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ABSTRACT

Rytwinski, Adam. (2009). Selecting locations for forest fuel treatments using simulation
optimization. 102 pp.
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Wildfire in the Canadian boreal forest poses a considerable threat to forest inventory,
structures and human lives. Traditional reactive methods of fire suppression fail to
mitigate this threat and can worsen the problem by causing unnatural fuel buildup. Fuel
management, carried out through the application of fuel treatments across a landscape, isa
proactive approach to fire hazard reduction which has the potential to decrease fire risk
significantly. The problem of selecting the location of fuel treatments is complicated by
the uncertainty of predicting when and where fire events will occur.

In this study, the problem of how to locate fuel treatments across a forested
landscape is formulated as a combinatorial simulation optimization problem with the
objective of minimizing fire risk while remaining within a budget constraint. A spatial
computer simulation of fire spread, FastFire, is designed and validated to quantify fire
risk. The simulation optimization formulation is tested on a 220,000 ha forested area in
northern Ontario. A set of 100 potential fuel treatments are designed and the goal of the
optimization is to choose a subset of treatments. The optimization problem is solved using
the OptQuest optimization engine and the resulting solutions are shown to perform 5%
better than solutions chosen using a greedy heuristic. The spatial layout of the best
solutions are visually analyzed using GIS software to understand trends that resulted in
lessened fire risk.
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1. INTRODUCTION

1.1 Significance and Nature of the Fuel Management Problem

Wildfire in the Canadian boreal forest poses a significant threat to lives,
infrastructure, and forest resources when large fires escape suppression and burn out of
control (Hirsch, Kafka and Todd 2004; Omi 2005; Vicars 1999; Armstrong and
Cummings 2003; Palma et al. 2007). Between 1986 and 2005 there have been 36 deaths
directly related to wildfire in Canada (Natural Resources Canada 2008) and 133 deaths in
the U.S. between 1990 and 1998 (Mangan 1999). Despite national spending on fire
suppression on the order of $400 to $800 million per year (Canadian Forest Service 2007)
the significant damage caused each year by forest fires in Canada persists. For example, in
B.C., in the summer of 2003 an estimated $700 million dollars worth of damage was done,
including the destruction of 334 homes and the evacuation of over 45,000 people (Filmon
2004). In 2001, one fire alone in Chisholm, Alberta caused the forest industry to lose over
4.5 million cubic meters of growing stock and 6,300 hectares of regenerated stands
(Dessorcey 2001). Because there is such a potential for massive devastation, the large
majority of fires in Canada are suppressed before they escape to a unmanageable size.

One unintended consequence of aggressive fire suppression is that it prevents
low intensity fires that would reduce fuel buildup, and thus facilitates an increase in fuel
loads which, in turn, results in a higher probability of disastrous, uncontrollable fires
occurring (Conrad, Hartzell and Hilbruner 2001; Agee and Skinner 2005). Several

researchers have observed that (van Wagner 1988; Skinner et al. 1999; Skinner et al.
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2002; Podur, Martell and Knight 2002; Stocks et al. 1998) in recent years there has been
an upward trend in the annual amount of forest burned by wildland fires in Canada.
Flannigan et al. (2005) speculated that, as a result of climate change, the area burned in
Canada could double by the end of the century (Flannigan et al. 2005). For all of these
reasons, a more proactive approach to fire management, with greater emphasis on
controlling the build-up of forest fuels, is growing in importance.

Fuel management is typically defined as the process of altering the amount and
structure of fuels in a forested landscape in order to reduce the spread and intensity of
wildfires before they occur (Pyne 1984; Finney 2001). It requires a strategy developed at
the landscape-scale, which is then applied at the stand level. Such treatments vary
according to management objectives, fuel types, proximity to urban areas and other
factors.

The treatment of forest fuels can be divided into three categories: reduction,
conversion and isolation (Pyne 1984). Reduction is concerned with removing high-risk
fuels within a forest stand. Usually surface-fuels, such as shrubs and downed woody
debris, are removed, along with ladder fuels that provide a vertical pathway to the
forest’s canopy. The objective of reducing surface fuels is to minimize the intensity and
spread of surface fires; the objective of removing ladder fuels is to reduce the
opportunity for surface fires evolving into crown fires which have a much greater
potential for destruction. Fuel reduction is typically achieved through prescribed burning
or harvesting operations (Agee and Skinner 2005; Martell ef al. 2004).

The second major approach of treating fuels (conversion treatments) replaces

stands of highly flammable fuels with fuels that are more resistant to fire and burn with
2



less intensity (Pyne 1984). One conversion approach used in Canada involves converting
conifer and mixed-wood stands to pure aspen stands to act as a natural defense against
wildfire spreading to First Nations communities (Dallyn et al. 2000).

Fuel-isolation is a third approach to managing fuels; this involves disrupting the
continuity of highly flammable fuels and separating valuable resources from high risk
fuels through the creation of fuel-breaks (Agee et al. 2000). A fuel break is defined as a
strategically placed strip of land in which vegetation has been removed to restrict the
spread of fire (Green 1977). Agee et al. (2000) conclude that well designed fuel-breaks
in conjunction with other fuel treatments are essential for intelligent fuel management.

While there exists a variety of methods for treating fuels, each having distinct
effects on wildfire behaviour, it is important to understand that for a method to be
effective, the layout of all treatments as a whole must be considered. Since large
wildfires cover an area greater than that of a typical treated stand, a_single fire could
potentially encounter several fuel treatments before reaching extinguishment. Hence it
has been conjectured, based on modeling and speculation, that a set of fuel treatments
within a forest in which the location of each treatment has been considered in relation to
all other treatments could provide significantly greater protection than randomly or
greedily chosen solutions (Finney 2001; Hof and Omi 2003; Martell et al. 2004). In
other words, the whole is greater than the sum of its parts when the spatial location of all
treated stands are considered, not in isolation from one another but as a whole.
Henceforth we will refer to the spatial layout of all treated areas throughout a forest as a

fuel treatment mosaic.



At present, large scale fuel management plans are seldom used in the boreal
forests of Canada for several reasons. First, there is inadequate empirical evidence to
support the conclusion that fuel treatments are cost effective (Carey and Schumann
2003). This is not surprising; for the cost and danger associated with deliberate burning
of forests to study fire behaviour is a major constraint upon such empirical enquiries.
There has only been one large-scale controlled experiment examining how fire behaves
when coming in contact with a treated area, the International Crown Fire Modeling
Experiment involving 18 high-intensity crown fires in the Northwest Territories
(Alexander and Lanoville 2004). While the results were promising, they were far from
conclusive (Schroeder 2006).

Many studies have either focused on examining the aftermath of naturally
occurring fires that burned into treated areas (e.g. Pollet and Omi‘ 2002; Finney 2005) or
have relied on computer simulation (e.g. van Wagtendonk 1996; Stephens 1998; Fule et
al. 2001). While the literature appears to justify the use of fuel treatments, many
researchers still call for more experimental and site-specific evidence (e.g. Graham,
McCaffrey and Jain 2004; Carey and Schumann 2003; Fernandes and Botelho 2003).
This explains the second reason that fuel treatments are seldom used; namely, that the
cost of treating large areas of forested land can be impractical (Finney 2003; Lynch
2003) and managers are therefore reluctant to invest a large amount of money into
anything with uncertain results. This uncertainty is increased because of the lack of any
decision support software that could aid land managers in choésing an efficient fuel
management strategy or provide an accurate figure for the amount of money that could

be saved. The goal of this study is to address this lack by proposing and testing a
4



decision support tool capable of accurately designing and evaluating effective fuel

treatment mosaics.

1.2. Challenges in Modeling this Problem

The design of effective fuel treatment mosaics presents an interesting challenge
for decision support modeling. According to Martell (2007):

Fuel management represents rich untapped sources of interesting problems

for operations research (OR) specialists, particularly those interested in

spatially explicit stochastic integer programming under uncertainty...

There is a very rich source of interesting problems that will push even the

best stochastic integer programming methodologies to their limits.

In operations research, the fuel management problem can be formulated as a

minimization problem.

[1] minimize Z = D(x)
subject to:
[2] c"x<B

Where x is a vector of binary decision variables representing a proposed fuel treatment
mosaic, ¢’ is a transposed vector representing the cost of each treatment in the mosaic,
B is a real number representing a budget constraint, and D is a function that quantifies

5



fire risk. In other words, the solution to this model represents selected treatments that are
within the budget constraint while minimizing the risk of fire damage throughout the
landscape.

Researchers who have attempted to solve this problem have consistently run into
the same problem: wildfire behaviour is extremely complex and stochastic. Hence,
calculating fire risk in a forest is not a trivial task (He et al. 2004; Finney 2005). In
general, the accurate quantification of fire risk requires a spatial fire computer
simulation program (Finney 2005). These programs, e.g. Prometheus (Tymstra 2002),
LANDIS (He, Mladenoff and Crow 1999) and FARSITE (Finney 1998), are often also
highly complex, require large amounts of input data, and can take significant
computational time to assess the risk of one potential mosaic of fuel treatments. The
problem with this complexity, from an optimization standpoint, is that the calculation of
fire risk is required by the model’s objective function (see [1] above). Even moderate
sized optimization problems typically require in the order of thousands or more
objective function calculations (Hilier and Lieberman 2005), so an increase of several
seconds per objective function calculation will increase the total optimization time
substantially. Hence, a simulation model used must be optimized for speed if there is to
be any chance of making this problem feasible.

Because of the high cost of this fundamental computational problem, two

approaches to modeling this problem have prevailed:

1. design models that simplify the process of fire risk calculation (e.g. Hof and Omi 2003;

Wei et al. 2008) in order to facilitate optimization, or



ii.  design stochastic simulation models to support decisions on the problem (e.g. Finney

2001; Parisien, Junor and Kafka 2006).

The trouble with the former approach is that the complexities of fire behaviour are not
easily captured in traditional optimization methods. Therefore, doubts over the realistic
utility of these solutions are justifiable (Hof and Omi 2003). The problem with the latter
approach is that only a handful of the great amount of potential fuel treatment mosaics are
examined and no computerized guided search can be employed to find high quality or near
optimal solutions.

An alternate approach to modeling this problem is to use simulation
optimization. Simulation optimization is the process of finding the best configuration of
decision variables for a given system where the performance is evaluated based on the
output of a computer simulation model of the system (Gosavi 2003). The optimization
itself is an iterative procéss of choosing a solution which is then passed to a simulation
model for evaluation and subsequently passed back to the optimization model which will
choose the next solution based on the results. The use of simulation optimization as a
method of solving complex optimization problems has seen a remarkable growth in
recent years both in the academic world and in practice (April et al. 2003). Optimization
via simulation has been successfully applied in wide range of areas including logistics
(e.g. Hill and Fu, 1994), supply chain management (e.g. Azadivar et al. 1996) and
manufacturing (e.g. Morito et al. 1993; Vogt 2004).

The idea of employing simulation optimization for spatially allocating fuel

treatments has already been proposed by Hof and Omi (2003) and Martell (2007); yet both



agree that the computational time required to evaluate each potential solution poses a

significant computational challenge.

1.3. Objective and Outline of this Research

The central objective of this study is to evaluate whether simulation optimization
can be used to create a decision support tool capable of designing efficient fuel treatment
mosaics in real forested landscapes. The research is outlined as follows. A literature
review focuses on two main areas. Firstly, the literature on the prediction of fire behaviour
is reviewed. The second section includes literature concerned with methods of solving
simulation optimization problems. In methods, a formulation of the fuel management
problem in a simulation optimization context is present, as well as the design and
calibration of a spatial fire simulation model, and the integration of Othuest® software as
a method of solving the simulation optimization problem. The case study presents a fuel
treatment allocation problem set based on a forest in the boreal forest of Northwestern
Ontario. The results section summarizes the calibration of the simulation model and will
present the solutions found for the case study problem set using simulation optimization
and compare these with other methods. The Discussion addresses the strengths and
weaknesses of the simulation optimization approach as well as the implications the

findings may have on modeling the harvest-scheduling problem.



2. LITERATURE REVIEW

The objective of this research requires a review of the literature in two main areas.
First, methods of modeling fire behaviour and quantifying fire risk are outlined. This
background was necessary for the design of a computer simulation model of fire spread
used in the simulation optimization framework. The second section reviews research in the
field of simulation optimization with a focus on formulating and solving combinatorial

optimization problems.

21. Modeling the Behaviour of Fire

Research into the design of accurate predictive models of wildfire behaviour in
North America dates back to the 1920s (Stocks et al. 1998). Such models have since been
developed and refined for diverse purposes, including planning for fire management
activities (van Wagtendonk 1996), modeling forest landscape change (Gardner, Romme
and Turner 1999) and evaluating fuel treatment prescriptions (Finney 2001).

Fire behaviour models represent a class of mathematical models concerned with the
prediction of how a wildfire will behave given a fuel type and a set of weather conditions;
but such models do not attempt to predict the spatial extent or progress of the fire. Models
that predict the spread of fire are an extension of fire behaviour models, using their
parameters to predict how a fire will progress spatially and temporally through a
heterogeneous landscape.

