£) 

= y*x(£) 

and this proves that y is w*-(o*-continuous. 

2.11. Lemma. If X %n mCS)* sati.sf'ies that f.*X = X, for each 

s in S3 then 

H*X = 

for alt y in mCS)*. 

Proof. Suppose that X satisfies that £*X = X, for each s 

in S. Observe that, for each £ in m(S), X*£(s) = X(£^£) = X(f). 

Hence X*£ = X(£)l. It follows that, for each cj) in -fi (S) and 

f in m(S), 

H*X(f) = y(X(f)l) 

= nCl)X(f). 

This finishes the proof. 
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2.12. Theorem. Let M he the set of aVL means on mCS) and let 

LIM and RIM he the set of dtt left and night invariant means^ 

respeativeZy, Theiywith respect to the Arens product^ 

C2.12.1) M is a semigroup; 

(2.12.2) If LIM is non-void^ then LlM forms a two-sided 

ideaZ of M^ i,e,^ LIM*McLIM and M*LIMcLIM. Moreover^ for each 

\ in LIM and y in M^ 

y*X = X; 

(2.12.3) If RIM is non-voidy then KlU forms a left ideal of 

the semigroup M", that is 

M*RIM^IM; 

(2.12.4) If LIM and RIM are non-void; then LIM*RIM consists 

of two-sided invariant means. 

Proof. To prove that M forms a semigroup, it is sufficient to 

show that M is closed under the Arens product. Let y and X 

be in M. Since 1*1 =1, for all s in S, we have 

ii*l(s) = y(l*l^) = y(l) = 1. This implies that X*y(l) = X(y*l) = 

X(l) = 1. Furthermore, 

1 = |x*yCD l <11 x*p|| < II X|| 11 vl = 1. 
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Hence, A*]JC1) = || X*yj| = 1, and^ Proposition 1.2, X*y is 

a mean. Consequently, M is closed under the Arens product. 

Suppose that LIM is non-void. Let X be a left invari- 

ant mean and y in M. Then, by Lemma 2.11, we have y*X = y(l)X 

= X and hence M*LIM£LIM. Furthermore, to prove that X*y is 

also in LIM, we first claim that Cy*^)*!^ = U*(f*lg)> each 

f in m(S) and each s in S. Let t be in S. Then by (2.6.2) 

of Remark 2.6, we have 

[y*(f*l^)]Ct) = y[f*lg^] = y*f(st) = [ (y *f) *13] (t) , 

and this proves our assertion. Therefore, for each s in S and 

each f in m(S), 

'C*[X*y] (f) = [X*y] (f*i3) 

= Xly^Cf*!^)] 

= X[(y*f)*l^] 

= £*X[y*f] 

= X[y*f] 

= X*y(f) 

and hence X*y is left invariant. Thus, we have LIM*N^IM and 

(2.12.2) is established. 

Now, let y be in RIM and X in M. For each f in 

m(S) and all s and t in S, we have 

= y['^^(Y3f)] 
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= 

= y*fCt) 

and hence p*Y3f = y*f. It follows from the following equalities: 

Y*[X*u](f) = [X*u](Y^f) 

= x[y*Y3f] 

= X[y*f] 

= x*u(f) 

that X*\i is in RIM. Thus, M*RIM£RIM. 

Finally, if RIM and LIM are non-void, then, by (2.12.2) 

and (2.12.3) that 

LIM*RIM£LIM n RIM. 

Hence, LIM*RIM consist of two sided invariant means. 

2,13. Corollary. If a semigroup is both left and right amenabley 

then it is amenable. 

Proof. This is an immediate consequence of (2.12.4) of Theorem 

2.12. 

Characterization of Amenable Semigroups. 

Work has been done on characterizing amenable semigroups. 

In this section, we first collect all the necessary and sufficient 

conditions on a semigroup to be left amenable. Similar results 
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for the case of right amenable semigroups holds with some minor 

exceptions. Finally, we prove the ”F(j>lner*s condition" and "strong 

F^lner's condition’'for amenable semigroups. 

Before we go into the main theme of this section, we 

give some necessary definitions. 

3.1. Definition. A representation [or anti-representation] T of 

a semigroup S over a normed space X is a semigroup homomorphism 

[or anti-homomorphism] s ■> from S into the semigroup L(X,X), 

of all bounded linear operators from X into X. That is. 

T ^ = T [or T ^ = T^T ], 
St St, St t S'* * 

for all s and t in S. If sup{ || T^|[ :s in S} < then T 

is called bounded. 

Furthermore, if X = mCS) and is or Yg> ^or 

s in S, then they are called regular left or right representa- 

tion respectively. 

Let T be a representation (or anti-representation) of 

S over a normed space X. For each element (p in i (S) with 

finite support, we define a linear operator on X by 

In particular, for the regular left and right representation, 

Y. and Z. coincide with those in Definition 2.7. 
<P <P 
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3.2. Lemma. Let T he a bounded representation [or anti-~repre-^ 

sentation\ of S over a normed space X. Then^ for eaeh (f) and 

a in (S) wi^th finite supports and for each scalar' 

C3.2.1) 

C3.2.2) 

C3.2.3) 

where M = sup{ || T^|| :s in S}; 

(3.2.4) = T^T [or = T T. ] . 
^ ^ <(>a a <^cr a (I)-* 

Tx = Tx + T ; <|)+a (|) a 

^a<|) ° 

II T^ll < Mil <j.|| . 

Proof. The conditions (3.2,1) and (3.2.2) follows directly from 

the definition. 

Since M = sup{ || T || :s in S>, we have 

= II ^seS^f^^T^II 

^Isesl^t-^lll^sll 
S II *11 M, 

and hence (3.2.3) holds. 

Finally, for (3.2.4), we prove only the case of anti- 

representation. Since the support of is contained in the 

product of the supports of (p and of a, has finite support 

and T. is defined. Hence 
(f>0 
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= cites" 

= T T^ 
a (() 

and this establishes (3.2.4]. 

Let CE,T) be a locally convex space. For each subset 

A of E, we denote by CoCA) the convex hull of A; by 

T-CC-(A) the T-closure of A. We will write x-CtCoCA) for 

T-Cf.(Co(A)) . If E is a normed space, we use Cf.(A) for the 

uniform closure of A. 

3.3. Notation. Let T be a representation [or anti-representa- 

tion] of S over a normed space X. 

(3.3.1) For each x in X, by the orbit of x in X, 

we mean the set 

0(x) = {T^(x) :s in S}. 

In particular, for the regular left and right representation, we 

write, for each f in m(S), write LO(f) for {Z^f:s is in S} 

and RO(f) for {Y^f:s e S}, respectively. 

(3.3.2) Let denote the linear span of the set 

{x-T^(x):x is in X and s is in S}. For the regular left 

representation, we write K for ’ 
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3.4. Definition* A semigroup S is called right stationary if, 

for each f in mCS), there is at least one constant function in 

a)*-CeCoRO{f) . 

3.5. Lemma. Let S he a right stationary semigroup^ Then^ for 

each a in S and f in mCS)^ there is a mean y on mCS) 

such that^ for eaeh s in 

(3.5.1) y[£^(f>^^f)] = 0; 

(3.5.2) y*(f->t f) = 0. 
a 

Proof. Let f in m(S) and a in S be arbitrary. Since S 

is right stationary, there is a net finite means such 

XjLin 
that w*- Y, f = cl, for some constant c. For each s in 

n 

S, 

= c - c 

^ 0. 

By Proposition 1.7 and Theorem 1.6, there is subnet 

1 ini 
{<|>^} and a mean y such that “ 1^* Then, for each 

s in S, 

= 0 
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and this proves (3.5,1). 

To establish (3.5.2), we observe that, for each s in 

S, 

y* (£-^^£) (s) = y i *1^] 

= 

= 0. 

This completes the proof. 

By an affine map F on a vector space E into E it- 

self, we mean a function F on E that satisfies 

F[ax+(l-a)y] = aF(x) + (l-a)F(y) , 

whenever x and y are in E and 0 < a < 1. 

3.6. Theorem. Let S be a semigroup. Then the following condi- 

tions are equivalent: 

(3.6.1) S is left amenable; 

(3.6.2) there is a net of finite means on m(S) 

that is Hi*-convergent to left invar*iance; 

(3.6.3) there is a net of finite means on m(S) 

that is norm-convergent to left invariance', 

(3.6.4) for every anti-representation in S} of S 

over a normed space X with || T^|| < 1 for each s e S, 

dist(OjCgOCx)) = dist(0,x+K^), 
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for every x in X; 

C3.6.5) distCO,l+iq = 1; 

C3.6.6) 

for every 

C3.6.7) 

for every 

in£{h(s):s 

h in Yi; 

sup{h(s):s 

h in Kj 

is in S} 

is in S} 

C3.6.8) 

thatj for att 

stant function; 

there is a net (<f> } 
n 

f in mCS), {y . f} 
^n 

^ 0, 

> 0 

of finite means on S such 

converges pointDise to a con- 

(3.6.9) S is right stationery; 

(3.6.10) every representation of S as continuous affine 

maps from a compact convex set in a tocatty convex space into it- 

self has a common fixed point. 

Proof. We prove the theorem by proving (3.6.1) (3.6.2) (3,6.3) 

(3.6.4) (3.6.5) (3.6.1) ;(3.6.1) (3.6.6) (3.6.7) -> (3.6.5); 

(3.6.1) -> (3.6.8) -> (3.6.9) -> (3.6.1); and (3.6.8) (3.6.10) 

(3.6.1) . 

That (3.6.1) implies (3.6.2) follows immediately from 

Propositions 1.7 and 1.11. 

To show (3.6.2) implies (3.6.3), let =f.i(S), for 

each s in S. Then, by Proposition 1.1.8, E = E^ with the 

product topology x of the norm^topologies on E^ is a locally 

convex space and the w-topology a(E,E*) of E is exactly the 
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product topology o£ the a)-topology of Define a 

linear transfoimation T:£i(S} E by 

TC« = 

for each {j> in f-i CS) . The linearity of T follows from the 

fact that 1CS) is a Banach algebra. Since the set $ of all 

finite means is convex, T[^>] is convex. By Proposition 1.1.7, 

we have x-Cf-CTf^]) = w-Cf(T[4>]) . The condition (3.6.2) implies 

that 0 is in w-C£.(T[$]) and hence in T-CC(T[$]). Thus, there 

is a net in ^ such that {T(cj)^)} converges to 0 in x. 

