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ABSTRACT 

Hai T. B. Nguyen. 2000. Ecophysiological responses of four boreal tree species to soil 
nitrogen supply. Master of Science thesis, Lakehead University. 90 pp. 

Supervisor; Dr. Qing-lai, Dang 

Ke5Twords; Soil nitrogen, ecophysiology, gas exchange, foliar nitrogen concentration, 
growth, biomass allocation, photosynthesis, transpiration, water-use-efificiency, 
nitrogen-use-efficiency, trembling aspen, jack pine, black spruce, white spruce. 

The ecophysiological responses of four boreal tree species, trembling aspen 
{Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce 
(Picea glauca (Moench) Voss), and jack pine {Pinus banksiana Lamb.) were examined at 
six different levels (from 25 to 775 ppm) of soil nitrogen (N). At the 50th and 100th day of 
treatment, two-year-old conifer seedlings and six-month-old trembling aspen seedlings were 
measured for gas exchange, foliar N concentration, growth and biomass allocation traits. 

The gas exchange and resource use efficiency responses varied with species. The 
additional N input had no significant effect on photosynthesis (A, iimolW/s) and positive 
effect on transpiration (E, mmol/m^/s), and beyond 175 ppm N treatment it produced 
negative effect on whole seedling photosynthetic capacity (At, pmoks/seedling) in trembling 
aspen. A, E and At in conifers responded negatively to N treatment, except for a brief 
positive response from 25 to 125 ppm N in jack pine. <I)PSII revealed relevant relationship 
with A but only for jack pine and white spruce. We found explicit positive response of 
foliar N concentration and negative response of PNUE to increasing soil N availability. 
However, the trends of PWUE between species varied iacross six N treatments and possibly 
due to luxury consumption. The PWUE was positively correlated with soil N supply in only 
white spruce and was negatively correlated in other species. The sufficient soil N 
availability for optimum gas exchange and nutritional status were at 75 ppm N for black 
spruce and at 125 for the other three species. 

Overall, the growth response of aspen to N was more pronounced than that of 
conifers due to its fast growing nature. Significant growth response of aspen occurred 
between the 75 to 175 ppm N treatments. Substantial growth reduction occurred when 
aspen seedlings were induced to excessively high soil N concentrations (375 and 775 ppm), 
specifically due to the vulnerability of these seedlings to pest damages. This is also related 
to the significant increase in foliar N concentration at these N treatments. Greatest growth 
was achieved at 25 ppm N addition rate in black spruce and jack pine, and most notables at 
125 ppm N in white spruce. However, these N levels are not conclusive when optimum soil 
N concentration(s) for gas exchange parameters, particularly for At, in these seedlings are 
taken into consideration. Nonetheless, at highest soil N supply (375 and 775 ppm), the 
growth of conifer seedlings was not as adversely affected as that of aspen seedlings. Our 
results also proved strong significance of N availability on biomass allocation between root 
and shoot components and height growth in all species. Root production was significantly 



suppressed as soil N availability increased in the conifers. The opposite was found in aspen. 
In conifers, the proportions of total seedling biomass allocated to roots (or the root-to- 
shoot ratio, R/S), at all N treatments, were highest in white spruce, followed by black 
spruce then jack pine. The R/S ratio in aspen was comparable with, but followed an 
opposite pattern to, white spruce. The stem and foliage productions in all studied species 
showed negligible positive response to increasing soil N treatments. However, with the 
exception of aspen, the order of the species allocating highest to lowest portions of its total 
biomass to the foliage followed the exact opposite pattern as that of root allocation 
percentage. Aspen showed lesser biomass allocation to the foliage than conifers. However, 
it allocated highest percentages of total seedling biomass to the stem, at all N treatments, 
followed in sequential order by black spruce, white spruce and jack pine. 

When all ecophysiological parameters are considered, our results indicated that low 
soil N availability, such as that at 25 ppm, does not adversely affect the boreal seedling 
growth and survival as much as it does at excessively high soil N availability (e.g., 375 and 
775 ppm). Within the sufficient N regimes (i.e., 75 - 175 ppm), the most suitable soil N 
concentration for black spruce is at 75 ppm and at 125 ppm for other species. 
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INTRODUCTION 

Nitrogen (N) has been recognized as an essential element for plant growth and 

development (e.g., Field and Mooney 1986, Marschner 1995, Miller and Donahue 1995). It is 

required in the highest quantity among all essential elements (cf. phosphorus, potassium, 

sulphur) in order for plants to grow healthily (Brady 1990, Marschner 1995). However, 

available N is notably the most deficient element in the Boreal forest (Krause et al 1977), a 

land mass covering 11% of the earth’s terrestrial surface (14.7 million km^) (Bonan and 

Shugart 1989). The Boreal forest is the most economically important forest of Canada, which 

accounts for 74% of total forested area of the country (Bonan 1990). 

The availability of soil N in the Boreal forests is dependant on a number of factors. 

For example, the high variation of total and available N in the soil, the typically limited 

amount of available N in the Boreal forests’ soil, and the recent concern of increasing 

atmospheric N pollutants as well as the rate of N cycling due to the elevation global 

temperature, all of which can contribute to crucial structural and functional changes in the 

Boreal forest ecosystems (Bonan and Shugart 1989, Bonan 1990, MacDonald et al. 1992, 

Pare et al. 1993). The total soil N in the Boreal forest varied from 1,330 kg/ha in Quebec 

(Weetman and Agar 1983) to 4,541 kg/ha in Ontario (Timmer et al. 1983). As well, the input 

of available N from N mineralization, fixation and precipitation varied from 9.2 kg/ha/yr in 

upland coniferous (spruce) forests to 52.5 kg/ha/yr in broad-leaved (birch-aspen) forests 

(Ruess^/uf/. 1996). 



Despite the above differences, generally over 97% of the total soil N is in forms that 

are not readily available to plants (Donahue et al 1995). In a sub-Boreal spruce forest, the 

reported available soil nitrate-N and ammonium-N (NO3-N and NH4-N) combined and total 

mineralizable (i.e., not readily available) soil N were 226 ppm (17.3%) and 1,081 ppm 

(82.7%), respectively (Driscoll et al. 1999). The causes of the much lower available soil N 

compared to the total amount of soil N are wet substrate, low soil temperature and low 

frequencies of natural fire, which are all characteristics of the Boreal forests (Bonan and 

Shugart 1989) that restricts the rates of organic matter decomposition and nutrient 

mineralization (Van Cleve and Jarie 1986). Furthermore, because of the present intensive 

forest management practices within the Boreal forests, the deleterious effects of soil N are 

likely due to greater biomass removals, shorter rotations, etc. than in the past (Timmer et al 

1983, Kimmins 1997). 

On the contrary, the amount of available soil N could be enhanced due to the 

increasing N input from atmospheric N pollutants and the result of global climate change; 

e.g., elevating soil temperature (Horn and Oechel 1983, Nihlgard 1985, Pastor and Post 

1988, MacDonald et al 1992, Zak et al 1993). The forest decline in some parts of Europe 

was attributed to high N input from the atmospheric pollution (Nihlgard 1985). Various 

locations along the Great Lakes had shown increasing annual N deposition, as nitric acid rain, 

from 10 to 40 kg/ha (MacDonald et al 1992). The increasing soil temperature was also 

found to speed up the rate of N cycling due to more rapid rates of organic matter 

decomposition and mineralization (MacDonald et al 1992). 

The above conditions may create either favourable or toxic environments for plant 

growth and survival, as well as the competitiveness of the species, in the Boreal forests. 



However, our understanding of the response of different Boreal species to changes in soil N, 

in which the increasing amount of available N is anticipated from the overall picture, is still 

limited. A thorough study of forest tree ecophysiological and growth responses to a wide 

range of soil N is important for interpreting the possible ecological transformation, 

particularly the structural dynamics and nutrient fluxes, of various Boreal forest ecosystems. 

Numerous studies done in the past have compared very few species, and rarely did they 

provide good comparisons between deciduous and coniferous species. For example, effects 

of different N applications have been investigated for trembling aspen {Populus tremuloides; 

Coleman et al 1998), three deciduous species (i.e., trembling aspen, sugar maple; Acer 

saccharum, and white birch; Betula paperiferd) (Kinney and Lindroth 1997), Douglas fir 

(Pinus radiata. Van Hove et al. 1992), black spruce and white spruce (Picea mariana and P. 

glauca\ Patterson et al 1997), jack pine {Pinus hanksiana, Cantin et al 1997), black spruce 

and jack pine (Colombo and Smith 1987), and American elm (Ultnus americana; Walters and 

Reich 1989). 

Nitrogen significantly affects ecophysiological traits as well as the growth and 

survival of plants. Since N is the prime constituent of amino acids, growth regulators, and 

chlorophyll (Chapin III 1980) that drive the processes of photosynthesis (A) and transpiration 

(E), these gas exchange parameters rely heavily on N in order to function properly. E tends 

to have a positive relationship with A (Hunt et al 1985b). Both A and E generally increase 

with increasing N input, depending on the species and stage of development (Tan and Hogan 

1995, Kubiske et al 1997). Increasing N application enhanced height and diameter 

increments (Van den Driessche 1989, Catin et al 1997), total leaf area (TLA, Sabate and 

Gracia 1994), foliar nitrogen concentration (Nf, Coleman et al 1998), and photo synthetic 



water-use-efFiciency (PWUE, Green and Mitchell 1992, Liu and Dickman 1996). On the 

other hand, increased N restricted photosynthetic nitrogen-use-efFiciency (PNUE, Birk and 

Vitousek 1986, Kubiske et al 1997) and biomass allocation to the roots (R/S ratio, Fetene et 

al 1993, Ibrahim et al 1997). There are substantial differences between species in N 

requirement and allocation. For example, trembling aspen not only required more N for 

optimum growth but also allocated higher N content to foliage than did the conifers (Dang et 

al 1997). 

The objective of this study was to investigate ecophysiological responses to a range of 

soil N conditions (25 to 775 ppm) in four important Boreal tree species; specifically, 

trembling aspen {Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), 

white spruce {Picea glauca (Moench) Voss), and jack pine {Pinus banksiana Lamb.). Two 

main hypotheses were established: (1) increasing N soil availability (up to a toxic level) would 

increase A, E, PWUE, TLA and Nf, whereas PNUE and R/S ratio would decline in all four 

species and (2) aspen seedlings would be most responsive to increasing soil N followed by 

jack pine, white and black spruces. The N regime at 25 ppm is the lowest possible level when 

the optimum concentrations for other essential nutrients are to be maintained. Except for the 

available soil N concentration reported for a black spruce forest (226 ppm) by Driscoll et al 

(1999), others usually reported soil N in terms of mass over area {c.g, kg/ha), which is 

difficult for us to relate to these values in terms of concentrations. We used 775 ppm N, 

three times the concentration reported by Driscoll et al (1999), as the highest treatment. 



LITERATURE REVIEW 

NITROGEN AVAILABILITY 

The accessibility of soil nitrogen (N) to plants is a function of the amount of total and 

available N in the soil, the variation in total amount soil N and the input of atmospheric N 

(Aber et ah 1989, Pare et al 1993, Lovett 1994, Donahue et al 1995). Each of these factors 

can cause crucial functional and structural changes in the Boreal forest ecosystems. A study 

on post-fire (140 years) N content in the forest floor indicated 82.7% of the N in the soil 

profile was currently unavailable (Driscoll et al 1999). 

The availability of N is also influenced by the stage of forest succession and species 

composition. Forest succession (the latter stages) in the Boreal forest can lead to a decline in 

nutrient availability, especially N, because a large proportion of the ecosystem total is 

accumulated in the soil organic matter (Bormann and Sidle 1990, Pastor et al 1988). Bonan 

(1990) and Bormann and Sidle (1990) showed that total N concentration and the rate of N 

mineralization in the soil decreased over time in some Boreal forest regions. As for the effect 

of species composition on N availability, Pare et al (1993) found higher available N under 

white birch dominated stands than in stands dominated by trembling aspen, white spruce and 

eastern red cedar {Thuja occidentalis). Also, areas with high coniferous compositions tended 

to restrict the N cycling due to the slow rate of organic matter decomposition, thus restricting 

the N availability (Pare et al 1993). 

