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Abstract 

Let E be a subset of real numbers defined by E = (^i<, < mt“2i-i, 

oo), where -<>= < < a2< ... < ^ . The moment problem on E can be stated 

as: given a sequence of real numbers | n = 0, 1,2, find a distribution 

function \\f with an infinite spectrum contained in E such that 

(•) j x"" d vW = n = 0,1,2,.... 

E 

A sequence {.u^ | n = 0, 1,2, ...} satisfying {’*) will be called a moment 

sequence on E. That is, {jip_ | n = 0, 1,2, ...} is called a moment sequence on E 

if there exists a distribution function v/ such that (*) is satisfied. 

If E is a finite interval [a^, a^, then we have essentially the Hausdorff 

moment problem and the corresponding sequence | n = 0, 1, 2, ...} 

satisfying (*) will be called a Hausdorff moment sequence on [a^, a2]. When 

E is a union of two semi-infinite disjoint intervals, say (-oo, a2]u[a3, =«), we 

have the complemented Hausdorff moment problem and we called the 

corresponding moment sequence [jir, I n = 0, 1,2, ...} a complemented 

Hausdorff moment sequence on (-<>=, 02]u[a3, «>)• 
p 

Let us define the determinants A^{^a.x'} by 
i=0 
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p p 

p i=0 i=0 

^ "   
i=0 P P 

X^i^+n ■" S^^+2n 
i-0 i=0 

The main purpose of this thesis is to find characterizations for the 

existence of a solution to the moment problem on various sets E. That is, to 

find characterizations for moment sequences on various sets E. This utilizes 

the Ap's. 

In Chapter 1, we introduce the moment problem and the general theory of 

orthogonal polynomials. At the end of Chapter 1, we use this general theory 

of orthogonal polynomials to prove the well known characterization, 

An(1} > 0, for the existence of a solution to the Hamburger moment problem 

(i.e. E = {~oo, oo)). 

In Chapter 2 we give (i) some representation theorems for polynomials 

that are non-negative on the set E and (ii) additional representation 

theorems for the moment functional associated with various moment 

problems. These polynomial representation theorems and moment functional 

representation theorems are used in the later chapters to find 

characterizations for moment sequences on various sets E. 

Chapter 3 discusses the Stieitjes {E = [0, ~)) and the Hausdorff (E = [0, 1]) 

moment problems. 

The main new results of the thesis are in Chapter 4 and Chapter 5. 

In Chapter 4 we give two new cha-^acterizations for a Hausdorff moment 

sequence and a characterization for a complemented Hausdorff moment 

sequence. These results can be stated as follows: 
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(i) 1 n = 0, 1.2, ...} is a Hausdorff moment sequence on [a^, a2] if and 

only if 

A^{1}>0, An{x-a^}>0, An{o2-x}>0 for n = 0, 1,2, ... ; 

if and only if 

A^{1} > 0, An((x - a^)(a2 - x)} > 0 for n = 0,1,2, ... . 

(II) (ji^ I n = 0, 1,2,...} is a complemented Hausdorff moment sequence 

on (-0O, a2]u[o3, °o) if and only if 

An{1} > 0, A^{(x - 02){x - Og)} >0 for n = 0, 1,2,  

In Chapter 5 we give some characterizations for the moment sequence on 

E where E is a finite union of intervals. They can be stated as follows: 

( I) Let -oo < . Then [ n = 0, 1,2, ...} is a moment sequence 

on E if and only if 

- cti)(02m- x)} > 0- 

2m-1 2m 

An{rj(x - a.)} > 0 and A^{-J^(x - a.)} > 0 for n = 0, 1,2, ... . 
i=2 i=1 

(II) Let A = {A3(X) I Ag(x) = ds%s(x ‘ l“il < ~, S c {1, 2m}, dg= ±1, 

A3(X) > 0 for xe E). (ji^ i n = 0, 1,2,...} is a moment sequence on E if and only if 

An{Ag(x)} > 0, n = 0, 1,2, ... , for all A^{x)^A. 

( Hi) Let {|i^ I n = 0, 1, 2, ...} be a moment sequence which is associated 

with a determinate moment problem on E, where -<=o < and 02^7, = ~ • {.Lip 1 ^ 

= 0, 1,2, ...} is a moment sequence on E if and only if 

A^{X - a^j > 0 and An((x - a2j)(x - ct2j^^)} > 0 i = 1, ..., m-1. 
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Chapter 1 

Moment Problem and Orthogonal Polynomials 

1.1 Introduction 

Let R be the set of real numbers. A bounded non-decreasing function 

y: R R is called a distribution function if its moments defined by the 

Riemann-Stieitjes integral 

are all finite. Without loss of generality we require that the distribution 

functions be continuous from the right at each point of R. The set o(\}/) 

defined by 

cj(\j/) = { X I \j/(x + 6) - \i/(x - 5) > 0 for all 6 > 0 } 

is called the spectrum of y. A point in o(\j/) is called a spectral point of vj/. 

Let E be a subset of the real numbers. The moment problem on E can be 

stated in the following manner: given a sequence of real numbers | n = 0, 

1,2, ...}, find a distribution function y with an infinite spectrum contained 

in E such that 

x" d\K(x) = , n = 0,1,2,... 
E 

There are three questions associated with any moment problem. They are: 

(i) to construct all distribution functions that are solutions of the moment 

problem, (ii) to give necessary and sufficient conditions for the existence of 
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a solution of the moment problem, and (iii) to give necessary and sufficient 

conditions for the uniqueness of the solution of the moment problem- In this 

thesis we only deal with the question of existence of a solution for the 

moment problem on various sets E. 

The moment problem had its beginnings back in 1874 with the 

investigations of P. L. Tchebichef [1] and his pupil A. Markov [1]. 

In 1894-95, T. J. Stieitjes [1] proposed the moment problem on [0,<»). 

That is, given a real sequence I n = 0, 1,2, find a distribution function 

with an infinite spectrum contained in [0, «>) such that 

oo 

I x"d \i/(x) = , n = 0,1,2,... . (1.1.1) 

0 

This moment problem is now called the Stieitjes moment problem . 

In order to pose the problem in this generality, Stieitjes had to invent the 

Stieitjes integral and introduced many new and important ideas into 

analysis. 

In 1920-21, H. Hamburger [1] made an important extension of the problem 

by allowing the spectrum of \\f to be in (-«>, <«). That is, he posed the problem 

of finding a distribution function y such that 

oo 

J x"dv(x) =p„, n = 0,1,2  (1.1.2) 
•oo 

This problem is now known as the Hamburger moment problem . 

In 1923, F. Hausdorff [1] investigated the moment problem on [0,1], that is 

to find a distribution function \j/with an infinite spectrum contained in [0,1], 

such that 
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1 J x"dv(x) = ti,, n = 0, 1,2,... . (1.1.3) 

0 

This probiem is now referred to as the Hausdorff moment problem . 

As can be seen from the works of Stieitjes, Hamburger and Hausdorff the 

moment problem and the theory of orthogonal polynomials are closely 

related. We cannot discuss the moment problem without discussing the 

theory of orthogonal polynomials. In the next several sections, we will 

provide the necessary materials about orthogonal polynomials which will be 

used for our investigation of the moment probiem. 

In order that the thesis is self-contained we have included the next two 

sections which deal with orthogonal polynomials and section 1.4 and 1.5 

that deal with some related questions in analysis. Unless otherwise stated 

all the definitions, lemmas and theorems in sections 1.2 to 1.5 can be found 

in Chihara's text [1]. 

1.2 Some Properties of Orthogonal Polynomials 

These results on orthogonal polynomials will be used at the end of this 

chapter and in the later chapters to characterize the existence of a solution 

to the moment problem whose spectrum is contained in various sets E. 

We start with a discussion of the linear functional L and the 

corresponding orthogonal polynomials. 

Definition 1.2.1 Let | n = 0, 1,2, ...} be a sequence of real numbers 

and let L be a linear functional defined on the vector space of all 

polynomials by 

L [x^] = 11^, n = 0,1 2, ... 
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L [a^7t:^(x) + 02:r2{x)] = a^L [7t^(x)] + [TC2(X)] , 

for all real numbers aj and all polynomials 7ij(x) (i=1,2). Then L is called the 

moment functional determined by the sequence | n = 0, 1,2, The 

number is called the moment of order n of L. 

Definition 1.2.2 A sequence {Pn(x)} is called an orthogonal polynomial 

sequence with respect to a moment functional L, if for all non-negative 

integers m and n, 

(i) P^(x) is a polynomial of degree n, 

(ii) L (P^(x)P„(x)] = 0 for m*n, 

(iii) L [P„2(x)] 0. 

"OPS" will be the abreviation used for "Orthogonal polynomial sequence" 

and we will use the phrase "{Pn(x)} is an OPS for L" for any polynomial 

sequence {Pp(x)} that satisfies Definition 1.2.2. 

{Pn(^)} 'S sn OPS for L and in addition we also have the leading 

coefficient of P^Cx) equal to one for all n, then {P^Cx)} will be called a monic 

OPS for L. 

Let be the Kronecker delta defined by 

0 if m n 

.1 if m = n. (1-2.1) 

Conditions (i) and (ii) of Definition 1.2.2 can be replaced by 

L[P^(x)P,(x)] = K,^0. (1.2.2) 

Theorem 1.2.3 Let L be a moment functional and let {Pn(x)} be a 
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sequence of polynomials. Then the following are equivalent: 

(a) {Pn(x)} is an OPS for L; 

(b) L[7t(x)P^(x)] = 0 for every polynomial 7t(x) of degree m < n, 

while L[7c(x)Pr,(x)] 0 if m = n; 

(c) L[x^Pn(x)] = where m = 0, 1, n; n = 0,1,2,... . 

Proof; Let (Pn(x)} be an OPS for L. Since each P^(x) is of degree k, it is 

clear that {PQ(X), P^(X),..., P^Ml is a basis for the vector subspace of 

polynomials of degree at most m. Thus if TC(X) is a polynomial of degree m, 

there exist constants C|^ such that 

m 

7T (X) = P^(x), ^ 0 . 
k=o 

By the linearity of L, 

' m 

^Cj^L[P|^(x) P^(x) ] = 0 if m < n 

L[ T:(X} P,(x) ] = <^ 

[ c^L[P^(x)] if m = n. 

Thus (a) => (b) . Since trivially (b) => (c) => (a), thus the proof is complete. 

Q.E.D. 

Definition 1.2.4 Let E c (-«, «>). A moment functional L is said to be 

positive-definite on E if and only if L[TC(X)] > 0 for every real polynomial TT:(X) 

which is non-negative on E and does not vanish identically. 

If in this definition E = (^, o«), then L is said to be positive-definite. 

Also we say that L is non-negative-definite on E if in Definition 1.2.4 
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L[7U(X)] > 0 is replaced by L[TI(X)] > 0. 

Lemma 1.2.5 Let 7t(x) be a polynomial that is non-negative for all real 

X. Then there are real polynomials p{x) and q(x) such that 

7i(x) = p2(x) +q2(x). 

Proof: If K(X) > 0 for real x, then TC{X) is a real polynomial so its real 

zeros have even multiplicity and its non-real zeros occur in conjugate pairs. 

Thus we can write 
m 

K(X) = r^(x) J~[( x -a^- |3j^i)(x - a^+ [3^i), 
k=l 

where r(x) is a polynomial, (\ and (3j^ are real numbers. 

Writing 
m 

Y[ (X - a^- PJ ) = A{x) + i B(x) 
k=1 

where A(x) and B(x) are real polynomials, we get 

7t(x) = r2(x) [ A2(X) + B2{X) ]. 

Q.E.D. 

In order to discuss existence theorem for OPS, we introduce the 

determinants 

(1.2.3) 

Definition 1.2.6 i he real quadratic form 

i.j = 0 

aa.jx, , 



1 0 

is called positive-definite. If for any vector {a^, 

a.a.u,. . > 0 
I jn + ) 

U = o 

a^) (0 0), we have 

The following well known result is from linear algebra. 