It follows from the continuity of the projections that 

converges to 0 in the norm-topology of f-i (S), for each s in 

S. This establishes (3.6.3). This result is originally due to 

M. M. Day [5]. But his proof is complicated and the foregoing 

proof is due to Namioka [26]. 

Now, to prove (3.6.3) implies (3.6.4), recall that, for 

all subset A and B in a normed space X, dist(A,B) = 

inf{ II a-b||:a in A and b in B}. Let x in X be arbitrary. 

For each y = 7 „cJ)(s)T (x) in CoO(x), it follows from the 

following sets of equalities 

y - X - X + y 

= X + <Ks)(T^(x)-x) 



48 

that CQOCX) C X + kence 

Ca) distCO,CQO(X) > distC0>x+K^) . 

To show the reverse inequality, let be a net of finite 

X xin means such that || d) -1 6 || = 0, for each s in S. For n " ^n s n“ ’ 

every c > 0, let y == T.^TX.-T (X.), X. in X and s. in 
' ^1=1 1 s * 1 1 1 1 

S, 1 < i < m, be in such that 

II x+y|l < dist(0,x+K^) + e/2, 

Let n be such that, for all i = 1, 2, m. 

II < e/2mM, 
i 

where M = max{ || x^||:l < i < m}. By Lemma 3.2, we have 

l|T^^(y) ll = II T^^[&i-T3_(x.)] II 

= n 1 

(X. < y I T - ^i=l II -1 ^ ' 1' 
^n s.^n 

< I-MU -1 I II l|x.|| - ^1=1 " '^n s.^n“ " 1" 
1 

s r“J| * -1 4> II M ^1=1 II s^n " 

< e/2. 

Hence, 

11^4 Cx)|t= 11 T Cx+y)-T Cy)l| 

1 II T, Cx+y) II + II T (y) II 
^n ^n 

< II ♦nil II x+y|| + c/2 
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< distCO,x+K^) + e. 

Thus, we have shown that, for every e > 0, there is a XQ = T. (x) 

in CoOCx) such that ||xo|| < distC0,x+K^) + e. Consequently, 

we have 

tb) distC0,CQOCx)] = in£{ II y|( ;y is in CQOCX)} 

< distC0,x+Kj^) 

and, combining inequalities (a) and (b), (3.6.4) follows. This 

result is due to Glicksberg [12] and the proof above is due to 

Granirer [13]. 

To prove. (3.6.4) implies (3.6.5), since 

is an anti-representation of S and II ^3II - ^ each s, we 

have 1 = dist(0,CoO(l)) = dist(0,l+K). 

Now, we prove (3.6.5) implies (3.6.1). The condition 

(3.6.5) implies that 1 is not in K. By an application of the 

Hahn-Banach Theorem (See [7, Lemma 12, p. 64]), there is a y in 

m(S)* such that y(l) = 1 and y(h) = 0 for all h in K, 

with II y|| - 1/dist(0,1+K) =1. By Proposition 1.2, y is a mean. 

Since f - is in K, for each f in m(S) and s in S, 

y(f-f-^f) = 0 and hence y is a left invariant mean. 

To prove that (3.6,1) implies (3.6.6), let y be a left 

invariant mean. Then y(h) = 0, for all h in K. By the de- 

finition of means on m(S) , we have 

inf{h(s);s in S} < y(h) = 0, 
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for each h in K. 

To see that (3.6.6) implies C3.6.7), we observe that 

sup{£(s):s in S} = - inf{-fCs):s in S}, for all f in m(S). 

Then, for each h in K, ~h is in K and hence 

sup{hC.s):s in S> = - inf{-h(s):s in S} > 0. 

This result is due to Dixmier [6]. 

Now, we show that C3.6.7) implies (3.6.5). Since 

1 = 1+0 is in 1+K, distC0,l+K) is at least one. By (3.6.7), 

we have, for each h in K, 

1 < 1 +{sup h(s):s in S} 

< sup{l+h(s):s in S} 

< sup{Il+h(s)I:s in S) 

= II l-h|| 

and hence 1 < dist(0,1+K). This establishes (3.6.5). 

To show that (3.6.1) implies (3.6.8), let y be a left 

invariant mean. By Proposition 1.7, there is a net of 

X im finite means such that to*- Qd) = y. Hence, for each f in n ^^n * 

m(S) and t in S, 

n 

Hence, this establishes (3.6.8). 

That (3.6.8) implies (3.6.9) follows from Proposition 

1.2.4 that f} converges pointwise to constant if and only if 
■^n 
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it converges to a constant function in the w*^topology of mCS). 

Then, C3.6.8) becomes formally stronger than (3.6.9). 

Novr, we prove C3.6.9) implies (3.6.1). For each f in 

mCS) and each a in S, let 

K(f,a) = {<l> in (f-^^f)] = 0, for all s in S}. 
S cL 

By Lemma 3.5, K(f,a) is non-void, for each f in m(S) and 

each a in S. If Y = {fi,...,f } is in m(S) and 
n 

F = {ai,...,a^} is in S, then define K(Y,F) = ^^^K(f^,a^). 

First we claim that K(Y,F) is non-void. By Lemma 3.5, we know 

that if n =1, then K(Y,F) is not empty. Assume that there 
n-1 

is a u in K(f.,a.)« Then, let A be in K(y*f ,a ). 

Observe that, for each 03 in M, each g in m(S) and each s 

in S, . Hence, by (3.5.2) of Lemma 3.5, we have 

X*y[£^(f.-£^ f.)] = X[p*£^(f.-£^ fp] 
i i 

= fp] 

= 0. 

for 1 < i < n-1, and 

x*u[£s(f„-£3 £„)] = 
n n 

= 0, 

for every s in S. Thus, A*y is in K(Y,F). Consequently, 

the family jt = {K(f,a):f in m(S), a in S} has finite inter- 

section property. Let f be in m(S) and a in S. For each 
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s in S, define K - £ (£->£. £). Then h is a w*-continuous 
S S S 

linear functional on mCS)*. It follows that KCf,a) = MD C ^Qh~^ 
sc o S 

is (o*-closed in M. By the w*compactness of the set M, (J has 

non-empty intersection. Let p be in n{c;c is in (J}. For 

each f in mCS) and s in S, p is in K(f,s) and by (3.5.2) 

of Lemma 3.5, 

- y[y*(f-^^£)] = 0 

Hence, ii*p is a left invariant mean. Moreover, for any X in 

M, X*p will be a left invariant mean also. This result is due 

to Mitchell [25] and the above proof is due to Granirer and Lau 

[14]. 

We now prove that C3.6.8) implies (3.6.10). Suppose 

that {(j) } is a net of finite means such that {y. f} , for 
n d> 

n 
each f in m(S), converges pointwise to a constant. Let S 

be represented as continuous affine maps from a compact convex set 

C in a locally convex space E into C itself. For each 

we define the affine map F by F (x) = ^ „<{) (s)s(x), for 

each X in C. Since C is convex, is in C, for each 

X in C. Hence F is well-defined. Fixed a y in C. By 

the compactness of C, there is a subnet (F, (y) } of (F (y)} 
iC T1 

1 im 
and a yo in C such that ^ ~ * ^Note that, for each 

f in mCS), the corresponding subnet {y f} converges point- 

wise to a constant function also.) For each X in E*, 

(0)) 

we define 
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on S by f^(s) = ACsCy}), for each s in 

compact and X is continuous, £ is in m(S). 
A 

t in S and each k. 

S. Since C is 

Also, for each 

= ^[tdjgS'f'i^CsDsCy)] 

= x[t(F,jCy))]. 

Since {y, f, } converges pointwise to a constant, say a, we 

have 

lim o 
“ = k 

= ^k" ^It(F^(y))] 

= k[tCyo)]. 

Hence, for any SQ in S, [so(yo)] = [s(so(yo))] = a, for 

each s in S. Since E is locally convex, it has enough con- 

tinuous linear functionals to seperate points. Therefore, it 

follows that sCsgCyo)) = SoCyo)j for each s in S, and hence 

soCxo) is a common fixed point for S. This result is due to 

Day [5] and the foregoing proof is due to Mitchell [25]. 
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To see (3.6.10) implies C3.6.1), observe that 

U*:s is in S) is a representation of S as continuous affine 

maps from the w*-compact convex set M in m(S)* into M it- 

self. Then the common fixed point is a left invariant mean on 

m(S). 

For any finite set A, we denote by |A| the number of 

elements in A. 

3.7. Definition. A semigroup S is said to satisfy the F(j>lner’s 

condition if, for each finite subset F of S and each e > 0, 

there is a finite subset A of S such that 

C3.7.1) |sA \ A| < e|A|, 

for each s in S. 

In [9], F(|>lner showed that a group is left amenable if 

and only if it satisfies the F(|)lner’s condition. This condition 

was generalized to left amenable semigroups as a necessary condi- 

tion by Frey in his thesis [10]. His proof was complicated and 

here we bring in Namioka’s elegant proof. 

Let S be a semigroup throughout this section. For 

each finite set A in S, define a finite mean on S by 

, where 1^ is the characteristic function of A. 

Such finite means are called arithmatic means. 

3.8. Lemma Let <j> he a ftritte mean on S. Then there ts a 

“A ' 
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fvYiite family {Aj ,A2, • • • ,A^} of finite Qets in S with 

A^^j^ ^ 1 1 i $ a finite set (Xi ,X2> • • posi-- 

. . X., = 1 sueh that 
1=1 1 

♦ = I 
n 
i=l 

Proof. Suppose (j) is a finite mean on S. Let 0 < aj < 32 < . 

be the distinct values of , Let A^ = {s in S;a^ < 4>(s)} , 

1 *SL i n. Then each A. is finite and A. , d.k., 1 < i < n. 
1 1+1 — i' 

Since |A|^^ = 1^, 

♦ *. + fa -a , 
n n-1 

- ai |Ai |y. +Ca2-a2) ] A2 IPA • •‘‘■^^n'^n-l^ l^n^^A 
1 2 ji 

° Ii=l 
1 

where X2 ^.JIAII and X^ = (a^-a^ ^)|A^|, 2 < i < n. Since 

0 < ai < ...< a i we have X. >0, l<i<n. Furthermore, 
I n' 1 ' 

° ^seS^i=l ^i‘‘A. (s) 

° Ii=l ^i^^seS’'A^(s) 

This finishes the proof. 

