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1 

Abstract 

In "Symmetry Groups and Their Applications", by W. Miller [1, p.152-206], 

Miller discusses local Lie group theory and certain resulting applications in special 

function theory, in the course of this discussion Miller considers local Lie 

transformation groups and Lie derivatives. Miller is able to prove that any Lie algebra 

of differential operators is the set of Lie derivatives for some local Lie transformation 

group (G, Q), where G = (V. 9) is the underlying local Lie group and Q is the action. 

Miller's proof shows that the action Q can be found by solving a system of ordinary 

differential equations. His proof does not explicitly give the underlying local Lie group 

G. It only shows that such an underlying local Lie group exists. 

We show that if you restrict the Lie algebras of differential operators to ones 

with a basis of the form {Lk}J.i, such that 

U = ip,k(x)|;. 

where Pik(e) = 5ik, 1 < i, k ^ n, then we can construct a local Lie group G = (K <p) such 

that the local Lie transformation group (G, 9) has Lie derivatives Span({Lk}k.i). The 

Lie product 9 of G is found by solving a system of ordinary differential equations. Our 

proof is an adaptation of the one Miller uses to find the action Q of a local Lie 

transformation group with Lie derivatives {Lk)k.v ^l^o show that the Lie algebra of 

G is isomorphic to Span({l_k}k.i). Thus we have found a method of constructing a 

local Lie group from its Lie algebra when the Lie algebra is realized as differential 

operators having the above form. 

The fact that any Lie algebra of differential operators is the set of Lie derivatives 

for some local Lie transformation group is important in applying local Lie theory to 

special function theory. By means of local Lie groups that are not sets of matrices, we 

verify known addition formulas for polynomials of binomial type, 2^0 hypergeometric 

series, Eulerian polynomials and Hermite polynomials. 

Although our results can be derived by various special function techniques, our 

examples are interesting in that they show that the various addition formulas can all be 

obtained by using the same local Lie group theory. 
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Section 1.1 Introduction 

in this thesis we consider the relationship between local Lie groups, Lie 

algebras and Lie derivatives. We are particularly interested in two things. One, we are 

interested in using a Lie algebra of differential operators. A, to construct a local Lie 

group G with Lie algebra isomorphic to A and two, we are interested in applying local 

Lie theory to special function theory, in order for the thesis to be fairly self-contained, a 

review of elementary local Lie group theory is necessary. To avoid complex 

topological problems, we consider a simplified, algebraic development of parts of local 

Lie group theory as provided by Miller in [1]and[2]. 

We begin by defining a local Lie group. Let F be the field of either real 

numbers, Xi, or complex numbers, C. Let be the vector space of all n-tuples 

g = (9i. 92 9n). 9i e Let e = (0,0 0) be the zero vector of F„ and suppose 
V is an open set in F„ containing e. We assume that Fp has the usual topology. 

Definition 1.1.1 (V^, (p) is an n-dimensional local Lie group if 9 is a 

function, 9: VXV^ F„ such that 

(1) For all g, h e V, 9(g, h) is an analytic function in each of its 2n 

arguments,gi,g2,. • •. 9n, hi, h2 hn. 

(2) If 9(g, h) e and 9(h, k) e V, then 9(9(g, h), k) = 9(g, 9(h, k)). 

(3) 9(e, g) = 9(g, e) = g for all g e V. 

If {V, 9) is a local Lie group we call 9 its Lie product and we define the 

inverse of the element g, g*^ if it exists, to be that n-tuple in F„ such that 

9(9> 9'^) = 9(g'^ 9) = Note that we do not require the existence of inverse elements 
in the definition of a local Lie group. 

The reader should notice a similarity between the definition of a local Lie group 

and the definition of an ordinary group of elementary algebra. Local Lie groups are 

derived from Lie groups, which are themselves ordinary groups with special 

topological properties. We wiil deal only with local Lie groups. 

(1.1.1) 
(1.1.2) 

(1.1.3) 
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Local Lie groups first appeared in the work of S. Lie and his colleagues [1], as 

Lie transformation groups . Lie groups, local Lie groups and their representations 

have important applications in the study of special functions (see Miller [2] and 

Vilenkin [1]), and in the theory of differential equations (see Pontryagin [1] and 

Pommaret [1]). 

Since the most important tool for studying local Lie groups is the 

correspondence between the local Lie group and the structure known as its Lie 

algebra, we discuss some of the theory concerning local Lie groups and Lie algebras 

in Chapter One. Lie algebras are a field of study unto themselves, (see Jacobson [1] 

and Bourbaki [1]), but we are only interested in them with respect to their relationship 

to local Lie groups. The material presented in Chapter One serves as the background 

theory for the later chapters. 

In Chapter Two we introduce local Lie transformation groups and the differential 

operators known as Lie derivatives. We prove that the set of all Lie derivatives of a 

local Lie transformation group forms a Lie algebra of differential operators and we 

show that any Lie algebra of differential operators is the set of all Lie derivatives of 

some local Lie transformation group. For the most part, the material of Chapters One 

and Two is covered in Miller [1] and [2]. 

In Chapter Three we consider a specific type of differential operators that 

generate a Lie algebra and use the techniques of Chapter Two to find a local Lie 

group G = (V, <p) such that the Lie algebra of G is isomorphic to the algebra of 

differential operators. This result differs from the results of Chapter Two in that we not 

only prove the existence of a local Lie transformation group with a given set of Lie 

derivatives, we actually find one. Essentially it provides a means to construct a local 

Lie group from a Lie algebra satisfying certain properties. 

In Chapter Four we utilize the material of Chapters One and Two and the 

additional concept of multiplier representations to prove some addition theorems for 

special functions of Mathematics. The goal here is to provide simple applications of 

the theory. Miller [2] and Vilenkin [1] do a more thorough examination of the 

application of the local Lie group theory to special function theory. 
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Section 1.2 Local Lie Groups and Local Linear Lie Groups 

In Section 1.1 we defined an n-dimensional local Lie group G = (V^, (p) on the 

field F. If F = C, then we have a complex local Lie group. If F = ^, then we have 

a real local Lie group. 

Since ^:VxV^ Fn, V c F„, <p(g, h) is an n-tuple. Let 9j(g, h) denote the 

component of cp(g, h), j = 1,2,..., n. The following Lemma guarantees that g'^ exists 

for g in some open neighborhood of e. 

Lemma 1.2.1 (See Miller, [1, p.163]). Let G = {V,(p) be an n-dimensional 

local Lie group. Then there exists an open neighborhood V'^ about e, V'^ c Fn, 

such that for g e V'^, there is a unique element g’^ e V such that 

9(g. g'^) = <p(9‘i'g) = e. 

Proof: Let G = (t/, 9) be an n-dimensional local Lie group. Fix g e G and let 

^{h) = <p(g. h). Now, 

9<Pi(e. h) 
dhi 

where 5jj = 
f1 If i = j 

h=e 
— 5ji, 

, is the Kronecker delta function. Thus, if g is close to e, 
to if i 9t j 

say g in some neighborhood VV of e, the Jacobian 

det 
rg<Pi(g. h) 

9hk h=e isi.ksn 
y 

?t0. 

Thus, by the inverse Function Theorem (see Apostol [1, p.144], there exists a 

neighborhood of e, such that for ail h close to e, f^(h) exists, and is analytic in g and 

h. In particular f^(e) exists. 

for'(e) = e = 9(g,f'{»)). 

Thus, the right inverse, x - r'(e) exists for g e V,. Similarly, there is an open set 1^1 

about e, V\ c V, such that all g in V\ have a unique left inverse, y. 

V'^ = V\ r\Vu is an open set about e such that all g in V'^ have a unique left 

inverse, y, and a unique right inverse, x. Since q> is a Lie product: 



5 

y=9(y. e)=<p{y. <p(g. ^)) = 9(<p(y. a). = <p(e. x) = x. 

Thus, every g € V/’\ has a unique inverse, g-i = x = y G V. 

Q.E.D 

Unfortunately, the current definition of a local Lie group will not provide simple 

proofs of certain material covered in Chapter One. Thus, we introduce the concept 

of a local linear Lie group. 

Definition 1.2.1 A locai linear Lie group is a set of mxm nonsingular 

matrices A(g) = A(gi, Q2 g„) defined for each QG W (where W is an open sphere 

about e e Fn), such that 

(1) A(e) = Efn, the mxm identity matrix. 

(2) The matrix elements of A(g) are analytic functions of g-i, g2 gn 

and the map g A(g) is one-to-one. 

(3) The n matrices , j = 1,..., n, are linearly independent for 

each g G l/y. 

(4) There exists a neighborhood W of e in F„, W ^W, with the 

property that, for g, h G W there is a k G W such that A(g)A(h) = A(k), 

where juxtaposition means matrix multiplication. 

Local linear Lie groups are essential to our development of Lie theory, 

particularly in Section 1.5. They also have important applications in representation 

theory. We justify calling local linear Lie groups a special type of local Lie group with 

the following Lemma. 

Lemma 1.2.2 (See Miller [1, p.164]). Every local linear Ue group G defines 

a local Ue group, (W’, 9), where the Ue product, 9, is given by A(g)A(h) = A(9(g, h)). 

Proof: Let W be an open sphere about e in Fp, and let the set of mxm 

matrices A(g), g G W, be a local linear Lie group. Let W be the open neighborhood 

of e in Fn, W c W, such that Eq.(1.2.4) holds. For g, h e W\ let 9(g, h) = k. 

First, we show that 9(g, h) satisfies Property(1.1.1). From the implicit function 

theorem (see Apostol [1, p.147]) and Eq.'s (1.2.2) and (1.2.3) we have that the g;, 

(1.2.1) 

(1.2.2) 

(1.2.3) 

(1.2.4) 
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1 < i < n, are analytic functions of the matrix eiements of A(g), Ajj(g), 1 ^ i, j ^ n. 

Therefore, k = q)(g, h) is an anaiytic function of the Ajj(k). Since A(k) == A(g)A(h), and 

the Ajj(g) are anaiytic functions of g^ g^, then <p(g, h) is an anaiytic, vector-valued 

function of g'iig2i • ■ ■ i Qn» h^, h2, • • •, hp. 

Obviously, ^:WxW'-* Fn, and, 9(g, e) »= 9(e, g) = g since 

A(g)A(e) = A(e)A(g) = A(g). 

Furthermore, since matrix multiplication is associative, 

(A(g)A(h))A(k) = A(g){A(h)A(k)). 

I.e. A(<(Kg, h))A(k) = A(g)A(<p(h, k)). 

Thus, if 9(g, h) and <p(h, k) e IV' then <p(<p(g, h), k) = <p(g, <p(h, k)), and(M/’, 9) is a local 

Lie group, as required. 

Q.E.D. 

We now provide some examples of local Lie groups. 

Example 1.2.1 G = (Fp, -t-), where V is ordinary vector addition, and n is a 

positive integer, is obviously an n-dimensional local Lie group. It is also 

commutative, since 9(g, h) = 9(h, g) for all g, h e Fp. Note, G is also an ordinary 

group, where g'^ = -g. 

Example 1.2.2 The set of one-dimensional local Lie groups defined by 

Gy= (F, 9), where 9(g, h) = g + h + ygh, g, h e F, yis a constant from F, and 

juxtaposition is ordinary multiplication. 

Let g, h, 9(g, h), 9(h, k) e F. Then 

9(9(9. h), k) = 9(g + h + Tgh, k) = (g + h + -ygh) + k + y(g + h + 7gh)k 
= g + (h + k + yhk) + 7g(h + k + Thk) = 9(g, 9(h, k)). 

Thus, Eq.(1.1.2) holds. Eq.'s (1.1.1) and (1.1.3) obviously hold, so Gy is a local Lie 

group, for all y e F. If y = 0, then, for all g e F, g'^ = - g. For y 0, 

1 -g -1 -1 
g‘' = -—®— for g , and no inverse exists for g = —. 

1 + yg y y 
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Example 1.2.3 The one-dimensional real local Lie group G = (V,<^) where 

= {g e 1St| -0.4 < g < 0.4} and <p(g, h) = ln(e® + e^ -1). 

V is open and contains e = 0, and if g, h > -0.4, then e^ + e^ -1 > 0, so (p(g, h) is 

definedforg, h e V' and <p:VxV ->Xi. Also, <p(g, e) = ln(e® + e°-1) = g = <p(e, g), for 

g € K Furthermore, if <p(g, h) e V' and <j>(h, k) e V' then 

9(9(g, h), k) = ln( (e^ + e^ -1) + e*^ -1) = In(e9 + {e^ + e*^ -1) -1) = 9(g, 9(h, k)). 

Thus, we need only satisfy ourselves that 9(g, h) is analytic in g and h. 

A function f(x) is analytic in x on an interval (a - 5, a + 5), if f is equal to the 

sum of a power series in x throughout (a - S, a + 5). From elementary calculus we 

know 

ln(1+x) = -1<x^1. 
k-O 

Let X = (e^ + e^ - 2). Then for 1 < e® + e^ 3, 

In (e®* + e^ -1) = ^ (e^ + e^ - 2)'^+''. 
k-O 

If g, h e then 1 < e^ + e^ < 3. Hence, 9 is analytic in g and h, as required. Thus, G is 

indeed a one-dimensional local Lie group. 

Now, 

ln(eS + e^-1 ) = 0<=>e‘’ = 2-e^<=>h = ln(2 - e^). 

Thus, if e^ < 2, then g'^ = ln(2 - e®), and if e^ ^ 2 then g*^ does not exist. The open 
sphere = \/ = {g e JSt| -0.2 < g < 0.2} is an open neighborhood about 0 such that if 

g e then there exists a unique g'^ e V such that 9(g, g’^) = 0 = e. 

Example 1.2.4 The 3-dimensional complex local Lie group G = (C^, 9), where 

<P(g. h) = 9((gi, Q2, ga). (hi, h2, ha)) 

= (0 +9i)0 + hi) -1,(1 +gi)h2 + g2(1 +hi)2, 
(1 + gi)h3 + 2g2h2(1 +hi) + ga{1 +hi)3) 



8 

Verification that G is a local Lie group is simiiarto Example 1.2.2, and is thus 

omitted. It follows that 

„-t r -gi -32  232^  S3 'i 1 
® “1,1 + 3i ’ (1 +3i)® ’ (1 +30® (1 +30'*/ * ’’ 

and g does not have an inverse if gi = -1. 

Example 1.2.5 Let W = {(x, y, z)| |x| > -1, x, y, z e Jt.}. The set of 3x3 

matrices, 

A(g) = 

i+gi 92 93 A 

0 (1+9I)2 292(1+9I) 

0 0 (1+gi)3 
V 

. geW, 

forms a 3-dimensional complex local linear Lie group. 

Since gi?t -1, det(A(g)) 0 so A(g) is nonsingular if g e W. A(g) = A(gi, 92,93) 

is defined for each ge W . Properties (1.2.1), (1.2.2) and (1.2.3) obviously hold. We 

now verify that property (1.2.4) is true. 

Let W’ be the open sphere of radius 1/2 about e. For g, h€ W, 

9i + hi + gihi > -1. If g, h € W, let k = (ki, k2, ka) where 

= 9i +1^1 + 9i^ii* ^2 = (1 + 9i)h2 + 92(1 + hi)^, 
and ^3 = (1 + gi)ha + 2g2h2(1 + hi) + 93(1 + hi)^. 

Then keW, and A(g)A(h) = A(k), as required. 

Note that, if we define the Lie product 9 by A(g)A(h) = A(<p(g, h)), then we 

essentiaily have the local Lie group G of Example 1.2.4, defined on the reais instead 

of the complex field. 

From the examples, it is dear that for a fixed open set V containing e, many Lie 

products (p, are possible such that (V, 9) is a local Lie group. Example 1.2.2 provides 

an infinite number of Lie products on V = F. Furthermore, the choice of the open set 

V is not unique. In fact, we have the following Lemma: 
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Lemma 1.2.3 Let G = (\/, <p) £>e a local Lie group. If V, and V’ is an 

open, connected set containing e, then G’ = {V\ <p) is also a local Lie group. 

Proof: Obvious. 

Thus we can shrink the open neighborhood V, about e, on which G is defined, 

without further consideration. Since V can vary, the Lie product, q>, shall be 

considered the determining factor of a local Lie group. Since there are an infinite 

number of local Lie groups, the concept of locally isomorphic local Lie groups is 

useful. 

Definition 1.2.2 Let G = (V, q>) and G’ = (V’, 9’) be 2 local Lie groups. Let 

p map an open neighborhood 1/1/ of e e G into an open neighborhood W’of e' e G'. 

Then p is (iocal) anaiytic isomorphism if p is one-to-one and onto, and 

h)) = 9*{p(g). ii(h)), where g, h and 9(9, h) e G, 

such that p and its functional inverse, p‘^:M/'-> W, are both analytic functions of the 

coordinates of G. If such a mapping exists, G is said to be (locaily) isomorphic to 

G’. 

in the remainder of the thesis any references to local Lie group isomorphisms 

are actually references to local isomorphisms. The local Lie groups of Example 1.2.2 

can be used to provide an example of a local isomorphism. Go = (F, 9) and Gi . (F, 9’), 

are (locally) Isomorphic with isomorphism p:Go Gi defined by p(g) = e^ -1. p is an 

analytic function of g and since e^ -1 = e*’ -1 <=> g = h, p is one-to-one. Now if h e Gi, 

then p(ln{h + 1)) = h for |h| > -1. Thus, p is onto for the neighborhood of Gi where 

g £ Gi, |g| > -1. Finally note that p is a local isomorphism because 

t*(<l>(g. h» = (i(g + h) = 6=*'' -1 

= (e9 -1) + (e” -1) + (e9 -1 )(e" -1) = (p'(n(g), n(h». 

Obviously, local isomorphism is an equivalence relation that can be used to partition 

the set of all local Lie groups into equivalence classes. 

Now, consider the Lie product 9 of a local Lie group G. Since 9 is an analytic 

function of its 2n arguments, we can expand 9j(g, h) as a Taylor series about 

g = h = e. 
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<Pj(g.h) = 9j(g.h)|g^h^, + S 0g, 8=h=e ""S ahg 
r*i s*i 

»«s 
g=h=e 

^ V ^^*pi(g> grQs ^ V 

r.^1 ^g^^g® 9=h=e 3h^hg 

hfhs 
gshse 

^ 9^(Pi(g, h) g^ha + {terms of order > 2 in gr, hg}. 