Lemma 1.2.7 (Archbold [1] P.393) The real quadratic form 

Xaa.ii. , 
I jH +] 

i,i = o 

is positive-definite if and only if A^(1} > 0 for m = 0, .... n. 

Using this lemma we have the following theorem. 

Theorem 1.2.8 Let | n = 0, 1,2, ...} be a real sequence and let the 

linear functional L be defined by L[x^ = p^. Then L is positive-definite if and 

only if A^{1} > 0, n = 0, 1,2  

Proof: Suppose that L is positive-definite. Given n > 0, and any vector 

(aQ, ..., aj ^ (0 . ..., 0). and 
n 

7C(X) = X - 

i=0 

we have that 
n n . . n 

0 < L[TI2(X)] = L[(^ ax' f] = L[^ +j ’ 

i=0 i,) = 0 i, i = 0 

By Lemma 1.2.7, we have A^{1} > 0. 

Conversely, let Aj^{1} > 0 for n = 0, 1,2, ..., and let TC(X) be a polynomial 

that is non-negative and does not vanish identically on R. By Lemma 1.2.5 we 

know that 
m n 

7i(x) = p^(x) + q^(x) = (^ax‘ f + f. 

i=0 k=0 



Therefore 

L(,:(x)] = U(£ax')^ + L[(£b^x^)^] = L[£a.a.x' *'] + L[£b^b,x'' * 
i=0 k=0 

m n 
li = o k,t = 0 

r i+j 
i,j = 0 k,t=0 

By Lemma 1.2.7, we have L[TC(X)] > 0. 

Q.E.D. 

Theorem 1.2.9 Let L be a positive-definite moment functional with 

real moment sequence | n = 0, 1, 2, ...}. Then there exist an OPS for L. 

Proof: Write 

k=0 

Recalling Theorem 1.2.3, we observe that the orthogonality conditions 

L[X"’P„(X)] = £C^^H^^ = K„5™. K„,0, msn, (1.2.4) 
k=0 

are equivalent to the matrix equation 

^^0 

^^2 - ^.1 

^^^n+1'"^2n_ 

nO 

n1 

nn_J 

0 

0 

L.Kn. 

(1.2.5) 

Since L is positive-definite, by Theorem 1.2.8 we have ^^{1} > 0. So for 

arbitrary 0, (1.2.5) has a unique solution (c^i | i = 0, ..., n}. Thus there 

exists P^(x) satisfying (1.2.4). We also have 



which is valid for n = 0, if we define A.^{1} = 1. it follows that Pn(x) is of 

degree n, hence {Pn(x)} is an OPS for L. 

Q.E.D. 

Theorem 1.2.10 Let {Pn(x)} be an OPS for L. Then for any polynomial 

7in(x) of degree n, 
a k A (1} 

L[^nW Pn(x) ] = a„L[x'^p^ix) ] = Y m ■ = 0-2-7) 
n-1 ‘ ' 

where a^ is the leading coefficient of TI:J^(X) and is the leading coefficient 

of P,(x). 

Proof: Writing 

7T^(x) = anX'^ + TCn.i(x) , 

where (x) is a polynomial of degree n -1, we have 

L[:t,(x)P,(x)] = a, L[xnp^(x)] 4- LK.,(x)P,{x)] = a,L[xnp^(x)]. 

Thus (1.2.7) follows from (1.2.6) with k^= c^^. 

Q.E.D. 

One of the most important characteristics of orthogonal polynomials is 

the fact that any three consecutive orthogonal polynomials are connected by 

a very simple relation which we now derive. 

Theorem 1.2,11 Let L be a positive-definite moment functional and 

let {Pn(^)} the corresponding monic OPS. Then there exist constants c^ and 

\>0 such that 

Pn(x) = (x -C^)P^.T(X) -:inPn.2M. n = 1, 2, 3, ... , (1.2.8) 

where we define P.i(x) = 0. 



Proof: Since xP^(x) is a polynomial of degree n +1, we can write 

n+1 

^Pn(=<) = Z • ®nk = 
k=0 

L[xPn(x)P,(x)] 

LP!(X)1 

But xP|^(x) is a polynomial of degree k +1 so that a^(< = 0 for 0 < k < n - 1. 

Further, xP^_,(x) is monic so a^^ = 1. Thus 

xP„(x) = P„„1 (X) + a„„p„(x) + a„ P„.,(x), n > 1. 

By‘replacing n by n -1 in this equation we obtain 

XP^./X) = P^{X) + C^Pn-i(x) + ^nPn-2M> ^ 2. 

and this is equivalent to (1.2.8) for n > 2. If we define P.^ (x) = 0 and choose 

c.,= - P^(0), then (1.2.8) is valid also for n = 1. 

Next from (1.2.8) we obtain 

L[x"-2p„(x)] = L[x"-'P„.,(x)] - c„L[x"-2p„.,(x)] - X„L[x"'2p„.2(x)] , 

0 = L[x"'ip„.,(x)]-X„L[x"'2p„.2(x)]. 

By Theorem 1.2.10, we obtain for n > 1, 
L[x^P„(x)] A„2n}An{1} 

{1} 
(A^{1} = 1 )• 

By Theorem 1.2.8 we know that L is positive-definite implies A^{1} > 0. 

Therefore > 0 for n = 1,2, ... . 

Q.E.D. 

Let P'n(x) be the derivative of Pp^(x) with respect to x. We have the 

following theorem. 

Theorem 1,2.12 Let L be a positive-definite moment functional and 

{P^(x)} be an OPS for L. Then 



(1.2.9) 

1 4 

n 

I- p,w p;^,(x) p„(x) - p„(x) p„^,(x) 

A. A, ... A,, 
k=0 1 2 k+1 

A, A, ... X 
12 n+1 

Proof: From (1.2.8), we have for n > 0 the identities 

xP,(x)P,(u) = ^n+1 (x)Pn(u) + ^n+1 PnMPn(u) + ^n+1 Pn-lWPn(u). 

UP,(U)P,(X) = Pn+1 (u)Pn(x) + ^n+1 Pn(u)Pn{x) + ^n+1 Pn-1 (u)Pn(x). 

Subtracting the second equation from the first yields 

(X - u)P,(x)P,(u) = Pn+1 (x)Pn(u) - Pp+1 (u)Pn(x) 

' ^n+1 [P,(x)P,.i(u)-P,(u)P,.i(x)]. 

Let .1 P,,,(x)P»-Pn(x)P,^,(u) 

then the last equation can be rewritten 

PmMP»,^ FJx,u)-F^,,(x.u), mao. 
A-Ao-^ . 1 2 m+1 

Summing the above in m from 0 to n and noticing that F.i(x,u) = 0, we 

obtain 

•1 - Pn(x)P„.,(u) 

XX. x-u 
)<=0 ■■ 2 k+1 

The numerator of the right side of (1.2.10) can be written 

P„*,(x)P„(u) - P„(x)P„^,(u) = [P„*,(X) - P„^,(u)]P„(x) - [P„(x) - P„{u)]P„^,(x) so 

(1.2.9) follows from (1.2.10) by letting u x. 

Q.E.D. 

As an immediate corollary, we obtian the important inequality 

P’n^tMPnW - P'nMPn+lM > 0. (1.2.11) 

valid for all real x whenever L is positive-definite. 



1.3 Zeros of OPS and Gauss Quadrature 

When the moment functional is positive-definite, the zeros of the 

corresponding orthogonal polynomials exhibit a certain regularity in their 

behavior. 

Theorem 1.3.1 If L is positive-definite on E and E is an infinite set, 

then L is positive-definite on every set containing E. 

Proof: Let 7t(x) be a real polynomial which is non-negative on the sec S 

and does not vanish identically. If E c: S, then trivially, TI:(X) > 0 on E. It 

follows that L[7I(X)] > 0. 

Q.E.D. 

Theorem 1.3.2 Let I be an interval and L be positive-definite on I. The 

zeros of P^Cx) ^re all real, simple and are located in the interior of I. 

Proof: Since L[P^(x)] = 0, Pn(x) must change sign at least once in the 

interval I. That is, has at least one zero of odd multiplicity located in 

the interior of I. 

Let X.,, X2, ..., X|^ denote the distinct zeros of odd multiplicity that are 

located in the interior of I. Set 

p(x) = {x-x^)... (x-x^). 

Then p(x)P^(x) is a polynomial that has no zeros of odd multiplicity in the 

interior of I, hence p(x)P^(x) > 0 for x e I. Therefore, L[p{x)P^{x)] > 0. But this 

contradicts Theorem 1.2.3 unless k > n. That is, k = n so Pn(x) has n distinct 

zeros in the interior of i. 

Q.E.D. 

Henceforth, we denote the zeros of Pn(x) by x^j, the zeros being ordered by 



increasing magnitude: 

1 6 

'n1 
< X^2 < -- < X nn ’ n > 1 (1.3.1) 

Without loss of generality we assume that Pn(x) has positive leading 

coefficient, it then follows that 

P^(x)>0 forx>x^„: sgn P„(x) = (-1)" for x < x^i (1-3.2) 

Here sgn denotes the signum function defined by 

sgn x = 
1 

1 0 
1-1 

x > 0 
x= 0 
x < 0 

Now the derivative of Pn(x), P'n(x). has at least one, hence exactly one, 

zero in each of the intervals, (x^,^..,, x^,^). It follows that P'n(Xnk) alternates 

in sign as k goes from 1 to n. Since P'n(x) also has positive leading 

coefficient, we can conclude: 

sgn P’,(x,,) = (-1)"-^ k = 1,2, ... ,n. (1.3.3) 

Theorem 1.3.3 (Separation theorem for the zeros) The zeros of P^(x) 

and Pn+i(x) mutually separate each other. That is, 

^n-i-1,i ^ni ' i = 1,2, ... , n, (1.3.4) 

Proof: We have the inequality (1.2.11) 

^ ri-fl (x)Pn(x)-P»Pn.i(x)>0 

In particular. 

P'n+l(Xn+1,k)Pn(>'n+1.k) >0. k=1,2 n+1. (1.3.5) 

Referring to (1.3.3), we conclude that sgn Pn(Xn+-i_k) = (■‘' Thus P^(x) 

has at least one, hence exactly one, zero in each of the n intervals. 

Q.E.D. 



Corollary 1.3.4 For each k > 1, {x^,^ | n = k, k+1, ...} is a decreasing 

sequence in n and n = k, k+1, ...} is an increasing sequence in n. In 

particular, the limits 

~ li^n_»ooXpj, hj ~ »oo^n,n-j+1 ’ Kj = ^ . 2, 3, ... , (1.3.6) 

all exist in the extended real number system [-°o, oo]. 

Definition 1.3.5 The closed interval, K.|, ilj is called the fme 

interval of orthogonality of the OPS {Pp{x)}. 

Theorem 1.3.6 (Gauss quadrature formula). Let L be positive-definite. 

There are numbers A^2, ^uch that for every polynomial TC(X) of 

degree at most 2n -1, 

L("W1=£A^:C(XJ. (1.3.7) 

k»1 

The numbers A^^^ are all positive and satisfy the condition, 

An1+••• + ^nn = Fo • (1.3.8) 

Proof: Let TC(X) be an arbitrary polynomial whose degree does not exceed 

2n -1, and construct the Lagrange interpolation polynomial L„(x) which 

corresponds to the nodes x^,^ and the ordinates ir(Xnk) (1 < k < n). Thus 

consider 

where 

n 

L„(x) = ^ yx) 
k=l 

p„(^) 

nk' 

Now Q(x) = 7c(x) - L^(x) is a polynomial of degree at most 2n -1 which 



vanishes at ( k = 1,, n ). That is 

Q(x) = R(x)P,(x) 

where R(x) is a polynomial of degree at most n -1. By Theorem 1.2.3, 
n 

L[ K(x) ] =: L[ L„(x) ] + L[R(x) P„{x) ] = L[ L„(x) ] = ^ ,t(xJ L[ yx) ] , 
k=1 

This yields (1.3.7) with = L[f|^(x)] . 

