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Abstract

In "Symmetry Groups and Their Applications”, by W. Miller [1, p.152-206],
Miller discusses local Lie group theory and certain resulting applications in special
function theory. In the course of this discussion Miller considers local Lie
transformation groups and Lie derivatives. Miller is able to prove that any Lie algebra
of differential operators is the set of Lie derivatives for some local Lie transformation
group (G, Q), where G = (V, ) is the underlying local Lie group and Q is the action.
Miller's proof shows that the action Q can be found by solving a system of ordinary
differential equations. His proof does not explicitly give the underlying local Lie group
G. lt only shows that such an underlying local Lie group exists.

We show that if you restrict the Lie algebras of differential operators to ones
with a basis of the form {Li}.4, such that
" d
Lk = 21 Pi(X) 3
-
where Pi(e) = di, 1 <i, k < n, then we can construct a local Lie group G = (V, ¢) such
that the local Lie transformation group (G, ¢) has Lie derivatives Span({Lk}Eﬂ). The

Lie product ¢ of G is found by solving a system of ordinary differential equations. Our
proof is an adaptation of the one Miller uses to find the action Q of a local Lie
transformation group with Lie derivatives {L.JL’_,. We also show that the Lie algebra of

G is isomorphic to Span({Lk}:ﬂ). Thus we have found a method of constructing a

local Lie group from its Lie algebra when the Lie algebra is realized as differential
operators having the above form.

The fact that any Lie algebra of differential operators is the set of Lie derivatives
for some local Lie transformation group is important in applying local Lie theory to
special function theory. By means of local Lie groups that are not sets of matrices, we
verify known addition formulas for polynomials of binomial type, 2Fo hypergeometric
series, Eulerian polynomials and Hermite polynomials.

Although our results can be derived by various special function techniques, our
examples are interesting in that they show that the various addition formulas can all be
obtained by using the same local Lie group theory.



Chapter 1
Elementary Local Lie Group Theory

Section 1.1 Introduction

In this thesis we consider the relationship between local Lie groups, Lie
algebras and Lie derivatives. We are particularly interested in two things. One, we are
interested in using a Lie algebra of differential operators, A, to construct a local Lie
group G with Lie algebra isomorphic to A and two, we are interested in applying local
Lie theory to spedial function theory. In order for the thesis to be fairly self-contained, a
review of elementary local Lie group theory is necessary. To avoid complex
topological problems, we consider a simplified, algebraic development of parts of local
Lie group theory as provided by Millerin [1] and [2].

We begin by defining a local Lie group. Let F be the field of either real
numbers, R, or complex numbers, €. Let F, be the vector space of all n-tuples
g=(91,92 ---,9n).0;€ F. Let e=(0,0,...,0) be the zero vector of f, and suppose
V is an open set in F,, containing e. We assume that F, has the usual topology.

Definition 1.1.1 (V, ¢) is an n-dimensional local Lie groupif¢is a
function, ¢: VXV = F, such that

(1) Forallg, he V, ¢(g, h) is an analytic function in each of its 2n

arguments, g1,92,...,0n N1, D2, ..., hp. (1.1.1)
(2) Ifo(g.h)e V and o(h, k) € V, then ¢(e(g, h), k) = ¢(g, ¢(h, k)). (1.1.2)
(3) ole,g)=9¢p(g,e)=g foralige V. (1.1.3)

If (V, @) is a local Lie group we call ¢ its Lie product and we define the
inverse of the element g, g™, if it exists, to be that n-tuple in F, such that
9(g.g') = o(g'. @) = e. Note that we do not require the existence of inverse elements

in the definition of a local Lie group.

The reader should notice a similarity between the definition of a local Lie group
and the definition of an ordinary group of elementary aigebra. Local Lie groups are
derived from Lie groups, which are themselves ordinary groups with special
topological properties. We will deal only with local Lie groups.



Local Lie groups first appeared in the work of S. Lie and his colleagues [1], as
Lie transformation groups . Lie groups, local Lie groups and their representations
have imponrtant applications in the study of special functions (see Miller [2] and
Vilenkin [1]), and in the theory of differential equations (see Pontryagin [1] and
Pommaret [1]).

Since the most important tool for studying local Lie groups is the
correspondence between the local Lie group and the structure known as its Lie
algebra, we discuss some of the theory concerning local Lie groups and Lie algebras
in Chapter One. Lie algebras are a field of study unto themselves, (see Jacobson [1]
and Bourbaki [1]), but we are only interested in them with respect to their relationship
to local Lie groups. The material presented in Chapter One serves as the background
theory for the later chapters.

In Chapter Two we introduce local Lie transformation groups and the differential
operators known as Lie derivatives. We prove that the set of all Lie derivatives of a
local Lie transformation group forms a Lie algebra of differential operators and we
show that any Lie algebra of differential operators is the set of all Lie derivatives of
some local Lie transformation group. For the most part, the material of Chapters One
and Two is covered in Miller [1] and [2].

In Chapter Three we consider a specific type of differential operators that
generate a Lie algebra and use the techniques of Chapter Two to find a local Lie
group G = (V, @) such that the Lie algebra of G is isomorphic to the algebra of
differential operators. This result differs from the results of Chapter Two in that we not
only prove the existence of a local Lie transformation group with a given set of Lie
derivatives, we actually find one. Essentially it provides a means to construct a local
Lie group from a Lie algebra satisfying certain properties.

In Chapter Four we utilize the material of Chapters One and Two and the
additional concept of multiplier representations to prove some addition theorems for
special functions of Mathematics. The goal here is to provide simple applications of
the theory. Miller [2] and Vilenkin [1] do a more thorough examination of the
application of the local Lie group theory to special function theory.



Section 1.2 Local Lie Groups and Local Linear Lie Groups

In Section 1.1 we defined an n-dimensional local Lie group G = (V, ¢) on the
field F. If F = €, then we have a complex local Lie group. If F =R, then we have
a real local Lie group.

Since g:VxV — F, V < Fo, 9(@, h) is an n-tuple. Let ¢j(g, h) denote the j"
component of ¢(g, h),j=1, 2, ..., n. The following Lemma guarantees that g™ exists
for g in some open neighborhood of e.

Lemma 1.2.1 (See Miller, [1, p.163]). Let G = (V, ¢) be an n-dimensional
local Lie group. Then there exists an open neighborhood V' about e, V' 'c V c F,,
such that for g e V1, there is a unique element g™ € V such that

099" =9@) g)=e.

Proof:. Let G = (V, ¢) be an n-dimensional local Lie group. Fix g € G and let
f(h) = 9(g, h). Now,

a(pi(el h) - ai.
ahi h=e .
1ifi=]j
where §j .—-.{ . , is the Kronecker delta function. Thus, if g is close to e,
Oifi#]j

say g in some neighborhood V; of e, the Jacobian

a(Pi(g, h)
de*{ [—Thk—— h=.}si.k5n] #0.

Thus, by the Inverse Function Theorem (see Apostol [1, p.144], there exists a
neighborhood of e, such that for all h close to e, f(h) exists, and is analytic in g and
h. In particular f(e) exists.

fof (e) = e = (g, T'(e)).

Thus, the right inverse, x = f(e) exists forg e V,. Similarly, there is an open set V|
aboute, V| ¢V, suchthatallgin V| have a unique left inverse, y.

V=V, NV, isanopen setaboute suchthatallgin V' have a unique left
inverse, y, and a unique right inverse, x. Since ¢ is a Lie product:



y= <P(V, e) = (P(y' (P(g, X)) = ‘P(‘P(yv g)’ X) = (P(e’ X) = X.

Thus, every g € V™', has a unique inverse, g'=x=ye V.
QE.D

Unfortunately, the current definition of a local Lie group will not provide simple
proofs of certain material covered in Chapter One. Thus, we introduce the concept
of a local linear Lie group.

Definition 1.2.1 Alocal linear Lie group is a set of mxm nonsingular
matrices A(g) = A(g¢, 92, - - - , On) defined for each g € W (where W is an open sphere

about e € F; ), such that

(1) A(e) = E,, the mxm identity matrix. (1.2.1)
(2) The matrix elements of A(g) are analytic functions of g4, 9o, . . . , On

and the map g — A(g) is one-to-one. (1.2.2)

. dA(g) . . .
(3) The n matrices ag; j=1,...,n,are linearly independent for (1.2.3)
j
eachge W.
(4) There exists a neighborhood W’ of e in F,, W' c W, with the (1.2.4)

propenrty that, forg, he W' thereisak e W such that A(g)A(h) = A(k),
where juxtaposition means matrix multiplication.

Local linear Lie groups are essential to our development of Lie theory,
particularly in Section 1.5. They also have important applications in representation
theory. We justify calling local linear Lie groups a special type of local Lie group with
the following Lemma.

Lemma 1.2.2 (See Miller [1, p.164]). Every local linear Lie group G defines
alocal Lie group, (W', @), where the Lie product, ¢, is given by A(g)A(h) = A(¢(g, h)).

Proof: Let W be an open sphere about e in F,, and let the set of mxm
matrices A(g), g € W, be a local linear Lie group. Let W’ be the open neighborhood

ofein F,, W < W, such that Eq.(1.2.4) holds. Forg, he W', let (g, h) = k.

