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Abstract

Let E be a subset of real numbers defined by E = (U, ¢ plog., ag))N(—=,
oo), Where -eo < 0y < Uy < ... < 0y, S oo . The moment problem on E can be stated
as: given a sequence of real numbers {1 | n =0, 1, 2, ...}, find a distribution
function y with an infinite spectrum contained in E such that

() [xdvn=u, n=012...
E

A sequence {u,| n =0, 1, 2, ...} satisfying (") will be called a moment
sequence on £ . Thatis, {u.|n=0,1, 2, ..} is called a moment sequence on E
if there exists a distribution function y such that (*) is satisfied.

if E is a finite interval a4, a,], then we have essentially the Hausdorff
mement problem and the corresponding sequence {i | n=0,1, 2, ...}
satistying (*) will be called a Hausdorff moment sequence on [a,, a,]. When
E is a union of two semi-infinite disjoint intervals, say (-e, a,JUloy, o), we
have the complemented Hausdorff moment problem and we called the
corresponding moment sequence {u,| n =0, 1, 2, ...} a complemented
Hausdorff moment sequence on (-es, a,]Uog, o).

o
Let us define the determinants An{zaix'} by
=0



p p

DAk - XAk,
p i=0 i=0
AH{Za‘xi } =

i=0 -

p P
zaiuim za»“mn
=0 i=0

The main purpose of this thesis is to find characterizations for the

existence of a solution to the moment problem on various sets E. That is, to

find characterizations for moment sequences on various sets E. This utilizes
the A,'s.

In Chapter 1, we introduce the moment problem and the gereral theory of
orthcgonal polynomials. At the end of Chapter 1, we use this general theory

of orthogonal polynomials to prove the well known characterization,

AL{1} > 0, for the existence of a solution to the Hamburger moment problem
(i.e. E = (00, 0)).

In Chapter 2 we give (i) some representation theorems for polyncmials
that are non-negative on the set E and (ii) additional representation
theorems for the moment functional associated with various moment
problems. These polynomial representation theorems and moment functional
representation theorems are used in the later chapters to find
characterizations for moment sequences on various sets E.

Chapter 3 discusses the Stieltjes (E = [0, «)) and the Hausdorff (E = [0, 1])
moment problems.

The main new results of the thesis are in Chapter 4 and Chapter 5.

In Chapter 4 we give two new characterizatidns for a Hausdorff momenf
sequence ard a characterization for a complemented Hausdorff moment

sequence. These results can be stated as follows:



(1) {u,1n=0,1,2,..}is a Hausdorff moment sequence on [a,, a,] if and
only if
A1} >0, A{x-04}>0, A{a,-x}>0 for n=0,1,2, ... ;
if and only if
A{1} >0, A {(x-a)(e,-x)}>0 for n=0,1,2, ... .
() {g,In=0,1,2,..}is a complemented Hausdorff moment sequence
on (-, ay]foy, o) if and only if
A1} >0, A{x-o)(x-04)} >0 for n=0,1,2,... .

In Chapter 5 we give some characterizations for the moment sequence on

E where E is a finite union of intervals. They can be stated as follows:
(1) Let-eo<ay <0y, <ee.Then{y |n=0,1,2,..}is a moment sequence
on E if and only if
Ap{1} >0, A{(x - oy ) (o= X)} > O,

2m-1 2m

An{H(x - ai) }>0 and An{-H(x - oci) }>0 for n=0,1,2,...
i=2

=1
(1) Let A= (A (x) | Ay(x) = ATl g(x - @), loy] < ==, S {1, .., 2m}, dg= 21,
A(x)=20forxeE}. {u,|n=0,1,2, ..}is a moment sequence on E if and only if
AfA(x)} >0, n=0,1,2,..., forall A/x)eA.
(H) Let{u,In=0,1,2, ..} be amoment sequence which is associated

with a determinate moment problem on E, where - < oy and oy, == . {u, | n
=0, 1, 2, ...} is a moment sequence on E if and only if

Ap{1}1 >0, Aj{x-oy}>0and A {(x-oy)(Xx-0y,4)} >0 i=1, ..., m-1.



Chapter 1
Moment Problem and Orthogonal Polynomials

1.1 Introduction

Let R be the set of real numbers. A bounded non-decreasing function
w: R — R is called a distribution function if its moments u., defined by the

Riemann-Stieltjes integral

un=f><"dw(x), n=0,1,2, ...,

are all finite. Without loss of generality we require that the distribution
functions be continuous from the right at each point of R. The set o(y)

defined by
o(y)={x|y(x+9d)-wy(x-35)>0 foralld>0}
is called the spectrum of y. A point in o(y) is called a spectral point of y.

Let E be a subset of the real numbers. The moment problem on E can be

stated in the following manner: given a sequence of real numbers {u,| n =0,

1, 2, ...}, find a distribution function y with an infinite spectrum contained

in E such that

J' X" dy(x) =i, n=01.2,..
E

There are three questions asscciated with any moment problem. They are:
(i) to construct all distribution functions that are solutions of the moment

problem, (ii) to give necessary and sufficient conditions for the existence of



a solution of the moment problem, and (iii) to give necessary and sufficient
conditions for the uniqueness of the solution of the moment problem. In this
thesis we only deal with the question of existence of a solution for the
moment problem on various sets E.

The moment problem had its beginnings back in 1874 with the
investigations of P. L. Tchebichef [1] and his pupil A. Markov [1].

In 1894-95, T. J. Stieltjes [1] proposed the moment problem on [0,).
That is, given a real sequence {u, | n=0, 1, 2, ...}, find a distribution function

v with an infinite spectrum contained in [0, =) such that

-]

jx”dw(x):p.n, n=0,1,2,.. . (1.1.1)
0

This moment problem is now called the Stielties moment prbblem .

In order to pose the problem in this generality, Stieltjes had to invent the
Stieltjes integral and introduced many new and important ideas into
analysis.

In 1920-21, H. Hamburger {1] made an important extension of the problem

by allowing the spectrum of y to be in (-, ). That is, he posed the problem

of finding a distribution function y such that

Jx”dw(x):un, n=0,1,2 .. (112

This problem is now known as the Hamburger moment problem .
In 1923, F. Hausdorff [1] investigated the moment problem on [0,1], that is
to find a distribution function y with an infinite spectrum contained in [0,1],

such that



1
jx"dw(x):un, n=0,1,2... (1.1.3)
0

This problem is now referred to as the Hausdorff moment preblem .

As can be seen from the works of Stieltjes, Hamburger and Hausdorff the
moment problem and the theory of orthogonal polynomials are closely
related. We cannot discuss the moment problem without discussing the
theory of orthogonal polynomials. In the next several sections, we will
provide the necessary materials about orthogonal polynomials which will be
used for our investigation of the moment problem.

In order that the thesis is self-contained we have included the next two
sections which deal with orthogonal polynomials and section 1.4 and 1.5
that deal with some related questions in analysis. Unless otherwise stated
all the definitions, lemmas and theorems in sections 1.2 to 1.5 can be found

in Chihara's text [1].

1.2 Some Properties of Orthogonal Polynomials

These results on orthogonal polynomials will be used at the end of this
chapter and in the later chapters to characterize the existence of a soiution
to the moment problem whose spectrum is contained in various sets E.

We start with a discussion of the linear functional L and the

corresponding orthogonai polynomials.

Definition 1.2.1 Let{u | n=0,1, 2, ...} be a sequence of real numbers
and let L be a linear functional defined on the vector space of all
polynomials by

LIx=u, n=012, ..



L foymy (X) + ooma(X)] = oy L [my (X)] + ol [mo(X)]
for all real numbers «; and all polynomials w(x) (i=1,2). Then L is called the
moment functional determined by the sequence {u,{n=20,1,2,..}. The

number p_ is cailed the moment of order n of L.

Definitiecn 1.2.2 A sequence {P,(x)} is called an orthogonal polynomial
sequence with respect to a moment functional L, if for all non-negative
integers m and n,

(i) P,{x)is a polynomial of degree n,
iy LPL,(x)P.(x)]=0 for m=n,
(iii) L [P,2(x)] = 0.
"OPS" will be the abreviation used for "Orthogonal polynomial sequence”

and we will use the phrase "{P,(x)} is an OPS for L" for any polynomial
sequence {P_(x)} that satisfies Definition 1.2.2.

If {Pn»(x)} is an OPS for L and in addition we alsoc have the leading
coefficient of P_(x) equal to one for all n, then {P_(x)} will be called a monic
OPS for L.

Let 3, be the Kronecker deita defined by

{0 if mzn
0. =
™ {1 #m=n. (1.2.1)

Conditions (i) and (i) of Definition 1.2.2 can be replaced by
LIPR(X)PL(x)] = K 80 K, =0. (1.2.2)

Theorem 1.2.3 Let L be a moment functional and let {P,(x)} be a



sequence of polynomials. Then the following are equivalent:

(@) {P,(x)}is an OPS for L;
(b) Lr(x)P,(x)] = O for every polynomial =(x) of degree m < n,
while L[r(x)P.(x)] # 0 if m = n;
(€) Lx™P,(x)] =K 8,, whereK =0, m=0,1,..,n n=0,1,2,.. .
Proof: Let {P_(x)} be an OPS for L. Since each P,(x) is of degree k, it is
clear that {P,(x), P,(x),..., P,(x)} is a basis for the vector subspace of

polynomials of degree at most m. Thus if n(x) is a polynomial of degree m,

there exist constants ¢, such that

T (X) = Z C, Pk(x), cnhz0 .
k=0

By the linearity of L,

Y elPX)P()]=0 ifm<n
LI r(x) P (x)]=9 k=0

c.L[P

m
2(x)] if m=n.
Thus (a) = (b) . Since trivially (b) = (¢) = (a), thus the proof is complete.
Q.E.D.
Definition 1.2.4 Let E < (—=, ). A moment functionai L is said to be
positive-definite on E if and only if L[x(x)] > O for every real polynomial rn(x)
which is non-negative on E and does not vanish identically.
If in this definition E = (—o, ), then L is said to be positive-definite.

Also we say that L is non-negative-definite on E if in Definition 1.2.4



L[r(x)] > O is replaced by L[r(x)] =2 Q.
Lemma 1.2.5 Let=(x) be a polynomial that is non-negative for all real
x. Then there are real polynomials p(x) and q(x) such that
n(x) = p?(x) + g%(x).
Proof: If n(x) = 0O for real x, then =(x) is a real polynomial so its real

zeros have even multiplicity and its non-real zeros occur in conjugate pairs.

Thus we can write
m

H (x 0, - Bl x-ak+[3ki),

k=1

where r(x) is a polynomial, oy and B, are real numbers.

Writing

m

[T o800 = A + 1 B(x)

k=1

where A(x) and B(x) are real polynomials, we get
n(x) = r¥(x) [ A%(x) + B3(x) ].
Q.E.D.

In order to discuss existence theorem for OPS, we introduce the

determinants

za“ Hiin
o) i=0
An{ZaL!x'}= e e 123
=0 p
u'H-n o uc+2n
i=0 i=0

Definition 1.2.6 The real quadratic form

Y aau

ij=0
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is called positive-definite. If for any vector (a,, ..., a,) # (0, ..., 0), we have

n
Zaiajui+j >0 .

i,j=0
The following well known result is from linear algebra.

