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Abstract 

This thesis considers the effect of a magnetic field oh 

the transition from a conducting to a non-conducting state in im- 

purity semiconductors, with particular reference to indium anti- 

monide. Two models for such a transition have been proposed: one 

is based on the disappearance of bound states of the impurity due 

to screening by conduction electrons and the other is based on the 

onset of conduction due to overlap between the electron wave func- 

tions on adjacent impurity sites. The present work extends the 

latter model to include the effect of magnetic fields. 

The theoretical work of Yafet, Keyes and Adams (Ref. 6), 

Fenton and Haering (Ref. 5) and Durkan and March (Ref. 10) is re- 

viewed in Section 2 of the thesis. In Section 3 a dielectric ap- 

proach to impurity conduction, due to Frood (Ref. 12), is intro- 

duced; he shows that the impurity system is non-conducting when 

47T/3eQ Na < 1 where N is the impurity concentration, a is the 

average polarizability of an impurity atom and CQ is the dielec- 

tric constant of the background crystal. We use this criterion in 

Section 4 to calculate a value of the critical magnetic field need- 

ed to make conduction cease, deriving a as a function of magnetic 

field from a variational calculation of the ground state energy of 

the impurity. Our calculation is carried out for T = 0*^K, so that 

the impurities are all in the ground state and there are no elec- 



trons in the conduction band (i.e. we do not consider excited 

states of the impurity or screening by conduction electrons). 

Finally we compare theoretical predictions with published ex- 

perimental results. 
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SECTION I The Basic Idea Underlying the Mott Transition 

The band theory of solids leads us to believe that when 

atoms are combined to form a crystal, the electron energy levels 

corresponding to the free atoms broaden into bands. To decide 

whether a given crystal will be an insulator or a conductor we 

recall that a Brillouin zone contains as many allowed k-vectors 

(i.e. distinct electron wave functions) as there are unit cells in 

the crystal. Allowing for spin, it follows that there are two 

electron states per unit cell in each band. Hence, a crystal with 

an odd number of free electrons per unit cell C®*g- the monovalent 

metals, the alkali metals) will have its topmost occupied band half 

empty and the crystal will conduct. This simple application of 

band theory suggests that materials of the type referred to will 

behave as metals even if the atoms are very far apart. Though the 

bands may then be very narrow they will still be half-empty. That 

this is incorrect was first pointed out by Mott (Ref. 1), whose 

essential argument is as follows: 

Consider an array of monovalent atoms. If an extra 

electron is added it can move freely through the lattice and its 

energies form a "conduction band". Similarly, if an electron is 

removed from one of the atoms then a mobile positive hole is formed 

Suppose now we remove an electron from one atom (requiring an 

amount of energy I, the ionization energy) and place it on another 

atom (releasing an amount of energy E, the electron affinity). If 
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the atoms are very far apart the energy, W, needed to do this will 

be given by 

W = I - E. 

As the atoms are allowed to come closer to each other, W will de- 

crease, but W cannot tend to zero since the hole and the electron 

attract each other with a Coulomb force and it is known (Ref. 2) 

that such a force leads to bound states; the oppositely charged 

carriers in fact form a bound pair and even if they move through 

the lattice will do so as a pair without producing any net current. 

One can imagine a small number of such pairs being formed (the 

meaning of "small" will be discussed in a moment); the above 

reasoning is unchanged and the material remains non-conducting. 

Suppose, however, that a large number of pairs have been formed 

and we now form one more. The electron we remove will no longer 

move in a Coulomb potential but, owing to the.electrons already 

displaced, in a screened potential of the form (Ref. 3) 

e2 
  exp C“Xr) 

r 

in which e, r have their usual meaning and 1/x is the screening 

length, which will depend on the concentration of displaced elec- 

trons. Such a potential does not necessarily lead to bound states 

and the electron (and all subsequent ones removed) may be free to 
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carry current. 
1 

Mott's argument, then, leads to the view that the num- 

ber of free carriers may be large or it may be zero; it cannot be 

small. The transition from a non-conducting to a conducting state 

will be a sudden one, occuring at some critical value of the atomic 

spacing. 

In fact, as Ziman points out (Ref. 4), if the screening 

length, 1/X, is less than the ground state radius of the atom even 

this state cannot be bound and he uses this as follows to estimate 

the critical spacing at which the transition occurs. Assuming that 
I 

the atoms are hydrogen-like, the ground state radius, a^^, is given 

by 

a 
H (1.1) 

with the usual symbols, and X is given by 

^ 2 4me^ 1/3 
X^ =   n ' (1.2) 

where n is the number density of ionized electrons. 

Hence 

,2 4 1/3 X^ o — n 

H 

The system will conduct if i < a„ 
, H 

1 

(1.3) 

i .e. if X^ > 
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Using (1.3) this condition becomes 

i > J- 

or 

< 4a^ Cl.4) 

i.e. the system will conduct if the average spacing between atoms 

is less than four atomic units. 

In his paper, Mott applies the above theory to impurity 

band conduction in semiconductors by treating the impurities as 

hydrogen-like centers in a medium of dielectric constant the 

dielectric constant of the background crystal; the mass, m, of the 

* 

electrons is replaced by m , the effective mass and the charge, e, 

is replaced by e//e^. 

On this basis, the critical concentration for donor 

* 

impurities in silicon, for example, taking m = 0.45m and = 12, 

is about lO^^cm , using the criterion of (1.4). This agrees with 

the value given in Table I of Ref. 1. For indium antimonide the 

* 

critical concentration of donors given by (1.4) is, taking m = 0.01m 

and = 16 (as in Ref. 5), about 4 x lO^^cm As Ziman points 

out, the numerical factor on the right-hand side of (1.4) need not 

be taken too seriously; in a crude way one could argue that the 

transition will take place when the overlap between neighbouring 
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impurities is sufficiently strong, when they are, say, one Bohr 

radius apart. In In Sb this argument would lead to a critical con- 

centration of about 2 X 10^^cm It will be of interest to com- 

pare these estimates with the figures calculated on a different 

basis for In Sb in the latter part of this paper. 
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SECTION 2 The Effect of a Magnetic Field on Impurity Conduction. 

2.1 The Work of Yafet, Keyes and Adams. 

We now ask what effect a magnetic field will have on the 

Mott transition. Since we are going to treat impurity conduction on 

the basis of hydrogen-like impurities embedded in a background 

dielectric medium it is clearly relevant to ask what effect a mag- 

netic field has on a hydrogen atom; this problem has been considered 

by Yafet, Keyes and Adams (Ref. 6). 

