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ABSTRACT 

Gasotransmitters, like hydrogen sulfide (H2S) and nitric oxide (NO), are small gaseous 

molecules that can be generated in different types of mammalian cells by enzymatic catalyzation. 

Cystathionine y-lyase (CSE) and endothelial NO synthase (eNOS) are responsible for the 

majority of endogenous production of H2S and NO in vascular endothelium, respectively. H2S 

and NO maintain different vascular functions. Here we show that H2S interacts with eNOS to 

increase NO release from endothelial cells (ECs). Two mechanisms are involved in this 

interaction. Firstly, H2S indirectly induces eNOS phosphorylation. Secondly, H2S directly 

modifies one cysteine residue of eNOS through ^'-sulfhydration. Stimulation of eNOS 

phosphorylation and 5'-sulfhydration by H2S subsequently increases NO release. The 

phosphorylation of eNOS by H2S is p38 and Akt-dependent. eNOS ^-sulfhydration is partially 

affected by S-nitrosylation but not by phosphorylation. We further found that knockdown of CSE 

gene by siRNA technique, or blockage of CSE enzyme activity by PPG (dl-propargylglycine), 

attenuates NO production. CSE overexpression or L-cysteine (a substrate of H2S) 

supplementation stimulates NO production. 

The level of eNOS iS'-sulfhydration in aortic tissue from CSE knockout (CSE-KO) mice 

was lower than that from wild type (WT) mice. L-cysteine treatment increases 6’-sulfhydration of 

eNOS in ECs isolated from WT mice, but not in ECs isolated from CSE-KO mice. GSNO (a NO 

donor) induces, but NaHS reduces, eNOS ^'-nitrosylation. However, GSNO does not alter eNOS 

5-sulfhydration whereas NaHS alters 5-nitrosylation. Site-directed mutagenesis of one cysteine 

residue Cys-443 in eNOS (Cys-443-eNOS) completely eliminates eNOS *S-sulfhydration and 

partially decreases eNOS S'-nitrosylation. Although the mutation of serine 1179 (Ser-1179) 

ii 



completely abolishes eNOS phosphorylation, it does not affect eNOS iS'-sulfhydration. The 

dominant configuration of vascular eNOS proteins purified from WT mice is dimer, whereas in 

CSE-KO mice it is monomer. In the presence of GSNO, more monomers are found with WT- 

eNOS, which is reversed by a subsequent treatment with NaHS. Cys-443-eNOS manifests itself 

as monomers, which is not changed by either GSNO or NaHS treatments. The produetion of NO 

is deereased but superoxide is increased in CSE-KO ECs in comparison with WT ECs. 

H2S treatment increases EC proliferation, tube formation, angiogenesis, and accelerates 

wound healing. With an in vitro aortic ring angiogenesis assay, we found a reduction in the 

number of microvessels formed by culturing aortic rings from CSE-KO mice, even in the 

presence of VEGF (vascular endothelial growth factor). We further found that wound healing is 

faster in WT mice when compared with CSE-KO mice, and H2S promotes wound healing 

recovery. Blockade of NO production by eNOS-specific siRNA or L-NAME (L-NG- 

nitroarginine methyl ester) reverses, but eNOS overexpression potentiates the proliferative effect 

of H2S. In contrast, CSE knockdown attenuates the pro-proliferative effect of NO. 

Overall, our studies demonstrate that H2S increases NO release in ECs through 

phosphorylation and xS-sulfliydration of eNOS. Thus, H2S and NO are required for the 

physiological control of angiogenesis and superoxide production. Mechanistic understanding of 

H2S-NO interaction in vascular endothelium will help advance novel therapeutic strategies for 

EC dysfunction related vascular diseases. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 
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1. Gasotransmitters 

Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are the members 

of gasotransmitter family [1, 2]. The term “gasotransmitter” was first defined by Dr. Rui Wang 

in 2002: /) It is a small molecule of gas; ii) It is freely permeable to membranes; Hi) Their 

production are endogenously and enzymatically regulated v) They have well-defined and specific 

functions at physiologically relevant concentrations; vz) Their cellular effects may or may not be 

mediated by second messengers but should have specific cellular and molecular targets” [2]. 

During the following years, divergent physiological functions of gasotransmitter were 

discovered. Gasotransmitters signal in multiple ways to modulate numerous cellular proteins, 

thus affecting cellular metabolism and functions. However, each gasotransmitter has its unique 

chemical modification. For instance, H2S modulate cellular activity via *S'-sulfhydration and 

opening KATP channels, NO via iS-nitrosylation and soluble guanylyl cyclase activation, whereas 

CO by direct binding to the heme group [3]. The following brief overview provides further 

context of H2S and NO gasotransmitters. 

1.1. Hydrogen Sulfide 

H2S is a colorless and flammable gas with rotten-egg smell, often produced by the 

breakdown of waste material [3]. H2S is found in nature in volcanic gases and hot springs, or as 

an introduced contaminant in the environment from petroleum industry [3]. The oxidation of H2S 

can form sulfur dioxide (SO2), sulfates such as sulfuric acid, and elemental sulfur [3]. H2S is 

slightly soluble in aqueous solution and weakly acidic with pKa 6.76 [4]. In water, H2S will 

dissociate to form hydrosulfide anion (HS) (pKa 7.04), and sulfide anion (S2'), (pKall.96) 

according to the following sequential reactions [4]; H2S —► + HS’  ^2H^ + S^’ 
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In physiologic saline at 37°C and pH 7.4, approximately 18.5% of the total sulfide exists 

as the undissociated acid and 81.5% as the HS' anion [4]. However, it is difficult to determine 

which form of H2S (H2S, HS”, or S2 , the mix of free inorganic sulfides) is active, therefore, the 

term “Hydrogen Sulfide” has been used to describe the total free sulfides” [3, 5]. The toxic 

effects due to H2S inhalation in natural environment are not common. In addition, H2S does not 

accumulate easily in the body [3]. Once H2S gets into the human body it will be rapidly oxidized 

to sulfate and thiosulfate, which can be easily excreted in the urine [3]. However, acute exposure 

to H2S leads to severe health complication [3]. For example, exposure to high concentration 

around 800 ppm for 5 minutes could be lethal to human, whereas exposure to concentration up to 

1000 ppm causes immediate loss of breathing and death [3]. The toxic effects of H2S are 

attributed mostly to mitochondrial poisoning, this toxic effects due to its high affinity to 

cytochrome c oxidase [6]. H2S can potentially binds to cytochrome and inhibits cellular 

respiration, thus blocking the regulator of cellular oxygen consumption and ATP synthesis [7]. 

1. 2. Enzymatic biosynthesis of H2S 

H2S is produced in a significant amount in most tissue in the human body [2]. The 

biosynthesis of H2S in mammalians is generated via enzymatic and non-enzymatic pathway [2]. 

Three enzymes, including cystathionine y-lyase (CSE), cystathionine beta-synthase (CBS), and 

3-mercaptopyruvate sulfurtransferase (MST), are responsible for endogenous production of H2S 

in mammalians [3]. Both CBS and CSE are pyridoxal 5’-phosphate (PEP) dependent, while MST 

enzyme is considered zinc-dependent [3]. In general, the expressions of these enzymes are tissue 

specific. For example, CBS and CSE enzymes are expressed in liver and kidney, and are required 

for generation of H2S in these tissues. CSE is mostly responsible for H2S production in the 
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vascular system, while CBS is the major source of H2S in brain [2]. At cellular levels, CSE and 

CBS enzymes are exclusively localized in the cytosol [2], while MST is localized in both 

mitoehondria and eytosol [3, 8, 9] in normal eonditions. 

1. 2. 1. Cystathionine p -synthase (CBS) 

CBS gene is located on chromosome 21 in humans or 17 in mouse [10, 11], The CBS 

protein eontains 551 amino aeids with a moleeular weight of 63kDa [10, 11]. CBS enzyme (EC 

4.2.1.22) catalyzes homocysteine to produce cystathionine, which is then turned (eleaved) by 

CSE into eysteine, a-ketobutryate and H2S as shown in Figure 1. l.The active form of CBS 

enzyme is a homotetramer, containing one heme (protoporphyrim IX) group and one pyridoxal 

5'-phosphate group per subunit [2]. Besides liver and kidney, CBS is also mainly expressed in 

central nervous system and brain tissue [12]. CBS enzyme is essential for homocysteine 

metabolism [13]. Human CBS deficiency is caused by inherited rare disorder [13] and affects 

homocysteine catabolism, and leads to hyperhomocystinuria [14]. CBS deficiency can also lead 

to a multi-systems disorder such as dislocated lenses, mental deficiency, and osteoporosis, etc. 

[15]. 

1. 2. 2. Cystathionine y-lyase (CSE) 

CSE gene is located on chromosome 1, and its protein contains 398 amino acids with a 

molecular weight of 43 kDa [3]. CSE enzyme (E.C 4.4.1.1) is mainly distributed within the 

cytosol and requires pyridoxal-5'-phosphate (vitamin B6) as a eo-factor [2]. The two major CSE 

substrates to produee H2S are cysteine and cystathionine [2, 16]. CSE enzyme lyses 

cystathionine into cysteine, a-ketobutryate, and then produees H2S as shown in Figure 1. 1 [3]. 

Likewise, CSE lyses eysteine to thioeysteine to produce H2S (Figure 1. 1). CSE enzyme is 
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expressed in many tissues such as the cardiovascular system, respiratory system, liver, kidney, 

placenta and pancreatic islets [17-19]. Human CSE deficiency is caused by autosomal recessive 

inheritance, and leads to cystathioninuria [20]. The hypercystathioninemia increases the risk of 

development of atherosclerosis and many types of cancer [21, 22]. 

1. 2. 3. 3-mercaptopyruvate sulfurtransferase (MST) and cysteine aminotransferase (CAT) 

Another recently discovered enzymes involved in H2S synthesize are MST (EC 2.8.1.2) 

and CAT (EC 2.6.1.3) [23, 24]. MST and CAT are found in the mitochondria and the cytosol 

[23, 24]. The MST enzyme is considered zinc dependent, whereas CAT is considered pyridoxal- 

5'-phosphate dependent [9]. MST and CAT have been shown to produce H2S in different tissues 

such as brain and vascular endothelium of thoracic aorta [23, 24]. Both MST and CAT catalyze 

the sulfur transfer reactions from 3-mercaptopyruvate (3MP) to sulfite or other sulfur acceptors 

or form elemental sulfur as shown in Figure 1.1. Human deficiency of MST or CAT is rare, and 

it is not life-threatening [25]. 

1. 3. Non-enzymatic synthesis of H2S 

Non-enzymatic production of H2S is considered a minor source of total endogenous H2S 

generation in mammalian systems [2]. H2S is produced by non-enzymatic reduction of elemental 

sulfur, which is derived from the reducing equivalents of the oxidized glucose during glycolysis 

as shown in the equation [26]: 2C6H12O6 + 6S0 + 3H2O 3C3H6O6 + 6H2S + 3CO2 

Garlic and garlic-derived organic polysulfide’s can also produce H2S in a thiol dependent 

manner [27]. The non-enzymatic oxidation of sulfide will produce thiosulfate that will be 

subsequently converted to sulfite by the enzymes thiosulfate reductase or/and thiosulfate 

sulfurtransferase [2]. 
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L-Cysteine 

Figure 1. 1. H2S biosynthesis in mammalian cells. The enzymatic production of H2S byCSE, 

CBS and MST in mammalians. This Figure has been modified from [3]. 
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1. 4. Metabolism of H2S 

The metabolism of H2S maintains the physiological balance and prevents excess 

accumulation of H2S. The rapid metabolism of H2S in vivo occurs through many pathways as 

shown in Figure 1. 2 [2, 3, 28]. H2S can be exhaled [3], and excreted in the urine primarily as 

sulfate (either free sulfate or thiosulfate) and in feces and flatus unchanged as free sulfide [3]. In 

addition, H2S can be oxidized in the mitochondria of liver cells to produce sulfate [2, 29]. H2S 

can be methylated in the cytosol by thiol S-methyltransferase (TSMT) enzyme to produces 

methanethiol (CH3SH) and methanethiol, which also can be further methylated to produce 

dimethylsulfide (CH3SCH3). Finally, H2S can be scavenged by methemoglobin or metallo- or 

disulfide-containing molecules such as oxidized glutathione (GSSG) [2, 28, 30]. 

Oxidation 

k 

Scavenging Catabolism of H2S Methyiation 

I 
Expiration and Excretion 

Figure 1. 2. Metabolism of H2S in vivo. The metabolism of H2S in vivo occurs through many 

pathways such as expiration and excretion, oxidation, methyiation and scavenging. 
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1. 5. Pharmacological inhibitors of H2S producing enzymes 

The development of pharmacological inhibitors to block H2S biosynthesis is a widely 

accepted strategy to study the effect of H2S in different physiological and pathophysiological 

events. Each enzyme has its unique inhibitor as shown in Table 1.1. However, the specificity of 

these inhibitors are not absolute, and varies greatly depending on concentrations and treatment 

period [3]. 

Table 1. 1. Pharmacological inhibitors of H2S producing enzymes 
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1. 6. The discovery of NO 

NO is the first discovered gasotransmitter in 1970s [34], Two decade after discovery of 

NO, Science magazine chose NO as “molecule of the year” in 1992 [35], Seven years later, Drs. 

Robert Furchgott, Louis Ignarro and Ferid Murad were awarded the Nobel Prize in Physiology or 

Medicine in 1998 for their discoveries of the NO [35, 36], NO acts through several mechanisms 

such as i) activation of soluble guanylate cyclase (sGC) ii) binding to a haem proteins {e.g. p~ 

globin) [37] Hi) binding to protein cysteines in a process called 5'-nitrosylation {e.g. GAPDH) 

[38], The following brief overview provides further context on NO in details. 

1. 7. The chemistry of NO 

NO is a free radical with a molecular weight of 30 and vapor density (d) of 1.249. The 

half-life of NO in vivo is very short, close to five seconds [39, 40]. However, single molecule of 

NO can readily moves between cells many times within this time span [41]. The lipophilic nature 

and small size of NO enables it to diffuse over cell membranes within a millisecond without 

channels or receptors [40, 42]. The concentration of NO is determined by the rate of formation 

and catabolism. Three major mechanisms are shown in Figure 1. 3 for NO metabolism. These 

meehanisms include the reaction of NO with molecules that have unpaired electrons, i.e. 

superoxide anion to produces peroxynitrate (ONOO') [43], binding of NO with transition metals 

ions, i.e. CuNO [43]. Finally, oxidation of NO to generate elemental nitrogen, i.e. nitrite (NO2-) 

and nitrate (NO3.) in aqueous systems or air [44, 45]. 

Although NO is reported to have potentially different toxic effects, many of them are 

more likely mediated by its oxidation products rather than NO itself [41]. The reaction of NO 
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and superoxide occurs rapidly and forms peroxynitrite anion (ONOO ), which has a powerful 

oxidant ability and leads to several cellular/tissue injury [41]. Furthermore, excessive 

peroxynitrite formation leads to nitrated proteins, inhibition of mitochondrial respiration, DNA 

damage, apoptosis and necrotic cell death [46]. 

ONOO- 

Peroxynitrite 

Figure 1. 3. NO production and metabolism in mammalian cells. L-arginine is catalyzed by 

NOS enzymes to produce L-citrulline and NO. Oxygen and NADPH are essential co-factors for 

NOS enzymes. Three major ways for in vivo NO metabolism are oxidation, binding with thiols, 

and superoxide. 
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1. 8. Enzymatic biosynthesis of NO 

NO is synthesized from 1-arginine by NOS, of which there are three isoforms featuring 

different tissues distribution and functions: endothelial (eNOS; 130 kDa), neuronal (nNOS; 160 

kDa) and inducible (iNOS; 130 kDa) [36, 47]. The homology among NOS isoforms are about 

51-57%. The classification of NOS isoforms depends on several factors including gene origins, 

localization within the cells, and their mechanisms of regulation [48, 49]. For example, eNOS 

protein is located in plasma membrane rather than cytosol [50-52]. iNOS and nNOS are located 

in the cytosol and considered as soluble proteins [52]. An increase in intracellular Ca levels 

will stimulate the binding of calcium to calmodulin (CaM) [53], and activation of eNOS and 

nNOS [36]. Whereas, iNOS is described as Ca^^-insensitive isoform, likely due to its tight non- 

covalent interaction with CaM and Ca [36]. Moreover, iNOS isoform is not constitutively 

expressed under normal condition, and its expression requires induction by additional stimulus 

such as inflammatory agents [54]. iNOS isoform is expressed with CaM bound to the protein, 

and thus making iNOS insensitive to intracellular Ca concentration changes [48]. 

1. 8. 1. Neuronal NOS (NOS I) 

nNOS was isolated from brain tissue in rat and porcine cerebellum [55, 56]. The termed 

neuronal NOS or NOS I is based on the order of their first purification and their location [55, 

56]. The nNOS isoform can be expressed sometimes in non-neuronal cell types including SMC, 

skeletal muscles, kidneys, lung epithelial cells, skin and other cells or tissues [57-59]. NO 

produced from nNOS participates mainly in neurotransmission and neuromodulation [60, 61]. 

NO acts as a neuromodulator that regulates synaptic or postsynaptic plasticity, both NOS 

inhibitors N-nitro-L-arginine (L-NNA) or L-NAME, blocks the long-term potentiating of 
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synaptic transmission [62]. NO is also involved in neurodevelopment and in late phase 

differentiation of motor neuron [63]. Moreover, NO acts as a regulator of various genes in 

neurons cells. Up to 63 genes were found to be NO dependent, and these genes may be required 

for neuron survival and development [64]. 

Human nNOS gene is located on chromosome 12q24.21, and considered to be the largest 

isoform [58, 65]. nNOS protein has a total of 1439 amino acids, compared with another 2 

isoforms, nNOS has extra 300 amino acids located at the N-terminus [58, 65]. The nNOS shares 

a high sequence homology between speeies, with 93% amino acid identity between rat and 

humans, with a unique regions termed PDZ domain as shown in Figure 1. 4 [66]. PDZ domain is 

a very common domain and occurs in a variety of dissimilar enzymes [67]. The PDZ domain 

interacts with several proteins that eontain similar domain and creates PDZ-PDZ interaction [68], 

and modulate its function. For example, PDZ domain of nNOS binds to a similar domain of a 

post-synaptic density protein 95 (PSD-95) [69], and this PDZ-binding mediates synaptie 

assoeiation of nNOS and regulates the formation of macromoleeular signaling complexes [69]. 

The sequenced human genome boasts over 150 PDZ containing proteins [67, 70], However, only 

nNOS has PDZ domain, but not eNOS and iNOS [71-73]. 

1. 8. 2. Inducible NOS (NOS II) 

iNOS was first purified from murine and rat macrophages in 1991 [74]. Human iNOS 

gene is located on the chromosome 17qll.2 -ql2, and iNOS protein has 1153 amino acid [65, 

75, 76]. The iNOS is considered as Ca^^-independent [49, 77-79] and stimulated under 

inflammatory conditions [49, 77-79]. For example, various pro-inflammatory eytokines such as 

interleukin-1 beta (IL-lp), interleukin -6 (IL-6), or tumor necrosis factor-a (TNF-a) will evoke 

12 



iNOS expression [77]. As a result, NO will be produced in high concentration up to micromolar 

range, which can last comparatively for a long period until the enzyme is degraded [77, 80]. The 

NO levels released from iNOS were suggested to reach up to 100 - 1000 fold more than NO 

released from eNOS isoform [81, 82], suggesting the correlation of iNOS and the pathological 

conditions of numerous diseases [77, 83, 84]. 