First, we show that ¢(g, h) satisfies Property(1.1.1). From the implicit function
theorem (see Apostol [1, p.147]) and Eq.'s (1.2.2) and (1.2.3) we have that the g;,



1 <i < n, are analytic functions of the matrix elements of A(g), Aj(g), 1 <i,j<n.
Therefore, k = (g, h) is an analytic function of the A;(k). Since A(k) = A(g)A(h), and
the A;(g) are analytic functions of g4, . . . , gy, then ¢(g, h) is an analytic, vector-valued
function of g4,8gs, . - . , On, Dy, oy . . ., Dy

Obviously, o:W'xW'— F,, and, ¢(g, ) = ¢(e, g) =g since
A(g)A(e) = A(e)A(g) = A(g).
Furthermore, since matrix multiplication is associative,

(A@)A(h))A(K) = A(g)(A(h)A(K)).
Le. A(9(g, h))A(k) = A(g)A(e(h, k)).

Thus, if ¢(g, h) and ¢(h, k) e W' then ¢(p(g, h), k) = ¢(g, ¢(h, k)), and(W’, ¢) is a local

Lie group, as required.
Q.E.D.

We now provide some examples of local Lie groups.

Example 1.2.1 G = (Fq, +), where '+' is ordinary vector addition, and nis a

positive integer, is obviously an n-dimensional local Lie group. It is also
commutative, since ¢(g, h) = ¢(h, g) forallg, h e F,. Note, G is also an ordinary

group, where g*' = -g.

Example 1.2.2 The set of one-dimensional local Lie groups defined by
Gy = (F, 9), where ¢(g, h) =g + h +ygh, g, he F, yis a constant from F, and
juxtaposition is ordinary multiplication.

Let g, h, ¢(g, h), o(h, k) e F. Then

@(p(g, h), k) =o(g + h + ygh, k) = (g + h + ygh) + K+ y(g + h + ygh)k
=g + (h + K + yhk) + yg(h + k + vhk) = ¢(g, @(h, k)).

Thus, Eq.(1.1.2) holds. Eq.'s (1.1.1) and (1.1.3) obviously hold, so Gy is a local Lie
group, forallyeF. If y=0, then,forallge F, g'=-g. Fory=0,

g'=—— forg L , and no inverse exists for g = =
1+7g Y Y



Example 1.2.3 The one-dimensional real local Lie group G = (V, ¢) where
V ={ge R|-0.4<g<0.4}and (g, h) = In(e? + &"- 1).

V is open and contains e = 0, and if g, h > -0.4, then €% + e"-1>0,s0 ¢(g, h) is
defined forg, he V and :VxV — R. Also, ¢(g, 8) =In(e? +e°- 1) =g = ¢(e, g), for
g € V. Furthermore, if ¢(g, h) € V and ¢(h, k) e V then

o(0(g, h), k) = In( (€9 + €" - 1) + eX-1) = In(e? + (" + €X - 1) - 1) = 9(g, g(h, K)).
Thus, we need only satisfy ourselves that ¢(g, h) is analytic in g and h.

A function f(x) is analyticin x on aninterval (a- g, a + 8), if f is equal to the
sum of a power series in x throughout (a - 8, a + §). From elementary calculus we
know

o ¢ g1k
In(1 +x) = Z (_1ka+1

i~ k+1 ’

-1<x<1.

Letx = (e9 +e"-2). Thenfor1<e?+e"<3,

- (.1\k
In(e9 +e"-1)= 2 (k—l_%-(e9+eh-2)k+1.
k=0

lIf g,heV then 1<e?+e"<3. Hence, ¢ is analytic in g and h, as required. Thus, G is
indeed a one-dimensional local Lie group.

Now,
InEe®+e"-1)=0e=e"=2-e9< h=In(2- e9).

Thus, ife? <2, theng™ = In(2 - €9), and if 69 2 2then g! does not exist. The open
sphere V1=V ={g e R|-0.2 < g < 0.2} is an open neighborhood about 0 such that if
ge V' then there exists a unique g' € V suchthat ¢(g,g')=0=e.

Example 1.2.4 The 3-dimensional complex local Lie group G = (€3, ¢), where

(p(g’ h) = q’((g'l: g2, 93)! (h1! h2, h3))
= (1 +g1)(1 + M) -1, (1 + gy)hz + g2(1 + hy)2,
(1 + g1)hs + 2g2ha(1+hy) + ga(1+hy)3)



Verification that G is a local Lie group is similar to Example 1.2.2, and is thus
omitted. It follows that

4 _ (91 g2 2022 O3 if Gt -
o' =(T30r Teod [@eam (1+g1)4} g1,
and g does not have an inverse if g4 = -1.

Example 1.2.5 Let W ={(x, y, 2)| |x|>-1,X,y,z e R}. The set of 3x3
matrices,

1491 @2 gs
A = O (1+91)? 202(1+91) | gy
0 0 (1+g4)3

forms a 3-dimensional complex local linear Lie group.

Since g -1, det(A(g)) #0 so A(g) is nonsingularifge W. A(g) = A(g1, 92, 93)
is defined for each g e W . Properties (1.2.1), (1.2.2) and (1.2.3) obviously hold. We

now verify that property (1.2.4) is true.

Let W’ Dbe the open sphere of radius 1/2 aboute. For g, he W,
g1+hy+gihi>-1. Ifg,he W, let k= (kq, ko, K3) where

ky =g1 + hy + g1hy, ko = (1 + g1)ha + g2(1 + hy)?,
and kg = (1 + @1)hg + 2goho(1 + hy) +ga(1 + hy)2.

Then ke W, and A(g)A(h) = A(k), as required.

Note that , if we define the Lie product ¢ by A(g)A(h) = A(p(g, h)), then we
essentially have the local Lie group G of Example 1.2.4, defined on the reals instead
of the complex field.

From the examples, it is clear that for a fixed open set V containing e, many Lie
products ¢, are possible such that (V, ¢) is a local Lie group. Example 1.2.2 provides
an infinite number of Lie products on V = F. Furthermore, the choice of the open set
V is not unique. In fact, we have the following Lemma:



Lemma 1.2.3 Let G=(V, ¢) be alocal Lie group. If V'c V,and V’ isan
open, connected set containing e, then G’ = (V’, ¢) is also a local Lie group.

Proof: Obvious.

Thus we can shrink the open neighborhood V, about e, on which G is defined,
without further consideration. Since V can vary, the Lie product, ¢, shall be
considered the determining factor of a local Lie group. Since there are an infinite
number of local Lie groups, the concept of locally isomorphic local Lie groups is
useful.

Definition 1.2.2 Let G =(V, ¢) and G' = (V', ¢’) be 2 local Lie groups. Let
p map an open neighborhood W of e € G into an open neighborhood W'ofe’' e G'.
Then p is (local) analytic isomorphism if u is one-to-one and onto, and

w(e(g, h)) = ¢'(u(@), n(h)), where g, hand ¢(g, h) € G,

such that p and its functional inverse, p™':W'— W, are both analytic functions of the
coordinates of G. If such a mapping exists, G is said to be (locally) isomorphic to
G.

In the remainder of the thesis any references to local Lie group isomorphisms
are actually references to local isomorphisms. The local Lie groups of Example 1.2.2
can be used to provide an example of a local isomorphism. Go = (F, ¢) and Gy . (F, ¢'),
are (locally) isomorphic with isomorphism p:Go — G1 defined by p(g) =e9-1. pis an
analytic function of g and since €9- 1 = e -1 g =h, pisone-to-one. Nowif h e Gy,
then pu(in(h + 1)) = h for |h| > -1. Thus, u is onto for the neighborhood of Gy where
g e Gy, |g| >-1. Finally note that pu is a local isomorphism because

w(p(g, h)) = (g + h) = %" - 1
=(69-1) + ("~ 1) + (69 - 1)(e" - 1) = ¢'(u(g). p(h)).

Obviously, local isomorphism is an equivalence relation that can be used to partition
the set of all local Lie groups into equivalence classes.

Now, consider the Lie product ¢ of a local Lie group G. Since ¢ is an analytic
function of its 2n arguments, we can expand ¢j(g, h) as a Taylor series about
g=h=e.
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29;(g. h)|g a(p,(g h)
(Pl(g' )" q’](g h)lg-h-a Z agr 9: h=e Z g= h-o
zach )2¢;(g. h)|g.gs 3% (9. h)
ot agl‘ags g= =h=e ah,ah g=h=°

g/hy + {terms of order > 2 in g,, hg}.

n 92¢(g, h
£ 3 ?i(g )g=h=o

dg,dhg

r,S=1

Since @;(g, e) = gj(e, g) = g;, g € F, we can simplify this expansion considerably. We
find

gihs  + {terms of order > 2iin gy, hg}

2 92 |(g s h)
q’j(g! h) = gj + h] + 21 (apg'ahs
r,S=

g=n=eé
We write this as
n
¢i(g. h)=gj+h; + Z Cjrsgrhs + {terms of order > 2 in gy, hg}, (1.2.5)
r,s=1
where
02¢i(g. h)
o _ Y\, TY

n
Lemma 1.24: ) Cj,Crtv - CjtCrys = O
r=1

Proof. From Eq.'s (1.1.2) and (1.2.5), it follows that

(g]+h + chrsgr s)"‘kj'*' chrs(gr + h, + Zcrtvglh )ks

r,s=1 r,S=1 t,v=1

= gj+(hj+k + chrs Ks) + chtrgt(h + ky + zcr vshy ks)’

r,Ss=1 t,r=1 V,5=1

where terms of order 2 or more in gs, h; or k; are omitted. Equate coefficients of g;h ks,

to get the required resulit.
Q.E.D.