They present their results in terms of a dimensionless 

parameter, y, defined by 

Y (2.1) 

where is the cyclotron frequency of a free carrier in the magnet- 

ic field and R is the Rydberg, y is, in fact, the ratio of 1ia) /2, 
y c 

the zero point energy of a free carrier in a magnetic field, to R^, 

the energy of a carrier in the lowest state of the hydrogen atom in 

a field-free region. Yafet, Keyes and Adams point out that if 

Y<<1 (the magnitude of the magnetic field required for this to be 

so will be discussed below) then the magnetic forces on the electron 

are not comparable to the Coulomb forces; for y>l, however, the 

magnetic forces, which are centripetal in a plane perpendicular to 

the field, B, will compress the atom and this will result in an 

increase in the magnitude of the (negative) Coulomb energy. On the 
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band model of a semiconductor this means that the impurity level is 

lowered with respect to the bottom of the conduction band; in 

other words, the binding energy of the impurity increases with mag- 

netic field. It is with this latter effect that Yafet et al are 

chiefly concerned. It should be clear, however, that the shrinkage 

of the atom in a strong magnetic field will result in a decrease of 

the overlap between neighbouring impurities and hence in an increase 

of the critical concentration at which the Mott transition occurs; 

alternatively, one may say that for a given impurity concentration, 

the Mott transition will occur at some critical value of the mag- 

netic field, which we calculate later. For the moment, we return 

to the work of Yafet, Keyes and Adams since, although they do not 

consider the role of overlap between neighbouring atoms, their 

calculation has certain features in common with our own. 

They carry out a variational calculation of the ground- 

state energy, taking as their normalized trial wave-function 

and writing the Hamiltonian for a hydrogen atom in a uniform mag- 

netic field as 

r 
(2.3) 
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where p is the momentum of the electron, L is the dimensionless 

operator for the component of orbital angular momentum in the field 

direction (along the z-axis), and a>^ is the cyclotron frequency. 

They obtain, for a trial value of the ground state energy. 

in which d = — (2.5) 
b 

On minimizing with respect to a and d the following two equa- 

tions are obtained: 

(' ‘ f)* 2 Y a 

dj2 

a^/7ry(l-d^) 
In 

1 -t-y(l-d^) 

1 -i/(l-d^) 
= 0 (2.6) 

d , J2 
2a^ (l“d2) '3/2 

In 
(1-d^) 

1 -i (l-d2) 
= 0 (2.7) 

These two equations are solved numerically for different values of 

Y and the results are plotted in Fig. 1, which shows how a and b 
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vary with magnetic field. Fig. 1 also shows how the spatial 

extent of the wave function of a free carrier, varies with magnetic 

field. This is calculated by noting that in a magnetic field, B, 

a free electron with velocity v will move in a circular orbit, 

perpendicular to B, whose radius, r, is given by 

r = 
mvc 

eB 
(2.8) 

Hence 

o mvrc 
r^ =s   

eB 
(2.9) 

Since, semi-classically, the angular momentum, mvr, is quantized 

with allowed values nil, where n is an integer, the ground state 

radius is given by 

o \ eB I 
(2.10) 

Fig. 1 justifies the assertion, made earlier, that as the magnetic 

field increases the atom shrinks in all dimensions. 

From (2.4) the ionization energy, E„, which is the 
D 

difference between the energies of the lowest bound state and the 

lowest free state, is readily obtained since, from the definition 

of 

Y ■ ^YKA (2.11) 
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where the numerical values of a and b obtained from (2.6) and (2.7) 

are inserted in EyKA* ^ graph of as a function of magnetic field 

is shown in Fig. 2. Yafet et al estimate that their values for^E^ 

are in error by no more than 15%. 

They go on to consider the feasibility of an experimen- 

tal test of their theory. They point out that the magnetic field 

for which y = 1 is given by 

B = 2 X 10^ 

(Y=l) 

m 

m^6 ^ 
gauss (2 

* 

in which m is the mass of a free electron, m is the effective 

electron mass, is the background dielectric constant of the 

* _ 2 
crystal. For indium antimonide talcing m = 10 m and = 16, 

B 10^ gauss, 

(y=i) 

a value readily attained in the laboratory. 

Keyes and Sladek (Ref. 7) have measured the conductivity 

of In Sb as a function of magnetic field, and we shall discuss their 

results later. They point out, and we emphasize here, that the 

theory of Yafet, Keyes and Adams is not directly applicable to their 

results since it does not consider the question of overlap. 

.12) 
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2.2 The Work of Fenton and Haering 

Fenton and Haering (Ref. 5) have carried out a varia- 

tional calculation of the binding energy of an impurity electron in 

a magnetic field; their calculation is essentially similar to that 

of Yafet, Keyes and Adams, but takes into account the effect of 

screening by electrons in the conduction band. They argue that, 

while an increase in the magnetic field increases the binding energy, 

an increase in the concentration of screening electrons in the 

conduction band will shift the impurity levels upwards and hence 

result in a decrease of the binding energy; there will be some 

critical concentration of conduction electrons such that the lowest 

state of the impurity will have zero binding energy and for concen- 

trations greater than this, there will be no bound states. Suppose 

now that we have a doped semiconductor with enough electrons in the 

conduction band to screen the impurity ions completely* If we now 

increase the magnetic field from zero a point will be reached at 

which the concentration of conduction electrons will be only just 

sufficient to prevent the binding of electrons to the impurities; an 

infinitesimal increase of the magnetic field beyond this point will 

introduce bound states. Electrons which become bound will decrease 

the electron concentration in the conduction band, the screening is 

reduced and the binding energy increases, introducing yet more 

bound states. The process is regenerative and the number of elec- 

trons in the conduction band will decrease sharply as the magnetic 
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field is increased. 

Fenton and Haering take a trial wave function of the 

I 
form 

FH 
= |Ab^ 

-1 

exp (2.13) 

and write the Hamiltonian operator as 

H-,„ = 2__+_ho)L + — mu)^ (x^+y^) - — 
FH« ^CZQC 

2m 2 8 r 
exp (-Xr) (2.14) 

in which the Coulomb potential, the last term in (2.14), contains 

the screening length, 1/X (cf. Equation (2.3)). 

Hence Fenton and Haering obtain for the trial value of the ground 

state energy: 

r 

(l-e) In 
'2 

e a 

[’ ^ A. a + e I 

3^ I' r 
  l(l-a)/(l-g)! i 

2Cl-g} 

g(a~e) ->1 (1-g)" - (l-e)" > (2.15) 

where a = l-X^a^ 

a2 
and e = 1 - — , the eccentricity. 

b2 

(2.16) 

(2.17) 
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If we allow the screening length to become infinite (i.e., we 

neglect screening) by setting X = 0, a = 1 in (2.15) we retrieve 

the expression for the energy obtained by Yafet, Keyes and Adams 

though with slightly different numerical coefficients owing to 

the difference between the two trial wave functions. 