1. 8. 3. Endothelial NOS (NOS III) 

eNOS was first purified from bovine aortic ECs [85]. Human eNOS gene is located on 

the chromosome 7q36, and eNOS protein has a 1203 amino acid [65]. The expression of eNOS 

gene is predominantly restricted in EC, however, other reports have detected eNOS in other cells 

such as cardiomyocytes, hepatocytes, thrombocytes, and lung epithelial cells [86]. NO is present 

in all blood vessels and mainly acts as a vasodilator in the vascular system. The produced-NO 

from ECs dilates all types of blood vessels [79, 87]. NO diffuses across the ECs into the 

underlying SMC and activates sGC, thus increasing the cyclic guanosine monophosphate 

(cGMP) and triggering SMC relaxation and subsequent dilation of the blood vessel [79, 87]. 

Genetically engineered mice in which eNOS gene was knockout have been developed 

[88]. These mice demonstrated the absence of eNOS mRNA and enzymatic activity, but are 

fertile and have normal anatomy [88, 89]. eNOS deficiency leads to lower endothelium-derived 

relaxing factor (EDRF) activity and development of hypertension [88, 89], increased vascular 

SMC proliferation [90], platelet aggregation [91], leukocyte-endothelial adhesion [92], 

abnormalities in mitochondrial function and biogenesis [93], insulin resistance [94], development 

of severe strokes [95] and atherosclerosis [96]. 
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1. 9. NOS structure 

The three NOS isoforms in human exhibit a common bi-domain structure as shown in 

Figure. 1. 4. The first domain structure is called oxygenase domain located on the N-terminal 

[48]. The oxygenase domain contains binding sites for iron haem, H4B and L-arginine [48]. The 

second domain is called reductase domain located on the C-terminal [48]. Reductase domain 

includes binding sites for the redox cofactors nicotinamide adenine dinucleotide phosphate 

(NADPH), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) respectively 

[79]. The inter-domain linker is located in the center of NOS enzyme, between the reductase and 

oxygenase domain, and contains the calmodulin (CaM)-binding sequence [97]. The CaM- 

binding site acts as a switch to regulate electron flow between the reductase and oxygenase 

domain to produce NO as will be discuss latter in details. 

_J FMN 1| [ FMN ^^ FAD NADPH |  COO>-< 

687 716 1203 

NOS I 

2 1 PDZ L-A«G/Hij^a/ BH. 

1 221 724 

palm 

U  1 I I I L-ARG/ HAEM/ BH, 

FMN I FMN I 1 FAD NADPH 

949 980 1433 

NOS II 

4 FMN^ [ FMN 3—E FAD^^^ NADPH J COOH 

715 742 

^ Dimer Interface^ ^ Dimer interface^ 
NOS III 

Oxygenase domain Reductase domain 

Figure 1. 4. Structural domains of human NOS isoforms. Oxygenase domain contains 

binding sites for (L-arginine, haem, and BH4) and important for NOS dimerization. Reductase 

domain contains binding sites for redox cofactors (NADPH, FMN, and FAD). This figure is 

modified from [48]. 
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1.10. NOS coupling and dimerization 

The dimerization or coupling state of NOS enzyme is essential for its activation [53]. The 

two NOS dimer interfaces are located in the oxygenase domain (Figure. 1. 4) [48, 98]. When 

NOS is coupled, the electrons donated from NADPH will flow from the reductase domain of one 

monomer to the oxygenase domain of the other monomer as shown in Figure. 1. 5 [99, 100]. 

These electrons will precede one by one via the redox carriers FAD and FMN, to bind with heme 

group and BH4 [53, 100]. This binding will catalyze the reduction of oxygen with L-arginine to 

generate citrulline and NO [100]. 

However, in various pathological conditions, NOS becomes uncoupled, and it will no 

longer use the enzymatic reduction of oxygen to produce NO [53]. The uncoupled NOS will 

generate superoxide instead of NO [100]. The link between NOS activity and its conformation 

status have been shown in vascular system. For example, ECs treated with peroxynitrite were 

associated with reduced eNOS activity and disruption of eNOS dimers [101]. ECs exposed to 

high glucose or in organs from diabetic mice disrupt eNOS dimers [101]. The reduction of eNOS 

dimer/monomer ratio is combined with increased oxidative stress and reduced NO formation in 

hyperglycemic ECs [102]. In vitro studies have shown that L-arginine and BH4 were essential 

for dimer stability [48]. The present of sufficient substrate L-arginine, and co-factor BH4, allow 

NOS dimers to couple with the heme and oxygen reduction, contributing to the synthesis of NO 

[103]. In contrast, reduction in BH4 bioavailability induces uncoupling of NOS, and leads to 

superoxide production [104]. More evidence has shown the importance of zinc in NOS dimer 

stability as well [105-107]. Zinc in NOS has a structural rather than a catalytic function [107]. 

NOS may use zinc binding to maintain the conformational stability of the dimer interface. Each 

NOS proteins contain a zinc-thiolate cluster (ZnS4) formed by a zinc ion that is tetrahedrally 
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coordinated to two CysxxxxCys motifs (one contributed by each monomer) at the NOS dimer 

interface [98, 107, 108], mutation of these binding sites prevent zinc binding, and eliminates 

NOS dimer [105-107]. 

Figure 1. 5. NOS dimeric structure. Functional NOS protein contains two identical sub-units 

of the reductase and oxygenase domain. The dimeric conformation allows electrons to flow in 

the NO synthase reaction to produce NO as following: NADPH — > FAD — > FMN — > heme — 

> O2. The picture was modified from [100]. 
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1. 11. The roles of H2S and NO in post-translational modifications 

H2S and NO contribute to cell signaling by inducing posttranslational modifications of 

proteins, and these are summarized briefly in Table 1. 2. Posttranslational modifieations not only 

affect the structure of individual proteins but also modify protein-protein interaction and 

function. This review provides an introduction of current knowledge of H2S and NO proteins 

modifications promoting or inhibiting cell functions with special attention in ECs and eNOS. 

1. 11. 1. Phosphorylation 

Protein phosphorylation is the attachment of a phosphate (PO4 ) group to a protein. The 

new negatively charged phosphorus group makes allosteric conformational changes and can alter 

the role of eNOS: it can activate, deactivate, or cause a change in function [53]. Phosphorylation 

is the most widespread type of post-translational mechanism for eNOS regulation; eNOS protein 

can be phosphorylated at multiple sites such as serine (Ser-114, Ser-617, Ser-635, and Ser- 

1177/1179), theronine (Thr-495) and tyrosine (TyrSl and Tyr567) residues [109, 110] as shown 

in Figure. 1. 6. 

Y«i ser‘» Thr«’ 

NH, CaM 

Y«'Ser‘”Ser‘» (p 
FMN FMN 

Ser**” 

5 
FAD NADPH COOH 

499 $18 715 742 1153 

Oxygenase domain Reductase domain 

Figure 1. 6. Multiple phosphorylation sites of eNOS protein 
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As mention earlier eNOS phosphorylation at different site may have different regulatory 

effect. For example, phosphorylation at Ser-114 inhibits eNOS activity [111]. Whereas, 

phosphorylation of Ser-1179, Ser-617 and Ser-635 stimulate eNOS activity [112]. The 

phosphorylation Tyr-81 stimulates eNOS activity [113], and Tyr-567 attenuates eNOS activity 

[114]. Among the numerous potential phosphorylation sites in eNOS, perhaps the best studied 

is Ser-1179. The aetivation of eNOS at Ser-1179 is primarily dependent on CaM [100, 115]. The 

eNOS activity can be acutely regulated by increasing the intracellular Ca eoneentrations [116]. 

The increase in intracellular Ca 'levels will activates CaM which m turn activates CaM kinase II 

and phosphorylates Ser-1179 [117]. The general mechanism of CaM regulation is that CaM 

binds to the CaM-binding motif and displaces the adjacent auto-inhibitory loop on eNOS, thus 

facilitating NADPH-dependent electron flux from the reduetase domain of the protein to the 

oxygenase domain [118]. 

Indeed, many studies have proven the ability of H2S and NO as inducers of 

phosphorylation. For example, H2S induces p38 MAPK, Akt and eNOS phosphorylation in EC, 

and thus maintains its proliferation [119]. H2S increases ERKl/2 phosphorylation in SMC, and 

thereby regulates its proliferation and apoptosis [120]. H2S increases the phosphorylation of 

vasodilator-stimulated phospho-protein (VASP- Ser-239) in EC, and maintains angiogenesis 

[121]. Similarly, NO induces p38 MAP kinase, JNK, and Erkl/2 phosphorylation in neural 

progenitor cells [122], JNK phosphorylation in neuroblastoma cell line (SH-Sy5y) [123], and 

thereby mediate apoptosis. NO induces protein kinase C (PKC)-y and p53 phosphorylation in, 

mouse embryonic substantianigra-derived cell line (SN4741), and thereby contributes to 

apoptosis [124]. NO induees TNF phosphorylation in murine fibroblast cell line (L929), and 

contributes to L929 cell death [125]. 
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1.11. 2. Cysteine modification: 5-nitrosylation and 5'-sulfhydration 

Cysteine is a highly unique amino acid due to its thiol side chain reactivity. The pKa of 

the free cysteine thiol is between 8-9 [126]. The reactivity of thiols is correlated with its pKa 

value [127]. Structurally cysteine and methionine belong to the sulfur amino acids, because of 

sulfur atom appearing in its side chain as shown in Figure 1.7. However, cysteine differs from 

methionine which has a methyl group attached to the sulfur, so methionine is more hydrophobic, 

sterically larger and much less reactive than cysteine [128]. Numerous reactions are known to 

occur on cysteine thiol side chains that affect protein structure and function [129], such as the 

formation of disulfide bond between two sulfur atoms derived from two or multiple thiol groups 

in the present of oxidizing agent [129], reaction with several metal ions, including zinc, copper 

and iron [130]. Considering the remarkable reactivity of cysteine thiol group, cysteine can play a 

key biological role in catalysis and serve as an important site for many posttranslational 

modifications such as *S-nitrosylation and *S-sulfhydration. The following brief overview provides 

further context on cysteine modification induced by H2S and NO. 

Methionine Cysteine 

Figure 1. 7. Structure of sulfur containing amino acids: methionine and cysteine 
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1.11. 2. 1. iS'-nitrosylation 

^-nitrosylation is a principle mechanism of NO-based signaling, and refers to the binding 

of NO group to thiol group (-SH) of protein cysteine residues resulting in the formation of S- 

nitrosothiol (S-NO) [131]. The analysis of iS-nitrosylation shows that not all protein cysteines 

that remain in the free-thiol state become 5-nitrosylated [132]. The molecular mechanisms for S- 

nitrosylation are still unclear. However, many factors make the sulfhydryl in cysteine more 

reactive or aceessible to iS-nitrosylation agent including, i) amino acid microenvironment and the 

present of the acid-base motif i.e, cysteine residue between Aspartic acid (acid)-Histidine(base) 

motif becomes a valid cysteine for .S'-nitrosylation in many proteins, ii) nucleo-philicity (pKa), 

Hi) presence of different metal ions (such as Mg2^ or Ca2 ) [131]. 

The three NOS isoforms (nNOS, iNOS and eNOS) are all capable of driving S- 

nitrosylation, which is direct evidence that NO can undergo redox reactions necessary to form 

SNO. 5-nitrosylation can influence protein activity, by either inhibition or activation. A study 

done by Santhanam et al [133] showed that 5'-nitrosylation of arginasel in aging rats is mediated 

by iNOS, and enhances arginasel activity, which, in turn, reciprocally reduces eNOS-dependent 

NO production, and contributes to EC dysfunction in aging rats [133]. -S-nitrosylation of H-Ras is 

mediated by nNOS, which inhibits calcium ionophore-mediated extracellular-signal-regulated 

kinase activity [134]. Finally, eNOS itself can be *S-nitrosylated, treatment with GSNO 

nitrosylate eNOS and inhibits its activity, whereas, de-nitrosylation leads to eNOS activation 

[135]. 

5'-nitrosylation can be reversed by de-nitrosylation [136]. Importantly, the specificity and 

reversibility of ^S-nitrosylation enables cells to dynamically modify function in response to redox 

alteration in their environment. Generally de-nitrosylation occurs enzymatically and non- 
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enzymatically [137]. The non-enzymatic de-nitrosylation can be accomplished by removing the 

reduced environment of protein, this can be accomplished by several factors such as reducing 

agent, transition metals and UV [137]. Furthermore, de-nitrosylation can be accomplished 

enzymatically [112] by two enzymes *S'-nitrosoglutathione reductase (GSNOR) and thioredoxin 

systems (Trx) [112]. GSNOR removes -NO groups from cysteine thiols in proteins (SNO- 

proteins) through metabolism of S-nitrosoglutathione (GSNO, which is in equilibrium with 

SNO-proteins) [138]. Whereas, Trx is a small redox protein widely expressed in most organisms 

and known for its disulfide reductase activity. Trx has highly conserved and active cysteinemotif 

(CXXC), located on its exterior [136]. These cysteine motifs promote electron and disulfide 

exchange between Trx and its substrates, and thus mediates de-nitrosylation [139], as shown in 

Figure. 1.8. 

HNO or NO 

NO 

S SH 

) ( 
The 

Figure 1. 8. Proposed mechanisms of de-nitrosylation by thioredoxin (Trx). Two reaction 

mechanisms are involved in de-nitrosylation mechanism. First, formation of an intermolecular 

disulphide intermediate (in which Trx is covalently linked to the substrate protein through a 

disulphide bridge). Second, transnitrosylation (in which Trx is transiently S-nitrosylated). This 

Figure has been modified from [139]. 
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1.11. 2. 2. iS'-sulfhydration 

5'-sulfhydration is increasingly recognized as an important signaling mechanism for H2S 

[140]. ^'-sulfhydration refers to the conversion of cysteine (-SH) groups to hydropersulfides (- 

SSH) [140]. The first report on *S-sulfhydration was published in 2009, Mustafa et al, showed 

that about 10 to 25% of expressed proteins in liver tissue can be sulfhydrated under physiological 

conditions [140]. They showed that ^-sulfhydration of these proteins changes their functions. For 

example, 5'-sulfhydration of GAPDH elieits a seven fold increase in its activity [140]. S- 

sulfhydration of actin enhances its polymerization and reveals rearrangement of the actin 

cytoskeleton [140]. H2S 5-sulfhydration has also been reported to regulate other physiological 

events. For example, H2S 5'-sulfhydrates ATP-sensitive potassium (KATP) channel in vascular 

SMCs, and thus induces relaxation of the vascular tissues [141]. H2S leads to 5'-sulfhydrates and 

hyperpolarization of ECs through intermediate (IKca) and small conduetance (SKca) calcium- 

dependent potassium channels [142]. H2S 5'-sulfhydrates the nuclear factor KB (NF-KB), and 

physiologically determines its antiapoptotic transcriptional activity [143]. H2S 5'-sulfhydrates 

protein tyrosine phosphatases (PTPIB), and alters endoplasmic reticulum stress response in 

HEK-293T cells [144]. H2S S'-sulfhydrates Kelch-like ECH-associated protein 1 (Keapl), and 

attenuates oxidative stress and delays cellular senescence in mouse embryonic fibroblasts cells 

[145]. H2S 5'-sulfhydrates parkin and enhances its E3 ligase activity [146]. Collectively, these 

studies show that H2S 5'-sulfhydrates a large number of proteins in different tissues under 

physiological condition. However, it is still far away to fully understand the physiological and 

pathological implications of 5'-sulfhydration as well as its enzymatic regulation. 
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Table 1. 2. Posttranslational modification effects of HiS and NO in ECs 

5-sulfhydration 5-nitrosylation Phosphorylation 

Gasotransmitters H,S NO H2S and NO 

Modification type Non-catalyzed chemical 
modification 

Non-catalyzed 
chemical modification 

Enzyme driven 

Effect on enzyme 
activity 

Increase Mostly decrease Increase or decrease depending 
on the phosphorylated site 

Reversible 
mechanism 

Not known Reversible; i.e 
Thioredioxine, GSNO 

reductase 

Reversible: z.c Phosphatases 

Energetic 
mechanism 

No ATP needed No ATP needed Bio - energetic and need ATP 

Bond-dissociation 
energy 

60 kcal/mole 12-20 kcal/mole 5 kcal/mole 

Detection method 
Modified biotin switch 
assay/ Immunoblot, LC 

MS/MS 

Biotin switch assay + 
Ascorbate, LC MS/MS 

Phospho-specific antibody/ 
Immunoblot 

Known modified 
proteins 

GAPDH, actin, 
eNOS 

GAPDH, Akt, 
eNOS 

Akt, ERKl/2, p38, 
eNOS 

Bond Hydropersulfide (-SSH) S-nitrosothiol (-SNO) Phosphate (-PO/‘) 

Amino acid 
residue 

Cysteine Cysteine Serine, theronine, 
alanine 

Modification 
HoN 

H 

S 

I 
s 

HoN 

N 
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1. 12. Pathophysiological roles of H2S and NO in ECs 

The H2S and NO bioavailability in the vascular system, especially in endothelium, are 

important determinant for many pathophysiological events, which affect various vascular 

functions. Here we briefly reviewed the roles of H2S and NO in regulation of different EC 

function, and their precise role in diseases related to EC dysfunction. 

1. 12.1. The roles of HzS and NO in vasodilation 

H2S, released from sodium hydrogen sulphide (NaHS), dilates blood vessels both in vitro 

and in vivo, albeit distinct vascular beds display different sensitivities to the gasotransmitter [2, 

3]. The vasorelaxing action of NaHS, administrated at concentrations ranging from 50 pM to 100 

pM, has been observed in rat aorta and hepatic artery [17, 147], as well as in resistance 

mesenteric arteries [148], gastric artery and gastric mucosal circulation [149], cerebral arterioles 

and artery [150, 151], pulmonary artery [152], and coronary artery [153]. Since NaHS is five-to- 

nine fold more potent in relaxing mesenteric arteries than thoracic aorta and pulmonary artery 

(EC50 25 pM vs. 125 pM and 233 pM, respectively), it has been proposed as a key regulator of 

peripheral resistance arteries and, therefore, of blood pressure [3]. H2S has been shown to dilate 

other isolated mammalian blood conduits in vitro, such as human internal mammary artery [154], 

mouse aorta and ear microcirculation [155, 156], and newborn pig cerebral arterioles [157]. 