Models of fire behaviour are designed to predict and describe parameters such as

rate of spread, fire intensity and fuel consumption using inputs based of fuels, weather and
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topography (Perry 1998). Models of fire behaviour typically fall under one of three
categories: physical, semi-physical and empirical.

Physical models are those based purely on mathematical descriptions of the
physical and chemical processes of fire events. According to Catchpole and de Mestre
(1986), a physical model of fire predicts fire-behaviour directly from the analysis of the
chemistry of combustion. Such a model would theoretically be the most desirable
approach to the prediction of fire behaviour since it is based on known relationships and
hence could easily be scaled to different fuel types and weather conditions (Perry 1998).
While several theoretical physical models exist (e.g. Thomas 1967; Weber 1991), the
difficulty of quantifying the combustion and heat transfer through fuel environments as
varying and complex as a typical forest stand, has made the creation of an operational
physical model impossible (Perry 1993).

Semi-physical approaches, combining both physical and empirical techniques,
have also been developed. These models still incorporate mathematical descriptions of
heat-flux and ignition, but derive the various constants governing these equations
experimentally, through observations of test-fires (Perry 1998). These observations are
then extrapolated to predict the behaviour of fire at larger scales. Currently, the most
widely used fire behaviour model is a semi-physical model developed by Rothermel
(1972) which forms the basis of the National Fire Danger Rating System (Andrews 1986),
the BEHAVE fire prediction system (Burgan and Rothermel 1984), and the FARSITE fire
area simulator (Finney 1998) in the USA. The Rothermel equation for the rate of spread
through surface fuels is based on the conservation of energy and predicts rate of spread

(ROS) as:
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Heat flux absorbed by a unit volume of fuel
Heat required for ignition of that volume of fuel

[3] ROS =

The rate of spread equation has been used in many different environments from North
American grassland fuels (Sneeuwjagt and Frandsen 1977) to garrique in southern France
(Malanson and Trabaud 1988). Several problems have been reported questioning how well
the model predicts the behaviour of fire in structurally complex fuel systems (van Wilgen
and Richardson 1985). Gould, for example (1988), experienced problems when applying
the model in the presence of high wind-speeds.

Empirical models do not include any of the physical elements of fire spread, but
instead employ statistical descriptions of observed wildfires to predict how future fires
would behave. Through observing the effect of elements such as fuel type, wind speed and
fuel moisture on the behaviour of observed wildfires, equations can be formed to predict
the behaviour of fires under many fuel and weather conditions. These models are
relatively easy to construct and have been used to support the McArthur fire danger meter
in Australia (Noble, Barry, and Gill 1980) and the Canadian Forest Fire Danger Rating
System (Stocks et al. 1998). Although these models have been highly successful at
predicting fire behaviour within the conditions and ecosystem for which they were
designed (Weber 1991), extrapolating results into other regions has been unsuccessful
(Marsden-Smedley 1993). It is therefore recommended that the use of empirical models
outside of test conditions be treated with caution (Chandler et al. 1983).

An overview will now be given of two of the most prominent fire behaviour
prediction models in North America: the Fire Behavior Prediction and Fuel Modeling

System (BEHAVE) and the Canadian Forest Fire Danger Rating System (CFFDRS).
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2.1.1. The Fire Behavior Prediction and Fuel Modeling System (BEHAVE)
The BEHAVE system is a semi-physical approach to modeling the behaviour of

surface fires for fuel types found in North America. It is comprised of two subsystems:
FUEL and BURN. The FUEL subsystem classifies fuel types and provides thirteen
standard fuel models which may be used unaltered or modified to create new fuel models
(Burgan and Rothermel, 1984). The BURN subsystem predicts rate of spread and frontal
fire intensity for ground fires based on Rothermel’s (1972) model (Andrews 1986). The
model requires weather and topography data as well as a fuel model as described by the
FUEL subsystem. BehavePlus is a modified version of the BEHAVE system designed to
run on modern computers and to incorporate other aspects of fire behaviour, such as

crown fire, spotting and tree mortality (Andrews et al. 2005).

2.1.2. The Canadian Forest Fire Danger Rating System (CFFDRS)

The CFFDRS is a national system of rating the danger of forest fires and uses an
empirical approach to predicting fire behaviour. Although the CFFDRS is classified here a
a behaviour model, it does include a secondary output the roughly predicts fire perimeter
size which would be considered a model of fire spread. The current form of the CFFDRS
has been in development since 1968 although it incorporates research dating back as far as
1925 (van Wagner 1987; Stocks et al. 1998). It is composed of two subsystems: the Fire
Weather Index System (FWI) and the Canadian Forest Fire Behaviour Prediction System
(FBP).

The purpose of the FWI is to predict the danger of forest-fire across Canada by

estimating forest fuel moisture content. Inputs to the FWI include temperature, relative
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humidity, wind and rain. Outputs are Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC) and Drought Code (DC). These codes are then used to calculate Initial
Spread Index (ISI) and Buildup Index (BUI) which offer numerical measures of the
potential for fire intensity and fire spread . Finally these indices are used as inputs for the
FBP. Calculations for the FWI indices rely solely on daily Vweather readings of relative
humidity, wind speed, 24-hour accumulated precipitation and dry bulb temperature taken
at the typical peak burning time of 4 p.m. (Stocks et al. 1998). For a detailed description of
the FWI see van Wagner (1987).
The second component of the Canadian Forest Fire Danger Rating System, the

Fire Behaviour Prediction System is a method of predicting fire behaviour based on fuel
type, weather and topography. The four primary outputs of the model are:

i. Rate of Spread (ROS),

ii.  Head Fire Intensity (HFI),

iii. Fuel Consumption and

iv.  fire description code.

The system also includes eleven secondary outputs which describe back and flank spread
rates and give an approximate fire area and perimeter based on a simplistic elliptical
mode] of fire spread in homogeneous fuel types (see Alexander 1985). The effect of slope
on the rate of spread is also taken into account (van Wagner 1988). Canadian fuel types
were divided into sixteen categories representing the most common fuels found in Canada

- ranging from grasslands to mixed wood forests to slash piles. The FBP is an empirical
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model based on data collected from 409 experimental fires and 86 documented wildfires.
For a detailed description of the FBP see Hirsch (1996).

The CFFDRS is a reliable and effective model of fire behaviour designed
specifically for use in Canadian forests. Reports on the accuracy of the system have shown
excellent agreement between observed versus predicted values (e.g. Stocks and Flannigan
1987; Stocks 1988; Hirsch 1989). The FBP system forms the basis of many prominent fire
spread models including Prometheus (Tymstra 2002), BFOLDS fire model (Perera ez al.
2002) and Sem-land (Li, Ter-Mikaelian, and Perera 1997). In the following section, the

prediction of spatial fire spread is described.

2.2. Models of Fire Spread

Models of fire spread predict the spatial direction (and therefore pattern) of fires
burning through a forest. They are used to predict which areas of the forest are most likely
to be affected by fire. The purposes these models serve can include guiding the
suppression of fires (e.g. Ntaimo et al. 2004) or predicting forest landscape successional
change over time (e.g. He and Mladenoff 1999). Models of fire spread can also be
classified as either stochastic or deterministic (Finney 1999). This classification is
independent of the conceptual model employed. By definition a deterministic model will
return identical results each time it is run with the same initial conditions. Stochastic
models incorporate probabilistic elements and identical initial results do not imply
identical results. Choosing whether to take a deterministic or stochastic approach depends
on the modeling objectives. In general, deterministic models are better suited for highly

accurate and small scale predictions of fire behaviour which could, for example, guide the
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deployment of fire suppression personnel (Hargrove et al. 2000; He and Mladenoff 1999).
Stochastic models, on the other hand, are typically superior for applications at a larger
scale such as predicting fire risk across a landscape (He and Mladenoff 1999).

In this section the three most common conceptual models employed in modeling
fire spread are described:

1. shape models;
1i. vector models; and

iii.  raster (or cellular) models.

2.2.1. Shape Models

Shape models are the simplest models used to predict the spread of a forest fire.
They were originally developed for estimating the growth of a fire under uniform
environmental conditions (e.g. Fons 1946). The simplifying assumption of these models is
that fires burn in spatially uniform conditions with unchanging weather and will assume a
specific shape. Under this assumption, given an ignition point and an estimate of the
forward spread rate, changes in the fire’s size could be estimated simply as a function of
time (Finney 1998). The elongated ellipse is often assumed to be the best fit shape for fires
burning in heterogeneous conditions (Green, Gill, and Noble 1983) although this
assumption has been challenged by the observation that specific fires have been shown to
be better described as egg-shaped, ovoid or double ellipse (Peet 1967; Albini 1976;
Anderson 1983).

The appeal of shape models is their simplicity. In general, only three inputs are

required: fire front intensity, elliptical shape factor (length-to-breadth ratio) and the
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backfire rate of spread (Gardner, Romme, and Turner 1999). The major downside to this
type of model is that real-world fires rarely burn in uniform conditions and that the
predictive powers of the model are markedly decreased when applied to heterogeneous
beds of fuel (Perry 1998). True fires constantly encounter changes in wind, elevation and
fuel type and therefore require a more realistic model capable of dealing with such
variations.

Despite the drawbacks of this conceptual model, elliptical fire models still play an
important role in predicting the spread of fires. The methods described by Alexander
(1985) assume an elliptical fire shape in order to predict the flank rate of spread when
given a frontal and backing spread rate. This method is employed as part of CFFDRS

(Hirsch 1996) and is used in certain vector models to estimate small fire shapes.

2.2.2. Vector Models

Vector models represent the most recent advances in simulating the spread of fires
and are arguably the best approach for dealing with spatial and temporal heterogeneity
(Finney 1998). Vector models are characterized by their use of infinitely thin arcs
connecting a set of vertices in a Cartesian plane to represent the fire’s front as it expands
over time (Finney 1998; Keane et al. 2004). Although it is not a defining property,
currently all existing vector models rely on Huygens’ principle of wave propagation
(Morais 2001). Hence, vector models are often referred to as “wave” models. The
fundamental assumption of wave models is that Huygens’ principle, which was originally
intended to describe the propagation of light waves, is analogous to the spread of a fire’s

front. Huygens’ principle states that an advancing wave may be estimated from the sum of
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secondary waves arising from individual points in the medium being traversed. When this
principle is applied to fire-spread, an expanding fire front can be thought of as the
combination of individual fire fronts emanating from points along the fire’s perimeter.
Figure 1 shows how at each time step in the simulation model, a new fire front is
calculated by burning small secondary fires and creating a new perimeter based on their
combined shapes.

The method used to calculate the fire fronts at each vertex employs some form of
shape model, such as the elliptical model of van Wagner (1969) described above. A
cardinal assumption upon which vector models are based is that each defined vertex along
the fire front will produce a unique fire pattern based on the environmental conditions at
that point, and that the total perimeter of the fire is an amalgamation of these patterns.
Vector models allows for a more accurate representation of how fire burns in realistic
landscapes (heterogeneous conditions) because of its use of multiple secondary fires, each

of which will burn in a pattern depending on the fuel conditions encountered.
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Expanded Fire Front

Otiginal Fire Front

Secondary Fires
emanating from
points along the
perimeter

Figure. 1. Fire front modeled as an expanding set of vertices using Huygens’ Principle.
While vector models of fire propagation have been shown to perform well at
predicting the final shape of wildfires (French et al. 1990), their major drawback is that the
computational time required to perform even a single fire simulation may be significantly
longer than other approaches (Richards 1990; Hargrove et al. 2000). For this reason,
vector models are used most often when highly accurate predictions of a single fire event
is needed, rather than applications that require a large number of fire simulations such as
the prediction of fire risk across a large landscape. Vector models based on Huygens’
principle form two of the most well known fire models employed in North America:

FARSITE and Prometheus.
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FARSITE is a deterministic spatial fire growth model, developed by Finney
(1998). and based on the fire behaviour model of the American BEHAVE fire system
which calculates rate of spread using the Rothermel fire equations for predicting surface
fire, while crown fire behaviour is estimated using the models developed by van Wagner
(1977 and 1993). The model incorporates many different types of fire spread including
surface fires, crown fires and fire spotting (lofted embers igniting fires ahead of the
advancing fire front) (Perry 1998). Inputs to the model include raster formatted (data is
stored in a row-and-column format and each cell corresponds to a rectangular area of land)
fuel and topographical information as well as a stream of weather data (Finney 1998).
FARSITE was specifically designed for fuel structures found in the United States and the
mode] has proven less successful when tested in conditions outside of its intended
environment (Arca et al. 2006).

Prometheus is the Canadian Wildland Fire Growth Model (CWFGM) designed
specifically for use within Canadian fuel types (Tymstra 2002). The conceptual model of
Prometheus is very similar to that of FARSITE, employing a deterministic wave ba;ed
approach. The major difference between the two models is that the behaviour model
driving the fire spread in Prometheus is based on the Fire Weather Index (FWI) and Fire
Behaviour Prediction (FBP) subsystems of the Canadian Forest Fire Danger Rating
System. The objective in the design of Prometheus was to predict the hourly or daily
growth of wildland fires that have escaped initial attacks. Prometheus is therefore used to
support operational and strategic decisions on how to attack a fire front in progress
(CWFGM Project Steering Committee 2006). Prometheus is also used as the fire spread

module of the BURN-P3 software package which was designed to estimate burn
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probability maps for large fire prone landscapes through the simulation of a large number

of random fire ignitions (Parisien et al. 2005).