The numerical results obtained by Fenton and Haering 

(see Fig. 3) suggest that in indium antimonide at 3.5°K with an 

impurity concentration of 5.7 x 10^^ cm~^ the reduction in the 

number of conduction electrons due to the regenerative process 

described above takes place at a field of about 20 kilogauss. 
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2.3 The Work of Durkan and March 

Durkan and March (Ref. 8) have carried out a more 

detailed investigation of the effect of a magnetic field on impurity 

states in n-type In Sb, considering in addition to screening by con- 

duction electrons the role played by the first excited state of the 

impurity. To deal with screening they invoke the theory developed 

by Hebborn and March (Ref. 9) for the screening of a point ion in a 

metal in the presence of a weak magnetic field and the extension of 

this theory to fields of arbitrary strength by Durkan, Hebborn and 

March (Ref. 10). They assume that the electron wave functions are 

plane waves, modified by the magnetic field, B in the z-direction 

and consider the electrons to move in a weak potential field, V(r), 

due to the charged impurity center plus the charge displaced in the 

conduction band by the charged center. They obtain the following 

expression for the screened potential to first order, written in 

terms of the Fourier transform, V(q), where q is the wave-vector: 

V(q) = 4Tre 

X exj (2.18) 

in which is the background dielectric constant 
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is the electron number density 

(k„ is Boltzmann^s constant) 
D 

H effective Bohr magneton. 
2m c 

2.3.1 Ground-state 

Durkan and March use this screened potential to carry out 

a variational calculation of the ground-state energy of an impurity, 

taking a trial wave-function of the same form as that used by Yafet, 

Keyes and Adams, viz. 

<l>^ = A exp 

The variational energy is given by 

(2.19) 

E = 
o 

=<fl^> - e <V> (2.20) 

where is the Hamiltonian for an electron in a homogeneous mag- 

netic field, given by 

H 
o 

(2.21) 

with A = (-%By, 0) (2.22) 
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Using (2.19) they find 

<V> = I’'® 
(2 /// (- 

("9^, 
exp q^dqj^dqod(j> 

(2.23) 

and 

<"o> 16m 2m 

For the binding energy they thus obtain: 

H2 

f- ^-] \a^ b2/ 

=b = * 0 m a2 ( 
1 + I + e^B2 41^0 fTeB 

2b2J 16m c2 .eB 2m* c 

(2.24) 

4Q2 

2T( 

r 2 

e2ga2 f f -qa^tfag 
X f q2 +   I dy exp (   (1-y ) 

X exp 
-q2 2fi2 

m*y* Ba^ o 

/* ^ 
D ^ 

/ coth(y^ 

} 
cosh(y^ B3y) 

sinh(y *B$) V o }]) (2.25) 



17 

is a function not only of the variational parameters a and b, 

but also of B, T and n^. Durkan and March minimized the energy with 

respect to the parameter, d, defined by 

d 
a 

C2.26) 

and some of their results are shown in Fig. 4, in which the ioniza- 

tion energy is shown as a function of n^. The curves 1 to 4 were 

constructed for four samples of InSb with different donor and 

acceptor concentrations, N, and N (shown in Table 1 below), using 
u a 

the relation: 

Na + No -1 „ 
 ^ = n N exp 
N.-N -n ° 
d a o 

Ei Eionization 1 

where 

* i' oR 
N = (2TTm k_T) — 

® h2c 

The values of B and T used were 

(2.27) 

(2.28) 

Sample 

1 
2 
3 
4 

Table 1 

100 
43 
24 
45 

-13 
Na X 10 

98 
38 
21 
38 

B = 5000 gauss 

T = 3^K. 
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Curve 5 shows the effect of screening; where it crosses curves 1 to 

4 the new ionization energy is obtained; for the samples considered 

the reduction of ionization energy by screening is only a few per- 

cent . The importance of screening is more evident when the first 

excited state is considered. The experimentally determined activa- 

tion energy is shown as a function of B for the same four samples in 

Fig. 5. 

2.3.2 First Excited State 

In considering the first excited state Durkan and March 

assume that the excited states have broadened into a band forming a 

quasi-continuum with the conduction band and derive an approximate 

expression for the activation energy by estimating the energy differ- 

ence between the first excited state and the ground state. They 

take as their trial wave function 

= expC-i4>) 

C2TT)^ 

exp(-z^/b^) 

1, 
b'^ 

4r exp(-r^/a^) 

2^ a2 

(2.29) 

The mean values of H and V are then found to be 
o 

heB 

8m c d 

•heB 

2m*c 

1 
+ (2.30) 
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and 

^Vy= — J* |2qj_dq^(l-q2jexpC -q\) 

(' 

X 1 q2 ^ —2 

27rn 3efic 

e B o 

J dy exp j-q^^(l-y^) — L 

^ cosh(y B$y) 
X exp -q^ \ coth (y BB) - 

sinh(vi BB) o 

The energy is calculated as before, using 

(2.31) 

E = - e <V) (2.32) 

and minimized with respect to the parameter d defined in (2.26). 

The resulting ionization energy, for B = 5000 gauss and T = 3°K, is 

shown in curve 6 of Fig. 4; the effect of screening on the ioniza- 

tion energy is much greater for the first excited state than for the 

ground state. 

Durkan and March go on to emphasize the importance of the 

part played by the first excited state when the overlap between 

neighbouring wave functions is considered; they quote, from the 

calculation of Wallis and Bowlden (Ref. 11), typical values of the 

parameter d (=b/a) for the ground state and the first excited state 

in various magnetic fields, as shown in the following table: 
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Table 2 

B (x 10^ gauss) 

d in Coulomb field 

ground state first excited state 

5 1.2 1.7 

1.3 1.8 

9 1.4 1.9 

The overlap is seen to be greater for the first excited 

state than for the ground state, and the role of the excited states 

in a consideration of the Mott transition will clearly be signifi- 

cant . 
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SECTION 3. The Dielectric Approach to Impurity Conduction. 

3.1 The Criterion for Impurity Conduction. 

Frood (Ref. 12) has used an entirely different 

approach to impurity conduction in semiconductors, using the theory 

of dielectrics and including the effect of excited states. Consid- 

ering the same model of hydrogen-like impurities in a background of 

dielectric constant e , he invokes the Clausius - Mossotti formula 
0 

for the dielectric constant, e^, of the whole system; for the ground- 

state, at T = 0°K, this is: 

e +2e 
s o 

where N is the number density of donor impurities and is the 

ground-state polarizability. The idea is then that the system be- 

haves as a metallic conductor when becomes very large. This 

gives, from (3.1), the condition 

— Na = 1 (3.2) 
3e 

0 

when conduction takes place. For T > 0°K the contribution to the 

permittivity of electrons in excited states must also be taken into 

account and this is done by adding together the polarizations of all 

4'ir 
Na 

3e 

(3.1) 
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levels of principal quantum number n = 1, 2, 3, ... n^ to give the 

total polarization. Frood points out that the total number, n^, of 

discrete levels cannot be taken as infinite (as for an isolated 

atom) since this would result in an infinite permittivity and one 

could speak only of the metallic properties of the medium; the 

excited levels for which n> n^ are considered to be catastrophic, in 

the sense of the Clausius - Mossotti formula, and are to be associ- 

ated with metallic conduction. Thus n^ is defined as the highest 

possible non-catastrophic principal quantum number compatible with 

a given temperature and donor concentration and the permittivity of 

the donors and background is thus maintained finite and positive; 

essentially one assumes that all catastrophic excited states merge 

with the continuum. 