The amount of soil N varies significantly between locations in Boreal forest (see 

introduction for different amount of soil N reported by Timmer et al (1983), Weetman and 



Agar (1983) and Ruess et al (1996). Furthermore, since rates of organic matter 

decomposition and mineralization tend to respond positively to increases in soil temperature, 

the rate of soil N cycling within an ecosystem can be enhanced by increasing soil temperature 

(MacDonald et al. 1992, Pastor and Post 1988, Zak et al. 1993). Recently, it has been 

postulated that soil temperature is likely to increase as a result of global climate change. 

Increasing soil temperature has been found to create higher soil moisture content, soil solutes 

and needle N contents, which in turn was coupled with higher rates of net photosynthesis and 

dark respiration (Horn and Oechel 1983). 

Over the past decade, higher amounts of atmospheric N, attributed to industrial 

pollution, have been reported. Aber et al. (1989) and Lovett (1994) found that increased 

atmospheric N deposition resulted in an increase of soil N availability in some temperate 

forests. In the Netherlands, the emission of volatilized ammonia (NH3) from animal manure 

increased N input into forests 10 to 20 times higher than the normal situation (Heij and 

Schneider 1991). In normal, unpolluted conditions, the annual average rate of atmospheric N 

deposition is approximately 5 kg/ha/yr (MacDonald et al. 1992). However, the annual N 

deposition (as nitric acid rain) ranged from 10 to 40 kg/ha/yr in some polluted locations along 

the Great Lakes (MacDonald et al. 1992). 

NITROGEN-PHOTOSYNTHESIS RELATIONSHIP 

Nitrogen is important to plant growth because of its involvement in photosynthesis or 

carbon assimilation (A), an essential mechanism providing energy and structural substrates 

for plant growth and reproduction (Field and Mooney 1986). Nitrogen is a key constituent 

of amino acids, plant growth regulators, and chlorophyll (Chapin III 1980, Marschner 1995). 



Black (1968) indicated that N is also found in hormones, the “organic substances that exert 

important regulatory effects on metabolism when present in only minute quantities”, and is a 

component of the respiratory-energy carrier, adenosine triphosphate (ATP). 

Larger plants are the end product of the production of greater amount of protein and 

enzymes, such as RuBP and PEP carboxylase (Moorby and Besford 1983). Because of the 

involvement of these substances in the CO2 fixation of A, leaves grow larger and a larger 

surface area is subsequently available for photosynthesis (Russell 1973). N is a key 

component of RuBP and PEP carboxylase and other enzymes, hence N is essential for cell 

growth and tissue renewal (Russell 1973) and maintenance of the photo synthetic apparatus 

(Chapin and Kedrowski 1983, Small 1972). As a result, N supply has found to be directly 

proportional to the amount of leaf area available for A (Russell 1973, Sabate and Gracia 

1994). This in turns enhances carbon assimilation capacity, as found in the foliage of Picea 

mariana (Horn and Oechel 1983), Firms banksiana (Tan and Hogan 1995), P. radiata D. 

Don. (Squire 1983), P. sylvestris (Kellomaki and Wang 1997), P. taeda (Green and Mitchell 

1992), Populus tremuloides (Kubiske et al 1997), Pseudotsuga menziesii (Mitchell and 

Hinckley 1993), Ulmus americana (Walters and Reich 1989), Chenopodium album (C3) and 

Amaranthus retroflexus (C4) (Sage and Pearcy 1987b), and Amazonian tree species (Reich et 

al 1994). 

The increase in N supply can sometimes produce contradicting results. Sheriff et al. 

(1986) found that N supply alone increased foliar N and P but did not increase A rate in P. 

radiata, unless growth is carried out in full sunlight. They have also shown that foliar N 

concentration is negatively related to diffusive conductance, quantum yield and maximum A, 

differing from the results reported by Hunt et al (1985a, 1985c). Ibrahim et al (1997) 



concluded that N supply had no effect on A per unit leaf mass in Populus balsamifera x P. 

trichocarpa. 

There is also evidence that great variations between and within species exist in 

response to N. The mass-based A is generally lower in evergreen species than in deciduous 

species. However, evergreen species possess higher potential for photosynthate production 

in their lifetime because of the higher N reabsorption rate {i.e., higher internal N recycling) as 

well as greater leaf longevity (Small 1972). Within species, variations in photosynthetic 

capacity due to the location in canopy and/or leaf age have been found, regardless of N 

availability. For example, higher photo synthetic rates were found in young, growing leaves 

(6 to 10 pmol C02/m^/s) as compared to that of mature leaves (2 to 8 pmol C02/m^/s) 

(Fetene etal. 1993). Field etal. (1983) also indicated that photo synthetic capacity decreased 

with increasing leaf age, however, leaf N content also tends to decline in older foliage. So, it 

may be that the different amount of N contained in different aged leaves is responsible for the 

variation in A. Moreover, A on reproductive branches {i.e., fruit-, seed- and flower- bearing 

branches) was found to be lower than on non-reproductive branches due to reduction in leaf 

area and N content per unit leaf area, apparently as a cost of reproduction (Karlson 1994). 

High rates of A as well as plant biomass production at high levels of N supply can be 

further enhanced by elevating leaf internal CO2 concentration (Ci). Mitchell and Hinckley 

(1993) found that Ci decreased as N supply increased from 10 to 125 mg N/L (or ppm N), 

which may have resulted in a CO2 limitation to A, but as N supply increased beyond 125 mg 

N/L, Ci steadily increased to enhance A. Brown (1991) and Kellomaki and Wang’s (1997) 

experiments on trembling aspen and Scots pine, respectively, showed that a decrease in foliar 



N concentration was related to long-term C02-enrichment that resulted in a decrease in plant 

relative growth rate (Brown 1991, Kellomaki and Wang 1997). 

CHLOROPHYLL FLUORESCENCE 

Chlorophyll fluorescence emission has been proven a useful tool to determine 

photosynthetic activity in vivo (Conroy et al 1986, Hawkins and Lister 1985, Krause and 

Weis 1991, Papageordiou 1975, Toivoinen and Vidaver 1984, Vidaver et al. 1989). 

Fluorescence assessment has been used to provide information about the physiological status 

of white spruce (Vidaver et al. 1989). The usage of this method is described in detail in 

Lambers et al. (1998) and Krause and Weis (1991). Generally, the chlorophyll fluorescence 

emission is an indicator of Photosystem II (PSII) activity, quantifying the quantum yield (Op), 

in isolated photo synthetic membranes (Lambers et al. 1998). It is normally referred to as On 

since it originates mainly from PSII (Lambers et al. 1998). As well, “in intact chloroplasts or 

whole leaves (needles) in the presence of CO2, they can be indicators of complete 

photosynthesis” (Lichtenthaler and Grumbach 1975, Sivak and Walker 1983, Walker et al. 

1983). For the purpose of this thesis, the quantum efficiency of photosystem II is referred to 

as OPSII. 

Values for OPSII vary based on the degree of illumination to which the samples are 

exposed. Under dark-incubated conditions, the values for OPSII are around 0.8 (relative 

units) in healthy leaves (Lambers et al. 1998). Under illuminated conditions OPSII has values 

equal to or lower than that of dark-incubated samples, and the difference increases with 

increasing irradiance (Lambers et al. 1998). When irradiance increases from lower than 250 

jLimol/m^/s to higher than 1250 pmol/m^/s in the C3 plant Flaveria pringlei, photosynthesis 



increases from below 10 |j,mol/m^/s to approximately 30 p,mol/m^/s, but On decreases from 

below 0.8 to approximately 0.45 (Krall and Edwards 1992). 

NITROGEN-TRANSPIRATION RELATIONSHIP 

Transpiration (E) is the rate of water loss from leaves, through the stomates, and is a 

necessary consequence of photosynthesis in terrestrial plants (Farquhar et al. 1980). E tends 

to increase as A increases, hence E possesses an indirect relationship with N supply or leaf N 

concentration. Hunt et al (1985b) found that increasing nitrate-N supply increased E as well 

as A. They also found that if plants were subjected to low N supply over a period of time, E 

continued to increase while A stopped at 10 p,molN/m^/s. On the other hand, under the 

induction of high N supply E increases at the same rate as it is under low N supply, but A 

continued to increase to 50 pmolN/m^/s (Hunt et al 1985b). In short, high N supply 

enhanced A more than it enhanced E. 

NITROGEN-STOMATAL CONDUCTANCE RELATIONSHIP 

Soil and atmospheric moisture conditions almost always affect the relationship 

between nitrogen and stomatal conductance (gs). gs responded similarly to A when the plant 

was subjected to changes in soil N and water status (Hunt et al 1985b, Walters and Reich 

1989). Under the same soil or atmospheric moisture conditions, along with high leaf N, A 

and gs declined at a much faster rate than that of leaf with low leaf N (Hunt et al 1985b, 

Walters and Reich 1989). Also, the response of gs to water-stress was positively correlated to 

leaf N concentrations (Hunt et al 1985b, Liu and Dickman 1996). 



NITROGEN-IRRADIANCE RELATIONSHIP 

The distribution of N nutrient between and within leaves is dependent on irradiance in 

order to optimize (Hilbert 1990) and maximize (Field et al. 1983) photo synthetic carbon gain 

by the plant. The review by Natr (1992) showed the beneficial effects of irradiance in aiding 

N to function effectively throughout the photosynthesis process. Inadequate N supplies limit 

the potential for acclimation of photosynthesis to irradiance (PAR) level during growth 

(Osmond 1983); when there is sufficient supply of N, whole plant production is proportional 

to the amount of radiation absorbed by the plant (Natr 1992). Mitchell and Hinckley (1993) 

found that elevating the light intensity could further enhance the rate of carbon assimilation at 

high N supply. At lower levels of irradiance, the partitioning of N into chlorophyll and 

thylakoids was enhanced, regardless of N treatments (Osmond 1983, Evans 1989), but the 

electron transport capacity per unit chlorophyll decreases, hence decreasing photosynthesis 

capacity (Evans 1989). 

NITROGEN-WATER INTERACTION AND WATER-USE-EFFICIENCY 

Walters and Reich (1989) found that adequately watered seedlings were more 

responsive to N supply than water-stress seedlings and that at high N levels, A and gs were 

very sensitive to water-stressed. Natr (1992) concluded: “the interaction between N and 

water stress plays an important role not only in leaf expansion and stomatal opening, but also 

in modifying net photosynthetic rate” Also, limited N supply in plants can intensify drought 

or other stress situations (Walters and Reich 1989), leading to faster rates of leaf senescence, 

protein and chlorophyll degradation, and reductions in net photosynthesis (Ogren 1988). 



Furthermore, unless both N and water is supplied in abundant amounts, the growth 

and development of individual plant parts (e.g., roots) can not persist to produce healthy 

plants. Squire et al. (1987) discovered that well watered and well fertilized P. radiata 

seedlings had an increase in the concentration of fine roots, whereas high N supply with 

limited water appear to inhibit root growth, hence reducing seedling growth and survival. 

DeVisser et al (1994) indicated that N nourishment did not enhance growth any further even 

at optimal by water supply and nutrients. In fact, excess fertigation (J.e., excess N fertilization 

and irrigation combined) to reduced the fine root mass and overall root growth (DeVisser et 

al 1994). 

Increasing available N can enhance instantaneous photosynthetic water use efficiency 

(PWUE, the net CO2 fixation per unit of H2O transpired or A/E ratio) provided that the 

microenvironment (e.g., CO2, water and light intensity) is adequate (Sheriff et al 1986, 

Squire et al. 1987, Reich et al. 1989, Liu and Dickman 1996). High foliar N content, as 

opposed to low foliar N, can produce greater effects on A than E, resulting in increased 

PWUE (Green and Mitchell 1992). In contrast, Mitchell and Hinckley (1993) suggested that 

there was no significant difference in PWUE between different levels of N supplies unless 

ambient CO2 and light intensity were enhanced. Sinclair et al (1984) also indicated that 

“PWUE depends on the relative concentration differences in water and CO2 between leaf and 

air” 

NITROGEN-USE-EFFICIENCY 

Photosynthetic nitrogen use efficiency (PNUE) is defined as the “net CO2 exchange 

per unit of leaf N” (Reich et al 1989) and is an important parameter for evaluating plant 



productivity. Ingestad and Kahr (1985) found that PNUE was positively related to plant 

relative growth rate, and that the order from highest to lowest PNUE among some tree 

species was as follows: broadleaved species > lodgepole pine > Scots pine = Norway spruce. 