Lemma 1.2.7 (Archbold [1] P.393) The real quadratic form

n
Z ala}pT +]
i,j=0
is positive-definite if and only if A {1} >0 form =0, .., n.
Using this lemma we have the following theorem.

Theorem 1.2.8 Let{u, |n=0,1,2, ..} beareal sequence and let the
linear functional L be defined by L{x"] = u,. Then L is positive-definite if and

only ifA{1}>0,n=0,1,2, ... .
Proof: Suppose that L is positive-definite. Given n 2 0, and any vector

(ag, --»a,) = (0, ..., 0),and
n
n(x) = Z ax
i=0
we have that

0 < L[2(x)] = L[(Zn: ax')]= L[i aax =Y aap
o .

By Lemma 1.2.7, we have A {1} > 0.

Conversely, let A {1} >0forn=0, 1, 2, ..., and let n(x) be a polynomial

that is non-negative and does not vanish identically on R. By Lemma 1.2.5 we

know that
m n

n(x) = p2(x) + 4%(x) = () ax )+ (D 0.x* )’
i k=0

1=0



11

Therefore,

=L[(ialxi)ﬁ+L[(zn:bkx Zaax ]+L2b b X"
. k=0 ij=0 k.t=0
Za ] I+j Ebkbtukn'

k,t=0
By Lemma 1.2.7, we have L[r(x)] > O.
Q.E.D.

Theorem 1.2.9 Let L be a positive-definite moment functional with
real moment sequence {u,| n =0, 1, 2, ..}. Then there exist an OPS for L.

Proof: Write

n

P =Y c X

k=0

Recalling Theorem 1.2.3, we observe that the orthogonality conditions

n
- Z c m. _=K3,. K=0 msn (124)

are equivalent to the matrix equation

— — — ey

Ho Hy Uy Coo 0]

N+t Cn1

u1 “’2 A p’

(1.2.5)

| g qton Cnl L K”—-

Since L is positive-definite, by Theorem 1.2.8 we have A.{1} > 0. So for

aroitrary K =0, (1.2.5) has a unique solution {c, | i = 0, ..., n}. Thus there

exists P_(x) satisfying (1.2.4). We also have

o =M¢O nx1i (1.2.6)
mn An“} ’ = )
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which is valid for n = 0, if we define A_,{1} = 1. it follows that P_(x) is of

degree n, hence {P_(x)} is an OPS for L.
Q.E.D.
Theorem 1.2.10 Let{P_(x)} be an OPS for L. Then for any polynomial

n,(x) of degree n,
a k. A (1}
a {1}

n-1

Lir

LX) PL(x)]=a,L[X"PL(x)]= A {1h=1, (1.27)

where a,, is the leading coefficient of n_(x) and k, is the leading coefficient
of P,(x).
Procf: Writing
Ta(X) = 3 X" + m, ,(X),
where m,_,(x) is a polynomial of degree n - 1, we have
Lma(x)Pa(x)] = 8, LX"Pr(x)] + L, 1 (X)Po{x)] = 2,L[x"P;(x)].
Thus (1.2.7) follows from (1.2.6) with k = c,.
Q.E.D.

One of the most important characteristics of orthogonal polynomials is
the fact that any three consecutive orthogonal polynomials are connected by
a very simple relation which we now derive.

Theorem 1.2.11 Let L be a positive-definite moment functional and

let {P,(x)} be the corresponding monic OPS. Then there exist constants ¢, and
A, > 0 such that
P,x) =(x-c,)P,{(x}-A,P,(x), n=1,223, .., (1.2.8)

where we define P,(x) = 0.
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Proof: Since xP_(x) is a polynomial of degree n +1, we can write

! LIXP, ()P, ()]
Px)=D a P (), a = :
% “ RN

But xP,(x) is a polynomial of degree k +1 sothata, =0forO<k<n- 1.

Further, xP_(x) is monic so a = 1. Thus

n,n+1
xP(x) = P (x) +a,,P(x) + &, ,1Ppq(x), n=1.

By replacing n by n - 1 in this equation we obtain

xP, 1(x) = P (X) + ¢ ,P,.1(x) + AP, o(x), n=2.
and this is equivalent to (1.2.8) forn > 2 If we define P_,(x) = 0 and choose
¢y=- P,(0), then (1.2.8) is valid also forn = 1.
Next from (1.2.8) we obtain
LIx™2P (x)] = L[x™ P, (x)] - ¢, L[x"2P ., (x)] - A L[x"2P_ (x)] ,
0 =L[x"P_,(x)] - A Lx"2P (x)] .

By Theorem 1.2.10, we obtain forn>1,
L[x"P.(x)] A {11A,{1}

a+l X Xn-1Pn_1(X)] - A2 (1)

n-1

(&,(11=1).

By Theorem 1.2.8 we know that L is positive-definite implies A_{1} > 0.

Thereforeh >0forn=1,2, ... .
Q.E.D.
Let P'_ (x) be the derivative of P_(x) with respect to x. We have the

following theorem.

Theorem 1.2.12 Let L be a positive-definite moment functional and

{P,(x)} be an OPS for L. Then
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2 1] ]
i PX) P XPa) - PP
A hy Ay ok

Proof: From (1.2.8), we have for n = 0 the identities

n+1 (X)
. (1.2.9)

n+i

xP (x)P,(u) = P {(x)P(u) + C, P (X)P(u) + X, P (X)P,(u),

= ' n+t n+1" n n+1" n-1

uP,(U)P(x) = P 1(U)P(X) + C, 1P, (U)P (x) + A P..1(WP.(x).

n+1
Subtracting the second eguation from the first yields

(x - WP(x)Po(u) = Py (X)P(u) - Py (U)P,(X)

- ;\vn+1[Pn(X)Pn-1(U) - Pn(U)Pn-1(X)]‘

-t 4 P XIPy(u)-P{x)P__ (u)
1 T, .
Foxu) = (b ) —oetl T T
then the last equation can be rewritten
Pm(x) Pm(u)
A= [mu)-Foou), m20.
1772 m+1

Summing the above in m from 0 to n and noticing that F ,(x,u) = 0, we

obtain
- PP (u) 4P (P(u)- PP (u)
kK AtV 0 X ‘
2 AA, ... A - ()‘1K2 )‘m) X - U . (1.2.10)
k=0 1 2 k+1

The numerator of the right side of (1.2.10) can be written
Paci(X)P(u) - Po(x)P 1 (u) = [P (x) - P (W)]P,(x) - [Pr(x) - P(W)]P,(x) so
(1.2.9) follows from (1.2.10) by letting u — x.
Q.E.D.
As an immediate corollary, we obtian the important inequality
P ()P (x) - P (x)P,4(x)>0, (1.2.11)

valid for all real x whenever L is positive-definite.
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1.3 Zeros of OPS and Gauss Quadrature
When the moment functional is positive-definite, the zeros of the
corresponding orthogonal polynomials exhibit a certain regularity in their
behavior.
Theorem 1.3.1 If L is positive-definite on Eand E is_ an infinite set,

then L is positive-definite on every set containing E.
Proof: Let n(x) be a real polynomial which is non-negative on the set S
and does not vanish identically. If E < S, then trivially, n(x) 20 on E. It

follows that L[r(x)] > 0.
Q.E.D.

Theorem 1.3.2 LetIbe an interval and L be positive-definite on . The
zeros of P_(x) are all real, simple and are located in the interior of L.

Proof: Since L[P (x)] =0, P,(x) must change sign at least once in the
interval I. That is, P,(x) has at least one zero of odd multiplicity located in
the interior of L.

Let x4, X,, ..., X, dencte the distinct zeros of odd multiplicity that are
located in the interior of I. Set

pP(X) = (X -Xy) ... (X -X).
Then p(x)P_(x) is a polynomial that has no zeros of odd multiplicity in the

interior of I, hence p(x)P(x) = 0 for x e I. Therefore, L{p(x)P,(x)] > 0. But this
contradicts Theorem 1.2.3 unless k 2 n. That is, k = n so P_(x) has n distinct

zeros in the interior of 1.
Q.E.D.

Henceforth, we denote the zeros of P (x) by x_;, the zeros being ordered by

ni’



16

increasing magnitude:

Xn1 < Xpp < oee € Xy s n=1t. (1.3.1)

Without loss of generality we assume that P,(x) has positive leading
coefficient, it then follows that
P(x)>0 for x>x,,, sgnP,(x)= (-1)" for x<x,, (1.3.2)

Here sgn denotes the signum function defined by

1 x>0
sgnx=)0 x=0
-1 x<0

Now the derivative of P_(x), P' (x), has at least cne, hence exactly one,
zero in each of the intervals, (x4, X, ). It follows that P' (x,) alternates
in sign as k goes from 1 to n. Since P’ (x) also has positive leading
coefficient, we can conclude:
sgn P' (X)) = (-1)™K, k=1,2,..,n. (1.3.3)
Theorem 1.3.3 (Separation thecrem for the zeros) The zeros of P (x)
and P ,(x) mutually separate each other. That is,
X

i=1,2,...,n.  (1.3.4)

< Xy < X

n+li n+1,i+1 2

Proof: We have the inequality (1.2.11)
P (0P (x) - P (X)P,,,(x) >0
In particular,
P 1 Xne1 k0 Pa(Xnet 6) > 0, k=1,2,...,n+1. (1.3.5)
Referring to (1.3.3), we conclude that sgn P(x,,4 ) = (-1)™1K. Thus P_(x)
has at least one, hence exactly one, zero in each of the n intervals,
(Xnst ko Xpatkat)- (K=1,2,,n).

Q.E.D.
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Corollary 1.3.4 Foreachkz1,{x, | n=k, k+1, ..} is a decreasing

sequence in n and {x | n =k, k+1, ...} is anincreasing sequence in n. In

n,n-k+1

particular, the limits

& = lim X i,j=1,2,3, ..., (1.3.6)

Nosee Xnip M} = lim,_,..

n,n-j+1
all exist in the extended real‘number system [-os, o).

Definition 1.3.5 The closed interval, [§,, n,] is called the true
interval of orthogonality of the OPS {P_(x)}.

Theorem 1.3.6 (Gauss quadrature formula). Let L be positive-definite.

There are numbers A, A, A, such that for every polynomial n(x) of

degree at most 2n - 1,

n

Umx)]=) A mx ). (1.3.7)

k=1

The numbers A, are all positive and satisfy the condition,
Agg+ Aot . + A, = Ug . (1.3.8)

Proof: Let n(x) be an arbitrary polynomial whose degree does not exceed

2n - 1, and construct the Lagrange interpolation polynomial L_(x) which

corresponds to the nodes x,, and the ordinates n(x,) (1 <k <n). Thus

consider
n

L(x) = zn(xnk) £ (x)
where .

P.x)
(x - xnk)P'n(xnk

fk(X) =

Now Q(x) = n{x) - L,(x) is a pclynomial of degree at most2n - 1 which
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vanishesat x, (k=1,...,n). Thatis,
Q(x) = R(x)P,(x)

where R(x) is a polynomial of degree at most n - 1n. By Theorem 1.2.3,

L (x) ] = L{ Ly()) ]+ LR Pox) 1= LILy0x) T= 3 mlx ) LLE ()] .
k=1

This yields (1.3.7) with A, = L[f (x)] .
If the particular choice n(x) = f2(x) is made in (1.3.7), the result is

n
0<LIf2()]= D A F2x )=A
k=1

so the A, are all positive.