.<a 
n 
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For s and t in S, we denote by s"^^t the set con- 

sisting of all X in S suck that sx - t. 

3.9. Lemma. Let A be a ftn-ite subset of S, Then^ for each 

s in Sj 

IlsF^'F^lCt) = |Aris'’^t|/|A| if t e sA^A 

= -1/|A| if t e ANsA 

= C|Ar\ s'^t I-1)/|A| if t e Af\sA 

= 0 otherwise . 

Proof. Observe that, for s and t in S, 

^xes'^lt^A^^^ 

= |A/^s~^t| / |A| . 

If t is in sA\A, then t = sa, for some a in A and sa 

is not in A. Hence 

[1S^A"^A^^^^ = ClAris‘lt|/|A|) - 0 = |Ans"lt|/|A| . 

Suppose that t is in A\sA. Then 1 y.(t) = 0 and 

W^(t) = 1/|A|. Hence, Ct) = -1/|A|. Finally, if t 

is in AOSA, then 

[1SFA“FA]W = lAOs'ltl/lAl - 1/1A| 

= C|Ans‘lt|-l)/lA|. 
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This completes the proof. 

3.10. Corollary, Let A he the same as in Lemma 3.9. Then^ for 

each s in Sj 

® = 2|A\SA1/|A1 . 

Proof. From Lemma 3.9, we have 

II VA-^AII" 

= I 'tesA\A "■ s A A- 

* ^teANsA^ ^^S‘‘A‘''A^ ^ 

y 1 
* ^tcA\sA 1A| 

y 1 y 1 
HGSAOA 1A| "** HeAvsA |A[ 

X 

+ |A\SA|/|A] 

= I-IAHSAI/IAI + IANSAI/IAI 

= (|A1-|A OSAI + IANSAI)/|A[ 

= (|Ar)sAl + lA\sA| + |Ar\sA| + |A\SA|) / |A| 
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= 21A.'SA1/1A|. 

for each s in S. This proves the Corollary. 

5.11. Lenlma. Let ^ in $ he expressed as in Lemma 3.8. Then^ 

for each s in S, 

II L=1 ^ilsAi'A.|/|Aj. 

Proof. Let s in S be arbitrary. Since (f> 

Lemma 3.8^ we have 

'•"lA.p. 
-1=1 i^A. 

1 

as in 

” 1-^1 ^-(1 PA “PA ) sT Y ^1=1 i'- s A. 

n 
Let B = (Aj\sAj) , Then, by Lemma 3.9, for each i, 1 < i < n, 

X.(l^y -y. ) (t) > 0, if t is in S\B. Hence, 1 <J> (t)-<j> (t) > 0. 
S MK • /V • ’ S - 

1 1 
For every i and i, either A. ^ A. or A. ^ A., and hence 

sA.CsA. or sA.^sA.. Therefore 
1 J J 1 

(sA.NApnCAAsA^) = (}), 

for all i and j, 1 < i, j 1 n. But for each i, sA^\Aj. £-S\B. 

Consequently, 

II = ItesUs+W-Kt)! 

IESNEPS^'A. "^A J 
1 1 

tesAN A. ^^s^A. ”^A.^ 
11 11 
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By Leirana 3.9, it follows that 

II l,*-4ll i ItssAAA 
11 11 

1 1 

> y.” A. |sA.\A. I/IA. 1 . ^1=1 1' 1 1' ‘ 1' 

This finishes the proof. 

3.12. Theorem. If S Is left amenabtej then S satisfies the 

F^lner's condition. 

Proof. Let F = tsi ,S2,... *Sj^}, Since S is left amenable, by 

Theorem 3.6, there is a finite mean <f> on S such that 

II II < e/k, for all s in F. Let <j> = 
' i 

Lemma 3.8. Then it follows from Lemma 3.11 that 

e/k > II ♦-♦II > yj2l^il®jAi'^*^il/|Ail. 

for 1 < j < k. Choose A = A. such that 
^0 

Then, for each m, 1 < m < k, 

- > h\ iii3 ♦-<^11 

> X. js.ANA. |/[A. I - l‘ j 1 l‘ ' 1' 

I.",X.Cy.\ls.A.SA.|/|A.|) 
^1=1 i^^3=l‘ J 1 1' ' 1'^ 

- Ii=i\Cli=i|s.ANA|/|A|D 
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> |S^A\A|/1A|. 

Thus, Is A\A| < elAl, for all s in F. 

For the case of right amenable semigroups, if we change 

the inequality |SA\A| < E|A| in the F(^lner*s condition to 

|AS\A| < e|A|, then the last theorem still holds. 

3.13, Remark. The F^lner*s condition is not sufficient for a 

semigroup to be left amenable. Since every finite semigroup satis- 

fies the F^lner’s condition trivially (simply take A = S) but 

not every finite semigroup is left amenable. For example, take 

S = {s,t} with st = s = ss and ts = t = tt. Define f on S 

by f(s) = 0 and f(t) = 1. Then h = [f-^ f]-If-^ f] = ^ f-£.f 

is in the linear span of {£^f-f:s e S and f e m(S)}. Since 

sup{h(s):s in S} = -1 <0, by Theorem 3.6, S is not left amen- 

able. 

Now, we discuss a stronger condition on S which is 

sufficient for S to be left amenable, 

3.14. Definition. A semigroup S is said to satisfy the strong 

F<l>lner’s condition if, for each finite subset F of S and each 

c >0, there is a finite subset A of S such that 
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|ANSA| < e |A| , 

for all s in F. 

5.15. theorem. If S sat%sfi.es the sty?ong Fi^tner^s conditiony 

then there is a net of arithmetic means that is norm-convergent 

to left invariance and hence S is teft amenahle. 

Proof. Let J be the family consisting of pairs (n,F), where n 

is a natural number and F is a non-void finite subset of S. 

Define a partial order < on ^ by Cn,F) < if and only 

if F QH and m > n. For each a = Cn,F) in let A^ be 

such that IA\SA I < —IA^I, for all s in F. Then, by Corol- 

lary 3.10, for each s in S arid every e > 0, there is a 

2 
OQ = (no,Fo) in where ^ ^ ^ ^.nd s in FQ, such that 

whenever o = Cn,F) > OQ, 

If ^s**A -•'A II = 2|A\SA |/lA I 
o a 

< 2 
n 

< 2_ 
- no 

< e. 

Hence {p. }aeZ is norm-convergent to left invariance and this 

completes the proof. 

3.16. Proposition. In a left canceVLative semigroupy the strong 
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F(j)Oner's oondltion 'is equ'ivatent to the Fi^tner^s condition» 

Proof. Let A be a finite subset of a left cancellative semi- 

group S. For each s in S, we have |SA| = |A| . Hence 

|sA\A| = ISAI^ISAHAI = |A|-<lsAnA| = |A\SA| 

and the proposition is now clear. 

3.17. Corollary. 4 left cancellative semigroup is left amenable 

if and only if it satisfies the strong Fi^lner^s condition. 

Proof. The corollary follows from Proposition 3.16 immediately. 

3.18. ReiAark. The question whether or not every left amenable 

s^igroup satisfies the strong F<|)lner's condition depends on 

Sorenson's conjecture: Any right cancellative left amenable 

semigroup must also be left cancellative. (See [3, Theorem 6, p. 

591.]) To see this, let S be a left amenable semigroup. Define 

a relation R on S by sRt, s and t in S, if and only if 

there is a u in S such that su - tu. Observe that any two 

right ideal of S intersect (see proposition 4.14 of next sec- 

tion) so that R is well-defined and is a congruence relation; 

i.e. R is an equivalent relation such that sRt implies asRat 

and saRta, for each a in S. (See [22] and [12, Lemma 2, p. 

371].) Then, the set S/R, of all congruence classes of R, 

with the binary operation defined by x y = xy, for all x and 
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y in S/R, is a right cancellative left amenable semigroup. 

(See Proposition 4.3 of next section.) Assiime that the Sorenson 

conjecture is valid. Then S/R is left cancellative and hence 

satisfies the strong Plainer*s condition. For each s in S, 

let s be the congruence class that contains s. Then, for each 

finite set F in S and each e > 0, there is a finite set A 

in S/R such that |A\SA] < E|A|, for each s in F. Then, one 

can ’’lift" the set A back to A, say, in S- such that 

|A\SA1 < elA|, for each s in F. Thus, S satisfies the strong 

FjSlner’s condition. To see the "lifting" of the set A, let A 

be a set of representatives of elements of A. Observe that 

|A\SA1 > |A\SA| and |A| - |A| . If |A\SA| = |A\SA|, for each 

s in F, then we are done. If there is an s in F such that 

|A\SA| > |A\iA|, then there are a and b in A such that 

a = sF. Since A is finite, there aie at most finitely many re- 

lations of the form so mentioned above which holds with s in F 

and a,b in A. Let iT = s.b. (i = 1> 2,..., m) be an enuraera- 

tion of all of them. Then, there are u, , u«, ..., u_ in S 

such that a.u,...u. = s.b.u,...u., 1 < i < m. Let 
il 1 111 1 - - 

An = {au,...u :a in A}. Since S/R has right cancellation, we w 1 m 

have |A| = |Ao| < |AO| < |A| = |^| and hence ]Ao| = 1A|. Let 

u = u,u^...u . If au = sbu, for some a, b in A and s in 
12 n 

F, then F = sb and hence a = a., b = b. and s = s^, for 

some i *= 1, 2, ..., m. Now, we have aUj .. .u^ = sbUj^.. .u. and 
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thus au = ..,u.)(u. ,...u ) = Csbu.,..u.)(u. 1...u ) = sbu. 