The importance of the excited states is emphasized 

by Frood in the following argument. The catastrophe in level n 

occurs when 

A 
n 

a 
n 

1 

where a^, the polarizability of this level is given by 

a 
n 

n^a^ 
H 

(3.3) 

(3.4) 

a^ being the ground-state Bohr radius, and is the population 

density of the n-th level. A^ is given by 
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exp(-Ej^/kBT) 

\ = A(T) ^  (3.5) 

^ n^expC-Ej^/kgT) 

in which A(T) is the number density of un-ionized donors and E^, 

the energy of the level measured from the ground-state, is given by 

= lo 
n^ 

where is the ionization energy of the ground level. The factor 

n which occurs in the numerator and denominator of (3.5) arises 

from the degeneracy of the n-th level. From (3.4), (3.5), and (3.6) 

we find that 

A a 
I I 

n‘ (1 (3.7) 

where T = I /k„ (3.8) 
o o B 

T_(l-l/n2) 
Hence if T>   (3.9) 

8 In n 

A a 
the ratio   is greater than unity and the dielectric catastrophe 

A,<j, 

will occur first in the excited level. With n = 2, for example, the 

first excited state becomes catastrophic before the ground state if 

T > 16^K. Similarly, the level for which n = 5 becomes catastrophic 
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before the ground state if T > 6.8*^K. Clearly the excited levels 

are important in deciding when conduction occurs and Frood’s treat- 

ment of this question and his determination of what value to give to 

n^, the highest level to be included, are given in detail in the 

next section. 
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3.2 The Dielectric Constant of the Donors and Crystal. 

To calculate the dielectric constant of the donor 

atoms plus the background crystal, Frood notes that when an electric 

field is applied the energy of the n-th level is altered and, con- 

sidering only the linear and quadratic effects, splits into a number 

of pairs of levels given by 

(3.10) 

where n and m are the principal and magnetic quantum numbers respec- 

tively and X is a positive integer (l<X<n) designating the pair of 

levels considered, f .(m) is the local field acting on the elect- 
n, A 

ron in the state (n,X,m) and a . is the corresponding polarizabil- 
n, A 

ity. Frood then quotes the following relations from Condon and 

Shortley (Ref. 13): 

P n,X 

3 
— a.,en (n-X) 

2 ^ 
(3.11) 

a , (m) = — a^ n^(14n^ + 6nX -3X^-9m^+19) (3.12) 
n,A g H 

where m assumes a total of X values given by 

m = (X-1), CX-3).   -tX-3). -CX-l) (3.13] 
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We see from (3.11) and (3.13) that X = n leads to n non-polar states 

while the remaining values of X lead to n^-n polar states of the 

original level. Frood then assumes that for weak local fields such 

that 

y -V f -V << T n, X n, X B 
(3.14) 

the field has no effect on the partition function of the donor atom 

(the denominator of (3.5)). The number density of electrons in upper 

and lower dipolar states is then, by (3.10), 

and for the non-polar states (X = n) 

(3.15) 

n,n 
n 

n-' 
n 

(3.16) 

where is given by (3.5). 

The polarizability given by (3.12) is averaged over 

the allowed values of m and the dielectric constant is then calculat- 

ed on the basis of the Onsager formula (Ref. 14), taking account of 

the dielectric constant of the background crystal, as follows. 

The number density of particles in the state (n,X) is, from 

(3.15) for weak local fields. 

+ A^"^ = — A 
n,X n,X p n 

(3.17) 
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and so, by the Onsager formula, the polarization due to polar donors 

in this state is 

,n,X 

(2X/n2) ( 
  /a . + 

1 -a , g„ , I n, A n, A V 

n,> 

Cl - 
(3.18) 

where is the cavity field given by 

3e 

2e + e 
s o 

(3.19) 

and F is the macroscopic field, 

given by 

g ^ is the reaction field factor 
^n,X 

g n,X 

2(e - e ) 
s o 

e (2e + e ) 
o s o n,X 

(3.20) 

where r , is obtained from the atomic volume of donors in the state 
n,A 

(n,X) using (3.17): 

1_ 

3 
^n,X 

8tX A 

3n2 " 
C3.21) 

Similarly the polarization due to non-polar states (n,n) is 

P 
~n,n 

(n/n^)A 
n 

a 
n,n 

a s 
n,n^n,n 

F 
c 

(3.22) 

On adding (3.18) and (3.22), summing over all bound states and add- 
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ing the polarization of the background crystal we get 

Ce -e )(2e +e ) ^ s o s o 

12TT e 

A A 
z— 
AW 1-a g 

n^n 

2 

a + 
n 

n 

(1-a g )k T 

' 
(3.23) 

where 

a = - a„^ n‘*(5n2+7) n g H 
(3.24) 

and 

y e^n^(n^-l) (3.25) 
n g 'll 

are the average polarizability and squared dipole moment for the 

n-th level and 

g n 
4TT 

3e 
o 

(3.26) 

is the average reaction field factor for this level. 

At first sight it seems that if we set T = 0°K in 

(3.23) then must become infinite, suggesting that the system will 

always behave like a metallic conductor at absolute zero! We note, 

however, that when T = 0°K there will be no excited states; hence 

the population density, will be zero unless n = 1 and, moreover, 

when n = 1 we see from (3.25) that Pjj = 0. In fact, the dielectric 

catastrophe always occurs through the polarizability, not through 

the intrinsic dipole moment, and this is true even at absolute zero. 
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Frood now argues that if (3.23) is to represent a 

finite dielectric constant n'^ must be so chosen that the factors 

^~°^n^n positive for all l<n:< n^ , since the levels having 

n > for which 1-a g <0 lead to infinite or negative polariza- 

tions associated with conduction. 

Frood goes on to show that infinite values of in 

(3.23) are catastrophic in the same sense as implied by the Clausius- 

Mossotti formula (3.1): supposing that as rr> n^, 1-a^g^ -> 0 then only 

the n"^-th term in (3,23) makes a significant contribution; since the 

catastrophe occurs through the polarizability we may omit the di- 

2 
polar term in from (3.23) to get 

(e -e )(2e +e ) 
^ s s 

12ire 

A ta , 
n n 

/g / n ^n' 

and, from (3.26), 

“n' ° 

8TT 

3e 

(e -e ) 
^ s o^ 

(2e +e ) 
^ s o'^ 

A /a / 
n n 

Hence 

(3.27) 

(3.28) 

(e -e ) (2e^+e ) 
s o s o 

12ire 

ii n 
(3.29) 

1 - 

STT 
TG -G ) 

s o-^ 

3G (2G^+G^) 
o s o'^ 

A , a / 
n' n' 

This is an equation for form 
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A = 

X = 

1-Bx 

1+AB 

i. e. A I a t 
n n 

(E -e ) (2e +e )/l2‘ire SOS o / ; 

1 + 

(2es*€^) 

12TT£ 

8TT s o 

3e (2e +e ) o s o 

(E^-E )(2e^+e^) ^ s o s o 

TO a. r 127TE +   TE -E ) 
S „ SO 

3E o 

On expanding and factorizing this leads to 

E “E 
4TT . so  A / a / =   

n n 
3E 

E +2E s o 

(3.30) 

which is the same as (3.1) if we replace A^/by N and , by a . 