Finally, (1.3.8) can be obtained by choosing n(x) = 1 in (1.3.7).
Q.E.D.

1.4 Helly's Theorems

We first establish some general convergence theorems which will be
used in the proof of the representation theorem (See Theorem 1.5.2).

Theorem 1.4.1 Let {f } be a sequence of real functions defined on a
countable set E. If for each x € E, {f (x)} is bounded, then {f } contains a
subsequence that converges everywhere on E.

Proof: Let E ={xq, Xo, X3, ... } and write f,(0) =f . Now since
{f (©)(x,)} is a bounded sequence of real numbers, it contains a convergent

subsequence. That is, there is a sequence {f (1)} which converges for x = x,

and is a subsequence of {f_(0)}.
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Now {f (1)(x,)} is a bounded sequence so we can conclude as before that
there is a subsequence {f,@} of {f,(1)} which converges for x = x,. Continuing
in this way, we obtain sequences {f (@} {f (V}... {f 0}, ... such that

(a) {f,&)}is a subsequence of {f k1} (k=1,2,3, .. );
(b) {f,®)(x)} converges forx e E, ={xq, ..., X} .

It follows from (a) that the diagonal sequence , {f ("}, is a subsequence
of {f }. Since, except possibly for the first k -1 terms, {f ("} is also a
subsequence of {f (i} , it follows from (b) that {f ("(x)} converges for x
E=Uicue bk -

Q.E.D.
We next prove a theorem which, when stated in terms of functions of
bounded variation, is usually known as Helly's Selection Principle ( or
Theorem of Choice ). For the problems considered in this thesis we need it

only for the case of non-decreasing functions.
Theorem 1.4.2 Let{¢,} be a uniformly bounded sequence of
non-decreasing functions definied on (-, ). Then {¢,} has a subsequence

which converges pointwise on (-e, «) to @ bounded, non-decreasing function.

Proof: Let Q denote the rational numbers. According to Theorem 1.4.1

there is a subsequence {q)n(k)} which converges everywhere on Q. We then
define a function ¢* on Q by
0" (r) = limy_,_ 0r4q(1) for re Q.

It follows from the conditions on {¢,} that ¢* is bounded and



20

non-decreasing on Q. We now extend the domain of ¢* to R by defining
o*(x) =sup {¢"(N|re Qandr<x}, xe R\Q.
¢ is clearly bounded and non-decreasing on R. We next show that {¢>n(k)}

converges to ¢*(x) at all points x of continuity of ¢*.

To this end, suppose ¢" is continuous at x ¢ Q. Since Q is dense in R, then
given £€> 0, thereisanx, > x, x, € Q, such that
0" (X5) € 0" (X) + €.
For any x, € Q, x,< x, we also have
Py X1) S Pr(X) S Prgo(Xa) -
Thus
0 (xq) S liminfy__, &n4(X) SHmsupy . ¢p4(X) S ¢7(x,) .
Therefore
9" (%) S liminfi_, 0n4q(X) < IMSUP,_,_ 0n4o(X) < 0*(x) + €,
whence it follows that {¢>n(k)} converges to ¢* at all points of continuity of
o*. But ¢* is non-decreasing so its points of discontinuity form a countable
set D. Applying Theocrem 1.4.1 to {cpn(k)} and D, we conclude that there is a
subsequence of {¢n(k)} which converges on D, hence on R, to a limit function ¢
( ¢ is of course identical with ¢* on R\D). The conditions on {¢,} guarantee

that ¢ is bounded and non-decreasing.
Q.E.D.
Next, we prove Helly's second theorem. As before, we consider only

non-decreasing functions.
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Theorem 1.4.3 Let{¢,} be a uniformly bounded sequence of

non-decreasing functions defined on a compact interval [a, b] , and let it
converge pointwise on [a, b] to a limit function ¢ . Then for every real

function f continuous on [a, b,
b

nmn_,“j fdo, = jz fdo .

Proof:  Since {0} is uniformly bounded, there exists an M > 0 such that
0<¢,0b)-0,(a) <M, n=123, ..,
hence also
0 <o(b) - o(a) s M.

Let € > 0 be given. If f is real and continuous on (a, b], then f’is uniformly
continuous on [a, b] so there is a partition P, = { X4, Xy, ..., X} of [, b] such
that |

() - f(x") | <€ forx', x"e x4, %], 1<ism
Choose g e [x 4, x;] and write
BO=0(x) - 0(kr), A0 =0,x) - 0,(X.y).

By the mean value tl;leorem for Stieltjes integrals,

[ too - 1) a0=r1E)- 1)1 80

for scme &= [x;, %] . Summing over i, we obtain

In the same way we find
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b m
[ rae, - D 1) a0, | <em
a i=1

Therefore,

b b
J'qua-J'qu)n
a a

<aves 31 1€) | [ 860~ 00 |

i=1

Keeping the partition P_ fixed, we have that the lim___A(¢-9,) = 0, hence

b b
j qu)-J' fdo,

and the desired conclusion follows.

limsup,_,_, < 2Me

Q.E.D.
In the next section we will see that with the aid of Helly's Selection
Principle, we can find representative in the form of Stieltjes integral for a

positive-definite moment functional L.

1.5 A Representation Theorem

Definition 1.5.1 Two distribution functions y, and vy, are said to be
substantially equal if and only if there is a constant C such that v, (x) =

y,(x) + C at all the points of continuity.
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It is clear that substantially equal distribution functions have the same
spectrum.

Let L be a positive-definite moment functional with moment sequence
{u, | n=0,1,2, ..} According to the Gauss quadrature formula (Theorem

1.3.6), for each positive integer n, there are positive numbers A, , ..., A,

such that
n
L[x"]=uk=ZAmx‘r‘1i . k=0,1,...,2n-1, (15.1)
i=1

where x,; <X, < ... <X, are the zeros of P (x), the nth degree monic

nn

orthogonal polynomial corresponding to L.

Let v, be defined by

0 if x<x
ni

y(x)=q AattAng I XppSx<x o 1cpen) (15.2)
i, it x2x
v, is a bounded, right continuous, non-decreasing step function whose

spectrum is the finite set {x , Xant» @nd whose jump at x, is A > 0. That

nts -
is, v, is a distribution function. Thus,
oo n
J *dy,)= > A X =, k=01,...2n-1. (153)
> i=1

According to Theorem 1.4.2, {y_} contains a subsequence which converges on

(-e=, =) to @ bounded, non-decreasing function y . if [§,, n,] is bounded, then

Theorem 1.4.3 could be invoked to conclude from (1.5.3) that

oo

Jxkdw(x)=pk=L[xk], k=0,1,2, .. (1.5.4)

-
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(note that w(x) = 0 for x £ &, and y(x) = u, for x =2 m, so (1.5.4) can be
written with the interval of integration reduced to [§;, n,]).

Theorem 1.5.2 Let L be a positive-definite moment functional and let
v, be defined by (1.5.2). Then there is a subsequence of {y,} that converges
on (-e0, =) to a distribution function y which has an infinite spectrum and for
which (1.5.4) is valid.

Proof: As already noted, there is a subsequence {Wn(i)} which converges
on (-, =) to a distribution function y. Writing ¢; = v, , we have according

t0 (1.5.3)

J' X d 0,0 =, for nz k"z’ .

From Theorem 1.4.3 we conclude that for every compact interval [a, ],
B

B
nmi_wf X do(x) = J X d y(x) (1.5.5)

Choosinga <0< Bandn, >k + 1, wecan write

= ' J?xkdq>i(x) - j} x* d w(x)

o

B
- | K d
(53

oo

[ ¥doe
B

o

J. x“d ‘bi(x) + +

But

u2k+2 )
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Similarly,
o

[ *dow

-0

- (k+2)

<lal Moz

so that

2 k2

- K-
< +(lal 4B

6 B B
b [ ¥aved | < | [ xdom- [ awr [T

Hence letting i — « , we have by (1.5.5)

-K-2 k=
<(lel™ g

B
b | ¥ dw
(>3

Now if we let oo — — and § — «, we obtain (1.5.4) .
Finally it is easy to show that y has an infinite spectrum. For if the
spectrum of y consisted of exactly N points, we could construct a real

polynomial n(x) which vanished at these N points. We would then have

L[7r2<x)1=jn2<x>dw<x) -0,

contradicting the positive-definiteness of L.
Q.E.D.

‘We have thus shown that every positive-definite moment functional can
be represented as a Stieltjes integral with a non-decreasing integrator v
whose spectrum is an infinite set. We will say that "y provides a

representation for L" or simply that "y is a representative of L".

Lemma 1.5.3 The spectrum of a distribution function is a closed set.

Proof: letx,e c(y)n=0,1,2,.. ,andlim,__x, =Xy . If x5& o(y), then
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there exists 8, > 0 such that y(xy+ 84) - w(x4- 8g) < 0. The fact y is
hon-decreasing forces y(x) = 0 for x e (x4~ 8, Xg+ 8y). On the other hand, x,
is a limit point of {x_} implies x_ € (x4~ 85, Xo+ ) when n is sufficient large.

This yields w(x,+ 8,) = w(x,- 8;) which contradict the fact that x,, € o(y).
Q.E.D.

Lemma 1.5.4 Let L be a positive-definite moment functional. Then L
is positive-definite on o(y) .
Proof: Let r(x) be a polynomial which is non-negative on o(y) and does

not vanish identically. Since a(y) is an infinite set, so there exists a x,
o(y) such that n(x,) > 0. By lemma 1.5.3 we know that o(y) is a closed set.

Therefaore x, is either an isolated point or an interior point of o(y). In each

case, it is easy to see that .
L[ (%) ] =j n(x) dy(x) > O .

Therefore L is positive-definite on o(y).
Q.E.D.

Theorem 1.5.5 Every positive-definite moment functionai L has a
representative whose spectrum is a subset of [&,, n,]. Further, [§,, ;] is a

subset of every closed interval that contains the spectrum of some

representative of L .

Proof: Let y, be defined by (1.5.2) and let w denote the corresponding
representative for L which is a subsequential limit of {y,}. It is then clear

that if £, > -eo, W(x) = 0 for x <&, while if ny < e, then y(x) = u, for x 2 n,.
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Thus the first assertion in the statement of the theorem follows. Now if ¢ is
a representative for L and o( ¢ ) < [a, b], then by Lemma 1.5.4 and Theorem
1.3.1, L is positive-definite on {a, b]. By Theorem 1.3.2, [§,, ny] = [a, b].
Q.E.D.

Definition 1.5.6 A positive-definite moment functional L is called
determinate if any two representatives of L are substantially equal. (That
is, L has a substantially unique representative.) Otherwise, L is called
indeterminate .

Definition 1.5.7 A moment prcblem is called determinate if the
corresponding moment functional is determinate. Otherwise, it is said to be

an indeterminate moment problem.

1.6 Hamburger Moment Probiem
We state the Hamburger moment problem in the following manner:
Given a real séquence {u, [ n=0,1,2, ..} find a distribution function y

with an infinite spectrum, such that

o

J’x”dw(‘x)=pn, n=012.. (161

-

Areal sequence {u, | n=0,1, 2, ...} is a Hamburger moment sequence , if it

satisfies (1.6.1) .
Addressing only the simpler existence question for the Hamburger

moment problem, we see in view of Theorem 1.5.2 that a necessary and

sufficient condition that there is a distribution function v is that the
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corresponding moment functional L, defined by L[x"] = u, be
positive-definite. Combining this observation with Theorem 1.2.8, we can
prove the following theorem, due to Hamburger [1].