Consequently, we have shown that, for any s in F and for any 

au, bu in AQ, au = sbu implies au = sbu* Hence 

|AO\SAO| = |AQ'\SA.O|, for each s in F. But, |Ao\iAo| = |A\SA| . 

It follows that IAQXSAOI < e|Ao|, for each s in F. However, 

the Sorenson's conjecture has not been proved, or disproved, yet; 

and it becomes a very interesting problem. 

§4. Combinatorial Results. 

In this section, first we show that one can get new 

amenable groups from any given amenable groups through the 

following processes: (1) by taking the subgroups of amenable 

groups; (2) by taking the quotient groups of amenable groups; 

(3) by taking the extension groups of amenable groups; (4) by 

taking the direct limit of amenable groups. Then we prove that 

finite groups and Abelian groups are amenable; and free groups on 

two, or more, generators are not amenable. This leads to the fol- 

lowing unsolved problems stated by Day [5]: (i) whether every 

amenable group can be obtained from finite groups and Abelian 

groups through these four processes; and (ii) whether the family 

of all groups with no non-Abelian free subgroups is exactly the 

family of all amenable groups. 

4.1. Proposition. If a semigroup is both left and right amenablej 



65 

then tt ts amenabte. 

Proof, This has already' been observed in Corollary 2.13. 

4.2. Proposition. A left [rights amenable group G is right 

[left] amenable; hence Is amenable. 

Proof. Let y be a left invariant mean on mCG) . Define a lin- 

ear operator T:mCG) mCG) by Tf(x) = f , for each f in 

mCG) and x in G. It follows easily from the definition of T 

that T is linear and || Tf|| = || f|j, for each f in m(G) . 

Let T* be the adjoint operator of T and y be a left invari- 

ant mean on m(G). Observe that T1 = 1 and Tf > 0, if f > 0. 

Hence T*y(l) = 1 and T*y(f) >0 if f > 0. Thus, T*y is a 

mean. Moreover, TCr^f) = £^-iTf, for each f in m(G) and 

each X in G. It follows that 

T*y(Y^f) = y(T(Y^f)) = y(^5.lTf) = y(Tf) = T*y(f), 

for each x in G and each f in m(G). Consequently, G is 

right amenable. 

4.3. Proposition. A homomorphic Image of a left amenable seml^ 

group Is left amenable. 

Proof. Let h:S -> T be a semigroup homomorphism from S onto T. 

Suppose that S is left amenable. Let T be represented as con- 

tinuous affine maps from a compact convex set K in a locally 
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convex space E into K itself. Then, {KCs}:s e S} is a re- 

presentation of S over IC. Hence, there is a common fixed point 

ho> say, for all hCs), s in S, But h is onto. Thus > ko 

is a common fixed point of all t in T. By Theorem 3.6, T is 

left amenable. 

4.4. Corollary. Every factor group of an omenabte group is amen- 

able » 

P£0£f. The quotient map is a surjective Conto) homomorphism. 

4.5. Proposition. Every subgroup of an amenable group is amenable. 

Proof. Let H be a subgroup of an amenable group G. For each 

x in G, let x be an arbitrary but fixed element in the right 

coset H . Hence, for every x in G, there is a unique h in 

H such that x = Define a linear operator T:m(H) m(G) 

by Tf(x) = f(h^), for each f in m(H) and x in G. Since 

h is uniquely determined and f is bounded, Tf is well-de- 

fined and is in m(G). Furthermore, for any f and g in m(H) 

and for any scalar a and 3, 

T[af+3g](x) = [cxf+3g](h^) 

= af(h^)+3g(h^) 

= aTf Cx)+3TgCx} 

= [aTf+3Tg] (x) , 
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for each x in G. Therefore, T is linear. It follows from 

11 Tf II = sup{ [f Ch ) I :x is in G} 

< II fll 

that T is bounded. Moreover, for any a in H and x in G, 

ax = h _ax = h x fsince ax = ^, and hence ah - h^ . Con- 

sequently, 

TCf-i^f) (x) = Tf (x) Cx) 

= Tf(x) -f(ah ) 

= TfCx)-f(hax) 

= Tf(x)-Tf(ax) 

= [Tf-£jf](x), 

for each f in mCH) and a in H. It follows that T maps 

K into K . Since G is left amenable, by (3.6.7) of 
m j m j ■ 

Theorem 3.6, we have 

sup{h(x):x in H} > sup{Th(x):x in G} > 0, 

for each h in and hence H is left amenable. 

4.6. Remark. Not every subsemigroup of a left amenable semigroup 

is left amenable. For example, let S be a non-left amenable 

semigroup. Let S' = S^{o} with so = os - o, for all s in 

S', Then, the mean p defined by yC^) = f(o), for each f in 

mCS) is a left invariant mean and S is not left amenable. 



Furthermore, it is not even true that a subsemigroup of an amen- 

able group is left amenable. CFor the details, see [19].) 

4.7. Proposition. Let H he a nonmat suhgToup of G. Theriy G 

conenahte if and onlg if H and G/H are amenable. 

Proof. The necessity follows immediately from Proposition 4.5 and 

Corollary 4.4. 

Conversely, suppose that H and G/H are amenable. 

Let in G} be a representation of G as continuous affine 

maps from a compact convex set K in a locally convex set E in- 

to K. Since H is amenable, the set Ko of all k in k such 

that each h in H, is not empty. Also, KQ 

is convex and is closed in K so that KQ is a compact convex 

set in E. For each x in G, let x denote the coset xH in 

G/H. For each x in G/H, we define a continuous affine map 

T- on KQ by T-(k) = T^Ck), for each k in KQ . If x = y, 

then y ^x is in H and hence T _j„(k) = k, for each k in y X 

KQ. Thus, 

T~(k) = T^Ck) = TyCk) = T-Ck), 

for every k in KQ. Hence, T£ is well-defined. Also, since 

H is a normal subgroup of G, for each h in H and x in G, 

there is an s in H such that hx = xs. It follows that, for 

each X in G and each h in H, 
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ThET^Ck)] = Tj^ET^^Oc)] = T^ET^(k)] = T^ Ck) = T^(k), 

for each k in KQ and some s in H. Hence, maps ICQ 

into itself. Consequently, G/H} is a representation 

of G/H as continuous affine maps from ICQ into KQ. Hence, 

there is a ko in KQ such that T^(ko) = T-OCQ] = ko, for each 

X in G. By Theorem 3.6, G is left amenable and hence is amen- 

able. 

Let G^, i = l,2,3, be groups. If a:Gi G2 and 

$:G2 -»■ G3 are group homomorphisms such that 3 is onto and 

a(Gi) = Ker(3) = 3”^(03), where e3 is the identity of G3, 

then Gi ^ G2 G3 is called an exact sequence. Given any exact 

sequence like above, the group G2 is called an extension of 

Gj by G3. CSee [24, p. 460].) Since KerCa) is a normal sub- 

group of Gi Csee [24, Theorem 23, p. 106]) and aCGi) = Ker(3), 

G2/Ker(a) is isomorphic to Ker(3) Csee Theorem [24, Theorem 22, p. 

105]). On the other hand, 3 is onto implies that G2/Ker(3) is 

isomorphic to G3. Consequently, if Gj and G3 are amenable, 

then Proposition 4.3 and Corollary 4.4 imply KerC3) and 

G2/Ker(3) are amenable. Hence, according to Proposition 4.7, 

G2 is also amenable. Thus, we have shown that extensions of 

amenable groups are amenable. 

4.8. Proposition. Suppose that ^ famity of subsemi^ 
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groups of semigroup S such that Ca) S = U{S^;i e 1} and (b) 

for att i and j in there is a k in I suoh that 

s.us. c Sj^. If^ for each i in Ij S. is left amenable^ then 

S is left amenable. 

Proof. Let S be represented as continuous affine maps from a 

convex compact set K in a locally convex space E into K it-^ 

self. Suppose that each is left amenable. Then, for each 

i, the set of all common fixed points for in K is not 

empty. Also, is closed in K. By the property Ch) we have, 

for any i and j in I there is an m in I such that 

K C K.HK** Hence, the family {K. :i in 1} of closed subsets 

in K has finite intersection property. It follows from the com- 

pactness of K that n{K^:i el} is non-void. Consequently, 

S has a common fixed point and hence, by Theorem 3.6, S is left 

amenabl e. 

4.9. Corollary. A group G is amenable if and only if every 

finitely generated subgroup of G is amenable. 

Proof. By Proposition 4.5, the necessity is evident. The suffic- 

iency follows from Proposition 4.8. 

4.10. Proposition. The full direct produet of finitely many 

number of left amenable semigroups is left amenable. 
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Proof. We prove only that the full direct product of two left 

amenable semigroups is left amenable. Then the rest of the proof 

follows from induction. Let Si and S2 be left amenable semi- 

groups. Suppose that is a left invariant mean on mCS^), 

i = 1,2. For each f in mCSixS2) and each fixed s in Si, 

define f^ in m(S2) by for each t in S2. 

Since f is bounded, Hf^Hl || f||, for each s in Si,and 

hence f^ is in m(S2) . For each f in m(Si><S2) , define f” 

on Si by f ~ (s) = U2 Cf^each s in Si. Since 

< II Fall II fgll 1 l|f|| » f"* is in mCSi). Define a lin- 

ear functional y on m(SixS2) by y(f) = yiCf''), for each f 

in m(SixS2) . If f = g in mCSixS2) , then f^ = g^, for all 

s in Si and hence f" = g". Thus, y is well-defined. Observe 

that, for any f and g in mCSixS2) and any scalars a and 

B, [af+3g]g = afg+3gg, for each s in Si. It follows that 

[af+Bg]" = af^+Bg"* and hence y is linear. Moreover, if f > 0 

is in m(Six$2), then f^ >0 and hence f~(s) = y2(fg) > 0, 

for each s in Si. Thus, y(f) >0 if f > 0. Also, 

lo ~ = lo so that y(lc, ) = yi(lo ) = 1* By Proposition 01X02 i>i 

1.2, y is a mean on m(SixS2)• Finally, to prove that y is a 

left invariant mean, let (a,b) be in S1XS2 and f in m(SixS2). 