If the particular choice TC(X) = f^^Cx) is made in {1.3.7), the result is 

0<L(f^(x)l = XV-(>'nx) = A„„ 
k=1 

so the are all positive. 

Finally, (1.3.8) can be obtained by choosing TC(X) = 1 in (1.3.7). 

Q.E.D. 

1.4 Helly’s Theorems 

We first establish some general convergence theorems which will be 

used in the proof of the representation theorem (See Theorem 1.5.2). 

Theorem 1.4.1 Let {f^^} be a sequence of real functions defined on a 

countable set E. If for each x e E, {f^Cx)} is bounded, then {f^} contains a 

subsequence that converges everywhere on E. 

Proof: Let E = { x^, X2, Xg, ...} and write f^^^^ = fp • Now since 

{fp(0)(x.|)} is a bounded sequence of real numbers, it contains a convergent 

subsequence. That is, there is a sequence {fpC)} which converges for x = x 

and is a subsequence of {fp^®^}- 



Now ^ bounded sequence so we can conclude as before that 

there is a subsequence {fr,(2)} of {fn^)} which converges for x = Xg. Continuing 

in this way, we obtain sequences {fn^°)} 

(a) {f^(>^)} is a subsequence of {f^0<-“I)} (k = 1,2, 3, ... ); 

(b) {fn^'^Hx)} converges for x e E,^ = { x^ x,^}. 

It follows from (a) that the diagonal sequence , {fn^'^^}. is a subsequence 

of {f„}. Since, except possibly for the first k -1 terms, {fr,(^)} is also a 

subsequence of {fn^'^H . it follows from (b) that converges for x s 

E = ^i<k<~Ek • 

Q.E.D. 

We next prove a theorem which, when stated in terms of functions of 

bounded variation, is usually known as Nelly’s Selection Principle ( or 

Theorem of Choice ). For the problems considered in this thesis we need it 

only for the case of non-decreasing functions. 

Theorem 1.4.2 Let {(l)J be a uniformly bounded sequence of 

non-decreasing functions definied on {-<>=, oo). Then {<|)^} has a subsequence 

which converges pointwise on {-<=*>,=«) to a bounded, non-decreasing function. 

Proof: Let Q denote the rational numbers. According to Theorem 1.4.1 

there is a subsequence {4>n(k)} which converges everywhere on Q. We then 

define a function (j>* on Q by 

= !imk_^<l>n(k)(i') for reQ. 

It follows from the conditions on {(f>J that (j)* is bounded and 
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non-decreasing on Q. We now extend the domain of <j)* to R by defining 

<j)*(x) = sup { 0*(r) I r € Q and r < x }, x e R\Q . 

({)* is clearly bounded and non-decreasing on R. We next show that 

converges to 4>*(x) at all points x of continuity of (j)*. 

To this end, suppose <|>* is continuous atx ^ Q. Since Q is dense in R, then 

given £ > 0, there is an X2 > x, X2 e Q , such that 

(j)* (X2) < 0* (x) + £ . 

For any x^ s Q , x^< x, we also have 

- ‘!^n(k)(^) - ^n(k)(^2) • 

Thus 

(f)* (x^) < liminf;,^(!)n(;,)(x) < limsup;,,^ ^ • 

Therefore 

(>* (x) < liminf;^^ < limsup;,_^ (t>n(K)M < <})*(x) + E , 

whence it follows that {<j>n(k)} converges to ({)* at all points of continuity of 

4)*. But 4)* is non-decreasing so its points of discontinuity form a countable 

set D. Applying Theorem 1.4.1 to {4>n(k)} 3nd D, we conclude that there is a 

subsequence of {4>n(k)} which converges on D, hence on R, to a limit function 4) 

(4) is of course identical with 4>* on R\D). The conditions on {4>^} guarantee 

that 4> is bounded and non-decreasing. 

Q.E.D. 

Next, we prove Nelly's second theorem. As before, we consider only 

non-decreasing functions. 



Theorem 1.4.3 Let {(l)J be a uniformly bounded sequence of 

non-decreasing functions defined on a compact interval [a, b], and let it 

converge pointwise on [a, b] to a limit function 0 . Then for every real 
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function f continuous on [a, b] 
b b 

,|fd4i„ = jfd* 
a a 

Proof: Since is uniformly bounded, there exists an M > 0 such that 

Let £ > 0 be given. If f is real and continuous on [a, b], then f is uniformly 

continuous on [a, b] so there is a partition = { XQ, X^, .... x^} of [a, b] such 

that 

I f(x') - f(x") I < £ for x', x" € [X|..,, Xj ], 1 < i < m. 

Choose 6 [Xj..,, Xj ] and write 

0<(|)n(b)-(j)„(a) <M, n = 1,2,3,... , 

hence also 

0 < (j)(b) - (l)(a) < M. 

Aj(t) = (f)(Xi) - 0(Xj.^), AjP, = - (|),(Xi.i). 

By the mean value theorem for Stielties integrals, 
X. 

for some ^’j s [Xj.^, Xj ]. Summing over i, we obtain 

In the same way we find 
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Therefore, 

< eM, 

b 

J f{^.) (A,(D - A.(D,) 

m , 

i=.1 

Keeping the partition fixed, we have that the lim^ ^ , <|) - 0^) = 0, hence 
u u 

I fd4>-j fd$„ iim sup„. 

and the desired conclusion follows. 

<2Me 

Q.E.D. 

In the next section we will see that with the aid of Helly's Selection 

Principle, we can find representative in the form of Stieitjes integral for a 

positive-definite moment functional L. 

1.5 A Representation Theorem 

Definition 1.5.1 Two distribution functions and v/2 are said to be 

substantially equal if and only if there is a constant C such that (x) = 

\j/2(x) + C at all the points of continuity. 
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It is clear that substantially equal distribution functions have the same 

spectrum. 

Let L be a positive-definite moment functional with moment sequence 

I n =0, 1,2, ...}. According to the Gauss quadrature formula (Theorem 

1.3.6), for each positive integer n, there are positive numbers , A^^ 

such that 
n 

L[x’'] = n^=^A^,xJi , k=0,1 Zn-1. (1.5.1) 
i=1 

where < x^2 < < ^nn zeros of Pn(x). the nth degree monic 

orthogonal polynomial corresponding to L. 

Let \|/n be defined by 
/- 

VnW = ^ 

0 if X < X , 
n1 

A +... + A— if X__<X<X M ■i' n ^ n\ 
n1 np n,p n,p+1 (l<p<n) (i.O.Z) 

u.^ if X>X 
V. ^0 nn 

\|/^ is a bounded, right continuous, non-decreasing step function whose 

spectrum is the finite set {x^.,, ... , x^J, and whose jump at x^, is A^, > 0. That 

is, v}/^ is a distribution function. Thus, 

j x''d 1|/„(X) = £ A„. x|;, = 11^ , k = 0,1 2n-1. (1.5.3) 
i=1 

According to Theorem 1.4.2, {\|/^} contains a subsequence which converges on 

(-00, oo) to a bounded, non-decreasing function \y. if T].,] is bounded, then 

Theorem 1.4.3 could be invoked to conclude from (1.5.3) that 

j x^6v/ix) = \ji^ = L[x'^], k= 0,1,2, ... (1.5.4) 
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(note that \|/{x) = 0 for x < and \j/{x) = p.Q for x > so (1.5.4) can be 

written with the interval of integration reduced to 

Theorem 1.5.2 Let L be a positive-definite moment functional and let 

be defined by (1.5.2). Then there is a subsequence of {yj that converges 

on (-00, oo) to a distribution function y which has an infinite spectrum and for 

which (1.5.4) is valid. 

Proof: As already noted, there is a subsequence {yn(j)} which coriverges 

on (-00, oo) to a distribution function y. Writing 4)j = y^^j^, we have according 

to (1.5.3) 

oa 

J X d(!).(x) = u for 
t 2 

From Theorem 1.4.3 we conclude that for every compact interval [a, p], 

lim._^J x*^d(t).(x) = J x“^dy(x). (1.5.5) 
a a 

Choosing a < 0 < p and n: > k + 1 , we can write 

oe oc 

J x‘"d({).(x) ^ J 
.2k+2 

.k+2 
d4(x) 

^P 
(k+2) 

OO 

I X^""2 d y(x) „-(k+2) 
^P 4 2k+2 

But 
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Similarly, 

so that 

a 

-<3Q 

d <j).{x) - I* x'^ d \|/(x) a! 
,-k-2 

3 )M 

Hence letting i -» <» , we have by (1.5.5) 

Now if we let a -> and p ^ we obtain {1.5.4) . 

Finally it is easy to show that \|/ has an infinite spectrum. For if the 

spectrum of \y consisted of exactly N points, we could construct a real 

polynomial 7i(x) which vanished at these N points. We would then have 

L [ TT^ix) ] = J 7t^(x) d \}/(x) = 0 , 

contradicting the positive-definiteness of L. 

Q.E.D. 

We have thus shown that every positive-definite moment functional can 

be represented as a Stieitjes integral with a non-decreasing integrator \|/ 

whose spectrum is an infinite set. We will say that 'V provides a 

representation for L” or simply that ’> is a representative of L". 

Lemma 1.5.3 The spectrum of a distribution function is a closed set. 

Proof: Let e c(y\r) n = 0, 1,2, ... , and lim^ , Xp = Xg . If Xg e o(\|/), then 

'2k+2 ■ 
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there exists 5Q > 0 such that y\f(xQ+ 5Q) - \}/(XQ- 5Q) < 0. The fact v is 

non-decreasing forces y(x) = 0 for x e (XQ- 5Q, XQ+ 5Q). On the other hand, XQ 

is a limit point of {x^} implies x^ e (XQ- 5Q, XQ+ 5Q) when n is sufficient large. 

This yields \}/{Xr,+ 5g) = xj/Cx^- 5g) which contradict the fact that x^ e 

Lemma 1.5.4 Let L be a positive-definite moment functional. Then L 

is positive-definite on a(\|/) . 

Proof: Let 7c(x) be a polynomial which is non-negative on a(v) and does 

not vanish identically. Since a(\}/) is an infinite set, so there exists a Xg s 

a(\j/) such that 7c(Xg) > 0. By lemma 1.5.3 we know that a(\}/) is a closed set. 

Therefore Xg is either an isolated point or an interior point of a(\}/). In each 

case, it is easy to see that 

Theorem 1.5.5 Every positive-definite moment functional L has a 

representative whose spectrum is a subset of [q.,, Ti^j. Further, rj.,] is a 

subset of every closed interval that contains the spectrum of some 

representative of L . 

Proof: Let xi/^ be defined by (1.5.2) and let x|/ denote the corresponding 

representative for L which is a subsequential limit of {xj/^}. It is then clear 

that if > -oo , \|/(x) = 0 for X < while if TI^ < oo, then \i/(x) = Ug for x >ri^. 

Q.E.D. 

Therefore L is positive-definite on a(x|/). 

Q.E.D. 
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Thus the first assertion in the statement of the theorem follows. Now if is 

a representative for L and a( 0) c [a, b], then by Lemma 1.5.4 and Theorem 

1.3.1, L is positive-definite on [a, b]. By Theorem 1.3.2, T[^] C [a, b]. 

Definition 1.5.6 A positive-definite moment functional L is called 

determinate if any two representatives of L are substantially equal. (That 

is, L has a substantially unique representative.) Otherwise, L is called 

indeterminate. 

Definition 1.5.7 A moment problem is called deferm/nafe if the 

corresponding moment functional is determinate. Otherwise, it is said to be 

an indeterminate moment problem. 