Consistent with these data, the systemic injection of NaHS at 10-50 pM kg'^ causes a transient 

decrease in mean arterial pressure (MAP) in vivo by 12-40 mmHg [17, 158, 159], whereas 

GYY4137 (26-133 pM Kg'^), a slow H2S-releasing donor, produces a slowly developed fall in 

MAP that persists long after drug administration [159]. These observations have been 

corroborated by the CSE-knockout (CSE-KO) mouse model. CSE-KO mice develop an age- 
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dependent hypertension starting at 7 weeks of age, and peaked at 12 weeks [19]. This significant 

elevation in blood pressure is associated with the lack of H2S leading to reduced endothelium- 

dependent and elevated resting-membrane-potential of VSMCs[19], but not that those of aorta 

[160]. These observations are compatible with the notion that H2S serves as an endothelium- 

derived relaxing factor (EDRF) [161]. It has been proposed that acetylcholine activates CSE in a 

Ca^^/CaM-dependent manner in ECs [162, 163]. Once produced, H2S may diffuse to the 

adjoining vascular SMCs (VSMCs), where it activates KATP channels, promoting membrane 

hyperpolarization and reducing vascular tone by counteracting the activation of voltage-gated 

Ca^^ channels [17, 161]. H2S may also act as an EDHF, as recently show in the mesenteric 

arteries of CSE-KO mice. H2S causes endothelium-dependent hyperpolarization of VSMC by 

stimulating intermediate- and small-conductance Kca (IKca and SKca) channels [142, 160]. H2S 

has been suggested to mimic NO effect on cGMP level but through different mechanisms. While 

NO stimulates cGMP production, H2S decreases cGMP degradation by inhibiting 

phosphodiesterase 5 (PDE-5) activity in VSMCs, which leads to vasorelaxation in a PKG- 

dependent manner [115, 121, 164]. In aortic ECs isolated from WT mice, H2S activates the PI- 

3K/Akt signaling pathway following increased eNOS phosphorylation in Ser-1177, thereby 

increasing NO production [119]. Likewise, NO-induced cGMP accumulation and vasorelaxation 

were attenuated by the genetic knockout of CSE [165], suggesting that both gasotransmitters 

may act on cGMP to reduce blood pressure. 

1. 12. 2. The roles of H2S and NO in apoptosis 

H2S affects programmed cell death, or apoptosis, in a cell-specific manner. For instance, 

NaHS has been shown to prevent apoptosis in both neuronal and non-neuronal cells. 
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cardiomyocytes, colon cancer cells, and 3T3 fibroblasts, at concentrations lower than 300 [xM 

[3]. The anti-apoptotic action of H2S is related to its capability to prevent the mitochondrial 

membrane potential dissipation by the activation of multiple mechanism, but all through KATP 

channels [3], H2S stimulates VSMC apoptosis [166]. The endogenous production of H2S derived 

from CSE overexpression induces apoptosis in human VSMCs by activating ERKl/2 and 

capsase-3 [166]. Interestingly, VSMCs isolated from CSE-KO mice were more susceptible to 

apoptosis induced by exogenous H2S at 100 pM. The pro-apoptotic effects of H2S are mediated 

by the phosphorylation of ERKl/2 and expression of cyclin D1 and p21 (Cip/WAF-1) [120]. As 

for vascular endothelium, NaHS pretreatment has recently been demonstrated to decrease SA P- 

gal (cell senescence-associated p-galactosidase) positive rate and cellular apoptosis in HUVECs 

[167]. Similarly, NaHS triggers an anti-oxidative stress mechanism which protects primary 

HUVECs from apoptosis challenged with high glucose [168]. The anti-apoptotic action of H2S 

in macrophages cells is mediated by *S-sulfhydration of NF-kB [143]. H2S sulfhydrates the p65 

subunit of NF-KB at cysteine-38, which promotes its binding to the co-activator ribosomal 

protein S3 (RPS3) [143]. H2S inhibits NO production, iNOS gene expression and NF-KB 

activation in EPS -stimulated macrophages cells via a mechanism involving the action of heme 

oxygenase-1 (HO-1) and CO [169]. Finally, the pro-apoptotic or anti-apoptotic effects of NO 

depends on the concentration of NO employed, i.e. nano-molar range affects Akt 

phosphorylation and hypoxia inducible factor (HIF)-la stabilization (pro-survival pathways) and 

prevent apoptosis, whereas micromolar range triggers phosphorylation of p53 and induces 

apoptosis [170]. 
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1. 12. 3 The roles of H2S and NO in oxidative stress 

H2S is a strong reducing agent and may easily interact with oxidative species [3]. Several 

studies have shown that H2S displays anti-oxidant activity at 10 - 100 pM [158, 171, 172], 

which would protect the luminal surface of blood vessel from the oxidative stress caused by 

ischemia/reperfusion injury, as well as from the development of atherosclerotic lesions [173, 

174]. H2S rescues CSE- KO mice from the injury and mortality associated with renal ischemia. 

Moreover, CSE overexpression reduces the amount of reactive oxygen species (ROS) produced 

during stress in renal tissues [173]. NaHS has been shown to mitigate the methionine-induced 

production of free radicals in mouse brain ECs (bEnd3) and to enhance the inhibitory action of 

reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), L-NAME on ROS 

production [175]. NaHS (10-500 pM) preserves mitochondrial function by reducing the 

deleterious effects of oxidative stress on the antioxidants enzymes, SOD, catalase, glutathione 

peroxidase and glutathione-5'-transferase [176]. Furthermore, H2S delays EC senescence by 

attenuating oxidative stress [167]. A study show that late passages (e.g. 12) HUVEC have lower 

SOD activity and higher H2O2 level as compared with younger HUVECs (e.g. 4), whereas NaHS 

pretreatment reverses the changes of SOD activity and H2O2 level [167]. Similarly, the 

expression levels of both xanthine oxidase (XO) and subunits p67 (phox) of NADPH oxidase are 

increased in the old group relative to the young one, whereas manganese-superoxide dismutase 

(Mn-SOD) expression levels are decreased. NaHS treatment results in the up-regulation of both 

XO and p67(phox) levels but down-regulation of Mn-SOD expression [167], thereby slowing 

cell aging. Another study shows that H2S delays HUVEC senescence and prevents H202-indueed 

damage via sirtuin 1 activation [177]. In addition, H2S-releasing drugs, NaHS and ACS6 (both at 

10 pM), inhibit superoxide formation and gp91 (phox) (a catalytic subunit of NADPH oxidase) 
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expression in porcine pulmonary arterial ECs by increasing cAMP levels and recruiting PKA 

upon the inhibition of phosphodiesterase type 5 (PDE-5) [178]. The cytoprotective effect of H2S 

in vascular endothelium might involve an increase in the intracellular levels of GSH, one of the 

most abundant and effective components of the defense system against free radicals [145]. 

Studies conducted on mouse embryonic fibroblasts isolated from CSE-KO mice (CSE-KO- 

MEFs) shaw an increase in oxidative stress and acceleration in cellular senescence compared 

with MEFs isolated from wild-type mice (WT-MEFs) [145]. Incubation of CSE-KO-MEFs with 

NaHS significantly increases GSH levels and rescues KO-MEFs from senescence [145]. H2S 

sulfhydrates Keapl, which regulates the antioxidant response, thereby inhibiting Nrf2 activity 

[145]. 5'-sulfhydration of Keapl at cysteine-151 induces Nrf2 dissociation from Keapl, thus 

enhancing the nuclear translocation of Nrf2 and stimulating mRNA expression of Nrf2-targeted 

downstream genes, such as glutamate-cysteine ligase and glutathione reductase [145]. In 

addition, H2S might scavenge ONOO' and suppress tyrosine nitration in VSMCs in the presence 

of homocysteine (Hey) [179]. The anti-oxidant properties of H2S could therapeutically be 

exploited to prevent lung endothelium damage caused by oxygen therapy [180], particulate air 

pollution or tobacco smoke [181]. Similarly, regulation of NO production during conditions of 

oxidative stress is very important for cell survival. Previous studies have shown that increased 

oxidative stress is often associated with decreased NO levels [182]. Additionally, as mention 

before NO generation, together with increased superoxide generation, leads to elevated 

peroxynitrite formation, which is a powerful oxidant, and related to oxidative injury of blood 

vessels [182]. 
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1.12. 4. The roles of H2S and NO in inflammation 

The vascular protective action of H2S involves its anti-inflammatory effects on the 

innermost lining of blood vessels. H2S, released from either NaHS (10-100 pM) or S-propargyl- 

cysteine (SPRC; 1-10 pM), a novel sulfiir-containing amino acid, inhibits the expression of 

adhesion molecules, including ICAM-1, VCAM-1, P-selectin, and E-selectin, induced by pro- 

inflammatory cytokines, such as tumor necrosis factor-a (TNF-a), in HUVECs [183, 184], H2S 

prevents the complication of nonsteroidal anti-inflammatory drugs (NSAIDs) and acetylsalicylic 

acid (ASA) therapy [185]. H2S attenuates the gastric mucosal injury, TNF-a, ICAM-1 in rat 

mesenteric venules challenged with ASA or non NSAIDs [185]. Conversely, pharmacological 

blockade of CSE with P-cyanoalanine (BCA) enhanced leukocyte adhesion and rolling [186]. In 

agreement with these data, carrageenan-induced paw edema is suppressed by either NaHS (EC50 

= 35 pM kg'^) or Na2S (EC50 = 28 pM kg'^) and boosted by BCA [185]. The anti-inflammatory 

action of H2S involves the activation of KATP and BKca channels [185, 187] and the up- 

regulation of HO-1 [184], as well as the inhibition of p38 and NF-kB signalling pathways. 

Furthermore, H2S hampers TNF-a-induced monocyte-endothelial interactions by down- 

regulating the expression of the monocyte chemoattractant protein-1 (MCP-1) through the 

inhibition of disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM 17) [188]. 

The ADAM 17-dependent TNF-converting enzyme (TACE) activity is, in turn, essential for 

soluble TNF-a shedding and up-regulation of MCP-1 levels in HUVECs [188]. NaHS 

administration at 100 pM kg'^ restores gastric microcirculation in a KATP channels-dependent 

manner [185]. NO also plays a key role in the pathogenesis of inflammation as an anti- 

inflammatory mediator under normal physiological conditions. On the other hand, NO is 

considered as a pro-inflammatory mediator that induces inflammation due to over production in 
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pathological conditions [189]. NO inhibits adhesion of inflammatory cells to the endothelial 

surface as well [190]. 

1. 12. 5. The roles of H2S and NO in angiogenesis 

H2S has recently been recognized as an important regulator for angiogenesis both in vitro 

and in vivo under physiological conditions [191, 192]. Silencing of CSE reduces migration and 

sprouting of HUVECs in vitro [191]. In agreement with these data, the BrdU assay disclosed that 

the proliferation rate of primarily isolated ECs was dramatically suppressed by knockdown of 

CSE but restored by exogenously H2S treatment [119]. Moreover, the ex vivo mouse aortic ring 

angiogenesis assay reveals a marked decrease in neovascularization when the aortic tissue from 

CSE-KO was cultured in vitro [119]. Conversely, NaHS promotes blood vessel growth of aorta 

tissues from both WT and CSE-KO mice [119]. Intraperitoneal administration of NaEIS for 7 

days at 10 - 50 mmol-kg‘^-day^ increases neovascularization in the mouse in vivo [193]. 

Consistently, treatment with Na2S increases the vascular length in chicken chorioallantoic 

membranes (CAMs) at doses of 0.24 - 240 pmole/egg [193]. PPG treatment for 48 hr at 

increasing concentrations (3, 30, and 300 pmole/egg) decreases vascular network length and 

branching of CAM [191]. NaHS at a dose of 100 pmol kg'^-day'^ restores blood perfusion in a 

rat model of hindlimb ischemia by promoting local vessel growth [192]. Therapeutic 

angiogenesis of occluded peripheral arteries has also been reported in C57BL/6J mice 

supplemented with Na2S at 0.5 mg/kg and 1 mg/kg [194]. Likewise, NaHS (30 pM/1 in drinking 

water for 4 weeks) attenuates cardiac remodeling promoting in vivo angiogenesis in a rat model 

of myocardial infarction [195]. The signal transduction pathways underlying the pro-angiogenic 

role of H2S are not fully unraveled [119, 196]. Activation of PI-3K/Akt by H2S has been shown 
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to regulate tube-like structure formation in the retinal EC line (RF/6A) by inducing the up- 

regulation of the adhesion molecules, integrin a2 and pi, and survivin [193]. Accordingly, 

integrin a2 and pi maintain angiogenesis by controlling EC adhesion to the underlying substrate 

[192]. H2S increases Akt phosphorylation and improves regional blood flow in rat unilateral 

hindlimb ischemic model [192]. Mitogen-activated protein kinases (MAPK) and ERKl/2 are not 

activated by H2S in RF/6A cells [193], but the activation of MAPKs, such as ERKl/2 and p38, 

by H2S was shown to play a key role in HUVEC migration [191]. The use of different 

concentrations of H2S donors, of multiple EC types, and of diverse assay systems could explain 

the heterogeneity observed in the molecular underpinnings of the pro-angiogenic effects of H2S. 

Importantly, the KATP channel blocker glibenclamide abolished H2S-induced p38 

phosphorylation and HUVEC motility [191]. Therefore, KATP channels are located upstream of 

MAPKs in the signaling pathway contributing to H2S-induced angiogenesis. 

Another putative mechanistic link between H2S and the molecular decoders of its pro- 

angiogenic effect is the increase in intracellular Ca concentration ([Ca ]i) [196, 197]. In fact, 

many studies have provided the evidence that NaHS affects intracellular Ca^^ signals in a variety 

of ECs, such as human saphenous vein ECs [198], human microvascular dermal ECs (HMVECs) 

[199], and rat aortic ECs (RACEs) [200]. The Ca^^ response to NaHS in human ECs is shaped by 

the interaction between intracellular Ca release from the endoplasmic reticulum reservoir, 

which is mainly mediated by inositol-1,4,5-trisphosphate (InsP3) receptors, and store-operated 

calcium entry (SOCE) across the plasma membrane [198]. Conversely, Ca^^ inflow patterned 

H2S-evoked elevations in [Ca^^]i in both HMVECs and RAECs [196, 199]. Ca^^ entry in rat 

aortic endothelium is supported by the reverse mode of the Na /Ca exchanger (NCX) and 

sustained by KATP channels-dependent membrane hyperpolarization [200]. Similar to 
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vasorelaxation, NO may be involved in the pro-angiogenie action of H2S [115] Accordingly, 

pharmacological blockage of protein kinase G (PKG) prevented H2S-induced bEnd3 

proliferation and migration in vitro, whereas NaHS-elicited neo-vascularization of Matrigel 

plugs in vivo was absent in eNOS- KO mice [165]. In addition, CSE deficiency abolished the 

pro-angiogenic role of NO donors both in vitro and in vivo [119]. Treatment with either L- 

NAME or siRNA to knockdown eNOS attenuates the H2S-angiogenic effect [119]. Furthermore, 

L-arginine (the substrate of NOS) induces neo-vessel growth in cultured ring isolated from wild 

type mice but not from CSE-KO mice [119]. Therefore, both H2S and NO are required for 

optimal angiogenic activity, yet angiogenesis still proceeds in the presence of either H2S or NO 

alone albeit to a reduced degree. However, the exact molecular mechanism underlying H2S- 

mediated NO pro-angiogenic response remain unclear. 

Vascular endothelial growth factor (VEGF) is the most powerful stimulator of 

angiogenesis. The down-regulation of CSE gene led to a decrease in VEGF-induced MAPK 

activation and HUVEC motility [191]. The ex vivo aortic ring angiogenesis assay further showed 

that VEGF-elicited elevation in microvessels formation is dramatically hampered in CSE-KO 

mice [191]. Similarly, the genetic suppression of CSE attenuated VEGF-induced proliferation in 

bEndS micro-vascular ECs, whereas it does not impair the mitotic effect of basic fibroblast 

growth factor (bFGF) [165]. The influx of Ca^^ triggered by VEGF into ECs might serve as a 

suitable signal to initiate CSE activation and H2S synthesis [163, 199, 201, 202].H2S also 

stimulates angiogenesis of ischemic tissues. NaHS activated the hypoxia inducible factor 1-a 

(HIE-la), the transcription factor driving the expression of numerous growth factors [162], in 

capillary ECs harvested from mouse skeletal muscle [194]. This process was mediated by H2S- 

inducedNO and VEGF release and subsequent increase in EC proliferation under hypoxia [194]. 
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These data have been supported by the increase in VEGF expression reported in both ischemic 

heart and peripheral limbs and related to the pro-angiogenic effect exerted by NaHS treatment in 

mice [192]. However, we recently found that NaHS represses hypoxia-induced HIF-la protein 

translation in ECs (EA.hy926) [203]. H2S enhances eukaryotic initiation factor 2-a (eIF2-a) 

phosphorylation, and the consequent fall in HIF-la accumulation resulted in the down- 

regulation of VEGF expression, thus EC proliferation [203]. This discrepancy might be due to 

the differences in ECs isolated from distinct vascular beds and animal species. 

In addition to the therapeutic angiogenesis, H2S might be involved in controlling the 

neovascularisation of growing tumours. NaHS induces Ca influx in higher levels in tumour 

ECs (TECs) harvested from breast cancer (B-TECs) as compared to their healthy counterparts 

[199]. Importantly, NaHS causes a dose-dependent stimulation of B-TEC proliferation but had 

little effect on the control healthy cells [199]. VEGF-induced Ca entry was prevented by CSE 

blockade by PPG, albeit the physiological meaning of this process was not further investigated 

[199]. In consideration of the endothelial phenotypic changes observed in ECs isolated from 

tumor samples, the involvement of H2S in supporting tumour vascularisation should, therefore, 

be assessed by focussing on TECs rather on their normal counterparts [199]. 

1.12. 6. The roles of H2S and NO in atherosclerosis 

EC dysfunction, hypertension, VSMC proliferation and migration, dyslipidemia, 

oxidative stress, and recruitment of inflammatory cells are the important factors involved in the 

development of atherosclerotic lesions [174, 204]. NO and H2S share several athero-protective 

actions, including blood vessel relaxation and regulation of vascular tone, endothelial 

regeneration, inhibition of leukocyte adhesion, inhibition of platelet clumping to make the blood 
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thinner and prevention of VSMCs proliferation and migration [174, 205-208]. The role of NO in 

atherosclerosis development has been studied in apolipoprotein E knockout (apoE-KO) mice, 

where L-NAME treatment significantly decreased NO-mediated vascular response, and 

increased atherosclerosis development [209]. NOS gene overexpression reduced adhesion 

molecules expression, reduced the inflammatory process, and inhibited VSMC proliferation and 

migration [210, 211]. Another study proved that decreased NO bioavailability in high 

cholesterol-induced vascular dysfunction of rabbit aortic rings was corrected by eNOS gene 

transfer, which improved vascular relaxation in response to acetylcholine [212]. Kuhlencordt et 

al. [208] studied whether eNOS deficiency affects atherosclerosis development using 

apoE/eNOS double knockout (DKO) mice and found that both male and female apoE/eNOS 

DKO mice showed significantly increased lesion, when compared to apoE KO mice [208]. 

The anti-atherosclerotic role of H2S was explored in recent years. CSE expression and 

H2S production were significantly decreased during the development of balloon injury-induced 

neointimal hyperplasia in the rat carotid artery, and that exogenous H2S significantly reduced 

neointimal lesion formation [213]. Treatment of apoE-KO mice with NaHS decreased, and with 

PPG increased, atherosclerotic lesion size [214]. NaEtS (100 pmol/L for 12 hrs) inhibited ICAM- 

1 expression in TNF-alpha-induced HUVECs via the NF-kappaB pathway [214]. Moreover, 

NaHS administration concentration-dependently (50-200 pM) reduced CX3CR1 and CX3CL1 

expression in mouse peritoneal macrophages, as well as CX3CR1-mediated chemotaxis [215]. In 

fat Apo-E mice, NaHS (1 mg/kg, i.p., daily)- attenuated, and PPG (10 mg/kg, i.p., daily) 

exacerbated, the extent of atherosclerotic plaques [215]. H2S against apoliprotein accumulation, 

H2S (50 pM) attenuated H2O2 and oxidized LDL (oxLDL)-mediated endothelial c)4otoxicity in 

HUVECs [216]. GYY4137 (a slow H2S releasing molecule) decreased the atherosclerotic plaque 
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formation and partially restored the endothelium-dependent relaxation of apoE-KO mouse aorta 

[207]. The direct and sold evidence for the anti-atherogenic role of H2S was reported in 2013, 

demonstrating that CSE-KO mice fed with atherogenic paigen-type diet, but not WT mice, 

developed early fatty streak lesions in the aortic root, increased aortic intimal proliferation and 

aortic adhesion molecule expression, and enhanced oxidative stress [174]. These animals also 

showed increased plasma total cholesterol and LDL-cholesterol levels compared to WT mice fed 

with the same atherogenic diet. NaHS supplementation to, atherogenic diet-fed CSE-KO mice 

improved plasma lipid profile and decreased atherosclerotic lesions [174]. Collectively, these 

studies suggest that NO and H2S play similar roles in the prevention of atherosclerosis 

development. The crosstalk between NO and H2S in the development of atherosclerosis, 

however, has not been explored in details, so far. 