Black spruce and white spruce possessed similar PNUE under low N conditions (Patterson et 

al. 1996). The high PNUE of a certain species could either reflect its acclimation to habitats 

which have relatively higher constant N mineralization (Vitousek 1982), or the adaptation to 

infertile habitats with periodic N flushes (Chapin III 1980). 

Above a certain minimum N supply {i.e., to initiate and ensure full functions for the 

photosynthetic process) a negative relationship is typically observed between the N 

availability and PNUE, because low PNUE can result from luxury consumption under excess 

N supply (Chapin III 1980). Birk and Vitousek (1986) observed that foliar nitrogen 

concentration or N supply decreased. It has been reported that PNUE increased in loblolly 

pine {Pinus taedd). Similar situation was noted for perennial herb {Solidago altissima) 

(Hirose and Werger 1987), evergreen dwarf shrub {Rhododendron lapponicum) (Karlson 

1994), trembling aspen (Kubiske 1997), and American elm (Reich et al. 1989). 

It is also important to understand the relationship between the PNUE of plant and 

certain physiological factors {e.g., mean residence time of N in plant, instantaneous A) and 

environmental factors {e.g., irradiance) (Berendse and Aerts 1987, Evans 1988). Berendse 

and Aerts (1987) explained that “there is an evolutionary trade-off between properties that 

lead to high N productivity and those that lead to a long mean residence time of N in the 

plant” These authors suggested that in measuring PNUE, one has to consider two 

components: the mean residence time of N in plant and the instantaneous A per unit of N in 

the plant. This concept helps one to fully understand how a plant can utilize N and be able to 



adapt to low nutrient regimes. Hence, the model he proposed for PNUE is the ratio of A to 

mean residence time (Ln). Furthermore, Terashima and Evans (1988) found that PNUE is 

independent of N level but dependent on irradiance, because PNUE is highest in leaves that 

grow under maximum (100%) irradiance. 

TRADE-OFF BETWEEN PHOTOSYNTHETIC NITROGEN 

AND WATER-USE EFFICIENCY 

Normally, PWUE is inversely related to PNUE because leaves that produce greater 

photosynthates per unit of leaf N tend to produce the lowest photosynthates per unit of water 

transpired (Field et al. 1983). This negative relationship and rank reversal between PWUE 

and PNUE were reported for five evergreen species (Field et al 1983). Patterson et al 

(1997) also found a PNUE-PWUE trade-off in black spruce and white spruce and indicated 

that “each species maximizes the use efficiency of the most limiting resource, while 

minimizing the concominant reduction in the use efficiency of the other resource” However, 

when plants are subjected to limited supplies of both water and nitrogen, they tend “to utilize 

each resource with suboptimal efficiency” (Patterson et al 1997). 

NITROGEN ALLOCATION AND CONCENTRATION 

The priority for N allocation varies between different parts of the same plant. N 

allocation is generally greater in: (1) the upper and outer layers of the canopy compared to 

the lower and inner layer of the canopy, (2) leaves than in stems and roots, and (3) younger 

foliage than in older foliage (Horn and Oechel 1983). These authors also indicated that N 

concentration in the current year’s growth of black spruce was highest, maintaining 90% of 



the maximum value(s) in age-classes 1 to 8 years old and staying at a constant level of 70% in 

the older age-classes. Even the young leaves of annual species, such as of Solidago altissima, 

also contained higher N content per unit area than older ones, and higher N concentration 

occurred at the upper and outer layers of the canopy (Hirose and Werger 1987). The same 

was true for Douglas fir (Sheriff et al. 1986). In Quercus ilex, N allocation to leaves was 

higher than to stems under increasing N supply (Sabate and Gracia 1994). In white spruce 

and Douglas-fir, van den Driessche (1989) indicated that the percentages of N allocation to 

shoots and roots increase with N supply, but the proportion of N allocated to shoots is much 

greater than that to the roots. 

The pattern of N allocation varies with species and N supply. Dang et al (1997) 

found that aspen is likely to be more sensitive to N stress than coniferous species because a 

greater proportion of leaf N is allocated to the photosynthetic apparatus in aspen than in 

conifers. For a given N availability, N content per unit leaf area is directly proportional to the 

dry mass per unit leaf area, and this relationship changes with N availability (Walters and 

Reich 1989). 

The level of N concentration in foliage (Nf) also varies with species and literature. 

Foliar N levels are more commonly reported in terms of a mass-based Nf (Nfm, % or g/kg) 

rather than an area-based Nf (Nfa, gW). The reported optimum and critical ranges of Nfm 

for species such as trembling aspen, jack pine, black and white spruces vary slightly in the 

literature. For aspen species, published optimal Nfm were 34.1 gN/kg in 100-day-old 

trembling aspen (Brown 1991), 40 gN/kg in 4-month-old trembling aspen (Coleman and 

Smith 1998) and 35 gN/kg in 90-day-old Balsam Spire poplar [Populus balsamifera var. 

Michauxii (Flenry) x Populus trichocappa var. Hastata (Dode) Farwell.] (Ibrahim et al 



1997). For conifers, optimal Nfm, for 26-week-old seedlings of culture grown jack pine, 

black and white spruces were 29.2, 29.6 and 21.2 gN/kg, respectively (Swan 1970, Swan 

1971). Swan (1970, 1971) also indicated that the sufficient Nfm range for good to very good 

growth of jack pine, black and white spruces seedlings was from 15-25 gN/kg (actual 

reported values were in percentage), however foliar age was not specified. As well, the 

recommended optimal Nfm for coniferous container seedlings were from 13 - 35 gN/kg 

(Landis et al 1985a) or more specifically from 16 - 20 gN/kg (Swan 1970, Swan 1971, 

Meyer a/. 1997). 

NITROGEN-GROWTH AND BIOMASS ALLOCATION 

The increase in N supply does not only result in an increase of leaf N concentration, 

but also in larger and more numerous leaves {i.e., greater photo synthetic or light harvesting 

surface), greater total growth and the allocation of carbon to shoots rather than roots 

(Walters and Reich 1989). Leaf N content was also realized as an important determinant of 

plant productivity (Coleman and Smith 1998, Ibrahim et al 1997, Swan 1972) as well as the 

efficiency of photo synthetic apparatus (Chapin III 1980, Karlson 1994, Kubiske 1997, Reich 

et al 1989). According to Kozlowski et al (1991), the most important effect of N on plants 

is the production of photosynthetic surface or leaf area, which will result in higher production 

of photosynthate for growth and reproduction. As the amount of photosynthate increases, the 

photosynthetically active duration of foliage will also increase (Brady 1990, Foth 1984). In 

addition, growth response of trees due to increasing N supply is in the order of leaves, roots 

and then stems (Etter 1970). 



The increase in nitrate-N supply has been found to increase various growth and 

physiological parameters (Hunt et al. 1985c). For example, it enhanced the relative growth 

rate of the whole plant (RGR; mass-based), relative leaf growth rate (RLGR; area-based), 

unit leaf rate (ULR; a change in mass per unit area), total Nf and chlorophyll concentrations 

(Hunt et al. 1985a), and total leaf area (TLA) (Hunt et al. 1985c). In Douglas fir, N 

application increased stem growth rate, as a result of the combined effect of increased 

photosynthesis efficiency {i.e., PNUE), foliage production and decreased summer water 

stress in trees (Fife and Nambiar 1997) but did not extend growth duration during the 

growing season. This study also showed positive relationship between Nf and leaf area index 

(LAI). Ibrahim et al (1997) found that low N supply resulted in a 50% reduction in growth 

of Balsam Spire poplar as a result of decreased TLA, total number of leaves per tree, mean 

leaf area per leaf, and specific leaf area (SLA; unit leaf area per unit leaf dry-weight). 

The carbon allocation within the plant is strongly controlled by nutrient availability 

(Robinson 1986, Hilbert 1990, Mooney and Winner 1991). Higher productivity is often 

achieved at high N nutrition since rapid growth is associated with “a relatively large 

investment of N in photosynthesizing tissue” (Lambers et al. 1998). N supply affects the 

biomass distribution through a “shift of the relative sink strengths of roots and shoots” 

(Fetene et al. 1993). Decreasing shoot sink-strength occurs at low N supply, and this results 

in an increase of root to shoot biomass ratios (Birk and Vitousek 1986, Colombo and Smith 

1987, Burke et al. 1992, Fetene et al. 1993, Gezelius and Nashom 1993, Kinney and 

Lindroth 1997, Van Cleve and Oliver 1997). Brown (1991), Ibrahim et al. (1997) and 

Coleman et al. (1998) found that the relative proportion of roots increases and that of foliage 

decreases as soil N availability declines in Populus species. 



The variations in R/S ratio and/or the proportion of dry-mass allocated to roots 

reported are dependent on the species and its growing stage. Highest seedling dry-mass was 

achieved with R/S ratios of 0.42 and 0.22 in six month-old jack pine and black spruce 

seedlings, respectively (Colombo and Smith 1987). Ledig and Perry (1965) suggested that as 

trees become larger the shoot-to-root (S/R) ratio decreased {i.e., R/S ratio increased). 

However, the increasing biomass allocated to roots due to plant aging could be used in root 

respiration, rather than root biomass accumulation, as there are high demands for 

maintenance processes such as respiration and protein turnover (Lumbers et al. 1998). 

Consequently, the R/S ratios tended to decrease with further increasing age since total root 

biomass increases at a lower rate than that of the aboveground biomass, and this "decreases 

the respiratory burden of roots” (Lumbers et al. 1998). So, is there a limit and what would 

that limit be, to which the increasing R/S ratio ceases as plants age? 

VARIATIONS IN NITROGEN REQUIREMENT AMONG TREE SPECIES 

Plants require N in highest quantity compared to other nutrients for optimal growth; 

however, the N requirement can vary depending on the species, organ and developmental 

stage (Marschner 1995). Because of adaptation to nutrient-poor sites, coniferous-evergreen 

species are believed to require lower N nutrition than broadleaved-deciduous species (Small 

1972). Spruce species in turn often require higher amount of nutrients for growth than pine 

species (Ingestad 1979). N application resulted in greater growth responses in Jack pine than 

in black spruce (Hoy 1973, Morrison and Foster 1995). Many researchers recommended 50 

to 100 ppm N applications for spruce species and 20 to 80 ppm N applications for pine 

species (Swan 1970, Swan 1971, Swan 1972, Ingestad 1979, Landises a/. 1994). 



Different nutrient elements also interact with each other, for example, N application 

alone shows a lower response (0.86 m^/ha/yr) than the application of N and P together (1.24 

m^/ha/yr) (Morrison et al. 1995). These authors also found that high rates of N application 

alone can suppress black spruce growth. Sheriff et al. (1986) indicated that the stem diameter 

and volume o^P. radiata can be elevated up to 130% by applying N and P nutrients together, 

compared to the effects of applying N or P separately. 

SYMPTOMS AND EFFECTS OF NITROGEN DEFICIENCY AND TOXICITY 

Nitrogen deficiency conditions can significantly affect various plant physiological 

processes and morphology. N deficiency not only results in decreases of net photo synthetic 

rates but also dark respiration and photorespiration rates (Moorby and Besford 1983, Hak 

and Natr 1987). Stomatal and mesophyll resistance to CO2 transfer increased significantly 

(Natr 1992). Tesarova and Natr (1986) noted that both final leaf area and dry weight can be 

reduced as much as 50% in N deficient plants. Gillespie and Chaney (1989) and Gezelius and 

Nasholm (1993) confirmed this. Furthermore, low N supply in plants can create a whole 

range of problems, such as decreases in: root to shoot ratio; sulfur nutrition due to lower net 

uptake of S compared to other macronutrients; protein concentration (less N available to be 

incorporated into protein); and the proportion of K and Mn in plant (Gezelius and Nasholm 

1993). Low N supply was also related to the increases in free amino acid concentration in 

shoot, needles and stems, as well as the allocation of macronutrients to roots (Gezelius and 

Nasholm 1993). 

Nitrogen deficiency conditions can affect net photosynthesic rate by modifying leaf 

anatomy (Natr 1992). Such conditions are known to reduce the ratio of mesophyll to whole 



leaf volume (Rovenska and Natr 1981), but are also known to increase stomatal frequency 

per unit leaf area and per mesophyll volume (Pazourek and Natr 1981). Evans (1989) 

showed that N deficiency can cause (1) a decrease in the volume and quantity of cells and 

chloroplasts (including the distribution of chloroplasts within the cells), (2) an inhibition of 

RuBP carboxylase activity, and (3) a reduction in the amount of soluble protein per unit leaf 

area and per cell. 