1.6 Hamburger Moment Problem 

We state the Hamburger moment problem in the following manner: 

Given a real sequence [ n =0, 1,2, ...}, find a distribution function v/ 

with an infinite spectrum, such that 

A real sequence {p-p | n = 0, 1,2,...} is a Hamburger moment sequence , if it 

satisfies (1.6.1) . 

Addressing only the simpler existence question for the Hamburger 

moment problem, we see in view of Theorem 1.5.2 that a necessary and 

sufficient condition that there is a distribution function y is that the 

Q.E.D. 

n= 0,1,2  (1.6.1) 
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corresponding moment functional L, defined by L[x"] = be 

positive-definite. Combining this observation with Theorem 1.2.8, we can 

prove the following theorem, due to Hamburger [1]. 

Theorem 1.6.1 A necessary and sufficient condition that the 

Hamburger moment problem has a solution is that 

Proof: Firstly, we prove that the Hamburger moment problem has a 

solution if and only if L is positive-definite. 

Assume that the Hamburger moment problem has a solution. That is, 

there exists a distribution function \|/with an infinite spectrum, such that 

So, for any polynomial TC(X) which is non-negative and does not vanish 

identically on R, we have 

Therefore, L is positive-definite. 

Conversely, if L is positive-definite, by Theorem 1.5.2 we know that the 

Hamburger moment problem has a solution. 

Secondly, by Theorem 1.2.8, we have L is positive-definite if and only if 

An(1]>0 (n = 0,1,2,...). 

Q.E.D. 
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Chapter 2 

Some Representation Theorems 

2.1 Preliminaries 

In Chapter 1, we proved a representation theorem for a positive-definite 

moment functional based on Helly's theorems. With the aid of this 

representation theorem we obtain the characterization for the existence of 

a solution for the Hamburger moment problem that was first obtained by 

Hamberger [1]. In order to consider a similar question for different moment 

problems we need a representation theorem for a moment functional that is 

positive-definite on E, where E is the union of finite number of disjoint 

closed intervals. 

In Section 2.2 we give two representation theorems. The first is due to M. 

Riesz [1]. It provides a method to construct a distribution function for a 

non-negative-definite moment functional. In order to use M. Riesz's method, 

we need a theorem for extending a positive-definite moment functional. 

First we define the unit step function at t, denoted by g{x;t), by 

Let R[x] be the usual algebra of all real polynomials in the indeterminate 

x over the field of real numbers R. Let R*[x] be the algebraic dual of R[x]. 

That is, R*[x] is the set of ail linear functionals L: R[x]^ R. 

Let S[x] be the vector space of piecewise constant functions that are 

continuous from the left on R and tend to zero as x -> <>=. Let 

(2.1.1) 
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G[x] = S[x] e R[x]. 

That is, G[x] is the vector space formed by taking the direct sum of 

polynomials and piecewise constant functions. Then we have the following 

theorem: 

Theorem 2.1.1 (Akhiezer [3] P.69) Let E be the union of finite number 

of disjoint dosed intervals and let LeR*[x] be a moment functional that is 

positive-definite on E. There exists a functional L: G[x] -» R such that for all 

polynomials TC(X) e R[x], L[TC(X)] = L[7i(x)] and L is non-negative-definite on E. 

Proof: V\/e denote by g^ (x) any element of the space G[x] which does not 

belong to R[x] and we introduce the linear space R-|[x] of elements 

f^{x) = 7c(x) + agi(x), 

where TC(X) traverses R[x] and a traverses the set of all real numbers. We 

extend the functional L to : R^[x] —> R by putting 

Li[fi(x)] = L[TI:(X)] + ar^. 

No matter how we choose the number r.,, which evidently represents 

L^[g^(x)], the functional we have defined will be additive and 

homogeneous. Our problem consists in making the appropriate choice of the 

number r^ such that the extended functional is non-negative-definite on E. 

For this purpose we take the set of all those polynomials K(X) e R[x] for 

which 7i(x) - g^ (x) > 0 on E (It is easy to see that the set + is not empty). 

Then we put 
B =inf ^L[7r(x)]. 

‘ II(X)6N^ 

Further we introduce the set N^- (which is also non-empty) of those 
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polynomials ji(x) e R[x] for which g^(x) - TC(X) > 0 on E and we put 

b = sup L [TC(X) ] . 
7t (x) e N' 

By virtue of these definitions > - -« and < oo . We now prove that 

b, < B, . 

For any polynomials 7c^(x) e N.+ and TZ2{X) e N^'. We have TC^(X) - g^(x) > 0 on E 

and g^(x) - 7t2(x) > 0 on E; This implies TU^(X) - - (^i(x) - 9i{x)) + (9i(x) 

- 7T2(X)) > 0 on E. We now apply the functional to the polynomials rc^(x), :t2(x) 

and 7c^{x) - 7C2(X). Therefore, 

L[TCI(X)] - L[TC2(X)] = L[K^{X) - 7t2(x)] > 0, 

whence 

L[7C,{X)] > L[7T2{X)]. 

Since this inequality will hold for any TC^(X) e N^+ and any K2(X) e N^-we 

have that 
inf ^L[TI: (x)]>sup L[7r(x)], 

7t^(x)eN, 7t2(x)eN; 

i.e. 

B, > b, . 

We take for r^ any number which satisfies the inequality b^ < r^ < B^. We 

now prove that the functional L^, defined on R^[x] is non-negative-definite 

on E. 

Let f-|(x) € R^[x] such that f^(x) is non-negative on E, then f^(x) = TC(X) + 

ag^(x) where TI{X) e R[x] and ae R. 



32 

If a = 0, then (x) € R[x]. It is trivial to show that L^[f-| (x)] > 0. 

For a > 0, we have f^(x) = jr(x) + ag^(x) = a[g^(x) - {-7r{x)/a)]. f^(x) > 0 on E 

implies -7r(x)/a€ N^-. Therefore, 

l-i[^i(x)] = L[a(gi(x) - (-7i(x)/a))] = a(r^ - L[-7c(x)/a]) > a(r^- b) > 0. 

In the case of a< 0, we have f^(x) = TC(X) + ag^(x) = -a[(-7c(x)/a) - g^Cx)]. 

f^(x) > 0 implies -ji(x)/a € N^+. Therefore 

L^[fi(x)] = L[-a((-7i(x)/a) - g,{x))] = -a{L[-7i:(x)/a] - r^) > -a(B^- r,) > 0. 

Thus, is non-negative-definite on E. 

The above described construction is the first step; it is followed by 

analogous further steps, and with the aid of (possibly transfinite) induction 

the functional thus obtained is extended to the whole space G[x] in such a 

way so that it is non-negative-definite on E. 

Q.E.D. 

in Section 2.2 we show how Theorem 2.1.1 can be used to find a 

representation theorem for a positive-definite moment functional. In the 

case when E is a compact set, we give another proof of the representation 

theorem for a positive-definite moment functional. To do this, we need the 

Hahn-Banach theorem and the F. Riesz representation theorem. Since these 

theorems are well known in functional analysis, we only state them without 

proof. 

Let C[a, b] be the linear space of all the continous functions on [a, b], then 

we have the following theorems: 

Theorem 2.1.2 (Hahn-Banach) (Mukherjea & Pothoven [1] P.249) Let P 

be a functional on C[a, b] satisfying: (i) P[af(x)] = aP[f(x)], (ii) P[f(x) + g(x)] 
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< P[f(x)] + P[g(x)]. If L is a linear functional on R[x] and | L[f(x)] | < P[f(x)], 

f(x) e R[x], then there exists a linear functional L on C[a, b] such that 

L[f{x)] = L[f(x)] f(x) e R[x] and | L[f(x)] | < P[f(x)] f{x) e C[a, b]. 

Theorem 2.1.3 (F. Riesz) (Mukherjea & Pothoven [1] P.282) Every 

non-negative-definite linear functional P on C[a, b] can be represented by 

where \^{x) is an non-decreasing function. 

2.2 Representation Theorems for Positive-definite 

Moment Functionals 

Let E be a finite union of disjoint closed intervals. We now use M. Riesz 

method to construct a representative for a positive-definite moment 

functional on E. M. Riesz [1] originally discussed the case when E = (-°o , c«>). 

Akhiezer [3] provided the proof of the case when E = [0, oo). We now prove the 

general theorem. 

Theorem 2.2.1 (M. Riesz) Let {aj | i =1, ..., 2m} be a finite sequence of 

real numbers such that -<» < < a2 < ... < ^ and let E = j < rn[^2i-i ■ 

a2i])n(-:o, oo). There exists a distribution function \j/(x) such that 

b 

p [ ^(x) ] = J f(x) d\j/(x) 
a 

for n = 0,1,2,... , 

E 

if and only if L is positive-definite on E. 

Proof: Let \|/(x) be a solution for the moment problem on E. Then for any 
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polynomial 7t(x) which is non-negative on E and does not vanish identically, 

we have 

Therefore, L is positive-definite on E. 

Conversely, suppose L is positive-definite on E. Let us take any 

denumerable point set S = {y everywhere dense in E. We may evidently 

assume that ajsS (i=2, ..., 2m-1); if < a^, then a.,€S and if a2^ < ='=>, then 

We know that L is positive-definite on E. With the aid of Theorem 2.1.1, 

we extend this functional L to L defined on G[x], We know that L is 

non-negative-definite on E. Define \j/(t) by the following equation 

where g^(x) is defined by (2.1.1). 

In this way, we obtain a function \|r(t) defined on S. We will show that 

this \j/(t) is a solution of the moment problem. We first prove that this 

function is monotonic non-decreasing on S. Indeed, by virtue of the 

additivity, homogeneity and non-negativity of the extended functional L we 

can write down the equation 

E 

L [gt(x)] = \|/(t) 

\|/(t") - xj/(f) = L [g^,(x)] - L [g,.(x)j = L [(g^.(x) - gj.(x))] 

Also, since 
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therefore 

V(t") - v(t') > 0 

As a result of the monotonic property of \^(t) and the fact that the set S 

is dense in E the function \|/(t) can be extended essentially uniquely to R, 

with its monotonic character preserved, by letting 

V(x) = ^ 

sup{ Y(t) 11 < X, t eS } if X > 

if X < ■ 

To complete the proof we need only show that for any non-negative 

integer n 
[x"] = Jx"dv(x) . 

Let B be any real number > max{la2l, |a2n,-il.1} and let e be any positive 

number. 

Define a set of points by = i\\ I i ^ i ^ m, 0 < j < Nj} (N = N^+ . + 

N ), such that 

(i) [o2i.i, a2j] for 0 < j < Nj. 1 < i < m and P^^N ^ S ; 

(ii) Tj o = a2j.i i = 2, .... m and = ct2\ i = 1, rn-1 ; 

(iii) 

-B if -oo = 

and t 
if -oo < 

B if a„ = oo 
2m 

(iv) I {'Cjj+i)" - ('Cj.i)" 1 < e for 1 < i < m , 0 < j < N,. '.j 

Now define the function 
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N.-1 m I 

Cw = E S <^i/[ - 3(x; -^j)) ■ 
i=1 i=0 

It is not difficult to verify that for all x belonging to E, 

-x®/B - e < x^ - F^fg'^(x) < e + x®/B, 

where s equal to the smallest even integer greater than n. We now apply the 

linear functional L to this inequality to obtain 

L[x1 
B 

N-1 m I 

eL[ 1 1 < L[ x"] - y,yjx, i eL[ 1 1+ / / 
i=1 j=0 

L[x^] 
B 

Now by using the fact that the summation in this expression is a Stieitjes 

sum, we obtain by letting || Ax H -» 0 ( || Ax || = max | Xj|^^ - j I ) 

Ct^ m, Nm m-1 “2' 

B < - [ x" d\i/(x) - f x"" d\}T(x) - ^ f x" dy(x) 
^1,0 “2m-1 '=2«2M ‘l.O "2m-1 '-2®2i-1 

Finally, if we let B -> =<, we obtain the required result 

L[x"] = ^n = |x"d\|/(x) . 
E 

Q.E.D. 