In a similar manner, fix h and expand ¢;(g, h) in a Taylor Series about g = e as
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n
¢i(@. h) = h;+ Y Fy(h)gy + {terms of order22inthe g},  (1.2.7)
k=1

where

Fh) = 9¢i(g, h)

Sor (1.2.8)

The Fy(h) will be used in Section 1.4. The associative law of the Lie product proves
the following identity:

Lemma 1.2.5 (See Miller [1, p.175], Eq.(5.4)).

0 d¢ih, k o
Fifoh, k) =3 28K e m, 15ijsn

Proof: By Eq.(1.1.2), for o(g, h) and ¢(h, k) e V, 1<i<n

9i(g, o(h, k)) = (Pi(q’(gs h), k).

Expand both sides of this expression about g = e using Eq.'s(1.2.7), (1.2.8) and the

chain rule. Compare coefficients of gj to obtain the required result.
Q.E.D.

We will now consider Lie algebras.

Section 1.3 Lie Algebras

Lie algebras are an important tool for studying local Lie groups. The Lie
algebra of a local Lie group is created from the structure of local Lie groups. First, we
define curves and tangent vectors on the local Lie groups as follows:

Definition 1.3.1 Let G = (V, ¢) be an n-dimensional local Lie group. Let
t — g(t) = (g1(t), - . . , gn(t)), t € F, be an analytic mapping of a neighborhood of 0 € F
into V such that g(0) = e. Then g(t) is an analytic curve through the identity on
G. The tangent vector to g(t) at e is the vector

o= Qg{nlt_; (d_gé_t(n, . ,dgi‘—(dtﬂ )It.oe Fo. (1.3.1)
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If ae R, thenat=(aut, ..., ant), t sufficiently close to 0 € F, is one analytic
curve in G with tangent vector a € F,. Conversely, a € F, is the tangent vector of an

infinite number of analytic curves in G. The following is also true:

Lemma 1.3.1 (See Miller [1, p.166]). If g(t) and h(t) are analytic curves
through the identity in G with tangent vectors «, B , respectively, then @(g(at), h(bt)) is
an analytic curve through e with tangent vector aa + bp.

Proof: Follows from Definition 1.3.1 and Eq.(1.2.5).
Q.E.D.

Thus, the vector space F, with ordinary vector addition and scalar multiplication,
is the tangent space of the space of analytic curves in G.

Definition 1.3.2 Let g(t) and h(t) be analytic curves through the identity on
G = (V, @) with tangent vectors a, B, respectively. The commutator [o, B] of c and P is

as follows:

[o, B] = %m| i (1.3.2)

where k(t) = (p(g('t), o(h(), (g-1(z), h (1)))), t=12. Since g is associative for t close
to e, we write k(t) = g(t)h(t)g-1(r)h-1(t), where juxtaposition denotes the Lie product ¢.

Eq.(1.3.2) is valid as long as the coefficient of 1 in k(t) is 0. The validity of
Eq.(1.3.2) is confirmed in the proof of the following theorem. Theorem 1.3.1 provides
a simple way of calculating the commutator of two tangent vectors.

Theorem 1.3.1 (See Miller [1, p.167], Theorem 5.6).

[, Bl =Y ¢} auBs, (1.3.3)

rS=1

where ¢°= Cj,s-Cjsn and Cjs is given by Eq.(1.2.6).

Proof: Let g(t) and h(t) be analytic curves in G, with tangent vectors a and B,
respectively . By Lemma 1.2.1, g™'(1) and h™}(z) exist for 7 close to 0, thus.

k(t) =g(vh(n)g'(x)h(z), t=12
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is an analytic curve in G. Write g;(t), ki(t) and h;(t) as Taylor series, omitting terms of
order>2in t, as

gt =ou+b®+... , hE)=Pfr+c+... ,
and ki) = pje + a2 + . . .

By Eq.(1.3.2), if pj= 0, then [a, B]; = a. From our definition of k() it follows that
o(k(t), o(h(t), g(1))) = o(g(t), h(t)). Then, by Eq.(1.2.5), omitting terms of order >2in 1,

?(g(z), h(z)) = (o5t + bjr2) + (Bjv + ¢j2) + 21cj,,sa,ﬁsz2.
and "

@;(k(t), @(h(z), g(1))) = pjt + ajt2 + (Bjt + ¢j13) + (o4t + bj?)

n n
+ 2 ci.rsﬁras'tz + Z Ci,rsPrT(0sT + Bst ).
rs=1 r,s=1
Equating coefficients of ¢ and 12 in 9j(k(t), o(h().g (7))) and ¢;(g(t), h(z)) to

obtain:

pi+ 05+ Bj = Bj+a,
and

n n
aj+Cj+ b+ Z cj,rs(Bras + pBst + pras) = (Cj+ by + z cj,rs_arBs .

rs=1 r,s=1

n n
Thus, pj=0,and aj+ Y Byt = Y Cs4Bs, j=1,2, .. ., n. Rearrange to get

rs=1 r,8=1
the required result:

[a, B]] =a= Z(Cj,rs - Cj,sr)%rPs.

r,s=1

Q.E.D.

The constants ¢, 1 <j, r, s < n, are called the structure constants of the
local Lie group G.
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Corollary 1.3.1 (See Miller [1, p.168], Theorem 5.7). For all a, B, Y€ Fn and
forall a,be F:

(1 [ B] = B, ol (1.3.4)
(2) [ac+DbB,y = ala, v] + b[B, 11 (1.3.5)
(3) [[c, ﬁ]- 1+ Iy, o, B] =- [[Bv i (1 36)

Proof: Eq.'s (1.3.4) and (1.3.5) follow directly from Eq.(1.3.3). Now, by
Eq.(1.3.3),for1 <j<n
qr_st qr_st

(o, BI, 'Y]i + [y, o, B]l + (B, 1, a]j = z (c] Cq gy, + cj j cq atBr’Ys +Cj Cq arﬁs'Yt)

q.r.s,t=1

qr_st qr.st __qr st
Zasﬁty,[Zc jcq +ci'cqy +c]'cy ]

r,s,i=1

However, by Lemma 1.2.4 and the fact that ¢* = Gjqr - Gjq, it follows that
qr_st qrst  arst)_ o
Zc Cq + Cj Cq +Cj Cq

Thus, Eq.(1.3.6) is satisfied, as required.
Q.E.D.

Definition 1.3.3 The Lie algebra L(G), of a local Lie group G is the space of
all tangent vectors at e equipped with the operations of scalar multiplication, vector
addition, and commutator product.

To deal with the special case of local linear Lie groups we need to define
tangent matrices and the matrix commutator.

Definition 1.3.4 Let G be an n-dimensional local linear Lie group of mxm
matrices. Let A(t) = A(g(t)), A(0) = E,,, be an analytic curve through the identity.

Then the tangent matrix to A(g(t)) at e is the matrix

__(Qilll 4 3_(21
t=0 '.1 agl

dgi(t)
g=o dt

t=0
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If A(t) and B(t) are two analytic curves in a local linear Lie group G, with tangent
matrices A and B, respectively, then the commutator of A and B, [A, B], is

(A B] = SA@B@AI@BIW]|
t=0

where t =12 and A-1(1) is the matrix inverse of A(1).
Theorem 1.3.2 (See Miller [1, p.169], Theorem 5.8).
[A, B] = AB - BA.
Proof: The proof is similar to the proof of Theorem 1.3.1. Let
C(t) = A(t)B(t)A-1(1)B-1(x).
We can express A(z), B(t) and C(t) as follows:

At) = En+At+A%2+...,
B(r) = Em+Bt+B?+...,
Ct) = En+Ct+Ct+... ,

where Ep, is the mxm identity matrix. From the definition of C(t), it follows that
C(t)B(t)A(r) = A(t)B(1). Replace A(1), B(t) and C(t) by their power series expansions to
conclude that

Em +Ct +Bt +AT + C't° + Bt + A't? + CBt?+ CAT +BAT?
= Em + At + Bt + AT +B' + AB7T,

where terms of order > 2 in t are omitted. Equate coefficients of t to conclude that
C = Z,,. Equate coefficients of 72 to conclude that [A, B] =C’ = AB - BA, as required.
Q.E.D.

The commutator of a local linear Lie group is known as the matrix
commutator.