In our own work, described in the next section, we 

adopt the dielectric approach of Frood, summarized above. 
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SECTION 4. Calculation of the Magnetic Field required to Reverse 
the Mott Transition. 

4.1 The Basic Model. 

We have already noted (see page 7, above) that the 

application of a strong magnetic field to a hydrogen atom results 

in a shrinkage of the charge distribution in all its dimensions; if 

the concentration of atoms is great enough (i.e. the spacing is 

small enough) for the Mott transition to have taken place, so that 

the system is conducting, it may then be possible for the magnetic 

field to decrease the overlap between neighbouring atoms to such 

an extent that the Mott transition is reversed and the system be- 

comes non-conducting. In this section we calculate the magnetic 

field required to bring about this transition from the conducting 

to the non-conducting state. 

We adopt the dielectric approach of Frood, out- 

lined in Section 3 above, taking for our model hydrogen-like 

impurities in a crystal providing a background of dielectric con- 

stant, e ; we assume that T = 0°K, so that there are no electrons 
o 

in the conduction band (i.e. we do not consider the effects of 

screening by conduction electrons) and the impurities are all in 

the ground state (i.e. they have no intrinsic electric dipole 

moment). We then carry out a variational calculation of the aver- 

age polarizability, a, of an impurity in a magnetic field, B. The 

permittivity, e^, of the crystal and impurities together is then 
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given by the Clausius-Mossotti formula, 

e -e 
s o 4ir 

Na 
e^+2e 3e 
so o 

(4.1) 

where N is the impurity concentration. We assume that conduction 

occurs when becomes very large, giving the criterion, from (4.1) 

NcT = 1 (4.2) 
3e 

o 

It turns out that a decreases as B increases, so (4.2) determines 

the critical value of B required to make the system non-conduct- 

ing. The immediate problem, then, is to determine a as a function 

of B. 

4•2 Calculation of the Polarizability. 

We consider the impurity in the presence of a uni- 

form magnetic field, B, and a small perturbing uniform electric 

field, F. Our procedure is then as follows. We choose a normal- 

ized trial wave function, <j>, containing certain parameters and 

calculate the energy, E, given by 

E = / <{i* H <j> dx (4.3) 

where H is the Hamiltonian operator and dx is the volume element. 

The resulting expression for E is minimized with respect to each 

of the parameters contained in d> to give E . . E . will contain 
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a term, E„, proportional to and the polarizability, a, is then 
r 

found by noting that 

Ep = -ha (4.4) 

In general, B and F will not be in the same direction so we con- 

sider separately the cases in which F is parallel to and perpen- 

dicular to B, obtaining polarizabilities a,, and ai• The average 

polarizability, a, is then chosen as 

a = Can + 2a^)/3 (4.5) 

The propriety of such a definition of <L is discussed later. 

4.3 Calculation of a  II 

We use cylindrical polar co-ordinates (r, e, z) and 

choose the z-axis to be in the direction of the magnetic field,- B, 

which we specify by means of a magnetic vector potential. A, whose 

components are given by 

A = (0, h^r, 0) (4.6) 

This choice of A gives a uniform field of magnitude B in the z- 

direction as required and also satisfies 

V • A = 0 

In the present case the uniform electric field, F, 



34 

is also in the z-direction and its components are therefore given 

by 

F = (0, 0, F) (4.7) 

The Hamiltonian operator for our system is then 

given by 

H = ^ V + i 
2m ^ i ~ c 

in which m is the effective mass of the electron, e is the magni- 

tude of the effective electronic charge, given by 

e = (actual electronic charge) 
o 

where e is the dielectric constant of the background valence 
o 

crystal. 

We now choose our trial function, (j>, to be 

(r^ + z^) 

Fez (4.8) 

4) exp (1 + Bz) (4.9) 

in which a, b and 3 are the parameters to be varied in minimizing 

E and is a normalizing constant whose value is determined by 

satisfying the equation 

/ (j)* c|) dx = 1 

This gives 

= l/[iTb(l + b2)]’^ a (4.10) 
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The trial function given by (4.9) differs from that 

used by Fenton and Haering (Ref. 5) only by the additional factor 

(1 + 3z) which is introduced here because we have an electric field 

in the z-direction. Roughly speaking, the parameter 3 accounts for 

distortion in the z-direction due to the electric field while the 

parameters a and b (or, more accurately, their ratio) describe the 

departure from sphericity due to the magnetic field. Clearly, if 

we set a = b, 3 = 0 we recover the wave function for the ground 

state of the hydrogen atom. 

Calculation of the energy E from (4.3), using equa- 

tions (4.6) to (4.10), gives: 

where 

+ 2Fe3a^ ^ 

1 - e 

b2 

(4.11) 

e 1 (4.12) 
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As a check we note that in the absence of any fields 

(i.e. if we set B = 0, 6 = 0 and a e 0) equation (4.11) 

reduces to 

^2 

"if - 
2 a 
H 

where a^^, the effective Bohr radius, is given by 

2 
(4.13) 

me 

Moreover, if we set 6=0 equation (4.11) is identical with the 

expression for E given by Fenton and Haering (equation (12) of Ref. 

5) if we neglect screening effects and take into account the units 

used in Ref. 5. 

We now minimize E with respect, firstly, to the 

parameter 6. In doing so we shall assume that the field F, and 

hence the parameter 6» are small. Equation (4.11) may be written 

E^- ^ (1 + 6^b^)‘^‘ H + 2Feb^6 + Y6^> (4.14) 

where 

X = 
m f—*—1 L3a^ 6b 

e^B^a^ , e^G 
II III I II .1 IIBRI ■ + '■■■ ' 

4mc' 2b 
(4.15) 
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and 

Y = 
-K2 

m 
[ 

3-7 

5a^ 10*^ 4mc^ 

3a^b^ 

3a- 

2b 

(e-V2, _i_\ 

\ Vl+E"^ / e(l-e)/ 
(4.16) 

We now expand (4.14)in powers of 3 to get 

Eji = X + 2Feb23 + (Y - b^X)32 + higher terms 

8E 
Setting — = 0 we get, neglecting 3^ and higher terms, 

33 

3 = - 

Feb 2 

Y - b^X 

(4.17) 

(4.18) 

Substituting this value of 3 in (4.17) and neglect- 

ing powers of F higher than the second we find, using (4,4) 

2e^b^ 
a (4.19) 

Y - b^X 

where X and Y are defined in (4.15) and (4.16). Of course, we do 

not yet know what values of a and b should be substituted in (4.19) 

to give a , since we have not yet minimized E with respect to 
11 

these parameters, but even before doing so we may check the valid- 

ity of (4.19) by putting B = 0, a->- b-> a^, e 0 in the expressions 
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for X and Y. (4.19) then yields the known result 

a = 4a . 
11 H 

Instead of minimizing E with respect to a and b, we 

shall now work in terms of a and e, where e is defined in (4.12). 