In the case when the true interval of orthogonality (see Definition 1.3.5) 

is a compact set, we have another approach for obtaining a representative of 

a positive-definite moment functional. It uses the Hahn-Banach Theorem 

and the F. Riesz representation theorem as given in Section 2.1. 

Theorem 2.2.2 Let L be a positive-definite moment functional whose 

true interval of orthogonality, , TI J, is a compact set. Then there is a 

distribution function \j/with an infinite spectrum contained in ri.|]. such 
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that for any polynomial K{X) 

L[7r(x)] = j 7c(x} d\i/(x). 

Proof: Let L be a positive-definite whose true interval of orthogonality 

"ni] is compact. 

First, we extend this functional L to the linear space C[^^, -n^]. To do this 

we proceed as follows. For any t(x) e C[^^, TI^], let P[t(x)] = p.Qmax{|t(x)| | x 

< ri^} where |J,Q = L[1] > 0. Then it is easy to see that (i) P[at(x)] = aP[t(x)] and 

(ii) P[t^(x) + t2(x)] < P[ti(x)] + P[t2(x)], for any t^(x), t2(x) e C[^T, TIJ . 

Let 7r(x) be a polynomial of degree n, we can write it as 

7c{x) = ^ a^x*^ 
k=0 

By using Gauss quadrature formula (Theorem 1.3.6), we have 

LWx)I = ^ ^ ^ d"(=<)|) 
k=0 k=0 

k=0 

i.e. L[7T(X)] < P[rc(x)]. Similarly , we can prove L[:c(x)] > - P[TC(X)]. Therefore 

the following inequality is true: 

I L[ 7C(X) ] I < P[7C(X)] . 

According to Hahn-Banach Theorem (Theorem 2.1.2), there is a linear 

functional L defined on , TI.,] which is an extension of L. 

Next, we prove L is a non-negative-definite functional. For any f(x) e , 
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ri^] which is non-negative on T)^] . By Weierstrass Theorem (Apostol [1] 

P.481), there exists a sequence of polynomials {Qn(x)} converges uniformly 

tof(x). Letpn = max{| Q^(x)-f(x)| I ^^<x <Ti.,} ( p^-^0 when n), then 

n^{x) = Qn(x) + pn are polynomials and ji^(x) > f(x) for n =0, 1,2,... . Moreover, 

7t^(x) converges to f(x) uniformly. So, given e > 0, the following is true: 

^ for xe[C.,.Ti^] 

when n is sufficient large. Since we also have 

I L[ - f(x)] I < | jc^(x) - f(x)|} . 

It is easy to see that lim^ 1 L[ 7Cn(x) - f(x)] | = 0. This implies that the 

L[ %^{x) - f(x)] = 0 . So, we have lim„ ^ L[jCn(x)] = L[f(x)] . 

By the positivity of L , we have L[f(x)] = lim^ ^ L[7t^(x)] > 0. Therefore L is 

a non-negative-definite functional. 

Finally, we note that, the required result follows directly from F. Riesz 

Theorem (Theorem 2.1.3). 

Q.E.D. 

Theorem 2.2.2 is posed as a problem in Chihara's text (Chihara [1] P.59). 

2.3 Representation Theorems for Polynomials 

Akhiezer [3] shows that if p(x) is a polynomial of degree n then (i) if 

p{x) > 0 on [0.1], then p(x) = x[A^(x)]2 + (1-x)[B^(x)]2 for n = 2m + 1, and 

p(x) = [C^(x)]2 + x(1-x)[D^..,(x)]2 for n = 2m, and (ii) If p(x) > 0 on [0, °o), then 
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p(x) = [A(x)]2 + x[B(x)]2. The first representation can be used to find a 

characterization for the existence of a solution to the Hausdorff moment 

problem and the second one can be used for the Stieltjes moment problem. 

We wish to obtain the analogous representation for polynomials p(x) that are 

bigger than or equal to zero on a set E where E is a finite union of disjoint 

closed intervals. 

The following representation theorems for the polynomials which are 

non-negative on (-=«, a]u[b, <») will be used in later chapters. 

Theorem 2.3.1 Any polynomial 7t(x) of degree n which is non-negative 

and does not vanish identically on (-00, a]u[b, «>) can be written as 

7i(x) = A(x) + (x-a)(x-b)B(x) 

where A(x) is either a polynomial non-negative on R with degree at most n 

or A(x) = 0; B(x) is either a polynomial non-negative on R with degree at 

most n-2 or B(x) = 0; A(x) + B(x) is not equal to zero identically. 

Proof: We note that, if a polynomial 7t(x) with degree n is non-negative 

on (-00, a]u[b, °o), then n must be even and the leading coefficient of TC(X) 

must be positive. Therefore, we only need consider the monic and even 

degree polynomials. 

If n = 0, then K{X) = 1. We choose A(x) = 1, B(x) = 0. Obviously, the 

theorem is true. 

For n = 2, we have TI(X) = X^ + qx + r. There are two cases to consider; 

First, if q^ - 4r < 0, we know that TC(X) > 0 everywhere on R. We choose 

A(x) = 7c(x), B(x) H 0. The other case is when q^ - 4r > 0. We have 7t(x) = (x - 

x^)(x - X2). 7i:(x) is non-negative on (-00, a]u[b, <») implies both x., and 
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X2e [a, b]. We find that if we let 

x^x^- ab y (b-x^)(b-xj(x^-a)(x^-a) 

a + b-x^-x^ 

< ,  ,  2 
[^(b-x^)(x2-a) t^{b-x^){x^-a) ] 

k- _ 

I (b-a) 

then 

7c(x) = (x - x^)(x - Xg) = (1 - k)(x + p)2 + k(x - a)(x - b) 

Moreover, p is a real number and 0 < k < 1. So, we can choose B(x) = k and 

A(x) = (1- k)(x + p)2. Therefore, the theorem is true when n = 2. 

Assume the theorem is true for all the even numbers less or equal to 2k. 

Let 7c(x) be a polynomial of degree 2k+2 that is non-negative on 

(-=°, a]<^[b, oo). By the Factorization Theorem (Archbold [1] P.129), we can 

write 7i(x) in the following form; 

7i(x) = (x - ... (x - a|)'^^')(x2 + p.,x + q^)''^‘'L. (x^ + pjX + qj)''^) 

(i) If there is a k(s) >2(1 < s < i), then we choose TC., (X) = (X - and 

7C2(X) = 7T(X) / 71., (x) . 

(ii) If there is a r{t) >1 (1 < t < j), then we choose 

(x) = (x^ + p^x + q^) and 7i2(x) = TC(X) / (X) . 

(iii) If (i) and (ii) do not apply, then we have 

n 

i^(x)=n 
i=1 

where all the Xj's are different. This implies x, e [a, b] (i = 1, ... n.). In this 



41 

case we can choose any two zeros of TC(X), say Xj and Xj. Let (X) = (x - Xj)(x 

- X|) and 7t2(x) =* 7t(x) / 7r^(x). 

Therefore for each of the three cases above we can write :r(x) as the 

product of two polynomials 7c^(x) and TU2(X). Both of them are non-negative 

on (-00, a]u[b, °o) and their degree is not more than 2k. 

In order to use mathematical induction it remains to be noted that the 

equalities 

7c^(x) = A^(x) + (x -a)(x -b)B^(x) and :c2(^) = ^2^^) -b)B2(x) 

imply the equality 

7Ti(x) 7T2(X) = [A^(X)A2(X) + (x-a)2(x -b)2BT (x)B2(x)] 

+ (x -a)(x -b)[Ai{x)B2(x) -h A2(x)B.(x)] . 

Q.E.D. 

In Chapter 4, we will use the above theorem to obtain a characterization 

for a complemented Hausdorff moment sequence. In order to obtain 

characterizations for a moment sequence on E where E is a finite union of 

disjoint closed intervals, we need a representation theorem for a polynomial 

that is non-negative on E. 

Let {ttj I i = 1 2m} be a finite sequence of real numbers such that 

-oo<a^ <tt2< ... < a2^<°o and E = (Ui< j < Jo2i.i <X2i])n(-« oo) . (2.3.1) 

Let A = { AJx) I A3(X) = - aj), 1 ttj | < oo, S s {1, 2m}, ±1, 

Ag(x) > 0 for X€ E }. By adopting the usual convention that the vacuous 

product is taken to be 1, we see that the constant polynomial 1 belongs to A. 

Proposition 2.3.2 If both Ag(x) and A^(x) s A, then Ag(x)A^(x) = 
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Ajj(x)C(x) where A^J(x) e A and C(x) is a polynomial which is non-negative and 

does not vanish identically on R. 

Proof; Let A3(x), A^(x) e A, then 

A,(X)A,(X) = d3ni^s(x - ai)d,n|^T(^ ' “|)= ‘ «k)n,sSoT(>'' 

= d„n;,,u(x - On)C(x) = A„(x)C(x) 

where d^J = dgd^, U = SuT\(SnT) and C(x) = ~ Therefore 

Ajj(x)e A and C(x) is a polynomial which is non-negative and does not vanish 

identically on R. 

Q.E.D. 

Let P = { S Aj(x)Cj(x) 1 Aj(x) e A, Cj{x) e R[x] and Cj(x) > 0 on R }. By 

Proposition 2.3.2, it is obvious that the following proposition is true. 

Proposition 2.3.3 P is closed with respect to ordinary polynomial 

addition and multiplication. 

Now we give the representation theorem for the polynomials that are 

non-negative on E where E is defined by (2.3.1). 

Theorem 2.3.4 Let ic(x)e R[x] and E be a subset of R defined by (2.3.1). 

K{X) > 0, for X s E, if and only if TC(X)G P. 

Proof: From the definition of P, it is obvious that if K{x)e P, then 

7i:(x) > 0, for xe E. 

Conversely, let ii(x) > 0, for x G E. There are four cases to consider. 

Namely, (i) -<« = , a2m= °° : (ii) -~ < , o.2tr^= ~ : (i'i) ^ 

(iv) -oo < , a2m< <=" ■ For sake of argument let us assume that we have case 

(iii). That is, -«> = a., < a2 < ... < ■ The other cases can be handled in a 
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similar manner. 

Let D = {a.,, 82, ... . a^} be the set of all the distinct real zeros of TC(X). Then 

M , S| 

ic(x) = d ||(x - a.) ' D(x), where D(x) > 0 on R and d = ± 1. 
i=i 

Let us partition R into the following three sets: 

T2 = '^i< j < nri(^2i-1, ^2i) "^3 ~ *^1< i < m-1 

K(X) = dj][(x - a.) 'PJ(x - a.) ^JJ(x - a^) 'D(X) . (2.3.2) 
a^eT3 

if there are even number of zeros of TC{X) in T.,, then d = 1 and 

df|(x - a/' e P , 

If there are odd number of zeros of 7t(x) in , then d = -1. Let a^ e , then 

- X = (a^ - a2m) + d(x - a^m) which is an element in P. Thus, by Proposition 

2.3.3 we know that 

Now consider what happens when one of the zeros of 7r(x), call it a^ is in 

one of the sets T2 or T3. 

If a, e T2, then because TC(X) is non-negative on T2 and because T2 is an 

open set, we have that a^ is a root of TC{X) that must have even multiplicity. 

Therefore Sp is an even number. Thus 
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J^(x-a)'e P. 

Finially, let us consider what happens when a^ s T3 . That is suppose for 

some s, a^ e [agg, oc2g+-|], where 1 < s < m-1. Because TZ{X) > 0, for all xe E, 

therefore 7t(x) has an even number of zeros in [023, 023+1]. Thus , there must 

exist another zero, call it a^ such that a^ e [a2s, 023+1]. By Theorem 2.3.1 we 

have that (x - a^)(x - a^) e P and therefore 

Thus each of the factors that make up TC(X) as given in (2.3.2) are elements 

of P and therefore by Proposition 2.3.3 we have that TI(X) e P. 