For examples of Lie algebras, we need only only take Examples 1.2.1 through
1.2.5 and apply Theorems 1.3.1 and 1.3.2. In particular, the Lie algebra of Example
1.2.4 is the vector space €3, together with the commutator
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(01, 02, &), (B1, B2, Ba)] = (0, 2B - 1Bz, 2(ciaBs - i Bs))-

The local linear Lie group, G, of Example 1.2.5 has, as a Lie algebra, the set of all
matrices of the form

0 2] o2 QO3
0 2ay 2ap |, a4, Op, 0z € RB.

0 O 3oy

If A(g(t)) is an analytic curve through the identity in G, then
( g,(0) g,(0) 9'3(0)\

A= Q—Aidgt@ - 0 2g;(0) 2g;(0)

g=e

. 0 3g;(0) )

But g;(0),i=1, 2, 3, can be any real number, depending on the choice of g(t).
Hence L(G) has the prescribed form.

Apply Theorem 1.3.2 to obtain

0 a2B1-aif2 2(azpt - x1B3)
[ABl=] o 0 2(o2B1 - 1B2) |-
0 0 0

Lie algebras can be defined without considering local Lie groups. These are
known as abstract Lie algebras.

Definition 1.3.5 An abstract Lie Algebra G over F is a vector space
over F together with a multiplication [a, ] € G defined for all a, p € G such that Eq.'s
(1.3.4), (1.3.5) and (1.3.6) hold, forall o, B, Ye G and foralla,b e F.

Obviously, any Lie algebra is an abstract Lie algebra. Furthermore, any set of
mxm matrices closed under matrix addition, scalar multiplication and the matrix
commutator forms an abstract Lie algebra. Now, we define isomorphic Lie algebras.
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Definition 1.3.6 Let G and G' be abstract Lie Algebras, with commutators
[-, -] and [, -], respectively. A Lie algebra isomorphism from G to G' is a one-to-
one map, T, from G onto G' such that

(1) t(ac +bP) =at(a) + bt(B), a,be F, a, P e G.
(2) e, B) = [t(), (B

For example, let G be obtained by restricting the Lie algebra of Example 1.2.4
to the real numbers. We can construct an isomorphism, t, from G to the Lie algebra

of Example 1.2.5, by
Oy o2 O3

t((aq.0005) =] 0 20 202 | (o, 0 ag) € L(G).
0 0 3oy

It is not a coincidence that the local Lie group of Example 1.2.4 (defined over
the real instead of the complex numbers) is locally isomorphic to the local Lie group of
Example 1.2.5. We will show in Section 1.5, that G and G' are locally isomorphic Lie
groups if and only if L(G) and L(G") are isomorphic Lie algebras.

Eq.(1.3.3) gives a straightforward method of finding the commutator for the Lie
algebra, L(G), of a local Lie group G = (V, ¢). In chapter 3 we address the reverse
problem. That is, given an abstract Lie algebra A, construct a local Lie group
G = (V, ¢) shuch that its Lie algebra, L(G) is isomorphic to A. We completely solve

this problem when A is realized as a set of linear differential operators having certain
properties.

Section 1.4 One-parameter Subgroups and the Exponential Mapping

The purpose of this section is to provide a means of expressing the elements of
a local Lie group G in terms of the elements of the Lie algebra L(G). In order to do so,
we need a special class of analytic curves from G.
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Definition 1.4.1 Let G be an n-dimensional local Lie group. The analytic
curve g(t), defined for t in some neighborhood W of 0 e F suchthat g(0)=e,is a

one-parameter subgroup of G if
gis+t)=aqig(s). gt)) , s, t,s+teW, i=12,...,n (1.4.1)

Theorem 1.4.1 (See Milier [1, p.176], Theorem 5.16). Let G be an n-
dimensional local Lie group with Lie algebra L(G), and let g(t) be an analytic curve in
G defined for t in some suitably small neighborhood of 0. g(t) is a one-parameter
subgroup of G with tangent vector o. at e if and only if g(t) is the unique solution of

the system of differential equations

B = Yafue). 00=0 i=t2....n, (1.42)

where ay € F, and Fy(h) is given by Eq.(1.2.8).

Proof: Eq.(1.4.2) is a system of first order differential equations. Thus, by
standard existence and uniqueness theorems for ordinary differential equations, (see

Petrovski [1, p.96)), it has a unique solution, g(t), satisfying the initial condition
g(0) = e. This solution is defined and analytic for all |t| < €, where & is a positive

number, depending on Fy, but not on a.

(=) Let g(t) be a one-parameter subgroup of G with tangent vector o at e.
Then, g(0) = e, and Eq.(1.4.1) holds. Differentiate both sides of Eq.(1.4.1) with respect
to s and evaluate at s =0 to obtain:

dgi(t) doig(s), gt))| <& 99ia(s). g(t))| dgu(s)
da - ds s-o-k..1 agk(s) e0 95 oo
which, by Eq.(1.2.8), becomes Eq.(1.4.2), i=1,2,...,n

(<) For ae L(G), let g(t) be the unique solution of Eq.(1.4.2), with g(0) = e.
Since Fj(e) = 8, then by Eq.(1.4.2), g,(0) =0y, k=1,2,...,n. Toshowthatg(t)isa
one-parameter subgroup with tangent vector a at e, we need only show that it

satisfies Eq.(1.4.1). Fix s close to zero and let h(t) = g;(t + s), and ki(t) = ¢;(g(t), g(s)).
Then
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dnfy _ dgit+s) =)";1Fia(n(t». hi(0) = gi(s).

Similarly,

dki(t) _ doi(a(t). a(s) _ i 99i(g(t), g(s)) dg/(t)
ot t =2

ag,(t) dt °
which by Eq.(1.4.2) becomes

= Y PG Saruia,

Apply Lemma 1.2.5, to obtain

%it@ = 21 aaFia(k())), k{0)=gi(s), i=1,...,n.

Since h(t) and k(t) satisfy the same first order differential system and initial
conditions, then by the uniqueness of solution h(t) = k(t). Thus, g;(t + s) = @;(g(t), g(s)),

for suitably small s and t. Hence, g(t) is a one-parameter subgroup, as required.
Q.E.D.

Denote the one-parameter curve with tangent vector a at e by g(t) = EXP(q, t).

Corollary 1.4.1 For each o €l(G), there is a unique one-parameter
subgroup, EXP(a, t), with tangent vector o at e.

Proof: This is a direct consequence of Theorem 1.4.1.

Corollary 1.4.2 EXP(aa, t) = EXP(a, at), for ae F, a € L(G), |t| sufficiently
close to 0.

Proof. Obviously, EXP(aa, t) and EXP(c, at) are both one-parameter
subgroups of G and both have tangent vector aa at e, thus by Corollary 1.4.1,
EXP(aa, t) = EXP(a, at).

Q.E.D.

At this point, EXP(c, t) is defined only for |t] < €, where € is a constant for the
local Lie group. We extend the domain of the EXP function to |t]| = €, while still
satisfying Eq.(1.4.1), by using Corollary 1.4.2. Let
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EXP(x, t) for |t| < &

EXP (a,t) = t t
EXP(aca, (-a-)) for |t| 2 €, where a € F, such that |§|< E.

This is a valid definition since, by Corollary 1.4.2, it does not depend on a.
Furthermore, EXP (a, t) is an analytic curve which satisfies £q.(1.4.1). Thus, we

shall not differentiate between EXP (a, t) and EXP(«, t), and we shall simply refer to
the one-parameter subgroups EXP(a, t).

Lemma 1.4.1 (See Miller [1, p.177)). For fixed te F, EXP(a, t) is an analytic
function of oy, 0y, ..., 0.

Proof: g(t) = EXP(a, t) is an analytic curve in G. Thus, we can expand itin a
Taylor series about t=0:

oo m m
gk(s)] 7
t) = , 1<k<n.
gk( ) mz_1 ds™ =0 m!
. : . . d™g,(s) .
From Eq.(1.4.2), the chain rule and math induction we find that gs™ | isa
s=0

homogeneous polynomial of degree m in the «;, i.e. it consists only of terms of the

form ca?lazz e ocna", wherea; +a,+... +a,=m,ce F. Forfixed t closeto 0, the

Taylor's series converges for all «, thus g(t) is analyticin ay, oy, . . ., o, as required.
Q.E.D.

The proof of Lemma 1.4.1 confirms the fact that EXP(a, t) is actually a function
of ot = (out, azt, . . ., ant). Thus for the remainder of the thesis we denote the one-
parameter subgroups by EXP(adt).

Definition 1.4.2 Let G be an n-dimensional local Lie group with Lie algebra
L(G) and one-parameter subgroups EXP(at), o € L(G). The exponential map,
EXP, is the mapping from L(G) into G such that EXP(a) = EXP(a(1)).

Obviously, the exponential map takes a neighborhood of (0,0,...,0) e L(G)
into G. {If a is not close enough to (0, 0, . . ., 0) then EXP(a(1)) might not be in G}.
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Lemma 1.4.2 (See Miller [1, p.177]). The exponential map defines an analytic
coordinate transformation on some neighborhood of e = (0,0, ...,0) e L(G). Thus,
the n coordinates o; of o e L(G) can be used to parameterize the local Lie group G.