Our expression for E becomes 

1 + 
8^a^ 

1 -e 

m 

33' 

3a2 6a^ 5(l-e) 10 

efl^ 

4mc^ 

fa2 + 33^ a^ 1 

L T- TZ] 

e^ (1-E 

2a 

)^ 53^a^ /e‘^^^ln /l-e^ \ 
L il+e^j 4 I Vl+e^j 

e(l-e)4, 

2Fe3a^ 

1 - e! 
(4.20) 

Minimizing with respect to a and e we get, if 3 is 

again assumed to be small. 

e2B2 (1-fi )(-:!-.) + a - (l-e) ^ e nn /l-e 

2m 3 a^ 2mc2 2a^ 1+e 
= 0 (4.2i; 
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and 

2m 
(1-e) 

1 

eCl-e:)^ 
0 (4.22) 

Summarizing our results then, is given by- 

equation (4.19) in which we must substitute the values of a, b and 

e given by (4.12), (4.21) and (4.22). 

4.4 Calculation of a. 
_ . 1 _ _ r -1 - r '““JIB 

We proceed along the same lines, but since F is now 

perpendicular to B we choose F to be in the x-direction with B in 

the z-direction as before. The components of F are therefore given 

by 

F = (F,0, 0) (4.23) 

while B and the vector potential A are unchanged. 

The Hamiltonian is now given by 

H = 
1 /fi ^ e  j — V+ ^ A 

2m li - c ~ (r^ + 
+ Fer cos e (4.24) 

and we choose a trial wave function given by 

= exp f-e- Z b2 
2 \ 

(1 + gr cos 6) (4.25) 
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where the normalizing constant Cj^is 

Cj^= 1/QibCl + 62^2^^ (4.26) 

The expression for E, calculated from (4.3) and (4.24) to 

(4.26) is 

1 

l+$2a2 2m 

1 i 32+ 1^2 ill 
5 5 b2j 

a^(l + 3a^3^) 

4mc^ 

This is of the form 

Ex = Cl +.32a^)"^ (X + 2Fea23 + 23^) (4.28) 

where X is given by equation (4.15) and 

Z = ■^ r i + 1 . ii] + . Sa** 
2m ^5 5 b^-J 4mc^ 

(4.29) 
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Again we minimize with respect to 3, neglecting 32 

and higher terms, to get 

3 = - 
Fea2 

Z - a^X 

leading to a value for the polarizability, a*, given by 

(4.30) 

2e^a*^ 
a j =   

Z “ a^X 
(4.31) 

In terms of a and e our expression for E becomes 

= —-— (— f- 1 + 3^a^ I^2m ^a‘ 
(1 - - ) + (1 

e^B2 O ? 2 2.. 
+  a^ (1 + 3a 3 ) 

4mc^ 

In minimizing with respect to a and e we again assume 

3 to be small. With this assumption E ^ is identical in value with 

Ej^ , i.e. equations (4.20) and (4.32) are the same for small 3. 

Hence the equations which determine a and e are the same as in the 

parallel case, viz. equations (4.21) and (4.22). 
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4.5 Numerical Calculations. 

For convenience we reproduce here the equations, 

derived above, which were used in the computer calculation of the 

average polarizability. 

The quantities X, Y and Z are defined by 

2m 3a^ 3b ^ 
■J 

e^B^ 

4mc^ 
'In 

2b 

1 - e  5 

1 + e 

(4.15) 

„ f2 b^ 3 1 e^B^ 
Ye — — + ~U   

2m ^5 a^ 5 ^ 4mc^ 

^ a^b^ e^ 

2 2b 4 

1-e 

1+e 

+ (4.16) 

Z 
4^ r i. 
2m ^ 

— + £.1 + 

b^ 5J 4mc^ 

+ - J (4.29) 

The parameters a, b and e are related by 

b^ 

£ = 1 (4.12) 
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a and e are the solution of the two equations 

^2 e2fi2 (1- — ) (  ) + -—^ a - 
2m 3 -a 3 2mc 2a^ 

(1 - e)' In 1 - e  1 
1 + ' 

0 (4.21) 

and 

^2 1 e- — + — 
2m 3a^ 4a 

In 1 - e 

2a e(l -e)h 
= 0 (4.22) 

a , a,and 
11 J- 

a are J?hen given by 

2e2b‘t 
a =  ^ 

11 Y-b^X 

2e^a^ 
a. *   
^ Z-a^X 

(4.31) 

ot S' (6t + 2a,)/3 (4.5) 

The numerical calculations based on these equations were 

carried out for InSb, taking 

m = 0.01 X free electron mass 

e =16 
0 

Equations (4.21) and C4.22) give a and e (and hence b) as functions 

of B; X, Y and Z can then be computed and hence a,, , and a are 
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known, also as functions of B. The results of these calculations 

are shown graphically. 

Fig. 6 shows the parameters a and b as functions of B. 

4ir 
Fig. 7 Shows the function — Na as a function of B 

o 
for different values of the impurity concentration, N. 

4IT 4TT 
Fig. 8 shows Nctji and as functions of B for 

a fixed value of N (N = 10^® cm ). 
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4.6 Discussion and Conclusions. 

The results of the present calculation are shown in Figs. 6, 

7 and 8. 

Fig. 6 shows that the geometrical parameters a and b, charac- 

terizing the spatial distribution of charge around the impurity in 

the directions perpendicular and parallel to the magnetic field, 

respectively, both decrease as B increases, a decreasing more rapid- 

ly than b. This is in agreement with the result of Yafet, Keyes and 

Adams (Ref. 6) shown in Fig. 1, as is to be expected. 

Fig. 7 has been drawn with our dielectric criterion for conduc- 

tion in the impurity band, equation (4.2) in mind. In the region 

above the horizontal dashed line, the system is conducting; below 

this line it is non-conducting. We see that for an impurity concen- 

tration of, for example, 10^^ cm"^, the system is non-conducting for 

magnetic fields greater than 25,000 gauss. It is tempting to compare 

this result with the calculation of Fenton and Haering (Ref. 5) shown 

in Fig. 3, where for an impurity concentration of 5.7 x 10^^ cm”^ a 

reduction in the number of conduction electrons occurs at a field of 

about 20,000 gauss. Fenton and Haering, however, are concerned with 

a Mott transition in which screening of the impurities by conduction 

electrons plays a vital role, while our calculation does not discuss 

such screening and is concerned with a transition taking place entire- 

ly within the impurity band. The two models here give critical fields 
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which do not differ greatly; we shall see below that there are 

experimental results which agree closely with the predictions of 

Fenton and Haering, 

Fenton and Haering have calculated that for impurity con- 

centrations greater than a critical value 10^^ cm"^) there 

will be no bound states of the impurity. The results of our 

calculation (Fig. 7) suggest that there will be no conduction in 

the impurity band below this concentration, even in zero magnetic 

field. 