1.12. 7. The roles of H2S and NO in aging 

Aging is related to dramatic structural and functional alterations in both heart and blood 

vessels, which can explain the age-related increase in cardiovascular risk [217, 218]. During 

aging, ECs undergo cellular senescence, which leads to a reduced angiogenic activity [219, 220]. 

Cellular senescence, an irreversible arrest of cell cycle [221], can be triggered by the reduced 

bioavailability of both H2S and NO. For instance, senescent human aortic ECs (HAECs) 

exhibited higher ICAM-1 expression and lower eNOS activity [222]. Accordingly, the eNOS 

protein isolated from mesenteric arteries in young mice has the dimer configuration, whereas 

eNOS protein from aged mice was mostly uncoupled to monomers [223]. The same study 

revealed that eNOS uncoupling contributed to augmented superoxide levels in aged vessels and 

was due to a reduced BH4 availability [223]. The aging-related EC dysfunction is largely 

35 



ascribed to oxidative stress and inflammation [224, 225]. An excess of the ROS, superoxide, and 

hydrogen peroxide eompromises the vasodilator activity of NO and facilitate the formation of the 

deleterious radical [224]. Basal NO production and sensitivity to acetylcholine-mediated 

vasodilation in thoracic aorta rings were reduced, whereas the pro-inflammatory reaction of ECs 

was increased in aged mice compared to young mice [226]. In addition, arginase-II (Arg-II) 

expression/aetivity was higher in seneseent ECs, and its silencing suppressed eNOS-uneoupling 

and several senescenee markers sueh assenescence-associated-p-galactosidase activity, p53-S15, 

p21, and expression of VCAMl and ICAMl [227]. Over-expression of Arg-II in non- 

senescent EC promoted eNOS-uncoupling and enhanced VCAMl/ICAMl levels [227]. Protein 

nitrotyrosine formation is accompanied with eNOS uncoupling in mesenteric arteries of aged 

mice [223]. Chronic increase in shear stress in mesenteric arteries of aged rats restored EC 

funetion through inereasing NO production and antioxidant capacity, and thus decreasing 

superoxide levels [228]. In soil nematode Caenorhabditis elegans, which is a prominent model 

organism for studying aging [229], after exposure to H2S it survive longer and are more 

thermotolerant than untreated controls [230]. NaHS treatment protects against HUVEC 

senescence by modulating SIRTl activity, and against fibroblast aging v/a 5'-sulfhydration of 

Keapl and Nrf2 activation in association with oxidative stress [145]. A reeent study revealed that 

CSE protein expression was increased in the aorta of aging rats maintained on an ad libitum 

(AL) diet, but CSE expression was unchanged in rats maintained on a ealoric restrietion (CR) 

diet. Furthermore, CR-fed animals at ages of 18, 29, and 38 months had lower CSE expression 

than in AL-fed animals, whereas CSE expression at 8 months was not affected by diets [231], 

suggesting that CR diet may help to stabilize the H2S signaling system during aging. 
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1.12. 8. The roles of HiS and NO in diabetes 

H2S treatment or CSE over-expression proteeted ECs from the deleterious consequences 

of hyperglycemia induced enhancement of ROS formation, attenuated nuclear DNA injury [232]. 

H2S preserved the development of EC dysfunction in aortic tissues incubated in medium with 

elevated glucose concentration {in vitro "hyperglycemia") and reduced the bio-energetic 

derangements in ECs [232]. On the other hand, CSE knockdown deteriorated hyperglycemia- 

induced ROS production and led to more severe loss of endothelium-dependent relaxant function 

[232]. Oxidative stress plays a major role in the development of diabetic microvascular 

complications [233]. Non-obese diabetic (NOD) mice, which gradually develop type-1 diabetes, 

exhibited reduced of H2S levels in plasma and aortic tissue [234]. The administration of 

exogenous H2S relieved vascular abnormalities by upregulating connexin 40 and connexin 43 

and normalizing NADPH oxidase and PKCs in streptozotocin (STZ)-injected rats [235]. These 

results have been corroborated by the finding that the circulating levels of H2S were lower in 

STZ-diabetic rats [232]. The same study showed that, under hyperglycaemic condition bEnd3, 

microvascular ECs accelerated H2S consumption due to the mitochondrial formation of ROS, 

which severely affected cell viability and caused nuclear DNA damage and switched cell 

metabolism from oxidative phosphorylation to glycolysis[232]. As expected, these features were 

associated with the impairment of endothelium-dependent relaxations of rat aortic rings exposed 

to high glucose in vitro. EC functionality was restored either by over-expressing CSE or by 

supplying NaHS (100 - 300 pM) [232]. The observation that ECs in diabetes failed to produce 

sufficient amount of NO has been documented in animal model of the disease [236]. Similarly, 

loss of insulin signalling in the vascular endothelium led to EC dysfunction due to the decrease 

in NO synthesis, which impaired endothelium-dependent vasodilation and accelerated the 
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progression of atherosclerotic lesions in apoE KO mice [237]. Likewise, hyperglycemia inhibited 

eNOS activity in cultured BAECs and in the aorta of diabetic rats [238]. All together, these data 

illustrate the importance of H2S and NO in protecting ECs from deleterious vascular 

consequences of diabetes. 
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Objective of the study 

NO is a well-known gasotransmitter. H2S is now considered a third member of the 

gasotransmitter family. In the vascular system, CSE is mainly responsible for endogenous 

production of H2S. CSE enzyme is expressed in SMCs. However, our group in 2008 was the first 

to report that CSE can be expressed in ECs as well. This discovery has triggered more attention 

towards the interaction of H2S and NO in the vascular system and precisely in ECs. Here we 

hypothesized that H2S acts as a modulator of eNOS and NO generation in ECs. The objectives of 

this thesis are to: 

1. Examine the effects of both exogenous and endogenous H2S on eNOS expression, 

phosphorylation and NO production in vascular tissue. 

2. Evaluate the interaction between H2S and NO and their roles in the regulation of 

different vascular function such as endothelium superoxide production and 

angiogenesis. 

3. Investigate the role of *S-sulfhydration as a new regulatory mechanism for eNOS, 

as well as the interplay between S'-sulfhydration and other posttranslational 

modifications. 

4. Examine the effect of H2S on eNOS structure and function of dimer uncoupling. 
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2.1. Abstract: 

Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial 

cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their 

interaction at different levels would have a profound impact on angiogenesis. Here, we showed 

that H2S and NO stimulated the formation of new micro-vessels. Incubation of human umbilical 

vein endothelial cells (HUVECs-926) with NaHS (a H2S donor) stimulated the phosphorylation 

of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS 

protein expression in ECs. L-cysteine, a precursor of H2S, stimulated NO production whereas 

blockage of the activity of H2S-generating enzyme, cystathionine gamma-lyase (CSE), inhibited 

this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well 

as EC proliferation. LY294002 (Akt/PI3-K inhibitor) or SB203580 (p38 MAPK inhibitor) 

abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and 

tube formation. Blockade of NO production by eNOS-speciflc siRNA or L-NAME reversed, but 

eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that 

H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt-dependent pathway, 

thus increasing NO production in ECs and vascular tissues and contributing to H2S-induced 

angiogenesis. 

Keywords: Hydrogen sulfide; Nitric oxide; endothelial cells; eNOS; CSE; cystathionine gamma- 

lyase. 
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2. 2. Introduction 

Hydrogen sulfide (H2S) and nitrie oxide (NO) are known gasotransmitters that contribute 

to many physiological functions [2]. These gaseous messengers can be produced endogenously 

to respond to diverse physiologic and patho-physiologic stimuli [2]. In endothelial cells (ECs), 

H2S can be generated from L-cysteine by the enzymatic action of cystathionine gamma-lyase 

(CSE; EC 4.4.1.22) [19]. H2S-induced relaxation of vascular tissue was partially reduced by the 

removal of the vascular endothelium or in the presence of L-NAME (an inhibitor of NO 

synthase) [17]. NO can be generated in ECs from L-arginine by endothelial nitric-oxide synthase 

(eNOS; EC 1.14.13.39) [239].Being a homo-dimeric protein, the activation of eNOS is 

dependent on intracellular calcium (Ca^^) level and other cofactors like nicotinamide adenine 

dinucleotide phosphate (NADPH), tetrahydrobiopterin, flavin adenine dinucleotide, and flavin 

mononucleotide [240].The activity of eNOS is affected by many posttranslational modification 

mechanisms, such as phosphorylation on multiple amino acids like Ser-1179/1177 

(bovine/human) and Thr-495 residues [241, 242], whereas eNOS protein can be self-inhibited by 

high concentrations of NO through 5'-nitrosylation [135]. Due to its reducing capability, H2S may 

reduce NO to form a thiol-sensitive molecule 5'-nitrothiols (RSNO) [243] . Conversely, H2S has 

been found to reduce RSNO to release NO from GSNO (S-Nitrosoglutathione) [244]Moreover, 

H2S and NO interact on each other’s catalyzing enzymes; NO donor increases the expression and 

activity of CSE in cultured aortic smooth muscle cells (SMCs) [17]. In rat vascular SMCs, H2S 

had no direct effect on NO production, but it augmented interleukin-induced NO production, and 

this effect was related to increased iNOS expression (inducible NOS) [245]. NaHS (a H2S donor) 

treatment reduced eNOS activity and expression but not of nNOS (neuronal NOS) and iNOS in 

isolated rat aortas and human umbilical vein endothelial cells (HUVECs) [246]. NaHS inhibited 
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eNOS-catalyzed conversion of [^H]-arginine to [^H]-citrulline [247]. NaHS also inhibited iNOS 

expression and NO production in macrophages cells (RAW264.7) [169]. Na2S selectively 

augmented NO production in chronically ischemic tissues, by influencing iNOS and nNOS 

expression and stimulating nitrite reduction to NO via xanthine oxidase (XO) under hypoxic 

condition [194]. The angiogenic crosstalk between H2S and NO in ECs has been unclear. Our 

present study showed that the pro-angiogenic effect of H2S appears to be regulated by both a 

NO-dependent and an independent mechanism, whereas NO effect on angiogenesis is partially 

dependent on H2S. We demonstrated that H2S stimulated NO release by increasing eNOS 

phosphorylation via a p38 MAPK and Akt-dependent mechanism, which contributes to the 

stimulatory effect of H2S on EC proliferation and angiogenesis. 

2. 3. Materials and Methods 

Cell culture and chemicals 

EtUVEC-derived EA.hy 926 cells were kindly provided by Dr. Cora-Jean S. Edgell [248] 

(University of North Carolina, USA). The cells were cultured in Dulbecco’s modified eagles 

medium (DMEM) without ferric nitrate (Sigma, Oakville, Canada), containing penicillin (100 

U/ml), streptomycin (100 pg/ml), and 10% (v/v) fetal bovine serum. The primary aortic 

endothelial cells were isolated from the aorta of 10-12 week-old C57BL/6J/129 mice, as 

previously described [249]. Aortic endothelial cells were cultured in a medium containing 20% 

FBS, 100 U/ml penicillin-G, 100 pg/ml streptomycin, 2 mM L-glutamine, 25 mM HEPES (pH 

7-7.6), 100 pg/ml heparin, 100 pg/ml endothelial cell growth supplement (ECGS), and DMEM 

(Sigma). The nature of ECs was confirmed using endothelial-specific markers CD31 (Santa Cruz 

Biotechnology, Santa Cruz, CA) and eNOS (Cell Signaling Technologies, Beverly, MA, USA) 
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by Western blot, and endothelial tube formation using Matrigel assay (BD Bioseiences, 

Mississauga, ON, Canada) (data not shown). The culture medium was changes every 2 days and 

ECs between passages 3-5 were used. 

Measurement of NO production 

Total nitrate/nitrite concentrations were measured by conversion of nitrate to nitrite after 

incubating supernatants with nitrate reductase (10 U/ml) and NADPH (5 mM) for 1 hr at 37°C. 

The total nitrite was measured with a Griess assay kit (Promega, Madison, WI, USA) using a 

reference sodium nitrate standard curve [250]. The results obtained with the Griess assay have 

also been validated by the diaminofluorescein fluorophore system (DAF-FM), which can be 

deacetylated by intracellular esterases and further reacts with NO to form a fluorescent 

benzotriazole (DAF fluorescence) (Invitrogen, Burlington, ON, Canada). ECs were incubated 

with 5 pM DAF-FM for 30 min at 37°C. The cells were washed to remove excess dye, replaced 

with fresh medium and observed under a fluorescent microscope as previously described [251]. 

To detect the production of NO in aortic tissues, isolated aortas were incubated with DAF-FM (5 

pM) at 37°C in Kreb’s buffer and then rapidly removed and frozen at -20°C. Aortic tissue 

samples were embedded in optimal cutting temperature (OCT) compound until frozen, and 

sectioned using Leica CM 1850 UV microtome-cryostat (Leica Biosystems, Concord, Ontario, 

Canada). The tissue blocks were cut into 10 pm-thick sections and observed under a fluorescent 

microscope [252]. 

Gene knockdown and overexpression 

ECs were seeded in 6-well plates and cultured until they reached 70-80% confluence. The 

cells were then transfected with specific siRNA to knockdown CSE or eNOS gene (50 nM). 

Negative siRNA was used as transfection control (50 nM), using Lipofectamine™ RNAi-MAX 
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transfection reagent according to the manufactory instruction (Invitrogen). Overexpression 

experiments were carried out with plasmid DNA containing CSE cDNA (pIRES2-EGFP, 4.0 pg) 

or eNOS cDNA (pcDNA 3,1 eNOS-GFP, 4.0 pg). Mock empty vector was used as transfection 

control (Addgene, Cambridge, MA, USA) [109, 120, 253] using Lipofectamine™ 2000. Forty- 

eight hr after transfection, the cells or media were collected and evaluated by Western blot or 

Griess assay analysis. 

Western blot analysis 

Cultured cells were collected and incubated in a lysis buffer containing 0.5 M EDTA, 1 

M Tris-Cl (pH 7.4), 0.3 M sucrose, and a protease inhibitors mixture (Sigma). The cell extracts 

were sonicated three times (5-10 seconds/each) on ice using a cell sonicator (Sonic Dismemrator 

Model 100, Fisher Scientific) [120]. Cellular extracts were separated by centrifugation at 14,000 

X g for 15 min at 4°C. Supernatants were collected, and the same amounts of proteins were 

separated on 10% SDS-polyacrylamide gels and blotted onto nitrocellulose membranes (Pall 

Corporation, Pensacola, FL, USA). All primary antibody incubations were performed at 4 °C 

overnight. The antibody dilution for phospho-eNOS (Seri 177), eNOS, phospho-ERK, ERK, 

phospho-p38 MAPK, p38 MAPK, phospho-Akt (S473) and Akt was at 1:1000 (Cell Signaling 

Technologies). Anti-CSE antibody was used at 1:5000 (Proteintech Group, Chicago, IE, USA), 

and anti-p-actin antibody was at 1:10000 (Sigma). The membranes were stripped using a buffer 

containing 100 mM p-mercaptoethanol, 2% SDS and 62,5 mM Tris-HCl (pH 6.8) at 50°C for 30 

min. Membranes were visualized using enhanced chemiluminescence western blotting system 

(GE Healthcare, Piscataway, NJ, USA). Densito-metric quantification was performed using 

Alpha Digi Doctor Software (Richardson, TX, USA). The protein bands were quantified and 

normalized against either p-actin or total form levels of the target protein, and expressed as a 
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percentage relative to the controls (equals 100%). The phosphorylation level is defined as the 

ratio between the phosphorylated target proteins and their total forms and expressed in the 

summarized bar graphs as the percentage of the untreated controls. 

Capillary-like tube formation assay 

The Matrigel matrix gel was thawed overnight at 4°C on ice and then added to pre-chilled 

culture dishes and allowed to polymerize at 37°C for 1 hr. ECs (2 x 10“^ cells) were incubated 

with different agents in 500 pi DMEM and then seeded onto the surface of Matrigel (BD 

Biosciences). After 12 hrs, the formation of capillary-like structure was imaged by light 

microscope. The total lengths of tube-like structures per field were measured using image 

analysis software (NIH Image software- Image J). 

Cell proliferation assay 

Cells were counted using automated cell counter TCIO^*" from BioRad (Mississauga, 

ON, Canada) and seeded into 96-well plates (1 x cells/well). After 24 hrs of initial seeding, 

cells were incubated with DMEM serum-free medium for overnight [120]. The proliferation 

rates were evaluated by 5-bromo-2'-deoxyuridine (BrdU) incorporation assay according to 

manufacturer's instructions (EMD Biosciences, San Diego, CA, USA). 

Micro-vessel formation assay 

CSE knockout (KO) mice were generated as described previously [19]. Eight-week old 

male CSE-KO and wild type (WT) mice were sacrificed, and aorta were rapidly cleaned off 

adipose tissues and blood. Aorta were cut in to rings (length, ~3 mm) and implanted in a fibrin 

gel obtained by adding 400 pi of a fibrinogen solution (3 mg/ml) and thrombin (1.5 U/ml) 

(Sigma). After 30 minutes, 500 pi of DMEM was added with the treatment. As a control, the 
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effect of medium alone was assayed, and quantitative evaluation of new micro-vessels was 

carried out after 72 hrs [191]. All animal experiments were conducted according to the Care and 

Use of Laboratory Animals Guide (NIH Publication No. 85-23, revised 1996) and approved by 

Lakehead University Animal Care Committee, Canada. 

Statistical analysis 

All data were expressed as mean ± SEM. Each data point represented at least three to 

four independent experiments. Statistical comparisons were evaluated using Student’s t test. 

Values of P < 0.05 were considered statistically significant. 

2. 4. Results 

H2S induced NO production in ECs 

Stimulation of ECs with NaHS for 30 min increased NO production over a concentration 

range from 10 pM to 100 pM (Figure 2. lA). The effect of NaHS on NO production was blocked 

when cells were pre-treated with NOS inhibitor Nco-nitro-L-arginine methyl ester (L-NAME) 

(Figure 2. IB). NaHS-induced increase in NO production was further confirmed in primarily 

cultured mouse ECs (Figure 2. SI). L-NAME treatment also significantly reduced NO 

production. We next determined the effect of L-cysteine (H2S precursor) on NO production. L- 

cysteine pre-treatment stimulated NO production in ECs (Figure 2. IB). However, blocking of 

CSE activity by PPG reversed L-cysteine effect (Figure 2. IB). CSE knockdown using CSE- 

specific siRNA significantly reduced CSE protein level and attenuated NO production in 

comparison with the cells transfected with negative siRNA. Moreover, CSE overexpression 

significantly elevated CSE expression level and resulted in an increase in NO level (Figure 2. 1C 
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and 2.1 D). NO data was further confirmed by DAF-FM fluorescence dye showing that NaHS 

treatment stimulated NO release in aortic tissues and ECs (Figure 2. IE and 2.1 F). 