Visible symptoms such as chlorosis and stunted needles are commonly found on jack 

pine trees when N supply becomes deficient (Landis et al. 1992b, Meyer et al 1997). In 

severe cases, the jack pine needles become short, stiff and necrotic at the end of the growing 

season (Meyer et al. 1997). Generally, older leaves at the bottom of the canopy turns from 

light green to yellow at the tips, and eventually the entire leaves turn yellow even though the 

tissues are still alive and turgid (Foth 1984). 

High N concentrations in the plant can also change plant morphology by means of 

increasing leaf length, width and area, but decreasing leaf thickness (Marschner 1995). 

Although N enhances root growth, the rate of increase in shoot growth is much higher than 

that of root growth, leading to an increase of S/R ratio both in terms of dry weight and length 

(Marschner 1995). Shoot and leaf growth increase because high N supply increases cell 

division and production at the early stage and cell expansion at the latter stage of growth 

(Moorby and Besford 1983). Similarly, high N supply also increases the number of cells in 

younger roots and cell size in older roots (Moorby and Besford 1983). 

If N supply exceeds the requirement by the plant, numerous problems may result. A 

large supply of N nutrient can encourage the production of soft, succulent tissue that is 

susceptible to mechanical injury as well as to diseases and insects (Brady 1990, Foth 1984). 



Soft, large leaves are likely to become droopy and interfere with light interception 

(Marschner 1995). Excessive supply ofN can lead to excess vegetative growth, causing plant 

lodging or falling over, with slightest wind and competition from other vegetation (e.g., 

weeds) (Brady 1990). When the growth period is prolonged (due to high N supply), it is 

believed to be beneficial only for plant crops in regions having long growing periods; in 

cooler regions, the excessive N supply can delay the development of cold-hardiness and 

predispose plants to frost damages (Marschner 1995). Considering the increases in S/R ratio 

at high N supply, the ability of the root system to uptake nutrients and water is reduced at the 

late growing stage, particularly in dry areas (Marschner 1995). The high nutrient supply 

tends to stimulate the higher production of smaller roots but suppresses the growth in root 

length towards the late growing stage (Marschner 1995). If N nutrition is not supplied at an 

appropriate level (i.e., either too low or too high) 4 to 8 days after seed germination, the total 

number of primary and secondary lateral roots decreased (Moorby and Besford 1983). 



MATERIALS AND METHODS 

PLANT MATERIALS 

At the start of the experiment, two-month-old trembling aspen {Populus tremuloides 

Michx.) and one-year-old black spruce (Picea mariana [Mill.] B.S.P.), white spruce (Picea 

glauca (Moench) Voss), and jack pine {Pinus hanksiana Lamb.) seedlings were used. 

Seedlings for the experiment were selected for uniformity in size and morphology. Aspen 

seedlings were grown from seeds at the Lakehead University’s greenhouse. The coniferous 

seedlings were obtained from A&R Greenhouse Ltd. (Dorion, ON). 

GROWING CONDITIONS 

The growing medium used was a peat-vermiculite mixture (50/50, v/v). The seedlings 

were planted in 5 x 5 x 7 cubic-inch pots. The photoperiod was controlled; at 16 hours and 

natural light was supplemented by high pressure sodium lamps on cloudy days, early 

mornings and late evenings. According to Landis et ah (1992a), the optimum ranges of day 

and night temperatures for boreal seedling growth are 21 to 2TC and 15 to 24®C, 

respectively. Day and night temperatures at the greenhouses were set at approximately 25”C 

and 18®C, respectively. A RH of 65% is the optimum level recommended by Landis et al. 

(1992a). Relative humidity (RH) during the experiment was 50% to 80%. Soil acidity and 

salinity were in the range of 5.5 to 6.0 pH and 1.2 to 2.5 mS/cm, respectively, and were 

within the ranges recommended by Landis et al. (1992b). Aspen seedlings were irrigated 



using fertilizer solutions every 3 days, and conifers were irrigated every 6 days due to their 

lower water demand. 

Essential mineral nutrients other than N were provided at optimum concentrations, 

using water-soluble fertilizers. The rates recommended by Landis et al (1992b) for Boreal 

seedlings were used, i.e., 60, 150, 80, 40, 60, 4.00, 0.80, 0.50, 0.32, 0.15, 0.02, and 4.00 

ppm for P, K, Ca, Mg, S, Fe, Mn, B, Zn, Cu, Mo, and Cl, respectively. Microfme 

Superphosphate (0-20-0), Muriate of potash (0-0-62), magnesium sulphate (Mg(S04) 

•7H2O), and calcium nitrate (Ca(N03)2, containing 18% Ca and 15.5% N) were used to 

supply the macronutrients. MicroMax® micronutrient was used for micronutrients. The 

irrigation water and growing medium were tested for nutrient contents and consequently 

subtracted from the total rate of fertilizer application. The chemical formulation is attached in 

Appendix A. 

EXPERIMENTAL DESIGN AND NITROGEN TREATMENT 

This experiment was a Split-Split Plot design (Mead 1988, Hicks 1993, Brown 1995) 

utilizing a2x2x6x4 factorial treatment structure with 12 experimental units (i.e., 

seedlings). The factors were: 

• Two blocks in each of the two greenhouses, 

• Six N treatments in each block: 25, 75, 125, 175, 375, and 775 ppm N (as NH4NO3 and 

Ca(N03)), 

• Four species: trembling aspen, black spruce, white spruce, and jack pine, and 

• Twelve seedlings per species per N treatment per block, from which 3 were selected at 

each of the 2 measurements. 



The linear model is presented below (Equation 1). A completed expected means square 

(EMS) table and the tests of null hypotheses for the experiment are in Appendix B. 

Yijkim = + Gi + B(i)j + 5(ij)' + Nk + GNik + BN(i)jk + 5(yk)" 
+ Si + GSii + BS(i)ji + NSki + GNSiki + BNS(i)jki + S(ijki)m Equation 1 

where G = Greenhouse (i = 1, 2), B = Block (j = 1, 2), N = Nitrogen (k = 1, 2, 6), and 
S = Species (1 = 1, 2, 3, 4). 

DATA COLLECTION AND ANALYSIS 

The root collar diameter and height of all seedlings were measured at the beginning of 

the experiment. These parameters were measured again on the 50*^ day (Measurement 1) and 

100^^ day (Measurement 2) of the experiment. Three seedlings were selected randomly from 

each block and N treatment on the 50^*" and 100‘^ day to measure foliar gas exchange {i.e., 

photosynthesis, A, and transpiration, E) using a PP-system CIRAS-1 gas exchange system 

and Parkinson leaf chambers with automatic environmental control (PP-System, Haverhill, 

MA, USA). The quantum efficiency of Photosystem II (OPSII) was measured using a FMS2 

fluorometer (Hansatech, Norfolk, England) simultaneously with the gas exchange 

measurement. The measurements were taken on the second or third fully expanded leaf from 

the top of the seedlings in aspen and on foliage at the upper part of the crown in conifers 

(excluding the tips). This was to minimize the effect of variations in gas exchange of foliage 

at the top vs. bottom or young vs. old foliage. 

Following gas exchange measurements, the current foliage of conifer seedlings and 

the total foliage of aspen seedlings were harvested to determine total projected leaf area 

(TLAnew, cm^) using a WinNeedle image analysis system (Regent, Quebec). Seedling 

components were oven-dried at 70°C over 48 hours for dry mass determination as well as 



foliar nitrogen concentration analysis at the Environmental Laboratory, Lakehead University. 

Foliar N was analyzed using the colorimetric Skalar Methods (Skalar Analytical B.V. 1993). 

Sulfiiric acid, potassium sulfate and mercuric sulfate were the catalysts used in the digestion 

process. The detailed procedure can be found in Skalar Analytical (1993). Total seedling 

photosynthetic capacity by current year foliage (At, A x total area of current year foliage) was 

calculated. The photosynthetic water-use-efFiciency (PWUE, the net CO2 fixation per unit of 

leaf H2O transpired, i.e., A/E,), and photo synthetic nitrogen-use-efificiency (PMJE, the net 

CO2 fixation per unit of leaf N concentration, i.e., A/Nf) were computed. 

Although seedlings were selected for uniformity, there were still minor differences 

between individuals. To account for the possible effects of differences in the initial size. 

Analyses of Covariance (ANCOVA) were performed using the initial diameter as a covariate 

for diameter increment and the initial height as a covariate for height increment and seedling 

biomass variables. Gas exchange, foliar nitrogen concentration and photosynthetic resource- 

use-efficiency (PWUE and PNUE) variables were analyzed using a three-way Analysis of 

Variance (ANOVA). The Statistical Analysis System (SAS, SAS Institute Inc., Cary, NC, 

USA) software was used for all the analyses. 

In the presentating the results, a graphical approach was used to investigate trends, 

rather than using tests for differences between the means. As well, the gas exchagne results 

for Measurement 1 was not presented in the thesis because there were some problems with 

the data. 



RESULTS 

GAS EXCHANGE AND FOLIAR NITROGEN 

Measurement 1 (Foliar Nitrogen Only) 

Mass-based foliar nitrogen concentration (Nfm) showed a significant response to the 

interaction of nitrogen and species (N*S) (p < 0.01, Table 1). The pattern of response (Nfm) 

of jack pine varied little with N treatments, whereas Nfm stayed relatively constant from 25 to 

175 ppm N and was generally positively related to the amount of N applied in the other three 

species (Figure lA). The response of the area-based foliar nitrogen concentration (Nfa) was 

significantly different only between species (p < 0.01, Table 1). This is attributed to the 

substantially higher Nfa in jack pine compared to the other three species. Full ANOVA tables 

for these variables are found in Appendix C. 

Overall, trembling aspen showed greater Nfm but lower Nfa at all N treatments than 

the coniferous species (Figures lA and IB). Among the conifers, black spruce had greater 

Nfm than did white spruce at all N levels (Figure lA). Nfm in jack pine at lower N treatments 

(25 to 175 ppm N) was comparable to that of black spruce but was lower than that of black 

spruce at higher N treatments (375 and 775 ppm) (Figure lA). At the highest N level, Nfm 

remained relatively constant in jack pine but increased greatly in the spruces. However, in 

the area-based estimation jack pine showed highest Nfa at most N treatments followed by 

black spruce, white spruce and trembling aspen (Figure IB). 



Table 1. Partial ANOVA table for foliar nitrogen concentration based on mass (Nfm, g N/kg) 
and area (Nfa, g N/m^) for Measurement 1. 

a 

b 

Source DF MS Pr > F MS Pr > F 

W 5" 
G*N" 5 
s'’ 3 
G*S'’ 3 
B*S(G) 6 
N*S 15 
G*N*S 15 

NL 
527.10 0.0001 

39.74 0.2675 
948.69 0.0020 

22.34 0.7357 
51.31 0.0295 
86.77 0.0002 
58.27 0.0038 

Nfa 
20.27 0.3779 
16.58 0.4767 

393 77 0.0001 
17.32 0.1396 
6.44 0.7989 

20.46 0.1307 
11.26 0.5862 

Test of hypothesis using B(G)*N as an error term. 

Test of hypothesis using B(G)*S as an error term. 

Test of hypothesis using B(G)*N*S as an error term. 

Values in bold are significant at 95% C.I. 

, T. Aspen „ B. Spruce 

Pine _ _ W. Spruce 

Figure 1. Foliar nitrogen concentration (mean ± S.E.M.) for Measurement 1. 
(Refer to Table 1 for definitions of abbreviations) 



Measurement 2 

Nitrogen-species interaction effects were significant in whole seedling photosynthetic 

capacity (At), transpiration (E), Nfm, Nfa, and in photo synthetic water-use-efficiency (PWUE) 

(p < 0.05, Table 2). However, other variables (z.e., net photosynthetic rate. A; quantum 

efficiency of photosystem II, <I>PSII; and photo synthetic nitrogen-use-efficiency, PNUE) 

showed significant responses to N treatment and those were significantly different between 

species (p < 0.05, Table 2). PNUE, At and E also exhibited a significant response to the 

interaction of block, species and greenhouse (B*S*G; Table 2). Full ANOVA tables for these 

variables can be found in Appendix D. 