* r.'Hl ^gf^^s 9=h=e 

Since cpj(g, e) = q)j(e, g) = gj, g e F, we can simplify this expansion considerably. We 

find 

<Pj(9. h) = 9j + hj + 2^ 
r,s-1 

Qfhs + {terms of order > 2 in gr, hg} 
g=h=e 

We write this as 

9j(g. h) = 9j + hj + Cj,rsgrhs + {terms of order > 2 in gr, hg}, (1.2.5) 
r.s-1 

where 
a2<pi(g, h) 

“ dgr3hs g=h=e 
(1.2.6) 

Lemma 1.2.4: ^ Cj rgCr^tv " Cj^tr^r.vs ~ ® 
r-1 

Proof: From Eq.'s (1.1.2) and (1.2.5), It follows that 

n n ^ n N 
(gj + hj+ X°j.rs9rhs) + kj + S^j.rs 9r + ^r + S^r.tv9thv kg 

r,s-1 r,s-1 V t,v-1 j 

n n ^ n 
= 9] + (hj + kj + XCj.rshrks) + SCj,tr9t h r + kf + X^r.vs^yks 

r,s»1 t,r-1 V v,s-1 

where terms of order 2 or more in gg, ht or ku are omitted. Equate coefficients of gth^kg, 

to get the required result. 

Q.E.D. 

In a similar manner, fix h and expand (pj(g, h) in a Taylor Series about g = e as 
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n 

cpj(g, h) = hj + 2Fjk(h)9k + {terms of order ^ 2 in the giJ, (1.2.7) 
k-1 

where 

(1.2.8) 

The Fji^(h) will be used in Section 1.4. The associative law of the Lie product proves 

the following identity: 

Lemma 1.2.5 (See Miller [1, p.175], Eq.(5.4)). 

Expand both sides of this expression about g = e using Eq.'s(1.2.7), (1.2.8) and the 

chain rule. Compare coefficients of gj to obtain the required result. 

We will now consider Lie algebras. 

Section 1.3 Lie Algebras 

Lie algebras are an important tool for studying local Lie groups. The Lie 

algebra of a local Lie group is created from the structure of local Lie groups. First, we 

define curves and tangent vectors on the local Lie groups as follows: 

Definition 1.3.1 Let G = (l^, <p) be an n-dimensional local Lie group. Let 

t -> g(t) = (gi(t),..., gn(t)). t e F. be an analytic mapping of a neighborhood of 0 e F 

into y such that g(0) = e. Then g(t) is an analytic curve through the identity on 

G. The tangent vector to g(t) at e is the vector 

Proof: By Eq.(1.1.2), for q>(g, h) and (p(h, k) € I/, 1 ^ i < n 

9i(g. 9(h.k)) = «pi(9(g, h),k). 

Q.E.D. 

(1.3.1) 
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If a € Fn, then oet = (ait,.... Ont), t sufficiently close to 0 e F, is one analytic 

curve in G with tangent vector a e Fn. Conversely, a € F„ is the tangent vector of an 

infinite number of analytic curves in G. The following is also true: 

Lemma 1.3.1 (See Miller [1, p.166]). If g(t) and h(t) are analytic curves 

through the identity in G with tangent vectors a, p, respectively, then 9(g(at), h(bt)) is 

an analytic curve through e with tangent vector aa + bp. 

Proof: Follows from Definition 1.3.1 and Eq.(1.2.5). 

Q.E.D. 

Thus, the vector space Fn with ordinary vector addition and scalar multiplication, 

is the tangent space of the space of analytic curves in G. 

Definition 1.3.2 Let g(t) and h(t) be analytic curves through the identity on 

G = {V,<p) with tangent vectors a, p, respectively. The commutator [a, p] of a and p is 

as follows: 

[a. PI = dt (1.3.2) 

where k(t) = <p(g(x), <p(h(x), <p(g'H'^). h'^('t)))). t = t^. Since q> is associative for x close 

to e, we write k(t) = g(x)h(x)g‘^(x)lr''(x), where juxtaposition denotes the Lie product q>. 

Eq.(1.3.2) is valid as long as the coefficient of x in k(t) is 0. The validity of 

Eq.(1.3.2) is confirmed in the proof of the following theorem. Theorem 1.3.1 provides 

a simple way of calculating the commutator of two tangent vectors. 

Theorem 1.3.1 (See Miller [1, p.167]. Theorem 5.6). 

[a. Plj = 2 c jVps. (1.3.3) 
r,8-1 

where c[®= Cj ,s - Cj sr, and Cj,rs is given by Eq.(1.2.6). 

Proof: Let g(x) and h(x) be analytic curves in G, with tangent vectors a and p, 

respectively. By Lemma 1.2.1, g’^(x) and h'^(x) exist for x close to 0, thus 

k(t) = gWh(T)g-'(T)h-'(T). t = 
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is an analytic curve in G. Write gj(x), kj(t) and hj(t) as Taylor series, omitting terms of 

order > 2 in t, as 

and 

gj(x) = cxjx + bjx^ +... , hj(x) = P|jX + qx^ +... , 

kj(t) = pjx + ajx^ +... 

By Eq.(1.3.2), if pj = 0, then [a, p]j = aj. From our definition of k(t) it follows that 

(p(k(t), (p(h(x), g(x))) = q>(g(x), h(x)). Then, by Eq.(1.2.5), omitting terms of order > 2 in x, 

and 

«Pj{fl('C). h(x)) = (ctjX + bjx2) + (pjX + qx2) + Cj.rsttrPs't^. 
r,s-1 

<Pj(k(x), <p(h(x), g(x))) = pjx + ajx2 + (pjx + qx2) + (ojx + bjx2) 

n n 

+ S Cj,rsPrasX2 + £ Cj.rsPrX(asX + pgX ). 
r,s-1 r,s-1 

Equating coefficients of x and x2 in <Pj(k(x), <p(h(x),g (x))) and <Pj(g(x), h(x)) to 
obtain: 

and 

Pj + Oj + Pj = pj + aj. 

n n 
aj + q + bj + £ Cj,re(p^s + PrPs-c + p,as) = (q + bj) + q ^sarPs • 

r,s-1 r,s»1 

n n 
Thus, Pj = 0, and q + £ C|,rsPr«s = X Cj.rsOrPs. j = 1.2, 

r,8-1 r,s-1 

the required result: 
n 

[a, P]j = q = 2)(q,rs ■ Cj,sr)oirPs- 
r,s-1 

. ., n. Rearrange to get 

Q.E.D. 

The constants 1 ^ j. r, s ^ n, are called the structure constants of the 

local Lie group G. 
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Corollary 1.3.1 (See Miller [1, p.168], Theorem 5.7). For all a, p, yeFn and 

for all a, be F: 

(1) [a. W = -IP. a]. (1.3.4) 
(2) [aa + bp, = a[a, -yj + b[p, (1.3.5) 

(3) [[ex. P], a + [lY, a], P] = - p, ct] ■ (1 -3.6) 

Proof: Eq.'s (1.3.4) and (1.3.5) follow directly from Eq.(1.3.3). Now, by 

Eq. (1.3.3), for 1 

I[a. PI. T^j + [[y. a], Plj + [[P. Tl. alj = S (crc?«sPtYr + cJ 'c® atPrYs +cj'c® a, 
q,r.s.t-1 V 

However, by Lemma 1.2.4 and the fact that cj’’^ = Cj.qr - Cj.rq, it follows that 

q-1 

q r St .st'l 
+ C j Cq +Cj Cq = 0. 

Thus, Eq.(1.3.6) is satisfied, as required. 

Q.E.D. 

Definition 1.3.3 The Lie algebra L(G), of a local Lie group G is the space of 

all tangent vectors at e equipped with the operations of scalar multiplication, vector 

addition, and commutator product. 

To deal with the special case of local linear Lie groups we need to define 

tangent matrices and the matrix commutator. 

Definition 1.3.4 Let G be an n-dimensional local linear Lie group of mxm 

matrices. Let A(t) = A(g(t)), A(0) = E^, be an analytic curve through the identity. 

Then the tangent matrix to A(g(t)) at e is the matrix 

A = dA(g(t)) 
dt t-o 

dgM 
g=e dt t-o 
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If A(t) and B(t) are two analytic curves in a local linear Lie group G, with tangent 

matrices A and B, respectively, then the commutator of A and B, [A, B], is 

[A,B] s^[A(x)B(T)A-l{x)B->(t)l I 

t-0 

where t = and A-^(t) is the matrix inverse of A(x). 

Theorem 1.3.2 (See Miller [1. p.169], Theorem 5.8). 

[A, B] = AB - BA. 

Proof: The proof is similar to the proof of Theorem 1.3.1. Let 

C(t) s A(x)B(x)A*i(x)B-i(t). 

We can express A(x), B(x) and C(t) as follows; 

A(x) = Em + Ax + A’x^ +... , 

B(x) = Em + Bx + B’x^ +... , 

C(t) = Em + Cx + C'x^ + ... , 

where Em is the mxm identity matrix. From the definition of C(t), it follows that 

C(t)B(x)A(x) = A(x)B(x). Replace A(x), B{x) and C(t) by their power series expansions to 

conclude that 

Em +Cx +Bx +Ax + C’x^ + B’x^ + A’x^ + CBx^+ CAx^ +BAx^ 

= Em + Ax + Bx + A’x^ +B’x^ + ABx^, 

where terms of order > 2 in x are omitted. Equate coefficients of x to conclude that 

C = Zm. Equate coefficients of x^ to conclude that [A, B] = C = AB - BA, as required. 

Q.E.D. 

The commutator of a local linear Lie group is known as the matrix 

commutator. 

For examples of Lie algebras, we need only only take Examples 1.2.1 through 

1.2.5 and apply Theorems 1.3.1 and 1.3.2. In particular, the Lie algebra of Example 

1.2.4 is the vector space together with the commutator 
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[(ai, tt2. CX3), (pi, p2, P3)] = (0. «2p1 - «1p2. 2(tt3pi - aiP3)). 

The local linear Lie group, G, of Example 1.2.5 has, as a Lie algebra, the set of all 

matrices of the form 

ai a2 03^ 

V 

0 2ai 2CL2 

0 0 3a-\j 

«1. «2. ase 

If A(g(t)) is an analytic curve through the identity in G, then 

/ 

A ^ dA(g(t)) 
dt 

g=e 

g-,(0) gi(0) g3(0)^ 

0 2g;(0) 2gj(0) 

V 
0 3g-,(0) 

/ 

But g:(0), i = 1,2, 3, can be any real number, depending on the choice of g(t). 

Hence L(G) has the prescribed form. 

Apply Theorem 1.3.2 to obtain 

f 0 tt2pi-aip2 2(aapi - aipa)^ 

lA, B] = 0 

V 0 

0 2(a2Pi-aip2) • 

0 0 > 

Lie algebras can be defined without considering local Lie groups. These are 

known as abstract Lie algebras. 

Definition 1.3.5 An abstract Lie Aigebra d over F is a vector space 
over F together with a multiplication [a, p] e a defined for all a, p e a such that Eq.'s 

(1.3.4), (1.3.5) and (1.3.6) hold, for all a, p, ye G and for all a, b e F. 

Obviously, any Lie algebra is an abstract Lie algebra. Furthermore, any set of 

mxm matrices closed under matrix addition, scalar multiplication and the matrix 

commutator forms an abstract Lie algebra. Now, we define isomorphic Lie algebras. 
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Definition 1.3.6 Let & and a* be abstract Lie Algebras, with commutators 

[-, -] and [-, respectively. A Lie algebra isomorphism from a to a' is a one-to- 

one map, X, from & onto &' such that 

(1} x(aa + bp) = ax(a) + br(P), a, b c F, a, p e &. 

(2) x{[a, PI) = [t(a), x(p)]'. 

For example, let a be obtained by restricting the Lie algebra of Example 1.2.4 

to the real numbers. We can construct an isomorphism, x, from a to the Lie algebra 

of Example 1.2.5, by 

'c((ai.a2.«3)) = 

ai 02 03 

0 2oi 2O2 

^ 0 0 3oiy 

, (o^,02, 03)e L(G). 

It is not a coincidence that the local Lie group of Example 1.2.4 (defined over 

the real instead of the complex numbers) is locally isomorphic to the local Lie group of 

Example 1.2.5. We will show in Section 1.5, that G and G' are locally isomorphic Lie 

groups if and only if L(G) and L(G') are isomorphic Lie algebras. 

Eq.(1.3.3) gives a straightforward method of finding the commutator for the Lie 

algebra, L(G), of a local Lie group G = {V, (p). In chapter 3 we address the reverse 

problem. That is, given an abstract Lie algebra A, construct a local Lie group 

G = (I/, 9) shuch that its Lie algebra, L(G) is isomorphic to A. We completely solve 

this problem when A is realized as a set of linear differential operators having certain 

properties. 

Section 1.4 One-parameter Subgroups and the Exponential Mapping 

The purpose of this section is to provide a means of expressing the elements of 

a local Lie group G in terms of the elements of the Lie algebra L(G). In order to do so, 

we need a special class of analytic curves from G. 
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Definition 1.4.1 Let G be an n-dimensional local Lie group. The analytic 

curve g(t), defined for t in some neighborhood W o1 Oe F such that g(0) = e, is a 

one-parameter subgroup of G if 

gi(s + t) = <pi(g(s).g(t)) , s,t,s + teM< i = 1,2 n. (1.4.1) 

Theorem 1.4.1 (See Miller [1, p.l76], Theorem 5.16). Let G bean n- 

dimensional local Lie group with Lie algebra L(G), and let g(t) be an analytic curve in 

G defined for t in some suitably small neighborhood of 0. g(t) is a one-parameter 

subgroup of G with tangent vector a at e if and only if g(t) is the unique solution of 

the system of differential equations 

^ = iokFik(g(t)). gi(0) = 0, U1.2 n, (1.4.2) 
k-1 

where 0^6 F,and is given by Eq. (1.2.8). 

Proof: Eq.(1.4.2) is a system of first order differential equations. Thus, by 

standard existence and uniqueness theorems for ordinary differential equations, (see 

Petrovski [1, p.96]), it has a unique solution, g(t), satisfying the initial condition 

g(0) = e. This solution is defined and analytic for all |t| < e, where E is a positive 

number, depending on Fy^, but not on a. 

(=») Let g(t) be a one-parameter subgroup of G with tangent vector a at e. 

Then, g(0) = e, and Eq.(1.4.1) holds. Differentiate both sides of Eq.(1.4.1) with respect 

to s and evaluate at s = 0 to obtain: 

dgi(t) _ d(Pi(g(s), g(t)) 
dt ds 

^ 9<Pi(g(s). g(t)) dgk(s) 
“A agk(s) ds 

which, by Eq.(1.2.8), becomes Eq.(1.4.2), i = 1,2,..., n. 

(^) For ac L(G), let g(t) betheuniquesolutionof Eq.(1.4.2), with g(0) = e. 

Since Fjk(e) = 6j|t, then by Eq.(1.4.2), gj^(O) = ctk, k = 1,2,..., n. To show that g(t) is a 

one-parameter subgroup with tangent vector a at e, we need only show that it 

satisfies Eq.(1.4.1). Fix s close to zero and let hj(t) = gj(t + s), and kj(t) = (pj(g(t), g(s)). 

Then 
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Similarly, 

dhj(t) 
dt 

dkj(t) 
dt 

- = |;Fi3(h(t)). hi(0) = gi(s). 
a-1 

_ d<Pi(g(t), g(s)) _ " 9(Pi(g(t).g(s))dgr(t) 
dt ^ agr(t) dt • 

which by Eq.(1.4.2) becomes 

dk,(t) 
dt 

A 9pi(g(t), g(s)) 
' ^ agr(t) 

S«.F„(g(t)). 
a-1 

Apply Lemma 1.2.5, to obtain 

dkj(t) 
dt X aaFia(k(t))), 

a-1 
ki(0) = gi(s). i = 1 n. 

Since h(t) and k(t) satisfy the same first order differential system and initial 
conditions, then by the uniqueness of solution h(t) = k(t). Thus, gj(t + s) = <Pj(g(t), g(s)), 

for suitably small s and t. Hence, g(t) is a one-parameter subgroup, as required. 

Q.E.D. 

Denote the one-parameter curve with tangent vector a at e by g(t) = EXP(a, t). 

Corollary 1.4.1 For each a e L(G), there is a unique one-parameter 

subgroup, EXP(a, t), with tangent vector a at e. 

Proof: This is a direct consequence of Theorem 1.4.1. 

Corollary 1.4.2 EXP(aa, t) = EXP(a, at), for a e F, a e L(G), |t| sufficientiy 

close to 0. 

Proof: Obviously, EXP(aa, t) and EXP(a, at) are both one-parameter 

subgroups of G and both have tangent vector aa at e, thus by Corollary 1.4.1, 

EXP(aa, t) = EXP(a, at). 

Q.E.D. 

At this point, EXP(a, t) is defined only for |t| < e, where E is a constant for the 

local Lie group. We extend the domain of the EXP function to |t| ^ e, while still 

satisfying Eq.(1.4.1), by using Corollary 1.4.2. Let 
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'EXP(a, t) 

EXP (a, t) = 
EXP{a«, (i)) 

for |t| < e 

for |t| ^ E, where a e F, such that 
1 
a < e. 

This is a valid definition since, by Corollary 1.4.2, it does not depend on a. 
Furthermore, EXP (a, t) is an analytic cun/e which satisfies Eq.(1.4.1). Thus, we 

shall not differentiate between EXP (a, t) and EXP(a, t), and we shall simply refer to 

the one-parameter subgroups EXP(a, t). 

Lemma 1.4.1 (See Miller [1, p.177]). For fixed t e F, EXP(a, t) is an analytic 

function of 0^,02  

Proof: g(t) = EXP(a, t) is an analytic curve in G. Thus, we can expand it in a 

Taylor series about t = 0: 

fn^l s-0 

fL 
ml 

1 ^k^n. 

From Eq.(1.4.2), the chain rule and math induction we find that 
d'"gk(s) 

ds' m IS a 
S.0 

homogeneous polynomial of degree m in the Uj, i.e. it consists only of terms of the 

form ca^^a®^... <x^, where ai + a2 +... + a„ = m, c e F. For fixed t close to 0, the 

Taylor's series converges for all a, thus g(t) is analytic in a^,02 an, as required. 

Q.E.D. 

The proof of Lemma 1.4.1 confirms the fact that EXP(a, t) is actually a function 

of oet = (ait, azt,..., Ont). Thus for the remainder of the thesis we denote the one- 

parameter subgroups by EXP(at). 

Definition 1.4.2 Let G be an n-dimensional local Lie group with Lie algebra 

L(G) and one-parameter subgroups EXP(at), a e L(G). The exponential map, 

EXP, is the mapping from L(G) into G such that EXP(a) = EXP(a(1)). 

Obviously, the exponential map takes a neighborhood of (0,0 0) E L(G) 

into G. {If a is not close enough to (0,0 0) then EXP(a(1)) might not be in G}. 
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Lemma 1.4.2 (See Miller [1, p.177]). The exponential map defines an analytic 
coordinate transformation on some neighborhood o/ e = (0,0,..., 0) e L(G). Thus, 

the n coordinates a\ of a e L(G) can be used to parameterize the local Lie group G. 

Proof: By Lemma 1.4.1 and its proof it follows that EXP(a) is an analytic 

function of a;, 1 ^ i ^ n, and 

9EXPi(g) 

dOk o=« 
Sjk, 1 ^ i, k ^ n. 