Theorem 1.6.1 A necessary and sufficient condition that the
Hamburger moment problem has a solution is that

A {1} >0, n=0,12, ... . (1.8.2)

Proof: Firstly, we prove that the Hamburger moment problem has a
solution if and only if L is positive-definite.

Assume that the Hamburger moment problem has a solution. That is,

there exists a distribution function y with an infinite spectrum, such that

fﬁd%ﬂ:M.

So, for any polynomial n(x) which is non-negative and does not vanish

identically on R, we have

L[n(x)]:J' () d w(x) >0 .

Therefore, L is positive-definite.
Conversely, if L is paositive-definite, by Theorem 1.5.2 we know that the
Hamburger moment problem has a solution.

Secondly, by Theorem 1.2.8, we have L is positive-definite if and only if
A{1}>0 (n=0,1,2, ...).
Q.E.D.
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Chapter 2
Some Representation Theorems

2.1 Preliminaries

In Chapter 1, we proved a representation theorem for a positive-definite
moment functional based on Helly's theorems. With the aid of this
representation theorem we obtain the characterization for the existence of
a solution for the Hamburger moment problem that was first obtained by
Hamberger [1]. In order to consider a similar question for different moment
problems we need a representation theorem for a moment functional that is
positive-definite on E, where E is the union of finite number of disjoint
closed intervals.

In Section 2.2 we give two representation theorems. The first is due to M.
Riesz [1]. It provides a method to construct a distribution function for a
non-negative-definite moment functional. In order to use M. Riesz's method,
we need a theorem for extending a positive-definite moment functional.
First we define the unit step function at t, denoted by g(x;t), by

g(x;1) ={ o XL e

Let R[x] be the usual algebra of all real polynomials in the indeterminate
x over the field of real numbers R. Let R*[x] be the algebraic dual of R[x].
That is, R*[x] is the set of all linear functionals L: R[x]— R.

Let S[x] be the vector space of piecewise constant functions that are

continuous from the left on R and tend to zero as x — . Let



30

G[x] = S{x] @ R[x].
That is, G[x] is the vector space formed by taking the direct sum of
polynomials and piecewise constant functions. Then we have the following
theorem:

Theorem 2.1.1 (Akhiezer [3] P.69) Let E be the union of finite number
of disjoint closed intervals and let Le R*[x] be a moment functicnal that is
positive-definite on E. There exists a functional L: G[x] — R such that for all
polynomials nt(x) € R[x], L[r(x)] = L[r(x)] and L is non-negative-definite on E.

Proof: We denote by g,(x) any element of the space G[x] which does not
belong to R[x] and we introduce the linear space R,[x] of elements

f1(x) = n(x) + ag,(x),
where n(x) traverses R[x] and o traverses the set of all real numbers. We
extend the functional L to L,: R,[x] — R by putting

L,[f;(x)] = L[x(x)] + ar,.

No matter how we choose the number r,, which evidently represents
L,[g,(x)], the functional L, we have defined will be additive and
homogeneous. Our problem consists in making the appropriate choice of the
number r; such that the extended functional L, is non-negative-definite on E.

For this purpose we take the set N, + of all those polynomials n(x) € R[x] for

which n(x) - g,(x) 2 0 on E (It is easy to see that the set N,+ is not empty).
Then we put
B1 =inf L[n(x)].

T (X) e N:

Further we introduce the set N,- (which is also non-empty) of those
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polynomials n(x) € R[x] for which g,(x) - n(x) = 0 on E and we put

b1 =sup L[m(x)].

T (x) e N;
By virtue of these definitions b, > - .« and B, < . We now prove that
b, <B;.
For any polynomials n,(x) € N,+*and n,(x) e N,-. We have“ n(x) -g4(x)=0o0nkE
and g4(x) - my(x) 20 on E; This implies mt,(x) - ny{x) = (my(X) - g4(x)) + (g;(x)
- »(X)) 2 0 on E. We now apply the functional to the polynomials =, (x), my(x)
and =, (x) - my(x). Therefore,
L[y (x)] - L[rmo(x)] = Lmy(x) - my(x)] > O,
whence
Llr (x)] > L{mx(x)].
Since this inequality will hold for any =;(x) e N,* and any n,(x) € N,-we

have that
inf  L[m(x)]2sup L{m(x)],

n,(x) e N, T,(x) € N;

B, 2b,.
We take for r; any number which satisfies the inequality by, <r, <B,. We
now prove that the functional L,, defined on R,[x] is non-negative-definite
on E.

Let f,(x) € Ry[x] such that f,(x) is non-negative on E, then f,(x) = n(x) +

agq(x) where n(x) € R[x]and a € R.
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If a =0, then f,(x) e R[x]. Itis trivial to show that L,[f,(x)] = 0.

For o > 0, we have f,(x) = n(x) + ag,(x) = a[g,(x) - (-n(x)/x)]. f;(x) 20 0n E
implies -n(x)/ec € N;-. Therefore,

L,[f,(x)] = Lla(g4{x) - (-n(x)/ax))] = o(ry - L[-m(X)/a]) = a(ry- b) = 0.

In the case of a < 0, we have f,(x) = n(X) + ag,(x) = -a[(-t(x)/a) - g;(X)].

f,(x) > 0 implies -rn(x)/ac € N4+. Therefore
L, [f, ()] = L[-o{(-m(x)/ax) - g4(x))] = -o(L[-n(x)/ct] - Fy) 2 -a(B4-ry) = 0.
Thus, L, is non-negative-definite on E.

The above described construction is the first step; it is followed by
analogous further steps, and with the aid of (possibly transfinite) induction
the functional thus obtained is extended to the whole space G[x] in such a
way so that it is non-negative-definite on E.

Q.E.D.

In Section 2.2 we show how Theorem 2.1.1 can be used to find a
representation theorem for a positive-definite moment functional. In the
case when E is a compact set, we give another proof of the representation
theorem for a positive-definite moment functional. To do this, we need the
Hahn-Banach theorem and the F. Riesz representation theorem. Since these
theorems are well known in functional analysis, we only state them without
proof.

Let C[a, b] be the linear space of all the continous functions on [a, b], then
we have the following theorems:

Theorem 2.1.2 (Hahn-Banach) (Mukherjea & Pothoven [1] P.249) LetP
pe a functional on C[a, b] satisfying: (i) Plaf(x)] = aP[f(x)], (i) P[f(x) + g{x)]



33

< P[f(x)] + P[g(x)] . If L is a linear functional on R[x] and | L[f(x)] | £ P[f(x)],
f(x) e R[x]; then there exists a linear functional L on C[a, b] such that
L[f(x)] = L[f(x)] f(x) e R[x] and |L[f(x)]|<P[f(x)] f(x) e Cla, b].
Theorem 2.1.3 (F. Riesz) (Mukherjea & Pothoven [1] P.282) Every

non-negative-definite linear functional P on C[a, b] can be represented by
b

Pf(x)]= jf(x) dy(x)

where y(x) is an non-decreasing function.

2.2 Representation Theorems for Positive-definite
Moment Functionals
Let E be a finite union of disjoint closed intervals. We now use M. Riesz
method to construct a representative for a positive-definite moment
functional on E. M. Riesz {1] originally discussed the case when E = (- , ).
Akhiezer [3] provided the proof of the case when E = [0, «). We now prove the
general theorem.

Theorem 2.2.1 (M. Riesz) Let{o;|i=1, ..., 2m} be a finite sequence of
real numbers such that -~ <a, <o, < ... <oy, <eeandlet E = (Uyg; ¢ mlos g,
ao])M (===, =). There exists a distribution function y(x) such that

L[x”]:Jx"d\y(x) for n=01,2, ..,
E

if and only if L is positive-definite on E.

Proof: Let y(x) be a solution for the moment problem on E. Then for any
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polynomial n{x) which is non-negative on E and does not vanish identically.

we have

L[M@]=Jmmdwm>o.
E

Therefore, L is positive-definite on E.
Conversely, suppose L is positive-definite on E. Let us take any

denumerable point set S = {t,} everywhere dense in E. We may evidently
assume that oue S (i=2, ..., 2m-1); if -ee < a4, then aye S and if o, < =, then

OomE S.

We know that L is positive-definite on E. With the aid of Theorem 2.1.1,

we extend this functional L to L defined on G[x]. We know that L is
non-negative-definite on E. Define y(t) by the following equation
L [g(x)] = w(t)
where g,(x) is defined by (2.1.1).
In this way, we obtain a function y(t) defined on S. We will show that
this y(t) is a solution of the moment problem. We first prove that this
function is monotonic non-decreasing on S. Indeed, by virtue of the

additivity, homogeneity and non-negativity of the extended functional L, we

can write down the equation

W(t) - w(t) = L [gx(x)] - L [g(x)] = L [(gp(x) - gp(x))]

Also, since
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therefore
w(t") - w(t) 20
As a result of the monotonic property of y(t) and the fact that the set S

is dense in E the function y(t) can be extended essentially uniquely to R,

with its monotonic character preserved, by letting

sup{ y(t) [t<x, teS} if X2 o,
W(x) =

we,) if x<o,

To complete the proof we need only show that for any non-negative

integer n

L[x”]:jx"d\p(x) .
E

Let B be any real number > max{|a,|, |asm 41,1} @and let € be any positive
number .
Define a set of points Py, by Py ={r;[i<ism 0<j<N} (N=Ny+ ... +

N,,), such that

(i) T € [omiq, 0] for 0<j<N, 1<i<m and Py <S;

(i) Tig= 0gq 1=2,...,mand 1= o0y i=1,..,m1;
B if —o= o, B if @, =
i) T, .= . and = = ) X
(iit) 1,0 a if -ee<a mN, a, if o, <o
1 1 2m 2m

(V) 1t~ (g)"l<e for 1<ism, 0<j<N;.

Now define the function
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N.-1
Frd =2, > @) el ) -9t ) 1.

1 j=0

It is not difficult to verify that for all x belonging to E,
-xS/B - e £x" - F y(x) < e+ x%/B,
where s equal to the smallest even integer greater than n. We now apply the

linear functional L to this inequality to obtain

N-1
LIx® S S WA -1X
. [; ] - EL[ 1 ] < L[ X ]‘ 22(15.1) [W(Ti,j-ﬂ) b ‘\U(Ti,j) ] < SL[ 1 1'+ [; ] )
i=1 j=0

Now by using the fact that the summation in this expression is a Stieltjes

sum, we obtain by letting || At || — 0 (|| At || = max | 7, - 1| )

az tm Nm a,.
M ' ml 2 m
<, Jx"dw(x) i Jx”d\y(x) -y Jx"dxy(x) <=
1.0 %om-1 =2 @i -1

Finally, if we let B — - we obtain the required result

LIX"] =, = [ Xy
E

Q.E.D.
in the case when the true interval of orthogonality (see Definition 1.3.5)
is a compact set, we have another approach for obtaining a representative of
a positive-definite moment functional. it uses the Hahn-Banach Theorem
and the F. Riesz representation theorem as given in Section 2.1.