Table 2. Partial ANOVA table for gas exchange and foliar nitrogen variables for Measurement 2. 

Source DF MS Pr> F MS Pr > F MS Pr > F MS Pr > F 

At E OPSII 
N” 

G*N 
S 
G*S 
B*S(G) 
N*S 
G*N*S 

5 
5 
3 
3 
6 
15 
15 

155.75 
11.68 

304.40 
123.57 
93.29 
23.99 
13.65 

0.0003 ^ 
0.4313 
0.1014 
0.3509 
0.0003 
0.1365 
0.5682 

461.85 
33.24 

4956.02 
367.47 
66.08 

219.73 
24.57 

0.0137 
0.8584 
0.0001 
0.0362 
0.4198 
0.0019 
0.9725 

4.16 
0.81 
5.84 
4.94 
4.37 
1.38 
0.45 

0.0074 
0.3785 
0.3479 
0.4089 
0.0001 
0.0378 
0.7680 

0.0213 
0.0084 
3.3499 
0.0267 
0.0208 
0.0105 
0.0087 

0.0301 
0.2546 
0.0001 
0.3616 
0.0555 
0.3342 
0.4899 

Nf„ NT PNUE PWUE 

N 
G*N 
S 
G*S 
B*S(G) 
N*S 
G*N*S 

5 
5 
3 
3 
6 
15 
15 

809.63 
23.03 

1427.24 
18.17 
19.80 
73.08 
11.30 

0.0001 
0.5740 
0.0001 
0.4868 
0.1307 
0.0001 
0.4515 

31.67 
1.00 

133.00 
0.58 
0.76 
2.40 
2.12 

0.0001 
0.3604 
0.0001 
0.5537 
0.4447 
0.0037 
0.0470 

44.99 
2.12 

41.27 
16.77 
10.64 
2.45 
2.78 

0.0001 
0.0470 
0.0743 
0.2904 
0.0006 
0.2692 
0,1852 

1.47 
0.95 

170.89 
3.45 
0.40 
2.92 
1.44 

0.5709 
0.7571 
0.0001 
0.0137 
0.9291 
0.0315 
0.4009 

® Net photosynthesis (A, gmol COi/mVs), total seedling photosynthesis capacity (At, 
|umol/C02/h/seedling), transpiration (E, mmol H20/mVs), photosystem II activity (OPSII, relative 
value), mass-based foliar nitrogen concentration (Nf^, g N/kg), area-based foliar nitrogen 
concentration (Nfa, g N/m^), photosynthetic nitrogen use efficiency (PNUE, pmol C02W/s/g N), and 
photosynthetic water use efficiency (PWUE, pmol C02/mmol H2O). 

'' See Table 1 for the error terms used in testing for each of the above treatment combination. 

' Values in bold are significant at 95% C.I. 



Generally, At exhibited the greatest response to intermediate N regimes {i.e., from 75 

to 175 ppm N), which varied between species and resulted in species-nitrogen interaction 

effect (Figure 2C). Aspen achieved remarkably higher At at all N treatment than the conifers, 

of which jack pine showed higher At than the spruces. At in white spruce and aspen were 

relatively stable from 25 ppm N to 125 and to 175 ppm N, respectively, and then decreased 

with fiirther increases in N (Figure 2C). At in black spruce and jack pine increased from 25 

ppm N to 75 and to 125 ppm N, respectively, and then decreased significantly with further 

increasing in N (Figure 2C). 

Distinct patterns of response of E occurred between species as well as across nitrogen 

treatments, resulting in the strong difference due to species-nitrogen effect (p < 0.05, Table 2, 

Figures 2B and 2E). E increased with increasing N in aspen, while it decreased with 

increasing N in black spruce and white spruce. In jack pine, E increased from 25 ppm N to 

125 ppm N and then decreased with increasing N. Among the conifers, jack pine maintained 

greater E than the spruces at 125 ppm N treatment and beyond. 

Different patterns of PWUE response occurred between species, resulting in a 

significant species-nitrogen interaction (p < 0.05, Table 2). The PWUE in aspen, was 

substantially lower than in conifers (Figure 2E). Although PWUE did not vary substantially 

between N treatments, PWUE in aspen and black spruce decreased slightly with increasing N, 

but the opposite was true for white spruce. In jack pine, PWUE varied little between N 

treatments. Moreover, at lower N treatments (25 and 75 ppm N), PWUE values in conifers 

were similar. As N increased beyond 75 ppm N, white spruce had slightly greater PWUE than 

did black spruce and jack pine. Beyond the 175 ppm N the PWUE in white spruce is further 

enhanced, while it decreased in black spruce and jack pine. 



T. Aspen B. Spruce ^ - J. Pine ^ - W. Spruce 

Figure 2. Gas exchange (mean ± S.E.M.) for Measurement 2. 
(Refer to Table 2 for definition of abbreviations) 



Nfm and Nfa showed significant responses to species-nitrogen interaction effect and 

were significantly different between species (p < 0.01, Table 2). As in Measurement 1, Nfm 

and Nfa responded positively to increasing N application in aspen, black and white spruces, 

and Nfm and Nfa jack pine showed the least response to increasing N addition (Figures 1 and 

2). Nfm in black spruce and trembling aspen were comparable and higher than those in white 

spruce and jack pine, which had the lowest Nfm. Nfa was highest in black spruce followed 

sequentially by white spruce, jack pine, and trembling aspen. 

The net photo synthetic rate (A) displayed a significant response to increasing N 

treatment, without clear distinctions between the species (Table 2). In all conifers, there was 

a general decline of A beyond the 125 ppm N treatment. From 25 to 125 ppm N, A in black 

and white spruce stayed relatively stable, whereas it responded positively to N addition in 

jack pine (Figure 2A). In aspen, A did not vary significantly between N treatments. 

The response of OPSII to both species and N treatment were significant (p < 0.05, 

Table 2). OPSII in white spruce was negatively related to increasing N, while in jack pine it 

increased from 25 to 175 ppm N, and dropping with further addition of N (Figure 2C). In 

aspen and black spruce, €>PSII varied little and showed no obvious increasing nor decreasing 

trend with the addition of N. Among the conifers, OPSII values in black and white spruce 

were comparable and higher than jack pine’s (Figure 2D). 

The response of PNUE to the block-species interaction and to the main effect of N 

treatments was significant (p < 0.05, Table 2). Overall, PNUE responded negatively to 

increasing N in all four species (Figure 2H). In all species, there appeared to be a plateau 

between 75 and 175 ppm N. Aspen achieved the highest PNUE from 25 to 175 ppm N, but 

beyond which point it was lower than jack pine. Among the conifers, jack pine achieved the 



greatest PNUE at all N treatments. The PNUE in white spruce was slightly lower than that in 

black spruce at 25 and 75 ppm N, but it exceeded that in black spruce beyond 125 ppm N. 

GROWTH AND BIOMASS ALLOCATION 

Measurement 1 

A. Growth 

Table 3 presents the ANOVA and ANCOVA results for those variables exhibiting 

significant responses (i.e., height and diameter increment, seedling dry-weight and total leaf 

area; TLA). Note the initial height and diameter was used as covariates for the ANCOVA 

for all growth variables after they were analyzed using the ANOVA, and the results for those 

variables that were significantly different due to the covariate effect are shown here. Only 

height growth responded significantly to a change in N, however, all four displayed 

significant responses to the greenhouse species interaction (p < 0.05). Only TLA exhibited a 

significant response to nitrogen-species interaction. The full ANOVA and ANCOVA tables 

for these variables can be found in Appendix E. 

Total seedling dry weight, height and growths were significantly different due to 

species-greenhouse interaction (data not shown). The cause of these differences was 

primarily due to the different response of aspen, producing much more growth than the 

conifers (Figure 3). Also, greenhouse 2 tended to produce larger seedlings than greenhouse 

1, because the overall day temperature in greenhouse 2 appeared to be slightly higher and the 

relative humidity appeared to be relatively lower than that in greenhouse 1. However, the 

response patterns to increasing N supply of each species were generally converged. Aspen 

showed remarkably higher height growth at 75, 125 and 175 ppm N treatments than at other 



N levels {i.e., at 25, 375 and 775 ppm N) and also compared to the growth achieved by the 

conifers at these N treatments. Among the conifers, black spruce achieved higher height 

increments than did the others, followed by white spruce at all N treatments. However, the 

diameter growth and total seedling weight in white spruce were greater than black spruce and 

jack pine. 

Table 3. Partial ANOVA and ANCOVA table for growth variables for Measurement 1. 

Source DF MS Pr > F MS Pr > F MS Pr>F MS Pr > F 
Height growth 

0.0482 
Diameter growth Seedling Weight Total Leaf Area 

TT 
G*N 
S 
G*S 
B*S(G) 
N*S 
G*N*S 

5 
5 
3 
3 
6 
15 
15 

153.6 
57.7 

5612.1 
1259.1 

13.8 
135.5 
49.5 

0.3500 
0.0001 
0.0001 
0.9784 
0.0790 
0.7960 

0.508 
0.319 

75.344 
3.643 
0.548 
1.009 
0.359 

0.6409 
0.8151 
0.0001 
0.0246 
0.5305 
0.1341 
0.8764 

15.8 
6.5 

2438.3 
246.6 

1.7 
16.0 
8.5 

0.2901 
0.7031 
0.0001 
0.0001 
0.9916 
0.3327 
0.8284 

43.9 
14.1 

6907.2 
117.8 

3.4 
42.4 
15.4 

0.1352 
0.6314 
0.0001 
0.0001 
0.9836 
0.0415 
0.7070 

^ Variables analyzed using the ANCOVA. 

Variables analyzed using the ANOVA. 

' See Table 1 for the error terms used in testing for each of the above treatment combination. 

Values in bold are significant at 95% C.I. 

Species-nitrogen interaction significantly affected total leaf area (TLA) (p < 0.01, 

Table 3). Species differences were apparent with aspen, not unexpectedly, achieving the 

highest TLA at all N treatments (Figure 3C). TLA in aspen showed a bell-shaped response 

(being highest at 175 ppm N); however, there were no particular patterns in the conifers 

response to N treatments. The TLA in black spruce and jack pine were comparable while 

exchanging positions at virtually all N levels, but white spruce consistently exhibited the 

lowest values. 



Trembling Aspen 

Nitrogen Treatment (ppm) Nitrogen Treatment (ppm) 

Figure 3. Growth and dry-weight (mean ± S.E.M.) for Measurement 1. 

T. Aspen B. Spruce _ _ . J. Pine _ _ W. Spruce 

Figure 4. Biomass ratios and allocation (mean ± S.E.M.) for Measurement 1. 



B. Biomass Ratios and Allocation 

The species-nitrogen interaction effect was significant for both percent allocation to 

the foliage and to the root (Foliage% and Root%, respectively) (p < 0.05, Table 4), whereas 

root-to-foliage and root-to-shoot ratios (R/F and R/S, respectively) showed siginificant 

responses to species-greenhouse interaction (p < 0.05, Table 4). Interestingly, all four 

variables exhibited a significant species response which is reflected in the graphs (Figures 4A 

to D). For three of the variables, R/F, R/S and Root%, aspen and white spruce consistently 

exhibited the lowest and highest values, respectively. With respect to Foliage%, there were 

clear distinctions between the species, particularly white spruce and jack pine, with some 

cross over between aspen and black spruce. Higher N generally significantly decreased the 

R/F ratio (Figure 4A). Appendix G contains full ANOVA tables for biomass allocation 

variables. Generally, the trend for biomass allocation to foliage was opposite of that for roots 

(Figures 4C and 4D). The pattern was more obvious in white spruce and trembling aspen 

than in other species (Figure 4). The R/S ratio showed a similar trend to that of R/F ratio 

with increasing N supply, but N effect was not significant (p = 0.06, Table 3, Figure 4C). 

Table 4. Partial ANOVA table for biomass allocation variables for Meaurement 1. 