Thus, the Jacobian of the exponential map is non-zero for some neighborhood of the 

zero vector in L(G). Thus, by the inverse function theorem (Apostol [1, p. 144] there is 

an open neighborhood X of the zero vector in L(G) and an open neighborhood Y of 

e in V, such that EXP:X Vis one-to-one and onto and the inverse function, EXP‘\ 

exists and is analytic. Thus, a € X <=> EXP(a) e Y, and we can use the elements of 

the Lie algebra to parameterize the local Lie group, as required. 

Q.E.D. 

If G is a local linear Lie group the following adjustments must be made. A one- 

parameter subgroup of G is an analytic curve, A(t) = A(g(t)), such that 

A(s)A(t) = A(s +1), |s|, |t| sufficiently small. 

For tangent matrix A e L(G), EXP(At) is the unique solution of 

^A(t) = A(A(t)), A(0)-E„. (1.4.3) 

By Theorem 1.4.1, the one-parameter subgroups of G are exactly the analytic curves 

EXP(At), A £ L(G), |t| suitably small. Since G is a local linear Lie group, it follows that, 

^ A¥ 
EXP(At) =X IT* 

j-o ^ 

where AO = E„. 

This comes from the fact that Eq.(1.4.3) has the unique solution EXP(At) and 

the fact that 
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satisfies Eq.(1.4.3) with ^ -|p = E„. 
j-o ^ 

Thus, in order to obtain the one-parameter subgroups of a local linear Lie 

group, one uses Eq.(1.4.4) whereas to find the one-parameter subgroups of local Lie 

groups one must solve the differential system given by Eq.(1.4.2). 

Section 1.5 Isomorphism Theorems 

Local Lie group isomorphisms and Lie algebra isomorphisms were defined in 

Sections 1.2. and 1.3, respectively. The final section of this Chapter deals with the 

relationship between isomorphic local Ue groups and Lie algebras as well as the 

relationship between abstract Lie algebras and the Lie algebras of local Lie groups. 

For brevity, the following theorems are stated without proof, but the proofs can be 

found in the given references. Our intention here is to state results important to the 

thesis and give an idea of how they are derived. 

Theorem 1.5.1 (Ado's Theorem). Every abstract Lie algebra is isomorphic to 

some matrix Lie algebra. 

Proof: (See Jacobson [1, p.202]. Miller [1, p.170], Theorem 5.9, and Ado 

[1,p.309-327]). 

Theorem 1.5.2 If Q, G'are isomorphic n-dimensional local Lie groups with 

Lie algebras L(G) and L(G'), respectively then L(G) and L(G') are isomorphic Lie 

algebras. 

Proof: (See Miller [1, p.179]. Theorem 5.17). 

Theorem 1.5.3 Let G, G' be local linear Ue groups and let L(G) and L(G') 

be isomorphic Ue aJgebras. Then G and G' are (locsdiy) isomorphic local linear Lie 

groups. 

Proof: (See Miller [1, p.180]. Theorem 5.18). 
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Corollary 1.5.1 Two local linear Lie groups, G and G\ are (locally) 

isomorphic if and only if L(G) and L(G') are isomorphic. 

Proof: Obvious conclusion of Theorems 1.5.2 and 1.5.3. 

Note that Theorem 1.5.3 can be extended to all local Lie groups (see Miller 

[1, p.181]). Thus we have the following Corollary. 

Corollary 1.5.2 Two local Lie groups, G and G', are (locally) isomorphic if 

and only if L(G) and L(G') are isomoqjhic. 

Theorem 1.5.4 If a is a matrix Lie algebra, then there exists a local linear Lie 

group G such that L(G) = a. 

Proof: (See Miller [1, p.181], Theorem 5.19). 

Theorem 1.5.5 Every abstract Lie algebra is the Ue algebra of some local Lie 

group. 

Proof: (See Kostrikin and Shafarevich [1, p.196], Lie's Theorem or deduce 

Theorem 1.5.5 from Theorems 1.5.1,1.5.4 and Corollary 1.5.2). 

The most important results of this section are Corollary 1.5.2 and Theorem 

1.5.5. From these two results it follows that, given any abstract Lie algebra, d, there 

exists a local Lie group with Lie algebra isomorphic to d. The ability to go from Lie 

algebra to local Lie group will be important in the next Chapter, where we deal with 

local Lie transformation groups. Lie derivatives, and Lie algebras of Differential 

operators. 

We end this chapter on Elementary Local Lie Group Theory with an 

examination of the most elementary of local Lie groups, the one-dimensional local Lie 

groups. An immediate conclusion from Corollary 1.5.2 is that all one-dimensional 

local Lie groups are (locally) isomorphic and if G is a one-dimensional local Lie group 

then it is commutative. 

However, the fact that all one-dimensional local Lie groups are isomorphic 

does not help in the generation of ail one-dimensional Lie products. Consider 

Examples 1.2.2 and 1.2.3. The one-dimensional Lie product 9(g, h) = g + h + Tgh, 
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Y€ F generates an infinite number of local Lie products that are polynomials in g 

and h. (p(g, h) = ln(e^ + e*^ -1) is an example of a one-dimensional Lie product that is a 

power series of g and h. 

The associative property restricts the form of a local Lie product, even in the 

one-dimensional case. Suppose G = (K <{>) is a one-dimensional Lie group such that 

(p(g, h) can be expressed as a polynomial of g and h. The following argument 

shows that cp(g, h) = g + h + -ygh, ye F is the only possibility. 

Assume that there exists a one-dimensional Lie product <p such that 9(9, h) is a 
n 

polynomial of order 3 or more in g and h, say q>(g, h) = n > 2. By 
i,k-0 

Eq.(1.1.3), 

Thus, 

fok=fko = 5ik, k = 0,1,2,3 n . 

9(g. h) = g + h + X fikg‘h‘‘ 
i,k-1 

and 

Since 9 is a Lie product, 9(9(x, y), z) = 9(x, 9(y, z)). By direct computation, 

9(<P(x.y).z) = X + y + 2+ + y + E^rsxy z^ 
i,k-1 i,k-1 V r,s-1 y 

n _ n / n 
<p(x. (p(y. 2)) = X + y + z + X^ik^‘ y + ^ + Sw'z® ■ 

i,k-1 i,k-1 V r.s-1 > 

Compare o)efficients of z^, to conclude that the polynomial 

ifinX'Efmy'r^O. 
i-1 r-1 

fnn*^^ — 0, i.e., fpn = 0. 

, finX' 2 ^rny’’ I = X S ^rny'' = 0. 
1 W-1 / i-1 V r-1 y 

Thus, the coefficient of xf^”^ is 

Thus, 
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Thus, the coefficient of is zero, i.e., (fn-in)'^^ =0, i.e., fn-in = 0. 

Repeat the same argument to conclude that fr,n = 0, r = 1,2,..., n, n > 1 . 

Since all one-dimensional local Lie groups are commutative , fik = fki. 1 ^ i, k ^ n. 

Thus, (p(g, h) is not a polynomial of degree n > 2 in g and h. Thus, <p(g, h) can be 

expressed as a polynomial in g and h only If <p(g, h) = g + h + -ygh, y e F. 

In Chapter 3 we characterize all one-dimensional Lie products in terms of 

solutions of ordinary differential equations of the form 

^=aP(x), x(0) = g. 

where P(0) = 1. This characterization is useful in constructing examples of one- 

dimensional local Lie groups. 
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Chapter 2 

The Lie Derivative 

Section 2.1 Local Lie Transformation Groups 

We now have sufficient background to discuss local Lie transformation groups 

and Lie derivatives. We begin with the definition of a local Lie transformation group. 

Definition 2.1.1 Let G = {V, 9) be an n-dimensional local Lie group and let 

U be an open connected set in F^. Let Q be a mapping, Q.UxG -^Fm- Then (G, Q) 

acts on the manifold L/ as a local Lie transformation group if Q satisfies the 

following properties: 

If (G, Q) is a local Lie transformation group, then Q is called the group action and 

G is called the underlying local Lie group. 

In order to distinguish the elements of G and L(G), which are n-tuples, from the 

m-tuples of U, we will use lightface type to represent the non-identity elements of G 

and L(G) for the remainder of Chapter 2. Thus, Q[x, g] becomes Q[x, g]. We can 
consider the m components, Qj[x, g], of Q[x, g]. 

For fixed g, the map x -»Q[x, g] is locally analytic and one-to-one. The map is 

analytic because Property(2.1.1) guarantees that Q[x, g] is an analytic function of x. 

The map is one-to-one because, if x e and g is sufficiently close to e, then g'^ 

exists. Thus, by Properties (2.1.2) and (2.1.3), 

1. Q[x, g] is analytic in the m + n coordinates of x and g. 
2. Q[x,e] = x,forallXE U. 

3. lfQ[x,g]eLf then Q[Q[x,g],h] = Q[x,9(g,h)], 

for g, h, 9(g, h) e G. 

(2.1.1) 

(2.1.2) 

(2.1.3) 

Q[x. gj = Q[y, g] <=> Q[Q[x, g], g’"'] = Q[Q[y, g], g’’'] 
<=> Q[x, e] = Q[y, e] 

^ X = y. 
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Given any local Lie group, G = (v; <p), a simple example of a local Lie 

transformation group is obtained by letting the group action be the Lie product, (p. I.e., 

Q:V/xG-4Fn such that Q[g°, g] = 9(9° 9)- 

Let EXP(at) be a one-parameter subgroup of G. By Property(2.1.1), 

Q[x, EXP(oct)] is analytic in EXP(at), thus Qj[x, EXP(at)] can be expanded in a Taylor 

series in t about t = 0, as 

Qi[x, EXP(al)] = Xi +1 XPir(x)or + • ■ •. 1 < i < m, (2.1.4) 
r-1 

where 

Pir(x) 
3Qj[x, g] 

3gr g=o 
1 <i <m, 1 <r< n. (2.1.5) 

Definition 2.1.2 Let Ax be the space of all functions f, analytic in some 
open neighborhood of x. The Lie derivative of the function f € Ax, Laf, is 

LaW = ^(fl;Q[x,g(t)l))| , a£L(G), (2.1.6) 
t»o 

where g(t) is any analytic curve in G with tangent vector a at e. Note that 

g(t) = EXP(at) is one such curve. We now give an alternate form of the Lie derivative 

which shows that Eq.(2.1.6) is Independent of the choice of curve g(t). 

m n 0 

Lemma 2.1.1 L« = T X«rPir(x)—, (2.1.7) 
N1 r-1 oXi 

where P\r{x) is given by Eq.(2.1.5). 

Proof: Apply the chain rule to Eq.(2.1.6) and then evaluate it at t = 0. Then 
use Eq.(2.1.5) and Eq.(2.1.2), and the fact that g(0) = e and g(t) has tangent vector a 

at e to obtain Eq.(2.1.7). 

Q.E.D. 

Notethat, for Lemma 2.1.1, we only need to exist at t = 0. Thus, 

Definition 2.1.2 is stronger than necessary, since it limits the choice of the curve g(t) to 
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analytic functions. Eq.(2.1.6) is valid for any function g(t) defined on G, such that g(t) is 

once differentiable, g(0) = e and g(t) has tangent vector a at e. 

Thus, Lie derivatives are linear differential operators mapping Ax -> Ax- The 

purpose of Chapter 2 is to show that the set of all Lie derivatives of a local Lie 

transformation group form a Lie algebra of differential operators and to show that every 

Lie algebra of differential operators is the set of all Lie derivatives of some local Lie 

transformation group. 

In the next section we examine Lie derivatives and local Lie transformation 

groups in more detail, and show that the set of Lie derivatives of a local Lie 

transformation group is a Lie algebra of differential operators. 

Section 2.2 Theorems Concerning Lie Derivatives 

Throughout Section 2.2, assume that G = (K q>) is an n-dimensional local Lie 

group with one-parameter subgroups EXP(at), and that (G, Q) is a local Lie 

transformation group. By Lemma 2.1.1, (G, Q) has a unique set of Lie derivatives, L„, 

a e L(G). The following is also true. 

Theorem 2.2.1 (See Miller [1, p.191]. Theorem 5.24). Let (G, Q) be a local 

Lie transformation group with Lie derivatives L„. Then the unique solution of 

^x(t) = L^x, x(0) = xo, (2.2.1) 

is x(t) = Q[xO, EXP(at)]. 

Proof: Due to Eq.(2.1.7), Eq.(2.2.1) can be written 

dt =i s otkPik(x(t)) 
i™1 k«1 

m) 
axi(t) ’ 

where Pik(x) is given by Eq.(2.1.5). Separate the components to conclude that vector 

ordinary differential equation, (V.O.D.E.), (2.2.1) is equivalent to the following system of 

differential equations. 
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n 

XokPik{x(t)), 
k.1 

i = 1,2 m, x(0) = x°. (2.2.2) 

Now, let (G, Q) be a local Lie transformation group with Lie derivatives and 

let xo € 1/ and a e L(G). From the existence and uniqueness theorems (see Petrovski 

[1, p.96]) for a V.O.D.E., we know that the V.O.D.E.(2.2.1) has a unique solution x(t). 

However, Q[x°, EXP(a(0))] = Q[x°, e] = x° and 

jQilx'’, EXP(<xt)l 
dQi[x°, EXP(g(t+s))] 

ds s=0 

dQj[x°. (p(EXP(at), EXP(as))] 

dQj[Q[x°, EXP(at)], EXP(as)] 
ds s-O 

By Eq.(2.1.4) it follows that 

^Q|[x»,EXP(at)] = i;Pik(Q[x'', EXP(at)])a|<. 
k-1 

Thus, Q[x°, EXP(at)] is the unique solution of the V.O.D.E.(2.2.1), as required. 

Q.E.D. 

Thus, given a local Lie group G and the Lie derivatives LQ, Q is completely 

determined. However, the following simple example illustrates that the Lie 

derivatives alone do not uniquely determine a local Lie transformation group. 

Example 2.2.1 Consider the one-dimensional local Lie groups Go = (F, (p), 

andGi = (F, 9’) in Example 1.2.2. As noted in Section 1.2, Go and Gi are locally 

isomorphic, with isomorphism p:Go Gi such that p(g) = e^ -1, g e Go. Let L/ be an 

an open set in Fm, and suppose that QiUxGo F„, is a group action on Go- Let 

Q'[x, p(g)] = Q[x, g] and restrict Gi to the open set around e for which p(g) e Gi, 

for ge Go- Then Q':UxGi -^Fm is an action on Gi because 

1. Q'[x, 0] = Q'[x, p(0)] = Q[x, 0] = X. 

2. Q'[x, p(g)] is an analytic function of the m + 1 coordinates of x and 
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|i(g). This follows from the fact that Q[x, g] is an analytic function of the m + 1 

coordinates of X and g, and the fact that g = ^'^{ji(g)) is an analytic function of n(g). 

3. If Q’[x, ^(g)] G U, then 

Q'[Q-[x, ^(g)]. ^i(h)] = Q[Q[x, g], h] = Q[x, <p(g, h)] = Q'[x, ^i((p(g, h))] 

= Q'[x, <p'(ji(g), n(h))]. 

Clearly, (Go, Q) is a local Lie transformation group if and only if (Gi, Q') is one as well. 

Now let 

Pii(x) - 
3Q[x, p(g)] 

. i = 1.2, 
ji(g)=o 

, m. 

By Eq.(2.1.7) the Lie derivatives of (Gi, Q') are 

However, 

m 
La =E«Pii(x)^ .aeF. 

^Qi[x. g] 
ag 

ag[x, p(g)] 
g-o ag 

aq[x, p(g)] 8p(g) 

g-0 ap(g) ^9 g-0 

Thus, 

aQi[x, g] 
ag 

_ P /^xd(e9- 1) - P|l(X) \jg 
g=o g=o 

= Pii(x). 

Therefore, by Eq.(2.1.7) the Lie derivatives of (Go, Q) are the same as the Lie 

derivatives of (Gi, Q'), but the underlying local Lie groups Gi and Go are different. 

Thus, the unique solution of Eq.(2.2.1) is not sufficient by itself to uniquely determine 

a local Lie transformation group. Without knowledge of the one-parameter subgroups 

EXP(at), we do not know how to Interpret the solution of the V.O.D.E.(2.2.1). 

Lemma 2.2.1 (See Miller [1, p.191-192]). If f:U-^F is an analytic function 

in some neighborhood of x°, then 

= U''/(x(t)), k = 0,1,2  (2.2.3) 

where x(t) = Q[x°, EXP(oet)], and UV(t)) = LJL„''''f(x(t))l. k = 1,2,3,... 
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Proof: L«°^x(t)) = /(x(t)). Now consider . Apply the chain rule to 

obtain 
d/(x(t)) ^ dfjx) dxj(t) 

dt 3xj dt 
1*1 

By Eq.'s (2.2.2) and (2.1.7), /(x(t)) satisfies the differential equation 

^ - UW,)). (2.2.4) 

Since Laf(x(t)) is itself an analytic function of x(t), then by Eq.(2.2.4) 

^ = U(U((x(t))) = U=/(x{t)). 

Eq.(2.2.3) follows from repetition of the above argument k times. 

Q.E.D. 

Since /(x(t)) is an analytic function of t, we can expand it in a Taylor series 

about t = 0. We obtain the following theorem: 

Theorem 2.2.2 (See Miller [1, p.192], Theorem 5.25). If f is a function 

analytic in some neighborhood of eU then 

m)) = F 
J 

where x(t) = Q[x°, EXP(ort)]. 

Proof: Expand /(x(t)) in a Taylors series about t = 0. Then the result follows 

immediately from Eq.'s (2.2.3) and (2.1.2). 

Q.E.D. 

We are now in a position to prove the main result in this section, namely that the 

set of Lie derivatives of a local Lie transformation group form a Lie algebra of 

differential operators. 
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Theorem 2.2.3 (See Miller [1, p.192], Theorem 5.26). The set of all Lie 

derivatives of a local Lie transformation group (G, Q) form a Lie algebra. In fact, for all 
a, p e L(G), and all a, b e F 

L(aa+bp) = aLot + bLp, (2.2.5) 

and 
Li„.pj = ULp-LpU^ [La.Lp]- (2-2.6) 

Proof: Clearly, the commutator [Lci,Lp] = L^Lp - LpL^satisfies Eq.'s (1.3.4), 

(1.3.5) and (1.3.6). Thus, to show that the Lie derivatives form a Lie algebra we only 

need to show that the set of Lie derivatives constitutes a vector space and is closed 

under the commutator. Thus it is sufficient to show that the Lie derivatives of (G, Q) 

satisfy Eq.'s (2.2.5) and (2.2.6). 

Eq.(2.2.5) follows immediately from Lemma 2.1.1. Now consider Eq.(2.2.6). By 

the definition of a Lie derivative. 