2.2.3. Cellular Models

Cellular models of fire spread are characterized by their use of a regularly spaced
landscape grid, simulating fire growth as a process of ignitions to neighbouring cells
(Finney 1998). Each cell represents an area of the landscape and holds environmental
attribute data such as fuel type and topography. The number of possible cells that can be
affected by a single burning cell is referred to as the neighbourhood structure of the model.
At each iteration of the simulation, each burning cell will spread to a subset of its
neighbouring cells in either a deterministic or probabilistic fashion based on the fuel types
and weather conditions at each cell. The majority of raster models are based on cellular
automata as described by Wolfram (1984), where each cell is in one of a finite number of
states and cells are affected only by their neighbouring cells at discrete time intervals.
Rules of spread can be deterministic, although many models use some stochastic elements
to represent the uncertainty produced by random changes of immeasurable variables such
as sudden wind changes.

Cellular models have been known to produce distorted fire shapes because of the
limited number of possible directions of fire spread inherent in the use of a fixed
neighbourhood spread method; but it is possible to reduce this distortion by increasing the
resolution of the gridded landscape, and by using a larger spread-neighbourhood (French,
Anderson, and Catchpole 1990). An increased resolution, however, will also have the

negative effect of increasing computational time, and much research has gone into finding
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the optimal balance between these two factors, ie. what resolution will minimize
distortion without rendering the model useless because of the time required to run a
simulation (e.g. Ball and Guertin 1992; Green 1983). Cellular models are generally
inferior to wave models at predicting the exact shape of a single fire event (Finney 1998).
Cellular models, however, are often used when the goal is to create spatially explicit burn
probability (BP) risk maps for large landscapes since they are often less computationally
intensive when compared to wave models. BP maps are spatial estimates of the probability
of each point on the landscape being affected by fire in the next fire season. These
probabilities are estimated from multiple runs of a stochastic fire spread model. BP maps
are commonly used for evaluating fire risk to specific locations in a heterogeneous
landscape (Gardner, Romme and Turner 1999). |

Cellular models of fire spread have also been used to estimate the natural structure
of forests in an environment of stochastic fire disturbance. LANDIS, for example, is a
model of landscape disturbance and succession developed by Mladenoff et al. (1996)
which employs a cellular method of stochastically modeling fire spread throughout large
landscapes. The Boreal Forest Landscape Dynamics Simulator (BFOLDS) is a similar
model of landscape change designed specifically for the Boreal forest using a cellular fire
spread model based on the CFFDRS (Perera et al. 2002). The Sem-Land disturbance and
succession model also includes a cellular fire spread model similar to that of BFOLDS,

however the fire spread is stochastic rather than deterministic (Li et al. 1997).
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2.3. Simulation Optimization

A traditional optimization problem can be defined in terms of a set of decision
variables x, a feasible region 8 and an objective function F (x):
(4] min,eq F(x)
The goal of this formulation is to find x* where x* € 6 and F(x*) < F(x)Vx € 6. In
other words, we wish to find a configuration of the decision variables which lies within the
feasible region and returns the smallest possible value of the objective function. The
feasible region is defined by a set of constraints restricting certain configurations of
decision variables. Linear constraints take the form of Ax < b. The choice of minimizing
F(x) is arbitrary and solving for the maximum value of F (x) is an equivalent problem.

Optimization problems of this form assume that F(x) is a deterministic function
and that the closed form is known (i.e. that it can be expressed analytically in terms of
“well-known” functions). In other words, for any given solution x, the objective function
can be quickly calculated and contains no random elements. Knowing the closed form of
the objective function allows for the use of mathematical programming techniques such as
linear or non-linear programming which can be used to solve even large optimization
problems consisting of thousands of decision variables and constraints (Hillier and
Lieberman 2005). Mathematical programming has seen widespread use as a highly
successful planning tool in many areas. For certain applications, however, the system
being studied may be too complex to derive a closed form function that accurately
evaluates a given set of decision variables (Law and Kelton 1991). In these cases it may be

possible to use assumptions, simplifications and theoretical models to obtain an
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approximate closed form function; but doing so can result in a model that is too simplistic
for real world use (Gosavi 2003).

The alternate method to finding a closed form objective function is to approximate
an objective function using computer simulation. Computer simulation allows for a
sophisticated method of evaluating the quality of a given solution in a highly complex
system (Gosavi 2003). A simulation model can be thought of as a set of factors (inputs)
and a set of responses (outputs); and when a simulation model is presented with a set of

factors it will return a set of responses based on the execution of the simulation (see Figure

2)
Input (Factors) Output (Responses)
%4 > N
Simulation Model
X T TY2
Xn = Yﬂ

Figure. 2. Inputs and outputs of a simulation model.

When a simulation model is stochastic, the same factors will not necessarily yield the
same response but will conform to some probability distribution. The simulation
optimization problem is concerned with finding a set of factors that returns an expected
optimal response from the simulation program; hence, the stochastic simulation

optimization problem can be defined as:
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[5] min yeg F(x) = E[f (x)]
where x is a set of decision variables (which may be thought of as inputs to a simulation
program) and € is the feasible region. Similar to the traditional optimization problem, we
wish to minimize the objective function F(x), the difference being that F(x) = E[f(x)]
where f(x) is the response of a computer simulation and E[-] is the expectation operator.

Optimization of a stochastic objective function via simulation is a difficult
problem to solve computationally. This is because the objective function value of each
feasible solution cannot be evaluated directly, but must be estimated via multiple
stochastic simulations. This adds error or stochastic noise to each objective function
calculation.

Hence the objective function calculated through simulation can be thought of as
(6] fx)=fx) + e(x)
where f(x) is the true value of the objective function and &£(x) is the error obtained
through the stochastic simulation process. Stochastic noise can be diminished and is often
nearly eliminated by performing a large number of simulation runs (Law and Kelton
1991). However, since simulation runs are generally computationally expensive an
increase in the number of runs performed would reduce the number of alternatives that
could be explored in a given period of time (Banks ez al. 2004). The following section
reviews approaches to solving the simulation optimization problem where the goal is to
thoroughly search the feasible space while still being able to identify optimal or near-

optimal solutions in the presence of stochastic noise.
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The use of simulation optimization as a method of solving complex optimization
problems has seen a remarkable growth in recent years both in the academic world and in

practice.

2.3.1. Solving Simulation Optimization Problems

Approaches to solving simulation optimization problems vary depending on the
structure of the feasible region. Solution methods can be divided into those designed for
problems where the feasible region is continuous and problems where the feasible region
is discrete (e.g. integer or binary). Continuous valued problems are a class of their own
and typically rely on methods such as gradient approximation or response surface
methodology (Olafsson and Kim 2002). Since the problem of interest in this study is
discrete valued, only solution methods designed for discrete valued problems will be
examined in detail.

When using a stochastic simulation model to calculate objective functions, the
exact value of the objective function value for any feasible solution can generally not be
known exactly. This uncertainty can be regarded as stochastic noise. When stochastic
noise is introduced to optimization problems, such as when the objective function is based
on a stochastic simulation, a third concern is introduced: estimation. Estimation refers to
the amount of certainty with which the analyst can infer that one solution is superior to
another (Prudius 2007). A higher degree of certainty requires more simulation runs which,
in turn, require more computational time. Hence, a major objective in the design of a
solution method for simulation optimization is to limit the cost of exploring the search

space thoroughly yet still be able to identify high quality solutions in the presence of
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stochastic noise. For these reasons, methods of solving deterministic optimization
problems are either not applicable or require some modification (Alkhamis et al. 1999).

Solution methods for discrete simulation optimization problems can be classified
into those designed for problems with small feasible regions and those with sufficiently
large feasible regions making complete enumeration unfeasible.

When the number of feasible solutions in a simulation optimization problem is
finite and adequately small, such that evaluating all solutions can be completed in a
reasonable amount of computational time, ranking and selection (R&S) and multiple

comparison procedures (MCPs) can be used.

2.3.2. Ranking and Selection

The concept of R&S was introduced by Bechhofer (1954) when he described the
problem of finding the largest mean value from a sample of normal populations. The
experimenter collects observations from each population, which are treated as realizations
of random variables, and uses these observations to provide a statistical guarantee
regarding the quality of the chosen population in relation to the other populations. R&S
techniques can be classified as either indifference zone procedures or subset selection
procedures. Indifference zone procedures identify an optimal solution but do not discern
between two solutions that are sufficiently close, while subset selection procedures are
methods of producing a subset from the set of possible solutions that contains the best
configuration with a user-defined probability (Swisher and Jacobson 1999). Early R&S
techniques (e.g. Paulson, 1964; Bechhofer et al. 1968) were of limited practicality to most

simulation optimization problems since they required that the variance of the solutions be
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equal and known, a condition rarely met with simulation models. Modern R&S techniques
have eliminated this requirement (e.g. Dudewicz 1976) and have extended the procedure
to multivariate optimization (e.g. Goldsman,1987).

Examples of R&S use in literature include Pichitlamken and Nelson (2003) who
used R&S to help guide a random search procedure and Gray and Goldsman (1988) who
applied an indifference zone R&S procedure for choosing the best airspace configuration
for a European airport. R&S procedures have also been used as a method to “clean up”
after simulation optimization; i.e., when an optimization method has identified a number
of good solutions with no guarantee as to which is the best, R&S can be used to find the
exact optimum (Boesel ef al. 2003). Several commercial simulation optimization packages
employ R&S techniques including AutoStat (Carson 1996) and Othuest® (Glover et al.

1996).

2.3.3. Multiple Comparison Procedures

Multiple Comparison Procedures (MCPs) differ from R&S procedures in that the
goal is to quantify the difference between two or more solutions rather than selecting the
optimal. This difference is analogous to that between hypothesis testing and interval
estimation (Yang and Nelson 1991). MCPs use pairwise comparisons and confidence
intervals to infer the differences between all proposed solutions, but cannot guarantee a
decision of the best solution (Swisher and Jacobson 1999). Recently, efforts have been
made to unify both R&S and MCPs to simultaneously run both procedures (e.g. Gupta and

Hsu 1984). A unified method would allow an analyst to select an optimal system while
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also gaining insight into how much better the solution is in comparison to other possible

systems (Swisher and Jacobson 1999).

2.4. Metaheuristic Algorithms

When the feasible region of a discrete optimization problem is infinite or
sufficiently large that it would be infeasible to evaluate all possible solutions, the above
procedures become useless and instead the analyst must turn to metaheuristic procedures
that explore the solution space with the objective of finding an optimal or near-optimal
solution while only evaluating a fraction of the possible solutions. Metaheuristic
algorithms are not concerned with “solving” an optimization problem (i.e. finding an exact
optimum), but rather with finding a “good” feasible solution in a fraction of the time
required to solve the problem exactly.

Metaheuristic search algorithms explore the solution space using strategies of
diversification and intensification (Blum and Roli 2003). Diversification requires broad
exploration of the solution space while intensification involves exploiting specific,
promising areas of the solution space. The most effective metaheuristics employ a balance
of both strategies (Blum and Roli 2003). The strength of metaheuristics lies in their ability
to escape from local optima (diversification), which involves occasionally accepting worse
solutions in the course of the search procedure. This ability allows metaheuristics to
outperform methods such as greedy heuristics or local search algorithms which only
accept new solutions that improve the objective function, causing the search to become
trapped in a local optimum which could potentially be significantly worse than a global

optimum.

28



Metaheuristic algorithms can be divided into two major categories: those that use
employ a directed search technique and those that are population based. Directed search
algorithms are defined by their use of a neighbourhood structure. At each iteration in the
optimization procedure there is only one current solution which can move to a
neighbouring solution based. In this sense a single solution will travel the solution space in
search of a high quality solution. Population based metaheuristics, on the other hand, at all
times maintain a set of potential solutions referred to as the current population. At each
optimization iteration certain solutions will be removed from the current population and
new solutions will be added based on defined rules in the metaheuristic algorithm.

A few of the most commonly used metaheuristic algorithms are: simulated

annealing, tabu search, genetic algorithms and scatter search.