Source DF MS Pr>F MS Pr>F MS Pr > F MS Pr > F 
Root / Foliage Root / Shoot Foliage% Root% 

G*N 
S 
G*S 
B*S(G) 
N*S 
G*N*S 

5 
5 
3 
3 
6 
15 
15 

0.0469 
0.0332 
1.1085 
0.0937 
0.0058 
0.0184 
0.0146 

0.0447 ^ 
0.1065 
0.0001 
0.0028 
0.8816 
0.3094 
0.5054 

0.0119 
0.0118 
0.2535 
0.0332 
0.0023 
0.0045 
0.0052 

0.0672 
0.0684 
0.0001 
0.0036 
0.7352 
0.3430 
0.2307 

0.00562 
0.00162 
0.23428 
0.02417 
0.00412 
0.00334 
0.00429 

0.0911 
0.6001 
0.0001 
0.0323 
0.3630 
0.5482 
0.3305 

0.00528 
0.00397 
0.10667 
0.00614 
0.00465 
0.00280 
0.00481 

0.3084 
0.4449 
0.0011 
0.3522 
0.2989 
0.7025 
0.2521 

^ Root/Foliage = root-to-foliage ratio (g/g), Root/Shoot = root-to-shoot ratio (g/g), Foliage% = % 
allocation to foliage, Root% = % allocation to root. 

^ See Table 1 for the error terms used in testing for each of the above treatment combination. 

Values in bold are significant at 95% C.I. 



Measurement 2 

A. Growth 

With the exception of root dry-weight, which responded significantly to species and 

greenhouse-species treatments, respectively, all growth variables responded significantly to 

species-nitrogen interaction (p < 0.01, Table 5). These relationships were displayed by the 

distinct response patterns as shown in Figure 5. The full ANOVA and ANCOVA tables for 

these variables can be found in Appendix F. 

Table 5. Partial ANOVA and ANCOVA table for growth variables for Measurement 2. 

Source DF MS Pr > F MS Pr>F MS Pr > F MS Pr>F 
Height Growth Diameter Growth Total Leaf Area Foliage Weight 

IP 5 586.56 0.0024^ 2.057 0.1371 58.69 0.0034 
G*N 5 127.45 0.1970 0.845 0.5182 3.92 0.7628 
S 3 10447.65 0.0001 92.771 0.0001 1547.92 0.0001 
G*S 3 545.16 0.0162 0.300 0.7084 3.47 0.0527 
B*S(G) 6 68.31 0.6323 0.625 0.7787 0.75 0.9932 
N*S 15 505.61 0.0001 2.354 0.0507 53.02 0.0001 
G*N*S 15 51.12 0.8938 0.638 0.8931 3.82 0.8432 

11.11 0.1196 
4.39 0.5064 

130.06 0.0001 
7.00 0.0848 
1.94 0.4004 
8.19 0.0002 
2.87 0.1361 

Stem Weight Shoot Weight Root Weight Seedling Weight 
N 5 14.10 0.0296 45.05 0.0537 6.25 0.1722 83.31 0.0640 
G*N 5 4.43 0.3532 12.04 0.5365 1.54 0.7828 21.53 0.5846 
S 3 1082.70 0.0001 1863.97 0.0001 305.41 0.0001 3663.00 0.0001 
G*S 3 42.02 0.0007 75.85 0.0075 17.60 0.0018 163.42 0.0044 
B*S(G) 6 1.56 0.6735 6.90 0.2388 0.93 0.8776 12.03 0.3874 
N*S 15 11.88 0.0001 34.07 0.0001 2.19 0.5449 51.41 0.0002 
G*N*S 15 3.52 0.1624 8.52 0.0924 1.48 0.8292 16.58 0.1635 

^ See Table 1 for the error terms used in testing for each of the above treatment combination. 

Values in bold are significant at 95% C.I. 

The height growth in aspen was very responsive to increasing N treatment, while the 

conifers, particularly white spruce and jack pine were not responsive to N treatments. 

Similarly, aspen achieved very high TLA, foliage, stem, shoot and total seedling dry-weights 

compared to the conifers. However, among the conifers, jack pine achieved the greatest 
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Figure 5. Growth and dry-weight (mean ± S.E.M.) for Measurement 2. 



TLA and foliage dry-weight compared to the spruces at all N treatments (Figures 5C and 

5D). Furthermore, on the area-based estimation black spruce achieved greater TLA than did 

white spruce, but the reverse was true based on the mass estimation. As for stem, shoot and 

total seedling dry-weights, white spruce realized higher biomass than black spruce and jack 

pine at all N treatments (Figures 5E, 5F and 5H). Furthermore, although the stem dry-weight 

in jack pine was lower than that in black spruce across the N treatments, it was comparable to 

black spruce when total shoot and seedling dry-weights were considered. 

Height growth, TLA and stem dry- weight also responded significantly to nitrogen 

treatments (p < 0.05). The highest height increments in aspen occurred at intermediate N 

treatments, particularly at 75 ppm N (Figure 5A). Hence, similar results were found in total 

stem biomass (Figure 5E). Other than TLA in aspen, which showed highest result at 25 ppm 

N (Figure 5C), all growth variables were highest at 75 ppm N and significantly low beyond 

175 ppm N (Figures 5D to 5H). Height increment in black spruce responded negatively, 

while white spruce and jack pine’s height increments varied little, to increasing N (Figure 

5 A). An overall decreasing response of TLA to increase in N beyond 75 ppm N was found in 

black spruce and jack pine, while white spruce remained relatively similar at all N treatments 

(Figure 5C). As well, total stem weights in black spruce and jack pine were both highest at 25 

ppm N, but highest stem weight for white spruce occurred at 125 ppm N (Figure 5E). This 

was also true for total foliage, shoot, root and total seedling dry-weights (Figures 5D to 5H). 

As in Measurement 1, all growth variables showed significant differences between 

species (p < 0.01, Table 5). All growth parameters of aspen were substantially higher than 

those of coniferous species at all N levels (Figures 5A - 5H). In conifers, white spruce 

produced greater overall seedling growth than did jack pine and black spruce (Figure 5H), 



since it was able to maintain both highest stem and root growth despite its lower foliage 

production (Figures 5D to 5G). The overall seedling weight of black spruce was comparable 

to that of jack pine (Figure 5J) but due to different reasons. While black spruce maintained 

higher root and stem biomass (Figures 5E and 5G), jack pine sustained higher foliage 

production (Figures 5C and 5D). 

B. Biomass Ratios and Allocation 

Species-nitrogen interaction significantly affected root-to-stem (R/St), R/F and R/S 

ratios, Foliage% and Root% (Table 6). The strong distinction in the responses of aspen 

compared to the conifers primarily contributed to the species-nitrogen interaction effect 

(Figures 6A to 6C). Highest ratios for black spruce and jack pine occurred at 25 ppm N. 

White spruce also showed highest R/St at 25 ppm N, but highest R/F and R/S were found at 

75 ppm N. Lowest ratios in all conifers were at 775 ppm N. In aspen, highest R/F and R/S 

occurred at 375 and 775 ppm N. R/F and R/S ratios in aspen were relatively stable from 25 

to 175 ppm N. R/St ratios in aspen were relatively stable across all N treatments. Appendix 

H contains full ANOVA tables for biomass allocation variables. 

All biomass ratios and allocation variables differed significantly between species (p < 

0.01) (Table 4). Trembling aspen had the lowest Foliage% but the highest Root% and Stem% 

at all N treatments, resulting in the highest R/F compared to the conifers (Figure 6). Among 

the conifers, black spruce allocated highest proportional resources to Stem (Figure 6E), 

resulting in least R/St (Figure 6B). White spruce showed highest Root% (Figure 6F) but 

lowest Foliage% (Figure 6D), therefore it showed greatest R/F and R/S (Figures 6A and 6C). 

Jack pine allocated highest resources to foliage (Figure 6D) resulting in lowest R/F (Figure 

6A), whereas the reverse was true for percentage of stem allocation. 



Table 6. Partial ANOVA table for biomass allocation variables for Measurement 2. 

Source DF MS Pr > F MS Pr > F MS Pr> F 

N 
G*N 
S 
G*S 
B*S(G) 
N*S 
G*N*S 

5 
5 
3 
3 
6 
15 
15 

Root / Foliage Root / Stem 

Foliage % Stem% 
0.0057 
0.0055 
1.7136 
0.0029 
0.0012 
0.0134 
0.0040 

1644 
1737 
0001 
3038 
8912 
0142 
6922 

0.00936 
0.00433 
1.00797 
0.00085 
0.00120 
0.00401 
0.00270 

0445 
2445 
0001 
5798 
8972 
3149 
6516 

Root / Shoot 
IP 5 0.6517 0.3624" 0.2034 0.0034 0.0282 0.0425 
G*N 5 0.2004 0.8518 0.0134 0.7690 0.0035 0.8057 
S 3 16.4008 0.0005 1.5676 0.0001 0.5064 0.0001 
G*S 3 0.2714 0.6822 0.0489 0.1542 0.0190 0.0501 
B*S(G) 6 0.5190 0.5363 0.0194 0.4804 0.0040 0.7952 
N*S 15 1.329 0.0323 0.0404 0.0566 0.0212 0.0097 
G*N*S 15 0.1610 0.9955 0.0078 0.9749 0.0019 0.9975 

Root% 
0.0116 
0.0009 
0.1695 
0.0060 
0.0010 
0.0061 
0.0006 

0.0127 
0.8283 
0.0001 
0.0317 
0.8248 
0.0068 
0.9904 

® Root/Foliage = root-to-foliage ratio (g/g), Root/Stem = root-to-stem ratio (g/g), Root/Shoot = root- 
to-shoot ratio (g/g), Foliage% == % allocation to foliage, Root% = % allocation to root. 

’’ See Table 1 for the error terms used in testing for each of the above treatment combination. 

Values in bold are significant at 95% C.I. 
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Figure 6. Biomass ratios and allocation (mean ± S.E.M.) for Measurement 2. 



DISCUSSION 

Foliar Nitrogen 

Foliar N concentration (Nf) results in this study support the theory that leaf nitrogen 

(N) content is an important determinant of plant productivity (Swan 1972, Ibrahim et al. 

1997, Coleman and Smith 1998) as well as the efficiency of photosynthetic apparatus (Chapin 

III 1980, Reich et al 1989, Karlson 1994, Kubiske 1997). Optimum ranges of Nf for 

trembling aspen, jack pine, black and white spruces vary slightly in the literature. In spite of 

these variations, the mass-based foliar nitrogen concentration (Nfm) values of this study were 

comparable to the literature. For example, from the lowest (25 ppm) to the highest (775 

ppm) N treatments, the Nfm of trembling aspen seedlings ranged from 32 - 58 gN/kg in 

Measurement 1 and 23 - 54 gN/kg in Measurement 2. The optimum Nfm values reported for 

the same species varied from 34.1 - 40.0 gN/kg (Brown 1991, Coleman and Smith 1998). 

For spruce (Picea spp.) and pine {Pinus spp.) seedlings, the optimum Nfm range was 13-35 

gN/kg (Swan 1970, Swan 1971, Landis et al 1985, Meyer et a/. 1997). The Nfm in our 

conifer seedlings ranged from 22 - 35 and 16-52 gN/kg in Measurement 1 and in 

Measurement 2, respectively. 

Generally, increases in N supply enhanced foliar N concentration in all four species, 

particularly for the area-based foliar N concentration (Nfa). Black spruce concentrated 

greater N content in foliage than did white spruce and jack pine; jack pine contained the 

lowest foliar N at all N treatments on both mass and area basis. Trembling aspen achieved 



lower Nfa but higher Nfm than did the conifers at all N treatments, because it produced 

greater total leaf area but lower total foliage weight than did the conifers. 

Application of 375 and 775 ppm N appeared to have created the greatest increases in 

Nf, particularly the mass-based Nf, for aspen, black and white spruces seedlings and created 

luxurious to toxic N conditions for these seedlings (see discussion on Gas Exchange and 

Growth Response). In jack pine, Nfm values were relatively stable across the N treatments, 

particularly in Measurement 1 (Figures 1 and 2). Toxic N conditions were evidenced by the 

substantial physiological and growth reductions meanwhile foliar N concentration continued 

to increase (Van den Driessche 1991). This was also evident in our study, especially in 

treatments beyond 175 ppmN (Figures 1 and 2). Conditions of luxury consumption ofN can 

be detected when plant N concentration continues to increase whereas growth is stable (Van 

den Driessche 1991), and the luxury consumption range is intermediate between optimum 

and toxic N supply. In addition, an optimum Nf can be determined at the point where 

maximum photosynthesis (A) is achieved (Brix 1981; see discussion on Gas Exchange). 