Proof: By Lemma 1.4.1 and its proof it follows that EXP(a) is an analytic
function of aj, 1 <i<n, and

EXP;
a_al«L) = O, 15 i,k<n.
i a=9

Thus, the Jacobian of the exponential map is non-zero for some neighborhood of the
zero vector in L(G). Thus, by the inverse function theorem (Apostol [1, p. 144] there is
an open neighborhood X of the zero vector in L(G) and an open neighborhood Y of
e in V, such that EXP:X — Y is one-to-one and onto and the inverse function, EXP,
exists and is analytic. Thus, a e X < EXP(a) € Y, and we can use the elements of

the Lie algebra to parameterize the local Lie group, as required.
Q.E.D.

If G is a local linear Lie group the following adjustments must be made. A one-
parameter subgroup of G is an analytic curve, A(t) = A(g(t)), such that

A(s)A(t) = A(s + 1), Is|, It] sufficiently small.

For tangent matrix A € L(G), EXP(At) is the unique solution of
d
&-A(t) = A(A(t)), A(0) = E,,. (1.4.3)
By Theorem 1.4.1, the one-parameter subgroups of G are exactly the analytic curves
EXP(At), A e L(G), It| suitably small. Since G is a local linear Lie group, it follows that,
= Al
EXP(A) =Y A-—,t, (1.4.4)
.
j=0
where A0 = E_.

This comes from the fact that Eq.(1.4.3) has the unique solution EXP(At) and
the fact that
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iol
satisfies Eq.(1.4.3) with Z —!Q- E..

3

Thus, in order to obtain the one-parameter subgroups of a local linear Lie
group, one uses Eq.(1.4.4) whereas to find the one-parameter subgroups of local Lie
groups one must solve the differential system given by Eq.(1.4.2).

Section 1.5 Isomorphism Theorems

Local Lie group isomorphisms and Lie algebra isomorphisms were defined in
Sections 1.2. and 1.3, respectively. The final section of this Chapter deals with the
relationship between isomorphic local Lie groups and Lie algebras as well as the
relationship between abstract Lie algebras and the Lie algebras of local Lie groups.
For brevity, the following theorems are stated without proof, but the proofs can be
found in the given references. Our intention here is to state results important to the
thesis and give an idea of how they are derived.

Theorem 1.5.1 (Ado's Theorem). Every abstract Lie algebra is isomorphic to
some matrix Lie algebra.

Proof: (See Jacobson [1, p.202], Miller [1, p.170], Theorem 5.9, and Ado
[1, p.309-327]).

Theorem 1.5.2 If G, G' are isomorphic n-dimensional local Lie groups with
Lie algebras L(G) and L(G'), respectively then L(G) and L(G') are isomorphic Lie
algebras.

Proof: (See Miller [1, p.179], Theorem 5.17).

Theorem 1.5.3 Let G, G' be local linear Lie groups and let L(G) and L(G')
be isomorphic Lie algebras. Then G and G' are (locally) isomorphic local linear Lie
groups.

Proof: (See Miller [1, p.180], Theorem 5.18).
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Corollary 1.5.1 Two Jocal linear Lie groups, G and G', are (locally)
isomorphic if and only if L(G) and L(G') are isomorphic.

Proof: Obvious conclusion of Theorems 1.5.2 and 1.5.3.

Note that Theorem 1.5.3 can be extended to all local Lie groups (see Miller
[1, p.181]). Thus we have the following Corollary.

Corollary 1.5.2 Two local Lie groups, G and G', are (locally) isomorphic if
and only if L(G) and L(G') are isomorphic.

Theorem 1.5.4 If G is a matrix Lie algebra, then there exists a local linear Lie
group G such that L(G) =G.

Proof: (See Miller [1, p.181], Theorem 5.19).

Theorem 1.5.5 Every abstract Lie algebra is the Lie algebra of some local Lie
group.

Proof: (See Kostrikin and Shafarevich [1, p.196], Lie's Theorem or deduce
Theorem 1.5.5 from Theorems 1.5.1, 1.5.4 and Corollary 1.5.2).

The most important results of this section are Corollary 1.5.2 and Theorem
1.5.5. From these two results it follows that, given any abstract Lie algebra, G, there
exists a local Lie group with Lie algebra isomorphic to G. The ability to go from Lie
algebra to local Lie group will be important in the next Chapter, where we deal with
local Lie transformation groups, Lie derivatives, and Lie algebras of Differential
operators.

We end this chapter on Elementary Local Lie Group Theory with an
examination of the most elementary of local Lie groups, the one-dimensional local Lie
groups. An immediate conclusion from Corollary 1.5.2 is that all one-dimensional
local Lie groups are (locally) isomorphic and if G is a one-dimensional local Lie group
then it is commutative.

However, the fact that all one-dimensional local Lie groups are isomorphic
does not help in the generation of all one-dimensional Lie products. Consider
Examples 1.2.2 and 1.2.3. The one-dimensional Lie product ¢(g, h) =g + h + ygh,
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ve F generates an infinite number of local Lie products that are polynomials in ¢
and h. (g, h) = In(e? + eh - 1) is an example of a one-dimensional Lie product that is a

power series of g and h.

The associative property restricts the form of a local Lie product, even in the
one-dimensional case. Suppose G = (V, ¢) is a one-dimensional Lie group such that
¢(g, h) can be expressed as a polynomial of g and h. The following argument
shows that ¢(g, h) =g + h + ygh, ye F is the only possibility.

Assume that there exists a one-dimensional Lie product ¢ such that ¢(g, h) is a
n .
polynomial of order 3 or more in g and h, say ¢(g, h) = Efikg'h", n>2. By
i.k=0
Eq.(1.1.3),

f0k=fk0=81kv k=ol112’3l"'!n
Thus,

n
o(g.h)=g+h+ .;J;kg'hk .
ik

Since ¢ is a Lie product, ¢(e(x, ¥), ) = ¢(x, ¢(y, z)). By direct computation,

PQX,y), Z)=X+y+Z+ kax'y"+ Zf.k(x +y + Zf,xyj

ik=1 i k=1 r,5=1

and

o, 0y, 2) =X+y+Z+ Zf.kyz + Zf.kx (y +Z+ Zf,syzj(

ikm1 i k=1 r,Sm=1

Compare coefficients of z"2, to conclude that the polynomial

mex IZ fmy]" = 0.

]

Thus, the coefficient of xryn? is ™! = 0, i.e., fon = O.
Thus,

2 finX' (2 frny’ )" = Efinxi (i‘: frny" T=

ike=1 r=1
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Thus, the coefficient of x™'y™™") is zero, i.e., (fp.1n)™' = 0, i.e., foqn = O.

Repeat the same argument to conclude that frn =0, r=1,2,...,n, n >1.
Since all one-dimensional local Lie groups are commutative , fix =1, 1 <i,k<n.
Thus, ¢(g, h) is not a polynomial of degree n > 2 in g and h. Thus, ¢(g, h) can be
expressed as a polynomialin g and h onlyif (g, h)=g+h +ygh, ye F.

In Chapter 3 we characterize all one-dimensional Lie products in terms of
solutions of ordinary differential equations of the form

& —aP(), x(0)=g.

where P(0) = 1. This characterization is useful in constructing examples of one-
dimensional local Lie groups.
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Chapter 2
The Lie Derivative
Section 2.1 Local Lie Transformation Groups

We now have sufficient background to discuss local Lie transformation groups
and Lie derivatives. We begin with the definition of a local Lie transformation group.

Definition 2.1.1 Let G = (V, ¢) be an n-dimensional local Lie group and let
U be an open connected set in F,. Let Q be a mapping, Q:UxG —Fn. Then (G, Q)
acts on the manifold U as a local Lie transformation group if Q satisfies the
following properties:

1. Q[x, g] is analytic in the m + n coordinates of x and g. (2.1.1)
2. Q[x,e] = x,forallxe U. (2.1.2)
3. fQ[x, gl €U then Q[Q[x, g], h] = Q[x, ¢(g, h)], (2.1.3)

forg, h, (g, h) e G.

If (G, Q) is a local Lie transformation group, then Q is called the group action and
G is called the underlying local Lie group.

In order to distinguish the elements of G and L(G), which are n-tuples, from the
m-tuples of U, we will use lightface type to represent the non-identity elements of G
and L(G) for the remainder of Chapter 2. Thus, Q[x, g] becomes Q[x, g]. We can
consider the m components, Q;[x, g], of Q[x, g].

For fixed g, the map x —Q[x, g] is locally analytic and one-to-one. The map is

analytic because Property(2.1.1) guarantees that Q[x, g] is an analytic function of x.
The map is one-to-one because, if x € U and g is sufficiently close to e, then g™

exists. Thus, by Properties (2.1.2) and (2.1.3),

Q[x, g] = Qly, g] = Q[Q[x,g].g7"] = Q[Qly, g], g "]
< Q[x, e] = Qly, €]
S X=Y.
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Given any local Lie group, G = (V, ¢), a simple example of a local Lie
transformation group is obtained by letting the group action be the Lie product, ¢. l.e.,
Q:Vx G — F, suchthat Q[g° g] = ¢(g° g).