L[a.p] m = I g(t)]) 
t-o 

where f is a function analytic in some neighborhood of x° and g(t) is a curve in G 
with tangent vector [a, p]. In particular, 

g(t) = <p(<p(EXP(aT), EXP(pT)), (p(EXP(-ai), EXP(-pT»), 

is a curve in G, with tangent vector [a, PJ. Since <p is associative, we can write 

g(t) = EXP(ax)EXP(px)EXP(-ax)EXP(-px), 

where juxtaposition denotes Lie product. Then, by Eq.(2.1.3), with x suitably small, 

fl[Q[x“, g(t)]) = /(Q[X“, (EXP(ax)EXP(PT)EXP(-at)EXP(-^))]), 

= /(Q[ Q(X°, EXP(aT)EXP(WEXP(-aT)), EXP(-pi)]), 

which by Theorem 2.2.2 becomes 

g(t)l) = (expHLp))/(Q[x», (EXP(oT)EXP(pT))EXP(-at)]). 

Repeat this process until we obtain: 
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/(Q[x°, g(t)]) = (exp(xLa))(exp(xLp))(exp(-tLa))(exp(-TLp))/(x°). 

Expand in x to get: 

/(Q[x°, g(t)]) = (1 + t2(L«Lp - LpUt) + ■ • • terms of order s 3 in T .. t = x^. 

Differentiate with respect to t and evaluate at t = 0 to obtain Eq.(2.2.6). 

Q.E.D 

Thus, the set of Lie derivatives of a local Lie transformation group forms a Lie 

algebra of differential operators, which we will call a. 

Definition 2.2.1 Let (G, Q) be a local Lie transformation group with Lie 

algebra of Lie derivatives a. If the map a is a Lie algebra isomorphism from 

L(G) onto a, then (G, Q) acts effectiveiy as a local Lie transformation group. (By the 

nature of the mapping, this is equivalent to saying that (G, Q) acts effectiveiy as a local 

Lie transformation group if dim(L(G)) = dim(a)). 

In the next section we discuss differential operators in general. We are working 

toward proving that any Lie algebra of differential operators is actually the algebra of 

Lie derivatives of some local Lie transformation group. We conclude this section with 

the following Lemma, which shows that every local Lie group acts effectively as a local 

Lie transformation group on itself. 

Lemma 2.2.2 Let G = {V, <p) be an n-dimensional, local Lie group and let 

Q:VxG -> Fn be defined by Q[g, h] = <p(g, h). Then (G, Q) is a locsd Lie transformation 

group acting effectively on V with Lie derivatives 

Proof: Q = <p satisfies Eq.'s (2.1.1), (2.1.2) and (2.1.3), thus (G, Q) is a local 

Lie transformation group. By Lemma 2.1.1, the Lie derivatives of (G, Q) are 

(2.2.7) 

where 

(2.2.8) 



where = Rik(g). 1 ^ i, k < n. Pik(g) 
9<Pi(g. h) 

ahk h-e 

Let a be the algebra of Lie derivatives of (G, Q). Clearly, the map a -4 LQ is 

onto and [a, p] ^ L{a. pj = [U, Lp]- 

Suppose L(x = Lp. Then by Eq.(2.2.7), 

,|aKR,K(g)|: = ifKRiK(g)|:. 

Fix i to consider the coefficient of ^, and let g = e. By Eq.'s (2.2.8) and (1.1.3), 

Rik(e) = 5ik, thus ttj = pi, 1 < i < m, as required. Thus L(G) is isomorphic to a. Thus, 

(G, Q) acts effectively as a local Lie transformation group. 

Q.E.D. 

The type of local Lie transformation groups considered in Lemma 2.2.2 will 

have importance later on it this Chapter as well as in Chapter 3. 

Section 2.3 Lie Algebras of Differential Operators 

In Section 2.1, Lemma 2.1.1, we found that a Lie derivative of a local Ue group 

is a sum of differential operators. We now define precisely what is meant by a 

differential operator. Let U be an open set in Fm and let / be a function analytic in 

some neighborhood of x° e 1/. We let A^o be the space of all functions analytic in 

some neighborhood of x^, where the neighborhood varies with the function, f. 

U, if 

Definition 2.3.1 We will say that L is a linear differential operator on 

m ^ 

L =SPi(*)|:. 

where Pj(x), 1 ^ i ^ m, is a function analytic on U and L/(x) is defined by 
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Ux) = |;Pi(x)^ . (2.3.1) 
i-1 

We say two differential operators, A and B are equal on U if A/(x} = B/(x) for 

all /€ 0^x0, e U and all x where f{x) is defined. The zero differential operator, 6, is 

the differential operator that takes all analytic functions on U to the null ftjnction. A set 

of differential operators, Li, L2 U, is linearly dependent on U if there exists 

constants oi^, 1 < k < n, not all zero, such that 

n 

Z «kLk = 9 
k-1 

on U, otherwise the set of differential operators is linearly independent. 

The product, AB, of two differential operators A and B is defined in the usual 

manner by AB(f(x)) = A(B(f(x))). The commutator of two linear differential operators 

A and B is denoted by [A, B], and is defined by 

[A,B] = AB-BA. (2.3.2) 

Lemma 2.3.1 The commutator of 2 linear differential operators is a linear 

differential operator. 

operators. By Eq.{2.3.2) 

m 

2 linear differential 

m 
Proof: Let A = ® 

i-1 ' 

Expand it and simplify to obtain: 

[A. B] = 1(1 (Pi(x)^ - R,(x)?^)|^ , (2.3.3) 

which is a linear differential operator, as required. 

Q.E.D. 

We now outline conditions under which a set of linear differential operators form 

a Lie algebra. 
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Lemma 2.3.2 Let Li, L2, ■ ■ ■, Ln be n linear differential operators. If there 

exists constants Cgk such that for 1 ^ s, k, r ^ n, 

[L,, y = L,LH, - L*4 = X^Lr. (2.3.4) 
r«1 

then Span({L|J J.1) is Lie algebra under the linear differential operator commutator. 

Proof: Span({Lk}J.i) is the vector space generated by Li, L2 Ln. It is trivial 

to show that the linear differential operator commutator satisfies Eq.'s (1.3.4), (1.3.5} 

and (1.3.6). By Eq.(2.3.4) the vector space Span({L|jJ.i) is closed under the linear 

differential operator commutator. Thus Span({L|j|^.i) is a Lie algebra. 

Q.E.D. 

Define the linear differential operators 

tn 
s = 1,2,...,n, (2.3.5) U - X 9xj > 

acting on functions that are analytic on 1/ c Fm. If there exists such that Eq.(2.3.4) 

holds then by Lemma 2.3.2, 

Span({Lk)k-i) = 
n m ^ 

i % «sPis(x)^ 
ls.1 1-1 

tts e F 

forms a Lie algebra over F. An important relationship between the Pjs(x)'s and the 

c[k's is given in the following Lemma. 

Lemma 2.3.3 (See Miller [1, p.195-196]). If the linear differential operators 

Lk, 1 < k < n, are defined by Eq.(2.3.5) and if there exists constants c[k, 1 < r, j, k < n 

such that Eq.(2.3.4) is satisfied, then for all xeU, and for 1 < q < m, 1 < k, s < n. 

Pik(x) 
(X) 

9xi 
r-1 

^skPqr(x)' (2.3.6) 

Proof: Substitute the Ls's as given by Eq.(2.3.5) into Eq.(2.3.4) to obtain: 

i = i fi4p„(x)' 
q,i-1 <1 q»l r-1 
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and then obtain Eq.(2.3.6) by equating coefficients of 
d 

3Xq ’ 
for 1 ^ q m. 

Q.E.D 

Section 2.4 Preliminaries Concerning Systems of Differential Equations 

We now prove some preliminary results which are used in Section 2.6 and in 

Chapter 3. Let V be an open set in Fn such that ee V, and let U be an open, 

connected subset of F^. Further, let g e V', and x e 1/ and let Skj(g) and Pjk(x) be 

analytic functions of g and x, respectively, 1 < i < m, 1 <], k < n. We are concerned 

with two different systems of differential equations. Firstly, we are concerned with the 

V.O.D.E.(2.2.1), where x(t) is an analytic function of t, and L« isgiven by Eq.(2.1.7). 

Secondly, we are concerned with the system of partial differential equations (P.D.E.) of 

the form 

= i;Pqa(T)S.K(g), 1 S k s n, 1 £ q < m, 
(2.4.1) 

where Pqa(T) and Sak(g) are analytic functions oi TeU and geV, respectively. 

We have already seen that the V.O.D.E.(2.2.1) has a unique solution. The 

following theorem provides necessary and sufficient conditions for the system of 

P.D.E.(2.4.1) to have a unique solution. 

Theorem 2.4.1 (See Pontryagin [1, p.398]. Theorem 85). Let 7 eU, geV 

and let be an analytic function of 7 and g. The system of P.D.E. 

^k(T. g), 1^k^n,1<q^m, 

Tq(e) = x°, x° e U, 

(2.4.2) 

has a unique solution for g in a neighborhood of e, if and only if, for all Tel/, gel/, 

the following equation is satisfied identically, 
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g)_._ . an(T.g) ^aY’r(T,g)_ . 
S ar 'J^(T.g)+— 1 “077“^^-g) 
q-1 ^ q-1 ^ 

an(T. g) >?. ayj(T, g) a^kT, g) 
agi;^ 

(2.4.3) 

where 1 < i < m, 1 ^ r, k ^ n. 

Proof: See Pontryagin. 

Eq.(2.4.3) is known as the integrability conditions for the system of 

P.D.E.(2.4.2). Since Pjr(T) and Srk(g) are analytic functions of T and g, respectively, 

n 

XPir(T)Srk(g), 1 < i < m, 1 < k < n, 
r-1 

is analytic in both T and g. Thus we can apply Theorem 2.4.1 to the system of 

P.D.E.(2.4.1), with 

^k(T. g) = £ Pir(T)Srk(g). 1 < i < m, 1 ^ k < n. 
r-1 

We obtain the following result. 

Corollary 2.4.1 (See Miller [1. p.195], Eq.(9.25)). The system of P.D.E.(2.4.1) 

has a unique solution if, for 1 < i < m, 1 <k,r<n, the following integrability conditions 

hold for all J e U, g e V: 

i P<is(T)®-^ff^'|s„(g)Sak(g) 
a,s=1 Vq-1 ^ ^ J 

_ Y p. cr\f^^!^¥i9) aSar(g)^ 

Proof: By Theorem 2.4.1, the system of P.D.E.(2.4.1) has a unique solution if 

Eq. (2.4.3) holds for 

'FL(T.g) =f Pir(T)Srk(g). 
r-1 

Substitute for 'F|((T, g) in Eq.(2.4.3) to obtain the equivalent expression, 

i E^-^Sak(g)P„(T)S„(g) + iPia(T)^^ 
a,s-1 q-1 a-1 

^ ^ ^Pjs(T) « . .p /-i-xo (n\ M V P 
- ^ Sak(g)Pqa(T)Ssr(g) + Pia{ ■) 3Q 

a.s-1 q-1 ^ a-1 
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Rearrange to obtain Eq.(2.4.4). 
Q.E.D. 

Our choice of Pjs(x) and Ssk(g) will guarantee that the V.O.D.E.(2.2.1) and the 

system of P.D.E.(2.4.1) have the same unique solution. We begin by defining the 

Ssk(g) in terms of invertible matrices as follows. Let Rsk(g) be an analytic function for 
get/, 1 ^ s, k ^ n. For g e V, define the nxn matrix R(g) by 

R(g) = (Rsk(g))s.k.i • (2.4.5) 

Assume that if g e V', R(g) has a matrix inverse, S(g) = (Ssk(g))s.k=i- That is, for 

all geV, 

S(g)R(g) = En, (2.4.6) 

where Ep is the nxn identity matrix. Now suppose that there exists constants Cgi^ such 

that the Rsk(g) satisfy Eq.(2.3.6) with m = n. That is, assume 

Rik(g) ) =Z^'skRqr(g). 1<k,q,s<n. (2.4.7) 

We are Interested In the form that Eq.{2.4.7) takes when written in terms of the Sjk(g)'s. 

Lemma 2.4.1 (See Miller [1, p.195]. Equation 9.26). For g e V', let Rik(g) 

and S\\i{g) satisfy Eq.(2.4.6). satisfies Eq.(2.4.7)/Yancfon/y/T Sjk(g) saf/sf/es 

^Sio(g) _ 9Sik(g) 
3gk dgq 

with c'rs = -c'sr. 

n 
= rq(g)Ssk(g) . 

r,s»1 
1 < i, k, q < n, 

>• (2.4.8) 

Proof: Eq.(2.4.6) Implies that, for g^V, 

y. Sia(g)Rak(g) = ^ Ria(g)Sak(g) = 5jk, 1 ^ i, k ^ n, (2.4.9) 
a-1 a-1 

and, differentiating both sides of Eq.(2.4.6) with respect to gi yields the identity: 
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9Rbk(g) 
3gi -iRi.a(g)^^R*(g). 

a.r-1 
1 < I, b, k < n. (2.4.10) 

(<=) First we will show that Eq.(2.4.8) implies Eq.(2.4.7). By using Eq.(2.4.10), it is 

easy to show that 

9Rak(g) 
9gi 

3R /oK ” 
■ Rik(g) = S-Rrs(g)Rqa(g)Rik(g) 

' ' i,a,r-1 

/3Sai(g) 

I agr 

aSar(g)A 
agi ; 

Substitute for jfrom Eq.(2.4.8), and simplify using Eq.(2.4.9) to 

conclude, 

b,t*1 
^5tsRqa(g)5kbCbt^, 

Thus, 

R,k(fl)^-^')=ic|KR,a(9). 
^ a=1 

Hence, Eq.(2.4.8) implies Eq.(2.4.7). 

(=>) To prove the converse, assume Eq.(2.4.7). It follows Immediately that c'rs = -Csr- 

Substitute Eq.(2.4.10) into Eq.(2.4.7) to obtain 

IRik(g)R,a(g)Rrs(g)r^^-®-^l=ScUR<,r(g). (a.4.ii) 

Multiply both sides of Eq.(2.4.11) by Ssx(g)Syq(g)Skz(g) and take the sum as q, s and k 

go from 1 to n. Simplify using Eq.(2.4.9) to obtain 
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9Svx(g) _ 9Svz(g) 
9gz 9gx 

n 

X ^skSsx(g)Skz(g)* 
k,s-1 

This is Eq.(2.4.8) under a change of variables. 
Q.E.D. 

Section 2.5 Preliminaries Concerning Local Lie Groups and Lie 

Derivatives 

We shall now deal with some results involving local Lie groups, and local Lie 

transformation groups. We apply the general material of Section 2.4, as needed. We 

use Lemma 2.2.2 in the following Lemma. 

Lemma 2.5.1 (See Miller [1, p.195-196]). Let G = {V, <p) be an n-dimensional 

local Lie group. Let be obtsuned from Eq.{2.2.6) and let be the structure 

constants of G, 1 j, k, r ^ n. Then the Rjk(g) satisfy Eq.(2.4.7) with ■ 

Proof: By Lemma 2.2.2, (G, <p), is a local Lie transformation group with Lie 

derivatives 
n 0 

La = “kRak(S);5a • rie Fn. 
a,k.i 

Let Bk = (5ik, 52k 8nk). 1 ^ k < n. Then U = LB^ = 2 ^ak(9)^ • Thus, 

[4’ W = ^U - ULj = Ra|(3)4)(t Rsk(g)4) • (I 
(2.5.1) 

However, by Eq.(2.2.6), 

[Li-Lk] = = E[Bi.BklrRsr(9)a^. (2.5.2) 
r,s=1 

Now, from Theorem 1.3.1, [Pj, Pklr = cj\ 1 ^j, k, r<n. Substitute [Pj, pk]r = into ik. 
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Eq.(2.5.2) and compare the resulting equation with Eq.(2.5.1). Fix s and consider 
0 

coefficients of ^ to obtain Eq.(2.4.7). 

Q.E.D. 

For g € K define the nxn matrix R(g) by 

R(g) = (Rjk(g))"k-i • (2.5.3) 

Now, it follows from Eq.'s (2.2.8) and (1.1.3) that Rjk(e) = 5jk, so R(e) = En, the nxn 

identity matrix. Thus, the determinant of R(e), det|R(e)| = 1. Since the Rjk(g), 

1 < j, k < n are analytic functions of gi, g2. • • •»9n, there exists a neighborhood, IV, 

around e in which the determinant of R(g) is non-zero. Thus, the matrix inverse of 

R(g), R'^(g) exists for g e tV. We will denote the matrix inverse of R(g) by 

S(g) = (Sjk{g))"k-i- Then forg € W, Eq.(2.4.6) holds. 

Corollary 2.5.1 The Sjk(g)'s satisfy Eq.(2.4.8), for ge W, 1 < j, k < n. 

Proof: The proof follows immediately from Lemmas 2.4.1 and 2.5.1, and the 

definition of Sjk(g). 
Q.E.D. 

Unlike the V.O.D.E.(2.2.1) which yields the action of a local Lie transformation 

group, the P.D.E.(2.4.1) has thus far had no relation to our discussion of Lie 

derivatives. This next Lemma illustrates the importance of the solution of the 

P.D.E.(2.4.1). 

Lemma 2.5.2 (See Miller [1, p.194], Lemma5.5). Let (G, Q) bean n- 

dimensional local Lie transformation group acting on U cFm, where the action Q is 

found by solving the V.O.D.E. (2.2.1). Then Q[x, g] satisfies the following system of 

partial differential equations, 

= i Pir(Q(x. g])Srt((g). Ifiism.lsksn, (2.5.4) 

where Pir(x) is given by Eq.(2.1.5), Rjk(g) is given by Eq.(2.2.8) and 

S(g) = (Sjk(g))|';i<., = R-'(g), 
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for g in some open neighboihood, W, of e e G. 

Proof: By Eq.(2.1.3), for t close to 0, g close toe, 

Qi[x, (p(g, EXP(at))] = QiIQ[x, g], EXP(ot)]. 

Differentiate this expression with respect to t, evaluate at t = 0 and compare 
coefficients of Os, 1 ^ s ^ n, to obtain the identity: 

E R|s(g) ■= Pis(Q[x, g]), 1 s i s m, 1 s s s n, (2.5.5) 
j-1 

which holds for all Q[x, g] e U. Use the fact that S(g) = R‘^{g), for geW, to transform 

Eq.{2.5.5) into Eq.(2.5.4), as required. 
Q.E.D. 

Lemma 2.5.3 Let G = (V', <p) be an n-dimensionsU local Lie group with 

structure constants, cf*^, 1 ^ r, j, k ^ n and let {Lk}k.i be n linearly independent 

differential operators defined on U <zFm satisfying Eq.(2.3.5). If the {Lk}k.i satisfy 

Eq.(2.3.4) with cj^ = cf^, then the system of P.D.E.(2.4.1) has a unique solution, where 

S(g) = R'\g) and Rjk(g)/s obfa/neb from Eq.(2.2.8). 