Then 
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for every Cs>t) in Si>«S2. Thus, it follows from the following 

equalities: 

that 

ce 
Ca,b) 

f)-Cs) = U2lC^ 
(a,b) 

= f'(as) 

= Cs). 

= yilf~] 

- li(f). 

for each f in mCSi'<S2) and Ca,h) in S1XS2. Hence, S1XS2 

is a left amenable semigroup. 

4.11. Proposition. The weak direct product of a family of amen- 

able groups is amenable. 

Proof. Let be a family of amenable groups. Recall that 

the weak direct product of ^he subgroup of the 

full direct product G. which consists of all elements(x^) 

such that = e^ for all but finitely many indices. Let A be 

the family of all non-void finite subsets of 1. For each a in 



73 

A, let Proposition 4.10, is amenable. 

Moreover, ZG^ = U{S^:a in A} and, for any Oj and 02 in A, 

U S ^ S , , . Hence, by Proposition 4.8, ZG. is amenable, 

4.12. Proposition. The d'Crect Z-tmit of cononahZe gToup i,s aonencibZe 

Proof. Let ^ family of amenable group which is in- 

dexed by a directed set CIjlJ such that (i) whenever i < j 

in I, there is a group homomorphism -► G^ such that 

f^j = f^j^ if i < j and j < k; (2) for each i in I, 

f^^ is the identity map on G^ into itself. Let N be a sub- 

set of ZG^, the weak direct product of {G^}, consisting of 

those for which there is an index j (depending on 

(x^)^^j) such that (a) i < j whenever x^ ^ e^ and (b) such 

that {f^j(x^):i < j} = (e^}, where e^ is the identity of G^, 

for each i in I. First, we claim that N is a normal subgroup 

of ZG.. Let Cx.)• T and (y.)* T be in N. Then there are 

ind ces j and k in I (depending on and Cyx)xei> 

respectively) such that ^^i^iel satisfy (a) and (b) 

Let m in I be such that j < m and k < m. If i < m such 

that i < j or i < k, then we have f. (x.) = f. (f..(x.)) = 

f. (e.) = e or f. (y7^) = [f, (f-i (y.))] ^ = [fi (e.)]"^ = e . 
jm^ m im^i '• km ik ■' '■ km k ■* m 

If i < m such that either i < j or i < k does not hold, then 

X. = e. or y. = e.. Hence, we have f. (x.y.^) = e , whenever 
1 1 *'1 1 m 

i < m. If x.y7^ 4= e. , then x. 4= e. or y. 4= e. 
1*^1 '1* 1*1 ‘ 1 

and hence 
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i < j or i < k. Thus, in either case, i < m. Therefore, we 

have shown that N is a subgroup of ZG.. Now, to prove that N 

is normal, let C^.)- T be in N and (y.) be in EG.. Suppose 

j in I is such that satisfies Ca-) and Cb). If 

^ e^, then ^ e^ and hence i < j. If i <J, then 

we have f..(y.^x.y.) = [f••Cy-)]~^f*•Cy-) = e.. Hence, N is 

normal. Since the direct limit of “^^be factor group 

G = EG./N, (see [21, p. 10]), by Proposition 4.10 and Corollary 

4.4, G is amenable. 

We have shown in Proposition 4.5 and Remark 4.6 that 

every subgroup of an amenable group is amenable but not every sub- 

semigroup of a left amenable semigroup is left amenable. In the 

following proposition, we give a sufficient condition for a sub- 

semigroup of a left amenable semigroup to be left amenable. 

4.13. Proposition. Suppose that H ‘is a suhsemigroup of S, If 

\i Is a left Invariant mean on m(S) suoh that ii(l ) > 0, then 
H 

H Is left amenable. 

Proof. For each f in m(H) we define a linear operator 

T:m(H) m(S) by Tf(s) = fCs) if s in H and TfCs) = 0 

otherwise. The linearity of T follows easily from the defini- 

tion. Also, l|Tf||< II fII , for each f in m(H), hence T 

is bounded by 1. Define UQ on m(H) by 
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PoCf) = yCTf)/pCij^)> 

for each £ in mCH) . If f ? 0 in m(H), then Tf > 0 and 

hence ^ Moreover, VIQ (1^^) = 1. Hence, by Proposition 

1.2, PQ is a mean on mCH) . To prove that \IQ is left invariant, 

we claim that y[TCC^f) - f ^CTf)] = 0, for each s in M and 

f in m(H). Then, if our assertion is valid, p[TCf^£)] = 

p[f _(Tf)] = y(T£) and hence ” PoCf)> for each s in 

H and f in m(H). Now, to prove our assertion, let f be in 

mCM) and s in H. Define g = TC£,^£) - £^(Tf). For the same 

s, let E - s ^Hn[S\H] . For every f and h in m(S), define 

fh in m(S) by fhCt) = f(t)h(t), for each t in S. Then 

glgCt) = g(t), if t in E arid g(t) = 0 otherwise. For each 

t in S, there is at most one element in {s^f.i = 1, 2, ...} 

that belongs to E. Since if i is the smallest integer such 
T *5 if 

that St is in E = S'^HA(S\H) , s t is not in S\H and 

hence is not in E, for any integer h > 1. Therefore, for every 

integer n > 0, we have ~ ^ 

Since y is left invariant, 

HPCIE) = li-i 

< P(l) 

= 1, 

for all integer n > 0. Hence PO^) = 0* Since g = gl^i we 
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have g < ll gll lg* It follows that InCg) | < uCl) gll l^) = |j g|| 

p(lg) = 0. This proves our assertion and hence completes the 

proof. 

4.14. Proposition. Let S he a teft amendble semigroup. Then 

the family of all right ideals of S has finite intersection 

property. 

Proof. Assume the contrary that there are two right ideals H 

and R such that HDR = 4>. Let a be in H and b be in R. 

Define f = Then - 1 and £^f = -1. But h = 

f-g^f is in K and sup{h(s):s e S} = ~2. Hence S is not left 

amenable. This completes the proof. 

4.15. Definition. A subset H of a semigroup S is called left 

thick if for any finite subset F of S, there is an s in S 

such that Fs ^H. If, addition, H is a subsemigroup of S, 

then H is called a left thick subsemigroup. 

This concept of left thick subsets is due to Mitchell 

[25]. Let H be a left ideal of S and F be a finite subset 

of S. Then, Fs ^ H, for any s in H. Hence, every left 

ideal is left thick. In a left amenable semigroup S, every 

right ideal is left thick. Suppose that H is a right ideal of 

S. For any finite set F of S, by Proposition 4.14, we have 

H0(^P SS) =1= <|>. It follows that S~IH 4 <t>» where 
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s = {teSist e H}. Consequently, there is a t in s"*H 

such that Ft C H. Hence, H is left thick. 

Suppose that H is a left thick subset of S. For 

each finite subset F of S, by definition, there is an s in 

S such that Fs C H. If s is not in H, then there is a t 

in S such that (Fs (J{s})t C H. Consequently, there is an st 

in H such that F(st) C H. Hence, for any finite subset F of 

S, there is a s in H such that Fs C H. 

4.16. Proposition. Let T he a heft thick suhsemvgvowg of S. ^f 

S is heft amenahhey then theTe is a heft invariant mean y on 

mCS) such that y(l.j.) = 1 and hence T is heft amenable. 

Conversely^ if T is heft amenahley then S is heft 

amenable also. 

Proof. Suppose that S is left amenable. Then, by Theorem 3.6, 

there is a net {d) } of finite means such that i A _(j> 11= 0, 
a a " s a " 

for each s in S. For each s in S, there is an s in S 
a 

such that F s CT, where F = (seS:d) (s) i 0}. Then, each 
O, CL ni ^ n ^ \ a a 

^ finite mean with support in T. Since -Ci (S) is a a 
Banach algebra, we have, for each s in S, 

II 1 (4) 1 1 II = II (1 4> )1 ^4) 1 ” s a s a s " s s ot s a a a a 

= II (1 )1 " '• s a a-^ s a 

<11 l3V*JI III3JI 
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= II Va*^all • 

Hence, {4> 1 } is norm-convergent to left invariance also. By ot s 
a 

the o)*-compactness of the set of all means, there is a oi*-cluster 

point, say p, of 1* Moreover, yClrp) = 1, since each 

a 
has support in T. It follovrs from Corollary 2.13 that 

p is a left invariant mean on mCS). This completes the proof. 

Now, suppose that T is left amenable. Recall that 

for any finite subset F of S, we can always find a t in T 

such that TtCT. Let S be represented as continuous affine 

map from a compact convex set K in a locally convex space into 

itself. Since T is left amenable. There is a k e K such 

that t(k) = k, for each t in T. Now, for each s in S, 

there is a t in T such that st is in T. Hence, 

s(k) = s(tCk)) = st(k) - k. 

Thus, S has a common fixed point and is left amenable. This 

completes the proof. 

4.17. Proposition. A fvni^te serrt'igroup S vs teft amenabte -if • 

and onty vf it has a unique minimal Tight ideal R. Then R is 

the union of disjoint minimal left ideals L^,L2>...,L^ of S 

such that eaoh is a group and is isamorphis to each other. 

Moreover^ p^ = 1 , 1 < i < n, is a left invariant mean 

and eaoh left invariant mean is a convex combination of the p,. 
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Proof. Suppose, first, that S is left amenable. Let ^ be the 

family of all right ideals of S. Since S is finite, ^ is 

finite. Since the intersection of two right ideals is a right 

ideal, it follows from Proposition 4.14 that DC is non-void 

and is a right ideal. By definition, is the unique minimal 

right ideal. 

Conversely, let R be the unique minimal right ideal. 

For each s in S, sR is also a right ideal. If SRHR = (j>, 

then there is a minimal right ideal H, say, such that H C sR 

and HOR = 4> • But since R is unique, this can not be. Hence, 

SROR =1= <i>. Since sRHR is a right ideal contained in R, we 

have SROR = R and hence |R\SR| = 0, for each s in S. 

Thus S satisfies the strong F<[>lner's condition and is left amen- 

able. 