Let EXP(at) be a one-parameter subgroup of G. By Property(2.1.1),
Q[x, EXP(cd)] is analytic in EXP(at), thus Qj[x, EXP(at)] can be expanded in a Taylor
seriesin t about t=0, as

n
Qjlx, EXP(at)] = X+t D Pie(®)ar+..., 1<i<m, (2.1.4)
el
where
Py = X8l 1 gren, (2.1.5)
ogr g=e

Definition 2.1.2 Let Ay be the space of all functions f, analytic in some
open neighborhood of x. The Lie derivative of the function f € Ay, Lyf, is

Laftx) = Gi{AQlx. g(O))| , we L(@) (2.16)

where g(t) is any analytic curve in G with tangent vector o at e. Note that
g(t) = EXP(at) is one such curve. We now give an alternate form of the Lie derivative

which shows that Eq.(2.1.6) is independent of the choice of curve g(t).

L

o (2.1.7)

Lemma 2.1.1 Lg = i zn,arPir(x)

=1 =i

where P;(x) is given by Eq.(2.1.5).

Proof: Apply the chain rule to Eq.(2.1.6) and then evaluate itat t=0. Then
use Eq.(2.1.5) and Eq.(2.1.2), and the fact that g(0) = e and g(t) has tangent vector o

at e to obtain Eq.(2.1.7).
Q.E.D.

Note that, for Lemma 2.1.1, we only need gg{g to existat t=0. Thus,
Definition 2.1.2 is stronger than necessary, since it limits the choice of the curve g(t) to
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analytic functions. Eq.(2.1.6) is valid for any function g(t) defined on G, such that g(t) is
once differentiable, g(0) = e and g(t) has tangent vector o ate.

Thus, Lie derivatives are linear differential operators mapping Ax — Ax. The
purpose of Chapter 2 is to show that the set of all Lie derivatives of a local Lie
transformation group form a Lie algebra of differential operators and to show that every
Lie algebra of differential operators is the set of all Lie derivatives of some local Lie
transformation group.

In the next section we examine Lie derivatives and local Lie transformation
groups in more detail, and show that the set of Lie derivatives of a local Lie
transformation group is a Lie algebra of differential operators.

Section 2.2 Theorems Concerning Lie Derivatives

Throughout Section 2.2, assume that G = (V, ¢) is an n-dimensional local Lie
group with one-parameter subgroups EXP(at), and that (G, Q) is a local Lie
transformation group. By Lemma 2.1.1, (G, Q) has a unique set of Lie derivatives, L,

o e L(G). The following is also true.

Theorem 2.2.1 (See Miller [1, p.191], Theorem 5.24). Let (G, Q) be a local
Lie transformation group with Lie derivatives L,. Then the unique solution of

EX() = Lx, x(0) = x°, (2.2.1)

is x(t) = Q[x0, EXP(at)].
Proof: Due to Eq.(2.1.7), Eq.(2.2.1) can be written
dx) o < ox(t
_B_tu =) '; akpik(x(t))'a_xi((% ,
im1 k=

where Pi(x) is given by Eq.(2.1.5). Separate the components to conclude that vector
ordinary differential equation, (V.O.D.E.), (2.2.1) is equivalent to the following system of
differential equations,
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. n
d’é't‘ = Y ouP(x(t), i=1,2,...,m, x(0) = x°. (2.2.2)
k=1
Now, let (G, Q) be a local Lie transformation group with Lie derivatives L, and
letx%e U and a e L(G). From the existence and uniqueness theorems (see Petrovski

[1, p.96] ) for a V.O.D.E., we know that the V.O.D.E.(2.2.1) has a unique solution x(t).
However, Q[x° EXP(a(0))] = Q[x°, €] = x° and

d

dQi[x°, EXP(o(t+s))]
(—ﬁ =

Q|[x°, EXP(od)] 35

s=0

dQ;[x°, ¢(EXP(at), EXP(as))]
ds =0

dQQ[x°, EXP(at)], EXP(as)]
= ds .o

By Eq.(2.1.4) it follows that
d n
ot Qx°, EXP(od)] = zpik(o[x% EXP (oct)]) ot

Thus, Q[x° EXP(at)] is the unique solution of the V.O.D.E.(2.2.1), as required.
Q.E.D.

Thus, given a local Lie group G and the Lie derivatives L, Q is compietely

determined. However, the following simple example illustrates that the Lie
derivatives alone do not uniquely determine a local Lie transformation group.

Example 2.2.1 Consider the one-dimensional local Lie groups Go = (F, ¢),
and Gy = (F, ¢') in Example 1.2.2. As noted in Section 1.2, Go and Gy are locally
isomorphic, with isomorphism 11:Go — Gy such that p(g) = e9-1,ge Go. Let U be an
an open set in F,, and suppose that Q:Ux Go — Fn is a group action on Gp. Let
Q'[x, u(g)] = Q[x, g] and restrict G1 to the open set around e for which u(g) e Gy,
for ge Go. Then Q":Ux G oF, is an action on G4 because

1. Q'[x, 0] = Q'[x, u(0)] = Q[x,0] = x.
2. Q'[x, u(g)] is an analytic function of the m + 1 coordinates of x and
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p(g). This follows from the fact that Q[x, g] is an analytic function of the m + 1
coordinates of x and g, and the fact thatg = p'(u(g)) is an analytic function of y(g).
3. fQ'[x, u(g)] e U, then

QQ'x, u(g)], w(h)] = Q[Q[x, g], h] = Q[x, ¢(g, h)] = Q'[x, u(ep(g, h))]
= Q'[x, ¢'(u(g), wh))l.

Clearly, (Go, Q) is a local Lie transformation group if and only if (G4, Q') is one as well.

Now let

(x) = 290 1(@)]

i=1,2,...,m.
ou(g)

ng)=0

By Eq.(2.1.7) the Lie derivatives of (G1, Q') are

i d
La =Z“P“(x)§x.i ,oe F.

jm1

However,
Qi[x, g]]  _ oQIx, m(@)ll  _ 9QIx, p(g)loe)l
99 |40 99 g Mg 99 lgo
Thus,
0Qi[x, d(e9 - 1
S IR - IR

Therefore, by Eq.(2.1.7) the Lie derivatives of (Gp, Q) are the same as the Lie
derivatives of (Gy, Q'), but the underlying local Lie groups G1 and Gg are different.
Thus, the unique solution of Eq.(2.2.1) is not sufficient by itself to uniquely determine
a local Lie transformation group. Without knowledge of the one-parameter subgroups
EXP(at), we do not know how to interpret the solution of the V.O.D.E.(2.2.1).

Lemma 2.2.1 (See Miller [1, p.191-192]). If f:U — F is an analytic function
in some neighborhood of x°, then

gfg’t‘_k(m = L*Ax(t), k=0,1,2,... . (2.2.3)

where x(t) = QDX°, EXP(ot)], and Lo*(x(t)) = LoJLo M(x(1)], k=1, 2,3, ...
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Proof: Lo°Ax(t)) = fix(t)). Now consider d—’%@» Apply the chain rule to
obtain

d!!xgtn _ < affX! dX;!t!
dt _6-1 a dt -

By Eq.'s (2.2.2) and (2.1.7), fix(t)) satisfies the differential equation

) Lofxt). (2.2.4)

Since Lqf(x(t)) is itself an analytic function of x(t), then by Eq.(2.2.4)
F(TD) = L(THD) = Lo(tatx) = Lnx).

Eq.(2.2.3) follows from repetition of the above argument k times.
Q.E.D.

Since f(x(t)) is an analytic function of t, we can expand it in a Taylor series
about t=0. We obtain the following theorem:

Theorem 2.2.2 (See Miller [1, p.192], Theorem 5.25). If f is a function
analytic in some neighborhood of x° e U then

- i
) = (_z T L{,}(x°) = (P
{=0
where x(t) = Q[x°, EXP(at)].

Proof: Expand f(x(t)) in a Taylors series about t =0. Then the result follows

immediately from Eq.'s (2.2.3) and (2.1.2).
Q.E.D.

We are now in a position to prove the main result in this section, namely that the
set of Lie derivatives of a local Lie transformation group form a Lie algebra of
differential operators.
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Theorem 2.2.3 (See Miller [1, p.192], Theorem 5.26). The set of all Lie
derivatives of a local Lie transformation group (G, Q) form a Lie algebra. In fact, for all
o,Be L(G), andall a,be F

Liacsbp) = aly + blsg, (2.2.5)
and

Lio.g] = Lobp- Lpla = [LeLpl: (2.2.6)

Proof: Clearly, the commutator [L,,Lg] = L,Lg - Lol satisfies Eq.'s (1.3.4),
(1.3.5) and (1.3.6). Thus, to show that the Lie derivatives form a Lie algebra we only
need to show that the set of Lie derivatives constitutes a vector space and is closed
under the commutator. Thus it is sufficient to show that the Lie derivatives of (G, Q)
satisfy Eq.'s (2.2.5) and (2.2.6).