Proof: Let G be a local Lie group of the required form, let W be an open set 
about e where S(g) is defined and let cji^ = 1 < j, k, r ^ n. By Lemma 2.3.3, 

Eq.(2.3.6) holds and by Lemma 2.5.1, Eq.(2.4.7) holds. Thus by Lemma 2.4.1, 
Eq. (2.4.8) holds as well. 

Now, from Eq.'s(2.3.6) and (2.4.8), it follows that 

i fPqa(T)^9^-P„(T)^-^ffi')S„(g)Sak(g)= 2 c”Pi,(T)S„(g)Sak(g) 
a,s,q-1 ^ ^ ' a,s,q-1 

= SPiq(T)f i eVSsr(g)Sak(g) 
q-1 I a,s-1 

_ Yp. /T/^^qi<(g) ^Sqr(g)^ 
ag, - ag, J- 
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Thus, Eq.(2.4.4) is satisfied for g e W, T e U. Thus, by Corollary 2.4.1, the system of 

P.D.E.(2.4.1) has a unique solution. 
Q.E.D. 

Lemma 2.5.2 illustrates that a group action Q satisfies both the V.O.D.E.(2.2.1) 

and the system of P.D.E.(2.4.1), with T(g) = T(x°, g). We wish to verify this relationship 

between solutions in general. Consider the unique solution of the system of 

P.D.E.(2.4.1). Obviously, it is a function of g and x°, let us denote it by W(x°, g). 

Lemma 2.5.4 Let Pik(x), Rjk(g) and Skj(g) be as given in Lemma 2.5.2. 
W(x°, EXP(at)) is the unique solution of the V.O.D.E.(2.2.1) if and only if 

W(x°, EXP(ot)) is the unique solution of the system of P.D.E.(2.4.1). 

Proof: (<=) We have already seen that for x° e L/ and EXP(at) e V, both the 

V.O.D.E.(2.2.1) and the system of P.D.E.(2.4.1) have a unique solution. Assume 
W(x°, EXP(at)) is the unique solution of the system of P.D.E.(2.4.1). By the chain rule, 

dWi(x°,EXP(at)) _ " aWj(x°, EXP(at)) d(EXPk(at)) 
dt - 9EXPk(at) dt 

However, W(x°, EXP(at)) is a solution of the system of P.D.E.(2.4.1) and 

dEXPk(at) 
dt 

dEXPk(g(t-t-s)) 
ds s-o 

= s p, 3(Pk(EXP(cct), EXP(as)) dEXP,(ois) 

r-1 9EXPr(os) ds = £Rk,(EXP(ot))a,. 
s=0 r-1 

It follows that: 

dWi(x°, EXP(at)) 
dt = X Pij{W(x°, EXP(at)))Sjk(EXP(at))arRkr(EXP(at)). 

By Eq.(2.4.9) this simplifies to: 

dWj(x°, EXP(at)) 
dt 

n 
XajPi|(W(x<', EXP(at))). 

Since W(x°, EXP(aO)) = x°, W(x°, EXP(at)) is a solution of the V.O.D.E.(2.2.1). 
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(=>) Fix x° e U and EXP(oct) e V. Let W (x°, EXP(at)) be the solution of the 

V.O.D.E.(2.2.1), which we know is unique, (see Petrovski [1, p.96]). But from the 

above argument, W(x°, EXP(at)) is a solution of the P.D.E.(2.4.1) as well as the 

V.O.D.E.(2.2.1). Consequently, 

"W (x°, EXP(at)) = W(x°, EXP(at)) 

is the solution as that of the system of P.D.E.(2.4.1), as required. 

Q.E.D. 

The system of P.D.E.(2.4.1) is more powerful than the V.O.D.E.(2.2.1) in the 

sense that its solution is defined for all elements of G and not simply for one- 

parameter subgroups. We will be using this fact in the next section to prove that a Lie 

algebra of differential operators is an algebra of Lie derivatives. 

Section 2.6 Lie Algebras of Differential Operators and Lie Derivatives 

We are now ready to show that every Lie algebra of differential operators is the 

algebra of Lie derivatives of some local Lie transformation group. Let U be an 

open, connected set such that U c F^. 

Theorem 2.6.1 (See Miller [1, p.194], Theorem 5.27). Let {Ls)s=i ben 

linearly independent differential operators defined by Eq.(2.3.5), and analytic on some 

open, connected set U of F^. Suppose there exists c^ such that Eq.(2.3.4) holds, 

1 < s, k, r < n. Then the n-dimensional Ue algebra, a, generated by the Ls is the 

algebra of Lie derivatives of a local Lie transformation group (G, Q), acting effectively 

onU. Q[x^,EXP{aX)] is the unique solution of the \/.O.D.E.(2.2A), for x°e U. 

Proof: Since Lg, 1 < s ^ n, are linearly independent, it follows that the {Ls}s_i 

form the basis of a Lie algebra a. Express !_« e a by 

U=E“»U. (2.6.1) 
S>1 

Clearly a is isomorphic to a second Lie algebra, a', with isomorphism given by 
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La ^ a- By Theorem 1.5.5 and Corollary 1.5.2, a' is the Lie algebra of some n- 

dimensional local Lie group G = {V, (p), unique up to isomorphism. It follows that the 

structure constants of G are the Csk of Eq.(2.3.4). 

By Lemma 1.4.2, we can label the elements of G by means of the exponential 

mapping. Once we have shown that the solution of the V.O.D.E.(2.2.1), 

Q[x°, EXP(at)], does indeed produce an action on G, then Theorem 2.2.1 guarantees 

that a is the algebra of Lie derivatives of (G, Q). Thus, we need only show that Q is 

an action. 

Let Rks(g). 1 ^ s, k n, be obtained from Eq.(2.2.8), limit g to an open 

neighborhood of e for which the inverse element exists and let Sks(g) be the 

elements of the matrix inverse of (Rks(g))k,s-i- Let Pis(x), 1 < i < m, be obtained from 

the differential operator Ls, 1 ^ s < n, using Eq.(2.3.5). Consider the system of 

P.D.E.(2.4.1). 

By Lemma 2.5.3, the system of P.D.E.(2.4.1) has a unique solution, which we 

now define to be Q[x°, g]. Let g = EXP(at). Then by Lemma 2.5.4, Q[x°, EXP(at)] is 

the unique solution of both the V.O.D.E.(2.2.1) and the system of P.D.E.(2.4.1). By 

definition, Q[x°, e] = x°. We now show Q is associative. 

Let y(t) = Q[Q[x°, EXP(a)l, EXP(pt)], and let z(t) = Q[x°, <p(EXP(a), EXP(pt))]. 

Clearly, y(0) = z(0) = Q[x°, EXP(a)]. By the definition of Q, 

= SPsPis(y(t)). 1 <i^m. 
s-1 

Now, by the chain rule of differentiation, 

dzi(t) _ i |^Qi[x°, p(EXP(q), EXP(pt))l'jdipa(EXP(a), EXP(pt)) 

^ I a<P,(EXP(a), EXP(pt)) J dt 
But 

d<pq(EXP(q), EXP(pt)) _ d(pq(EXP(g), EXP(P(t+s))) 
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d<pq(<p(EXP(a), EXP(pt)), EXP(Ps)) 

acpq((p(EXP(a), EXP(Pt)), EXP(Ps)) dEXPr(ps) 

9EXPr(Ps) cIs s»0 

Thus, 

d<pq(EXP(a), EXP(pt)) ^ ^ R^^(,(EXP(o). EXP(|Jt)))p,. (2.6 

r.1 

By Eq.(2.6.2) and the fact that Q[x°, EXP(cxl)] satisfies the P.D.E.(2.4.1), 

^ . X Pia(2(t))S„(9(EXP(a), EXP(pt)))R.,,(<p(EXP(a), EXP(Pt)))P,. 
q.r.s-1 

By Eq.(2.4.9) this simplifies to the following, 

Pir(z(t))pr. 1 ^ i ^ m. 

Since y(t) and z(t) satisfy the same differential equation and initial conditions, 
and by the uniqueness of solution of a V.O.D.E., (Petrovski [1,p.96]), y(t) s z(t). 

Although our argument only works for t close to 0, analytic function theory, (see Hille, 

[1, p.3 ], Law of Permanence of Functional Equations) allows us to extend it to t = 1. 

Thus, Q is associative, as required. 

Finally, we need to verify that Q is an analytic function of the m + n 
components of x and g. Q[x°, EXP(at)] is a solution of the V.O.D.E.(2.2.1), 

dQ[x°, EXP(at)] 
dt LaQ[x° EXP(at)], 

where La is given by Eq.(2.6.1). Thus, by an argument similar to that employed for the 

proof of Lemma 2.2.1, it follows that 

d'^Q[x°, EXP(at)] 
dt'^ 

= La'H5[x0, EXP(oct)], k = 0,1,... 

Thus, 
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Now, 

and 

Q[X, EXP(oct)] = GXptUaX 

La(LaX) = 
m 

s 
i.q-1 

n 

X aka|Pqi(x) 
k,l=l 

gPik(x) ^ 
0Xq 9Xj ’ 

etc. 

UUM) = 
m 

I X ajakaiPrj(x) 
j,k.l-1 

~aPQi(x) 8Pik(x) 3x 
. 9Xr 3Xq dXj 

+ Pql(x) 
a^PiK(x) 3X1 

8x,8Xq 8XiJ 

Obviously, x Is both a homogeneous polynomial of order m in ai, 02  

ttn, and an analytic function of x. Thus, for EXP(at) e V, Q[x°, EXP(oct)] is an analytic 

function of the m components of x° and ait, a2t ant. Therefore, Q[x°, EXP(a)] is 

an analytic function of x° and ai, a2 On. Since the exponential map is locally 

one-to-one and analytic we conclude that Q[x°, EXP(a)] is an analytic function of the 

components of x and EXP(a), as required. 

Q.E.D. 

Thus, every Lie algebra of differential operators is the set of all Lie derivatives of 

some local Lie transformation group (G, Q) acting effectively on U, and the set of all 

Lie derivatives of a local Lie transformation group (G, Q) is a Lie algebra. However, 

Theorem 2.6.1 only shows that the action Q[x°, EXP(at)] can be found by solving the 

V.O.D.E.(2.2.1). It does not say anything about how one would use the Lie algebra of 

differential operators Span({Lk)k.i to construct the underlying local Lie group G. We 

only know by Theorem 1.5.5 and Corollary 1.5.3 that G exists. In Chapter 3, we 

consider a special type of Lie algebra of differential operators and adapt the proof of 

Theorem 2.6.1 to actually construct a local Lie group from a Lie algebra of differential 

operators, without using the material of Section 1.5. 
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Chapter 3 

The Construction of a Local Lie Group From Its Lie Algebra 

Section 3.1 Introduction and Examples 

We continue with the notation of Chapters One and Two. That is, we shall let F 

be either the field of complex or real numbers, F„ be the space of n-tuples with 

coordinates from F, and let V be an open set in Fn containing e = (0, 0 0). 

In Section 2.6, Theorem 2.6.1, we presented Miller's proof that any Lie algebra 

of linear differential operators is the set of all Lie derivatives of some local Lie 

transformation group, (G, Q). Theorem 2.6.1 only shows that the action Q of a local Lie 

transformation group (G, Q) can be found by solving a system of differential equations. 

It tells us nothing about the Lie product, 9, that makes G into a local Lie group in some 

neighborhood of e e Fn. Instead, Theorem 2.6.1 relies on Theorem 1.5.5 to guarantee 

the existence of an underlying local Lie group G, such that (G, Q) is a local Lie 

transformation group with the prescribed Lie derivatives. 

In this Chapter we restrict the Lie algebra of differential operators to Lie 

algebras having a basis {L|JU_^, of the form 

1 <k<n. (3.1.1) 

where Pjk(g) is a function defined and analytic for all g in some open, connected 

neighborhood, V of e, such that 

Pik(e) = 5ik 1<i,k<n. (3.1.2) 

We show that we can construct a Lie product 9 from the solution of a system of 

ordinary differential equations such that G = (K 9) is a local Lie group and (G, 9) is a 

local Lie transformation group whose Lie algebra of Lie derivatives has basis {LiJk^^ 

Our proof is an adaptation of Miller's proof of Theorem 2.6.1. This result differs 

from Theorem 2.6.1 in that we do not require Theorem 1.5.5 and we actually find both 

an underlying local Lie group, G, and a local Lie transformation group, (G, Q). Let us 
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call the Lie algebra generated by L = Span and as in Section 2.6, we 

let 

n 

La = 2 “k*-k, for all a e Fn. 
k*1 

We also show that L(G), the Lie algebra of G, is isomorphic to L. This provides a 

constructive proof that every Lie algebra is the Lie algebra of some local Lie group, up 

to isomorphism in the case when the Lie algebra is realized by L. 

If we were to apply Theorem 2.6.1 to L, we could conclude that there exists a 
local Lie transformation group (G, Q ) with L as its set of Lie derivatives. It follows 

from Definition 2.1.1 that Q : V'x V, such that 

This is not enough to conclude that Q is a Lie product. However, the Proof of 

Theorem 2.6.1 can be modified to reach this conclusion. 

Thus, we provide a method of constructing a local Lie group whose Lie algebra 

is realized by L. Pontryagin [1, p.401] starts with coordinate increments to construct a 

local Lie group having prescribed structure constants. Our method is simpler but 

limited. The main result of the thesis is the following Theorem. 

Theorem 3.1.1 Let LR be defined by Eq.(3.1.1), 1 < k < n , be n linearly 

independent differential operators defined and analytic in a connected, open set 

UcFn, such that ee U and the Pjk(g) satisfy Eq.(3.1.2). Also, assume there exists 

constants cj^ such that Eq.(2.3.4) holds, 1 < j, k, r < n. If Q[g, at] is the solution of the 

V.O.D.E.(2.2.1), then there exists a connected, open neighborhood V of e, contained 

in U such that the kinction <p:VXV-¥ F„ defined by 

and 

Q [X, e] = X, xe V\ 

^[x, g] is analytic in x and g, for x and g e V, 

o'[X, 9(g, h)] = [X, g], h], if both (p(g, h) and Q [x, g] e V. 

<p(g, Q[e, at]) = Q[g, at] (3.1.3) 

is the Lie product for a local Lie group (V^, 9) = G. 
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In fact we show that the structure constants cj*^ of G are the c[k’s used in 

Eq.(2.3.4). This suggests an obvious isomorphism between L(G) and L. We aiso 
show that L is the set of all Lie derivatives of the iocai Lie transformation group (G, (p). 

Note that Eq.(3.1.1) is actualiy Eq.(2.3.5) with m = n. The method we use to 

prove Theorem 3.1.1 is simiiar to the one used to prove Theorem 2.6.1. However, we 

need not make any assumptions about the existence of a Iocai Lie group with the 

given structure constants. Many of the Lemmas in Section 2.4 which were used to 

prove Theorem 2.6.1 wili be used again here. 

Since Q[e, a] plays a critical role in the definition of <p, and in order to simplify 

notation, we introduce the notation 

EX(at) s Q[e, at], a e F„,. 

The importance of EX(at) is further illustrated by the following Lemma. 

Lemma 3.1.1 EX(a) defines an analytic coordinate transformation from an 

open set U to an open set V, both in F„, such that: 

\) eeil and eeV, 

ii) for all h € K there exists a unique ae U such that EX(a) = h. That is, 
EX‘^(h) exists for h e V'. 

Proof: By an argument similar to the one used in the proof of Theorem 2.6.1 to 
show that the group action is analytic in its m + n arguments, we conclude that Q[e, at] 

is analytic in at. Since 

dEXi(g) 

dak a>0 
Pik(EX(a)) = 8ik. 

a>0 
1 ^i, k<n. 

then the determinant of the matrix (Pik(g))"k-i 'S non-zero in some neighborhood of e. 

Thus, by an argument similar to that used in Section 1.4, Lemma 1.4.2, for the 
exponential map, EX maps a neighborhood of e € L/ onto a neighborhood of e € \/ 

such that, for all h € V^, there exists a unique aeil such that EX(a) = h, and EX'^ 

exists and is analytic on V. 

Q.E.D. 
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Note that Lemma 3.1.1 does not actually require Pkk(e) = 5kk = 1,1 ^ k < n, but 

only that Pkk(e) * 0. Further explanation of why we require Eq.(3.1.2) to hold will be 

given in the next two sections. Given a Lie algebra of linear differential operators, L, 

with basis {Lk}|^.^ satisfying Eq.(3.1.1), such that 

Pik(e) 
0 

.C i ^ 0, 

if i ^ k 

if i = k ’ 
(3.1.4) 

it is a simple matter to create a second basis of linear differential operators for L 

satisfying Eq.(3.1.2). Thus, Eq.(3.1.4) and Eq.(3.1.2) are equivalent conditions. 

We wish to motivate Theorem 3.1.1 before proving it. To this end, we give a 

simple application of Theorem 3.1.1 and an example concerning why the condition 

Eq.(3.1.2) is necessary. In Section 3.2.2 we give a simple proof of Theorem 3.1.1 in 

the one-dimensional case and show why the technique used cannot be extended to 

higher dimensions. Consider the following one-dimensional example. 

Example 3.1.1 From Chapter One, Example 1.2.2, we know that the function 

(p:FXF-4F, defined by 

<P(g. h) = 9 + h+7gh, (3.1.5) 

such that ye F, is a one-dimensional Lie product on F. By Theorem 1.4.1 the one- 

parameter subgroup EXP(at) of (F, q>) is found by solving the ordinary differential 

equation (O.D.E.) 

^ = a(1 +7y), y(0) = 0. 

Thus, 

f ei^“* - 1 

EXP(at) = i “y 

at, 

if Y 0 

if Y = 0 

(3.1.6) 

By definition, EXP(at) satisfies Eq.(1.4.1) and has tangent vector a at t = 0. 

Now we wish to go in the other direction. That is, start with the O.D.E. 
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^ = a(i+-w). y(0) = g, dt 
(3.1.7) 

and obtain the Lie product (3.1.5). Q[g, at], the solution of the O.D.E.(3.1.7), is given by 

Qfe.at] = -< y 

vat + g, if Y = 0 

which is analytic in FXF. From this we make the following two important observations: 

and 

Q[0, at] = EXP(al) 

Q[g, at] = g + EXP(ot) + YgEXP(ot) 

= <p(g, EXP(at)). 

By Lemma 1.4.2, the exponential map defines an analytic coordinate 

transformation on some neighborhood of 0. Thus, there exists two neighborhoods of 

0, call them U and V, such that for all h € \/, there exists a unique ae U such that 

EXP(a) = h. Thus the Lie product (p defined by Eq.(3.1.3) can also be defined locally 

on V in terms of Q[g, a], by 

9(9. h) = 9(g, EXP(a)) (p(g, Q[0, a]) = Q[g, a], 

and ^r.VXV->F. Thus, we have taken the one-dimensional Lie algebra of linear 

differential operators with basis (1 + Yg)^ > applied Eq.(3.1.3) and obtained the local 

Lie group with Lie product given by Eq.(3.1.5). 