NaHS (50 juM and 100 (xM) treatment markedly increased the phosphorylation of eNOS 

in ECs (Figure 2. 2A). The stimulatory effect of NaHS on eNOS phosphorylation was time 

dependent, and the increase in phosphorylated eNOS appeared at 10 min, peaked at 30 min, and 

gradually declined to base-line over the period of 1-hr NaHS exposure (Figure 2. 2B). NaHS 

treatment up to 36 hrs had no significant effect on eNOS expression level (Figure 2. 2C). 

The role of p38 MAPK/Akt in HiS-induced eNOS phosphorylation and NO production 

Diverse kinases such as Akt, p38-MAPK kinase, and ERK are important for NO 

production and signaling activation [254-256]. To elucidate the signaling pathways involved in 

H2S-induced eNOS phosphorylation and the NO production, we examined the roles of Akt, ERK 

and p38 MAPK in H2S-stimulated NO production. Treatment with NaHS at 100 pM enhanced 

the phosphorylation of p38 MAPK, Akt, and ERK to different levels (Figure 2. 3). SB202190 (a 

p38 MAPK inhibitor) and LY294002 (a PI3K/Akt inhibitor), but not U0126 (an inhibitor of 

ERK), significantly reduced H2S-induced phosphorylation of eNOS (Figure 2. 4). We further 

found that the stimulatory effect of NaHS on NO production was decreased by the same 

treatments (SB202190 or LY294002), and neither SB202190 nor LY294002 alone had any 

detectable effect on NO production (Figure 2. 5A). Additionally, p38 MAPK inhibition by 

SB202190 attenuated the NaHS-induced phosphorylation of Akt (Figure 2. 5B), indicating that 

p38 MAPK might regulate the upstream signaling cascade that leads to Akt activation. These 

results suggest that p38 MAPK and Akt are required for NO activation by H2S. 
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The role of NO in H2S-induced EC proliferation and angiogenesis 

NaHS significantly induced EC proliferation (Figure 2. 6A). To show the effect of 

endogenously produced H2S, CSE knockdown with a siRNA approach attenuated cell 

proliferation. The knockdown of CSE significantly attenuated the proliferation of EC by about 

25% compared with the control group (Figure 2. 6B). We also found that CSE knockdown 

significantly decreased, but NaHS induced a similar and comparable increase, in the proliferation 

of primarily cultured mouse ECs (Figure 2. S2). The CSE overexpression stimulated EC 

proliferation (Figure 2. 6B). Next we study the effect of NO on proliferation. The overexpression 

of eNOS stimulated cell proliferation, which was strengthened by NaHS treatment (Figure 2. 6C 

and 2.6 D). 

We then determined whether H2S and NO can interact to regulate angiogenesis. H2S- 

induced EC proliferation was attenuated by eNOS knockdown (Figure 2. 7A and 2.7 B), whereas 

treatment with NO precursor L-arginine (1 mM) or NaHS (100 pM) alone significantly increased 

EC proliferation (Figure 2. 7B). Furthermore, NaHS (100 pM) treatment significantly increased 

the capillary-like tube formation of EC compared with the untreated cells (Figure 2. 1C). NaHS- 

induced increase in tube formation was significantly attenuated by co-treatment with L-NAME 

(200 pM), whereas L-NAME treatment alone had no significant effect on tube formation (Figure 

2. 1C). The aortic tissues from CSE-KO mice showed a markedly decreased formation of new 

micro-vessels compared with WT mice. After treating the embedded aortic rings with NaHS, the 

sporting of vascular neogenesis was significantly increased in both CSE-KO and WT mice with 

markedly higher levels in CSE-KO mice (Figure 2. 7D). Similar to the effect of NaHS, L- 

arginine (a NO precursor)- stimulated vascular neogenesis in both CSE-KO and WT mice 

(Figure 2. 7D). Furthermore, the pro-angiogenic effects of H2S on aortic rings from both CSE- 
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KO and WT mice were inhibited by L-NAME treatment (Figure. 2. 7D). L-NAME treatment 

inhibited new vessel formation from wild type aortic rings, but not that from CSE-KO aortic 

rings (Figure 2. 7D). Treatment of EC with NaHS (100 pM) increased the capillary-like tube 

formation, and co-treatment with a p38 or Akt inhibitor (SB202190 or LY294002) significantly 

reduced the H2S effect (Figure 2. 7E). However, treatment of EC with LY294002 or SB202190 

alone had no significant effect on tube formation (Figure 2. 7E). LY294002 or SB202190 

blocked the proliferation induced by H2S, and neither LY294002 nor SB202190 alone had any 

detectable effect (Figure 2. 7F), demonstrating that p38 MAPK and Akt are responsible for H2S- 

induced EC proliferation and angiogenesis. 

2. 5. Discussion 

Gasotransmitters play important roles in angiogenesis [115, 119, 165, 257, 258]. 

Angiogenesis is important for the development of the cardiovascular system and sustaining blood 

supplies, wound healing, and fetus development [259-263]. In our present study, we found that 

H2S can interact with NO to induce angiogenesis of both cloned EC line and freshly isolated 

primary mouse ECs. The mechanisms for H2S action are mainly ascribed to the stimulation of 

the p38 MAPK /Akt and eNOS phosphorylation, which was followed by increased NO 

production. 

Phosphorylation activates eNOS [115]. In our study, the phosphorylation of p38 MAPK 

precedes the phosphorylation of Akt in the H2S signaling cascade, which was confirmed when 

inhibition of p38 MAPK abolished H2S-induced phosphorylation of Akt. We also found that H2S 

activated ERK phosphorylation with a time course similar to that for p38 MAPK activation. 

However, the inhibition of ERK did not affect H2S-stimulated NO production. By altering the 
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phosphorylation of eNOS, H2S regulated NO production in ECs. Our observation is consistent 

with another recent finding by Predmore et al. [264]who demonstrated that Na2S (150 gM) 

treatment stimulated NO production in bovine arterial endothelial cells. While these authors 

illustrated the H2S-dependent Akt mechanism that stimulates NO production, the involvement of 

other kinases, like p38 MAPK, or the synergistic partnership between H2S and NO in 

angiogenesis were not addressed. Conversely, it has been reported that a high concentration of 

NaHS (300-3000 pM) significantly inhibited the activity of recombinant bovine eNOS [247]. It 

is worthy noted here that NaHS at this high concentration range unlikely bears physiological 

relevance. 

We explored the possible interaction between H2S and NO in angiogenesis regulation. Ex 

vivo aortic explants isolated from CSE-KO mice showed a remarkable decrease in vascular 

neogenesis when compared to WT mice. L-arginine treatment stimulated angiogenesis in the WT 

mice and to a lesser extent, in the CSE-KO mice. On the other hand, L-NAME treatment reduced 

new vessel formation in wild type mice, and this inhibitory effect was not significant in CSE-KO 

mice, suggesting that the angiogenic effect of NO might be mediated through H2S biosynthesis. 

CSE overexpression stimulated EC proliferation, whereas CSE knockdown reversed this effect. 

Interestingly, we found that the pro-angiogenic effect of H2S was partially attenuated in the 

presence of eNOS inhibitor L-NAME, or after eNOS knockdown using siRNA. Taken together, 

our results suggest that both gasotransmitters are required for optimal angiogenic activity, yet 

angiogenesis still proceeds in the presence of either H2S or NO alone albeit to a reduced degree. 

Previous studies had reported that H2S and NO can mediate angiogenesis without much 

knowledge about the H2S-NO interaction on angiogenesis [191, 193]. Recently, one study 

reported that a mutually dependent relationship between H2S and NO is important for 
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physiological control of different vascular function [165]. Our study used different angiogenesis 

model (CSE-KO mice V5. rat) and experimental conditions, and we found that H2S and NO, 

alone or combined, can cause angiogenesis. H2S-stimulated angiogenesis was partially but not 

completely inhibited by NO blockage, whereas in CSE-KO mice NO treatment stimulated 

angiogenesis but to a reduced level. The exact molecular mechanism underlying H2S-mediated 

NO pro-angiogenic response is not clear. 

In summary, our studies demonstrate that H2S promotes NO produetion in ECs via the 

activation of a cascade of phosphorylation events, starting from p38 MAPK, Akt to eNOS. H2S 

promotes EC tube formation, proliferation, and angiogenesis by NO-dependent and independent 

mechanisms as outlined in Figure 2. 8. Thus, H2S may be a key regulator for angiogenic 

signaling pathways, whether they required NO or not. The elucidation of the H2S-NO 

relationship in the vascular biology would improve our understanding of the pathogenic 

mechanisms for cardiovascular disease in general and angiogenic-related diseases in particular. 
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Figure 2. 1. H2S stimulated NO production in ECs and aortic tissues. (A) The effect of 
NaHS on NO production in ECs detected by Griess assay, n=4, P < 0.05 vs. control. (B) The 
effects of NOS inhibitor L-NAME (200 pM, 1 hr), CSE inhibitor PPG (10 mM, 4 hrs), NaHS 
(100 pM, 30 min), and L-cysteine (6 mM, 30 min) on NO production detected by the Griess 
assay, n=3-4, *P < 0.05 vs. control, ^P < 0.05 vs. NaHS or L-cysteine treated groups. (C) The 
effects of CSE knockdown or overexpression on NO production assessed by the Griess assay. 
(D) The efficiency of CSE knockdown or overexpression, determined by western blot, n=3-4, P 
< 0.05 V5. control. The effect of NaHS (100 pM) and L-arginine (1 mM) treatment on NO 
production in isolated aortic tissues (Scale Bar: 50 pm) (E) and cultured ECs (F) using DAF-FM 
fluorescent probe (Scale Bar: 200 pm), n=3-4. 
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Figure 2. 2. H2S stimulated the phosphorylation of eNOS in ECs. (A) The effect of NaHS 
treatment on eNOS phosphorylation. ECs were starved in DMEM medium free of serum for 24 
hr and treated with different concentrations of NaHS for 30 min. Western blot analysis was 
conducted using anti-phospho-eNOS and anti-total eNOS antibody, n=3-4, P < 0.05 vs. control. 
(B) Time-dependent effect of NaHS treatment on the phosphorylation of eNOS. ECs were 
treated with NaHS (100 pM) for different periods (0 to 60 min). At the end of each time point, 
cells were collected and proteins lysates were analyzed by western blot, n=3-4, P < 0.05 vs. 
control. (C) The effect of NaHS treatment on eNOS expression level in ECs. The ECs were 
treated with NaHS (100 pM) for 12-36 hrs, and then cells were collected and proteins were 
subjected to western blot analysis. n=3-4, P < 0.05 vs. control. 
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Figure 3. 3. H2S-induced phosphorylation of p38 MAPK, Akt and ERK. ECs cells were 
treated with NaHS (100 pM) for different times (0-60 min). At the end of each time point, cells 
were collected and proteins lysates were analyzed by to western blot, using antibodies specific 
for the phosphorylated and total forms of (A) p38 MAPK, (B) Akt, and (C) ERK. Data were 
normalized to total protein level, n=3-4, P < 0.05 vs. control. 
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Figure 2. 4. HiS-stimuIated eNOS phosphorylation is dependent on p38 MAPK and Akt. 
ECs were pre-treated with (A) SB203580 (10 pM), (B) LY294002 (10 pM), and (C) U0126 (10 
pM) for 1 hrs and then treated with NaHS (100 pM) for 30 min. Cell lysates were harvested and 
the level of phosphorylated forms of p38 MAPK, Akt, ERK, and eNOS were measured by 
western blot. n=3, *P < 0.05 vs. control, < 0.05 vs. NaHS treated group. 
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Figure 2. 5. Cross-talk between p38 MAPK and Akt in H2S-induced NO production. The 
p38 MAPK inhibitor inhibited Akt and NO production induced by H2S. (A) ECs were pre-treated 
with either SB203580 (10 pM) or LY294002 (10 pM) for 1 hrs, and then treated with NaHS (100 
pM) for 30 min. At the indicated time point the NOx generation was assessed by Griess assay, 
n=3-4, *P < 0.05 vs. control, < 0.05 vs. NaHS. (B) The phosphorylated Akt was measured by 
western blot after pre-treatment with SB203580 (10 pM) for 1 hr and NaHS (100 pM) treatment 
for 30 min, *P < 0.05 vs. control, n=3-4. 
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Figure 2. 6. H2S-stimulated EC proliferation. (A) The effects of NaHS treatment on EC 
proliferation assessed using BrdU proliferation assay. n= 3, * P < 0.05 v.?. control. (B) The 
effects of CSE knockdown or overexpression on EC proliferation. n=3, * P < 0.05 vs. control. 
(C) The efficiency of eNOS overexpression in ECs detected by western blot, n= 3, * P < 0.05 vs. 
Mock. (D) The effect of eNOS overexpression on EC proliferation. n= 3, * P < 0.05 vs. Mock. 
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Figure 2. 7. H2S interacts with NO to stimulate EC proliferation and angiogenesis. (A) The 
efficiency of eNOS knockdown transfection in EC detected by western blot. n= 3-4, P < 0.05 
vs. control. (B) The effects of eNOS-knockdown (eNOS siRNA, 50 nM), NaHS (100 jiM), and 
L-arginine (1 mM) treatments on EC proliferation evaluated by BrdU. assay, n = 3-4, P < 0.05 
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V5. control, *P < 0.05 vs. NaHS treated group. (C) H2S-NO interaction on EC tube formation. 
The effects of NaHS (100 pM) and L-NAME (200 pM) on tube formation of ECs (Seale Bar: 
500 pm). (D) The effects of L-NAME (200 pM), L-arginine (1 mM) and NaHS (100 pM) on 
angiogenesis (Scale Bar: 200 pm), n= 3-4 mice for each group, *P < 0.05 V5. control, ^P < 0.05 
vs. NaHS treated group. (E) The involvements of p38 MAPK and Akt in EC proliferation and 
tube formation. ECs were pre-treated with p38 MAPK inhibitor SB202190 (10 pM) and Akt 
inhibitor LY294002 (10 pM) for Ihr, and treated with NaHS (100 pM) for 30 min. Cells (2 x 
10"^ cells) were seeded on Martigel for 12 hrs to assist the formation of capillary-like structure 
(Scale Bar, 500 pm). (F) Cells were pre-treated with LY294002 or SB202190 and NaHS. The 
cells were cultured for 24 hrs for measurement of proliferation rate using BrdU. proliferation 
assay, n = 3-4, P < 0.05 vs. control. 
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Figure 2. 8. Schematic representation of proposed pathways of HiS-induced NO production 

and angiogenesis. 
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Figure 2. 9. (SI). The effect of H2S on NO production in primarily cultured mouse aortic 
ECs. (A) The effects of CSE-siRNA knockdown and NaHS treatment on NO production 
detected by Griess assay, n=3, *P < 0.05 vs. control, *P < 0.05 vs. NaHS treated group. (B) The 
effects of NaHS and L-NAME treatment on NO production detected by diaminofluorescein 
diacetate -based probes (DAF-FM), scale bars: 200 pm. 
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Figure 2. 10. (S2). The pro-proliferative effects of H2S and NO on primarily cultured mouse 
aortic ECs. (A) The effects of CSE siRNA, eNOS siRNA, and NaHS treatments on EC 
proliferation assessed using BrdU proliferation assay, n= 3, P < 0.05 control, P < 0.05 vs. 
NaHS treated group (B) The efficiency of CSE siRNA and eNOS siRNA in ECs detected by 
Western blot. 
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3.1. Abstract 

5'-nitrosylation or 5'-sulfhydration of endothelial nitric oxide synthase (eNOS) alters the 

conformation of eNOS proteins and the production of NO. The goal of the present study was to 

investigate the interaction of ^-nitrosylation and *S-sulfhydration of eNOS and its structural and 

functional consequences. Our data indicate that eNOS was endogenously ^'-sulfhydrated and that 

NaHS (a H2S donor) increased eNOS AS-sulfhydration in a time-dependent manner. L-cysteine (a 

substrate of CSE) treatment increased S'-sulfhydration of eNOS in aortic endothelial cells (ECs) 

isolated from wild type (WT) mice, but not that from cystathionine y-lyase knockout (CSE-KO) 

mice. The level of eNOS ^'-sulfhydration in aortic tissue from CSE-KO mice was lower than that 

from WT mice. GSNO (a NO donor) induced, but NaHS reduced, eNOS 5-nitrosylation. On the 

other hand, GSNO did not significantly alter eNOS S'-sulfhydration. Mutation of one cysteine 

residue of eNOS (Cys-443-eNOS) completely eliminated eNOS ^S-sulfhydration and partially 

decreased its ^'-nitrosylation. NaHS or VEGF induced phosphorylation of WT-eNOS and Cys- 

443-eNOS. Mutation of Ser-1179 of eNOS did not affect its ^S-sulfliydration but abolished its 

phosphorylation. While the dominant configuration of eNOS proteins from WT mice was dimer, 

it was monomer of eNOS from CSE-KO mice or Cys-443- eNOS. In the presence of GSNO, 

more monomers were found with WT-eNOS, which was reversed by the subsequent treatment 

with NaHS. Cys-443-eNOS manifested itself as monomers, which was not changed by either 

GSNO or NaHS treatments. Compared with WT ECs, the production of NO was decreased, but 

superoxide increased, in CSE-KO ECs. NaHS increased NO production from both WT and CSE- 

KO ECs. NaHS decreased superoxide productions in CSE-KO ECs, but not in WT ECs. In 

summary, eNOS vS-sulfhydration increases eNOS dimer coupling and NO bioavailability whereas 

eNOS ^'-nitrosylation generates opposite outcomes. ^S-sulfliydration and ^'-nitrosylation are 
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partially overlapping on the same cysteine residue. iS-sulfliydration inhibits *S'-nitrosylation of 

eNOS, but not the other way around. As such, H2S proves to be a critical gasotransmitter that 

coordinates multiple post-transcriptional modulations of given proteins. 

Keywords: iS-sulfhydration, iS-nitrosylation, Phosphorylation, CSE, H2S, eNOS, NO, eNOS 

uncoupling. 
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3. 2. Introduction 

Hydrogen sulfide (H2S) and nitric oxide (NO) are two gasotransmitters involved in the 

homeostatic regulation of vascular functions [2, 100]. In vascular walls, endothelial nitric oxide 

synthase (eNOS) is the predominant NOS isoform and cystathionine gamma-lyase (CSE) is 

mostly responsible for H2S production [2, 100]. Both NO and H2S function as endothelium- 

derived relaxing factors (EDRF) [19, 100, 265], and H2S has been recently characterized as an 

endothelium-derived hyperpolarizing factor (EDHF) [160]. Like numerous proteins, eNOS is 

subjected to posttranslational modifications such as phosphorylation and S'-nitrosylation [110]. 

Phosphorylation changes the structure of proteins due to transferring the negatively charged 

phosphates (P04^‘) by protein kinases onto hydroxyl groups (-OH) of the amino acid chains 

[266]. The phosphorylation cascades continue to function until protein phosphatases are 

activated and removed the phosphate group from the modified protein [266]. Protein S- 

nitrosylation occurs when NO covalently attaches to the thiol side chain (-SH) of cysteine 

residues to form 5'-nitrothiols (SNOs) [131, 132]. 5'-nitrosylation can be reversed by several de- 

nitrosylation enzymes like S-nitrosoglutathione reductase (GSNOR) and thioredoxin (Trx) 

[139]. GSNOR removes SNO through metabolism of GSNO to glutathione hydroxysulfenamide 

(GSNHOH) [138, 139]. The active site of Trx had two redox-active cysteine residues (Cys-Gly- 

Pro-Cys). Trx breaks disulfide bonds of its target protein and then binds with the protein [267]. 