Theorem 2.2.2 letl be a positive-definite moment functional whose

true interval of orthogonality, [, n,], is a compact set. Then there is a

distribution function y with an infinite spectrum contained in [§,, n,], such
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that for any polynomial nt(x)
n1

Ltn(x)1=j x(x) d w(x) .
3

Proof: Let L be a positive-definite whose true interval of orthogonality
[&4, n4] iIs compact.
First, we extend this functional L to the linear space C[§,, n4]. To do this
_we proceed as follows. For any t(x) € C[&,, n,], let P[t(x)] = pgmax{|t(x)| | &< x
<n,} where u, =L[1] > 0. Then it is easy to see that (i) Plat(x)] = «P[t(x)] and

(ii) Pty (x) + t,(x)] £ Pt ()] + P[ty(x)], for any t,(x), t,(x) € C[&;, m,] .

Let n(x) be a polynomial of degree n, we can write it as

n
n(x) = Z akxk
k=0

By using Gauss quadrature formula (Theorem 1.3.6), we have

n

Lh&ﬂ:}inum)&mszinm&<x<ndﬂﬂhAm
k=0 v ’

k=0

n
= max§1s £ Sn1{!ﬂ:(X)I}Z Ank = pomaxg

e x e (RO = pi(x)]
k=0 S

1
i.e. L[n(x)] < P[r(x)] . Similarly , we can prove L[r(x)] = - P[r(x)]. Therefore
the following inequality is true:
| L[ x(x) ]| < Plr(x)] .
According to Hahn-Banach Theorem (Theorem 2.1.2), there is a linear

functional L defined on C[g,, n,] which is an extension of L.

Next, we prove L is a ncn-negative-definite functional. For any f(x) e C[g,,
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n4] which is non-negative on [§,, n,] . By Weierstrass Theorem (Apostol [1]

P.481), there exists a sequence of polynomials {Q,(x)} converges uniformly
to f(x). Let p, = max{| Q (x) - f(x)| | &, x <my} (p,— 0 whenn — <), then
n.(X) = Q. (x) + p, are polynomials and = (x) > f(x) forn =0, 1, 2, ... . Moreover,

T, (X) 6onverges to f(x) uniformly. So, given € > 0, the following is true:

|nn(x)-f(x)|<—2§; for xe[{,.n,]

when n is sufficient large. Since we also have
| L[ 7, (X) - ()] | < pomaXe cyen{ | Ta(X) - f(x)] } .
It is easy to see that lim, __ | L[ & (x) - f(x)] | =0. This implies that the

fim L[ 7 (x) - f(x)] =0 . So, we have lim_ __ L[rx (x)] = L[f(x)] .

n —ee =
By the positivity of L, we have L[{(x)] = lim_, ___ L[x(x)] = 0. Therefore L is

a non-negative-definite functional.
Finally, we note that, the required result follows directly from F. Riesz
Theorem (Theorem 2.1.3).
- QED.
Theorem 2.2.2 is posed as a problem in Chihara's text (Chihara [1] P.59).

2.3 Representation Theorems for Polynomials
Akhiezer [3] shows that if p(x) is a polynomial of degree n then (i) if

p(x) 2 0 on [0, 1], then p(x) = X[A(X)]? + (1-x)[Bp(x)]? for n =2m + 1, and

p(x) = [C,,(X)]? + x(1-X)[D,, ¢ (x)]? for n = 2m, and (ii) if p(x) 2 0 on [0, =), then
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p(x) = [A(x)]? + x[B(x)]2. The first representation can be used to find a
characterization for the existence of a solution to the Hausdorff moment
problem and the second one can be used for the Stieltjes moment problem.
We wish to obtain the analogous representation for polynomials p(x) that are
bigger than or equal to zero on a set E where E is a finite union of disjoint
closed intervals.

The following representation theorems for the pol'y'nomials which are
non-negative on (-, aJulb, «) will be used in later chapters.

Theorem 2.3.1 Any polynomial n{x) of degree n which is non-negative
and does not vanish identically on (-e, a]u(b, «) can be written as

(X) = A(X) + (x-a)(x-b)B(x)

where A(x) is either a polynomial non-negative on R with degree at most n
or A(x) =0; B(x) is either a polynomial non-negative on R with degree at
most n-2 or B(x) =0; A(x) + B(x) is not equal to zero identically.

Proof: We note that, if a polynomial n(x) with degree n is non-negative
on (-o, ajulb, =), then n must be even and the leading coefficient of w(x)

must be positive. Therefore, we only need consider the monic and even

degree polynomials.

If n =0, then n(x) = 1. We choose A(x) = 1, B(x) = 0. Obviously, the
thearem is true.

For n = 2, we have n(x) = x2 + gx + r. There are two cases to consider:
First, if g2 - 4r <0, we know that n(x) = 0 everywhere on R. We choose

A(x) = n(x), B(x) = 0. The other case is when g2 - 4r > 0. We have n(x) = (x -

X4)(X - X,). w(x) is non-negative on (-, aJu(b, «) impiies both x, and
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Xo€ [a, b]. We find that if we let

XX, ab ! J(bx1)(b-x2)(x1-a)(x2-a)
B a+b "X~ X

2

L)) ¢ o)) |
_ (b-a )2

then
T(X) = (X - X4)(X - Xp) = (1 - K)(x + p)? + k(x - @)(x - b)
Moreover, p is a real number and 0 £k £ 1. So, we can choose B(x) = k and

A(x) = (1- K)(x + p)2. Therefore, the theorem is true when n = 2.

Assume the theorem is true for ail the even numbers less or equal to 2k.
Let r(x) be a polynomial of degree 2k+2 that is non-negative on
(<=0, @]ub, «=). By the Factorization Theorem (Archbold [1] P.129), we can
write n(x) in the following form:
n(x) = (x - a )M (x - a)*(x2 + pyx + q,) ML (x2 + PX + qj)’(j)
(i) Ifthereisak(s) 22 (1 <s <), then we choose n,(x) = (X - 35)2 and
mo(X) = w(X) / mqy(x) .
(i) fthereisar(t)=>1 (1 <t<j), then we choose
1 (X) = (x2 + px + q,) and my(x) = m(x) / my(X) .

(i) If (i) and (i) do not apply, then we have

i=1

where all the x;'s are different. This implies x, e [a,b] (i=1, ... n.). In this



41

case we can choose any two zeros of n(x), say x; and X; . Let my(x) = (X - x;)(x
- xj) and my(x) = w(x) / my(X).

Therefore for each of the three cases above we can write n(x) as the
product of two polynomials r,(x) and m,y(x). Both of them are non-negative
on (-0, a]Julb, «) and their degree is not more than 2k.

In order to use mathematical induction it remains to be noted that the
equalities

m(X) = Ay(x) + (x -a)(x -D)B,(x) and m,y(x) = Ay(x) + (X -a)(x -b)B,(x)
imply the equality

1ty (%) T5(%) = [A;(X)Ag(x) + (x-a)2(x -b)*B,(x)By(x)]
+ (x -a)(x -b)[A;(x)Ba(x) + As(x)B.(x)] .
Q.E.D.

In Chapter 4, we will use the above theorem to obtain a characterization
for a complemented Hausdorff moment sequence. In order to obtain
characterizations for a moment sequence on E where E is a finite union of

disjoint closed intervals, we need a representation theorem for a polynomial

that is non-negative on E.

Let {o; | i =1, ..., 2m} be a finite sequence of real numbers such that
0 S0 <0y <. < Upp See ANA E = (Ugi ¢ plogg agl)(-e0, =) . (2.3.1)

Let A={A(X)|AX) =dJI_g(Xx-0), | o] <oe, Sc{1, ..., 2m}, d = =1,

S Tie S
A.(x) 20 for xeE }. By adopting the usual convention that the vacuous
product is taken to be 1, we see that the constant polynomial 1 belongs to A.

Proposition 2.3.2 If both A (x) and A(x) € A, then A_(x)A,(x) =
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A (x)C(x) where A (x) € A and C(x) is a polynomial which is non-negative and
does not vanish identically on R.

Proof: Let A (x), A(x) € A, then
A(OAX) = dgIT (X - )T (X - o5)= AT s ms )X - A TregAT(X - )2
=d I y(x - o )C(x) = A, (X)C(x)
where d, = d.d,, U = SUT\(SNT) and C(x) = I1,_g (X - &,)2. Therefore

A, (x)e A and C(x) is a polynomial which is non-negative and does not vanish

identically on R.
Q.E.D.
Let P ={ ZA(x)C,(x) | A(x) €A, C(x) e R[x]and C;(x) 20 on R }. By
Proposition 2.3.2, it is obvious that the following proposition is true.
Proposition 2.3.3 P is closed with respect to ordinary polynomial
addition and multipiication.
Now we give the representation theorem for the polynomials that are

non-negative on E where E is defined by (2.3.1).

Theorem 2.3.4 Let n(x)e R[x] and E be a subset of R defined by (2.3.1).
n(x) = 0, for x e E, if and only if n(x)e P.

Proof: From the definition of P, it is obvious that if x(x)e P, then
n(x) 2 0, for xe E.

Ccnversely, let n(x) 2 0, for x e E. There are four cases to consider.
Namely, (i) -0 = ay , Qop= o0 ; (ii) oo < 0ty , Qo= oo ; (iii) "0 =ty , Oy < 0 ;
(iv) -0 < ay , o< oo . For sake of argument let us assume that we have case

(iii). That is, -e = oty < 0y < ... < O, < o= . The other cases can be handled in a
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similar manner.

Let D = {a,, a,, ..., a,} be the set of all the distinct real zeros of n(x). Then

4 s,
n(x)=d] [(x-a) D(x), whereD(x)20 on R and d=%1.
i=1

Let us partition R into the following three sets: T, = [a,,, )

Ta = UigicmlOgiy, o) @Nd Ty = Uy e maloy, 0i04]- Then,

n(q)=d] Jex-a) TJix- a) jI_I(X -a) D(¥. (23.2)

aeT, 36'1’2 aeT,

If there are even number of zeros of n(x) in T,, thend =1 and

dH(x - ai)Si e P.

aeT,
If there are odd number of zeros of n(x) in T,, thend =-1. Leta e T,, then
a, - X =(a, - ayy) + d(x - ayy,) Which is an element in P. Thus, by Proposition

2.3.3 we know that

dH(x - ai)Si e P.

3eT,
Now consider what happens whenr one of the zercs of n{x), call it a, is in
one of the sets T, or T,.
If a, e T,, then because n(x) is ncn-negative on T, and because T, is an
open set, we have that a, is a root of =(x) that must have even multiplicity.

Therefore s, is an even number . Thus
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X
H {x- aL]) e P.
aiwr:T2
Finially, let us consider what happens when a_ € T, . That is suppose for
some s, 3, € [ayg, dog, 1], Where 1 <s <m-1. Because n(x) 20, for all xeE,
therefore n(x) has an even number of zeros in [a,, o, 4]. Thus, there must

exist another zero, call it a, such that a, € [ayg, 0y, 4]- By Theorem 2.3.1 we

have that (x - a,)(x - a,) € P and therefore

S

[T(x-a) P

g eTy
Thus each of the factors that make up n(x) as given in (2.3.2) are elements

of P and therefore by Proposition 2.3.3 we have that n(x) e P.
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Chapter 3
The Classical Moment Problems

3.1 Dual of a Polynomial

Let ;t(X) be a polynomial belong to R[x]. We define the dual of n(x), denoted
by {n{x)}*, by {r(x)}" : R*[x] - R*[x] and {n(x)}"L[p(x)] = L[rn(x)p(x)], where
juxtaposition of n(x) and p(x) on the right hand side of this last equation is
ordinary polynomial multiplication.