Before turning our attention to the experimental work which 

has been done we question whether our method of averaging the polar- 

izabilities ail obtain a is appropriate. In an experimental 

situation the experimenter may decide to apply his magnetic field in 

a direction perpendicular (or parallel) to his electric field; it does 

not necessarily follow that he should then use only aj^ (or an) in 

comparing theory and experiment. In order to decide how ajL and an 

should be combined a fuller discussion, involving the dependence of 

a on the direction of the wave-vector k, might be called for; some 

work on these lines has been done by Lobo, Rodriguez and Robinson 

(Ref. 16). Fig. 8 shows, for N = 10^^ cm”^, that the critical fields 

in the extreme cases, using only an only differ by an order 

of magnitude. It is surprising, therefore, that Putley (Ref. 18) 

found that rotating the magnetic field from the transverse to the 

parallel direction produced little effect. 
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Hanley and Rhoderick (Ref. 17) have carried out Hall effect 

measurements on n-type InSb with excess donor concentrations of 

3 X 10^^ cm”^ and 2 x 10^^ cm“^, respectively below and above the 

critical concentration. Fig. 10 shows the Hall coefficient plotted 

against reciprocal temperature over a range of magnetic fields for 

both specimens. From the presence of maxima in these curves the 

authors deduce that two types of carrier take part in the conduc- 

tion process and analyze their results on a two-band model. On 

this basis they give the following expression for the Hall coeffi- 

cient, R: 

Ro(l+x)(l+xb*^) 
R =  —   (4.33) 

(1+xb*)^ 

where x = n^,/n£; b* = Pc/l^iJ 

R„ - 1 - 1 
° e(ni+nc) e(Ni)-NA) 

In this notation n is the electron concentration, y the mobility, 

ND the donor impurity concentration, the acceptor impurity con- 

centration and the subscripts c and i denote conduction band and 

impurity band, respectively. The authors assume that b* varies 

more slowly with temperature than x and deduce that the maximum 
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value of R, which occurs when x = 1/b*, is given by 

R fl+b*)2 
R — Q   *^max - 4 

(4.34) 

We now point out that when the magnetic field, B, increases the 

width of the impurity band decreases and consequently the effec- 

tive mass, mj^*, of an electron in the impurity band increases. 

Since is inversely dependent on m^* (page 194 of Ref. 4) the 

result of increasing B is to increase b* (spc/^^i) • The result of 

increasing B is therefore to increase Rmax^ curves of Fig. 

10 show. The present thesis suggests that above a critical value 

of B the impurity band is non-conducting; this may be interpreted 

by saying that at the critical field becomes zero and the value 

of b* becomes very large. To see whether this is indeed so we ex- 

amine the numerical results of Hanley and Rhoderick given in Table 

3 (below) , in which is the ionization energy predicted by 

Fenton and Haering (Ref. 5) and Eg^^ is the ionization energy de- 

duced by Hanley and Rhoderick from their measurements. The measured 

and predicted values of ionization energy are also shown in Fig. 11 

together with the prediction of Yafet, Keyes and Adams (Ref. 6) for 

an isolated hydrogen-like impurity. 

We note, from Table 3, that the value of b* does increase 

rapidly with magnetic field, particularly for the purer specimen, in 

which an increase of magnetic field from 6.25 kG to 43.75 kG (by a 
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factor of 7) results in an increase of b* by a factor of 150. It 

should be pointed out, however, that the results shown in Table 3 

are for magnetic fields greater than the critical field according 

to our calculations; nevertheless, there is qualitative support 

for our idea that increasing the magnetic field beyond a certain 

value cuts off the conduction process in the impurity band. Turning 

our attention to the predicted and measured values of ionization 

energy (Fig. 11) there is good agreement between experiment and the 

theory of Fenton and Haering, particularly for the less pure speci- 

men and particularly for low magnetic fields. Hanley and Rhoderick 

state that their values of ionization energy have a precision of 

about 20%; at the higher magnetic fields used this could mean that 

their results are not far below the theoretical values of Yafet, 

Keyes and Adams (Ref. 6) for an isolated impurity. In fact, Dur- 

kan, Elliott and March (Ref. 19) predict that at high magnetic 

fields the ionization energy should approach the values of Yafet, 

Keyes and Adams and this is verified by the work of Beckman, Hana- 

mura and Neuringer (Ref. 15) who found that with samples of impurity 

concentrations 2.6 x 10^^ cm"^, 3.7 x 10^^ cm"^ and 1.1 x 10^^ cm“^ 

the values of the ionization energy approached the theoretical values 

of Yafet et al, very closely at fields greater than 50 kG. 

Hanley and Rhoderick*s results are also consistent with 

the theory of Fenton and Haering in that they find zero ionization 
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energy for impurity concentrations greater than the critical value 

and a finite ionization energy at concentrations less than this. 

Hanley and Rhoderick also point out, in a note at the end of their 

paper (Ref. 17), that the activation energies predicted by Durkan 

and March are smaller than those observed by Hanley and Rhoderick 

and suggest that this may be due to the excited states of the im- 

purity not playing the part envisaged by Durkan and March. 

The work of Beckman, Hanamura and Neuringer (Ref. 15) 

mentioned above was carried out on impure samples at magnetic 

fields up to 150 kG. They found that below a critical magnetic 

field there was zero ionization energy but for fields greater than 

this the Hall coefficient and the transverse magnetoresistance both 

increased rapidly. This is in qualitative agreement with our theory, 

though their critical fields are larger (by a factor of 5 for a sam- 

ple with impurity concentration 10^® cm"^). They also deduce a 

relationship between the critical field and the impurity concentra- 

tion which agrees closely with a similar relationship which may be 

derived from our results (Fig. 7) as follows. 

We note first that if B is sufficiently large the curves 

of Fig. 7 all have the same slope, s (a negative number), which can 

be calculated. Since Fig. 7 is a log-log plot it follows that for a 

fixed value of N 

7 a (4.35) 
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The critical values of a and B are therefore related by 

“c " ®c' (4.56) 

Now ac is related to N by our conduction criterion, namely 

4IT 

Sen c 
Na^ = 1 

(4.37) 

a N ^ 

Hence, from (4,36), 

Be « N- 

(4.38) 

0= N“^/s 

This gives, from Fig. 7 (or, more readily, from the computed values 

of a as a function of B) 

B^ oc NO'50 (4.39) 

This is close to the relationship quoted by Beckman, Hanamura and 

Neuringer (Ref. 15): 

Bj. cc (4.40) 
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Finally, we refer to the work of Putley CRef* 18) on a 

sample of InSb with an excess electron concentration of 5 x 10^^ 

cm-3, lower than the critical concentration. He found the 

existence of a non-zero activation energy for magnetic fields 

greater than a critical value; above this value the Hall coefficient 

increased with B. Putley's results have been interpreted by Durkan, 

Elliott and March (Ref. 19) in terms of a transition within the im- 

purity band from a conducting to a non-conducting state at the 

threshold magnetic field; this is precisely the transition with 

which the calculations of the present thesis have been concerned. 