Now, to prove the second part of the proposition, we 

claim that the union of all disjoint minimal left [right] ideals 

of S is a right [left] ideal. To see this, let Li,L2,...L^ 

be all the disjoint minimal left ideals of S and H = 

For each s in S, L.s is a left ideal, 1 < i < n. Hence 

L.s 3 L., for some j, 1 < j < n. Let L = {teL-:ts e L.} C L.. 

Then, for any x in S, C^t) is in L^, for each t in L, 

and (xt)s = x(ts) is in Ly Thus, xt is in L and xL C L. 

But L. is minimal. It follows that L = L. and L.s = L.. 
1 X 1 j 

Consequently, Hs C L^s C Lj = H and H is a right ideal. 
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Similarly, we can prove that the union of all disjoint minimal 

right ideals is a left ideal. Now, let R be the unique minimal 

right ideal of S. By the above claim, R is also a left ideal. 

Let L^,,.. L^, and H be defined as above. Then H is a right 

ideal and hence H 3 R. For each i, 1 < i < n, RL. is a left 

ideal, since R is a left ideal, and RL. C L.. It follows that 
1—1 

RL^ = L^. But, on the other hand, since R is a right ideal, we 

have L^ = RL. C R, for each 1, 1 < i < n. Consequently, 

H - L^ C R and thus H = R. To prove that each L^ is a 

group, we observe that every cancellative finite semigroup is a 

group. (See [17, Theorem 9.16, p. 99].) We now prove that each 

Lj^ satisfies the cancellation laws. For each s in R, sR C R. 

But sR is a right ideal. Thus sR = R and R has left cancel- 

lation. Hence, L. C R has left cancellation, for each 
'i — 

1 < i < n. On the other hand, for each s in L^, 1 < i < n, 

L.s C L. and L.s is a left ideal. Therefore, L.s = L., 

1 < i < n. Thus, L^ has right cancellation also, 1 < i < n. 

It follows that L^ is a group, 1 < i < n. Let e^ be the 

identity of L^, 1 < i < n. Let i and j, l<i, j<n, be 

arbitrary. Since L^e^ = L^, the mapping h:t te^ is a one- 

to-one map from L^ onto L^. For any s and t in L^, we 

have 

hCst) = Cst)e^ = sCte^) = s(e^. Cte^.)) = (se^)Ctej) = h(s)hCt) 
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and h is an isomorphism. Consequently, is isomorphic to 

L. for any 1 < i, j < n. 

1 V Novr, to prove that = TLTT ^seL ^ 1 1 i < n, 
|L^| se ^ s 

is a left invariant mean, we first claim that tL. = L-, for 
1 1 

each t in S and each i, 1 < i < n. Then, 

r 1 V ^ 
^seL "" TLTT ^tsetL . To prove our claim, 

observe that tL. C L., for each i. If ta = tb, for some a 

and b in L^, then ta = tCe^a) = t(e^b) = tb. But te^ is in 

and hence (te^)a = (te^)b implies that a = b. This proves 

that tL. = L., for each t in S. 
11 

Finally, we prove that each left invariant mean of m(S) 

is a convex combination of the p.. Let p be a left invariant 
1 

mean of m(S). Since S is finite, each mean is a finite mean 

and p = IseS^^^^^s' Proposition 4.16, p(lj^) = ^ 

and thus p = ZgeR^^^^^s’ Since R = L^, we have 

p * li-i ^seL each 1 < i < n, observe that 
i 

f. 1 >1 and f jl > 1 , for each s in L., where s”^ s s ~ e. s^^ e. - s i 
1 1 

is the inverse of s in L. (since f 1 (e.) =1 and / ,1« (s) 1 ^ SSI ^s“l 
■ 1 

the inequalities hold when x and t in S are such that sx = x 

and s"^t = e^, respectively). It follows that pCl^) = 

^ pCl ) and p(l ) = p(f .il ) > p(l ) and u takes a con- e. e. se.’^ s 
1 1 1 

stant value On each L. . Thus, we have p = ^._^(p(l L ^s ^ 1 1- e^ cL.^ 

= Ij^-^pClg ) Since p is a mean, we have 
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i 

i 

Since )|L4|> 0, 1 < i < n, y is a convex combination of 
w • X 
1 

the y.. 
1 

4.18. Corollary. A finvte sem'Cgroup S is amenable if and only 

right ideal R such that R = L. Then there is precisely one 

two-sided invariant mean on S. 

Proof. The first part of the corollary is clear from Proposition 

4.18. The unqiueness of the invariant mean follows from the fact 

the each left [right] invariant mean is of the form 

4.19. Corollary. A finite left canoellative semigroup S is left 

amenable, Ifj in addition^ S is a group^ then it has a unique 

invariant mean. 

Proof. Since a left cancellative finite semigroup S has only 

one right ideal, namely S itself, by Proposition 4.17, S is 

left amenable. If S is a group, then it has only one left ideal 

S and one right ideal S. By Corollary 4.18, the invariant mean 

if it has a unique minimal left ideal L and a unique minimal 

s ^ = 1^1- 
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is unique. 

4.20. Proposition. Free sem-i^rcup [g^oup] on two^ or more genera^ 

tors is not ccmeruxbte^ 

Proof. Let S be a free semigroup generated by a and b. De^ 

fine a bounded real-valued function f on S by f(s) =1 if 

s is a word begins with a and fCs) = 0 otherwise. Then, the 

function h = £, f-£. f = (£,f-f)-(^ £-f) is in K. Hence 
D d. D 

sup{h(s) :s in S} = ~1 < 0 and, by (3.6.7) of Theorem 3.6, S 

is not left amenable. 

4.21. Corollary. The futt dtreot product of amenabte group is not 

necessary amenahte. 

Proof. Since the free group on two generators is isomorphic to a 

subgroup of the product group of a family of finite groups (see 

[23, Corollary 8.21]) and finite groups are amenable, it follows 

from Proposition 4.20 that there is a family of amenable groups 

whose full direct product contains a non-amenable subgroup. By 

Proposition 4.5, this full direct product is not amenable. 

One can show that Abelian semigroups are amenable by an 

easy application of the Markov-Kakutani fixed point theorem [7, 

Theorem 6, p. 456], or by showing that Abelian semigroups satisfy 

the Dixmier criterion CC3.6.7) of Theorem 3.6) as given in [17, 
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Theorem 17.5, p. 231]. However, we choose to give a new proof of 

this fact by showing that Abelian semigroups satisfy the strong 

F(l)lner*s condition, i.e. given any finite subset F and any 

e > 0, there is a finite set A such that |A\SA| < e|A|, for 

each s in F. Our proof is longer but we find that it has some 

merit in the fact that our proof will yield an explicit method of 

constructing the set A in the strong F<^lner’s condition, and 

thus also a method of constructing a net of finite means converg- 

ing to left invariance in norm (see Proposition 3.15). 

We first prove the following two lemmas. 

4.22. Lemma. Let A be a f'Cnite subset of a sem'igvoup S. Sup- 

pose s is in S. Then a necessary and sufficient condition for 

lsA| = |A| is that sa = sb implies a = b, for a and b 

in A. Furthermore, if |SA| = |A|, then |SB| = |B| for all 

subset B of A. 

Proof. We observe that 1SA| < 1A| is always true. Then 

|SA| < |A| if and only if there are a and b in A such that 

a ^ b and sa = sb. The Lemma is now clear. 

4.23. Lemma. Let A he a finite subset of a semigroup S. If 

s is an element in S and k is a positive integer such that 

(4.23.1) |A| = 1SA] = ... = |S^”^A|; and 

(4.23.2) s^ (A\SA) CSAHA, for 1 < j < k-1. 
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then we have 

C4.23.3) k|A\sA| < |A|. 

Proof. Let B = A\sA. First we claim that S^BOS^B = (j>, for 

0 < i, j < k-1 and i | j. (Note that s^B = B.) Since 

B = A\sA, we have BO sA - (|>. By C4.32.2), it follows that 

s^B CsADA ^ sA, for 1 < i < k-1. Hence, BOs^B C BQSA = 4>. 

Now, suppose that S^BOS^B ^ <J), for some i ^ j 1 < i, 

j < k-1. Then there are a and b in B such that s^a = s^b. 

Assume that i < j. Then we have s^b = s^(s^'^b). Since 

1 < i < j < k-1, by (4.23.2), s^"*^b e s^"^B C SAHA C A. Also, 

a is in B CA; hence a is in A. Since |S^A| = |A| and 

s^a - s^b = s^(s^”^b), by Lemma 4.22, we have a = s^^^b. This 

contradicts that Bris^"'^B = <j>. Thus, our assertion is proven. 

To establish the inequality C4.23.3), we observe that 

BUSBU. .. Us^'^B C A, 

since B cA and s^B C sADA C A, for 1 < i < k-1. Hence, by 

our assertion, |B| + |SB| + ... + |s^ ^B| < |A|. Since |A\SA| = 

|B| = 1S^B|, 1 < i < k^l, we have k|A^sA| < |A|. This finishes 

the proof. 

Let S be an Abelian semigroup. For each finite sub- 

set B = {bi,b2,...,b^} in S and each integer k, we denote by 

k 
B the finite subset of S consisting of elements in the form 
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.. .b^^, where 0<i <k, l<p<n and J i ?• 1. 12 n ^ p ' -r, ^ “p=l p 

Here we use the convention that ah® = a = b°a for a and b 

k 
in S. Also, we want to point out that the set B here does 

not represent the usual set {bib2.. .bj^:b^ e B, i = 1, 2, k}. 