Eq.(2.2.5) follows immediately from Lemma 2.1.1. Now consider Eq.(2.2.6). By
the definition of a Lie derivative,

Lio,g fiX) = % RQ[x?, g(t)]) L

where f is a function analytic in some neighborhood of x° and g(t) isacurvein G
with tangent vector [a, B]. In particular,

o(t) = o(@(EXP(ar), EXP(B1)), p(EXP(-at), EXP(-B1)),
is a curve in G, with tangent vector [a, B]. Since ¢ is associative, we can write
g(t) = EXP(at)EXP(Bt)EXP(-at)EXP(-B1),
where juxtaposition denotes Lie product. Then, by Eq.(2.1.3), with 1 suitably small,
AQIx°, g(t)) = AQ[x°, (EXP(ar)EXP(BREXP(-at)EXP(-pr))]).
= Q[ Q[x°, EXP(at)EXP(Bt)EXP(-ar)], EXP(-B1)]).
which by Theorem 2.2.2 becomes
RQ[X°, g(t)]) = (exp(-tLp))f (Q[x°, (EXP(at)EXP(Br))EXP(-ar)]).

Repeat this process until we obtain:
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RQIX°, g(t)]) = (exp(tLy))(exp(tLp))(exp(-tly))(exp(-tlg)) Ax°).
Expandin t toget:
f(Q[x°, atyh=(1 + 'c2(LaLB -Lplo) +... termsoforder23in .. .)I(x°), t=12

Differentiate with respect to t and evaluate at t= 0 to obtain Eq.(2.2.6).
Q.E.D

Thus, the set of Lie derivatives of a local Lie transformation group forms a Lie
algebra of differential operators, which we will call G.

Definition 2.2.1 Let (G, Q) be a local Lie transformation group with Lie
algebra of Lie derivatives G. If the map o — L is a Lie algebra isomorphism from
L(G) onto G, then (G, Q) acts effectively as a local Lie transformation group. (By the
nature of the mapping, this is equivalent to saying that (G, Q) acts effectively as a local
Lie transformation group if dim(L(G)) = dim(G)).

In the next section we discuss differential operators in general. We are working
toward proving that any Lie algebra of differential operators is actually the algebra of
Lie derivatives of some local Lie transformation group. We conclude this section with
the following Lemma, which shows that every local Lie group acts effectively as a local
Lie transformation group on itself.

Lemma 2.2.2 Let G =(V, ¢) be an n-dimensional, local Lie group and let
Q:VxG — F, be defined by Q[g, h] = ¢(g, h). Then (G, Q) is a local Lie transformation
group acting effectively on V with Lie derivatives

La= 3 oRug) s 0= (@0 o) € L) (2.2.7)
where
39(g, h
Ri(9) =—(p§('?,k—) Ly (2.2.8)

Proof: Q=0 satisfies Eq.'s (2.1.1), (2.1.2) and (2.1.3), thus (G, Q) is a local
Lie transformation group. By Lemma 2.1.1, the Lie derivatives of (G, Q) are
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n

L= 3 ePulg) o @= (00,0 0 € LG),

2¢i(g, h .
where Pik(g) = Lé(gk—) ) = Ry(g), 1<i,k<n.
=0

Let G be the algebra of Lie derivatives of ( G, Q). Clearly,the mapa — Ly is
onto and [a, B] = Lo, g} = [La. Lg]-

Suppose Ly = Lg. Then by Eq.(2.2.7),

n a n a
i.kz-:x «Ri(@)3g, = iEPkRik(g)a—gi.

Fix i to consider the coefficient of a%. ,and letg=e. By Eq.'s (2.2.8) and (1.1.3),

Ri(e) = 3, thus o = Bj, 1 <i<m, as required. Thus L(G) is isomorphic to G. Thus,

(G, Q) acts effectively as a local Lie transformation group.
Q.E.D.

The type of local Lie transformation groups considered in Lemma 2.2.2 will
have importance later on it this Chapter as well as in Chapter 3.

Section 2.3 Lie Algebras of Differential Operators

In Section 2.1, Lemma 2.1.1, we found that a Lie derivative of a local Lie group
is a sum of differential operators. We now define precisely what is meant by a
differential operator. Let U be an open setin Fyand let f be a function analytic in
some neighborhood of xX° e U. We let A9 be the space of all functions analytic in
some neighborhood of x°, where the neighborhood varies with the function, £

Definition 2.3.1  We will say that L is a linear differential operator on
U, if

L = i Pi(x)ga;i.

jm1

where Pi(x), 1 <i <m, is a function analytic on U and Lfx) is defined by
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LAX) = ZP,(x)—U . (2.3.1)

im1
We say two differential operators, A and B are equal on U if Af(x) = Bfix) for
all fe Ayo, x° € U and all x where fx) is defined. The zero differential operator, 9, is

the differential operator that takes all analytic functions on U to the null function. A set
of differential operators, Ly, Ly, . . ., L, is linearly dependent on U if there exists
constants o, 1 <k < n, not all zero, such that

n
Z akLk =0

k=1
on U, otherwise the set of differential operators is linearly independent.

The product, AB, of two differential operators A and B is defined in the usual
manner by AB(f(x)) = A(B(f(x))). The commutator of two linear differential operators
A and B is denoted by [A, B], and is defined by

[A, B] = AB-BA. (2.3.2)

Lemma 2.3.1 The commutator of 2 linear differential operators is a linear
differential operator.

m m
Proof: Let A=) Pi(X)gax'i andB =) Rk(x)'a?(_k be any two linear differential
= ke

operators. By Eq.(2.3.2)
m Y& 3\ (& 3 Yo d
[A.B] = (FT Pa(x)a—,qu‘% )3 )2 Pz [ 2 P35 )

Expand it and simplify to obtain:

A.B]=Y (2 (P( )M- Ri(x )fﬂ’—‘l)}%k , (2.3.3)

ke1 i=1

which is a linear differential operator, as required.
Q.E.D.

We now outline conditions under which a set of linear differential operators form
a Lie algebra.
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Lemma 2.3.2 Let Ly, Lo, ...,L, be nlinear differential operators. If there
exists constants cy, such that for 1 <s,k,r<n,
n
[Le. Lid = Lol - Liks = Y cadr, (2.3.4)

=1

then Span({Lk},'('_1) is Lie algebra under the linear differential operator commutator.

Proof: Span({Lk}',:_1) is the vector space generated by Ly, Lo, . . ., L. ltistrivial

to show that the linear differential operator commutator satisfies Eq.'s (1.3.4), (1.3.5)
and (1.3.6). By Eq.(2.3.4) the vector space Span{{Li}x.1) is closed under the linear

differential operator commutator. Thus Span({L,JE,,) is a Lie algebra.

Q.E.D.
Define the linear differential operators
- d
L =z Pis(x)ﬁi-, s=1,2,...,n, (2.3.5)
=1

acting on functions that are analyticon U c Fn,. If there exists cj'k such that Eq.(2.3.4)

og € F}

forms a Lie algebra over F. An important relationship between the P;;(x)'s and the
Ci's is given in the following Lemma.

holds then by Lemma 2.3.2,
Span({Lk}E_1) {Z Z asP.s(X)ax

S=1 |=1

Lemma 2.3.3 (See Miller [1, p.195-196]). If the linear differential operators
L, 1 Sk <n, are defined by EQq.(2.3.5) and if there exists constants cj'k, 1<r,j,k<n

such that Eq.(2.3.4) is satisfied, then forall x e U, and for 1 <q<m,1<k,s<n,

S, (Putx x) ) p, (x) Feal) 2 7) 23 ClPy (). (2.3.6)

im1 r=1
Proof: Substitute the Ls's as given by Eq.(2.3.5) into Eq.(2.3.4) to obtain:
m

aP 2Pas(x)

q,i-1 q=1 r=1
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and then obtain Eq.(2.3.6) by equating coefficients of a% fort<g<m.
q
Q.E.D

Section 2.4 Preliminaries Concerning Systems of Differential Equations

We now prove some preliminary results which are used in Section 2.6 and in
Chapter 3. Let V be an open setin F, suchthat ee V, and let U be an open,
connected subset of Fy,. Further, let g eV, and x e U and let Sij(g) and Pik(x) be
analytic functions of g and Xx, respectively, 1 <i<m, 1 <j, k<n. We are concerned
with two different systems of differential equations. Firstly, we are concerned with the
V.0.D.E.(2.2.1), where x(t) is an analytic function of t, and Ly is given by Eq.(2.1.7).

Secondly, we are concerned with the system of partial differential equations (P.D.E.) of
the form

dTq(g) n
ogk Y Pqa(T)Sak(g), 1 <ksn,1<qgsm,
- (2.4.1)

Tqle) = x9,
where Pqa(T) and Sak(g) are analytic functions of Te U and g € V, respectively.

We have already seen that the V.0.D.E.(2.2.1) has a unique solution. The
following theorem provides necessary and sufficient conditions for the system of
P.D.E.(2.4.1) to have a unique solution.

Theorem 2.4.1 (See Pontryagin [1, p.398], Theorem 85). Let TeU, geV
and let ‘I’E(T, @) be an analytic function of T and g. The system of P.D.E.

%%)-=‘I’?((T,g), 1<k<n,1<qs<m,
(2.4.2)

Tq(e) =x°% x%e U,

has a unique solution for g in a neighborhood of e, if and only if, forall TeU, geV,
the following equation is satisfied identically,
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R T L e
q=1

where 1<i<m,1<r k<n.
Proof: See Pontryagin.