2.4.1. Simulated Annealing

Simulated Annealing (SA) is a directed search metaheuristic initially proposed by
Kirkpatrick et al. (1983) as a search algorithm for deterministic combinatorial
optimization problems. The inspiration behind SA stems from the physical act of
annealing metals where molecules assume a low energy configuration when cooled with
an appropriate schedule. The SA procedure begins with an initial solution and at each
iteration either accepts or rejects a neighbouring solution stochastically based on the
difference between the objective functions of the two solutions and a temperature variable
that decreases with each iteration. The randomness of the rejection or acceptance allows
for the search procedure to escape from local optima. SA was adapted as a method of

solving simulation problems with stochastic noise by Gelfand and Mitter (1989) and it has
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been shown that when the stochastic noise is assumed to be normally distributed, the
modified SA methods will converge in probability to a set of local optima (Alkhamis et
al., 1999). SA methods have been used in several simulation optimization studies.
Examples include Haddock and Mittenthol (1992) who used SA to determine the optimal
inputs to a hypothetical factory simulation program and Morito et al. (1993) who used SA
to find a dispatching schedule to minimize tardiness for a commercial flexible
manufacturing system. A simulated annealing algorithm is included in the Witness®

simulation software package (Markt 1997).

2.4.2. Tabu Search

Tabu search (TS) is another directed search procedure which differs from
simulated annealing in that neighbouring moves are not chosen randomly but instead are
the best possible neighbouring solution at each iteration. However, TS is different from a
pure hill-climbing technique since worse solutions can be accepted and a memory strategy
is employed to prevent cycling back to the same solution in the form of a “tabu list”. The
tabu list keeps track of recently visited solutions and restricts the search from revisiting or
backtracking through the solutions space (Glover and Laguna 1997). The tabu list can be
modified in many ways by varying the length of the tabu list, how long solutions are kept
in memory, the form of the list etc., and many studies have been focused on finding tabu
list configurations that optimize the search. Tabu search has been used to solve many
complex optimization problems including job shop scheduling (Nowicki and Smutnicki
1996), the vehicle routing problem (Gendreau et al. 2001) and the quadratic assignment

problem (Dell’ Amico et al. 1995).
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2.4.3. Genetic Algorithms

Genetic algorithms are the most widely known of the population-based
metaheuristics. Rather than having a single current solution at each point in the search, a
set of candidate solutions is kept which is likened to a population of biological creatures.
The inspiration for genetic algorithms comes from the theory of evolution. The binary
strings representing solutions is treated like DNA which may be passed to offspring
solutions through combination with other solution DNA. The fitness of each solution is
determined by the resulting objective function and at each optimization iteration the
weaker solutions will be removed and the fittest solutions will pass on their genetic code.
It is hoped that desirable “traits” are passed down to the offspring solutions and that
random mutation operations may find improved solutions.

GAs have been employed in a number of theoretical simulation optimization studies
(e.g. Tompkins and Azadivar 1995) and are used as search procedures in several
commercial simulation optimization packages such as AutoStat (Carson 1996) and
RISKOptimizer (Nersesian et al. 2001).

2.4.4. Scatter Search

Scatter search is another population-based metaheuristic algorithm first introduced
in Glover (1997). It differs from genetic algorithms in that there is no analogy to the
survival-of-the-fittest theory where solutions are treated as genetic codes which are
combined and mutated. Instead, a set of reference solutions is kept and new solutions are
created through weighted linear combinations of these solutions. Rounding mechanisms

are employed to ensure that the linear combinations satisfy integer feasibility conditions.
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Scatter search algorithms can vary greatly, but are defined by their use of the
scatter search template (Glover 1998). This template consists of five methods, each of
which can be modified to suit a specific problem instance. These methods are:

1) adiversification generation method,

2) aimprovement method,

3) areference set update method,

4) a subset regeneration method, and

5) a solution combination method.

The diversification method is used to spread out the search by generating randomly
created solutions which become trial solutions. The improvement method could be any
algorithm used to improve a trial solution into an enhanced trial solution, e.g. a simple
hill-climbing method. The reference set update method is a way of updating the current set
of best solutions, known as the reference set, by replacing a solution in the reference set
with a trial solution if it meets some defined criteria. The subset generation method is
used to determine at each iteration a subset of the reference set that should be used to
create new solutions, and the solution combination method is how these solutions are
combined into new solutions.

A good example of the scatter search template can be found in the Othuest®
optimization software package. The general scatter search optimization strategy is as
follows. First an initial feasible solution population is created, either randomly or based on
user-defined starting points (diversification generation method). The size of the initial
population can be adjusted considering the amount of time required for each objective

function iteration. After the initial population has been created, the iterative search
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procedure begins. At each iteration, two “parent” solutions from the current population are
chosen. This choice is influenced by the quality of the solution as well as the memory
which stops previously evaluated solutions from being repeated (subset regeneration
method). These parent solutions are used to create offspring solutions using linear
combination based on the scatter search methodology (solution combination). The worst
parent solution is replaced with the best offspring solution and the next iteration begins

(reference set update method).
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3. METHODS

3.1. Mathematical Formulation of Simulation Optimization Problem

The following formulation is a combinatorial optimization approach to the spatial
fuel treatment problem using binary variables to represent the decision of which fuel
treatments to implement. It is presented as an abstract and flexible formulation that could
easily be tailored to suit different fuel types, fuel treatments, etc. In the case study this
formulation will be applied to a real landscape which should give the reader a greater
understanding of how the model’s parameters and indices can be used. The formulation
assumes that the forest is divided into a set of cells, each of which has an associated value,
measured in dollars, which would be lost if destroyed by fire. The goal of the formulation
is to minimize total fire risk of all cells in the next fire season, where risk equals the
probability that each cell will burn multiplied by the value of that cell, summed over the

set of all cells.

Indices and sets
i, = index and set of all potential fuel treatments
j,] = index and set of all cells in forest

N; = set of treatment prescriptions in conflict with treatment i

Parameters
c; = cost of scheduling fuel treatment i

v; = value of cell j ($)
B = available funds in budget ($)

Decision Variables
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v = {1 if treatment i is selected for implementation
' 0 otherwise

Functions

fj(x) = the probability of cell j burning next fire season given treatment schedule x

E[-] — Expectation operator
z = Firerisk

Objective Function
Minimizez= ) E[f;(0]y, 7]
jel
Constraints

Z xic; <B [8]

i€l

xj+Zka1 V]E] [9]
kENj
x; € {0,1} Vielje] [10]

The objective function, given by equation [7], is to minimize expected fire risk (z)
by choosing an optimal set of fuel treatments, represented by x. Fire risk is calculated by
summing over all cells in a forest the probability the cell will burn multiplied by the value
of the cell. The probability that a cell will burn depends on the set of fuel treatments
chosen for a particular solution and is represented by the function fj(x). This function is
calculated through multiple simulations of the stochastic fire simulation model. Equation
[8] places a constraint on the total cost of all selected treatments; i.e., the total cost must

not exceed the budget parameter B. Equation [9] states that no two conflicting treatments
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may be implemented in the same solution. The set of treatments that are in conflict with
treatment j is represented by the set N; which is a user controlled parameter. This could be
used, for example, if two treatments covered the same cells but each represented a
different type of fuel treatment and the two are mututally exclusive. The final constraint,
represented by equation [10], ensures that all decision variables are binary.

The function f}(x) could be any type of noisy real valued function which returns
the burn probability of cell j based on the set of fuel treatments x. A noisy function means
that we can never know the true burn probability of cell j; i.e. f]-(x) = fi(x) + é(x)
where £(x) is random noise. We define fj(x) as the response of a stochastic computer
simulation model which estimates burn probabilities based on simulated fire behaviour.
The random error £(x) arises from the fact that fj (x) are expected values calculated from
multiple iterations of a stochastic model, and hence, will not be exactly known.

To solve this optimization problem, two major components are required: 1) a fire
simulation model capable of predicting burn probabilities, and 2) an algorithm for solving
the optimization problem. In the following section I will describe the structure and design

of these two components.

3.2. Design of a Fire Simulation Model (FastFire)

In the previous section we saw that the proposed formulation requires a spatial fire
simulation program capable of predicting burn probabilities. Although there are a number
of such models (e.g. Prometheus, FARSITE) that are quite accurate and quick to execute,

they are typically not well suited for simulation optimization. Simulation optimization
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requires that both the optimization model and the simulation model have a well structured
interface for easily passing data between them, since this will be done at each iteration of
the optimization process. Also, the data output from the simulation program must be
compatible with the optimization procedure. Since the above mentioned models were not
designed for purposes other than simulation optimization, they are fairly inflexible to
change and difficult to incorporate in an optimization process. In order to avoid
unnecessary complications, a fire simulation program, FastFire, was designed specifically
for use in a fuel management optimization procedure. FastFire was designed with the

intent that:

i) It should be well suited to providing a realistic evaluation of burn probabilities,

ii) It should execute quickly (to make simulation optimization feasible),

iii) The data required for the model be readily available for many forests in Canada;
and,

iv) Data should easily exchanged with an optimization model.

To achieve these goals, FastFire has the following key components: it is a) based
on the Canadian Fire Behaviour Prediction System, b) stochastic and c) cellular. Cells are
assumed to be rectangularly shaped and uniform in size. FastFire was not designed to
improve upon existing fire simulation models, but to emulate and to modify them with
added flexibility.

The core component of all calculations concerning rate of spread in FastFire is the
Canadian Forest Fire Behaviour Prediction System (FBP). The FBP is a fire behaviour
model that is capable of predicting the rate of spread and intensity of wildfire based on

fuel, weather and topographical inputs. The FBP, however, is not capable of predicting
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how a fire will progress through a heterogeneous landscape over time (although it does
provide an estimate of fire perimeter size in homogeneous fuels as a secondary output).
FastFire, in effect, builds a spatial component upon the well established principles of the
FBP, which was chosen for its ability to accurately predict fire spread rates in the most
commonly found fuel types in Canadian forests. Using the FPB also ensures that fuel data
required by the model can be easily obtained for Canadian forests from spatial forest
inventory data which can be converted into the sixteen fuel classifications as designated by
the FBP.

FastFire is a stochastic model, meaning that ignitions and spread are based on
random draws from a probability distribution. Hence, two simulations run with identical
initial conditions are unlikely to produce identical results. Stochastic models are
commonly used for applications where many fire events are simulated in a large forest
area. An excellent example of this is the forest disturbance model the Boreal Forest
Landscape Dynamics Simulator (BFOLDS) (Perera et al. 2002), a stochastic cellular
model used to generate probability maps of forest change over long time periods in forests
represented by millions of cells. A stochastic approach to simulating fire spread was
chosen for FastFire to ensure that the solutions found in our optimization process are
robust enough to protect a forest despite the seemingly random behaviour often exhibited
by real forest fires.

FastFire is also a cellular model, meaning that fire progresses through a series of
ignitions and extinguishments of regularly shaped areas throughout the forest. The cellular
approach was selected for two reasons. Firstly, because our optimization process will

require a large number of independent repetitions of the fire simulation procedure, using a
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cellular model makes sense since they typically require less computing time than vector
based models (Richards 1990; Hargrove et al. 2000). Secondly, since our optimization
formulation is based on a forest divided into cells and requires that burn probabilities can
be calculated for each cell, it makes sense to work with a cellular model. This makes
calculating burn probabilities easy since burn probabilities are calculated as the number of

times a cell is destroyed by fire divided by the total number of simulation iterations.

3.2.1. Model Inputs

For inputs, FastFire has two requirements: spatial fuel data and weather data. Fuel
data are input as a raster dataset which represents the major fuel type, as designated by the
FBP, for each cell in the forest. These are simply integer values with each number
between one and sixteen corresponding to a fuel type. Cells can also be unburnable land
(e.g. rock or clear cut) or water. Weather data is a stream of daily readings of wind
direction, wind speed, Fine Fuel Moisture Content (FFMC) and Duff Moisture Content
(DMC). FFMC and DMC are indices used by the FBP to predict fire behaviour. These
four values are read into FastFire as a stream of data where each line represents the
readings for one day. The source of this weather data would typically be from historical

weather readings in the area you wish to simulate fire behaviour.

3.2.2. Model Algorithm
FastFire simulates the spread of fire by keeping track of the state of all cells as the
model progresses through discrete time steps. Cells can be in one of three states:

untouched, burning or extinguished. Fires begin through randomly occurring lightning
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strikes that will ignite a cell given appropriate weather conditions. At each time step, this
fire may spread to neighbouring cells based on calculations of Rate of Spread (ROS),
Flank Rate of Spread (FROS) and Back Rate of Spread (BROS) from the FBP. The model
is stochastic and hence having a higher rate of spread implies that there is a greater chance

of fire spreading to that cell. Figure 3 illustrates the neighbourhood structure of FastFire.

2 2
FROS pomel-  EROS
ROS + FROS BROS + FROS
2 BROS 2

Figure. 3. Neighbourhood structure of FastFire.

Figure 4 gives a high-level overview of how FastFire functions. The idea is that
one year of fire activity is simulated and each cell in the landscape that is affected by fire
is recorded. To simulate one year of fire activity, first a random number is generated to
determine which year of weather data will be used for this simulation. The first day is then
simulated by drawing a random number of lightning strikes which could potentially begin
new fires. Each lightning strike will affect one cell in the forest drawn randomly and will
ignite the cell if weather conditions are conducive (defined as having a DMC > 20). Cells

that ignite are then considered actively burning (each of which is stored as a First In/First
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Out queue in the code). The day will progress as a number of time steps (defined as a
parameter for model calibration), where at each time step burning cells of active fires will
randomly spread to neighbouring cells or extinguish. The probability of a burning cell
spreading to a neighbouring cell depends on the rate of spread which is calculated as per
the FBP which factors in weather and the type of fuel available in the cell. Active fires
will continue to burn until they extinguish. At the end of the year long process, every cell
that has been destroyed by fire is recorded. This process is repeated for a set number of
times (the more iterations, the more accurate the result) and for each cell a burn

probability is given as output:

#of timesacellisaffected by fire
Total # of years simulated

[11] Burn Probability =
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Figure. 4. Flow chart describing FastFire.