4.24. Theorem. Everif Abelian semigroup satisfies the strong 

F^tner*s condition; and hence is amenable* 

Proof. Let S be an Abelian semigroup. Let F = {Sj,S£,..* 

be an arbitrary finite subset of S and e > 0 be given. Then 

there is a positive integer k such that 0 < e. Define 

k 
AQ = F . Then, for each j, 1 < j < n, 

AQ\S.AO C CFVSj})^ 

m k k 
Since for any m, 1 < m < k, s.CF\{s.}) CF = AQ, where 

3 3 
m ' k 

j = 1, 2, ..., n, we have s^CP^is^}) CS^AQ, for all 

m = 1, 2, ..., k-1. Thus, for all j =1, 2, ..., n and all 

m=l,2, ..., k-1, 

s?(Ao\s.Ao) CS-AODAQ. 
J J J 

If IAQI = IS^AQI, for all 1 < j < n and 1 < m < k, then it 

follows from Lemma 4.23 that 

IAO'S^AOI < ^ lAol < e|Ao|, 

for all 1 < j < n. However, if S is not cancellative, then this 

need not be the case. If |s?Ao| < |AO1, for some j, 1 < j < n. 
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and some m, 1 < m < k, then we shall modify the set AQ to 

have the desired properties. Let u = siS2...s^. By the commuta- 

tivity of S, we have = s^***s^> ^®r p = 1, 2, ... . 

Since AQ is finite, in fact |AO| < is a 

k+1 non-increasing sequence of integers bounded above by n and 

below by 1. Hence, there is an integer p, say, such that 

IAQU^I = |AOU^'*’^|^ ... = IAOU^'*'^!. 

First, we claim that |s?Aou^| = IAQU^I, for all 1 < j < n and 

1 < m < k. We observe that 

> |SjA(,uP| > I (s“...s“_p(s“^^...s“)s?AouP| 

= IU^AQU^I = lAouP‘^"'| = IAQU^I, 

for 1 < j < n and 1 < m < k. Hence |s?AoU^| = IAQU^I, for 

all j, 1 < j < n, and m, 1 < m < k. Let A = AQU^. For each 

j> l^jin, we have 

A\s.A = AQU^NS .AQU^ ^ (AQ\S .AQ)U^. 
3 3 3 

Hence, when 1 < m < k-1 and 1 < j < n, 

s“ (Avs^ A) s? ( (AQN AQ ) UP) 

= (s™(AoVS^Ao))uP 

g (s.AonAo)uP 

O s^.Aou^flAouP 

= s.A/lA. 
3 
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By Lemma 4.23, we have |A^S.A| < [AI < e|A|, for all j = 1, 
j - ic 

2, ... n. This completes the proof. 

4.25. Remark. In general, one does not have much control on the 

size of the set A in the strong F<|)lner's condition. However, 

if S is infinite and cancellative, then we can choose A to be 

arbitrarily large. To be more precise, given any e > 0 and dis- 

joint finite sets F and G, we can find a set A such that 

C.i) IA’NSAI < e|A|, for each s in F, and (ii) A 

To see this, note that if S is cancellative then, for each fin- 

k ite set F CS and each e > 0, the set A = F , where 

1 in 0 < < e, satisfies that [A] = |s A|, for each s in F and 

1 < m < k-1. Now, the above claim can be easily accomplished by 

taking A = (FUG)^. 

4.26. Corollary. Every sotvabte group is amenable. 

Proof. The corollary follows immediately from Proposition 4.16 

and Theorem 4.24. 



CHAPTER III ERGODIC THEORY 

Ergodic theory is an outgrowth of a problem in statis- 

tical mechanics and Hamiltonian dynamics. A mechanical system is 

said to be "ergodic" if the time averages of its certain physical 

quantity converges to a constant as the time interval gets longer 

and longer. The physical assumption made on the system to ensure 

it to be ergodic is known as the "ergodic hypothesis". The mean 

ergodic theorem was first investigated by J. von Neumann [29]. It 

is an operator generalization of a very simple phenomenon: If a 

is a complex number, then the arithematic means = ^”^^1=1°^^ 

converges when |a| < 1; converges to 0 when la| | 1; and 

diverges when |a| > 1. J. von Neumann generalized this for one 

parameter unitary groups in Hilbert spaces. Next, Riesz [27] and 

Yosida [30] proved that if T is a bounded linear operator from 

a reflexive Banach space B into itself with I1T||< 1, then 

Cl) the sequence where A^ = converges strongly 

to a projection P; (2) PT = TP P; (3) the range of P is 

the set of all fixed points of T and the null space of P is a 

closed linear subspace spanned by all elements b - Tb, b in B. 

Note that S - {T^:i = 1, 2, ...} forms an Abelian semigroup under 

functional composition. Furthermore, ||T^|1 < |1T||^< 1, for 

i = 1, 2, ... . In this thesis, we are interested in the case 

when S is a set of bounded linear operators from a Banach space 
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B into itself with sup{||s||:s in S} < «> such that S forms 

a semigroup under functional composition. We call S a bounded 

operator semigroup of B. For each b in B, the set 0(b) = 

{s(b);s in S} is called the orbit of s. A linear operator A 

on B is called an average of S if, for each b in B, A(b) 

is in CfCoO(b), the uniform closure of the convex hull of 0(b); 

and A is called a finite average of S if A(b), for each b 

in B, is in CoO(b), the convex hull of 0(b). 

1.1. Definition. A bounded operator semigroup S over a Banach 

space B is said to be weakly, strongly, or uniformly ergodic 

under a net ^A^} of averages of S if, for each s in S, 

(use I for the identity operator on B) 

(1.1.1) [weak] 6[Ajj(s-I)Cb)] = 0 = e[(s-I)Ajj(b)]; 

for all B in B* and b in B, 

(1.1.2) [strong] || Aj^(s-I) (b) || = 0 = ^“1| (s-I)Aj^(b) || , 

for each b in B; 

(1.1.3) [uniform] 11 A^(s-I) || = 0 = (s-I)A^|| , res- 

pectively. 

As an analog to Riesz and Yosida’s results, we expect 

that "fA^} converges to a projection P; and the range space 

of P is the set of all common fixed points of all s in S, and 

the null space of P is the closed subsapce of B which is 

spanned by the set {Cs-I) Cb):s in S and b in B}. Hence, 
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we define the following subspaces of B: 

Ci) f is the set of all common fixed points of all s in S; 

Cii) K is the linear span of the set {(s-I)Cb):s e S and 

b £ B); and C£(K) is the uniform closure of K in B. 

Since the closure of a vector subspace is a vector subspace, 

CZQK) is a closed vector subspace. Furthermore, the set of all 

common fixed points is closed and it follows from the following 

equalities: 

sCaa-Bb) = asCa) - Bs(b) = aa-6b, 

for e^ch s in S, all a,b in S and all scalars a and 3, 

that p is a closed vector subspace. 

1.2. Lemma. Let S be a bounded operator semigroup over a Banadh 

space B. If S is weakly ergodio under a net of averages 

of Sj then 

(1.2.1) 
lim 
n A (b) n 

A (b) = b, n- ' 

= b; 

for att b in f and each n; hence 

(1.2.2) ^ only if b is in K, 

Proof. Suppose b is in p. Then Cf.CoO(b) = {b}. Since 

A^(b) is in C£,CQO(b), for each n, we have A^(b) = b. Hence, 

(1.2.1) holds. 

For (1.2.2), we start with the sufficiency. Suppose 

that bo is in Cf (K). Since, for each b in B, A^(s-I)b 

1 ini 
= 0, for each s in S, we have w- A b = 0, if b is in 

n n 
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K, Let {b be a net in K such that 0. Since 

S is bounded, M = sup{||s||;s in S} < » and II ^jjll 

each n. Hence, ^ arbitrary. 

For each c > 0, there is an a(.e) such that Hb^-bo|| < e/2M|| 3|| . 

Fix an a > a(e). Since 3[A Cb J] - 0, there is an n(a,e) 

such that ^ whenever n > n(a,e). Thus, whenever 

n > nCa,e) . 

|eCA^(bo))| = lB(AjjCbo-V)+A^Cb^))l 

= |S(A„(bo-b^))+6CAjjCb„))| 

S II ell IIAJ^II llbo-b^|l+ e/2 

< e. 

1 T m 
Hence, ^ 3[Aj^(bo)] = 0, for any arbitrary 3 in B*, and 

1 T TO 
this implies that w- A^(bo) = 0. 

Conversely, suppose b is not in CZ(K). Then b ^ 0 

and b + C£(/Q is a closed affine subspace of B. For each s 

in S, s(b) = b - (b-s(b)) is in b + Ct(,K) , Since affine sub- 

spaces are convex and b + CXCK) is closed, we have C^CoOCb) C 

b + CZ(K) , Consequently, {A^(b)} Cb + Cf (/C) . But 0 is not 

in b + CC(K) and, by Proposition 1.1.7, b + CiCK) is weakly 

closed. Therefore, {A^(b)} will not converge to 0 weakly. 

Thus, if then b is in CZCK). 

Hereafter, let S be a bounded operator semigroup over 
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a Banach space B. Also, let p = , i.e., F = {c+k:c e ^ 

and k e Ct(K) }. 

1.3. Theorem. If S Is weakly ergodia under a net of 

averages of S, then 

Q.3.1) (ncZCfO = {0}; and fienoe F = (^CZCfO I,e,^ f 

is the direct sum of p and CZQC); 

0-.3.2) ^n^^^ exists if and onty if b is in fj 

0-^3.3) if P(b) = Aj^(b), for each b in F, then 

P is tineaa* and 11 P || < 11 ^^ 11 s 11: s in S}; 

Cl.3.4) for each b in F and s in S, we have 

PsCb) = sPCb) = p2(b) = P(b); 

Cl-3.5) P is a projection of F onto ^ along CC(fC); 

that is9 PCF) = and P(C£TO) = {0>; 

(1.3.6) for each b in F, C^CoO(b) 0$ = {P(b)}; 

(1.3.7) V is closed* 

Proof. We first prove the condition (1.3.1). Since and 

CJt(JQ are vector subspaces, 0 is in 0C\ct(K) . Suppose b is 

in ^riCf(fC). By Lemma 1.2, we have ^ 

A (b) = 0; hence b = 0. n n 
1 im To see (1.3.2), suppose that w- ^ ” ^0 exists. 

Then, for each s in S, Cs-^I)bo = Cs-^I)A^(b) = 0. Thus 

sbQ-bo = 0, for each s in S; hence b^j is in Consequently, 

we have. 



94 

AjjCb) ^ bQ 

= bo "-bo 

= 0, 

and, by Lemma 1.2, b^ bg is in CtC^C). Hence b = (b-bo)+bo 

is in F = ^«Ct(fC) . 