Q.E.D. 
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Chapter 3 

The Classical Moment Problems 

3.1 Dual of a Polynomial 

Let Tc(x) be a polynomial belong to R[x]. We define the dual of TC(X), denoted 

by {TI{X)}*, by {TI:(X)}* : R*[x] R*[x] and {7i(x)}*L[p(x)] = L[?c(x)p(x)], where 

juxtaposition of 7t{x) and p(x) on the right hand side of this last equation is 

ordinary polynomial multiplication. 

In the literature the OPS corresponding to the moment functional {x}*L is 

called the "Kernel polynomial sequence". 

With different choices of TC(X) we have the following theorems which will 

be used later. 

Lemma 3.1.1 Let E = {x^^ 1 Pn( Xnk) = 0 , k = 1,...,n; n = 1,2, ...}. If L 

is positive-definite, then L is positive-definite on E. 

Proof: Given a polynomial 7t(x) of degree m which is non-negative and 

does not vanish identically on E, we let n = m +1. By using Gauss quadrature 

formula, we have 

L[itMl = XA„k"(\k) ■ 
k=1 

This inequality is true because > 0, n{x^^^) > 0 and at least one of the 

jt(x^,^)'s is positive. 
/• 

Q.E.D. 

Lemma 3.1.2 If L is positive-definite, then L is positive-definite on 

its true interval of orthogonality T]^] . 
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Proof: From Lemma 3.1.1, we know that L is positive-definite on E. 

Since E c ri.|], by using Theoremi.3.1 we have that L is positive-definite 

on 

Q.E.D. 

Theorem 3.1.3 (Chihara [1] P.36) Let {P^Cx)} be an OPS for L. If K is 

not a zero of Pn(x) for all n, and L is positive-definite, then (x - K}*L is also 

positive-definite if and only if K < 

Proof: If L is positive-definite and -<>= < K < then for any 

polynomial ;c(x) which is non-negative and does not vanish identically on R, 

we have that (x - K)jt(x) is non-negative on rij and does not vanish 

identically. By Lemma 3.1.2, we know that L is positive-definite on T] J. 

Therefore 

{X - K}*L[TC(X)] = L[(x - K)7T(X)] > 0 . 

So, {x - K}*L is positive-definite. 

Conversely, suppose that {x - K}*L and L are both positive-definite. Put 

p(x) = (x-x^i)-iPn(x) . 

An application of the Gauss quadrature formula yields 

0 < {X - K}*L[p2(x)] = L[(X - K)p2(x)] = A,,(X„1- K)p2(x,i). 

That shows that K < x^^ and hence that K < . 

Q.E.D. 

We now want to prove the following analogue of Theorem 3.1.3. Its proof 

is analogous to the proof of Theorem 3.1.3. 
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Theorem 3.1.4 Let {Pn(x)} be an OPS for L. If co is not a zero of Pn(x) 

for all n, and L is positive-definite, then {co - x}*L is also positive-definite 

if and only if CO>TI^. 

Proof: Let L be positive-definite and rij < co < oo . Then for any 

polynomial TI:(X) which is non-negative and does not vanish identically on R, 

we have (co - X)TC(X) is non-negative and does not vanish identically on ri J. 

We know that L is positive-definite on its true interval of orthogonality 

[^p Ti J (Lemma 3.1.2). Therefore 

{co - X}*L[TC(X)] = L[(co - X)TI{X)] > 0 . 

So, {co - x}*L is positive-definite. 

Conversely, suppose {co - x}*L and L are positive-definite. Put 

p{x) = (x-x^^)-'‘P„{x) 

An application of the Gauss quadrature formula yields 

0 < {CO - x}*L[p2(x)] = L[(co - x)p2(x)] = A,,(co - x,,)p2(x,,) 

This shows that co > x^^, and hence that co > . 

Q.E.D. 

The next analogue of Theorem 3.1.3 uses both ends of the true interval of 

orthogonality. 

Theorem 3.1.5 Let {Pn(x)} be an OPS for L and let K and co be two real 

numbers such that K< co. Jf neither K nor co are zeros of Pp(x) for all n and L is 

positive-definite, then {(x - K)(CO- x)}*L is also positive-definite if and only 

if K < <Tlj < CO . 
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Proof: Let L be positive-definite and let K < < ri^ < co . Thus we have 

from Theorem 1.3.1 and Lemma 3.1.2 that L is positive-definite on [K, CO]. 

Let 7c(x) be any polynomial which is non-negative and does not vanish 

identically on R. Then (x - K)(CO - x)7t(x) is non-negative on [K, O] and does not 

vanish identically. Thus, {{x - K)(CO - x)}*L[7c(x)] = L[(x - K)(CO - x)7r(x)] > 0 and 

therefore {(x - K)(OO - x)}*L is positive-definite . 

Conversely, let both L and {(x - K)(CD - x)}*L be positive-definite. We first 

show that {x - K}*L is positive-definite. Let n{x) be a polynomial which is 

non-negative and does not vanish identically on R. We have 

{^rL[rr(x)] = L[4^{-|f| 

= ( ^)( ffF)^(x) ] + L [ {^){1 - §^)K{x) ] 

= { 
(x- K){(0- x) 

(w - K)^ 

X - K x2 }*L[7r(x)] + L[(-^)K(x)]>0. 

Note that if c is a positive number, then L is positive-definite if and only if 

{c}*L is positive-definite. Therefore, {x - K}*L is positive-definite and 

hence by Theorem 3.1.3 K< . 

in a similar manner, by using Theorem 3.1.4, we can show that rii< o). 

Q.E.D. 
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3.2 Stieitjes and Complemented Stieitjes Moment Problems 

The Stieitjes moment problem is the following: Given a real sequence 

{4^ I n = 0, 1,2,find a distribution function \|f with an infinite spectrum 

contained in [0, «>) such that 
00 J x"d\|/(x) = M.n, n = 0,1,2,.... (3.2.1) 

0 

A real sequence will be called a Stieitjes moment sequence if it 

satisfies (3.2.1). 

In order to find a characterization for the existence of a solution to the 

Stieitjes moment problem, we need the following theorems. 

Theorem 3.2.1 The Stieitjes moment problem has a solution if and 

only if L is positive-definite on [0, «»)• 

Proof: If the Stieitjes moment problem has a solution, that is, there 

exists a distribution function v/ with an infinite spectrum contained in 

[0, 00), such that 

J x'" d HT(x) = , 

0 

then, for any polynomial TC(X) which is non-negative and does not vanish 

identically on [0, «>), we have 
00 

L [ n{x) ] = J 7t(x) d \|/(x) > 0 . 

0 

Therefore, L is positive-definite on [0, «) 

Conversely, suppose that L is positive-definite on [0, °o). According to 

Theorem 1.3.2, we know that ail the zeros of Pn(x) belong to interval [0, <>=), n 

> 1. This implies that . T]. e [0, °o) , i.e. , ri J e [0, H . 
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Therefore, by Theorem 1.5.5, there exists a distribution function \j/(x) 

with an infinite spectrum contained in rj.,] ^ [0, <»), such that 

Theorem 3.2.2 L is positive-definite on [0, <=^) if and only if both L 

and {x}*L are positive-definite. 

Proof: If L is positive-definite on [0, «=>), then by Theorem 1.3.1 we have 

L positive-definite. 

We know that L is positive-definite on [0, «) implies s [0, «•). 

Hence we obtain that 0. 

Since L is positive-definite and 0 we have by using Theorem 3.1.3 

with K = 0, that {x}*L is positive-definite. 

Conversely, suppose that L and {x}*L are positive-definite. Again, by 

Theorem 3.1.3, we have 0. With the aid of Lemma 3.1.2, we obtain L is 

positive-definite on [0, «>). 

Theorem 3.2.3 L and {x}*L are positive-definite if and only if both 

A^{1}>0and Ajx} >0 ( n = 0,1,2, ...). 

Proof: Theorem 1.2.8 indicates that L is positive-definite if and only if 

An{1} > 0. 

Let = {x}*L[ x'^ ]. By the definition of {x}*L, we have 

0 

Q.E.D. 

Q.E.D. 

n= 0,1,2  
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By Theorem 1.2.8 we obtain that {x}*L is positive-definite if and only if 

Ajx} > 0. 

Q.E.D. 

Theorem 3.2.4 (Stieltjes [1]) A necessary and sufficient condition 

that the Stieltjes moment problem has a solution is that both 

A^{1}>0 and A^{x} > 0, for n = 0, 1,2, ... . (3.2.2) 

Proof: Theorem 3.2.4 follows directly from Theorem 3.2.1, Theorem 3.2.2 

and Theorem 3.2.3. 

Q.E.D. 

Using the same method as above we can prove the modified Stieltjes 

moment problem, which requires that the spectrum of the distribution 

function be contained in [a, <») for some finite number a. We state the result 

as the following theorem without proof. 

Theorem 3.2.5 Given a real sequence | n =0, 1,2, ...}, in order that 

there exists a distribution function \}/ with an infinite spectrum contained in 

[a, oo) such that 
oe 

4„ = Jx"dv(x) n = 0,1,2,..., (3.2.3) 
a 

it is necessary and sufficient that both 

A„{1} > 0 and A„{x - a} > 0, for n = 0, 1,2,... . (3.2.4) 

In fact Theorem 3.2.5 can be obtain directly from Theorem 3.2.4 by a 

linear transformation of the independent variable. 

Now let us consider the following moment problem where the 

corresponding spectrum is a subset of (-«», b] where b is any finite number. 

That is, given a sequence of real numbers | n =0, 1,2, ...} , find a 
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necessary and sufficient conditions in order that there exists a distribution 

function \j/with an infinite spectrum contained in {-<=<>, b] such that 
b J x"dxj/(x). n = 0,1,2,.... (3.2.5) 

- oo 

We call this moment problem the complemented Stiettjes moment 

problem. 

A sequence {ji^^ | n = 0, 1,2,...} is called a complemented Stieltjes moment 

sequence if it satisfies (3.2.5). 

With the aid of Theorem 3.1.4, it is easy to find a characterization for the 

complemented Stieltjes moment sequence. We state the result without 

proof. 

Theorem 3.2.6 A necessary and sufficient condition that the 

complemented Stieltjes moment problem has a solution is that both 

A^{1}>0and Ajb-x}>0, n = 0,1,2,... . (3.2.6) 

3.3 Hausdorff Moment Problem 

The moment problem for the case of a finite interval [0, 1] is called 

Hausdorff's moment problem. We state it as the following; Given a real 

sequnece | n = 0, 1,2,...}, find a distribution function \y with an infinite 

spectrum contained in [0, 1] such that 
1 

J x" d \j/(x) = , n = 0, 1,2,... . (3.3.1) 
0 

A real sequence { | n = 0, 1,2, ...} will be called a Hausdorff moment 

sequence, if it satisfies (3.3.1). 
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Theorem 3.3.1 (Akhiezer [3] P.74) A necessary and sufficient condition 

that the Hausdorff moment problem has a solution is that 

A^{1} > 0, A^{x} > 0, A^{1 - x} > 0 

and An(x(1 - x)} > 0 for n= 0,1,2  (3.3.2) 

Proof: First, by using the representation theorem (either Theorem 1.5.5 

or Theorem 2.2.2 ) we know that Hausdorff moment problem has a solution if 

and only if L is positive-definite on [0, 1] where L[x"] = for n = 0, 1,2, ... . 

The theorem is easy to prove by the well known result (Akhiezer [3] P.74) 

that states that any polynomial Rn(x) of degree n which is non-negative and 

does not vanish identically on [0,1] can be represented in the form 

R„(x) = x[A„(x)]2 + (1 - X) [B^(x)]2 , 

if n = 2m + 1 is odd, and in the form 

R,(X) = [C^(X)]2+X(1 -X) [D^.i(x)]2 

if n = 2m is even. Here A^^(x), Bj^(x), C^(x) and Df„..,(x) are real polynomials 

the degree of which are given by their suffixes. 