3.2.3. Model Parameters
Fire behaviour is controlled in FastFire through the manipulation of three user-
defined parameters:

1) The parameter defining the Poisson distribution for the number of daily lightning strikes.

2) The number of time steps a fire has to grow in each day.
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3) A scaling parameter for rate of spread.

Poisson rate for lightning occurrence
Fire ignition in FastFire occurs through the random simulation of lightning strikes.
Lightning strikes are random both in terms of their occurrence in time and space. Each day
in the simulation process where weather conditions meet a required criteria such that
ignition is possible (DMC > 20) a random number of lightning strikes will occur
throughout the day based on a draw from a Poisson process governed by the variable 4,
the rate of the process. A Poisson process is used since it has been shown to best represent
the random occurrence of lightning strikes (Wotton et al. 2003). The location of the
lightning strikes will also be randomized choosing an ignition cell in the landscape based

on a draw from a uniform distribution.
The parameter A when varied will directly affect the average number of fire

occurences per year. If {N(t), t > 0} is a Poisson process then

_ e—lS(As)k

[12] P[N(t+s)—N(t) =k] = "
where A is the rate of the process and E[N(s)] = As. This equations states that the

probability of there being exactly k lightning strikes between time ¢ and time t + s is

~As 37k
given by —e—g&, and from this we can determine that the expected number of lightning

strikes is the rate A multiplied by the length of the time period s.

Number of time steps in a day

Fire advances in FastFire through ignition events that occur at regular time steps.

The number of time steps in a day will directly affect the average size of individual fires as
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well as average annual area burned. This value will be determined through a calibration
process to match model output with historical fire records.

Fire probability scaling parameter

FastFire is a stochastic fire simulation model that simulates fire as a series of
probability-driven ignitions between neighbouring cells. The probability of fire advancing
to a neighbouring cell is determined by the rate of spread as calculated by the Canadian

Fire Behaviour Prediction System. These probabilities are defined as:
ROS;j

[13] P(s;;) =4 R
0 else

i€B,jel

Where:

P(s;j) = probability of a spread event occuring between neighbouring cells
ROS;; = rate of spread between cells i and j.

ROS = Maximum rate of spread
B = set of burning cells

I = set of cells with flammable fuels

The final probability can be adjusted using the fire probability scaling parameter ¢. Final
spread probability was calculated as:

[14] P(Siy) = oP(sy;)

Where:

13(5 i j) = Final spread probability
@ = Fire Probability Scaling Parameter.

This parameter will directly affect individual fire size. This parameter will also be

determined through model calibration.
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3.3. Model Verification and Validation

Once FastFire had been coded it was necessary to test whether the results of the
model were realistic. This process followed four procedures described in Sargent (1991)

for general computer simulation verification and validation (V&V):

i) Object-Oriented Programming (OOP) for verification,
it) Bottom up module verification,
iii) Visualization for validation and,
iv) Comparison with historical data for model calibration.

Model verification is defined as the process of ensuring that the written code is a
faithful representation of the conceptual model and that no “bugs” exist. Optimally,
verification is an exercise that should be continually performed through all stages of code
development and not just after the code is complete. During development, verification is
simplified by ensuring the code is structured, concise and self-descriptive (Adrion,
Branstad and Cherniavsky 1982). At all times, code should be made understandable
through good programming techniques and extensive commenting. Object-oriented design
and program modularity also ensure the program is well structured and aids in verification
since each program module can be individually verified.

Bottom-up module testing involves testing each individual module in the program
for correctness first, followed by testing the interaction of modules and finally testing the
entire program. This approach is simpler and more effective than simply running the
program and trying to trace back where the errors are occurring. Appendix A describes
FastFire’s component modules, each of which were verified by passing the module inputs

checking that the resulting outputs were as expected.
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The validity of a model indicates whether its output closely resembles the
behaviour of the real world system being modeled. Model calibration was performed using
an iterative process and basic validation was accomplished through two tests which
combined visualization techniques and comparison with historical data. The first test used
visualization; the process of representing output from the simulation model as an image or
animation that is easily examined even by those not familiar with the simulation code.
This was done by simulating a fire occurrence in completely uniform conditions, i.e.
unchanging weather and unvarying fuel structure. Since FastFire is a stochastic model,
individual burns tell us little. Instead the average area of 300 burns was spatially plotted.
The results were compared with a simple ellipse model for how fire is expected to behave
in uniform conditions, and can be found in the results section.

Calibration of FastFire involved comparing historical data with results of the
simulation program and modifying the model parameters in an iterative process until they
could match defined measures within a given error percent. Although it would be ideal to
directly compare burn probabilities of each cell, there is not enough historical data
available to accurately estimate burn probabilities at a resolution of one hectare (the
resolution used by FastFire). Instead the units of measure used for comparison were: mean
area burned per year, mean number of fires over 40 hectares in size and mean individual
fire size. The idea here is that although we cannot expect FastFire to predict individual
events of a stochastic process with any degree of reliability, we would expect that if the
simulation is run for a large number of years in a large forested area that these statistical

measures should match within a given error percentage.
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To accomplish this goal with FastFire, historical fire data were required for an
area as well as historical fuel and weather input data for the same area. Historical Ontario
fire data for the period of 1973 to 2006 was obtained from the Ministry of Natural
Resource’s fire perimeters database. The data consisted of GIS shapefiles spatially
representing the areas affected by fire for each year. The attributes for each shapefile
contained data for each fire including cause of fire, start date, end date and final fire size.
Only fires with a final area greater than 40 ha were recorded in the fire database. This
provided us with our historical data. Fuel data and weather data for FastFire were taken
from the Ontario Provincial Fuel Database and the Ontario Fire Weather Database
respectively.

An area of approximately two million hectares in northern Ontario was used for
analysis. The FastFire simulation model was run for 3000 simulated fire years (not
sequential year, but the same initail conditions tested for a year 3000 times). where total
affected area and individual fire sizes were recorded and the averages were used as a target
for model calibration. The process of model calibration is iterative. At each stage the
output data are compared with the real data and parameters are adjusted until the output
data matches the real data within a desired amount of accuracy, defined arbitrarily as 15%.
A summary of the historical data used can be found in Appendix B.

The final test was to graph the number of fires that occurred based on size class. The
Forest Management Guide for Natural Disturbance Pattern Emulation (OMNR 2001)
demonstrates that, in northern Ontario boreal forest, this graph should take the shape of an
“inverse J”, meaning that the majority of fires should fall in the smallest fire classes even

though the majority of area affected is caused by the largest fires. Graphs were produced
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for both historical and simulated data. These graphs showed that 1) the historical data
exhibits the expected pattern, and 2) the simulated data closely resembles the historical

data.

3.4. Solving the Optimization Problem

Once FastFire was shown to be a reasonable depiction of real fire behaviour for the
purposes of this study, it could then be incorporated in our simulation optimization
procedure for finding fuel treatment mosaics which minimize fire risk. FastFire comprises
the first component require by the optimization problem: a simulation model capable of
. predicting burn probabilities. The second component was an algorithm for solving the
problem.

OptQuest® is a software suite designed to facilitate the development of
applications for optimizing complex systems. The engine can be used for any form of
linear or non-linear optimization and is specifically designed for use with systems that
require simulation optimization.

When optimizing a system represented by a simulation program, the Othuest®
software communicates directly with the user-written simulation model via OptQuest
interfaces and classes. The OptQuest solver is flexible and many parameters can be
defined by the user to tailor the optimization process to the specific problem. The
optimization method follows the scatter search template (see literature review). This
general optimization strategy is also augmented by heuristics such as a restarting strategy
and an adaptive memory strategy. In the course of the search procedure, the population of

solution points may begin to contain many solutions with similar characteristics. This
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decrease in population diversity may hinder the search procedure from finding a solution
close to the true optimum. In order to counteract this effect, OptQuest may restart the
search procedure by creating a new population. This new population is created using a
blend of new random points and high-quality “elite” points from previous iterations. The
adaptive memory strategy is also a method of increasing search diversity. Since at each
iteration of the search procedure, the parent solutions are chosen based on the quality of
their calculated objective function, solutions with poor objective evaluations may never be
chosen and simply sit in the population pool unused. To counteract this effect, for each
iteration that a solution is not chosen as a parent, its attractiveness is increased so that in

probability it will eventually be chosen as a parent candidate.

3.4.1 Random and Greedy Heuristics

To determine how well the solutions found by the optimization procedure
performed, two other methods of finding solutions to the fuel management problem were
examined: randomly chosen solution and greedily chosen solution. The randomly chosen
solution method can be explained using the following pseudo code:

While(total cost of solution set S < B)

Randomly add an unchosen fuel treatment to solution set S
End
Return solution set S
While the random algorithm has no knowledge of the benefit of the fuel treatments it

is choosing, the greedy heuristic does but makes choices with a lack of foresight. All

solutions are evaluated by FastFire individually, and the choice of which fuel treatments to

choose are based on this evaluation alone. The ranking criteria is based on the mean
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reduction of fire risd after 10 000 independently simulated fire years for each fuel
treatment implented alone.. The important difference between the greedy method and the
optimization method is that the greedy solution will have no method of telling how well
fuel treatments do in combination with the other treatments that are selected. The greedy
solution can be described as:
For(All treatments i)
Evaluate solution i using FastFire
End
While(total cost of solution set S < B)
Add best solution based on evaluation to solution set S
End
Return solution set S
In summary, the random heuristic will pick a solution with no knowledge of how
each treatments perform. The greedy heuristic will choose a solution comprising of the
treatments that perform the best individually. The optimization process will a choose a
solution by having the knowledge of how all treatments in the solution perform together. It

is our hypothesis that this method will be able to find superior methods by exploiting this

knowledge.

3.5. Statistical Analysis

Since calculation of a given solution’s objective function is based on the results of
a stochastic simulation model, one must view objective function values as the realization
of a random variable, not as deterministic. The quality of a solution is calculated through
repeated simulation, where each simulation returns a burn probability map used to
calculate the expected damage caused by fire in one simulated year. After many

repetitions of this simulation, a value for fire risk is calculated that equals the probability
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of each cell burning multiplied by the value of the cell. The true value, in terms of average
fire risk, of a fuel treatment mosaic can never be exactly known. However, statistics can
be used to infer that the true value lies within a given region with a given probability; i.e.
the objective function value is qualified by a confidence interval.

Law and Kelton (1991) provide a formula for calculating a confidence interval
based on repetitions of a stochastic simulation model. This confidence interval is

calculated for a given percent confidence a, and uses a t distribution.

S*(m)
n

[15] X(n) + th-11-a/2

In this formula, X(n) represents the mean value of a random variable after n
independent draws, and S%(n) represents the variance about this mean. th-11-a/2

represents the value returned by the t distribution for n draws when the desired confidence
percentage is a. The formula uses two values representing the lower and upper bounds of
the interval which will contain the true mean with a confidence. The t distribution is
designed specifically for creating confidence intervals of random variable with a normal
distribution. Hence, this distribution would not work well if we were to directly use the
damage in a landscape after one year of simulation as determined by FastFire, since this
distribution does not have normal properties, but has a highly skewed distribution. This
skew comes from the fact that there are many years with no damage or very little damage
and a much smaller proportion of years with a large amount of damage, giving a left
skewed distribution. If we examine the mean fire damage after many simulated years the
graph becomes much more normal. Hence equation 15 was used to give an interval for the

average value of damage done to a landscape after 1000 simulated years. The central limit
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theorem states that the averaged sum of any identically distributed independent random
variable will be approximately normally distributed. Hence, by using the summed average
of a large number of simulations as our random variable, we can say that the ¢ distibution
will give a reasonable estimate of our confidence interval. The use of 1000 simulated
years was a somewhat arbitrary choice, but was large enough to give an approximately
normal distribution. Hence the confidence intervals are also not exact, but closely
approximated.

Confidence intervals for all optimizations were calculated with a confidence
percentage of @ = 0.95. The confidence interval represents the mean fire-risk, calculated
as. the expected amount of damage done to a forest in a single year. Each confidence
interval is based on the average of 1000 simulations repeated 30 times, giving a total of 30
000 simulated fire years for each solution. All simulated years are independent and begin

with the same initial conditions.
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4. CASE STUDY

4.1. Area Description

Pickle Lake is our study area and is located within the Canadian boreal forest,
approximately 530 kilometers northwest of Thunder Bay at the end of Highway 599. The
town of Pickle Lake was founded in 1928 as a local transportation centre for mining
activities. The area is remote, sparsely populated, and provides raw materials for the
logging and mining industries in Ontario. The town of Pickle Lake lies within a formerly
glaciated region and the relief is irregular with rocky ridges separating poorly drained
depressions and many lakes.