We will show that this is also true for the n-dimensional case, n ^ 1. To justify 

the initial condition P(0) 0 we need only consider the following example. 

Example 3.1.2 Consider the Lie algebra of differential operators with basis 

Li = 9 Then P(0) = 0 and the V.O.D.E.(2.2.1) becomes the O.D.E. 

dy(t) = ay, y(0) = g. 
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It has solution y(t) = Q[g, at] = ge™*. If we define 9 by meansof Eq.(3.1.3),then 9 is 

not a Lie product. It follows from the fact that Q[0, at] = 0, that 0 is not the identity 

element since 

9(g, Q[0, at]) = 9(g, 0) = Q[g, at] = ge“l 

Thus, there are restrictions on P(g). 

Section 3.2 The One-Dimensional Case 

In this section, we give a simple proof of the one-dimensional case of 

Theorem 3.1.1. By Corollary 1.5.2, all one-dimensional local Lie groups are locally 

isomorphic and all one-dimensional Lie algebras are isomorphic. Consequently, 

using Theorem 3.1.1 to construct a one-dimensional local Lie group with Lie algebra 

isomorphic to a given one-dimensional Lie algebra provides a complex solution to a 

simple problem. Any one-dimensional local Lie group would do. Nonetheless, the 

simplicity of the one dimensional version of Theorem 3.1.1 does justify its 

consideration. We begin by stating Theorem 3.1.1 for the one-dimensional case. 

Theorem 3.2.1 Let W be an open neighborhood of 0 in F and let 

P.W^F be an analytic Ajnction on W such that P(0) = 1. Let Q[g, at] be the 

solution of the O.D.E, 

^ = aP(y(t)). y(0) = g, (3.2.1) 

and let EX(a) = Q[0, a], for a e U. Then 9 defined by 

9(g, EX(a)) = Q[g, a], (3.2.2) 

is a Lie product on some open, connected set,V, containing 0. 

We shall prove Theorem 3.2.1 with the aid of the following Lemma. From the 

theory of O.D.E., (see Petrovski [1, p.96]), we know there exists an open neighborhood 

1/ of 0 in F, such that Q[g,ot] is analytic for (g, at) e UXU. From Lemma 3.1.1 we 

know 9 is well-defined. For the remainder of Section 3.2 we will always use U and V 

as they were used in Lemma 3.1.1. 
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Lemma 3.2.1: Let a, p, a + p a// belong to U. Then 

EX{a + P) = Q[EX(a), P] = (p(EX(a). EX(p)). (3.2.3) 

Proof: If p = 0, Eq.(3.2.3) is obviously true. Thus, assume p 0 and let 

y(t) = Q[0,a + pt] = EX(a + pt) 

and z(t) = Q[EX(a), pt] = <p{EX(a), EX(pt)). 

Then by the definition of Q, y(0) = z(0) = EX(a). Now, since a and p are scalars, 

dy(t) dQ[0, g + pt] 
dt “ dt 

dQ[0, p(^ + t)l 

dt 

dQ[0,p(^+t)] d(p t) 

= PP(Q[0, a + pt]) 

= pP(y(t)). 

Furthermore, 

dz(t) dQ[EX(g), pt] 
dt dt 

= PP(z(t)). 

It follows from the uniqueness of solution of an O.D.E. that y(t) s z(t), for t in 

some neighborhood of 0. It is then a simple matter to use analytic continuation, 

(Hille[1, p.3]), to extend the equality to t = 1 and conclude that Eq.(3.2.3) holds, as 

required. 
Q.E.D. 

The fact that P(0) 0 was required in Lemma 3.1.1. To this point we have not 

needed P(0) = 1. However, 
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dEX{at) 
dt t-o 

= aP(0). (3.2.4) 

Thus in order for the analytic curve EX(at) to have tangent vector a at 0, we 

require P(0) = 1. We want EX(at) to be the one-parameter subgroup of [V, (p) with 

tangent vector a at e, thus we will always require that P(0) = 1. We are now 

prepared to prove Theorem 3.2.1. 

Proof of Theorem 3.2.1: Define <p(g, EX(a)) by Eq.(3.2.2), for g and 

EX(a) e V. Obviously, (piV'XVF, and by the definition of Q, (p is analytic in VXV. 

Furthermore, 

<p(0, EX(a)) = Q[0, a] = EX(a) 

and because Q is the solution of the O.D.E.(3.2.1), 

«p(g, 0) = Q[g, 0] = g. 

Thus, 0 is the identity element for 9. 

Thus we need only show that 9 is associative on V. Let g, h, k, 9(g, h), 9(h, k) 

all belong to V. By Lemma 3.1.1, there exists a, p, and y belonging to U such that 

g = EX(a), h = EX(p) and k = EX(y). Now use Eq.(3.2.3) as follows, 

<l>(g. 9(h, k)) = 9(EX(a), <p(EX(P), EX(T») 

= q<EX(o), EX(p + y)) 

- EXCa + Cp + 'rt) 
= EXfta + W+'rt 
= 9(EX(a + p). EX(Y>) 

= <p(<l>(EX(a), EX(P)), EX(r)) 

= 9(9(9. h). k). 

Thus, 9 is a Lie product on V, as required. 

Q.E.D. 

The Lie algebra of G = (V, 9) is the field F together with the commutator 

[a, p] = 0, for a, p e F. L(G) is trivially isomorphic to the Lie algebra generated by 

Li = P(g) ^, because all one-dimensional Lie algebras are isomorphic . 
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Lemma 3.2.2 The one-parameter subgroup of {V, 9) with tangent vector a 

at 0 is EX(at), for a e F. 

Proof: Obviously, EX(a(0)) = Q[0,0] = 0. By Eq.(3.2.4) and the fact that 

P(0) = 1, EX(at) has tangent vector a atO. Finally, Eq.(1.4.1) follows Immediately 

from Lemma 3.2.1. Thus, by Definition 1.4.1, EX(ot) is the one-parameter subgroup of 

{V, 9) with tangent vector a at 0, as required. 

Q.E.D. 

Lemma 3.2.1 plays an important role in the proof of Theorem 3.2.1. Lemma 

3.2.1 depends on the fact that any element of U can be expressed as a scalar multiple 

of any other non-zero element of U. This is only true if U is one-dimensional. In one 

dimension, all elements of G are in the same one-parameter subgroup. Lemma 3.2.1 

does not hold for higher dimensions. This is the main reason why the proof of the 

one-dimensional case of Theorem 3.1.1 is so easy and why this technique cani be 

extended to the higher dimensional cases. (The same idea works in Theorem 2.6.1 

for a proof of the one-dimensional case, but we shall not go over it here). In the 

general case of Theorem 3.1.1, one has to use the idea of a Lie algebra. The set of 

differential operators defined by Eq.(3.1.1) must form a basis for the Lie algebra, <A. 

We can use Theorem 3.2.1 to generate examples of one-dimensional local Lie 

groups. If P(x) is a function analytic at x = 0, such that P(0) = 1, then by Theorem 

3.2.1 we can obtain a one-dimensional Lie product if we can solve the differential 

equation 

^ = aP(x(t)), x(0) = x“. (3.2.5) 

For the open neighborhood where a solution exists, EXP(at) is the solution of 

Eq.(3.2.5) with x° = 0 and 9(g, EXP(at)) is the solution of Eq.(3.2.5) with x° = g. 

For example, P(x) = 1 yields the one-parameter subgroups EXP(at) = at 

together with the Lie product 9(g, h) = g + h; P(x) = 7X + 1, y 0, yields the the one- 

parameter subgroups EXP(crt) = - (e“^ -1) together with the Lie product 
Y 

<p(g. h) = g + h + ygh and P(x) = e"**, y?* 0 yields the one-parameter subgroups 

EXP(ort) = ~ ln(1 - yat) together with the Lie product 9(g, ln(e^ + e"^ -1). 
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In fact, we have the following characterization of Lie products of one- 

dimensional local Lie groups. 

Theorem 3.2.2 <p(g, h) is a Lie product for a one’dimensionai iocal Lie 

group with one-parameter subgroups EXP(ot) if and only if 

EXP(at) = Q[0, at] 

<p(g, EXP(at)) = Q[g, at] 

where Q[g, at] is the solution of the O.D.E. 

^ = aP{x), x(0) = g. 

and P(x) is analytic at x = 0 and P(0) = 1. 

Proof: The proof follows from Theorem 3.2.1 and Lemma 3.2.2. 

Q.E.D. 

Section 3.3 The n-Dimensional Case 

We now prove Theorem 3.1.1 in general. Let U be an open connected set in 

Fn such that e e U. Throughout this section we will assume that P\[^{Q), 1 ^ i, k < n, is 

an analytic function for g e 17 such that Eq.(3.1.2) is satisfied. Define the linear 

differential operators LR by Eq.(3.1.1), 1 ^ k ^ n, acting on functions that are analytic on 

U and assume that there exists constants C[R, 1 ^ j, k, r ^ n, such that Eq.(2.3.4) is 

satisfied. We wish to show that q> defined by Eq.(3.1.3) is a Lie product, where 

Q[g, at] is the solution of the V.O.D.E.(2.2.1). Again we use the analytic coordinate 

transformation 

EX(ot) * Q[e, at], a e Fn. 

Now, for gel/, define the nxn matrix P(g) by 

P(g) = (Pik(g))Jk.i. 
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By Eq.(3.1.2), P(e) = En. Since Pik(g) is analytic, 1 < i, k ^ n, then for g in some 

neighborhood of e, P(g) has a matrix inverse, that we will denote by 

s(g) = (Sik(o))u.v 

For convenience, we will begin by limiting the set U to an open, connected 

neighborhood of e where P'^(g) exists. We noted in Section 3.1 that, by Theorem 

2.6.1, the n-dimensional Lie algebra, L, generated by the is the algebra of Lie 

derivatives of some local Lie transformation group (G, Q ) acting effectively on U, 

where EXP(at), a e Fn, are the one-parameter subgroups of the unknown group G, for 

t suitably close to 0, and Q [g, EXP(at)] is the unique solution of the V.O.D.E.(2.2.1). 

Thus, 

(p(g,EX(at)) = Q[g,at] = '^[g, EXP(ot)]. (3.3.1) 

Now, since Q is an action, it follows that e is the identity element of <p since 

<p(g,e) = '^[g,e] = g, 

and Eq.(3.1.3) together with the definition of EX(a) imply that 

q)(e, EX(a)) = Q[e, a] = EX(a). 

Furthermore, Q [g, EXP(a)] = (p(g, EX{a)) is an analytic function of the 2n 

components of g and EXP(a). However, since EXP(a) and EX(a) are both analytic 

coordinate transformations on some neighborhood of e € Fn, it follows that in some 

neighborhood of e we can express EXP(a) as an analytic function of EX(a). Thus, 

(p(g, EX(a)) is an analytic function of the 2n components of g and EX(a), when g and 

EX(a) are dose to e, as required. 

Thus, to conclude that q> is a Lie product, we need only show that for 

q>(EX(a), EX(p)) and 9(g, EX(a)) both belonging to V, 

(p{9(g, EX(a)), EX(p)) = 9(g, 9(EX(a), EX(P))). (3.3.2) 

Unfortunately, Eq.(3.3.1) does noy)rovide sufficient information to obtain 

Eq.(3.3.2), in terms of the group action Q . In particular, we do not know the meaning 
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of <p(g, cp(EX(a), EX(P))). In any event, we wish to construct the Lie product 9 

without using Theorem 1.5.5, i.e., without prior knowledge of the existence of a local 

Lie group G with Lie algebra isomorphic to the Lie algebra of differential operators. 

We show Eq.(3.3.2) holds by using a technique similar to the one use to prove 

Theorem 2.6.1. Most of the necessary Lemmas were proved in Chapter 2. 

In the proof of Theorem 2.6.1, we needed Pjk(g) and Skj(g) to have certain 

properties. Also, we needed Q[g, EXP(at)] to satisfy a second system of differential 

equations. We find that the following properties still hold: 

From Lemma 2.3.3 it follows immediately that, for 1 < q , k, s ^ n, 

Thus, by Eq.'s (3.3.3) and (3.3.4) and Corollary 2.4.1 and Lemma 3.1.1, it 

follows that the system of partial differential equations 

T(g,e) = g, 

has a unique solution for g and EX(a) in some open neighborhood of of e € Fn. 

The following is also true: 

Lemma 3.3.1 Let g, EX(at) € V^. T{g,EX{aX)) is the unique solution of the 

system of P.D.E.(3.3.5) if and only if it is ^so the unique solution of f/jeV.O.D.E. (2.2.1). 

Proof: The proof concerns the uniqueness of solution of systems of 

differential equations and is similar to the proof of Lemma 2.5.4 and is thus omitted. 

Q.E.D. 

(3.3.3) 

From Lemma 2.4.1, with Rjk(g) = Pik(g) it follows that c^ = -Cgr and 

(3.3.4) 

aTi(g, EX(g)) 

3EXk(a) 

n 

= S Pi,(T(g. EX(a)))S,k(EX(a)). 1 £ i, k S n 
r.1 > (3.3.5) 
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We now relate Lemma 3.3.1 to the the given situation with the following 

Lemma. 

Lemma 3.3.2 9(9, EX(at)) defined by Eq.(3.1.3) satisfies the system of 

P.D.E.(3.3.5). 

Proof: By Eq.{3.1.3), 9(9, EX(oct)) satisfies the V.O.D.E.(2.2.1). It follows from 

Lemma 3.3.1 that 9(9, EX(ot)) is also a solution to the system of P.D.E.(3.3.5), as 

required. 

Q.E.D. 

We now have sufficient background to complete the proof of Theorem 3.1.1. 

Proof of Theorem 3.1.1: It follows immediately from Eq.(3.1.3) that e is the 

identity element because 

9(9, e) = Q[9, e] = 9 and 9(e, EX(at)) = Q[e, at] = EX(at). 

By an argument similar to the one used in Theorem 2.6.1 to show that a group 

action is an analytic function of its m + n arguments, we conclude that 9(9, EX(a)) is 

analytic in the 2n coordinates of 9 and EX(a). In order to complete the proof, we need 

only show that 9 is associative. 

Let y(t) = 9(9(9, EX(a)), EX(pt)) and z(t) = 9(9. 9(EX(a), EX(pt))). 

Clearly, y(0) = z(0) = 9(9, EX(a)). Now, by Eq.(3.1.3) 

^ = iPkPik(y(t)). 
k-1 

By the chain rule. Lemma 3.3.2 and Eq.(3.1.3) we obtain 

dzi(t) _ " 39i(g, 9(EX(g), EX(pt))) d9k(EX(g), EX(Pt)) 

~ a a<Pk(EX(a). EX(pt)) dt 

= E P|,(z{t))Srt<(<p(EX(o), EX(pt))))P,Pta,(q>(EX(a), EX(pt))). 
k,r,s-1 

Since S(9(EX(g), EX(pt))) = {P(9(EX(g), EX(pt)))). the expression simplifies to 
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^=ipsPiswt)). 
S«1 

Thus, since y(t) and z(t) satisfy the same differential equation and have the 

same initial conditions, we conclude by uniqueness, (Petrovski [1, p.96]), that 
y(t) = z(t), t suitably close to 0. Use analytic continuation (Hille [1, p.3]) to extend the 

proof to t = 1 and conclude that Eq.(3.3.2) is true under the necessary conditions. 
Thus, (p is a Lie product on V, as required. 

Q.E.D 

Theorem 2.6.1 differs from Theorem 3.1.1 in that Theorem 2.6.1 only concludes 

that there exists a local Lie group G such that the local Lie transformation group 

(G, Q) had the prescribed Lie derivatives, whereas Theorem 3.1.1 shows that the Lie 

product of G can be found by solving a system of differential equations. In both 

Theorems the group action is found by solving a system of ordinary differential 

equations, however Theorem 2.6.1 is applicable to a much broader range of Lie 

algebras of differential operators than Theorem 3.1.1. 

We complete this section by examining the constructed local Lie group (V, cp) in 

more detail. We verify that the local Lie transformation group {{V, (p), (p) has, as its set 

of Lie derivatives, the Lie algebra of differential operators L = Span({Lk}J.^). 

Lemma 3.3.3 The one-parameter subgroups of {V, tp) are the EX(at), a e F„. 

Proof: Clearly EX(a(0)) = e, and by Eq.(3.1.2), 

dEXk(at) 
dt |t.o = |t.o = E«rPkr(Q(e, at]) = ok. 

' ' r«1 ' 

Furthermore, by Eq.(3.1.3), if y(t) 

is a simple exercise to show that 

Ml 
dt 

= EX(a(t + s)) and z(t) = (p(EX(os), EX(pt)), then it 

1 ^i<n, 

and y(0) = z(0). Thus by the uniqueness of a solution for a V.O.D.E. (Petrovski 

[1, p.96]), it follows that 
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EX(a(t+s)) = (p{EX(as), EX(pt)). 

Thus, by Definition 1.4.1, EX(ot) is the one-parameter subgroup of {V, 9) with tangent 

vector a ate. 

Q.E.D. 

Lemma 3.3.4 The structure constants for the local Lie group {V. tp) are 

the Csk f/Jafsaf/s/y Eq.(2.3.4). 

Proof: From our construction of the local Lie group {V, 9), we know that 

[u,4] =X4L,. 
r-1 

By Eq.(1.2.6), it follows that 

,sk raV(g. EX(g)) 
3g,3EXk(a) f d^iPrig, EX(g))> 

agk3EXs(a) ^ g=EX(a)=e 

Now, by Lemma 3.3.2, 

a^9f(g, EX(g)) / /« cv/ /cv/ u 

3g,3EXk(a) ° 3g, SPr,(9(g. EX(a)))S,k(EX(a)) g=EX(a)=e 

_ 
3gs la=« ■ 

Thus, 

sk^ 3Pik(g)| 3Pre(g)| 
' 3g. |g-> 3gk |i-> 

Now, evaluate Eq.(3.3.3) at g = e to find that, 

9Prk(g)| _ 5Prs(g)| _ r 
99s |9=® 9gk |fl=® 

Thus, for 1 < r, s, k < n, as required. 

Q.E.D. 
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Thus, the Lie algebra of {V, <p) is isomorphic to the given algebra of differential 

operators, L, with Isomorphism defined by a 

Lemma 3.3.5 The local Lie group G = {V', 9). where 9 is given by Eq.(3.1.3), 

together with 9 as the group action form a local Lie transformation group with Lie 

derivatives 

Ux = s “kk, a e L(G), 
k-l 

where is given by Eq.(3.1.1). 

Proof: From Theorem 3.1.1 we know that {V, 9) is a local Lie group, and from 

Lemma 2.2.2 we know that {(V, 9), 9) is a local Lie transformation group acting on V, 

with Lie derivatives 

La = 5) 0tkRik(9)^rt. > Ote Fn, 
i,k-1 

where Rjk(g) is given by Eq.(2.2.8). Thus, we need only show that Rjk(g) = Pik(g). 

geV, 1 < i, k < n. 