In the literature the OPS corresponding to the moment functional {x}*L is
called the "Kernel polynomial sequence”. -

With different choices of n(x) we have the following theorems which will
be used later.

Lemma 3.1.1 Let E={x [P (x,) =0, k=1,...,n;n=12 . }LIfL
is positive-definite, then L is positive-definite on E.

Proof: Given a polynomial n(x) of degree m which is non-negative and
does not vanish identically on E, we let n = m +1. By using Gauss quadrature

formula, we have .
Lnx)]= D A x(x ) >0 .
k=1

This inequality is true because A, > 0, n(x,,) 2 0 and at least one of the

n(X)'S is positive.
Q.E.D.

Lemma 3.1.2 If L is positive-definite, then L is positive-definite on

its true interval of orthogonality [€,, n4] -
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Proof: From Lemma 3.1.1, we know that L is positive-definite on E.
Since E c [£,, n4], by using Theorem1.3.1 we have that L is positive-definite
on [g*l ’ Th]

Q.E.D.
Theorem 3.1.3 (Chihara [1] P.36) Let {P,(x)} be an OPSfor L. If xis

not a zero of P_(x) for all n, and L is positive-definite, then {x - x}*L is also
positive-definite if and only if k <&,.
Proof:  If L is positive-definite and -- < x <§,, then for any

polynomial n(x) which is non-negative and does not vanish identically on R,

we have that (x - x)r(x) is non-negative on [§,, n,] and does not vanish

identically. By Lemma 3.1.2, we know that L is positive-definite on [, n,].
Therefore
{x - x}*L[rx(x)] = L{(x - x)7(x)] >0 .

So, {x - x}*L is positive-definite.

Conversely, suppose that {x - x}*L and L are both positive-definite. Put

P(X) = (X - X)) 1PL(X) .
An application of the Gauss quadrature formula yields
0 < {x - K}*L[P2(x)] = LI(x - K)p2(x)] = Ay (Xpy- K)p2(Xp ).

That shows that x < x,; and hence that k <§; .

Q.E.D.
We now want to prove the following analogue of Theorem 3.1.3. Its proof

is analogous to the proof of Theorem 3.1.3.
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Theorem 3.1.4 Let {P (x)} be an OPS for L. If o is not a zero of P_(x)
for all n, and L is positive-definite, then {w - x}*L is also positive-definite
if and only if ® 2n;,.

Proof. Let L be positive-definite and n; <w << . Then forany
polync;mial n(x) which is non-negative and does not vanish identically on R,
we have (o - x)n(x) is non-negative and does not vanish identically on [§,, ,].
We know that L is positive-definite on its true interval of orthogonality
[£,.M4] (Lémma 3.1.2). Therefore

{o - x}*L[r(x)] = L[(o - X)7e(x)] > O .
So, {o - x}*L is positive-definite.
Conversely, suppose {o - x}*L and L are positive-definite. Put
p(X) = (X - Xp) Py (x)
An application of the Gauss quadrature formula yields
0 < { - x}*L[p?(x)] = L[ - x)p?(x)] = App(0 - X,0)p2(X)
This shows that o > x,,, and hence that w>7; .

Q.E.D.
The next analogue of Theorem 3.1.3 uses both ends of the true interval of

orthogonality.
Theorem 3.1.5 Let{P,(x)} be an OPS for L and let x and o be two real

numbers such that x < m.;,jlf neither x nor w are zeros of P (x) forallnand L is
positiVe-deﬁnite, then {(x - x¥)(w - x)}*L is also positive-definite if and only

if xk<§ <, fo.



48

Proof: Let L be positive-definite and let k <&, <n, < w . Thus we have

from Theorem 1.3.1 and Lemma 3.1.2 that L is positive-definite on [k, w].

Let n(x) be any polynomial which is non-negative and does not vanish
identically on R. Then (x - x)(w - x)r(x) is non-negative on [k, o] and does not
vanish identically. Thus, {(x - x)(w - x)}*L[r(x)] = L{(X - k)(® - X)x(x)] > 0 and
therefore {(x - x)(w - x)}*L is positive-definite .

Conversely, let both L and {(x - x)(® - x)}*L be positive-definite. We first
show that {x - x}*L is positive-definite. Let n(x) be a polynomial w.hich is

non-negative and does not vanish identically on R. We have

(x - %)

{

PLIrx) 1= L[ (0% - 222 4 1)n(x)]

Note that if ¢ is a positive number, then L is positive-definite if and only if
{c}"L is positive-definite. Therefore, {x - x}*L is positive-definite and
hence by Theorem 3.1.3 x<¢; .

In a similar manner, by using Theorem 3.1.4, we can show thatny< © .

Q.E.D.
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3.2 Stieltjes and Complemented Stieltjes Moment Problems

The Stielties moment problem is the following: Given a real sequence

{u,In=0,1,2,..}, find a distribution function y with an infinite spectrum

contained in [0, «<) such that

jx"dw(x):un, N=0,1,2 ... (321)
0

A real sequence will be called a Stielties moment sequence if it
satisfies (3.2.1).

In order to find a characterization for the existence of a solution to the
Stieltjes moment problem, we need the following theorems.

Theorem 3.2.1 The Stieltjies moment problem has a solution if and
only if L is positive-definite on [0, ).

Prcof: If the Stielties moment problem has a solution, that is, there

exists a distribution function y with an infinite spectrum contained in

[0, =), such that

o

[ awe =,
0

then, for any polynomial n(x) which is non-negative and does not vanish

identically on [0, ), we have

L[n(x)]zj (x) d y(x) >0 .
0

Therefore, L is positive-definite on [0, «)
Conversely, suppose that L is positive-definite on [0, «}. According to

Theorem 1.3.2, we know that all the zeros of P_(x) belong to interval [0, ), n

> 1. This implies that&,,n; € [0, =) , i.e. [§;, 4] < [0, =) .
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Therefore, by Theorem 1.5.5, there exists a distribution function y(x)
with an infinite spectrum contained in [&,, n4] < [0, =), such that

uﬁ:L[x"]:jx”d\y(x).
0

Q.E.D.

Theorem 3.2.2 L is positive-definite on [0, =) if and only if both L
and {x}*L are positive-definite.

Proof: If L is positive-definite on [0, ), then by Theorem 1.3.1 we have
L positive-definite.

We know that L is positive-cefinite on [C, «) implies [§,, 4] S [0, =).
Hence we obtain that §,2 0.

Since L is positive-definite and &,= 0 we have by using Theorem 3.1.3
with x = 0, that {x}"L is positive-definite.

Conversely, suppose that L and {x}*L are positive-definite. Again, by
Theorem 3.1.3, we have §,2 0. With the aid of Lemma 3.1.2, we obtain L is
positive-definite on [0, «).

Q.E.D.

Theorem 3.2.3 L and {x}*L are positive-definite if and only if bcth

A{1}>0and A {x}>0(n=0,1,2, ...).

Proof: Theorem 1.2.8 indicates that L is positive-definite if and only if
A{1}>0.

Let p," = {x}*L[ x" ]. By the definition of {x}*L, we have

TR ST n=0,1,2, ...
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By Theorem 1.2.8 we aobtain that {x}*L is positive-definite if and only if
Aq{x} > 0.
Q.E.D.
Theorem 3.2.4 (Stieltjes [1]) A necessary and sufficient condition
that the Stieltjies moment problem has a solution is that both
Af{1}>0 and A{x}>0, for n=0,1,2, ... (3.2.2)
Proof: Theorem 3.2.4 follows directly from Theorem 3.2.1, Theorem 3.2.2
and Theorem 3.2.3.
Q.E.D.
Using the same method as above we can prove the mcdified Stieities
moment problem, which requires that the spectrum of the distribution
function be contained in {a, «) for some finite number a. We state the result

as the following theorem without proof.

Theorem 3.2.5 Given areal sequence {u,|n =0, 1, 2, ...}, in order that

there exists a distribution function y with an infinite spectrum contained in

[a, =) such that

un=f X"dy(x) n=0,1,2,., (323

a

it is necessary and suifficient that both
A{1} >0 and A, {x-a}>0, for n=0,1,2,.. . (3.2.4)

In fact Theorem 3.2.5 can be obtain directly from Theorem 3.2.4 by a
linear transformation of the independent variable.

Now let us consider the following moment problem where the

corresponding spectrum is a subset of (-e, b] where b is any finite number.

That is, given a sequence of real numbers {p | n=0,1,2, ...}, finda
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necessary and sufficient conditions in order that there exists a distribution

function y with an infinite spectrum contained in (-es, b] such that
b

un=Jx"dwx), N=0,1,2 ... (3.25)

- o0

We call this moment problem the complemented Stieltjies moment
problem .

A sequence {u,|n=0,1,2, ..} is called a complemented Stielties moment
sequence if it satisfies (3.2.5).

With the aid of Theorem 3.1.4, it is easy to find a characterization for the
complemented Stielties moment sequence. We state the result withcut
proof.

Theorem 3.2.6 A necessary and sufficient condition that the

complemented Stieltjes moment probiem has a solution is that both

Af{1}>0and Afb-x}>0, n=0,1,2 ... (3.2.8)

3.3 Hausdorff Moment Problem

The moment problem for the case of a finite interval [0, 1}' is called
Hausdorff's moment problem. We state it as the following: Given a real
sequnece {1, | n =0, 1, 2, ..}, find a distribution function y with an infinite
spectrum containefj in [0, 1] such that

J'x"dw(x)=un, N=0,1,2 ... (33.1)
0

A real sequence {u,|n=20,1,2, ..} wil be called a Hausdorff moment

sequence, if it satisfies (3.3.1).
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Theorem 3.3.1 (Akhiezer [3] -P.74) A necessary and sufficient condition

that the Hausdorff moment problem has a solution is that
A {1} >0, A{x} >0, Af1-x}>0
and A {x(1-x)}>0 for n=0,1,2,... (3.3.2)

Proof: First, by using the representation theorem (either Theorem 1.5.5
or Theorem 2.2.2 ) we know that Hausdorff moment problem has a solution if
and only if L is positive-definite on [0, 1] where L[x"] =p,forn=0,1,2, ... .

The theorem is easy to prove by the well known result (Akhiezer [3] P.74)
that states that any polynomial R(x) of degree n which is non-negative and
does not vanish identically on [0, 1] can be represented in the form

Rn(x) = X[Aqp ()2 + (1 - x) [B,(x)]?,
if n=2m + 1 is odd, and in the form

Ra(x) = [Cy(¥)]? + x(1 - X) [Dppy4 (]2
if n =2m is even. Here A (x), B,(x), C(x) and D,_,(x) are real polynomials
the degree of which are given by their suffixes.

We claim that L is positive-definite on [0, 1] if and only if L, {x}*L,

{1-x}*L and {x{(1-x)}*L are positive-definite.

Obviously, L is positive-definite on [0, 1] implies L is positive-definite.
Note that any polynomial n(x) which is non-negative and does not vanish
identically on R implies xn(x), (1 - x)x(x) and x(1 - x)x{x) are non-negative
on [0, 1] and does not vanish identically. By the definitions of {x}*L,

{1-x}"L, {x(1-x)}*L and the fact that L is positive-definite on [0, 1], we
have {x}*L, {1-x}*L and {x(1-x)}"L are positive-definite.