The area supports good tree growth and the development of closed stands on sites
where the soil depth is adequate. Black spruce (Picea mariana (Mill.) B.S.P.) is the
predominant tree, forming stands on thin upland soils, as well as in poorly drained
lowlands. Jack Pine (Pinus banksiana Lam.) is found on dry sand ridges and rocky slopes
of the higher ground. Tamarac (Larix laricina (Du Roi) K. Koch) can also be found in the
wetter and more open swamps. Occasional mixedwood stands of White Spruce (Picea
glauca (Moench) Voss) and Balsam Poplar (Populus balsamifera L.) are found in river
valleys and south-facing slopes.

Pickle Lake experiences long, cold winters with relatively short growing seasons.
Average yearly rainfall is nearly 5 cm, most of which occurs in July and August
(Environment Canada 2008). Occasional hot and dry summer conditions lead to weather

conditions resulting in active fire behaviour. Pickle Lake recently completed construction
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of a $4.5 million forest fire protection facility in order to combat the increasing threat of

forest fire.

Pickle Lake

Latitude: 51°28'N
Longitude: 090°12'W
Elevation: 369m

Figure. 5. Case study area.

51°40'42"N
090°32'34"W

51°14'50"N
089°53'50"W

Study Area = 220,000 ha

The area studied represents approximately 220,000 ha of forest surrounding Pickle

Lake. Daily weather data from 1960 to 2005 for the area were provided by Ontario’s Fire

Weather Database. Observations were recorded at the Pickle Lake airport, and represent

the daily weather as recorded at noon each day. Fuel data were provided by Ontario’s

Provincial Fuels Database, a GIS map of fuel composition as represented by the 13

standard fuel types of the Canadian Fire Behaviour Prediction System.
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Figure. 6. Total area, comprised of the main study area surrounded by a buffer zone.

The area of the test site was divided into a regularly spaced grid or rectangular cells
with each cell of the grid having an area of approximately 1.4 ha. The final size of the grid
was 476 by 319 cells, making a total of 151,844 total cells. The area considered for
optimization was the central area consisting of 91,106 cells. The outer area was included
as a buffer zone to account for fires which could ignite outside the studied region and
spread into the center. The main area and buffer zone are shown in Figure 6. Each cell was
given a fuel type value based on the 16 classifications of Canadian Forest Fire Behaviour
Prediction system. The six fuel types present included Spruce-Lichen Woodland, Boreal
Spruce, Mature Jack Pine, Leafless Aspen, Grass and Boreal Mixedwood. Cells
represented by water or barren land were set as unburnable. Weather data was imported as
a weather stream text file in the form shown in table 1. The weather data used for the study

were daily readings from the Pickle Lake airport.
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Table 1. Form of input weather stream.

Day Wind Direction | Wind Speed | Fine Fuel Moisture | Duff Moisture
(Azimuth) (km/h) Content (FFMC) Content (DMC)

1 90 4 52.427 1.482

2 180 19 77.689 3.399

3 180 8 25.530 1.342

4 247 24 54.246 1.480

5 292 13 71.484 2.569

4.2. Design of Treatments

One hundred candidate treatments, ranging in size from 60 ha to 400 ha, were
manually designed in order to represent a small to moderate sized combinatorial
optimization problem. The treatment locations were digitized using desktop GIS software.
Each treatment was drawn as a polygon and then transposed onto a raster grid of the same
construction as the study area. The only type of fuel treatment considered was clear
cutting. Although there are many other kinds of fuel treatments (i.e. thinning, prescribed
burns, etc.), there are no models that can accurately quantify how these activities affect
fire spread. Once a model has been designed that can predict the effects of other treatment
activities, they can be easily included into the optimization. The raster was saved as a text
file in a format that could be recognized by the fire simulation model, FastFire. Figure 7
visually displays the potential fuel treatments.

The choice of locating the candidate treatments was guided by three principles.
The first principle was that areas with high-risk fuels (boreal spruce) in open areas should
have options for treatment. The second was that candidate treatment areas should be
situated to connect natural spatial features such as lakes when possible. By “linking” lakes

it is possible to create treatments that affect a greater area for less cost, an idea was
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proposed by Parisien et al. (2006). The final guiding principle was that creating a border
around the outer edge of the area under consideration could help prevent fires originating
outside the area from entering. This idea follows the tactic of “compartmentalization”, i.e.
sectioning off wooded areas in order to act in a manner analogous to bulkheads on a ship
(Loehle 2004). Bulkheads in a ship are designed so that if one section of the ship is
breached, the ship will not sink since the water will not spread to other compartments.
Similarly, if one area of a forest catches fire we can reduce the total damage done if that
fire is contained in a sectioned-off area. For simplicity, the cost of each treatment was
uniformly set as $1 per hectare. This not a realistic value, but was used to simplify the
problem into constraining total area of all chosen treatments which could be a realistic

goal.

Figure. 7. 100 candidate treatments designed for the optimization procedure.
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The value (v;) of each cell, i.e. the dollar value that would be lost if that cell were
destroyed by fire, is directly related to the volume of wood available for harvest in the cell.
The area was arbitrarily divided into sections which were each given a random value for
m’ per hectare based on an average age distribution and growth and yield curves for each
species as typically found in the boreal forest. This was done since accurate data were not
available on the age of the stands in forest, so instead the age classes were simulated to
ressemble a real forest. Figure 8 shows the resulting values map, where each section
repesents a set of cells with the same m3/ha value. This value is the v; values in the
formulation. Any cells not covered by the value map have a v; value of zero.

The two other required parameters for the optimization problem were set as
follows. The fuel treatment budget was set as B = $4 200 for all treatments. The N;
values, representing the set of conflicting treatments for a cell, was null for all cells
meaning that no treatments were in conflict, and any combination could be chosen. fj(x),

the function for calculating burn probabilities for each cell, is set as the output of FastFire.
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Figure. 8. Values map for the case study area.

4.3. Optimization Software Configuration

The Othuest® software was configured to represent the optimization formulation
described in section 3.1. The decision variables were represented as an array of 100 binary
variables. Each decision variable represented one of the potential fuel treatments to be
implemented before the next fire season. The cost (in dollars) associated with each
treatment was stored in an array of real variables. FastFire was directly integrated with
OptQuest® in Java to allow efficient data passing. Each time a year is simulated in
FastFire a confidence interval will be calculated in OptQuest® to give an idea of how

accurate the estimation of the objective function is. OptQuest® will continue to call
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FastFire to perform simulated years (each call will begin in a random year of weather

data) until the confidence interval is of a given

The optimization parameters defining the

1)

years simulated in FastFire and a
ii)

98% confidence.
ii) The stopping criterion was set so

until a given number of optimizat

size with a given percent confidence.

Othuest® search were set as follows:

For each objective function calculation there will be a minimum of 500 fire

maximum of 4,000 fire-years simulated.

The confidence interval parameters were set as 3% of the estimated mean with

that the optimization procedure will continue

ion iterations have been performed.

Nine total optimizations runs were performed with three of these using 2000

iterations, three using 4000 iterations and three using 8000 iterations. All optimizations

were run on an Intel® Core™ 2 CPU @ 1.87GHz with 2GB of RAM.

Table 2. Optimization parameters for OptQuest software used in case study.

Optimization Parameter Value

Variables 100 Binary valued variables

Minimum Replications 500

Maximum Replications 4000

Confidence type Stop replications after minimum replications

when confidence level is reached, or when best
solution does not fall within current solutions
confidence level.

Confidence Level 98%

Percent of mean for which confidence levels are | 3%

determined

Maximum Iterations 2000, 4000 & 8000

Stopping Criteria Stop when Maximum Iterations has been reached
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5. RESULTS

5.1. Validation of Fire Behaviour in FastFire

Validation and calibration was performed on FastFire using different techniques
designed to show that fire behaviour as predicted by the computer simulation model is
comparable to recorded fire behaviour. The first test was to see whether simulated fires
would take on the expected elliptical shape in uniform fuel and weather conditions. Three
hundred independent fire simulations were performed in uniform conditions at three
different wind speeds. Each simulation had the same ignition point in on a grid of uniform
fuel, set as fuel type Boreal Spruce as defined by the Canadian Fire Behaviour Prediction
System. A North West wind was kept at a constant speed. Using the three hundred fire
events, three a burn probability map was created for wind speeds of O km/h, 15 km/h and
30 kmv/h. Figure 9 shows the resulting probability maps.

We would expect to see a length-to-breadth ratio that is proportional to wind speed
(Alexander 1985). In no wind we found the average fire shape to be approximately
circular (a length-to-breadth ratio of 1). In 15 km/h wind the ratio was 1.609 and in 30
km/h wind was 2.13. While this is a fairly rough check, it does confirm that in completely
homogeneous conditions (uniform fuel and weather) fire behaves as expected.

Calibration was done to modify FastFire parameters until it could accurately
estimate average fire behaviour over a large area. Historical fire data for the time frame of
1973 to 2006 was analyzed for an area of approximately two million hectares of forested
land in northern Ontario. From this data three values were calculated:

i) mean annual area affected by fire
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i) mean individual fire size, and

ii1) mean annual number of fires
A summary of the historical data analyzed can be found in Appendix B.

The goal was to have FastFire predict all three of these indices within a 15% error
margin based on the analysis of 200 simulated fire years. A “guess and check” method
was applied where the model parameters of FastFire were varied so that the mean fires per
year, mean individual fire size and mean total area burned per year, as calculated by the

model, fell within a 15% error margin. After 10 iterations the following parameters were

determined:
A=2
T=12

¢ = 0.88

A summary of mean values and percent error for the historical data compared with the
fires produced by FastFire is presented in Table 3. We also present a comparison of the

standard deviation for each measure in Table 4.

Table 3. Results of adjusting FastFire parameters to match historical behaviour.

Mean Individual Mean Number of Mean Total Area
Fire Size Fires (>40 ha) per Burned per Year
Year
Historical Data 9748.01 2.235 21786.82
FastFire Data 9815.65 241 23655.73
Error 0.69% 7.83% 8.58%
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North West wind 20 km/h North West wind 10 km/h

88 ha
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No wind

Figure. 9. Fire shapes in homogeneous conditions compared with simple ellipse shapes.
The black dot inside fire area represents point of origin (ignition point).
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Table 4. Comparing standard deviation of model results with historical data.

Standard Deviation of Standard Deviation of
Number of Fires (>40 ha) per | Total Area Burned per
Year Year
Historical Data 2.47 16213.87
FastFire Data 3.00 38741.24
Error 21.45% 138.94%

The final test was to graph the number of fires that occurred by size class for both
historical and simulated data. This is shown in Figure 10. Blue columns represent the
percent of fires falling into each size class from the historic data based on 71 recorded fire
shapes (note that these fires did not include any fires with a total area less than 40 ha). The

red data represents the same measure based on 200 simulated fires from FastFire.
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Figure. 10. Fire occurrence by size class for historical and simulated data.
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5.2. Simulation Optimization

Three optimizations runs were performed at each 2000, 4000 and 8000 iterations,
making a total of nine optimizations. The best solution from each set of three runs was
then analyzed by determining a 95% confidence interval for the mean of the objective
function (fire risk). Each confidence interval is based on the average of 1000 simulations
repeated 30 times, giving a total of 30,000 simulated fire years for each solution. Figure 11
is a graphical representation of the confidence intervals where columns represent mean
fire risk and the bars represent the 95% confidence interval as calculated by equation 15.
Table 5 summarizes the names used for the various solutions.

The first three columns in Figure 11 represent the solutions found from the set of
three optimizations performed with a stopping criterion of 2000 iterations, the second set
of three represent those found using 4000 iterations and the following set of three
representing those found using 8000 iterations. The column second from the right
represents the average fire risk value of randomly generated solutions. The far right
column represents the fire risk value for the solution found using the greedy heuristic
method. As would be expected there is a noticeable downward trend in fire risk as the
number of iterations used in the optimization procedure is increased. However, more
iterations did not necessarily ensure a better solution, as is noted with solution 6 having a
higher fire risk than solutions 2 or 3 even though it is a solution found with twice the
number of optimization iterations. This is not surprising since our optimization method
was based on a stochastic metabeuristic. The fire risk of random solutions was

significantly higher than all other solutions and also exhibited greater variability. The
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greedy heuristic solution was outperformed by all optimization solutions except for one,
and was very clost to optimization six.

Table 5. Description of optimization ptocesses petformed.