We claim that L is positive-definite on [0, 1] if and only if L, {x}*L. 

{1-x}*L and {x(1-x)}*L are positive-definite. 

Obviously, L is positive-definite on [0, 1] implies L is positive-definite. 

Note that any polynomial it(x) which is non-negative and does not vanish 

identically on R implies XTC(X), (1 - X)TC(X) and x(1 - X)TI(X) are non-negative 

on [0, 1] and does not vanish identically. By the definitions of {x}*L, 

{1-x}*L, {x(1-x)}*L and the fact that L is positive-definite on [0, 1] , we 

have {x}*L, {1-x}*L and {x(1-x)}*L are positive-definite. 

Conversely, let L, {x}*L, {1-x}*L and {x(1-x)}*L be positive-definite. For 
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any polynomial 7t^(x) of degree n which is non-negative on [0,1] and does not 

vanish identically. 

(i) If n is even, then Kf^(x) = (C^(x))2 + x(1 - x) (D^,^(x))^ n = 2m . 

By the positivity of L and {x(1 - x)}*L, we have 

L[ K^(x)] = L[(C^{x»2]+ L[x{1 - X) (D^.^(x))2] 

= L[(C»)2]-H {x(1 -x)rL[(D^.,(x))2]>0 . 

(ii) If n is odd, then :c„{x) = x(An^(x))2 + (1 - x) (B^(x))2 n = 2m +1. 

By the positivity of {x}*L and {1 - x}*L, we have 

L[7C,(X)] = L[x(A^(x))2] + L[(1 - X) (B^(x))2] 

= {x}*L[(A^(x))2] + {1 - x}*L[{B^(x))2 ] > 0 . 

Therefore L is positive-definite on [0, 1]. 

Now, it is easy to see that Theorem 3.3.1 follows by using Theorem 1.2.8 . 

Q.E.D. 

We have already noted that L being positive-definite guarantees that the 

corresponding representative Y has an infinite spectrum. If we change all 

the " > " to ” > " in Theorem 1.6.1, Theorem 3.2.4 and Theorem 3.3.1, we still 

can find a representative \j/ for the corresponding moment problem. In this 

case, the spectrum of Y may only have finite number of points and the 

corresponding moment functional L is non-negative-definite. 

For the Hausdorff moment problem, we will give another characterization 

which was given by Hausdorff himself. It is similar to what Akhiezer does in 

([3] P.74). 

Theorem 3.3.2 (Hausdorff[1]) Given a sequence of real numbers {pp | 

n = 0, 1, 2, ...}, there exists a distribution function x;/ whose spectrum (not 
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necessary infinite) is contained in [0, 1] such that 
1 = J x" d \|/(x) n =0,1,2,... , 

0 

if and only if the inequalities 

i=0 

Proof: First, we note that (3.3.3) can be represented in the form 

L[x‘<(1 - x)^] > 0 m,k = 0, 1,2. ... . (3.3.4) 

The fact that the condition is necessary is trivial since 

x*<(1-x)"">0 (0<x<1). 

We now study the proof of sufficiency. Its essential part is the derivation 

of the identity 

where R(x) is an arbitrary polynomial of degree n, the Ej(x) are polynomials 

of degrees < n in x which are independent of N, and N > n. The left hand side 

of identity (3.3.5) is the so-called Bernstein polynomial for R(x). 

Let us assume for the moment that (3.3.5) has been established. 

We must prove that the inequality (3.3.4) implies the non-negative 

property of the functional L. Assume that R(x) is an arbitrary polynomial of 

degree n which is non-negative on [0, 1] and does not vanish identically. 

Taking N > n and applying the functional L to both sides of (3.3.5) we find 

that 

(3.3.5) 

k=0 
n-1 n-1 

Hence, using the limiting process N  ^ <50 we find that 
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L [R(x)] > 0 . 

This concludes the proof. 

it remains for us to derive identity (3.3.5). To do this we let the operator 

(1/N) p (d/dp) act n times on the relation 

where N > n and then put p = x, q = 1 - x in the resulting formula. On the left 

we obtain the polynomial 

while on the right there will be a certain polynomial in x, the degree of 

where £|vj(x) is a polynomial of degree < n in x, the coefficients of which are 

rational fractions of N with the denominator . We have on the left hand 

side the Bernstein polynomial of degree N for the polynomial x". For N ^ it 

tends to x-'^ uniformly in the interval [0, 1]. Therefore the remainder £|^(x) 

must have the form 

where the ej(x) are polynomials of degree < n in x which do not depend on N. 

Thus the required identity is proved for R(x) = x'^. But then it holds for any 

polynomial R(x) of degree < n. 

k-O 

which is evidently n. Thus we have the equation 

^ e,(x) 

Q.E.D. 
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Chapter 4 

Some Characterizations for the Existence of a Solution to 

the Hausdorff and Complemented Hausdorff Moment Problems 

4.1 Introduction 

From the nature of the relationships between the sets on which the 

Hausdorff, Stieitjes and Hamburger moment problems are defined, (see 

(3.3.1), (3.2.1) and (1.6.1)), it is obvious that: (i) Every Hausdorff moment 

sequence is a Stieitjes moment sequence and (ii) Every Stieitjes moment 

sequence is a Hamburger moment sequence, it is interesting to note that 

statement (ii) follows directly from the two characterizations of the 

existence of a solution as given by (3.2.2) and (1.6.2) but statement (i) does 

not follow from the characterization (3.3.3) and (3.2.2). There is another 

characterization of Hausdorff moment sequence(lt is given in Theorem 3.3.1) 

from which (i) does fallow. It states that a necessary and sufficient 

condition for | n= 0, 1,2, ...} to be a Hausdorff moment sequence is 

An{1} >0, A^{x} > 0, An{1-x}>0 

and Ajx(1 - x)} > 0, for n = 0, 1,2, ... . (4.1.1) 

We will show that the characterization given by (4.1.1), of a Hausdorff 

moment sequence has superfluous inequalities. 

In this chapter we will also discuss the moment problem on the 

disconnected set (-«>, 02]u[a3, <»), where 0^2 < 03. That is: given a real 

sequence {jj-j., 1 n = 0, 1,2, ...}, find a distribution function w with an infinite 
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spectrum contained in (^, a2]u[o3, <»), such that 
“2 I x" d\{Kx) + J x" d\jr(x) = n^, n = 0, 1,2,... . (4.1.2) 

-00 Oj 

We call this moment problem the complemented Hausdorff moment 

problem . (jin | n = 0, 1,2, ...} is a complemented Hausdorff moment sequence 

on (-00, a2]u[ot3,00) if it satisfies (4.1.2). 

The new results given in this chapter are: 

(I) {jip I n = 0, 1,2, ...} is a Hausdorff moment sequence on [0, 1] if and 

only if 

AJ1}>0, An(x}>0, An(1-x}>0, for n = 0,1,2,..., 

if and only if 

A^{1}>Q, Ar|{x(1 - x)} > 0, for n = 0, 1,2, ... . 

( II) {pn I n = 0, 1,2, ...} is a complemented Hausdorff moment sequence 

on (-00, a2 ]^[oc3, °o) if and only if 

A„{1} > 0 , An((x - a2)(x - 03)} >0, for n = 0, 1,2  

4.2 Two New Characterizations for a Hausdorff Moment 

Sequence 

In this section we will state and prove two new characterizations for the 

Hausdorff moment sequence. 

Theorem 4.2.1 A sequence of real numbers I n = 0, 1,2, ...} is a 

Hausdorff moment sequence on [0, 1] if and only if 
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An{1}>0, A^{x} > 0 and A^{1-x}>0, for n = 0, 1,2, ... . (4.2.1) 

Proof: First, by using a representation theorem (either Theorem 1.5.5 or 

Theorem 2.2.2), we know that {|i^ | n = 0, 1,2, ...} is a Hausdorff moment 

sequence on [0, 1] if and only if the corresponding moment functional L is 

positive-definite on [0, 1]. 

Next, note that L is positive-definite on [0, 1] implies: (i) L is 

positive-definite on [0, ~) and (ii) L is positive-definite on (-o°, 1]. 

From (i), with the aid of Theorem 3.1.3 by choosing K = 0, we obtain L and 

(x}*L are positive-definite. 

From (ii), with the aid of Theorem 3.1.4 by choosing co = 1, we obtain L and 

(1 - x}*L are positive-definite . 

Conversely, assume L, {x}*L and {1 - x}*L are positive-definite. This 

implies: (i) L and {x}*L are positive-definite. By Theorem 3.1.3, we have 

> 0. (ii) L and {1 - x}*L are positive-definite. By Theorem 3.1.4, we obtain 

n., < 1 . Therefore L is positive-definite on [0,1], 

Finally, by Theorem 1.2.8, we know that L, {x}*L and {1 - x)*L are 

positive-definite if and only if An(1} > 0, A^lx} > 0 and An{1 - x} > 0, for 

n = 0,1,2,... . 

Q.E.D. 

Theorem 4.2.2 A sequence of real numbers | n =0, 1,2, ...} is a 

Hausdorff moment sequence on [0, 1] if and only if 

An{1}>0 and An{x(1-x)}>0 for n = 0, 1,2, ... . (4,2.2) 

Proof: By using a representation theorem we know that {pp | n = 0, 1,2, 

...} is a Hausdorff moment sequence on [0, 1] if and only if the corresponding 
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moment functional L is positive-definite on [0, 1]. Now we prove that L is 

positive-definite on [0, 1] if and only if L and {x(1 - x)}*L are 

positive-definite. 

If L is positive-definite on [0, 1], then L is positive-definite. Moreover, 

for any polynomial TC(X) which is non-negative and does not vanish 

identically on R, we have that x(1 - X)TI(X) is non-negative on [0,1] and does 

not vanish identically. Since 

therefore {x(1 - x)}*L is positive-definite. 

Conversely, if L and {x(1 - x)}*L are positive-definite, then by 

Theorem 3.1.5 we have 0 < < ri^ < 1. This implies that L is positive-definite 

on [0, 1]. 

Theorem 4.2.2 now follows from Theorem 1.2.8. 

In a similar manner, we can prove a modified Hausdorff moment problem 

by allowing the spectrum to be contained in a finite interval [a^, a2\- We 

state the result as the following theorem: 

Theorem 4.2.3 Given a sequence of real numbers | n = 0, 1,2, ...}, 

there exists a distribution function y with an infinite spectrum contained in 

[a^, a2l such that 

{x(1 - x)}*L [ 7i(x) ] = L [ x(1 - X)TI(X) ] > 0 

Q.E.D. 

OL. *2 

n = 0,1,2,..., (4.2.3) 

if and only if 

AJ1}>0, Ajx-a^}>0, An{o2-x}>0, 
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if and only if 

for n= 0, 1,2,... , 

A„{1}>0, An((x - ai)(o2-x)} > 0, 

for n= 0, 1,2, ... . 

(4.2.4) 

(4.2.5) 

4.3 A Characterization for a Complemented Hausdorff Moment 

Sequence 

In order to find a characterization for a complemented Hausdorff moment 

sequence, we need the following two theorems: 

Theorem 4.3.1 The complemented Hausdorff moment problem has a 

solution if and only if L is positive-definite on ( -OOj Oglufag, 

Proof: This is the special case of Theorem 2.2.1 when m = 2, a.,= -«> and 

ct4 = <« . 

Q.E.D. 

Theorem 4.3.2 L is positive-definite on (-oo, «) if and only if 

L and {(x- cc2)(x- a3)}*L are positive-definite. 

Proof: Firstly, by Theorem 1.3.1, L is positive-definite on 

02]u[a3, oo ) implies L is positive-definite . 

Secondly, for any n{x) which is non-negative and does not vanish 

identically on R implies (x- ct^Tz{x) is non-negative and does not 

vanish identically on (-<», a2]u[a3, <»). Thus, 

{(X- 02)(x- ct3)}*L[;t(x)] = L[(x- <x^{x- a3)7r(x)] > 0 
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Therefore, {(x- a3)}*L is positive-definite. 