Therefore, our results suggest that optimal Nfm were 36.7, 21.6, 27.0, and 25.0 gN/kg and 

optimal Nfa were 1.56, 3.35, 3.69, and 3.69 g/m^, respectively for trembling aspen, jack pine, 

black spruce and white spruce (Figure 2). These Nf corresponded to N treatments at 25 ppm 

for black spruce and at 125 ppm for the other three species. However, the optimum N level 

for black spruce (25 ppm) seems a little doubtful since it is much lower than the reported 

optimum soil N condition {i.e., 50 - 100 ppm N) for the spruces (Swan 1970, Swan 1971, 

Swan 1972, Ingestad 1979, Landis et al 1994). Recalling that Nf in jack pine stayed 

relatively stable beyond the 125 ppm N treatment (Figure 2), this could imply that jack pine 

could not increase the N uptake when soil N was higher than 125 ppm and higher soil N was 



probably toxic to the root system as suggested by the negative response of photosynthesis to 

higher N supply (Figure 2A). 

Although the optimum Nfm for each of the species in this study were within the 

optimal ranges reported by others, the Nfm ranges covering from the lowest (25 ppm) to 

highest (775 ppm) N treatments for all the species were slightly higher than the values in the 

literature. This difference may be related to source and rate of nitrogen used in the 

experiment. NO3-N generally enhances N uptake and accumulation by plants in less acidic 

environment, while N supplies that contain equal parts of NH4-N and NO3-N often yield 

greater growth compared to that of NO3-N or NH4-N alone (Marschner 1995, Nygren et al. 

2000). In this study, N treatments contained slightly higher NO3-N than NH4-N because 

calcium nitrate (CaN03) was used for the calcium source, on top of the different rates of 

NH4NO3 source containing 17% NH4 and 17% NO3. Unfortunately the source of N was not 

clearly stated by others, who had reported the optimum Nfm range (13 - 35 gN/kg) for 

conifers (Swan 1970, Swan 1971, Landis et al. 1985, Meyer et a/. 1997). In addition, our 

study utilized significantly higher N addition rates (especially the 375 and 775 ppm N), larger 

pots (5x5x7 in) as well as more frequent fertilization. These might also be factors 

contributing to higher Nf in seedlings of this study as compared to others’ 

Gas Exchange 

In this study, the response of CO2 assimilation or photosynthetic rate (A, pmol/m^/s) 

varied with species as well as with N treatments. While A did not respond significantly to 

increasing N supply in trembling aspen, it responded negatively in the spruces and had a 

parabolic response in jack pine. In the literature, the extent to which A depends upon leaf N 



also varied significantly between studies. For example, Cantin et al (1997) and Coleman et 

al. (1998) concluded that increasing N input enhanced both A and foliar nitrogen 

concentration, while Ibrahim et al. (1997) found that N supply had no effect on A in 

poplar/aspen species {Populus spp.). Results for aspen in this study were consistent with the 

results by Boot et al (1990), Wullschleger and Oosterhuis (1990), Bowman and Conant 

(1994), Ibrahim et al (1997), and Kuhiske et al. (1997). The insensitivity of trembling 

aspen could be explained by the ambient carbon dioxide (CO2) utilized in our measurements. 

Kubiske et al. (1997) found that at elevated CO2 the maximum leaf photosynthesis (A„iax, 

nmol.g’\s'^) were significantly higher in high N treatments than in low N treatments; however 

Amax were not significantly different between N treatments if ambient CO2 was supplied. 

Moreover, the range of A in aspen in this study (4.3 - 6.1 pmol/m^/s) were within the 

reported limits for a wide range of poplar clones (3-11 pmol/m^/s; Ceulemans and Impens 

1983). 

Pest problems could have been a factor responsible for the insensitiveness of A in 

aspen seedlings to N treatment. Over the course of the experiment, many aspen seedlings 

were attacked by aphids, mites, thrips, and powdery mildew. These pests were generally 

controlled after two fumigation treatments. However, insect attacks were generally more 

severe in seedlings under high N treatments {i.e., 375 and 775 ppm N), and heavy damages to 

the terminal leaders as well as some defoliation occurred. Upon Measurement 2 the seedlings 

at 375 and 775 ppm N showed fewer live leaves as measured by total foliage dry-mass and 

total leaf area than did lower N treatments (Figures 5 A, 5C and 5D). 

The vulnerability to insect attacks may be related to the biochemical content or 

nutritional status of the seedlings. Excess N supply can enhance the production of amino 



acids that attract sucking insects such as mites, aphids and plant-hoppers (Dreyer and 

Campbell 1987, Salim and Saxena 1991, Marschner 1995). In this study, the foliar N 

concentration was significantly higher in seedlings under the 375 and 775 ppm N treatments 

and those seedlings suffered the most severe insect attack (Figure 2F). This suggests that 

aspen seedlings may not thrive at sites with high N supply. However, further research is 

necessary to confirm this conclusion. 

In conifers, Brix (1981) demonstrated that the relationship between foliar N and CO2 

assimilation % of maximum in Douglas fir was parabolic. That is, CO2 assimilation increased 

from a deficient foliar N concentration (10 gN/kg) to an optimum foliar N concentration (17 

gN/kg) and then decreasing towards a supraoptimal or toxic foliar N concentration (23 

gN/kg). Foliar N concentrations (16-52 gN/kg) for the conifers in this study were generally 

higher than the optimal suggested concentrations in the literature (13 - 35 gN/kg) (Swan 

1970, Swan 1971, Landis et al. 1985, Meyer et al. 1997). As well, A was inversely related to 

N supply, except for jack pine where A was enhanced as N increased from 25 to 125 ppm N 

(Figure 2). It is then logical to conclude that a N supply of 25, 75 and 125 ppm were 

sufficient for maximum photosynthtic rate for black spruce, white spruce and jack pine, 

respectively (Figure 2A). 

Chlorophyll Fluorescence 

The measurement of chlorophyll fluorescence has been proven to be a useful tool to 

determine the photo synthetic activity in vivo (Papageordiou 1975, Toivoinen and Vidaver 

1984, Hawkins and Lister 1985, Conroy et al 1986, Vidaver et al 1989, Krause and Weis 

1991). For example, it was used to provide information on the physiological status of white 



spruce (Vidaver et al 1989). Chlorophyll fluorescence can be used to estimate the 

photochemical quantum yield of Photosystem II (OPSII) (Lambers et al 1998). In other 

instances, it was used as an indicator of photosynthesis (A) in intact chloroplasts or whole 

leaves (Lichtenthaler and Grumbach 1975, Sivak and Walker 1983, Walker et al 1983, 

Lamontagne et al 2000). This study showed that OPSII followed a similar trend as A in 

response to N treatment in white spruce and jack pine but not in trembling aspen and black 

spruce (Figures 2A and 2D). In black spruce, A decreased sharply with increasing N supply, 

while OPSII stayed relatively stable throughout N treatments. The similar responses of A and 

OPSII in white spruce and jack pine may suggest that the photochemical and biochemical 

reactions of A and OPSII were affected to a similar extent by N treatment. On the other 

hand, the lack of response of aspen and black spruce indicate that the biochemical processes 

were preferentially affected by N treatment in these species. 

The values of OPSII in conifer seedlings are within the reasonable range (0.51 - 0.70) 

suggested by Lambers et al (1998), who stated that illuminated samples had OPSII values 

equal to or less than 0.80. In fact, Lamontagne et al (2000) reported OPSII values from 0.70 

- 0.75 and 0.55 - 0.65 for black spruce samples that were taken at low and high light 

intensities, respectively. The values of OPSII for trembling aspen (0.20 - 0.24) were, 

however, consistently lower than those reported in the literature (/.e., 0.45 - 0.80; Krall and 

Edwards 1992, Lambers et al 1998). Therefore, whether the OPSII values measured for 

aspen in this study are within a tolerable range for this species is not clear, because no other 

studies have reported OPSII values for trembling aspen. 



Photosynthetic Water Use Efficiency 

Photo synthetic water-use-efFiciency (PWUE) is a function of the rate of CO2 

assimilation (A) and the rate of transpiration (E), PWUE = A/E, and is dependent upon the 

plant genotype and physiological condition, including nutritional status (Van den Drissche 

1991). The PWUE of fast-growing genotypes is generally higher than that of slow-growing 

genotypes (Blake et al. 1984). Some studies found that higher available soil N enhanced 

PWUE (Sheriff et al 1986, Squire et al 1987, Reich et al 1989, Liu and Dickman 1996, 

Cantin et al 1997), because N supply is generally positively related to foliar N concentration, 

which in turn often results in greater increase in A than in E (Green and Mitchell 1992). The 

PWUE from the present study is consistent with these findings only in white spruce, because 

as N addition increased, A decreased at a relatively slower rate than E, leading to a slight 

increase in PWUE (Figures 2A, 2B and 2E). Opposite relationships were observed in aspen 

and black spruce. Jack pine showed almost no changes in PWUE as N treatment increased, 

since the response of A and E resembled each other. Given that the soil water content was 

relatively stable during the experiment, the results suggest that aspen and black spruce may 

not be able to use water more efficiently in an increasing soil N environment. However, a 

similar microenvironment may be advantageous for white spruce and indifferent for jack pine, 

in terms of PWUE. 

Photosynthetic Nitrogen Use Efficiency 

Photo synthetic nitrogen-use-efficiency (PNUE) is a function of the rates of CO2 

assimilation (A) and foliar N concentration (Nf) (PNUE = A/Nf, Van den Drissche 1991). 

This study showed that increasing N supply significantly decreased the PNUE in all four 



species (Figure 2H). This negative relationship is probably related to the disproportional 

increase of A with increasing N supply and toxic consumption, i.e., A decreased while Nf 

increased substantially (Figures 2A, 2G and 2F). 

Under low soil N supply, plants that are able to maintain high PNUE are believed to 

have a higher capacity to persist on low N sites (Brown 1978) and thus will also achieve 

greater production than those with lower PNUE on the same habitat (Schlesinger et al 1989, 

Lambers et al 1998). Generally, slow-growing species, such as some evergreen species, 

achieve their PNUE with a low N productivity and a high mean residence time, whereas fast- 

growing species, such as deciduous trees, have a considerably higher N productivity but a 

low mean residence time (Lambers et al 1998). The results of this study support this theory. 

Although PNUE overlapped somewhat between species at different N treatments, it is 

obvious that deciduous species (trembling aspen) achieved higher overall PNUE than the 

conifers except at 375 and 775 ppm N, where it achieved lower PNUE than jack pine (Figure 

2H). Among the conifers, jack pine had the highest PNUE at all N treatments, followed in 

sequential order by white spruce and black spruce. This is consistent with the fact that jack 

pine generally grows faster than the spruces regardless of the N availability. Black spruce 

was able to use N more efficiently than white spruce at low N regimes (25 and 75 ppm N), 

but the opposite was true in the richer N environment. This condition was reflected in A and 

whole seedling photosynthetic capacity (At) (Figures 2A and 2C), in which A and At in black 

spruce were less than that in white spruce at high N treatments. This result was in agreement 

with Patterson et aVs (1997) conclusion that white spruce would grow faster than black 

spruce with increasing nutrient availability. 



Growth Response 

In our study, major differences in individual growth components occurred between 

(1) time of measurement, (2) species and (3) N treatments. In Measurement 1, aspen 

responded to N supply in terms of height increment and total leaf area. In Measurement 2, 

the growth of aspen seedlings were responsive to N addition rates up to 375 ppm in all 

growth components, i.e., height and diameter increments, total foliage, stem and total 

seedling dry-mass. Seedlings at this stage of development were probably better adjusted to 

the experimental conditions upon Measurement 2, and therefore all tested variables showed 

significant responses to soil N supply. However, such trends were not as apparent in conifer 

seedlings 

Generally, the growth components in conifer seedlings showed a lack of response to 

N treatments in both measurements. However, Colombo and Smith (1987) found that height 

and diameter growth in black spruce and jack pine seedlings correlated positively, up to a 

certain toxic N level, with N fertilization rate. The difference in the sensitivity to N between 

deciduous and coniferous species may be related to the nature of their growth capacity. 

Aspen has a greater potential to grow faster than the conifers and thus was able to take 

advantage of the increased N supply. 

The results from this study suggested that aspen grew best at 75 ppm N addition rate, 

since highest total foliage dry-mass, height increment, stem, root and total seedling dry-mass 

production were achieved at this treatment upon Measurement 2. This is in spite of the fact 

that maximum A was achieved at 125 ppm N, and total leaf area and diameter growth at 75 

ppm N were slightly less than that at 25 and 125 ppm N, respectively (Figures 5B and 5C). 