. . Number of
| Solution Name Description Tterations/repetitions
N Optimizations employing . .
Optimization 1,2 & 3 OptQuest and FastFire 2000 iterations
T Optimizations employing . .
Optimization 4,5 & 6 OptQuest and FastFire 4000 iterations
o Optimizations employing . .
Optimization 7, 8 & 9 OptQuest and FastFire 8000 iterations
Random Randomly chosen solutions 30 repetitions
chosen
Greedy Heuristic SOIU.t ton formed using greedy 1 repetition
heuristic

5.2.1. Confidence Intervals for the Difference Between Solutions

Confidence intervals were also used to quantify the expected difference between
two solutions. Using this method we are able to give a range of how much better one
solution has performed over another with 95% probability. If we have two random
variable X and Y where X1, X, ... X,, and V3, Y, ... Y3 are independent identically distributed
(IID) draws of the raﬁdom variables, we can create a new random variable Z = X ~ Y
where the IID draws are represented by (X; — Y;),(X; = Y3) ..(X, = Y,). If X and Y
represent the average fire risk of two solutions, then Z will represent the difference
between them. Creating a confidence interval for Z will give an idea of the expected size
of the difference. If the confidence interval (a, b) does not contain 0, then we can say that
there is a statistically significant difference between the two solutions.

Three optimization solutions were chosen from the total nine optimizations

performed. The best solution found from the nine optimizations (#7) was used to compare
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against. Confidence intervals were created to compare how well this best solution
performed compared with random solutions, a greedily chosen solution, the best solution
after 2000 iterations and the best solution after 4000 iterations. These confidence intervals

are shown in figure 12.
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Figure. 11. Mean fire risk (columns) and confidence intervals (vertical bars) for all solutions.
As expected, the best solution did significantly better than solutions that are
randomly generated, with a fire risk in the range of 10% lower. The best solution also out-
performed the greedy heuristic, but not by as large of margin, having a fire risk
approximately 5% lower. It was also shown that the fire risk value for the best solution

after 8000 optimization iterations performed better than the solutions found after both
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2000 and 4000 iterations. Although the difference is slim, it is statistically significant and

this shows that better solutions can be found with more optimization iterations.
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Figure. 12. Confidence intervals comparing solutions.

5.2.2. Optimization Run-Time

The total computational time required to find these solutions ranged from
approximately 25 hours to 87 hours depending on the total number of iterations used in the
optimization process. As expected, solution quality increased with the number of iterations
performed in the optimization procedure. Figure 13 presents a graph of average solution
quality compared with the computational time required to find the solution, plotted for all
nine of optimizations performed. There is a definite downward trend in the average area
affected by fire and it is possible that even better solutions could be found if the search

were allowed to continue.
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Each optimization iteration took approximately 39 seconds to complete. The length
of each optimization iteration was dependent on how many repetitions of the fire
simulation program were required to statistically say that with 98% confidence the
estimated objective function value for a given solution is within 3% of the true mean.
However, Othuest® also uses a function to determine if a solution is far from the best
solution found so far in the search after a user-defined minimum number of simulation
repetitions have been performed. If so, it will continue until either the 98% confidence

interval or the user-defined maximum number of repetitions has been reached.
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Figure. 13. Time required to find solutions compared against solution quality.

5.2.3. Optimization Progress

The progress of the optimization process for the three optimizations performed with

8000 iterations was graphed to provide some insight into how the solutions were found.
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Figure 14 shows the quality of the best solution found at each iteration for the three

optimizations.
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Figure. 14. Optimization progress over 8000 iterations.

5.3. Solution Visualizations

Graphic representations of the solutions were created using GIS software with the
goal of examining the spatial layouts of the best solution. ESRI’s ArcMap software was
used to display a raster file representing a burn probability map generated by FastFire
given a specific solution. Shapefiles representing the chosen fuel treatments within the
solution were shown overlaying a burn probability map to demonstrate the spatial layout
of the treatments and how it affected burn probabilities. The point of this exercise was to
determine if any patters were apparent in the solutions that could be generalized as “rule of

thumb” recommendations. We present first a burn probability map showing the forested
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area without any of the fuel treatments scheduled (Figure 15). The lighter areas represent
those cells more affected by fire (on average) than the darker areas. These averages were
based on 3000 fire years simulated using Fastfire. The following figures show an example
of a random arrangement of fuel treatments (Figure 16), the solution resulting from
applying a greedy heuristic (Figure 17), the best solution found after 2000 optimization
iterations (Figure 18), the best solution after 4000 iterations (Figure 19) and the best
solution after 8000 solutions, which was also the best solution of all (Figure 21). Fuel
treatment areas are represented as numbered polygons, where the numbers are simply an

identifying ID.

Figure. 15. Burn probability map of untreated landscape. Lighter areas represent higher
burn probability.
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Figure. 16. A random solution with resulting Burn Probability map. Lighter areas
represent higher burn probability.

Figure. 17. Greedy heuristic solution with resulting Burn Probability Map. Lighter areas
represent higher burn probability.
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Figure. 18. Best solution after 2000 iterations and resulting Burn Probability Map. Lighter
areas represent higher burn probability.

Figure. 19. Best solution after 4000 iterations and resulting Burn Probability Map. Lighter
areas represent higher burn probability.
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Figure. 20. Best solution after 8000 iterations and resulting Burn Probability Map. Lighter
areas represent higher burn probability.
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6. DISCUSSION

In this study, simulation optimization was used as a method of locating fuel
treatments to minimize fire risk in a forest. The goal was to show that this approach is
feasible and that quality solutions can be found using realistic data with moderate sized
problems. The discussion will focus on three areas: 1) an evaluation of the strengths and
weaknesses of the simulation model, FastFire; 2) an evaluation of the solution-quality
produced by the metaheuristic search algorithm; and 3) speculation on the potential
usefulness of applying simulation optimization to the harvest scheduling problem.

Computational feasibility is a common road-block in operations research problems.
Using simulation based optimization, this problem is greatly magnified since each
objective function calculation requires the additional burden of running a simulation
program enough times to get a stable response. This idea was kept in mind during the
design of FastFire in order to reduce the average time required to simulate one year of fire
activity. Wildfire behaviour is complex, and requires a complex numerical representation
in order to model with desired spatial accuracy. We could have developed a model that
runs in a fraction of the time required by FastFire, but the quality of the simulation, i.e. the
resemblance of simulated fires to real fires, would have been greatly affected. Therefore it
was a trade-off: speed vs. accuracy. One the one hand, what good is a model that does not
reflect realistic fire behaviour? This would provide us no real insight into the fuel
treatment problem. On the other hand, a model that takes hours to run would similarly be
useless as it would render optimization impossible. Instead, we strove for a middle ground.

Any possible method of speeding up the simulation was taken but it was ensured that
75



FastFire could accurately reproduce historical data. FastFire would not be an ideal model
for exactly predicting the spatial progress of a single fire event over time, but the results of
our calibration show that its ability to reproduce historical fire behavior of fire on a larger
scale is suitable for our purposes.

Several design criteria were used to improve the efficiency of FastFire. Firstly,
some fire behaviour characteristics were deemed unnecessary for this study and were not
modeled. For example, we did not model fire-branding or distinguish surface fire from
crown fire. Fire-branding, or fire-spotting, describes the event when fuels ignite ahead of
the main fire front from flying sparks or embers that have been lofted in the wind (Albini
1983). Several fire models, such as EMBYR (Hargrove et al. 2000), simulate fire branding
as a stochastic event where distance traveled and ignition is generated by a probability
distribution. Fire branding has the potential to alter fire behavior; e.g., by lofting over a
fuel treatment. Since the behaviour of flying embers is difficult to simulate with accuracy,
and the inclusion would be computationally expensive, this aspect of fire behaviour was
omitted from FastFire.

Forest fires burn with a wide range of intensities, from smoldering surface fires to
complete stand-clearing crown fires. FastFire only simulated the latter; i.e., all fuels in a
cell that was affected by fire were considered completely destroyed. Some fire models,
such as FARSITE (Finney 1998), will model surface fires separately from crown fires and
will also simulate the event of a surface fire transitioning to a crown fire. FastFire,
however, is based on the Canadian Forest Fire Behaviour Prediction System which

combines both surface and crown fire into a single predictive equation. This approach has
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been shown to be accurate for Canadian forests and also reduces the complexity of the
simulation model, thereby reducing computational requirements (Stocks 1989).

Despite these departures from some well established models, FastFire was shown
to be able to reproduce historical fire data with a desired degree of accuracy for the test
region. Calibration was performed on FastFire and it was shown that 1) simulated fires
look like real fires and 2) the mean and variance of fire size and number of fires per year is
close to historical data. As found in our results, the mean value of annual number of fire
occurences for simulated fires was within 10% of historical data and the standard
deviation was within 25%. The mean annual area burned was also within 10% of historical
data, but there was a larger discrepancy in the standard deviation. This discrepancy most
likely stems from the fact that the occurrence of very large fires (>30 000 ha) was very
rare in the simulated data and occurred more often in the historical data. Plotting fire
occurrence by size class showed the expected “inverse J” relationship and closely
resembled that of the historical data.

Another way FastFire was designed for fast execution was by optimizing the
simulation algorithm. Any shortcuts in the code that could be found were exploited. For
example, since weather was input as daily reading, and therefore uniform over each
simulated day, rate of spread in each cardinal direction for every fuel type was calculated
at the beginning of the day and then read from a lookup-table as required. This small
design change reduced the number of calculations required, especially on days with highly
active fires. Notwithstanding these efforts, software optimization is not our area of
expertise, and there is no doubt that more efficient methods of simulating fire spread could

be devised.
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In our case study, the time required by FastFire to simulate five hundred years of
fire activity was between 34 and 36 to seconds. While this may not seem like a very long
time, when the optimization process ran 2000, 4000 or 8000 iterations, and when each
optimization iteration required a minimum of 500 simulated years, these seconds start to
add up. Hence, if we were able to shave off just one second per 500 simulated fire years,
this could save us as much as four hours when running the optimization procedure for
8000 iterations.

Speeding up the simulation model is not the only way to shave time off of the
search for optimal fuel treatment mosaics. The optimization algorithm itself can include
many techniques for reducing both the number of optimization iterations and the number
of simulation repetitions required at each iteration. The goal of any metaheuristic
optimization algorithm is to find the best possible solution in the smallest amount of time,
and this requires the fewest number of iterations.

With simulation optimization, each candidate solution requires an adequate number
of simulations to infer statistically that the estimated objective function value is a good
representation of the true value. In generating our results, we required that each objective
function be estimated within 3% of the true mean with 98% probability. If we wished to
speed up the search, we could have increased the error percentage or decreased the
confidence percentage. This, in essence, would reduce the number of required simulation
repetitions and could potentially reduce the total time required in the optimization process.
Reduced confidence, however, entails a trade-off; for relaxing the confidence interval

could result in the optimization returning a large number of potentially good solutions
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without a statistical support of how good they are. The emergent problem from such a
strategy entails determining which of these solutions stands out from the rest.

One idea proposed by Boesel et al. (2003) is to generate a large population of
potentially good solutions and to then pass this population to a Ranking and Selection
method which is better suited for finding a single best solution from a smaller set of
solutions. In other words, Ranking and Selection could be used to “clean up” after the
initial optimization. This approach was not used in this study, but is worthy of
examination in future work.

Another feature of OptQuest, which was not used in this study, is the option of
incorporating an artificial neural network (ANN) into the optimization process. ANNs are
computational models based on biological neural networks which have the ability to
“learn” and estimate complex relationships between inputs and outputs. The general idea
is that an ANN could be “trained” to predict fire risk by providing inputs (potential
solutions) and the resulting output from FastFire (fire risk) during the course of the
optimization. After adequate “training”, the ANN can predict fire risk with an adequate
degree of accuracy in a fraction of the time required by FastFire; i.e., without running the
simulation model. Potentially low quality solutions identified by the ANN could then be
discarded quickly, rather than being passed to FastFire for a more accurate evaluation. The
ANN, in essence, could act as a filter for poor quality solutions so that time is not wasted
on fuel treatment layouts that have low likelihood of being high quality, as shown in
Figure 21.

In the early phase of optimization, using an ANN would slow the search because of

the extra computational time required for training; but, as the optimization progresses, and
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there ANN’s ability to predict the merit of a proposed solution improves, there is the
potential to greatly improve the quality of the candidate solutions that are passed along to
the simulation for evaluation of the objective function. This raises the possibility to better
solutions in fewer simulation iterations. We chose not to include ANN functionality in our
optimization because the complexity of designing and training an ANN was beyond the

scope of our objectives.
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Figure. 21. A trained Artificial Neural Network acting as a “filter” in a simulation
optimization process.
The next question to address concerns the quality of solutions found by our
method. At the beginning of this study it was imagined that simulation optimization

would be a method that could vastly outperform the random and greedy methods of
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spatially locating fuel treatments. This belief was driven by the idea that simulation
optimization would consider interactions between treatment choices that make up the
subtle spatial aspects of the problem that were overlooked by the other two methods.
While a greedy heuristic can easily be designed to select treatments that perform well
individually, the heuristic has no knowledge of how well all selected treatments perform
together, i.e. how their relative spatial layout affects fire spread. The results of this study
showed that this insight could be exploited to reduce fire risk. In the following paragraphs
we will explore why the simulation optimization approach was able to find better
solutions, and why these solutions were not as dramatically better as was expected.