Conversely, if L and {(x- a2)(x- ag)}*L are positive-definite then, for any 

polynomial 7t(x) which is non-negative on (-°o, 02]u[a3, °o) and does not vanish 

identically, we have by Theorem 2.3.1 TC(X) = A(x) -i- (x- a2){x- a3)B(x) with 

A(x) > 0 and B(x) > 0. This gives us 

L[TC(X)] = L[A(x)] + L[(x- a2)(x- a3)B(x)] 

= L[A(x)] -H {(X- a2)(x- a3)}*L[B(x)] > 0 

Therefore, L is positive-definite on (-oo, 02]^[a3, H- 

Q.E.D. 

Theorem 4.3.3 A sequence of real numbers | n = 0, 1, 2,...} is a 

complemented Hausdorff moment sequence on (-°o, oc2]u[a3, if and only if 

An{1} > 0 , A„{{x - a2)(x - tt3)} > 0 , 

for n =0, 1, 2, ... . (4.3.1) 

Proof; It is easy to see that Theorem 4.3.3 follows from Theorem 4.3.1, 

Theorem 4.3.2 and Theorem 1.2.8. 

Q.E.D. 
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Chapter 5 

Some Characterizations for the Existence of a Solution 

to the Moment Problem on a Finite Number of Intervals 

5.1 Introduction 

Let {ttj I i = 1, 2m} be a finite sequence of real numbers such that 

-oo < < ... < ot2m ^ and let 

The moment problem on E can be stated in the following manner: given a 

sequence of real numbers | n = 0, 1,2, ...}, find a distribution function 

with an infinite spectrum contained in E such that 

{Pn I n = 0, 1,2, ...} is called a moment sequence on E if it satisfies (5.1.2). 

In this chapter we give some characterizations for a moment sequence on 

E 

The main results in this chapter are: 

(I) Let E be defined by (5.1.1) with -<» < and a2m< • {p-n 1 n = 0, 1,2, 

...} is a moment sequence on E if and only if 

(5.1.1) 

E 

An(1} > 0, An{(X - aj( 02rn- X)} > 0. 

2m-1 2m 

i=2 

and for n = 0,1,2,... . 
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(!l) Let E be defined by (5.1.1) and A = {Ag(x) | Ag(x) = dgrijg3(x - aj), 

jaji < oo, S £ {1, 2m}, dg= ±1, Ag(x) > 0 for xe E}. | n = 0, 1, 2, ...} is a 

moment sequence on E if and only if 

An{Ag(x)} >0, n = 0, 1,2, , for all Ag(x) e A. 

{ III ) Let E be defined by (5.1.1) with -<« < a^, a2m = ~ and | n = 0, 1, 

2, ...} be a moment sequence which is associated with a determinate moment 

problem, | n = 0, 1, 2, ...} is a moment sequence on E if and only if 

A„{1} > 0, A„{x - a^} > 0 and A^{(x - a2j)(x - 02j^.,)} >0 i = 1. .... m-1. 

5.2 Preliminaries 

Now we prove some preliminaries which will be used in the next section. 

Theorem 5.2.1 Let a and b be two real numbers such that -<» < a < b < «» 

and let p(x) be any polynomial. Also let v(x) and >y*(x) be two distribution 

functions such that x}/*(a) = 0 = \y(a). If for all non-negative integers n 

b b 
J x" d\y*(x) = I x"p(x) dy(x), 
a a 

b b 
then J g(x; t) dAj/*(x) = J g(x; t)p(x) d\j/(x), 

a a 

where g(x;t) is the unit step function defined by (2.1.1) and teR. 

Proof: The result follows trivially for the case when t < a or t > b and for 

the case when \i/*(b) = 0 = \{/(b). 

Now we discuss the case when a < t < b and \|/*(b) 0 \}/(b). Let e be a real 
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number > 0 and let K = maxj^<^<jj|p(x)|. Because \j/(x) and \|/*(x) are both right 

continuous at t, there exists a 5Q such that for all 0 < 5 < 5Q, max{ \i/*(t+5) - 

\|/*(t), K(\j/(t+5) - \j/(t))} < e/4. 

Let us define the continuous real valued function g(x; t, 6) on the compact 

set [a, b] by 

where 0 < 5 < b -1. 

By Weierstrass' Apporoximation Theorem (Apostol [1] P.481) there exists 

a polynomial 7t(x) such that for all x belonging to [a, b], 

if a < X < t 

g(x;t,5) = j if t<x<t + 8 , (5,2,1) 

. 0 ift + 5<x<b 

I g(x; t, 6) - n(x) | < e 
4max{ K\|/(b), ^*(b)} ’ 

Also 

b t+5 

J (g(x; t, 5)-g(x;t)) dy*(x) = J(1 -^)d\|/*(x)<\{/*{t + 5)-\i/*(t) 
a 

and 
b t+5 

j (g(x: t, 8) - g(x; t))p(x) d\|/(x) = j (1 ^)p(x) dv|/(x) < K(v(t + 8) - v(t)). 
a 

Therefore 
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Thus, 

< (\i/*(t+5) - \j/*(t)) + e/4 + e/4 + K(\{/(t+5) - ■v|r(t)) 

< e/4 + e/4 + e/4 + e/4 = e . 

Therefore, 
b b 

I g(x; t) d\j/*{x) = J g(x; t) p(x) dv(x). 
a a 

Q.E.D. 

We use this theorem to obtain an interesting result in spectral analysis. 

Theorem 5.2.2 Let a, b, numbers such that a < X^< < 

b and let p(x) be a polynomial that is not identically equal to zero such that 

p(x) < 0 for X s (X.p X^)- L, {(x -a)(b - x)}*L, {p(x)}*L and {(x -a)(b - x)p(x)}*L 



67 

are all positive-definite, then there exists a distribution function \|/(x) such 

that 
b 

L [ x" ] = J x'’ dv(x) 
a 

and the spectrum of \|/(x) does not have any points in A^). 

Proof; Because both L and {(x - a)(b -x)}*L are positive-definite, by 

Theorem 4.2.3 there exists a distribution function \|/(x) such that 

b 

L [ x" 1 = J x" dv(x) 
a 

and similarly because both {p(x)}*L and {(x - a)(b -x)p(x)}*L are 

positive-definite, there exists a distribution function \|/*(x) such that 

b 

{p(x))*L[x"l = jx"dv'(x) , 
a 

Combining those two integrals we obtain 

b b 

j x" dv*(x) = {p(x) }-L [ x" ] = L [ p(x)x" ] = J x^pix) dv(x). 
a a 

Now we apply Theorem 5.2.1 to obtain that for all te [a, b], 

b b 

Jg(x; t) d\(/*(x) = j g(x; t) p(x) dv(x) . 
a a 

Therefore, 

0Sv-(J.2)-i|/-(X,) = Jp<x)di|/{x)£0, 

which implies that 
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¥*(>^2^ ■ Yi\) = 0 = J p(x) dv(x) . 

But p(x) < 0 for xe (X^ X2), so • ¥(^i) = 0> the spectrum of \)/{x) has 

no points in (X^, X2). 

Q.E.D. 

5.3 A Characterization for the Moment Sequence on a Finite 

Number of Compact Intervals 

In order to prove the characterization for the moment sequence on E where 

E is defined by (5.1.1) with -<» < and 02^^ < we need the following 

theorem. 

Theorem 5.3.1 Let E be defined by {5.1,1) with -<« < and a2„, < <«. The 

following two statements are equivalent. 

(i) L is positive-definite on E. 
2m-1 2m 

(ii) L, {(x-a^)(a2^-x)}*L, {J][(x - a) }*L and {-J][(x - a) }*L 
i>2 i.1 

are all positive-definite. 

Proof: 
2m-1 an 

Let L, {(X - a,)(a2^-x))*L, {J^(x-a))'L and {-n(x-a.))*L 
i=2 i=1 

all be positive-definite and apply Theorem 5.2.2 with p(x) = (x - 03) (x - ag) ... 

(x - a2m-i)> 3 = arid b = a2rr^ to obtain a distribution function \|/(x) such that 
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(i) a(\|/) s [a, b]: 

(ii) G(\j/) n { a2i, 021^^) = 0. for i = 1,2, m-1 ; 
“2m 

(iii) L[ x”] = J / chj/(x), for n = 0,1,2,... . 

“1 

Thus, L is positive-definite on E. 

Conversely, let L be positive-definite on E. By Theorem 1.3.1 we know that 

L is positive-definite. For any polynomial TI:(X) > 0 on E which does not vanish 

identically, we have that (x - a^){o2r^- X)TC(X) > 0 on E. Therefore, 

{(x - a.,)(a2m- X)}*L[TC(X)] = L[(x - a.,)(a2m- x)7i(x)] > 0, 

which implies that {{x - a.,)(cc2rn" x)}*L is positive-definite. 

^-1 2m 

In a similar manner, it can be shown that both (J J^(x -.a.) }*L and {- - a)}*L 
i=2 i=1 

are positive-definite. 

Q.E.D. 

Theorem 5.3.2 Let E be defined by (5.1.1) with < a., and 02^, < 

{ I n = 0, 1,2, ...} is a moment sequence on E if and only if 

2m-1 

V1}>0, A„((x - a,)(a2^-X)} > 0, A„(]^(x - a.)} > 0 

2m 

and A^{-]^(x - a.)} >0, for n = 0,1,2,... . 
i=i 

Proof: Theorem 5.3.2 follows from Theorem 1.2.8, Theorem 2.2.1 and 

Theorem 5.3.1 . 

Q.E.D. 
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5.4 Some Characterizations for the Moment Sequence on a 

Finite Number of Intervals 

In this section we will prove the following two characterizations for the 

moment sequence on a finite number of intervals. 

Theorem 5.4.1 Let E be defined by (5.1.1). Then {jj.^ | n =0, 1,2,...} is a 

moment sequence on E if and only if 

AjAg(x)} >0, n = 0,1,2, ... , for all A3(x) e A. 

Proof: Firstly, by Theorem 2.2.1 we know that {p.^ | n = 0, 1,2, ...} is a 

moment sequence on E if and only if L is positive-definite on E, where 

L[xH = Fn ■ 

Secondly, by Theorem 2.3.4, L is positive-definite on E if and only if 

{Ag(x)}*L is positive-definite for all Ag{x) e A. 

Finally, Theorem 5.4.1 follows by using Theorem 1.2.8. 

Q.E.D. 

If {p.^ 1 n = 0, 1,2, ...} is associated with a determinate moment problem, 

then we have the following result. 

Theorem 5.4.2 Let E be defined by (5.1.1) with -~ < a., , and 

{Fn I n = 0, 1,2,...} be a moment sequence which is associated with a 

determinate moment problem. Then {p.^ | n = 0, 1,2, ...} is a moment sequence 

on E if and only if 

A„{1} > 0, A^,{x - a^} > 0 and A^{(x - a2j)(x - >0 i = 1, .... m-1. 

Proof: Since L and {x - a^}*L are positive-definite. By Theorem 3.2.5 

there is a distribution function such that 
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|in = L [ x'^ ] = J x” dv|/(x) and a(v)n(-oo, ) = 0 . 

Since L and {(x - a2j)(x - a2j+i)}*L are positive-definite i = 1,2, m-1. 

By Theorem 4.3.3 there is a distribution function \j/j such that 

“2i 

l^n = L [ x'" ] = j x" d\i/.(x) + j x"" dv.{x) and a{Vj)n(a2,, = 0, i = 1,2,..., m-1. 

“2i+1 

Since L is determinate, \j/ and \|/| are substantially equal. This implies that 

a(\y) c E and 

fin = '-[x"] = j x"dv(x) . 
E 

Q.E.D. 

There are similar results for the cases when -oo = a., , : -o« < a., , 

a2m < and , a2m = 
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