In fact, as March points out in the discussion at the end of Ref. 

19, there are two mechanisms at work in reducing the conductivity 

when the magnetic field is increased: the Wigner transition, in- 

volving a decrease in the overlap between impurity states, to which 

we have applied the dielectric theory of the present work, and the 

Mott transition depending on the screening of the impurity states by 

conduction electrons, discussed by Fenton and Haering (Ref. 5). 

In conclusion, then, we note that the dielectric approach 

to impurity conduction yields a critical value of the magnetic field 

at which the Wigner transition occurs. Our model is restricted by 

the assumption that T = 0°K, so that the effects of screening by 

conduction electrons and of excited states of the impurities are 

neglected. Nevertheless our calculations agree with the results of 
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Beckman, Hanamura and Neuringer (Ref. 15) particularly with respect 

to the dependence of the critical field on impurity concentration 

and are in qualitative agreement with the work of Hanley and Rhoderick 

(Ref. 17), particularly with respect to the rapid increase of the ratio 

Pc/yi with magnetic field. The latter's results support the calcula- 

tions of Fenton and Haering (Ref. 5) with regard to activation energies. 
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y =tia>c/2Ry 
Figure 1 

Impurity Charge Distribution as a Function of Magnetic Field - 
from Yafet, Keyes and Adams (Ref. 6). 

ajL and a^^ (identical with our h) measure the ground state 
distribution from the impurity center in directions transverse 
and parallel to the magnetic field, respectively. Y is a dimen- 
sionless measure of magnetic field strength, B', for InShj B = 
1,2 kG when y = 1. The unit of length (z/-axis) is the best 
value of ^nd ay^ in zero magnetic field. The dashed curve 
shows the distribution for a free electron. 
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F'igure 3 

Conduction Electron Concentration as a Function of Magnetic Field 
- from Fenton and Haering (Ref. 5). 

Y is a dimensionless measure of magnetic field strength, B; for 
InSby B = 1,2 kG when y = 1, n is the conduction electron concen- 
tration. For InSh^ rio(O) - 5,7 x 10^^ and 1 Ry = 7,2?^K, The 
impurity concentration is equal to the number of free electrons at 
zero field. 
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Figure 5 

Activation Energy as a Function of Magnetic Field - from Durkan 
and March (Ref. 5). 

Curves 1-4 represent the samples of Fig. 4. Curve labelled Band 
Gap is separation of lowest two impurity levels. Upper curve is 
the result of the theory of Yafet, Keyes and Adams (Ref. 6) for 
an isolated impurity. 
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Impurity Charge Distribution as a Function of Magnetic Field - 
as calculated in this thesis. 

a and h measure the ground state distribution from the impurity 
center in directions transverse and parallel to the magnetic 
field, respectively, is the effective Bohr radius. The 
calculations are for InSb^ taking the effective mass to be 
0.01 X free electron mass and the background dielectric constant 
to be 16. 



Figia^e 7 

4nNa/3zQ as a function of 5 - as calculated in this thesis. 

a is average polarizability of an impurity in , N is donor 
concentration in . The calculations are for InSbj taking 
the effective mass to be 0.01 x free electron mass and the 
background dielectric constant to be 16. The horizontal dash- 
ed line marks the boundary between regions in which impurity 
conduction does (above the line) and does not (below the line) 
take place. 



4I\11QL/ZZQ as a function of. B - as calculated in this thesis. 

The dashed curve reproduces the curve of Fig. 7 for B — 10^^ 
om-^, The full curves are for the extreme cases in which the 
magnetic field is perpendicular to (a^^) or parallel to (ajj ) 
the electric field. The critical field, where these curves 
cross the horizontal dashed line, differs by an order of 
magnitude in these extreme cases. 
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Figure 9 

Conduction Electron Density as a Function of Magnetic 
Field - from Keyes and Sladek (Ref. 7). 

n is the conduction electron density derived from Hall 
effect measurements at 4,2^K, The two curves are for 
samples with impurity concentrations of 10^^ (points 

marked O) and (points marked ®) . 
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Figuve 10 

Hall Effect as a Function of Reciprocal Temperature - from 
Hanley and Rhoderick (Ref. 17). 

Specimens A and B are InSb with excess donor concentrations 
of 5 X 10^^ orrT^ and 2 x 10^^ om'~^^ respectively. The curves 
are for different magnetic fields characterized by different 
values of the parameter Y. For InSh, B = 1.2 kG when y = 1. 
The broken curve for specimen B represents zero magnetic 
field measurements before etching. 



Figure 11 

Ionization Energy in InSb as a Function of Magnetic Field - 
from Hanley and Rhoderick (Ref. 17). 

Y is a measure of magnetic field; for InShy B = 1^2 kG when 
y — 1, The jfull curve is for an isolated impurity according 
to the theory of Yafet, Keyes and Adams (Ref. 6). The points 
shown are measured and predicted values for two specimens, A 
and B: 

SPECIMEN A 

SPECIMEN B 

3x10^ 

Measured Pred'LQted 

O O 



List of Symbols 

e 

m 

(li. 

R 

4> 

P 

B 

Ground-state Bohr radius 

Effective charge of an electron 

Effective mass of an electron 

(Planck's constant)/27r 

1/(screening length) 

Static dieldctric constant of back- 
ground crystal 

Static dielectric constant of 
crystals plus impurities 

Cyclotron frequency 

Rydberg 

*^o)Q/2Ry. 

Trial wave functions 

Momentum of an electron 

Magnetic field 

3 Variational parameter 



a* t 

V 

H 

n 

B 

N 

Na 

Variational parameter, radius perpen- 

dicular to B 

Variational parameter, radius par- 
allel to B 

Angular momentum operator 

a/b 

Energy 

Velocity of an electron 

Velocity of light 

1 - a2/b2 

Hamiltonian operator 

Electron number density 

Boltzmann's constant 

Temperature 

Magnetic vector potential 

Electron wave vector 

Impurity concentration 

Acceptor concentration 



Ponor Concentration 

Polarizability 

Polarizabilities parallel or 
perpendicular to B 

Principal quantum nianber 

Highest non-catastrophic quantum 
number 

Population density of n-th energy 
level 

Number density of un-ionized donors 

Ionization energy of ground-state 

Dipole moment of excited state 

Local field 

Polarization 

Electric field (macroscopic) 

Cavity field 

Reaction field factor 