One of the mechanisms by which H2S mediates its effects is via protein ^-sulfhydration, which is 

analogous to S'-nitrosylation by NO. In this process H2S covalently modifies cysteine residue in 

proteins to form hydropersulfides (-SSH) [140]. -S'-sulfhydration enhances cysteine activities, but 

^S-nitrosylation most likely inhibits the cysteine reactivity. It has been reported that 1 -2 % of 

proteins in liver total proteins were 6'-nitrosylated under physiological condition, while 10-25% 
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of proteins were ^'-sulfhydrated [140], H2S-induced 5'-sulfhydration of ATP-sensitive potassium 

(KATP) channels hyperpolarizes vascular smooth muscle cells and relaxes vascular tissues [141]. 

5-sulfhydration of intermediate (IKca) and small conductance (SKca) calcium-dependent 

potassium channels hyperpolarizes vascular ECs [142]. Moreover, 5-sulfhydration of kelch-like 

ECH-associated protein 1 attenuated oxidative stress and delays cellular senescence in mouse 

embryonic fibroblasts cells [145]. It is now recognized that both H2S and NO can modify protein 

cysteine residues. Yet, the interaction of ^-nitrosylation and iS-sulfhydration on the same cysteine 

residue under the same experimental conditions has not been elucidated adequately, let alone the 

structural and functional consequences of this interaction. 

In the present study, we found that the same cysteine residue of eNOS was both S- 

sulfhydrated and 5'-nitrosylated. The interaction of these two thiol-binding mechanisms 

determined the conformation and function of eNOS. Whether eNOS phosphorylation was 

affected by S'-sulfhydration and *S-nitrosylation was also investigated. 

3. 3. Material and Methods 

Cell culture and transfection 

In order to establish a cell line that stably expresses eNOS, control and mutant plasmids 

were transfected into HEK-293 cells (American Type Culture Collection, Manassas, VA) using 

Lipofectamine™ 2000 reagent as described by the manufacturer’s protocol (Invitrogen, 

Burlington, ON, Canada). Transfected cells were cultured in Dulbecco's Modified Eagle Medium 

(DMEM) containing 1.5 mg/mL geneticin (G418), which was supplemented with 10% (v/v) fetal 

bovine serum (FBS) and 1% (v/v) penicillin/streptomycin (Sigma, Oakville, Canada). After 35- 

45 days of transfection, individual geneticin resistant-colonies were picked with verified stable 
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expression of eNOS. The cells were cultured in DMEM containing 0.5 mg/mL G148 for further 

passaging in an atmosphere of 95% O2 and 5 % CO2. Human umbilical vein endothelial cells 

(HUVECs-926) were kindly provided by Dr. Cora-Jean S. Edgell the (University of North 

Carolina, USA) [248], and cultured with DMEM containing 10% (v/v) FBS and 1% (v/v) 

penicillin/streptomycin. 

Isolation of primary ECs from the aorta in CSE-KO and WT mice 

CSE-KO mice were homebred as previously described [19]. All animal experiments were 

conducted in compliance with the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85 23, revised 1996) and approved 

by the Animal Care Committee of Lakehead University, Canada. CSE-KO mice and WT 

littermates of 10-12 weeks were anesthetized. Abdomen aortae were perfused with 1 ml 

phosphate buffered saline (PBS) containing 1000 U/ml heparin (Sigma). The aortae were then 

dissected out and immersed in DMEM containing 1000 U/ml heparin and 20% (v/v) FBS. Fat 

and connective tissues were rapidly cleaned off, and the aortae were rapidly tighten up with 

surgical ligation clip at one end and filled with collagenase type II (2 mg/ml) dissolved in 

DMEM and then the other end tightened. The aortae were incubated for 45 minutes at 37°C, and 

then the aortic ECs were released by flushing the aortae with 5 ml DMEM. The collected 

outflow was centrifuged at 1,200 x g for 5 minutes. The supernatant was discarded, and cell 

pellet obtained after centrifugation was resuspended in 2 mL DMEM with 10% (v/v) FBS and 

transferred to a 35 mm collagen type I coated-plates (Invitrogen). After 2 hours the medium was 

removed, cells were washed with PBS, and new DMEM was added containing 20% (v/v) FBS, 

100 U/ml penicillin-G, 100 pg/ml streptomycin, 2 mM L-glutamine, 25 mM HEPES (pH 7.4), 
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100 |ig/ml heparin, and 100 pg/ml EC growth supplement [249, 268]. The identity of aortic ECs 

was confirmed by the presence of endothelium-specific markers CD31 (Santa Cruz 

Biotechnology, Santa Cruz, CA) and eNOS (Cell Signaling Technologies, Beverly, MA, USA), 

and the absence of smooth muscle cell marker a-actin (Santa Cruz Biotechnology) by Western 

blotting (Figure 3. SI). Culture medium was changed every 2 days, and cultured cells of 

passages 3-7 were used. 

Measurement of NO in ECs 

Total nitrate/nitrite concentrations were measured by conversion of nitrate to nitrite. The 

cells were centrifuged, and supernatant were incubated with nitrate reductase (10 U/ml) and 

nicotinamide adenine dinucleotide 2'-phosphate (NADPH) (5 mM) for 1 hour at 37°C. After the 

incubation, 200 pL of the cell culture medium were tested by adding 100 pL of 1% 

sulfanilamide (solution A) for 10 minutes and then adding 100 pL of 0.3% N-1- 

naphthylethylenediamine dihydrochloride (solution B) for another 10 minutes at room 

temperature in darkness. Nitrite was quantified by spectrophotometer at 540 nm using sodium 

nitrite as standard (Promega, Madison, WI, USA). 

The NO-specific fluorophore diaminofluorescein-DAF-FM probe (Invitrogen, 

Burlington, ON, Canada) was used to detect NO production. Equal number of cells was 

incubated with 5 pM DAF-FM for 30 minutes at 37°C in darkness. After the incubation, cells 

were washed to remove excess probe, replaced with fresh medium, and incubated for additional 

10 minutes before the observation under a fluorescent microscope (Olympus 1X71, Olympus 

America, PA, USA). The DAF-FM loaded cells were also assayed using a fluorescence 
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microplate reader (FLUOstar OPTIMA, BMC Lab teeh, Ortenberg, Germany) with excitation 

and emission maxima at 495 and 515 nm, respectively [269]. 

Measurements of superoxide in ECs 

Dihydroethidium (DHE) is membrane permeable and reacts with superoxide (O2 ) to 

form ethidium, which in turn intercalates with DNA to produce nuclear fluoreseenee. Aortic ECs 

from WT and CSE-KO mice (passage 3-5) were used in these experiments. The tested eells were 

treated with DHE (10 pmol/L) (Sigma) for 30 minutes at 37°C in darkness. The production of 

superoxide was detected using a fluorescence mieroplate reader (FLUOstar OPTIMA) with an 

exeitation wavelength of 485 nm and emission of 620 nm [223]. 

Site-directed mutagenesis 

Plasmids pcDNA3.1 containing wild-type eNOS gene and Ser-1179-eNOS mutant (serine 

replaeed with alanine) were purchased from Addgene (Cambridge, MA) [109]. The eNOS 

mutant of eysteine replacement with glutamine (Cys-443-eNOS) was generated using 

QuickChange™ site-directed mutagenesis kit (Stratagene, La Jolla, CA) [145]. The primer 

sequences of eNOS gene (GenBank # M89952.1) were the following (Forward) 5’- 

AGGCC AGGGGGGGCC AGCCCGCCGACTGGG-3 ’ and (Reverse) 5 ’ - 

GCCCAGTCGGCGGGCTGGCCCCCCCTGGCCT-3’. Briefly, the PCR reaetions eontained 10 

ng templates of DNA, 125 ng of each of the primers, 200 pM of each dNTP, 1 x Pfu DNA 

polymerase reaction buffer and 2.5 U of DNA polymerase (Pfii). The PCR cycling parameters 

used for the reaction were one cycle at 95 °C for 1 minute, further 18 cycles of 95 °C for 50 
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seconds each, one cycle at 60°C for 50 seconds, one cycle at 68°C for 10 minutes, and extension 

at 68°C for 7 minutes. Positive clones of eNOS were identified by electrophoresis on 1% (w/v) 

agarose gel. The plasmid DNA templates from positive clones of eNOS were prepared using the 

QIAprep spin miniprep kit (Qiagen, Toronto, Canada). DNA sequencing was performed to 

screen the correct mutation of eNOS at the Paleo-DNA Laboratory at the Lakehead University, 

ON, Canada. 

*S'-sulfhydration and iy-nitrosylation assays 

The cells or tissues were collected and washed twice with ice-cold PBS and then 

suspended in 250 pi HEN buffer (250 mM HEPES-NaOH, 1 mM EDTA, and 0.1 mM 

neocuproine). For iS-sulfhydration detection, 100 pM deferoxamine (DEO) was added. 

Cell suspensions were sonicated for three times (5-10 second/each) on ice using a cell sonicator 

(Sonic Dismemrator Model 100, Fisher Scientific). The samples were centrifuged at 14,000 x g 

for 15 minutes at 4°C, and then the supernatants were collected. Four volumes of the blocking 

buffer (HEN buffer, 2.5% SDS and 20 mM 5'-methyl methanethiosulfonate (MMTS)) were 

added for 20 minutes at 50®C with shaking in the darkness to block the free thiol (-SH). The pre- 

chilled acetone was added for 20 minutes at -20°C to stop the MMTS reduction and precipitate 

the proteins. The proteins were centrifuged at 2,000 g at 4°C for 10 minutes, and protein pellets 

were collected and resuspended in HEN buffer containing 1% SDS, 40 mM biotin-HPDP, 1 mM 

ascorbic acid, and then incubated for 3 hours at 25°C in darkness. For 5'-sulfhydration detection, 

no ascorbic acid was added at this step [140, 145]. The streptavidin biotin-binding protein beads 

were washed 3 times with PBS and incubated with the proteins for 1 hour at 25°C. After the 

incubation, the beads were washed with PBS for 5 times and spun down at 5,000 x g for 15 
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second. The biotinylated proteins were eluted from the beads by re-suspending the beads into 

loading sample buffer (3% SDS, 1% P-mercaptoethanol, 62.5 mM Tris-base and 0.005% 

bromophenol blue) at 37°C for 20 minutes with shaking. The protein samples were finally heated 

at 95°C for 5 minutes and subjected to Western blotting analysis to detect the 5'-nitrosylated or S- 

sulfhydrated proteins [140, 145, 270]. Densitometric quantification was performed using Alpha 

Digi Doctor Software (Richardson, TX, USA) and NfH image software- Image J. 5'-nitrosylation 

and 5'-sulfhydration levels were defined as the ratio between the 5'-sulfhydrated or ^-nitrosylated 

eNOS and their total forms and expressed as the percentage of the controls. 

Western blotting 

Tested cells or aortic tissues were collected using cold PBS and incubated in a lysis 

buffer containing 0.5 M EDTA, 1 M Tris-Cl (pH 7.4), 0.3 M sucrose, and a mixture of protease 

inhibitors. The cell extracts were sonicated three times (5-10 second/each) on ice using a cell 

sonicator (Sonic Dismemrator Model 100, Fisher Scientific). Cellular extracts were separated by 

centrifugation at 14,000 x g for 15 minutes at 4°C. The supernatants were collected, and protein 

concentrations were measured using Bradford assay. Equal amounts of proteins were loaded on 

7.5 % sodium dodecyl sulfate-polyacrylamide gels and run at 120 v for 1.5 hours. Gels were 

transferred to nitrocellulose membranes (Pall Corporation, Pensacola, FL, USA) at constant 

current of 200 mA for 3 hours using BioRad transfer system (Bio-Rad Laboratories, Inc. CA, 

USA). The membranes were incubated with primary antibodies at 4°C overnight. The dilution 

ratios for the antibodies were 1:1000 for anti-phospho-eNOS (Ser-1179) (Cell Signaling 

Technologies), anti-eNOS (Cell Signaling Technologies), anti-CSE (Proteintech Group, Chicago, 

IL, USA) and anti-PEC AM (CD31) (Santa Cruz Biotechnology); and 1:10000 for anti-a-actin 
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(Santa Cruz Biotechnology) and anti-P-actin antibodies (Sigma). Membranes were then 

incubated with appropriate conjugated secondary antibody for 2 hours at room temperature. 

After the incubation, the membranes were washed 3 times with 1 x PBS and 1% Tween for 30 

minutes. The membranes were visualized using enhanced chemiluminescence western blotting 

system (GE Healthcare, Piscataway, NJ, USA). 

Determination of eNOS uncoupling 

The monomer and dimer forms of eNOS (M-eNOS and D-eNOS) were detected by using 

low-temperature polyacrylamide gel electrophoresis (LT-PAGE) and Western blotting [223]. 

Briefly, eNOS protein extracts were prepared from aortae or cultured cells on ice. Equal amounts 

of the isolated proteins were mixed with sample buffer (62.5 mM Tris-HCl (pH 6.8), 40% 

glycerol, 0.01% bromophenol blue) and kept on ice. The electrophoresis was performed 

at constant current of 35 mA at 4°C for 4 hours. To preserve dimer, all gels and buffers were 

prepared without sodium dodecyl sulfate-polyacrylamide and preequilibrated to 4°C prior to 

electrophoresis, and the buffer tank placed in an ice bath during electrophoresis to maintain gel 

temperature below 15°C. The gels were transferred to the nitrocellulose membrane, and eNOS 

protein expression analyzed by Western blotting using anti-eNOS antibody (Cell Signaling 

Technologies) for both dimer and monomer at 1:1000 dilutions. 

Statistical analysis 

Statistical comparisons were made using Student’s t or two-way ANOVA followed by 

Tukey post hoc tests as applicable using Origin 8 software (OriginLab Corporation, MA, USA). 

Significant level was set at P< 0.05. 
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3. 4. Results 

iS'-sulfhydration of eNOS 

iS'-sulfhydration and 5-nitrosylation eNOS proteins in aortic tissues of WT mice were 

detected under basal conditions (Figure 3. lA). Treatment of WT aortic tissue lysate with 100 

pM NaHS increased eNOS 5'-sulfhydration, started from 15 minutes and lasted up to 2.5 hours 

(Figure 3. lA). GSNO at 100 pM (a NO donor) maximally increased eNOS ^-nitrosylation 

during the first 15 min and then this increase declined to the basal level during the following 150 

minutes (Figure 3. lA). The level of eNOS 5'-sulfhydration was significantly lower in aortic 

tissues from CSE-KO mice than that from WT mice (Figure 3. IB). Treatment with L-cysteine (a 

CSE substrate) (0.1 - 10 mM) for 1 hour markedly increased S'-sulfhydration of eNOS in aortic 

ECs isolated from WT mice in a concentration dependent manner (Figure 3. 1C). In contrast, L- 

cysteine failed to elicit ^-sulfhydration of eNOS in aortic ECs isolated from CSE-KO mice 

(Figure 3. 1C). 

The reciprocal effects of H2S and NO on eNOS N-nitrosylation and N-sulfhydration 

Treatment of aortic lysates with GSNO (200 pM) for 30 minutes increased eNOS S- 

nitrosylation (Figure 3. 2A). Treatment with NaHS (100 pM) for 30 minutes had no effect on 

eNOS 5-nitrosylation (Figure 3. 2A). NaHS (100 pM) co-treatment for 30 minutes abolished the 

effect of the proceeding GSNO treatment on eNOS 5-nitrosylation (Figure 3. 2A). NaHS (100 

pM) treatment, but not GSNO (200 pM), of aortic lysates for 30 minutes increased S- 

sulfhydration (Figure 3. 2B). GSNO (200 pM) co-treatment for 30 minutes of aortic lysates did 

not change the effect of the proceeding NaHS treatment on eNOS -S'-sulfhydration (Figure 3. 2B). 
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The roles of Cys-443 and Ser-1179 in eNOS 5-sulfhydration and S-nitrosylation 

Treatment of HEK-293 cell lysates with NaHS (100 |LIM) increased ^'-sulfhydration of the 

heterologously expressed WT-eNOS (Figure 3. 3A). This NaHS treatment, however, failed 

completely to induce ^'-sulfhydration of Cys-443-eNOS (Figure 3. 3A). The phosphorylation of 

eNOS was abolished after Ser-1179 mutation to alanine (Figure 3. 3B). Treatment of cell lysates 

with GSNO (200 pM) increased iS-nitrosylation of WT-eNOS and Cys-443-eNOS (Figure 3. 

3C). Treatment of cell lysates with NaHS (100 pM) induced ^-sulfhydration of Ser-1179-eNOS 

(Figure 3. 3D). Basal phosphorylation level was the same for Cys-443-eNOS and WT-eNOS 

(Figure 3. 3F). NaHS (100 pM) or VFGF (20 ng/ml) treatments increased the phosphorylation of 

both WT-eNOS and Cys-443-eNOS (Figure 3. 3F), GSNO (200 pM) and NaHS treatments had 

no effect on the phosphorylation of Ser-1179-eNOS (Figure 3. 3F). 

The effect of HiS on eNOS coupling in vascular tissues 

Next, we determined the effects of NaHS and GSNO co-treatment on the quaternary 

structure (monomer and dimer) of eNOS proteins. Dimeric and monomeric forms of eNOS were 

separated by low temperature-PAGF and visualized by immunoblotting with anti-eNOS 

antibody. The amounts of eNOS dimers presented in aortic tissues from WT mice was around 16 

time of the monomers, but eNOS dimers in CSF-KO aortae tissue was only around 0.2 of its 

monomer level (Figure 3. 4A). L-NAMF (200 pM) treatment of the isolated mouse aorta FCs for 

1 hour did not alter the dimer/monomer ratio of eNOS (Figure 3. 4B). Treatment of FCs with 

GSNO (200 pM) alone or with L-NAMF decrease the eNOS dimers/monomer ratio (Figure 3. 

4B). GSNO (200 pM) treatment of the isolated FCs for 30 minutes destabilized, but NaHS (100 

pM) treatment for 30 minutes stabilized, eNOS dimers (Figure 3. 4B). Importantly, NaHS (100 
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|iM) co-treatment for 30 minutes reversed the proceeding effect of GSNO treatment on eNOS 

dimer (Figure 3. 4B). The expression of total eNOS was not changed by GSNO, NaHS or L- 

NAME treatments when eompared with the eontrols with no treatments (Figure 3. 4B). 

To determine whether the sulfhydrated eysteine was required for the eNOS dimer 

assembly we examined the dimer/monomer ratio of Cys-443-eNOS in HEK cells. Cys-443- 

eNOS migrated as monomers in LT-PAGE, whereas the heterologously expressed WT-eNOS 

manifested itself as both monomers and dimers. NaHS (100 pM) treatment of HEK-293 eells 

stabilized eNOS dimers, but GSNO (200 pM) induced more eNOS monomers, in WT-eNOS 

(Figure 3. 5A). NaHS (100 pM) treatment for 30 minutes reversed the effect of the proeeeding 

30 minutes- GSNO treatment. Neither NaHS (100 pM) nor GSNO (200 pM) eaused dimer 

formation of Cys-443-eNOS (Figure 3. 5A). 

NaHS (100 pM) treatment increased NO production from WT-eNOS-expressed HEK- 

293 cells but not from Cys-443-eNOS expressed cells. GSNO (200 pM) increased, but L-NAME 

(200 pM) decreased NO produetion from either WT-eNOS or Cys-443-eNOS (Figure 3. 5B). 