Eq.(2.4.3) is known as the integrability conditions for the system of
P.D.E.(2.4.2). Since P;{T) and Sk(g) are analytic functions of T and g, respectively,

n
Y Pi(T)S(g) , 1<i<m, 1<k<n,

r=1

is analytic in both T and g. Thus we can apply Theorem 2.4.1 to the system of
P.D.E.(2.4.1), with
. n
Y(T.g) =Y Pu(M)Si(@), 1<ism,1<ks<n
r=1
We obtain the following result.

Corollary 2.4.1 (See Miller [1, p.195], Eq.(9.25)). The system of P.D.E.(2.4.1)
has a unique solution if, for 1 <i <m, 1 <k, r <n, the following integrability conditions
hold forall Te U, geV:

2 (zpqam—"'ﬂi quma—'?ﬁ‘—l +(9)Sax(g)

Q=1
- 2; Pia(T)(—S—aég'ifﬂl as—g&ﬂ) (2.4.4)

Proof: By Theorem 2.4.1, the system of P.D.E.(2.4.1) has a unique solution if
Eq.(2.4.3) holds for
. n
¥i(T.9) =Y Pi(T)Su(q).

r=1

Substitute for ‘I’:((T, g) in Eq.(2.4.3) to obtain the equivalent expression,

21 21 Pf;?rq Sak(g)Pqs(T)Ssr(g) + zp'a(T)M
a,s=1 Q=

-3 —a'%(fsak(g)an(T)ssr(g) v Y Pam2edal

a,s=1q=1 a=1
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Rearrange to obtain Eq.(2.4.4).
Q.E.D.

Our choice of Pig(x) and Sg,(g) will guarantee that the V.O.D.E.(2.2.1) and the
system of P.D.E.(2.4.1) have the same unique solution. We begin by defining the
Ssk(g) in terms of invertible matrices as follows. Let Rgk(g) be an analytic function for
geV, 1<s,ksn. ForgeV, define the nxn matrix R(g) by

R(g) = (Rsk(9))s kw1 - (2.4.5)

Assume that if g € V, R(g) has a matrix inverse, S(g) = (ssk(g));‘,m. That is, for

all geV,
S(g)R(g) = En, (2.4.6)

where E, is the nxn identity matrix. Now suppose that there exists constants c;k such
that the Rsk(g) satisfy Eq.(2.3.6) with m =n. That is, assume

n

oR &
5 (Rulo) T4 Ry () Tl )3 cLRy() 1ska s (247
=1 : : r=1

We are interested in the form that Eq.(2.4.7) takes when written in terms of the Sik(g)'s.

Lemma 2.4.1 (See Miller [1, p.195], Equation 9.26). For geV, let Rik(g)
and Si(qg) satisfy Eq.(2.4.6). Ri(g) satisfies Eq.(2.4.7) if and only if Sy(g) satisfies

aS-ggg; as.'(g) n . ‘
; = chrssrq(g)ssk(g) , 1<i,k,q<n,

o 290 el (2.4.8)

with cirs = -c;,.
Proof: Eq.(2.4.6) implies that, for g e V,

3 Sul@Ru(o) - Y Ra(0)Sak(0) = 3k 1<iksn, (2.4.9)

awl

and, differentiating both sides of Eq.(2.4.6) with respect to g; yields the identity:
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a—“gg—i@ = - 2 Rba(g)asa'(g) Rik(g), 1<i,b,k<n. (2.4.10)
a,r=1
(<) First we will show that Eq.(2.4.8) implies Eq.(2.4.7). By using Eq.(2.4.10), itis
easy to show that

nz ( is(9) R k(g) - Ri(g )aRaz( )) = Z'Rfs(g) Rqa(g) Rik(g) (M _Saa—é(l'g')‘}
= i,a,r=1

Substitute for (STzle 8M )from Eq.(2.4.8), and simplify using Eq.(2.4.9) to

conclude,

n oR dRy(9) n L.
5, (Rel) a2 - Ry(g) e - z-R,s<g>Rqa(g)R;k(g)(zcmsbi(g)su(g)J

2 At b,t=1
n
= - 2 (&qua(g)skngt)-
a,b,t=1
n
-S (R .
a% ( qa(g)cks)

Thus,

i ( is(9) _qk(ﬁ)_ - Rik(g ) (g) chqua(g)

i=1

Hence, Eq.(2.4.8) implies Eq.(2.4.7).
(=) To prove the converse, assume Eq.(2.4.7). It follows immediately that ci,s = -cL,.

Substitute EQq.(2.4.10) into EqQ.(2.4.7) to obtain

. R@)Raa(@)Rrs(0)(*ga ) - 2Saila)) ‘L:c’skﬂqr(gx (2.4.11)

a,r,i=1

Multiply both sides of Eq.(2.4.11) by Ssx(9)Syq(9)Skz(g) and take the sum as g, s and k
go from 1 to n. Simplify using Eq.(2.4.9) to obtain
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S S
—ayglz(g)' —_avngg)' 2 cskSsx(g)Skz(g)

S=1

This is Eq.(2.4.8) under a change of variables.
Q.E.D.

Section 2.5 Preliminaries Concerning Local Lie Groups and Lie
Derivatives

We shall now deal with some results involving local Lie groups, and local Lie
transformation groups. We apply the general material of Section 2.4, as needed. We
use Lemma 2.2.2 in the following Lemma.

Lemma 2.5.1 (See Miller [1, p.195-196]). Let G = (V, ¢) be an n-dimensional
local Lie group. Let Ri(g) be obtained from Eq.(2.2.8) and let c‘,k be the structure

constants of G, 1<j,k,r<n. Thenthe Ri(qg) satisfy Eq.(2.4.7) with c’;k = c,-rk.

Proof: By Lemma 2.2.2, (G, ¢), is a local Lie transformation group with Lie
derivatives

n
d
La = 2,0 R , O€E F.
a£'1 k ak(g)aga n

n
Let Bx = (O1k, O2k, - . - , Onk), 1 <k<n. Then L = LBk =Y Rak(g)a%a. Thus,
a=1

n

d 9 Y d 9 Y- 0
Ly L = ke L= 3, Rai@lagg | % Reolsg; | - (2, Raw(alagy [ 2, Re9lag; )

a=1

= 3 (Ra@ 50 gy lad) 2 254)

s,a=1

However, by Eq.(2.2.6),
n
d
L Ld = HBi- Bu = Z [Bj, Bil; Rsr(9) gé_ (2.5.2)
r,s=1 S

Now, from Theorem 1.3.1, [Bj, Bulr = dk, 1<j,k, r<n. Substitute [B;, Br = c’;k into
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Eq.(2.5.2) and compare the resulting equation with Eq.(2.5.1). Fix s and consider

coefficients of aigs to obtain Eq.(2.4.7).
Q.E.D.

For g € V, define the nxn matrix R(g) by

R@) = (Rix(@))jker1 - (2.5.3)

Now, it follows from Eq.'s (2.2.8) and (1.1.3) that Rj(e) = 6, so R(e) = Ep, the nxn
identity matrix. Thus, the determinant of R(e), det|R(e)| = 1. Since the Rj(g),

1 <j, k < n are analytic functions of g1, g2, . .., gn, there exists a neighborhood, W,
around e in which the determinant of R(g) is non-zero. Thus, the matrix inverse of
R(g), R(g) exists for g € W. We will denote the matrix inverse of R(g) by

S(g) = (Si(@))jk1- ThenforgeW, Eq.(2.4.6) holds.

Corollary 2.5.1 The Sik(g)'s satisfy Eq.(2.4.8), for ge W, 1<j,k<n.

Proof: The proof follows immediately from Lemmas 2.4.1 and 2.5.1, and the

definition of Si(g)-
Q.E.D.

Unlike the V.O.D.E.(2.2.1) which yields the action of a local Lie transformation
group, the P.D.E.(2.4.1) has thus far had no relation to our discussion of Lie
derivatives. This next Lemma illustrates the importance of the solution of the
P.D.E.(2.4.1).

Lemma 2.5.2 (See Miller [1, p.194], Lemma 5.5). Let (G,Q) bean n-
dimensional local Lie transformation group acting on U cFy, where the action Q is

found by solving the V.O.D.E. (2.2.1). Then Q[x, q] satisfies the following system of
partial differential equations,

aoa;k, = ) Pi(Q[x, g])Su(g), 1<i<m,1<k<n, (2.5.4)
r=1

where Pi/(x) is given by Eq.(2.1.5), Ri(g) is given by Eq.(2.2.8) and

(@) = (Si(@))jk-1 = R(a),
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for g in some open neighborhood, W, of e e G.

Proof: By Eq.(2.1.3), for t closeto 0, g closeto e,
Qi[x, (g, EXP(at))] = Qi[Q[x, g], EXP(od)].

Differentiate this expression with respect to t, evaluate at t =0 and compare
coefficients of ag, 1 <s <n, to obtain the identity:

Z a&a%gl Rs(g) =Ps(Q[x,g)), 1<ism,1<s<n,  (25.5)
j=1
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