By Eq.'s (2.2.8), (3.3.9) and the fact that P(e) = S(e) = En, 

Rik(g) = 
39i(g, EX(g)) 

dEXk(a) EX(a)=a 

= S Pir(<P(g. EX(o)))S,k(EX(a)) 
r-1 
n 

EX(a)=e 

=SPi,(g)5rii 
r-1 

= Pk(g). 

Thus, given an n-dimensional Lie algebra of differential operators with a basis 

{Lk)k.i, defined by Eq.(3.1.1), such that Eq.(3.1.2) holds, we have that these differential 

operators are the Lie algebra of Lie derivatives of the local Lie group transformation 

group ((»/, 9), 9)) where 9 is given by Eq.(3.1.3). 

Q.E.D. 



Corollary 3.3.1 L is the set of all Lie derivatives of a local Lie 

transformation group ((V, <p), cp) if and only if L is a Lie algebra of differential 

operators with basis acting on V, satisfying Eq.'s(3.1.1) and (3.1.2). 
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Proof: It follows immediately from Lemmas 3.3.5 and 2.2.2. 

Q.E.D. 

Thus, the proof of Theorem 2.6.1 can be adapted to construct a local Lie group 

from a Lie algebra. In the next Chapter we use a generalization of Theorem 2.6.1 to 

prove addition theorems for special functions. 
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Chapter 4 

Multiplier Representations and Special Functions 

Section 4.1 Generalized Lie Derivatives and Muitipiier Representations 

In this Chapter we shall use local Lie transformation groups to prove addition 

theorems for certain special functions of mathematics. 'Special functions' are classes 

of functions that appear frequently in mathematical discussion and have some noted 

importance. The classification of special functions is objective, but usually includes 

such functions as Legendre, Jacobi and Hermite polynomials and Beta, Gamma and 

Theta functions to name a few. 

Before we can use local Lie transformation groups to obtain addition theorems 

for special functions, we need the following additional theory. See Miller [1, p.196- 

199] for the derivation of the following material. We shall use the notation of Chapter 

2. That is, piainface type will be used for the nonidentity n-tuples from G and L(G) and 

boldface type will be used for the m-tuples of e Fm. 

Definition 4.1.1 Let (G, Q) be a local Lie transformation group acting on a 
neighborhood of L/ c with Lie derivatives IHX, a € L(G), and let be the set of all 

functions analytic in some neighborhood of x°. Let \:U xG F, such that v(x, g) is a 

scalar-valued, analytic function of x and g and 

for Q[x, g] e U, cp(g, h) e G. A local multiplier representation T of (G, Q) on A^Q 

with multiplier v, consists of a mapping T(g) of A^Q onto defined for all g e G, 

f e A^Q such that 

for X suitably close to x°. 

If v(x, g) = 1, then T is known as an ordinary representation, (which we 

used, without naming, in the discussion of ordinary Lie derivatives). There is an 

1. v(x, e) = 1. 

2. v(x, q)(g, h)) = v(x, g)v(Q[x, g], h), 

(4.1.1) 

(4.1.2) 

[T(g)M(x) = v(x,g)/(Q[x,g]), (4.1.3) 
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important relationship between ordinary representations and multiplier 

representations that the following Lemma explains. 

Lemma 4.1.1 Let T be a multiplier representation of the local Lie 
transformation group (G, Q) on U <z Fm and let U' = UxF. Then the mapping 

Q’:U' X G -> Fm+1 such that 

Q’[(x, g] = (Q[x, g], x^+i + lnv{x, g)), (4.1.4) 

is the group action of the local Lie transformation group (G, Q’) acting on U'. 

Proof: By Eq.(2.1.1) and Definition 4.1.1, Q and v are both analytic in x and 

g, thus it follows from Eq.(4.1.4), that Q’[(x, Xm+i), g] is an analytic function of x, x^+i 

and g. It follows from Eq.’s(4.1.4), (4.1.1) and (2.1.2) that Q’[(x, x^+i), e] = (x, x^+i). 

Now, by Eq.'s(4.1.4), (2.1.3) and (4.1.2) 

0’[(x, x^i), <p(g, h)] = (Q[X, 9(g, h)]. x„+i + lnv(x, <p(g, h))) 

= (Q[Q[X, g], h], Xm+1 + ln(v(x, g)v(Q[x, g], h))) 

= (Q[Q[X, g], h], x„,+i + lnv(x, g) + lnv(Q[x, g], h)) 

= Q’[Q’[(x,x^^i),g],h], 

forQ[x,g] eL/ (or Q’[(x, x^+i), g] e U' )and <p(g, h)e G, as required. 

Q.E.D. 

Since (G, Q’) is a local Lie transformation group it has Lie derivatives L^, 

a G L(G). By Lemma 2.1.1 

m+1 n ^ 

U;-i;I«rPi,((*.Xm*l))^. (4.1.5) 
i-1 r-1 ' 

whore P«(x, x„„)) = 9l However, it follows from Eq.(4.1.4) that 
g-e 

PiX(x. Xm+i)) = Pjr(x), 1 ^ i < m, 1 < r ^ n, 

where Pjr(x) is derived from Q[x, EXP(ot)] by Eq.(2.1.5), and 

(4.1.6) 

Pm;ir((X. Xmtl)) - 
g-0 

s P^(x)), 1 ^ r ^ n. (4.1.7) 
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Obviously Pjr((x, x^^)) does not depend on Xn,+i, 1 ^ i ^ m+1,1 < r ^ n. 

Now, given the local multiplier representation, T, we define the generalized Lie 

derivatives D„, a e L(G), as follows. 

Definition 4.1.2 Let T be a multiplier representation and let fe A^o- ^^e 

generaiized Lie derivative D^f of f under the one-parameter subgroup EXP(at) 

is the analytic function 

D„f(x) 
d[T(EXP(at))q(x) 

(4.1.8) 

It follows from the product rule of differentiation and Eq.'s (4.1.8), (4.1.3), (2.1.7), (4.1.1) 

and (2.1.2) that 

Da = U„+i«rPr(*). 
r-1 

where P^(x) isgiven by Eq.(4.1.7). (See Miller [1, p.198], Eq.(9.32)). It is clear from 

Lemma 4.1.1 and Eq.(4.1.9) that multiplier representations are really just a special 

type of ordinary representations. Thus, we have the following theorems corresponding 

to Theorems 2.2.3 and 2.6.1. 

Theorem 4.1.1 (See Miller [1, p.198], Theorem 5.28). The generalized Lie 

derivatives of a local multiplier representation form a Lie algebra under the operations 

of addition of derivatives and Ue bracket 

[D„.Dp] = D„Dp-DpD„. (4.1.10) 

In fact, 

1* ^aoH-bp = + bDp, (4.1.11) 

and 2. Dj^t^pj = [D„, Dp], (4.1.12) 

for a, p € L(G), a, b e F and [D„, Dp] defined by Eq.(4.1.10). 

Proof: Eq.(4.1.11) follows from Eq.(4.1.9) and Theorem 2.2.3. Thus the 

generalized Lie derivatives, D^, form a vector space under addition and scalar 

multiplication. Eq.(4.1.12) follows from the fact that 

L[a.p] “ Lp], 
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where is given by Eq.(4.1.5). and the relationship between Da and L^. 

Q.E.D. 

Thus, the set of all generalized Lie derivatives of a local Lie transformation 

group forms an abstract Lie algebra under the commutator of Eq.(4.1.10). T is an 

effective multiplier representation if the map a ^ Da is a Lie algebra isomorphism. 

We now adapt Theorem 2.6.1 to generalized Lie derivatives. 

Theorem 4.1.2 (See Miller [1, p.199], Theorem 5.31). Let 

m ^ 
Dk = X + Pk(x), 1 ^ k ^ n, 

be n Unearty independent differential operators defined and analytic in an open set 

U c Fm. If there exists constants c|k such that 

[Dj, D|J = X c ikPri 1 k^n, 
r»1 

then the D^ form the basis fora Lie algebra which is the algebra of generalized Lie 

derivatives of an effective local multiplier representation T. x(t) = Q[x, EXP(at)] and 

v(x, EXP(at) )are obtained by integration of the equations 

dxftl " 
= X Pik(x(t))Ok, 1 ^ I ^ m, x(0) = X. (4.1.13) 

k-i 

and 

g lnv(x, EXP(ot)) - X «jPi(x(t)), v{x, e) = 1. (4.1.14) 
j-1 

Proof; Due to the restrictions imposed on Dk, 1 ^ k ^ n, it follows from 

Theorem 2.6.1 that the unique solution of the differential system (4.1.13), 

Q[x, EXP(at)], is indeed a group action. Thus, we need only verify that the solution of 

Eq.(4.1.14) produces a multiplier. 

Construct the differential operators 14 according to Eq.'s(4.1.5), (4.1.6) and 

(4.1.7) where the P|k(x)’s, 1 ^ i ^ m and Pk(x) are obtained from D^, 1 < k < n. Clearly 

these differential operators are linearly independent and satisfy Eq.(2.3.4). Thus, by 

Theorem 2.6.1 there exists a local Lie transformation group (G, Q’) such that 
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Qj’[(x, EXP(at)] is obtained by solving the system of P.D.E.(4.1.13), 1 ^ i ^ m and 

Xm+i). EXP(oct)] is obtained by solving the O.D.E(4.1.14), where 

Xm+l). EXP(at)] = lnv(X, EXP(oct)) + Xm+1. 

Since the group action Q’ is associative, 

QmVi[(x. Xrm-i). 9(g. h)] = Q„;^i[Q’[(x, x„Hi). gj. h]. 

That is, 

lnv(x, (p(g, h)) + Xm+1 = lnv(Q[x.g]. h)+ Q^i[(x, x^+i),g] 

= lnv(Q[x, g], h) + lnv(x, g) + Xm+1- 

Thus, lnv(x, <p(g, h)) = lnv(Q[x, g], h) + lnv(x, g). 

It follows that v(x, g) satisfies Eq.(4.1.2). Since v(x, g) also satisfies Eq.(4.1.1) and is 

a scalar-valued, analytic function of x and g, T is a multiplier representation, as 

required. 

Q.E.D. 

In the next section we show by example how multiplier representations can be 

used to prove addition theorems for special functions. The key to applying the local 

Lie theory of this section to prove addition theorems of special functions is the fact 
that, for a multiplier representation T of G = (V/, <p) on with multiplier v, 

rr(9(g, h)/Kx“) = (T(g)[T(h)/|){x°). (4.1.15) 

where f e and 9(g, h) € G. Eq.(4.1.15) is a direct consequence of Definition 

4.1.1. 

Section 4.2 Proofs of Addition Theorems Using Muitipiier 

Representations 

We now show how local Lie theory can be used to find addition theorems for 

some special functions. We do not claim that the addition theorems we shall find are 

new or that our proofs of them are necessarily simpler than the usual proofs, using 

special function techniques. We give these proofs to show that the application of 

Eq.(4.1.15) gives addition theorems even in some of the simple cases. For a more 
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rigorous and comprehensive study of the application of local Lie groups to special 

function theory see Miller [2], or Vilenkin [1]. Miller and Vilenkin use local linear Lie 

groups for their studies, we shall use the ordinary local Lie groups. 

The hypergeometric function, 2F1, is one well known special function. It is 

defined by 

where (a)n = a(a + 1)... (a + n-1), n2:1, (a)o = 1,a?t0. In Miller[1,p. 199-204] or 

[2, p.20-24], Miller outlines a method of proving addition theorems for the 

hypergeometric polynomials using multiplier representations and a specified 3- 

dimensional local linear Lie group. 

For the examples of this section we use the one-dimensional local Lie group 

G = (F, 9), where 9(g, h) = g + h, g, h e F. The Lie algebra of G, L(G) consists of the 

field F together with the commutator [a, p] = 0, a, p e F and the one-parameter 

subgroups of G are EXP(at) = at, a e F. Our first example deals with the generalized 

hypergeometric function. 

The hypergeometric function is generalized from Eq.(4.2.1) as follows: 

where pk 0 and pk is not a negative integer, k = 1,2,..., q. (See Rainville 

[1,p.73]). 

With the aid of Eq.(4.2.2) and the Ratio test of a power series, Rainville is able to 

show where pFq is defined, that is, for what z the power series of Eq.(4.2.2) 

converges. 

if any a; in Eq.(4.2.2) is zero or a negative integer, then the power series 

terminates and pFq(a-|,a2 OpiPiiPz pq; z) is a polynomial in z. Otherwise 

we must consider the non-negative integers p and q of pFq and apply the following 

guidelines. 

(4.2.1) 

(4.2.2) 

k-1 
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1. It p^q. then the series converges for all finite z. 

2. If p = q + 1, then the series converges for |z| < 1, diverges for |z| > 1 

and pFq(ai, aa,..., Opi pi, p2. • ■ •. Pql z) is absolutely convergent on the circle |z| = 1 if 

Re(i;Pk - ioi) > 0. 
k-1 i-1 

3. If p > q + 1, then the power series of Eq.(4.2.2) diverges for all z 0. 

Thus, unless a or b are zero or negative integers the 2Fi(a, b;c;z) 

hypergeometric function is only defined for |z| < 1 and perhaps |z| = 1. The addition 

theorems Miller proves for the hypergeometric function take into account where 2F1 is 

analytic. We shall provide an addition theorem for one of the generalized 

hypergeometric functions. 

In the process of dealing with special functions, Rainville uses the following 

elementary series manipulation, (see Rainville [1, p.56]): 

00 00 CO ^ 

2 X A(k, n) = 2 £ A(k, n - k). (4.2.3) 
n-0 k-0 n>i0 k-0 

where A(k, n) is a function of k and n. This will be a useful technique in our examples 

of multiplier representations. 

Example 4.2.1 Let Ao be the set of all functions analytic in a neighborhood 

of zero. Let 

be a general differential operator and let G be the one-dimensional local Lie group 

with Lie product (p(g, h) = g + h, discussed at the beginning of this section. It follows 

from Theorem 4.1.2 that 

Q[z, EXP(at)] = Q[z, at] = z + at. 

and v(z, EXP(oct)) = v (z, oct) = ex 

for z e F and a e G, where exp(x) = e’' Is the ordinary exponential function. Thus, 

for a € G, f € Ac, the multiplier representation T(a): Ao~> 0^.0 is defined by, 
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(4.2.4) 

Now, it is simple to verify that T is a multiplier representation since Q = 9, thus (G, Q) 

is a local Lie transformation group. Furthermore, v(z, EXP(at)) is a scalar-valued 

function analytic in z and oct, v(z, 0) = 1 and 

thus, v(z, EXP(cxt)) is a muKiplier. 

From Eq.(4.2.4) we can verify that T(a) maps a function analytic in a 

neighborhood of zero to another function analytic in a neighborhood of zero. We can 

consider Ao to be the infinite dimensional vector space with basis {hk(z)]|(ro> 

hk(z) = z\ From Eq.(4.2.4), we conclude that there is no subspace S of AQ with a 

finite basis of polynomials such that T(a):S S. For a non-negative integer,n, 

a e G and ze F, 

It is trivial to check that Eq.(4.1.15) holds. However, in order to obtain an 

addition theorem from the multiplier representation given by Eq.(4.2.4), we use the fact 

that [T(a)hn](z) is analytic about t = 0 to expand Eq.(4.2.5) as an infinite power series. 

Using the binomial theorem and the power series expansion for e^ we find: 

(or 
[T(a)hn](z) = exp+ az (z + a)". (4.2.5) 

where 

if j > n 

If a 9^ 0, then by Eq.'s (4.2.2) and (4.2.3) we conclude that. 

(4.2.6) 
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By Eq.(4.2.6), 

[T{a + p)hn](z) 
r/ (a + 

= exd  2 
P) 2 \ 

7 k-O 

(« + P) n+k 

k! 2^2Fo(-n, -k;_; 
1 

(a + P)' 
). 

where (a + P) 0. However, by Eq.'s (4.1.15) and (4.2.6), if a and p are both non-zero, 

then 

[T(a + p)hn](z) 
«n+r 
-pr 2Fo(-n. -r; 

ra^+p2>i^^ 1_, . 1,, = exp^—2—) S 2 "ki—FT p ^ 2Fo(-r, -k: _: ^ )z^ 

Equate coefficients of z** in the two expressions for [T(a + p)hn](z) to obtain the 

following addition theorem for the 2F0 function, 

e“P(a + pr"2Fo(-n, -k; _; J ; ) 

= S  2Fo(-n. -r: _ : i) 2Fo(-r. -k; _ : ^). (4.2.7) 
r-O pa 

where a?tO, p5t0, a + p9t0and kand n are nonnegative integers. By Eq.(4.2.2), 

the summation on the tight hand side of Eq.(4.2.7) actually terminates after r = n. 

Example 4.2.2 Now we shall deal with polynomial sequences. Let pi(x) be 

a polynomial of exactly degree i, for i = 0,1,2 Then 

Po(x), pi(x), P2(X)  

is known as a polynomial sequence. The polynomial sequence, {Pn(x))n.,o, is a 

sequence of binomial type if it satisfies the infinite set of identities: 

Pn(x + y) = £ fk))k(x)Pn-k(y). n = 0,1,2,... (4.2.8) 
k-o '' 

(k)=kr(n"ik)l'"‘^''' (i;)= Oif k>n. where 
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A necessary and sufficient condition that {Pn(x)}n.o ^ ^ sequence of binomial 

type is the existence of a unique infinite series H(x) such that H(0) = 0, H'(0) ^ 0 and 

n-O 

(See Rota [1, p.8-20] for a detailed discussion of sequences of binomial type). 

Eq.(4.2.9) implies Eq.(4.2.8) due to the fact that 

goH(z)gPH(z) ^ g(ow-p)H(z) ^4 2.10) 

To see this, use Eq.(4.2.9) to substitute for e^^^^^and in Eq.(4.2.10) 

and then use Eq.(4.2.3) to obtain 

” ” Pk(g) Pi(p) Pk-i(g) Pi(p) .k ^ Pk(g + P) ^ 

kio i' k 
Equate the coefficients of and rearrange to obtain Eq.(4.2.8). Thus, given that 

Eq.(4.2.9) is the generating function of a sequence of binomial polynomials then there 

exists a simple and obvious proof that the polynomials satisfy Eq.(4.2.8). 

We can also utilize multiplier representations to obtain the same result. Our 

point in doing so is simply to verify that the group representation technique can be 

used in this simple case. 

Let 

D-H(2) + 0^ 

be a linear differential operator, where H(z) has unique infinite power series 

expansion such that H(0) = 0, H’(0) * 0 and there exists a polynomial sequence such 

that Eq.(4.2.9) holds. By Theorem 4.1.2 we know that D generates the Lie algebra of 

generalized Lie derivatives of a local Lie transformation group with group action and 

multiplier obtained by solving the differential equations 

m. 
dt = 0. x(0) = x° and 

dln(v(x°, EXP(at))) 
dt = aH(x(t)), v(x°, 0) = 1. 
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Thus, using the one-dimensional local Lie group used in Example 4.2.1, we obtain the 

multiplier 

[T(EXP(a))/|(z) = [T(a)/|(z) = o“«<‘^'/(z). (4.2.11) 

In the case of polynomial sequences, we are more interested in form than in 

analyticity. Thus we shall not concerned ourselves with ensuring that is a 

function analytic in some neighborhood of z = 0. We will manipulate the infinite 

polynomial expansions without worrying about where the power series converges. 