NaHS co-treatment enhanced the effect of the proceeding GSNO treatment on NO production 

from either WT-eNOS or Cys-443-eNOS. L-NAME pre-treatment for 1 hr did not alter GNSO- 

induced NO production in these HEK cells (Figure 4. 5B). 

The effect of H2S on superoxide and NO in aortic ECs 

Aortic ECs isolated from CSE-KO mice (CSE-KO-ECs) showed higher levels of 

superoxide and lower levels of NO compared to those from WT mice (Figure 3. 6). NaHS (100 

pM) treatment for 1 hour deereased the levels of superoxide in CSE-KO-ECs but not in WT- 
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ECs. GSNO (200 jiM) treatment for 1 hour increased the formation of superoxide in WT-ECs 

and CSE-KO-ECs (Figure 3. 6A). NaHS (100 pM) treatment for 1 hour did not change the effect 

of the preceding GSNO treatment on superoxide levels (Figure 3. 6A). Both NaHS (100 pM, 30 

minutes) and GSNO (200 pM, 1 hour) treatments increased the levels of NO in aortic ECs from 

CSE-KO and WT mice. NaHS (100 pM) treatment for 30 minutes increased the effect of the 

preceding GSNO treatment on NO levels in CSE-KO-ECs (Figure 3. 6B). 

3. 5. Discussion 

^'-nitrosylation and <S'-sulfhydration are two posttranslational modification of cysteines, 

playing important roles in cellular regulation and signaling in many organisms [136]. Two 

previous and important studies have shown that the same cysteine at GAPDH and NF-kappaB 

proteins can be 5*-nitrosylated and »S-sulfhydrated [13, 36]. However, 5'-sulfhydration and S- 

nitrosylation of these same proteins were conducted in separate experiments, not at the same 

time under the same conditions. How these two posttranslational modifications interact with each 

other was not addressed either. An initial study showed that ^'-nitrosylation of GAPDH at Cys- 

150 abolished its catalytic activity [38]. A study 5 years later showed that 5'-sulfhydration of 

GAPDH at Cys-150 augmented its activity [140]. ^-nitrosylation of p65 at Cys-38 residue 

inhibited NF-kappaB-dependent gene transcription [271] but 5'-sulfhydration of the same 

decrease cell apoptosis [143]. Under the same experimental conditions and at the same time, we 

found that 5'-sulfhydration and 5'-nitrosylation interact with each other by competitively 

modifying the same cysteine residue of eNOS. More importantly, we for the first time 

demonstrated that 5-sulfhydration reverses 5'-nitrosylation of eNOS but S'-nitrosylation has no 

effect on 5-sulfhydration. S'-nitrosylation occurs faster but is less stable than 5'-sulfhydration of 

eNOS as evidenced in the following, i ) The significant increase in the *S-nitrosylation signal 
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started from 15 minutes whereas 5'-sulfhydration signal started from 30 minutes, ii) The S- 

nitrosylation signal reduce to the basal level after 1 hour treatment whereas ^-sulfhydration 

signal stays until 2.5 hours. Hi) The co-treatment with NaHS to induced .S-sulfhydration, reduced 

5'-nitrosylation. iv) Co-treatment with GSNO to induced »S-nitrosylation, did not reduced S- 

sulfhydration. The differences between 5'-sulfhydration and ^-nitrosylation can be explained by 

the nature of the chemical reaction between H2S and NO and their target thiols [272]. The 

chemical reaction for 5'-nitrosylation (-S-N=0) appears to be kinetically favored reaction 

whereas ^-sulfhydration (S-S-H) appears to be thermodynamically favored. The kinetically 

favored reaction usually happens faster, but the final product is not stable. Whereas, 

thermodynamically favored reaction happens slower and more stable. Likewise, we have found 

that 5'-sulfhydration reverses 5'-nitrosylation in eNOS protein, but 5'-nitrosylation has no effect on 

S-sulfhydration. The chemical strength of the ,S-nitrosylated bond (S-NO) is weaker (12-20 

kcal/mol) compared to 5'-sulfhydrated bond (S-SH) (60 kcal/mole), this clearly explains why S- 

nitrosylated bond in eNOS can break easier compared to iS-sulfhydrated one. In addition, the 

possible explanation why ^-sulfhydration reverses 5'-nitrosylation, is that H2S produces the HS' 

and this can turn NO-thiol into good leaving group to produce thiosulfide bond as shown in 

equation: HS' + RS-NO NO + RS-SH. However, 5'-nitrosylation cannot do the same (reveres) 

for S'-sulfhydration because NO cannot break the strong S-S bond. Therefore, our results suggest 

that H2S maintain the extent of eNOS 5'-nitrosylation by a reversible modification via S- 

sulfhydration, associated with enzyme activation. 

The interaction between 5'-sulfhydration and other posttranslational modification in 

eNOS protein has not been explored previously. In our study, we found that H2S increased the 

phosphorylation of WT-eNOS and Cys-443-eNOS, while H2S failed to ^-sulfhydrate Cys-443- 
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eNOS, implying that eNOS ^S-sulfliydration is not directly linked to eNOS phosphorylation. The 

phosphorylation of eNOS at Ser-1179, which is located within the reductase domain, increases 

eNOS activity by enhancing reductase activity and calcium sensitivity [53, 100]. In addition to 

inhibition of calmodulin dissociation from eNOS and enhancement of the internal rate of eNOS 

electron transfer [115]. The eNOS phosphorylation of Ser-1179 results in a negative charge 

inducing a conformational change that shifts the entire FMN domain to allow enhanced electron 

transfer through the reductase domain, activating eNOS [95]. Here we found that eNOS mutation 

at Ser-1179 can still be 5'-sulfhydrated (Figure. 3. 3D). Although, Ser-1179-eNOS can no longer 

be phosphorylated (Figure. 3. 3B). Thus our data indicate that phosphorylation of eNOS at Ser- 

1179 would not be necessary linked to 5'-sulfhydration. 

The functional quaternary structure of eNOS proteins is a dimer which can produce NO 

[53]. The uncoupling of eNOS into monomers has been found in many forms of endothelial 

dysfunction such as hypertension [273], type II diabetes [274], and age-related erectile 

dysfunction [275]. Uncoupling of eNOS results in a higher superoxide and lower NO 

bioavailability [276]. A previous study showed that ^-nitrosylation decreased dimer levels of 

eNOS from bovine ECs [135]. Our present study for the first time demonstrated the impact of 

H2S and 5'-sulfhydration on eNOS dimer stability. The aortic tissue isolated from CSE-KO mice 

has less dimer/monomer ratio of eNOS than those from WT mice. This tells that the lack of 

formation of eNOS dimer formation possibly due to CSE-defiaency, which is further 

substantiated by the effect of exogenous H2S treatment to induced 5'-sulfhydration. GSNO 

induced eNOS monomer and H2S co-treatment restored the eNOS dimer. GSNO induced more 

eNOS monomer which is consistent with previous reports [135]. We speculate that H2S-induced 

iS-sulfhydration and reverses 5'-nitrosylation to stabilize the eNOS dimer. One of the functional 
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consequences of H2S-enhanced eNOS dimer stability is the decreased NO level in CSE-KO-ECs 

(Fig. 6) where both endogenous H2S level and eNOS dimer level are low (Fig. 4A). NaHS 

treatment of WT-ECs increased the levels of eNOS dimer (Fig. 4B) and NO (Fig. 6C), providing 

additional evidence to link 5-sulfhydration and dimer eoupling of eNOS to NO produetion. The 

bioavailability of NO is dependent on both of its production and destruction [53]. We found that 

the levels of superoxide were higher in CSE-KO-ECs than in WT-ECs, which were suppressed 

by NaHS treatment. The underlying mechanisms for these effects of H2S could be related to S- 

sulfhydration and stabilization of eNOS. For NO to be produced, the electrons donated by 

NADPH must move to the reductase domain of one monomer of eNOS and proceed one by one 

via FAD and FMN redox carriers to the heme group in the oxygenase domain of another 

monomer of eNOS [100]. In the oxygenase domain, electrons interact with the heme iron and 

BH4 at the aetive site to catalyse the reaction of oxygen with L-arginine to generate citrulline and 

NO [100]. However, when the dimer of NOS is uncoupled ferrous-dioxygen complex is 

dissociated. As a result superoxide is generated from the oxygenase domain instead of NO 

[100]. The mechanisms by which S'-nitrosylation or »S-sulfhydration modulate eNOS dimer are 

not clear. However, one study has found that NO can destroy the zinc tetrathiolate bond at the 

dimer interface of eNOS upon ^S-nitrosylation [135]. These authors found that there was an 

increase in release of zinc when eNOS was exposed to NO [135]. Whereas, after exposure of 

eNOS to TPEN, which is a membrane-permeable zinc chelator and decreased the intracellular 

level of zinc, the eNOS dimers converted into monomers [101]. However, the effect of TPEN 

was partially blocked by exogenous zinc exposure, but not by Mg or Cu [101]. The 

inactivation of uncoupling or monomeric form of eNOS happens because the prerequisite 

electron transfer between two monomers of eNOS cannot occur [135]. Here we propose that 
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H2S-induces 5-sulfhydration stabilizes eNOS dimers by preventing ^S-nitrosylation leading to 

dimerization (Figure 3.7). 

The competitive interaction between ^S-sulfliydration and ^-nitrosylation of eNOS was 

confirmed by the use of Cys-443-eNOS in our study. Not all cysteine residues in proteins are 

accessible to posttranslational modification [277, 278]. The presence of metal ions (Mg^^ or 

Ca^^), local pH, and the acid base motifs affect thiol reactivity to iS-nitrosylation [131, 279-281] 

and would equally affect S'-sulfhydration. There are 28 cysteine residues in eNOS protein, some 

of these cysteine residues located in the reductase domain and others located in the oxygenase 

domain. The location of Cys-443 at eNOS is in between acid (glutamine) and base (arginine) 

amino acids and is the last residue close to the C terminus of oxygenase domain in the dimer 

interface of eNOS, this might serve as good target for 5-sulfhydration. In our study, a detectable 

increase in ^-nitrosylation was seen after GSNO treatment in WT-eNOS, however, this level 

were decreased after Cys-443 mutated to glutamine , but not completely abolished, implying that 

Cys-443 is only one of multiple cysteine residues that can be ^’-nitrosylated. In contrast, mutation 

at Cys-443 completely eliminated *S-sulfhydration of eNOS, indicating that iS-sulfhydration of 

eNOS occurs only at Cys-443. 

In summary, S'-sulfhydration and 5’-nitrosylation interact with each other by competitively 

modifying the same cysteine residue of eNOS. H2S increases eNOS S'-sulfhydration and 

decreases 5'-nitrosylation, facilitates eNOS dimer coupling, and increases NO bioavailability. S- 

sulfhydration reverses 5'-nitrosylation of eNOS, but ^S'-nitrosylation and phosphorylation of eNOS 

has no effect on S'-sulfhydration. Therefore, curbing 5-nitrosylation and stabling eNOS dimer 

may represent an important regulatory mechanism for the molecular and cellular effects of H2S 

in the cardiovascular system as well as other systems. 
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Figure 3. 1. 5-sulfhydration and S'-nitrosylation of eNOS from isolated aortic ECs or aortic 
tissues. (A) EC lysates were treated with NaHS (100 |aM), or GSNO (200 )iM) for 15 to 150 
minutes and subjected to 5'-sulfhydration or ^-nitrosylation assay. n=4, P< 0.05 vs. control. (B) 
^-sulfhydration of aortic eNOS from CSE-KO and WT mice. n=3. Each individual experiment 
was from 20 CSE-KO and WT mice, *P< 0.05 vs. WT mice. (C) The effect of L-cysteine (0.1 - 
10 mM) treatment on eNOS 5-sulfhydration in primarily cultured aortic ECs isolated from WT 
and CSE-KO mice. The representative Western blotting was taken from 3 independent 
experiments. SSH-eNOS represents 5-sulfhydrated eNOS. SNO-eNOS represent 5-nitrosylated 
eNOS. eNOS modification before the addition of NaHS or GSNO (time 0) is defined as 100%. 
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Figure 3. 2. The effects of NO and HiS on S'-sulfhydration and 5-nitrosylation. Aortic ECs 
lysates were treated with GSNO (200 |iM) alone or followed by NaHS (100 |uM) for 30 minutes 
at 37°C and then subjected to ^'-nitrosylation assay (A), or ^'-sulfhydration assay (B). n=4 for 
each experiment, *P < 0.05 v.s'. control, V < 0.05 vs. GSNO treated group. SNO-eNOS represent 
^-nitrosylated eNOS. SSH-eNOS represents ^S-sulfliydrated eNOS. The 5-nitrosylation or S- 
sulfhydration of controls without the addition of GSNO or NaHS is defined as 100%. 
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Figure 3. 3. The effects of Cys-443 and Ser-1179 mutations on eNOS 5-sulfhydration and S- 
nitrosylation. HEK-293 cells were transfected with plasmids encoding wild-type eNOS (WT- 
eNOS), Cys-443-eNOS, or Ser-1179-eNOS. The cell lysates were collected and treated for 30 
minutes at 37°C. (A) The effects of NaHS (100 pM) treatment on 5-sulfhydration of WT-eNOS 
and Cys-443-eNOS. (B) The effect of NaHS (100 pM) treatment on eNOS phosphorylation in 
Ser-1179-eNOS mutant. (C) The effects of GSNO (200 pM) treatment on ^'-nitrosylation of WT- 
eNOS and Cys-443-eNOS, n=4 for each experiment, *P < 0.05 vs. control. (D) The effects of 
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NaHS (100 fxM) treatment on ^'-sulfhydration of WT-eNOS and Ser-1179-eNOS. n=3 for each 
experiment, *P < 0.05 V5. control. (E) The effects of NaHS (100 pM), GSNO (200 pM) and 
VEGF (20 ng/ml) on phosphorylation of WT-eNOS and Cys-443-eNOS. Phospho-speciflc eNOS 
(P-eNOS) was detected using Western blot analysis against the level of total eNOS n=3-4 for 
each experiment, P< 0.05 v.y. controls (HEK-293 transfection with pcDNA3.1 
empty plasmid (Mock)). SNO-eNOS represent 5'-nitrosylated eNOS. SSH-eNOS represents S- 
sulfhydrated eNOS. The 5'-sulfhydration or 5'-nitrosylation before the addition of NaHS or 
GSNO is defined as 100%. 
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Figure 3. 4. The effect of H2S on the quaternary structure (monomer and dimer) of eNOS 
proteins. (A) The relative abundance levels of eNOS monomers and dimers in aortic tissues 
from WT and CSE-KO mice. n=4, but each individual experiment was from 4 WT or CSE-KO 
mice. *P< 0.05 v.y. WT mice. (B) The effects of NaHS (100 pM), GSNO (200 pM) and L-NAME 
(200 pM) treatments on eNOS dimer stability in primarily cultured aortic ECs isolated from WT 
mice. n=3, P < 0.05 vs. control. < 0.05 V.?. NaHS treated group. D-eNOS represent the 
dimeric form of eNOS. M-eNOS represent the monomeric form of eNOS. 
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Figure 3. 5. Dimer stability of, and NO production from, wide-type (WT) and Cys-443- 
eNOS heterologously expressed in HEK-293 cells. The cells were treated under different 
conditions for 30 minutes at 37°C. (A) Dimer stability of WT-eNOS and Cys-443-eNOS, shown 
as the representative results from a total of 3 experiments, detected using LT-PAGE. D-eNOS 
represent the dimeric form of eNOS. M-eNOS represents the monomeric form of eNOS. (B) NO 
productions of WT-eNOS and Cys-443-eNOS detected with Griess assay. n=3-4, *P < 0.05 vs. 
WT-eNOS control. 

89 



A 

B 

NaHS . + + . . + + . 

GSNO - . + + . _ + + 

Figure 3. 6. The effects of H2S and NO on superoxide and NO levels in aortic ECs isolated 
from WT and CSE-KO mice. WT-EC and CSE-KO-ECs were treated with NaHS (100 }iM), 
GSNO (200 pM) or combined for 1 hour at 37°C, and then the levels of superoxide (A) and NO 
(B) were detected. n=4-5, *P < 0.05 v.^. WT-EC without any treatment. < 0.05 vs. NaHS and 
GSNO treated group. 

90 



eNOS-coupling 

eNOS 

r-d I J i J-i 

Improve endothelial function 

L-arginine 
i 

eNOS 

eNOS-SNO 

Cys-443-SNO 

A- eNOS-uncoupiing 

-AA3 

eNOS 

o,t 

Endothelial dysfunction 

Figure 3. 7. Schematic model for the proposed H2S - NO interactions on the cysteine 
modification. NO induces 5'-nitrosylation of eNOS by modifying several cysteine residues, and 
uncouples eNOS dimer. The uncoupling of eNOS dimers will produce less NO and more 
superoxide in ECs. Whereas H2S tS-sulfliydrates eNOS at Cys-443 and stabilizes eNOS dimers. 
This will lead to more NO production and lower superoxide level, which may improve 
endothelial function. 
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Figure 3. 8. (SI). The identification of primarily cultured aortic endothelial cells (ECs) 
isolated from WT mice and CSE-KO mice. (A) CSE protein expression detected using 
Western blot in WT-ECs and CSE-KO ECs. n=5. (B) The expression of EC markers (CD31 and 
eNOS) and SMC marker (a-actin), n=4. (C) The expression of EC markers (CD31 and eNOS) in 
different passages (P4 - P7) of primary isolated aortic ECs. n=3. P-actin was used as a loading 
control in all studies. 
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CHAPTER 4 

This chapter summarizes my contribution in a paper which has been published under the title: 

Hydrogen sulfide is an endogenous stimulator of angiogenesis 

Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, 
Branski LK, Herndon DN, Wang R, Szabo C. 

This chapter has been published in PNAS. 2009; 106(51):21972-7. 
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4. 1. Introduction 

Angiogenesis, the development of new capillaries form pre-existing vessels, requires the 

coordinate activation of ECs, which migrate and proliferate in response to growth factors to form 

functional vessels [282]. The endothelium-derived NO is a well known mediator of angiogenesis. 

Vascular endothelial growth factor (VEGF) is a signal protein produced by cells that stimulates 

angiogenesis. VEGF stimulates the release of NO from ECs and upregulates the expression of 

eNOS [283, 284]. In contrast, when the NO bioactivity is reduced the angiogenesis is attenuated 

as well. Dysregulated angiogenesis contributes to tumor growth, psoriasis, arthritis, neuro- 

degeneration, wound healing defects and hair loss [282]. In the vascular wall, ECs is both 

targets and sources of H2S. However, the role of endogenous H2S in angiogenesis is not known. 

The goal of the current study was to investigate the role of endogenous H2S in angiogenesis and 

wound healing using CSE- KO mice model. 

4. 2. Materials and methods 

In vitro angiogenesis assay 

CSE-KO was generated as previously described [19]. Aorta were isolated from young (7- 

8 week old) CSE-KO and WT mice. To prepare aortic segments, mice were euthanized by CO2 

and the aorta were removed and rinsed in DMEM media (100 U/ml penicillin streptomycin and 

0.25 ug/ml amphotericin B). The isolated aortae were cleaned of adipose tissue, rinsed three 

times and cut into segments around 3mm in length, care being taken while cleaning and cutting 

to avoid damage of endothelial lining segments. Using forceps one aortic segment was placed 

into the center of 48-multiwell plates containing 400 ul of bovine fibrinogen solution (3 mg/ml in 

Ml99 medium; Sigma). Gelation of the fibrinogen was induced using bovine thrombin (1.5 
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U/ml; Sigma). After 20 min, 400 ul of DMEM was added with antibiotics (100 U/ml penicillin, 

100 ug/ml streptomycin, 0.25 ug/ml amphotericin B and 10% PCS) in each well. After 24 hours, 

the medium was removed, the gels were washed and VEGF (20 ng/ml) was added for another 2 

days. The number of new microvessels was quantified by visual count under inverted microscope 

with bright field on the third day [285]. 