Conversely, let L, {x}*L, {1-x}*L and {x(1-x)}*L be positive-definite. For
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any polynomial r,(x) of degree n which is non-negative on [0, 1] and does not
vanish identically.
(i) Ifniseven, then n (x) = (Cm(x))2 + X{1 - x) (Dm_1(x))2 n=2m.
By the positivity of L and {x{1 - x)}*L, we have
L[ 70201 = LUC n(x)2+ LIX(1 - %) (Dp.1(x))2]
= LIC () 2+ {x(1 - )}*L(D .1 (x))2] > 0 .
(i) Ifnisodd, then x,(x) = x(A(x))2+ (1 - x) (B(x))2 n=2m +1.
By the positivity of {x}*L and {1 - x}"L, we have
L{mn(x)] = LIx(Aq(x)?] + LI(1 - x) (Bp(x))?]
= {x}"LI(AR(x))3] + {1 - x}"LI(By(x))?]>0 .
Therefore L is positive-definite on [0, 1].
Now, it is easy to see that Theorem 3.3.1 follows by using Theorem 1.2.8 .

Q.E.D.

We have already noted that L being positive-definite guarantees that the
corresponding representative y has an infinite spectrum. If we change all
the " > "to " =" in Theorem 1.6.1, Thearem 3.2.4 and Theorem 3.3.1, we still
can find a representative y for the corresponding moment problem. In this
case, the spectrum of y may only have finite number of points and the
corresponding moment functional L is non-negative-definite.

For the Hausdorff moment problem, we will give another characterization
which was given by Hausdorff himself. It is similar to what Akhiezer does in
([3] P.74).

Theorem 3.3.2 (Hausdorff[1]) Given a sequence of real numbers {u_ |

n=0,1,2, ..}, there exists a distribution functicn v whose spectrum (not
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necessary infinite) is contained in [0, 1] such that
1

}J,n=J.XndW(X) n=0,1,2,..

¢

if and only if the inequalities
m i(m
AmukEZ(- 1) {i]p.”k?_() mk=0,1,2,... . (3.3.3)
=0

Proof: First, we note that (3.3.3) can be represented in the form
L[x*(1 -x)™ =0 mk=0,1,2,... . (3.3.4)
The fact that the condition is necessary is trivial since
xk(1 -x)m >0 (0<sx<1).

We now study the proof of sufficiency. Its essential part is the derivation

N 1 E
Zm’:{ﬁk}xkﬁ -X)N'k=R(x)+Z '():), (3.3.5)

k=0 i=1 N

of the identity -

where R(x) is an arbitrary polynomial of degree n, the E;(x) are polynomials
of degrees < n in x which are independent of N, and N = n. The left hand side
of identity (3.3.5) is the so-cailed Bernstein pelynomial for R(x).

Let us assume for the moment that (3.3.5) has been established.

We must prove that the inequality (3.3.4) implies the non-negative
property of the functional L. Assume that R(x) is an arbitrary polynomial of
degree n which is non-negative on [0, 1] and does not vanish identically.

Taking N = n and applying the functional L to both sides of (3.3.5) we find

that y
4 k )
LR 1= D) r\;i]F{N‘)-[Xk(T Dl
k=0
Z-—"— LIE(X) ]2

Hence, using the limiting process N — « we find that

n-1
LUEX].
i=1 N
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L[R(x)]=0 .
This concludes the proof.
It remains for us to derive identity (3.3.5). To do this we let the operator

(1/N) p {(d/dp) actn timesNon the relation
N -1 N
Z( < ),

k=0

where N = n and then put p = x, @ = 1 - x in the resulting formula. On the left
we obtain the polynomial

S0 -

k=0
while on the right there will be a certain polynomial in x, the degree of
which is evidently n. Thus we have trr;.e equation

i(l\g (_NE(“} X1 - x)N x4 ey(X) .

k=0
where gy(x) is a polynomial of degree < n in x, the coefficients of which are
rational fractions of N with the denominator N"-1. We have on the left hand
side the Bernstein polyncmial of degree N for the polynomial x". For N — « it
tends to x” uniformly in the interval [0, 1]. Therefore the remainder gy(x)
must have the form

n-1 e'(x)

ey(x) = Z P

=t N

where the e,(x) are polynomials of degree < n in x which do not depend on N.
Thus the required identity is proved for R(x) = x". But then it hoids for any
polyncmial R(x) of degree < n.

Q.E.D.
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Chapter 4

Some Characterizations for the Existence of a Solution to

the Hausdorif and Complemented Hausdorff Mcment Problems

4.1 Introduction

From the nature of the relationships between the sets on which the
Hausdorff, Stieltjies and Hamburger moment procblems are defined, (see
(3.3.1), (3.2.1) and (1.6.1) ), it is obvious that: (i) Every Hausdorff moment
sequence is a Stielties moment sequence and (ii) Every Stieltjies moment
sequence is a Hamburger moment sequence. It is interesting to note that
statement (ii) follows directly from the two characterizations of the
existence of a solution as given by (3.2.2) and (1.6.2) but statement (i) does
not foilow from the characterization (3.3.3) and (3.2.2). There is another
characterization of Hausdorff moment sequence(it is given in Theorem 3.3.1)

from which (i) does follow. It states that a necessary and sufficient

condition for {u, | n=0, 1, 2, ...} to be a Hausdorff moment sequence is
A{1} >0, A {x} >0, Af{1-x}>0
and A {x(1-x)}>0, for n=0,1,2, ... . (4.1.1)

We will show that the characterization given by (4.1.1), of a Hausdorff
moment sequence has superfluous inequalities.

In this chapter we will also discuss the moment problem on the

disconnected set (==, ay]Ufas, =), Where a, < ay. That is: given a real

sequence {u, | n =0, 1, 2, ...}, find a distribution function v with an infinite
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spectrum contained in (—ee, o]0y, =), such that
a
2 oo

Jx"dwx)+jx"dw(x)=un, N=0,1,2 ... (412)

We call this moment problem the complemented Hausdorff moment
problem . {u | n=0,1,2,..}is a complemented Hausdorff moment sequence
on (—ee, a,]Uf0y, o) if it satisfies (4.1.2).

The new results given in this chapter are:

(1) {u,1n=0,1,2,..}is a Hausdorff moment sequence on [0, 1] if and
only if

A{1}>0, A {x}>0, Af{1-x}>0, for n=0,1,2, ...,
if and only if
AL{1} >0, AL{x(1 -x)} >0, for n=0,1,2, ...

() {g,1n=0,1,2,..}is a complemented Hausdorff moment sequence

on (—ee, 0, [0, =) if and only if

A{1}>0, Afx-o)(x-0g)}>0, for n=0,1,2, .. .

4.2 Two New Characterizations for a Hausdorff Moment
Sequence
In this section we will state and prove two new characterizations for the
Hausdorff moment sequence.

Theorem 4.2.1 A sequence of real numbers {u,i{n=0,1,2,...}isa

Hausdorff moment sequence on [0, 1] if and only if
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A1} >0, A{x}>0and A{1-x}>0, for n=0,1,2,... . (4.2.1)
Proof: First, by using a representation theorem (either Theorem 1.5.5 or
Theorem 2.2.2), we know that {u | n=0, 1, 2, ...} is a Hausdorff moment

sequence con [0, 1] if and only if the corresponding moment functional L is
positive-definite on [0, 1].

Next, note that L is positive-definite on [0, 1] implies: (i) L is
positive-definite on [0, «) and {ii) L is positive-definite on (--, 1].

From (i), with the aid of Theorem 3.1.3 by choosing x = 0, we obtain L and
{x}'L are positive-definite.

From (ii), with the aid of Theorem 3.1.4 by choosing o = 1, we obtain L and
{1 - x}*L are positive-definite .

Conyersely, assume L, {x}*L and {1 - x}'L are positive-definite. This

implies: (i) L and {x}"L are positive-definite. By Theorem 3.1.3, we have
€:=0. (i) Land {1 - x}*L are positive-definite. By Theorem 3.1.4, we obtain
N, £ 1. Therefore L is positive-definite on [0, 1].

Finally, by Theorem 1.2.8, we know that L, {x}*L and {1 - x}*L are
positive-definite if and only if A {1} >0, A {x}>0and A, {1-x}>0, for
n=0,12, ...

Q.E.D.

Theorem 4.2.2 A sequence of real numbers {u, | n=0,1,2, ..}isa
Hausdorff moment sequence on [0, 1] if and only if

A{1}>0 and A x(1-x)}>0 forn=0,1,2 ... (4.2.2)

Proof: By using a representation theorem we know that {u,|n=0,1, 2,

...} is a Hausdorff moment sequence on [0, 1] if and only if the corresponding
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moment functional L is positive-definite on [0, 1]. Now we prove that L is
positive-definite on [0, 1] if and only if L and {x(1 - x)}*L are
positive-definite .

If L is positive-definite on [0, 1], then L is positive-definite. Moreover,
for ény polynomial n(x) which is non-negative and does not vanish
identically on R, we have that x(1 - x)x(x) is non-negative on [0, 1] and does
not vanish identically. Since

XA -x)}LInx)]=L[x(1-x)=n(x)]>0,

therefore {x(1 - x)}*L is positive-definite.

Conversely, if L and {x(1 - x)}*L are positive-definite, then by
Theorem 3.1.5 we have 0 <&, <n; £1. This implies that L is pbsitive-deﬁnite
on [0, 1].

Theorem 4.2.2 now follows from Theorem 1.2.8.

Q.E.D.

In a similar manner, we can prove a modified Hausdorff moment problem
by allowing the spectrum to be contained in a finite interval [o,, o). We
state the result as the following theorem:

Theorem 4.2.3 Given a sequence of real numbers {u,|n=0,1, 2, ...},
there exists a distribution function y with an infinite spectrum contained in

[cy, o] sUCh that

o

2
w= [ au =012, (423
£ . a1

if and only if

A{1}>0, A f{x-o}>0, Afoy-x}>0,
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for n=0,1,2, ..., (4.2.4)
if and only if

A{1} >0, An{(x - oq) (s x)} > 0,
for n=0,1,2, ... . (4.2.5)

4.3 A Characterization for a Compiemented Hausdorff Moment
Sequence
In order to find a characterization for a complemented Hausdorff moment
sequence, we need the following two theorems:

Theorem 4.3.1 The complemented Hausdorff moment problem has a
solution if and only if L is positive-definite on (-es, o, ]Ufa, o).
Proof: This is the special case of Theorem 2.2.1 when m = 2, a,= -.= and

(14=°°.

Q.E.D.
Theorem 4.3.2 L is positive-definite on (-eo, aty]Ufar,, =) if and only if
L and {(x- a,)(x- ay)}'L are positive-definite.
Proof: Firstly, by Theorem 1.3.1, L is positive-definite on
(o0, a,]Ufa,, =) implies L is positive-definite .
Secondly, for any ={x) which is non-negative and does not vanish
identically on R implies (x- &,)(x- ag)m(x) is non-negative and does not

vanish identically ¢n (-ee, os]Ufats, ). Thus,

{(x- og)(x- g} LIr(x)] = L{(x- op)(x- az)m(x)] > O



62

Therefore, {(x- o,)(X- a3)}*L is positive-definite.