Consider how T(EXP(a)) acts on hk(z) = z^ k = 0,1,2,... 

and 

Use Eq.'s (4.2.11), (4.1.15), (4.2.9) and Eq.(4.2.3) to conclude that 

[T(a + p)hk](z) = = S ^'"^ml^ 
m-O 

(T(a+P)hiO(z) - {T(a)[T(P)hk])(z) 

= T(a)[f;P-^^z"«*] 
m-0 

- i^isrrr(a)h„,Ki(z) 
m-O 

_ yi Pm(P) Pn(«) nri4Jc4.n 
- 2. 2. ml nl ^ 

m-0 n-0 

m 

- s s 
m>0 n-0 

Pm-n(P) Pn(oc) 
(m - n)l n! ^ ' 

Fix m and equate the coefficients of z"''^'^ in the two power series expressions for 

[T(a + P)hk](z) to derive Eq.(4.2.8). 

We shall now give another example of using multiplier representations to prove 

an addition theorem for a sequence of polynomials. 
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Example 4.2.3 The polynomial sequence, {Pn(x)}n.o> >s a Eulerian family 

of polynomials, (see Andrews [1]). if 

i) Po(x) = 1 
ii) for each n, 

Pn(xy)= X fk) Pk(x)Pn-k{y)y^ (4.2.12) 
k-o 

where . [q]o = 1 and [q]n = (1 -q)(1 -q^)...(1 -q"), n>0, qe F. 

Andrews, [1, p.356]. Corollary to Theorem 6, shows that a necessary and 

sufficient condition for {Pn(x)}n.o fa an Eulerian family of polynomials is that its 

generating function is of the form 

V PnMtn JdM 
^ M" H(t) • 

(4.2.13) 

|k 
where H(t) has the formal power series expansion of the form X Rj Ck is the 

k-o 

coefficient of in Pk(x), k = 0,1,2 (by the definition of a polynomial sequence, 

Ck9tO,Co= 1). 

Let 

Pk(x) = i^PkW. k = 0,1,2,... 

Then Eq.(4.2.12) becomes 

Pn(xy) = X Pk(x)Pn-k(y)y'' 
k-o 

(4.2.14) 

and Eq.(4.2.13) becomes 

S Pn(x)t" 
n-0 

(4.2.15) 
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Thus, we can make the Eulerian polynomials q-free. We shall still refer to them 

as Eulerian polynomials. It is not obvious from the generating function Eq.(4.2.15) that 

the family of Eulerian polynomials, {Pn(x)}n.o, satisfies the addition theorems given by 

Eq.(4.2.12). However, we can use multiplier representations to prove it and thus 

obtain an alternate proof to the one Andrews gave, that Eq.(4.2.15) is sufficient to 

guarantee Eq.(4.2.14). 

Let 

^H(x) +^dx’ (4.2.16) 

oo 

where H(t) = X M. CK 0, 0 ^ k < <», CQ = 1, be a generalized differential operator. 
k.O 

Then by Theorem 4.1.2 we obtain the multiplier representation 

Ra)fl(z) = f(ze“). (4.2.17) 

H(ze**) 
T is indeed a multiplier representation with multiplier v(z, a) = ', because 

Q[z, oc] = ze" is an action for the one-dimensional local Lie group G, v(z, 0) = 1 and 

v(z, a)v(ze“, p) = v(z,a + p) = 

Now, let T act on the polynomials hn(z) = z*’, n = 0,1, 2 If there exists a 

polynomial sequence {Pk(x)}^o such that Eq.(4.2.15) holds, then by Eq.(4.2.17) 

[T(a)hn](z) = = £Pk(e“)z"-^'^e"“. (4.2.18) 

For simplicity, let x = e“ and y = e^. Then Eq.(4.2.16) becomes 

[T(a)hJ(z) = £ Pk(x)2"*'<x". 
k^O 

Thus, 
oo 

[T(a + p)hn](z) = X Pk(xy)z"+Vy". 
k-O 

However, 
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rr(o){T(p)hJl(2) =T(a)( SPk(y)z"*V) 
kwO 

eo 

= Ey"Pk(y)[T(a)'’n*k](z) 
k-0 

“ Ey"Pk(y) S Pj(x)z"*''*ix"*‘. 
k-0 j-xO 

Use Eq.(4.2.3) to obtain 

[T(«){T(P)h„}](z) = i S Pk.|(y)P,(x)x"*'<Vz"*''- 
k-0 j-0 

From Eq.(4.1.15) It follows that 

f;Pk(xy)2'' = 2 5^ Pk-j(y)Pj(x)x''-jz''. 
k-0 k-0 j-0 

Compare coefficients of to obtain 

Pk(xy) = 2 Pk-j(y)Pj(><)x^''. k = 0.1,2,... (4.2.19) 
j-0 

which is equivalent to Eq.(4.2.14). 

We have only shown that Eq.(4.2.19) holds for x = e“ and y = e^ If x e x 0, 

then 

f e if X > 0 

[glnlxl + ix if X < 0 ' 

Thus, Eq.(4.2.19) holds for all x s &/{0}. It Is simple to check that Eq.(4.2.19) holds for 

x = 0. Thus giventhegeneralizeddifferentialoperatorof Eq.(4.2.16)and a sequence 

of polynomials satisfying the generating function Eq.(4.2.15) we can derive the 

addition formula for the Eulerian family of polynomials defined on the field of real 

numbers. In Section 4.3 we give a final example of the use of multiplier 

representations in special function theory using a local Lie group of a higher 

dimension. 
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Section 4.3 Multiplier Representations and the Hermite Polynomials. 

The special functions known as the Hermite Polynomials, Hn(x), are defined 

by the relation 

exp(2xt -12) = £ 
n>0 

Hn(x)tn 
n! ’ (4.3.1) 

valid for all finite x and t. For a further discussion of the Hermite Polynomials see 

Rainville [1, p.187>199]. Our final examples involves these polynomials. We shall use 

the 3‘dimensional local Lie group introduced in Section 1.2, Example 1.2.4 to prove 

the addition theorem 

(Vai^ + a2^ 
aiXi + B2X2 

= S fkWai"'''Hk(x2)Hn-k(xi). 
k-o ^ 

(4.3.2) 

We can prove Eq.(4.3.2) in a simple but not obvious manner from the generating 

function Eq.(4.3.1). Substitute 

X 
aixi + a2X2 

Vai^ + 
and t = zVai^ + a2^ 

into Eq.(4.3.1). Then 

Hn 

exp(2z (aixi + 02X2) - » Y, 
n-O 

aixi + a2X2 

Vai^ + a2^ 
nl (ai^ + a2^)"^ z". (4.3.3) 

But, by Eq.(4.3.1), 

exp(2z(aiXi + 02X2) - z^(a-i^ + a2^)) = exp(2zaixi - z^ai^)exp(2za2X2 - z^a2^) 

^ Hn(xi)ain 

V n-o 
I 
k>0 

HkixzM.k' 
k! ^ 

Use Eq.(4.2.3), to conclude that 

exp(2z(aixi + a2X2) - 22(31^ + 32^)) = £ 
n-o 

^ Hn-k(Xl)ain-k Hk(X2)a2»< 
L (n-k)! k! ^ (4.3.4) 



Compare the coefficient of z'' in Eq.'s(4.3.3) and (4.3.4) to obtain Eq.(4.3.2), as 

required. We shall now prove Eq.(4.3.2) using multiplier representations. 
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From Example 1.2.4 we have a 3-dimensional complex local Lie group G, with 

Lie product defined by 

<p(g. h) = ((1+gi)(1+hi)-1, (1 +gi)h2 + g2(l +hi)2, 

where g = (gi. gz, ga) and h = (hi, h2, ha) are elements of G. 

From the definition of <p and Theorem 1.3.1 it follows that the Lie algebra of G, 

L(G), is the vector space C3 together with the commutator [a, p] such that 

From Eq.(4.3.6) and Corollary 1.3.1 we find that the following three relations 

completely determine the commutator for L(G). We shall now find the one-parameter 

subgroups of G. 

It follows from Theorem 1.4.1 and Eq.(4.3.5) that the one-parameter subgroups 

g(t) = EXP(ot) are as follows: 

If ai 0, then 

g(t) = (exp(ait) - 1. — [ exp(2ait) - exp(ait) ], 

(1 + gi)h3 + 2g2ha(1 + hi) + ga(1 + hi)3). 

= (gi + hi + gihi, g2 + h2 + gih2 + 2g2hi + 
ga + hs + giha + 2g2hi h2 + 2g2h2 + 3gahi + 3gahi2 + gahiS), (4.3.5) 

1. [a. Pli = 0. 
2. [a. p]2 = tt2pi - aip2. 

3. [a, p]a =2(tt3pi - aipa) . 

(4.3.6) 

1. [(1. 0. 0). (0. 1. 0)] = -(0, 1.0). 
2. [(1.0. 0). (0. 0. 1)] = -2(0. 0, 1). 
3. [(0. 1.0). (0. 0, 1)] = (0. 0, 0), 

(4.3.7) 

[ exp(3ait) - exp(ait) ]). 

If ai=0,then g(t) = (o, a2t , a22t2 + 03t). 
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Writing the one-parameter subgroups in terms of the basis of L(G), we have 

EXP((1,0, 0)t)= (e'-1, 0, 0), ] 
EXP((0, 1,0)t) = (0,1, t2), k (4.3.8) 
EXP((0, 0, 1)t) - (0. 0, t) J 

This leads to the following parameterization of G. 

Lemma 4.3.1 There exists an open neighborhood, W,of e e G such that 

every g = (gi, gz, gs) e W can be uniquely written 

g = (91.92.93) = (e^ -1, be^^, (t)2 + c)e^), 

for some t, b, c e C. 

Proof: It is a simple matter to solve the three equations for the three unknowns 

X, b, and c. Since x = ln(1 +gi), then we must restrict gi in order for x to be 

uniquely defined. 

Q.E.D. 

The significance of this result follows from the fact that, as the reader can check, 

(o’ -1, be^, (b2 + 0)8®*) = <P(EXP(0. 0, c), <p(EXP{0, b, 0), EXP(x, 0,0))), (4.3.9) 

where q> is defined by Eq.(4.3.5), and the one-parameter subgroups are obtained from 

Eq.(4.3.8). 

Thus, Lemma 4.3.1 allows us to write elements in G in terms of the three one- 

parameter subgroups associated with the usual basis of L(G). We shall now discuss 

an algebra of Lie derivatives isomorphic to L(G). Let 

Di = -u - x^, D2 = (OX and 03 = cox2, (4.3.10) 

where u and o are elements of C, co 0. Then the three differential operators are 

linearly independent and 

(1) [Di,D2l = -D2, 

(2) [Di,D3l = -2D3. 

(3) [D2, D3] = <j). 

By Eq.(4.3.7) L(G) is clearly isomorphic to the Lie algebra generated by 
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{Di, D2, D3} with isomorphism defined by (1,0,0) ^ Di, (0.1,0) D2, (0,0,1) -> D3. 

Thus we can apply Theorem 4.1.2 to the current situation. 

Leinma 4.3.2: Let Di, D2 and D3 be the three general differential operators 

defined by Eq.(4.3.10). Then 

[T(e‘' -1, be^*, (b^ + c)e^)f\{z) = exp[co(zb + z^c) - ux]/(ze'^) (4.3.11) 

is a local multiplier representation on the local Lie group G, with Lie product defined 

by Eq.(4.3.5). 

Proof: The proof follows from Theorem 4.1.2 and Eq.’s(4.3.8) and (4.3.9). The 

Lie algebra generated by Di. D2 and D3 is isomorphic to L(G), where G is the local 

Lie group with Lie product defined by Eq.(4.3.5). By Theorem 4.1.2, Di, D2 and D3 

form the basis of a Lie Algebra of generalized Lie Derivatives of a local multiplier 

representation T, obtained by integrating 

W fi 
^x(t) = -aix(t); ^ lnv(x°, EXP(at)) = -aiu + az cox(t) + a3Co(x(t))2 , 

with the initial conditions x(0) = x^^, and v(x°, 0) = 1 and EXP(at) determined by 

Eq.(4.3.8). Instead of solving these differential equations directly for the multiplier 

T(EXP(at)), we do the following. Consider [T(EXP((1,0,0)t))fl(z). To find 

[T(EXP((1,0,0)t))/](x°) we must Integrate 

^x(t) = -x(t), x(0) = x°: ^ Inv(x0, EXP(ot)) =-u, v(x°, e) = 1. 

Clearly, x(t) = x°e‘* and v(x°, EXP((1,0,0)t)) = e'^". Therefore, 

[T(EXP((1,0. 0)x))/3(z) = e-‘"/(ze^). (4.3.12) 

Similarly, 

[T(EXP((0. 1, 0)b)) fl(z) = exp(Q)zb)/(z), (4.3.13) 

and [T(EXP((0.0, 1 )c)) /|(z) = exp{(az^c)fiz). (4.3.14) 

Now consider [T(e“* - 1, be2'f, (b2 + c)e^^)f]{z). By Eq.'s (4.1.15), (4.3.12), 

(4.3.13) and (4.3.14), 

[T(e^-1,be2^, (b2+ c)e3^)/l(z) = [T((EXP(0, 0, c)EXP(0. b. 0))EXP(x, 0, 0))f](z) 
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= {T(EXP(0, 0, c)) [T(EXP(0, b, 0)) (T(EXP(T. 0, 0))f )]}(z) 

= exp(coz^c)exp(oi)zb)e‘“^f(2e^), 

which simplifies to the required result. 

Q.E.D. 

Note that, by Lemma 4.3.1, this means that we have completely defined the 

effect of the multiplier rep on an open neighborhood W of e. Assume 

g = (e^ -1, be2^, (b^ + C)G^ e W. 

Lemma 4.3.3 If c^O, then 

[T(e^ -1, be2^, (b2 + c)e^)f\{z) = e"*” 
n-O 

ni f(ze-^). (4.3.15) 

Proof: From Eq. (4.3.11) we know that 

[T(e'' -1, be2^, (b2 + c)e^)f\{z) = exp[co(z^c + zb) - UT]f(ze“^). 

-b^ l-d) I— 
X = ~2^~c * = z-y-toc , c?t0. 

exp[(o(zb + z2c)] = exp(2xt-t2) = 6xp(2^yj^^ z^-coc- z^(-o)c)) 

Thus, by Eq.(4.3.1), Eq.(4.3.11) becomes 

[T(e'' -1, be2^, (t>2 + c)e3^)f](z) = exp[co(z^c + zb) - ux]f(ze'^) 

Then 

= e--X nl f(ze^). 

as required. 

Q.E.D. 
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Now that we can express our multiplier representation in terms of the Hermite 

polynomials we are ready to prove Eq.(4.3.2). Let gi, 92, <p(gi, 92) ^ G. Then by 

Lemma 4.3.1 there exists xj, bj and q , j = 1,2,3, such that 

9j. (exp(xj) -1, bjexp(2xj), (bj2 + q)exp(3xj)), j = 1 or j = 2, 

and <p(gi, 92) = (exp(t3) -1. b3exp(2x3). {^3^ + C3)exp(3i3)). 

By direct calculation from Eq.(4.3.5) we find that 

X3 = Ti + X2, b3 = (bi + b2exp(-xi)) and C3 = (ci + C2exp(-2xi)). (4.3.16) 

Now, let Ao be the space of all functions analytic in some neighborhood of zero. 

Then AQ has basis hk(z) = z*^, k = 0,1,2 and by Eq.(4.3.11), for g in some 

neighborhood of e and |z| close to zero, T(g): 1^0 AQ. Let gi, 92, 9(91,92) be 

close to e and |z| be close to zero. By Eq.(4.1.15) 

[T(<|)(gi.g2))hn](z) = [T(9i)[T(g2)hn]](z). 

It follows from Eq.’s (4.2.3) and (4.3.15) that for ci, C2 both non-zero. 

exp(-uxs)X 
k-O 

(zexp(-X3))' 

= exp(-ux2)X 
j-o 

H 

j! exp(-nx2)[T(gi)hn4.j](z) 

H 
= exp((-u-n)(x2+xi)) 

k,j-0 
i! kl exp(-jxi)z'^'^'^'^j 

= exp((-u-n)(x2 + xi)) 

k-O j-0 jl (k - j)i 
,n+k 

However, by Eq.(4.3.16), 
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exp(-UT3)X 
k-O 

HI 

k! (zexpK))" 

exp((-u-n)(xi+t2)) 

Hk 

xS 
k«0 

-(bi + b2exp(-ti)) 

A/ (ci + 

-CD 

C2exp(-2xi)) 
(V-®(ci + C2exp(-2xi)))‘ 

,n+k 
k! 

Compare <x)efficients of z""*’*' In the two expressions of [T(q)(gi, g2))hn](z) to conclude 

that 

Hk 
-(bi + b2exp(-xi)) ^| (0,. c.;xp(-2.,)) y 

(4.3.17) 

Let 

ai = V^,32 =Vc2exp(-2xi). 

to transform the addition formula given by Eq.(4.3.17) into Eq.(4.3.2), as required. 

If we wanted to, we could use the fact that, 

[T(<i>(<p(g. h), m(2) = [T(9(g, h)){T(k)4](z), 

to obtain the generalized addition formula for the Hermite polynomials, which is: 

, 2 \n u ^2X2 4- . . . + anXn 
‘n / np ("Vai^ + a2^ + . . . + a, 

Vai^ + a2^ + . . . + an' 

- 'L (ki,k2, . . . ,kn)n®^^^i<i(^l)' 
k,+k2+ ... +k„ - n'' ■'j-1 

(ki,k2, . ,kn)- kil k2l . kn! ' 
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Both Miller [2, p.104-106,138, 304-305] and Vilenkin [1, p.560-567] arrive at 

equivalent addition formulas and other properties for the Hermite polynomials using 

multiplier representations. Miller discovers the properties while investigating the 

representations of various Lie algebras and Vilenkin derives his results on Hermite 

polynomials after studying Gegenbauer polynomials and Bessel functions with the use 

of multiplier representations. 

As the examples of Sections 4.2 and 4.3 indicate, multiplier representations can 

be a valuable tool in studying the properties of special functions. One starts with a Lie 

algebra, (or equivalently a local Lie group), examines the different multiplier 

representations to discover any special functions involved, then derives any possible 

addition theorems. In order to avoid repetition of results, the study should be done in 

a logical manner examining non-isomorphic Lie algebras and non-equivalent 

multiplier representations. The theory of multiplier representations provides a general 

method to examine special functions as opposed to using different methods 

specifically tailored for a given special function. 
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