Wound healing assay 

The second generation of 7-8 week old male CSE-KO offspring and WT were 

anaesthetized by intraperitoneal injection of ketamine HCl and xylazine. The dorsum of each 

mouse was shaved and sterilized by alcohol swabs. A ~100-mm scald wound (approximately 

5% total body-surface area) was created on the dorsal surface. In brief, a heated metal stick with 

100-mm^ surface immersed in constant temperature 90°C water bath was layed on the dorsum of 

mouse for 10 second. This procedure created a second-degree bum [286, 287]. In this model, 

only the epidermis and a superficial portion of the skin appendages are injured, and the 

interwoven pattern of collagen fibers in most of the dermis are retained [287]. Once mice 

recovered from anesthesia, they were placed back to the cage and maintained under standard 

conditions in the animal facility. Every three day after wounding, a mler was aligned next to the 

wound to allow direct macroscopic measurement to the wound area and digital photographs were 

taken. All wound pictures were standardized according to a measurement mler included in the 

images using Adobe Photoshop software 6.0 (Adobe Systems Inc, San Jose, CA). The wound 

surface area quantification analysis was performed by using AlphaEase EC (version 5.0.1). 

Wounds are considered healed when the wound area is completely closed (usually in 3-weeks), 

the epithelial covering is restored, and the surface of the wound is smooth, homogenous in color, 

without residual defects [288]. All animal experiments were conducted in accordance with 
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approved protocols by the Animal Health Care Committees of Lakehead University, Canada. All 

animals were maintained on standard rodent chow, and had free access to food and water. 

H2S measurement 

H2S production was measured via the methylene blue assay [166]. Briefly, 200pl of 

culture media from each treatment were collected, and added to microcentrifuge tubes containing 

zinc acetate (1% w/v, 600 pi) to trap H2S. After 5 minutes, the reaction was terminated by adding 

400 pi of N, A-dimethyl-/?-phenylenediamine sulphate (20 pM in 7.2 M HCl) and 400 pi of 

FeC13 (30 mM in 1.2 M HCl). After the mixture was kept in dark for 20 minutes, 300 pi of 

trichloroacetic acid (10% w/v) was added to precipitate any protein that might be present in the 

culture media. Subsequently, the mixture was centrifuged at 10,000 x g for 10 mins. H2S in the 

sampled culture media interacts with A,A^-dimethyl-p-phenylenediamine sulphate to form 

methylene blue, and the absorbance of the resulting solution was determined at 670 nm [289]. 

H2S concentration in the culture media was calculated against the calibration curve of standard 

H2S solutions. 

Detection of CSE expression in skin tissue using immunoblot analysis 

Back skin were cleaned from the fair and cleaned with ethanol. Skin samples were 

collected and incubated in a lysis buffer containing 0.5 M EDTA, 1 M Tris-Cl (pH 7.4), 0.3 M 

sucrose, and a protease inhibitors mixture (Sigma). The skin extracts were homogenized three 

times (5-10 seconds/each) on ice using a cell homogenizer. Skin extracts were separated by 

centrifugation at 14,000 x g for 15 min at 4°C. Supernatants were collected, and the same 

amounts of proteins were separated on 10% SDS-polyacrylamide gels and blotted onto 

96 



nitrocellulose membranes (Pall Corporation, Pensacola, FL, USA). Anti-CSE antibody was used 

at 1:5000 (Proteintech Group, Chicago, IL, USA). CSE primary antibody incubation was 

performed at 4 °C overnight, and anti-p-actin antibody was at 1:10000 (Sigma) as a loading 

control. Membranes were visualized using enhanced chemiluminescence western blotting system 

(GE Healthcare, Piscataway, NJ, USA). 

Data analysis 

Data are expressed as means ± SEM. Statistical comparisons between groups were 

performed using ANOVA followed by a post-hoc or Student's t test. 

4. 3. Results and conclusion 

VEGF is an important factor for angiogenesis control. It is well known that VEGF 

increase the production of NO in ECs. We have found that VEGF (20 ng/mL) treatment 

increased H2S production in the cultured ECs (Figure 4. 1). Next, we isolated the aortic artery 

from WT and CSE-KO mice. The isolated rings were cultured for 72 hours to study the effect of 

CSE knockout on the formation of new-microvessels. We have found that aortic rings isolated 

from CSE-KO mice exhibited markedly reduced micro-vessel formation in response to VEGF 

treatment, when compared to wild-type littermates (Figure 4. 2). In addition, we examined the 

role of endogenous H2S in wound recovery by a wound healing assay. This assay allows us to 

observe the healing process in vitro in which the EC on the edges of the artificial wound migrate 

toward the wound area. The influence of endogenous H2S was measured by observing the 

difference in the size of the wound areas between WT and CSE-KO mice. After 6 days of post- 
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injury we noticed that the wound areas in WT mice were consistently smaller than in CSE- 

KO mice. After 9 days the wound healed even faster by almost 50% recovered compared wild 

type mice (Figure 4. 3). This effect is due to the absence of CSE, as we confirmed that CSE 

expression was completely abolished and not detected in CSE-KO mice skin tissue (Figure 4. 

3A). We conclude that endogenous H2S stimulates angiogenesis and wound healing. 

98 



180 - 

5' 160 - 

S 140 - 

3 120 - 

o' 

VEHICLE 

* 

VEGF 

Figure 4. 1. Production of H2S in HUVECs. H2S levels were determined by methylene blue 
assay in control HUVECs, and in response to VEGF (20 ng/mL) stimulation for 10 min. n= 5; 
> < 0.05 V5'. vehicle. 
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Figure 4. 2. In vitro angiogenesis assay in CSE knockout mice. A CSE knockout mouse shows 
a reduction in formation of new microvessels in the present or absent of VEGF treatment than 
treated VEGF and control wild type mice, n =5, * F<0.05. Scale Bar = 100 pm. 

100 



A 

WT CSE-KO 

CSE (43 KD) 

p-actin (42 KD) 

B 

Day 0 

Day 3 

Day 9 

Day 15 

Day 21 

C 

WT CSE-KO 

Time post-injury (days) 

Figure 4. 3. Evaluation of wound healing in WT and CSE-KO mice. (A), Lacked CSE 
protein expression in skin tissue of CSE-KO mice. (B) Representative photographs of the wound 
sites at the indicated time post-injury. (C) Changes in total wound area during the evaluation 
interval. Four animals for CSE wild-type group and 5 for CSE knockout mice. Results represent 
mean + SEM. * P<0.05. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 
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GENERAL DISCUSSION 

There are similarities among gasotransmitters in terms of their production and effects, but 

also some differences in their mechanism of action [3]. For the similarities, H2S and NO can be 

produced enzymatically, and reduce blood pressure [19, 79]. In terms of different mechanisms of 

action, H2S-induced *S-sulfhydration and usually increase the function of the modified proteins 

[140] whereas the same proteins can have decreased activities once ^-nitrosylated by NO [290]. 

To date, the molecular mechanisms for the interaction of H2S and NO on the same protein 

remain unclear and the functional outcomes of this interaction are largely unknown. To clarify 

these unsettled matters was the motivation of my current PhD thesis study. 

In this thesis, as shown in Chapters 2 and 3, I have found that both endogenous and 

exogenous H2S were involved in eNOS regulation and NO release. H2S did not significantly 

change the expression levels of eNOS. However, H2S affects the posttranslational modification 

of eNOS. For example, H2S increased eNOS phosphorylation and S'-sulfhydration, thus 

increasing NO production. However, phosphorylation mainly depends on enzymes or kinases to 

transfer phosphate groups from high-energy donor molecules such as ATP on to specific amino 

acid [291]. On the other hand, *S-sulfhydration is a direct chemical interaction of H2S with the 

protein, and achieved non-enzymatically. The functional outcomes of these two modes of post- 

translational modifications are the same, i.e. increased eNOS activity and NO generation. 

Phosphorylation of eNOS did not affect its -S'-sulfhydration since mutating the eNOS 

phosphorylation site Ser-1179 did not prevent H2S to S-sulfhydrate eNOS. ^'-sulfhydration of 

eNOS also did not affect its phosphorylation since the mutation of the ^'-sulfhydration residue 

(Cys-443) of eNOS did not affect VEGF- or H2S-induced phosphorylation. The lack of 

interaction between phosphorylation and ^-sulfhydration on the same protein may be explained 

103 



by the involvement of different amino acid residues. Furthermore, ^'-sulfhydration of eNOS 

inhibits its »S'-nitrosylation because NaHS inhibits GSNO-induced *S-nitrosylation. Conversely, S- 

nitrosylation of eNOS did not significantly inhibit its -S'-sulfhydration as GSNO did not inhibit 

NaHS-induced eNOS S'-sulfhydration. To our knowledge, this is the first report to demonstrate 

the 5'-sulfhydration of eNOS and reveal the novel competitive interplay between ^'-nitrosylation 

and ^'-sulfhydration of eNOS. 

In Chapters 2 and 4 we report that H2S plays a key role in angiogenesis along with NO. 

The formation of microvessels from cultured aortic rings isolated from CSE-KO mice was 

reduced compared to that from WT-mice, showing the effect of endogenous H2S. The 

supplementation of NaHS to the culture medium increased the formation of microvessels, 

showing the effect of exogenous H2S. Increased angiogenesis in the presence of H2S may also 

explain, at least in part, our observation of the beneficial effects of H2S on wound repair. 

Delayed wound healing is seen in CSE-KO mice, and exogenous H2S accelerates this process. 

The effects of endogenous H2S on eNOS regulation have been described in detail in 

Chapters 2 and 3. Whether these two gasotransmitters H2S and NO interact in the regulation of 

crucial endothelial functions is addressed. Interestingly, we found that NO levels were decreased 

by CSE inhibitor (PPG) or CSE-siRNA knockdown, and so did angiogenesis. In contrast, NO 

levels were increased after CSE gene overexpression, exogenous H2S or L-cysteine treatments, 

and so did angiogenesis. Additionally, treatment with L-cysteine increases the 5-sulfhydration of 

eNOS only in WT-ECs, but not in CSE-KO-ECs. These results show that CSE-yielded 

endogenous H2S acts as an endogenous modulator of eNOS protein in ECs. ^'-sulfhydration of 

eNOS might explain the dependence of NO production on H2S level. 
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The angiogenic effect of H2S is affected by NO levels. For example, eNOS-knockdown 

by siRNA partially blocks the proliferative effect of NaHS. L-NAME treatment did not 

completely block new microvessels formation induced by NaHS in both WT and CSE-KO aortic 

rings. Likewise, the NO angiogenic response is also affected by H2S levels. Cultured aortic rings 

isolated from CSE-KO mice exhibited a reduced new microvessels outgrowth in response to L- 

arginine, compared with WT controls. We have found that eNOS activation and angiogenesis is 

mediated by H2S-induced phosphorylation of p38 and Akt signaling pathways. A recent study 

showed a cooperative action of H2S and NO in angiogenesis due to increased intracellular cGMP 

and PKG activation [165]. These authors clam that “H2S and NO mutually relies on each other 

and it is almost absolute in the case of angiogenesis (because blocking eNOS completely 

abrogates the angiogenic effects of H2S, whereas silencing of H2S markedly reduces the 

angiogenic effect of NO)” [165]. However, their results in Figure lA [165] clearly showed that 

L-NAME treatment did NOT completely block the proliferative effect of NaHS. Indeed, NaHS 

effect was decreased due to the lack of NO but it still proceeded to induce angiogenesis. This 

interpretation is consistent with our own observation that L-NAME or eNOS-siRNA partially 

reduces H2S angiogenic effect. 

In Chapter 3, we isolated ECs from WT and CSE-KO mice. We further investigate the 

functional differences between these cells under different conditions, including their production 

of superoxide and NO, their eNOS dimer status and eNOS 5'-sulfhydration. We found that 

superoxide production levels in CSE-KO-ECs were increased, whereas the NO levels were 

decreased compared to WT-ECs. In contrast, H2S treatment decreases superoxide levels and 

increases NO levels in both WT and CSE-KO-ECs. The mechanism behind these effects is still 

unclear, but it seems that H2S produced by CSE act as endogenous modulator for eNOS dimer 
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stability. In this regard, we show that eNOS proteins from both CSE-KO-ECs and CSE-KO 

aortic tissues were predominantly monomers and have less 5'-sulfhydration compared to WT-ECs 

or WT-aortic tissues, which were predominantly dimers. In addition, exogenous H2S treatment 

increases 5'-sulfhydration and eNOS dimer in WT-ECs. Mutation at Cys-443 residue completely 

eliminated ^'-sulfhydration of eNOS, and generated more eNOS monomers, indicating that S- 

sulfhydration of eNOS occurs only at Cys-443 and it may play a role in stabilizing eNOS dimer. 

106 



CONCLUSION 

Our studies provide evidence that H2S is a critical regulator for eNOS, the main NO 

producing enzyme in ECs. H2S stimulates NO production, promotes angiogenesis, accelerates 

wound healing, and decreases superoxide levels in ECs. 

Mechanistically, H2S stimulates the phosphorylation of p38 and Akt protein kinases, 

which leads to eNOS phosphorylation at Ser-1179 and enhances NO production. H2S also 

directly modulates eNOS through ^-sulfhydration (Figure 5. 1). 5-sulfhydration decreases S- 

nitrosylation of eNOS and increases eNOS dimer stabilization, thus increasing NO bio- 

availability and decreasing superoxide levels in ECs. 

The mechanisms by which protein is post-translationally regulated have been investigated 

for nearly three decades. 5-sulfhydration is a novel post-translational modification mechanism 

that coordinates many other post-translational modification mechanisms to exert profound 

impact on the net outeomes of the modified proteins. 

107 



Figure 5. 1. H2S and NO interaction in vascular endothelial cells 
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SIGNIFICANCE OF THE STUDY 

Vascular disease represents a global medical problem with high morbidity and mortality. 

World Health Organization (WHO) has listed cardiovascular diseases as the number one cause of 

death worldwide in 2011. In 2007, 1.3 million Canadians (4.8% of Canadians population) 

reported having heart disease [292]. Every 7 minutes in Canada, someone dies from heart disease 

or stroke [293]. Restoring the blood supply to the injured or diseased tissues is a critical goal for 

successful treatment of many cardiovascular diseases. Pro-angiogenic therapy is a novel 

treatment option that can help restore circulation in people with blocked arteries and 

cardiovascular diseases. Angiogenesis is a complex multistep process, but mostly depends on 

EC-response to an angiogenic stimulus. Scientists have been trying different strategies to 

stimulate new blood vessel formation in areas where current blood vessels are blocked in order 

to supply the affected area with oxygen and nutrients. Our studies have discovered novel 

mechanisms for the molecular and cellular effects of H2S on controlling and induction of 

angiogenesis, which can be useful as a possible therapeutic strategy to stimulate angiogenesis. 

Furthermore, eNOS stabling or biosynthesis of NO in vascular tissues is impaired in most of the 

patients with vascular diseases and at advanced age. Our data demonstrated that administration 

of exogenous NO in a high concentration increases eNOS uncoupling and eNOS ^-nitrosylation, 

thus increasing superoxide and decreasing NO level, which is related to the pathophysiology of 

EC dysfunction diseases. In contrast, H2S and NO combined treatment or H2S alone induces 

eNOS ^-sulfhydration, decreases ^'-nitrosylation, prevent eNOS uncoupling, thereby decreasing 

superoxide and increasing NO production in vascular ECs. Thus, the supplementation of H2S and 

NO to individual’s cells and tissues will stimulate eNOS activity and prevent their uncoupling 

consequence, which offers much more beneficial protection than NO administration alone. 
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LIMITATIONS OF THE STUDY 

A. Research Limitations 

Phosphorylation of eNOS at serine 1179 activates eNOS and NO production [116], but 

phosphorylation of eNOS at theronine 495 inhibits eNOS and NO production [294]. In Chapter 

2, we only investigated the phosphorylation of eNOS-Ser-1179. Based on this result, we 

concluded that phosphorylation of eNOS would not affect the ^S-sulfhydration of the same. 

Clearly, investigating other phosphorylation sites such as eNOS inhibitory site theronine 495 

could have generated a more comprehensive understanding for the correlation of eNOS 

phosphorylation and 5'-sulfhydration. 

In Chapter 2, the interaction between H2S and NO on EC proliferation was investigated 

using siRNA for eNOS and L-NAME to block NO in ECs. L-NAME or siRNA-based gene 

silencing is often not as precise or thorough as a traditional gene deletion. Therefore, using 

eNOS-knockout mouse model or cells will further confirm our finding. 

B. Methodological Limitations 

The biotin switch assay for the detection of 5'-nitrosylated proteins was developed by 

Jaffrey and Snyder [295]. The modified assay for biotin switch for detection of 5'-sulfhydrated 

protein was developed by Snyder group [140]. Biotin switch assay is considered as the most 

reliable method that is more easily adapted to the study of previously mentioned protein 

modification. However, biotin switch assays have two major technical drawbacks. 1) Due to the 

high liability and redox sensitivity of S-NO bond, SNO can be lost easily or gained artificially 
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during sample preparation [296]. 2) The sensitivity of the assay depends on the effective block of 

the free thiol by MMTS and the effectiveness of ascorbic acid as a reducing agent [297, 298]. 

With the biotin switch assay, free thiols are blocked by MMTS, and then SNO modifications are 

specifically reduced with ascorbic acid. After blocking, the modified thiol will be simultaneously 

labeled with a thiol-reactive biotin (which forms a mixed disulfide with the modified thiol). 

Finally, thiol-biotinylated proteins were pulled down with streptavidin-agarose and analyzed by 

Western blot. The effectiveness of each chemical in every step will affect the detection 

efficiency of biotin switch assay. In Chapter 3, we only used biotin switch assay to detect S- 

sulfhydration and S'-nitrosylation of protein samples. Using LC-MS/MS will add a further 

confirmation to our data because it will directly measure the ^-sulfhydrated or 6'-nitrosylated 

proteins, without applying MMTS, biotin or ascorbic acid to protein samples. In addition, LC- 

MS/MS can distinguish between ^S-sulfhydration and 6'-nitrosylation based on protein mass shift, 

whereas biotin switch assay depends on thiol-biotin-streptavidin-agarose binding, and analyzed 

by western blot. 
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FUTURE DIRECTION 

As a follow-up on this study, the suggested future directions are: 

1. To further investigate the molecular mechanism of ^'-sulfhydration. The following 

questions are still burning and yet to be answered: a) what factors determine the 

occurrence of eNOS iS-sulfliydration? b) what are the de-5-sulfhydration mechanisms 

for eNOS? c) how does ^'-sulfhydration modulate the activity of eNOS? 

2. To gain more insights into the precise molecular mechanism of H2S-induced NOS 

dimer stability. This also may include exploring the influences of H2S on eNOS co- 

factors: BH4, heme, and zinc, which are all proposed to be involved in eNOS dimer 

stability, 

3. To further investigate how the same H2S signal in vascular tissue stimulates EC 

proliferation but inhibits SMC proliferation. 
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