Conversely, suppose that b is in F. By Cl«3.1), 

b = bi + b2, for a unique bi in ^ and a unique b^ in 

CZCfO • it follows from Lemma 1.2 that 

, -lijn . ... lim . ^ lim . x 
n n n n n n 

= bi + 0 

= bi. 

Hence, w- A (b) exists. 
* n n '' 

Now, we show that (1.3,3) holds. Since (1.3.1) holds, 

P is well-defined and linear. Also, for each n, ||A^||< sup 

{||sl|:s in S} and hence sup||A^||< sup{ || s||:s in S}. For 

each b in F, {A^(b)} is a family of linear functional on B*. 

Since, for each B in B*, (B[A^(b)]} is bounded and 

3[P(b)] = 3[A^(b)], we have PCb) is bounded. (See [7, 

Theorem 18, p. 55].) Furthermore, l3[P(b)]| < sup|| B|| ||A^|( ||b|| 

and hence ||PCb)||< sup||A^|| || b||. It follows that 

II P|| 5, supll Aj^ll ssup{l|s|l:s in S}. 

Now, we prove the condition (1.3.4). Since every bounded 
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linear transformation from a Banach space into itself is also 

-continuous, we have, for each s in S, 

Cs-I)PCb) = Cs-D A^(b)] 

= <0-^^ (s-I)A^Cb) 

= 0 

and P(s-I) (b) = 

= 0. 

Hence Ps = sP = P. It follows that s(P(b)) = P(b), for each 

b in F and each s in S. Hence P(b) is in f, for each 

b in F. By Lemma 1.2, we have P^(b) = P(b), for each b in 

F. Thus, P^= P and this proves (1.3.4). 

To see the condition (1.3.5), notice that it follows 

from (1.3.1), (1.3.2) and (1.3.4) that P is a projection. By 

Lemma 1.2 we have P(Cf.(K)) = {0}. 

Now, we prove that (1.3.6) holds. Since, for each n, 

{A^(b)} C w-CeCoO(b) = C£CoO(b)> P(b) is in ceCoO(b). If bo 

is in C6CoO(b)n 0, then b - bo is in CZ(K), Hence 

0 = P(b-bo) = P(b) - P(bo) = P(b) - bo 

and P(b) = bo. 

To show the condition (1.3.7), let b be in the do- 

X ijn 
sure of F. We claim that w- A (b) exists and hence, by 

n n 

(1.3.2) ,■ b' is in F. Then F is closed. To prove this claim. 
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let {b } be a net in F sucK that ll ^^^11 - 0* Let a a " a “ 

a^ = PCb^), for each a. By Cl»3.3),we have 

lla^-a^lU IIPlI ||b^-b^||, 

for any indices a and y. Since is Cauchy, so is 

Ijjii It follows from the completeness of B that a exists. 
^ a a 

Since {a } is in t and $ is closed, a = a, for some 

a in $. Let <|> in B* be arbitrary. For each e > 0, there 

is an a such that || b -bJI < e/3M|| (j)|| and || a -ajl < e/3M 

where M = supl|A^|| . Then, there is an n(a,e,(p) such that 

1|A (b )-a^||< e/3|l(|)||, whenever n > n(a,e,4>). Then, whenever 

n > n(a,e,<j>) , 

|(|.CAj^(b)-a)| < U(Ajj(b-b^)j + U(Aj^(b^)-a^)| + 

<- !UII l|AjMlb-bJl. lull llA^(b^)-aJ| 

+ II It'll II a^-a|| 

< e/3 + e/3 + e/3 

= e. 

X im This implies that ^ 4>[A^Cb)-a] = 0, for any arbitrary (j> in 

X xm B*. Hence m- ^ ^ this completes the proof. 

1.4. Remark. In the previous theorem, if we replace the weak 

ergodicity by strong ergodicity, then we will get the correspond- 

ing results in the convergence in the norm-topology instead of 

the weak topology. This theorem is essentially due to Eberlein 
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[8]. 

The following theorem is due to Day [5]. 

1.5. Theorem. Let S be a semigroup^ i!hen the fottotiying oondi- 

tions are equivalent: 

Cl.5.1) S is amenablej 

Cl.5.2) for any hounded representation n and anti^repre- 

sentation T of S over a Banadh space the operator semi- 

groups {IT :s in S} and {T :s in S) are ergodic (weakly^ 

strongly and uniformly); 

(1.5.3) for the left and right regular representation of 

S over the Banach space m(S), in S} and in S} 

are ergodic (weaklyj strongly and uniformly). 

Proof. Since (1.5.2) is formally stronger than (1.5.3), it only 

needs to prove that (1,5.1) implies (1.5.2); and (1.5.3) implies 

(1.5.1). 

We first prove that (1.5.1) implies (1.5.2). Suppose 

that S is amenable. Then, there is a net {(|) } of finite 
n 

means on S such that || 1 4> -4> 11 = <|) 1 -c|> || = 0. For 
n s^n ^n“ n “ ^n s ^n‘* 

each <|) , let \ «<j> (s)n and T, =7 «<|) (s)T . Then 
^n' <b ^seS^n^ ' s 4 ^seS^n'* s 

{n } and {T. } are nets of finite averages of {H :s in S} 

and {T^:s in S), respectively. Then, it follows from 

Proposition II.3.2 that, for each s in S, 
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II \ H -.fji 
II n n. -n, || < M|| i (t H> IL 
" s <f> (f> " ^ " s n ^n“ 5 

where M - sup{ j| ||:s in S}. Hence, for each s in S 

for each s in S. 

Thus, {n :s in S} and {T :s in S} are uniformly ergodic. 
S ' - s 

Consequently, they are also strongly and weakly ergodic. 

that in S} and in S) are weakly ergodic. 

Let Kp and K be the linear span of {f-f. f:f in m(S) and 

s in S} and {f-Y^f:f in m(S) and s in S}, respectively. 

and s in S, respectively. Let ^ denote the subspace of 

all constant functions of m(S). By the ergodicity of 

{£. :s in S} and {y •s in S} and by the fact that $ > 
s s “ " ^ Y 

we have 0C)Kj^ - Hence, 1 is not in Since, 

1 = 1 + 0 is in 1+ K^, we have dist(0,l+/(£) = inf{ || l+hH:h 

in Kj^} < !• On the other hand, for each h in 1 + h is 

in F = Since || P ||< sup{ 11 11:s in S} < 1, we 

have 1 = || PCl+h)|| < || P|| || l+h|) < || l+h|| , for each h in Kj^, 

Hence dist(0,1+fC^) > 1. Combining the two inequalities, we have 

dist(0,l+^C£) = 1 and hence, S is left amenable. (See Theorem 

Now, to prove that (1.5.3) implies (1.5.1). Suppose 

Let $p and C be the sets of all common fixed points of t 
t Y S Y 
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11.3.6. ) Similarly, we have distCO,l+^^ ) = 1 and S is right 
Y 

amenable. This proves that S is amenable. 

1.6. Remark, (a) Observe that, as a consequence of Theorem 1.5, 

the weak, strong and uniform ergodicity of S are equivalent. 

Cb) In the proof of Theorem 1.5, we actually proved that S is 

uniformly ergodic under a net of finite averages of S. In such 

a case, we say that S is restrictedly ergodic. If an operator 

semigroup S is amenable when it is considered as an abstract 

semigroup, then S is restrictedly ergodic. 

The ergodicity of in S} alone does not imply 

the amenability of S. For example, let S be a semigroup with 

more than one element such that st = s, for all s and t in 

S. Since foi* each s in S. ^Yg*s in S} is ergodic. 

However, S is not left amenable. The following proposition 

gives a special case when this works. 

1.7. Theorem. If S is a semigroup such that the set 

f:s in S and f in m(S)} spans m(S), then {y :s in S} s s 

is uniformly restrictedly ergodic if and only if S is amenable. 

Proof. If S is amenable, then, by Remark 1.6 (b), in S) 

is uniformly restrictedly ergodic. 

Conversely, suppose that ^Yg^s in S} is restrictedly 

ergodic. Then, as a consequence of the proof of (1.5.3) implies 
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(1.5.1) in Theorem 1.5, S is right amenable. Let be the 

net of finite mean such that, for each s in S, 

lim 
n II lim 

S'(|> (j> n il II = “• 

By Proposition 11.1.6, there is a subnet {(f),} of {(f)} converg- 
Jv J1 

ing to some mean \i in the w*-topology of m(S). Also note 

that lim 
n II Y Yi “Yx II =0, for each s in S. Then, for all 

s and t in S and each f in m(S), 

o = IY^Y. C£)Ct)-Y. (f) W| 
iC X 

= IY^ Cf) (ts) -Y^ (f) Ct) I 

lim 
k 

lim 
= T iQ^kCVt^-V^l 

(Note that the thrid equality follows from Definition II.2.7.) 

Hence, £*y(£^f) = y(f.^f). Since in S and f in m(S)} 

spans m(S), for each f in m(S), f = ^i' some 

s. in S and f. in m(S), 1 < i < n. Hence, for each s in 1 1 V y J - - 

S, 

1 

= T.V*u(£ f.) 
^1=1 S S. 1 

1 

= f-) ^1=1^^ s. 1 

= y Cf) • 
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Thus, S is left amenable. 

1.8. Consequences. As observed in Remark 1.4 if we replace weak 

ergodicity by strong ergodicity in Theorem 1.3, then the corres- 

ponding results hold for convergence in the norm topology. Fur- 

thermore, if there is a weak cluster point bo of the net 

{A Ch)}, then, there is a subnet {A,} of {A } such that 

Aj^Cb) = bo and 

s(bo) = Aj^Cb)) 

1 xm . /i. •\ 
= ic 

= bo, 

for each s in S. (Note that the second equality holds, since 

the strong ergodicity implies weak ergodicity.) Hence, bo 

is in CtCoOCblflF. Consequently, {A^Cb)> converges strongly 

to bo- Thus, with Theorem 1.5 and above remark, theorems of 

von Neumann, Riesz, Yosida and Kakutani follow. 
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