How can we explain that only a 5% decrease in fire risk was noted when
comparing the best solution found to a greedy heuristic? Two possible answers to this
question are:

1) not enough simulation iterations were performed and the best solution was not close to
optimal; or
2) the problem set was not large enough and did provide enough opportunity for the

optimization to exploit spatial aspects and the best solution found was near optimal.

We now explore the plausibility of each answer.

The first possible answer implies that the 8,000 iterations performed were not
sufficient to find a better, or, near optimal solution. In evaluating this answer, we recall
the results illustrated in Figure 14, where the progress made in soiution improvements
over 8,000 iterations is illustrated graphically. Here we observe that the greatest

improvements occurred within the first 1,000 iteration. The final 7,000 iterations reveal
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fewer improvements (although there was a notable improvement in Optimization 7 after
6,000 iterations). Hence, it is not unreasonable to conclude that pushing the number of
iterations beyond 8,000 would not have improved the solution significantly. Such a
conclusion, of course, is qualified by admitting the possibility that the search algorithm
was stuck at a local optimum from which it was difficult, to escape.

The second possible reason simulation optimization did not greatly improve over a
greedy solution is that the case study used did not provide ample opportunity for
improvement; i.e. even the true optimal solution to our problem instance would not be
significantly better than the greedy solution. This explanation seems reasonable for
several reasons. First, only 100 potential fuel treatment areas were allowed; hence, the
problem instance was comprised of only 100 binary decision variables. Although this
does provide a large number of potential solutions (estimated as 1.29x10%’ for our study),
this would be considered a small problem in operations research; and intuitively it would
seem that the larger the problem size, the greater the potential gain a more sophisticated
optimization algorithm has over a greedy heuristic. Second, the case study area itself did
not appear to provide a great variation in the landscape with regard to its susceptibility to
fire; i.e., by looking at a burn probability map of the area (Figure 15 in Results), we
observe that there is only one truly high risk area that stands out.

Perhaps iin a more variable forest with a larger number of potential fuel
treatments from which to choose, then the optimal solution would reduce fire risk
considerably when compared with a greedily chosen solution. Unfortunately, this brings
us full circle to the problem of computational feasibility. A larger problem set requires

more optimization iterations which, in turn, requires more time to simulate fire. The
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obvious next step in examining simulation optimization as a method of designing fuel
treatment layouts is to estimate how problem size relates to computational feasibility.
Quite apart from the solutions’ objective function value, solution quality can also
be evaluated by examining the mapped solutions (see Figures 16 to 20). The mapped
solutions of the greedy heuristic focused exclusively on areas of high fire risk; but the
solutions of the simulation-optimization model were more dispersed spatially; and this
dispersal reveals a strategy of “boxing off” the high risk areas; thereby restricting fires
from both entering and leaving these high-risk areas. The best solution, found after both
8,000 iterations and 4,000 iterations, appears to make a perimeter around the highest risk
area, which can be noted in the upper right portion of the forest in Figures 19 and 20. This
is an idea that has been mentioned previously by Loehle (2004), who theorized that
“compartmentalizing” a forest with fire breaks might be an effective strategy for reducing
fire risk. Another common spatial trend of the simulation optimization solutions appeared
to be the “use” of natural features such as lakes; i.e., by choosing treatments adjacent to a
lake (or treatments on either side of a lake) it extend the natural fire barrier, thus providing
greater fire protection for less cost. This is exhibited in the both Figure 19 and 20, which
include treatments areas 52 and 59 which are located on either side of a lake. Also,
treatment area 60, which forms a link between two lakes, was selected in both the best
solution after 4000 iterations and the best solution after 8000 iterations.
A final question to discuss is whether the model developed in this research could be
applied to other spatial planning problems in forestry. Of particular interest is the problem
of scheduling harvests in an environment of stochastic fire disturbance. We address this

question in two parts: first, we examine whether extending simulation optimization to
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spatial harvest-scheduling would be of any innovative significance. Second, we address
the question of whether it might be feasible.

Regarding the innovation of extending our model to harvest-scheduling, we note
that the problem of scheduling harvests in an environment of fire disturbance has already
been modeled by researchers using diverse approaches. For example Reed and Errico
(1986) first modeled this problem using linear programming; later, Boychuk and Martel
(1996) modeled the problem using stochastic linear programming model; and more
recently, Armstrong (2004) developed a framework in which a linear programming model
interacts with a Monte Carlo burn simulation model. It should be noted that, in all of the
preceding work on modeling the relationship between fire and forest harvesting, both the
harvest schedules and the fires were modeled aspatially. This is, in part because the
questions addressed were of a strategic nature; namely, determining a sustainable
allowable annual cut in an environment of stochastic fire disturbance; but it is also because
a spatially explicit solution requires binary decision variables, and the computing burden
of solving binary integer programming models typically increases exponentially with
problem size. One exception to this aspatial trend has been the work of Peter and Nelson
(2005), who developed a framework in which a spatially explicit harvest scheduling model
interacts with a stochastic burn model. Of note, though, is that the harvest schedules Peter
and Nelson developed were entirely deterministic; hence, the cut-block layout was not
made with foresight into reducing the risk of fire damage in a managed forest. Hence,
should we be able to extend simulation optimization to the spatial explicit, tactical
planning problem, the innovation would be authentic; i.e., researchers have not yet

developed a spatially explicit harvest scheduling model that optimizes, through a
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stochastic fire simulation model, the layout of a spatial pattern of cut-blocks in order to
reduce the risk of fire to the managed forest.

This brings us to the second question; viz., whether such an extension is feasible? In
effect, we are asking whether: (a) the allocation of fuel management treatments, which has
(b) been scheduled over one period, could be transformed into (c) a cut-block allocation
model that is (d) scheduled over multiple periods.

Let us first address the initial requirement for such a transformation; viz., the
transformation of a model for the allocation of fuel treatments into a meaningful model for
the allocation of cut blocks. First, such a transformation must assume that cut-blocks
function in a manner analogous to fuel treatments; i.e., that harvesting a stand has a similar
effect on a forest’s fire risk as removing the fuel from that stand. Such an assumption
does not seem problematic, for both models remove the stand’s fuel (although the
accumulation of slash can affect fire behaviour). Second, a tactical harvest-scheduling
model is typically constrained by limits on the total volume of a given stand type (e.g.,
species, age-class) that may be harvested. In like manner, the fuel treatment allocation
model is constrained by a budget, and this budget could easily be transformed into a
constraint on total volume of each stand type for which “treatment” is allocated. Finally,
the typical harvest-scheduling model has an objective to maximize net present value,
while the objective function of the fuel treatment allocation model has the objective to
minimize fire risk. Hence, a transformation of the fuel management model into a harvest-
scheduling model would require that fire risk be treated as one of multiple objectives or as
a constraint. Some experimentation in model formulation would be required; but we

would begin by evaluating fire risk only in solutions that are found within the feasible
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region defined by constraints. In fact, the more heavily constrained the problem is, the
smaller is this feasible region, and the more effective would be our computationally costly
search and evaluation procedure.

The second major requirement for transforming a fuel-treatment allocation model
into a tactical harvest-scheduling model is the incorporation of a multiple period planning
horizon. We can discern two approaches to evaluating fire risk resulting from a schedule
of harvests over multiple periods: i) to evaluate all periods simultaneously; or ii) to
evaluate the cumulative risk resulting from each period’s harvest-layout as time moves
forward, i.e., in the manner of a rolling planning horizon. In the first approach, a
candidate harvest scheduling solution, specifying which blocks are cut in which period, is
evaluated for fire risk as though all cut blocks occurred in one period. The advantage of
this is that blocks can be selected in period t because of their ability to reduce fire risk in
combination with blocks selected in period t + 1. Hence, a type of foresight is possible in
a period by period movement toward reduced fire risk. The disadvantage of this is that it
might take many periods for the full effectiveness of the resulting reduction in fire risk to
be achieved. In the second approach, a myopic, but immediately optimal achievement of
reduced fire risk is achieved in each period planned. One simply reschedules, and re-
evaluates fire risk at the beginning of each period, for one period at a time. Hence, in
theory, it is possible to extend simulation-optimization to the harvest-scheduling problem;
but we must first endeavour to build such a model, and examine the computational

challenges, before concluding that it is possible in practice.
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7. CONCLUSION

The goal of this study was to design and evaluate a method of spatially designating
fuel treatment areas that will reduce the probability of fire damage in a given forest. To
achieve this goal, the problem of spatial fuel treatment allocation was formulated as a
simulation optimization problem with integer decision variables representing a set of
potential treatment areas. To calculate fire risk, a spatial fire simulation model was
designed and validated for use in the boreal forest of northern Ontario.

It was determined with 95% certainty that the best solution found using our
simulation optimization technique could reduce fire risk by 5% compared with a greedily
chosen solution. Computational time required for 8000 iterations of the optimization
procedure was approximately 86 hours. Through examining the spatial pattern of selected
treatments, we found the best solution employed strategies to minimize fire risk; viz.,
“poxing in” the high risk zones and the inclusion of natural fire barriers in the
arrangement of fuel treatments. The results therefore suggest that simulation optimization
has the potential to create intelligently planned fuel treatment mosaics that can reduce fire
risk in a forest.

Future research on this problem would involve applying simulation optimization
to the spatial harvest scheduling problem. Feasibility of such an application would require
discovering methods of increasing the efficiency of the search procedure so that high

quality solutions can be found in reasonable computing time.
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APPENDIX A

FastFire Program Structure

Object Purpose Notes
burnCell Holds all data for each cell in the gridded
landscape including: fuel type, age,
elevation, value, burned (boolean set to true
if affected by fire) and treatment (type of
treatment, if any, employed in cell). The
burn queue also contains a list of all
neighbouring cells.
burnQueue A First-In-First-Out linked list of burnCells | One burn queue is
which holds all cells which are currently used for each
burning. individual fire.
Module Purpose Parameters Returns
void readData(String p) To read data from text String p holds the none
files into memory. Reads | location of the text
in fuel types, age, data files (e.g.
elevation and value. “C:\data™)
void getlgnitions() Generates a poisson none none
number of lightning
strikes based on a used
defined mean and
randomly locates them
across the landscape. If
ignition criteria is met, a
new burnQueue is
formed and the ignited
cell is added to it.
double getROS(int Returns the front rate of | int fuelType holds | Rate of spread
fuelType) spread for a given fuel the FBP code for (forward direction)
type and the current the given fuel type.
weather conditions as
defined in the FBP.
double getBROS(int Returns the back rate of | int fuelType holds | Rate of spread
fuelType) spread for a given fuel the FBP code for (backwards
type and the current the given fuel type. | direction)
weather conditions as
defined in the FBP.
double getSpreadProb Converts rate of spread | double r holds the Probability of cell
(double r) to a probability of cell rate of spread value | ignition
ignition using a heuristic | to be converted
normalization procedure
boolean Given a cell that is burnCell start holds | True if the cell
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checkEnqueue(burnCell
start, burnCell end)

currently burning and a
neighbouring cell, this
method returns true if
the cell will ignite, false
otherwise. This is
checked by calculating
the rate of spread and
determining the
probability of ignition.

the cell that is
currently burning

burnCell end hold
the neighbouring
cell that may ignite
given the proper
conditions

ignites, false
otherwise

void spreadOneDay()

Simulates fire spread for
one day by checking the
ignition of cells
neighbouring currently
burning cells iteritively
for the user-defined
number of time steps in
one day.

none

none

void burnOneYear()

For a user-defined
number of days in a year
this method sets the
weather variables from
the weather stream, calls
getIgnitions and calls
spreadOneDay.

none

none

double getDamage()

Calculates the damage
done to the landscape by
summing the values of
each cell that was
affected by fire.

nomne

Total damage
done

void setTreatments(int[] d)

Given an array of
integers which represent
the choice of treatments
(1 if the treatment is
applied, o otherwise) the
correct treatment values
are set for the
appropriate cells

An array of integers
signifying the
choice of treatments

nonec
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APPENDIX B

SUMMARY OF CALIBRATION USING HISTORICAL FIRE DATA

Table 6 summarizes the historical data used in the calibration of FastFire. For the
years 1973 to 2006, the number of fires and total fire area was determined through the
analysis of spatial fire data from an area spanning approximately two million hectares, as
shown in Figure 22. All data collected came from a spatial fire perimeter database

supplied by the Ontario Ministry of Natural Resources.

Figure. 22. Area used for calibration of FastFire.
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Table 6: Summary of historical fire data spanning 1973-2006 in calibration area.

Numberofﬁre ot"aifFAii"’é'"S:izé

1973 0 0
1974 2 52608
1975 0 0
1976 4 68756
1977 1 72324
1978 0 0
1979 1 1821
1980 3 3493
1981 4 40079
1982 0 0
1983 7 66561
1984 4 10334
1985 0 0
1986 5 5664
1987 1 1445
1988 1 1000
1989 7 31735
1990 9 71189
1991 2 59357
1992 6 100350
1993 1 3750
1994 3 4745
1995 3 17100
1996 6 34340
1997 0 0
1998 2 6524
1999 1 700
2000 0 0
2001 1 2250
2002 1 2600
2003 1 82027
2004 0 0
2005 0 0
2006
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