Conversely, if L and {(x- o,)(x- 053)}*L are positive-definite then, for any
polynomial =(x) which is non-negative on (-, a,]Uf0lg, o) and does not vanish
identically, we have by Theorem 2.3.1 nr(x) = A(X) + (X- 0,)(x- a3)B(x) with
A(x) = 0 and B(x) > 0. This gives us

Lx(x)] = LIA(X)] + L[(x- o) (x- 05) B(x)]
= LIA(X)] + {{x- ap)(x- ag)}'L[B(x)] > O
Therefore, L is positive-definite on (-eo, o}, ).
Q.E.D.
Theorem 4.3.3 A sequence of real numbers {u, |n=0,1,2,..}isa
complemented Hausdorff moment sequence on (-ee, a,]Ufa, <) if and only if
A{1} >0, Af{(x-oa)(x-03)}>0,
for n=0,1,2,... . (4.3.1)

Proof: It is easy to see that Theorem 4.3.3 follows from Theorem 4.3.1,

Theorem 4.3.2 and Theorem 1.2.8.
Q.E.D.
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Chapter 5

Some Characterizations for the Existence of a Solution

to the Moment Problem on a Finite Number of Intervals

5.1 Introduction

Let{o; ] i =1, ..., 2m} be a finite sequence of real numbers such that
~0 S0y < Oy < ... < Uy Seoand let
E = (Uy<i < ml0i.1, 2ol o). (5.1.1)
The moment problem on £ can be stated in the following manner: given a
sequence of real numbers {p, | n =0, 1, 2, ...}, find a distribution function v

with an infinite spectrum contained in E such that
__fx“dw(x)-_-pn, n=01,2 .. (512)
E

b, In=0,1,2, ..} is called a moment sequence on E if it satisfies (5.1.2).

[n this chapter we give some characterizations for a moment sequence on
E

The main results in this chapter are:
(1) Let Ebedefined by (5.1.1) with -ee < ¢y and aty i< o= . {p, | n=0,1,2,
...} is @ moment sequence on E if and only if

An{1} >0, A_n{(X - 31)( Oom- X)} >0,

2m-1

m
AH{H(x-ai)}>O and Af]Jx-0)}>0 for n=0,1,2 ...

i=2 |=1
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(II) LetE bedefined by (5.1.1) and A = {A (x) | A (x) = d IT;_g(x - o),
logl <o, S {1, ..., 2m}, d=%1, A (x) 20 forxeE}. {u,|n=0,1,2, ...}isa
moment sequence on E if and only if
Af{A()} >0, n=0,1,2, .., forall A(x)e A.
(lll) LetE bedefinedby (5.1.1) with - <y, atyy==and{u,|n=0,1,
2, ... } be a moment sequence which is associated with a determinate moment

problem. {u | n=20,1,2,..}is a moment sequence on E if and only if

A{1} >0, A{x-aq}>0and A {(x-oay)(x-0y,)}>0 i=1,..,m1.

5.2 Preliminaries

Now we prove some preliminaries which will be used in the next section.
Theorem 5.2.1 Leta and b be two real numbers such that--<a<b <
and let p(x) be any polynomial. Also let w(x) and w*(x) be two distribution

functions such that y*(a) = 0 = y(a). If for all non-negative integers n
b b
j K" dy" () = [ X'p(4) dw(x),
a

b
then j g(x; 1) dy*(x) = j a(x; tp(x) dy(x) ,

where g(x;t) is the unit step function defined by (2.1.1) and teR.

Proof: The result follows trivially for the case whent<aort>b and for
the case when y*(b) = 0 = y(b).

Now we discuss the case when a < t < b and y*(b) = 0 = y(b). Lete be a real
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number > 0 and let K = max__, ., |p(x)|. Because y(x) and y*(x) are both right

continuous at t, there exists a 3, such that for all 0 < 3 < 55, max{ y*(t+3) -

v (), Ky (t+8) - w(t))} < /4.

Let us define the continuous real valued function g(x; t, 8) on the compact

set [a, b] by
1 if agsx<t
gt 8 =9 1-75 ift<xst+d | (52.1)
0 ift+8<x<b

where0<d<b-1t.

By Weierstrass' Apporoximation Theorem (Apostol [1] P.481) there exists

a polynomial n(x) such that for all x belonging to [a, b],

. £
1966t 0 1< max ko), wio) T
Also,
b t+3
Jett 8 -geanaw =1 -2 aw < v+ 9-ve)
a t
and

t+3

b
(a1, 8) - 9t 1)p60 aw) = [ (1 - X5p00 () < Kyt + 3) - wit)
a t

Therefore,
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b b
[ gty () - [ g hp0) i)

b b
= [ @t - gtxt, ) cy(x +j (x: t, 8) - n(x)) d* (%)

b b
+j ) - g(x; t, )p(x) +j (x:1, 8) - gx; D)p(x) dw(x).
Thus,
b b
Jatx aw 09 - [ac 9 dwin | <
b b
[66a 0 - g6t 8) ()| + | flatxit, 8- wx)) cy(x)
b b
+ | [0 - gix;t, )px) dw(x)| + j (g(x; t, 8) - a(x; H)P(x) dw(x)'
< (Y'(t+d) - y* (1)) + €/4 + &/4 + K(y(t+3) - w(t)
< e/d4+ €/d+ e/4+ /4= ¢.
Therefore,

b
j g(x; 1) dy*(x) = j g(x; 8 p(x) () .

Q.E.D.

We use this theorem to obtain an interesting result in spectral analysis.
Theorem 5.2.2 Leta, b, A, A, be four real numbers such thata <, <A, <
b and let p(x) be a polynomial that is not identically equal to zero such that

p(x) < 0 forxe (A, A,). If L, {(x -a)(b - x)}*L, {p(x)}*L and {(x -a)(b - x)p(x)}"L



are all pcsitive-definite, then there exists a distribution function y(x) such

that

b
L[x”]=jx"d\y(x)

and the spectrum of y(x) does not have any points in (,, A,).

Proof: Because both L and {(x - a)(b -x)}*L are positive-definite, by

Theorem 4.2.3 there exists a distribution function y(x) such that

b
L[x"]:Jx”dw(x)

a

and similarly because both {p(x)}*L and {(x - a)}(b -x)p(x)}*L are

positive-definite, there exists a distribution function y*(x) such that

b
{0 FLIX"]= j Ky (x) .

Combining those two integrals we obtain

b b
[ awr 00 = (900 1L X T= L [p(X" = [ X"p(x) ().

Now we apply Theorem 5.2.1 to obtain that for all te [a, b],

b b
Jlatxiy aw = [ atc: ) pox) vt

Therefore,

Ay

05w () -y (k) = [ P dy(x <0,
4

which implies that

67
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A’2
W) - W) =0= [ o dy(x)
1'1

But p(x) < 0 for xe (A}, A,), s0 w(X,) - w(X;) = 0, and the spectrum of y(x) has

no points in (A4, Ap).

Q.E.D.

5.3 A Characterization for the Moment Sequence on a Finite
Number of Compact Intervais

In order to prove the characterization for the moment sequence on E where
E is defined by (5.1.1) with - < a, and oy, < =, we need the following
theorem.

Theorem 5.3.1 Let E be defined by (5.1.1) with -e» < oy and oy, < ==. The

following two statements are equivaient.

(i) Lis positive-definite on Eﬂ
1 2m
(i) L, {(x- ooy 1L (] Jex-apye and ¢ Jix- oy
=2 i=1

are all positive-definite.

Proof:
2m

2m-1
Let L, {(x- & )ex, - )L, {H(x-ai) 'L and {-H(x-ai) L
=2

=1

all be positive-definite and apply Theorem 5.2.2 with p(x) = (x - o) (X - &3) ...

(X - 0om.1), @ = oy and b = oy, t0 Obtain a distribution function y(x) such that
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() o(y) < [a, b};

(i) o(w) A (o Oyyq) = @, fori=1,2, .., m-1;

(i) L[x"]:J.f'd\y(x), for n=0,1,2, ...

Thus, L is positive-definite on E.

Conversely, iet L be positive-definite on E. By Theorem 1.3.1 we know that

L is positive-definite. For any polynomial n(x) = 0 on E which does not vanish

identically, we have that (x - &y )(ctsn- X)r(X) 2 0 on E. Therefore,

{(x - oy) (oo~ X)}L[(x)] = L[(x - 0t;) (oo~ X)7e(x)] > O,

which implies that {(x - a)(aoy- X)} L is positive-definite.

2m-1 2m
in a similar manner, it can be shown that both {] J(x -t} 'L and (-] Jox- eyt
=2 i=1
are positive-definite. l !
Q.E.D.

Theorem 5.3.2 Let E be defined by (5.1.1) with -ee < ay and o, < <=.

{u,In=0,1,2, ... }is a moment sequence on E if and only if

2m-1
A{1}> 0, Ajfix-a)a, -x} >0, A Jx-ap>0
i=2

2m
and A [- (x-a)}>0, for n=0,1,2, ... .
n i

jar

Proof: Theorem 5.3.2 follows from Theorem 1.2.8, Theorem 2.2.1 and
Theorem 5.3.1 .
Q.E.D.
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5.4 Some Characterizations for the Moment Sequence on a
Finite Number of Intervals
In this section we will prove the following two characterizations for the

moment sequence on a finite number of intervals.

Theorem 5.4.1 Let E be defined by (5.1.1). Then{u,|n=0,1,2,..}isa

moment sequence on E if and only if
AfA(x)} >0, n=0,1,2, ..., for all A(x)e A.

Proof: Firstly, by Theorem 2.2.1 we know that {4, [n=0,1,2, ..}isa
moment sequence on E if and only if L is positive-definite on E, where
Lix"=p,.

Secondly, by Theorem 2.3.4, L is positive-definite on E if and only if
{As(x)}*L is positive-definite for all A (x) € A.

Finally, Theorem 5.4.1 follows by using Theorem 1.2.8.

Q.E.D.
if{p, 1 n=0,1,2, ..} is associated with a determinate moment problem,
then we have the following result.

Theorem 5.4.2 Let E be defined by (5.1.1) with - < o, , &y, = == @nd
{u,In=0,1,2, ..} bea moment sequence which is associated with a

determinate moment problem. Then {u_ | n=20, 1,2, ...} is a moment sequence
on E if and only if
Ap{1}>0, A{x-aq}>0and A {(x-ay)(Xx-0p,1)} >0 i=1, .., m-1.
Proof: Since L and {x - o,}'L are positive-definite. By Theorem 3.2.5

there is a distribution function v, such that
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W= L[x”]:Jx” dy(x) and o(y)(-, ) =2 .

Since L and {(x - ay)(x - aty;, 1)}'L are positive-definite i =1, 2, ..., m-1.

By Theorem 4.3.3 there is a distribution function w; such that

Oy

oo

unzL[x”]=J X" d\yi(x)+j X" dy(x) and o) (e, o, ) =S, i=1,2, .. m-1,

-0 .
i+1

Since L is determinate, y and vy, are substantially equal. This implies that

o(y) c E and

ba= L1 = [ X" dy(
E

Q.E.D.

There are similar results for the cases when -co =0y, 0y, <00 -0 <0y,

(X2m<°°and -°°=(11 ,a2m=°°.
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