At the toxic N treatments (375 and 775 ppm N), growth constituents in aspen were reduced 



significantly. However, this reduction was primarily due to insect damage to the foliage at 

high N regimes (refer to the discussion on Gas Exchange for further speculation on pest 

damage). The question remains: could the seedling at 375 and 775 ppm N treatments 

function as well as or better than that at 175 ppm N if pests were absent ? 

Among the conifers, white spruce produced the greatest overall seedling dry-mass. 

Black spruce and jack pine were comparable in total seedling dry-mass, but they possessed 

different strategies in carbohydrate accumulation (see discussion on Biomass Allocation). 

Jack pine and black spruce seedlings grew best under the 25 and 75 ppm N regimes, and 

white spruce seedlings grew best under the 125 ppm N regime. More specifically, root and 

stem productions were greatest at 25 ppm N, whereas greatest foliage production was 

achieved at 75 ppm N in jack pine and black spruce. The 125 ppm N treatment enhanced all 

growth components in white spruce. 

Biomass Allocation 

Increases in N supply decreased biomass allocation to roots (/>., lower R/S ratio) in 

all coniferous seedlings, however the pattern of response varied with species (Figures 4 and 

6). This finding was consistent with the literature (Colombo and Smith 1987, Brown 1991, 

Burke et al. 1992, Fetene et al. 1993, Ibrahim et al 1997, Kinney and Lindroth 1997, Van 

Cleve and Oliver 1997, Coleman et al 1998). R/S ratios in jack pine (0.17 - 0.28) were much 

lower for two-year-old seedlings than the values for six month-old seedlings (0.45 - 1.00) 

reported by Colombo and Smith (1987), while R/S ratios in black and white spruces were 

within the range reported by others {e.g.. Van den Driessche 1977, Colombo and Smith 1987 

and Patterson et al 1997). The differences in seedling age may be the contributing factor for 



the differing R/S ratio between this study and that of Colombo and Smith (1987). R/S ratios 

tend to decrease as seedling age increases, since as plants age the total root biomass increases 

at a lower rate than the shoot biomass (Lambers et al. 1998). 

The decrease in R7S ratio with increasing N in this study was primarily attributed to 

the increase in stem rather than in foliage production. This relationship reflected by the 

decrease in root-to-stem ratios but stable root-to-foliage ratios as N treatment increased 

(Figure 6). Regardless of N addition rates, white spruce allocated a higher amount of seedling 

biomass to the belowground biomass than did black spruce, followed by jack pine (Figure 

6F). Jack pine invested most of its carbohydrate production in its foliage while black spruce 

invested its carbohydrate production in its root and stem (Figure 5). Despite the different 

strategies in their biomass allocation, as N supply decreased all conifer seedlings increased the 

dry-mass allocation to roots (Figure 6F) at the expense of foliage production (Figure 6D). 

The above discussion indicates that conifer seedlings may not thrive in excessively high soil N 

conditions, because the expansion of the root mass is inhibited. However, white spruce 

seedlings would be the least vulnerable and jack pine seedlings would be most vulnerable in 

such high soil N environment. Nevertheless, the above relationships did not appear to apply 

to trembling aspen in varying soil N supply. 

The proportion of total biomass allocated to shoot and root production in trembling 

aspen followed an opposite pattern to that in conifers. R/S ratios (Figure 6C) and proportions 

of root dry-mass (Figure 6F) in aspen were consistent with Brown (1991) and Kinney and 

Lindroth’s (1997) results. Of the three deciduous species that they examined, Kinney and 

Lindroth (1997) found that R/S ratio in trembling aspen responded positively to N treatment, 

whereas R/S ratio of sugar maple {Acer saccharum Marsh.) responded negatively, and red 



oak {Quercus rubra L.) was insensitive to N treatments. As well, Brown (1991) concluded 

that the increase of dry matter partitioning to roots in trembling aspen was most pronounced 

in high-N seedlings. In Balsam Spire poplar, however, R/S ratio decreased as N addition 

increased (Ibrahim et al 1997). 

The results on aspen in this study are not conclusive because of the insect damage. 

But our results suggest that at very high N supply (375 and 775 ppm N), trembling aspen 

seedlings allocated a greater percentage of total dry-mass to the roots at the expense of 

foliage production. The lower allocation to foliage in aspen than in conifers, however, may 

simply reflect the effect of insect damage to foliage rather than the acclimation strategy of the 

species. 



CONCLUSION 

In summary, this study shows that conifer seedlings functioned best within the 25 - 

125 ppm nitrogen (N) range based on gas exchange and growth parameters. Black spruce 

grew particularly well from 25 to 75 ppm N treatments, whereas jack pine and white spruce 

grew best from 75 to 125 ppm N treatments. Generally, N supply at 125 ppm or greater 

created luxury consumption (125 to 375 ppm) to toxic (375 to 775 ppm) conditions for the 

conifers. Black spruce was the most vulnerable to high N environment by showing the 

greatest reduction in growth, photosynthesis, transpiration and water and nitrogen-use- 

efficiency. Jack pine showed better capability over white spruce to persist under low N 

availability as well as under supraoptimal (175 ppm N) and toxic (375 and 775 ppm) N 

environment. Trembling aspen yielded higher biomass production within the 75 - 175 ppm 

soil N regime than at 25 and beyond 375 ppm N treatments. And, although the 

photosynthesis of aspen was insensitive to increasing N availability, the whole seedling 

photo synthetic capacity was relatively higher from 25 to 175 ppm N than that at 375 and 775 

ppm N. At excessively high N supply, particularly at 775 ppm, aspen seedlings could barely 

survive, probably not because of toxic N conditions but rather because of the high 

vulnerability to disease and insect damages. Further research is required to confirm this 

explanation. Pest problems in the greenhouse, however, are very difficult to prevent, 

particularly in the summer season. 

The results of this research raised some concerns with respect to the forest 

management and silvicultural practice within the Boreal forests. They are particularly useful 



in dealing with the potential growth and production of Boreal tree species as they responded 

to variable or increasing soil and/or atmospheric nitrogen sources. The results of individual 

species can provide background information indicating the growth capacity of the four boreal 

tree species and perhaps their competitiveness when grown together under a particular N 

availability. 
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APPENDIX A 

CHEMICAL FORMULATION 

Table A1. Essential nutrient formulation (without nitrogen from NH4NO3 source) 

Macronutrient Concentration (ppm) 
Total-N K Ca Mg 

Target level 25 40 100 50 30 40 
Water test (minus) 0.5 15 2.9 
Growing medium test (minus) 6.2 3.8 4.3 

To add 25 40 93 31 23 38 

Sources of Fertilizer Amount Required per Treatment (mg/L) 
Microfme Superphosphate (20% P) 458.30 
Muriate of Potash (62% K2O) 180.70 
Calcium nitrate (19% Ca, 15.5% N) 172.22 
Epsom Salt (9.8% Mg, 12.9% S) 234.88 
MicroMax Micronutrient mix + 12% S 50.00 

Table A2. Nitrogen treatment formulation 

Sources of Nitrogen: Ammonium Nitrate (NH4NO3) (34-0-0) (17% NH4, 17% NO3) 
Calcium nitrate (CaN03) (15.5-0-0) (19% Ca, 15.5% N) 

Target levels 
(NH4NO3 + CaN03) 

(ppm) 

Total Nitrogen 
in CaN03 

(ppm) 

Total Nitrogen 
in NH4NO3 

(ppm) 

Amount Required per 
Treatment (from NH4NO3) 

(mg/L) 
25 25 0 0.00 
75 25 50 147.06 
125 25 100 294.12 
175 25 150 441.08 
375 25 350 1029.41 
775 25 750 2205.88 



APPENDIX B 

Table B1. The expected mean squares table associated with Equation 1 

Source 

2 
R 
i 

2 
R 
j 

6 
F 
k 

4 
F 
1 

3 
R 
n Expected Mean Square 

Degrees of 
Freedom 

Gi 

B(i)j 

1 2 6 4 3 
116 4 3 
116 4 3 

+7205' + 72OB + 144(1)(B) 

+7206'^ + 72OB" 

+7206'^ 

Nk 
GN.k 

BN(i)jk 

S(ijk)" 

2 2 0 4 3 
1 2 0 4 3 

110 4 3 

1114 3 

a + 12O5" + 12OBN + 24OGN + 48(j)(N) 

+ 12O5"^ + 12OBN^ + 24OGN^ 

+ 12(75"^ + 12OBN^ 

G^ + 12G8’^ 

5 
5 

10 
0 

s, 
GSil 

BS(i)ji 

NSki 

GNSiki 

BNS(i)jki 

S(ijkl)m 

0 0 

0 0 

0 0 

1 1 

as' + 18aBs' + 36oGs'+72(|)(S) 
Os' + 18aBs' + 36OGS' 

Og^ + 18OBS' 

G^ + 3OBNS'+ 6<7GNS'+ 12(j)(NS) 
Og' + 3OBNS' + 6OGNS' 

Og' + 3OBNS' 

3 
3 

6 
15 

15 

30 

192 

Total 287 

Table B2. Tests of null hypotheses associated with Equation 1. 

Hypothesis Test Statistics F-Distribution 

(|)(G) = 0 MS (G) / MS (5') No test 
=0 MS (B) / MS (6') No test 

as" =0 MS (5') / MS (N) No test 
(J)(N) = 0 MS (N) / MS (BN) F (5,10) 
OGN' =0 MS (GN) / MS (BN)* F (5, 10) 

^ Q ]yjs (gN) / MS (5") No test 

as. " =0 MS (5”) / MS (S) No test 
(j)(S) = 0 MS (S) / MS (BS) F (3,6) 
OGS" =0 MS (GS) / MS (BS)* F (3, 6) 

CBS' =0 MS (BS) / MS (BNS)* F (6, 30) 

(1)(NS) =0 MS (NS) / MS (BNS) F (15, 30) 
CJGNS" =0 MS (GNS) / MS (BNS)* F (15, 30) 

0 MS (BNS)/MS (s) No test 
I'he tests for GN, GS, BS, and GNS are conservative. 



APPENDIX C 

ANOVA TABLES FOLIAR NITROGEN VARIABLES 

Measurement 1 



Dependent Variable: Nf MASS 1 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square F Value 
95 
0 

95 
R-Square 
1.000000 

9946.93032 

9946.93032 
C.V. 

0 

104.70453 

Root MSE 
0 

N_MASS Mean 
33.1159 

Source DF Type III SS 
G 1 794.70796 
B(G) 2 102.32783 
N 5 2635.51861 
G*N 5 198.70103 
B*N(G) 10 261.38646 
S 3 2846.07809 
G^'S 3 67.01148 
B-S(G) 6 307.85401 
N^^S 15 1301.48524 
G*N*S 15 874.05625 
B'^N*S(G) 30 557.80335 
Tests of Hypotheses using the Type III MS 
N 5 2635.51861 
G^-N 5 198.701034 
Tests of Hypotheses using the Type III MS 
S 3 2846.07809 
G^S 3 67.0114781 
Tests of Hypotheses using the Type III MS 
B*S(G) 6 307.854015 
N^S 15 1301.48524 
G*N*S 15 874.056253 

Mean Square F Value Pr > P’ 
794.70796 
51.16391 

527.10372 
39.74021 
26.13865 
948.69270 
22.33716 
51.30900 
86.76568 
58.27042 
18.59344 

for B*N(G) as an error term 
527.10372 20.17 0 
39.740207 1.52 0 

for B*S(G) as an error term 
948.69270 18.49 0 

22.3371594 0.44 0 
for B*N*S(G) as an error term 

51.309002 
86.76568 

58.270417 

2.76 
4.67 
3.13 

. 0001 

.2675 

. 0020 

. 7357 

. 0295 

. 0002 

. 0038 

Dependent Variable: Nf AREA 1 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.518802 

2485.18470 
2305.05600 
4790.24070 

C.V. 
87.37401 

26.15984 
12.00550 

Root MSE 
3.46490 

F Value 
2.18 

Pr > F 
0.0001 

N_MASS Mean 
3.96559 

Source DF Type III SS 
G 1 1.40421 
B(G) 2 0.33008 
N 5 101.36964 
G*N 5 82.91411 
B^N(G) 10 169.73354 
S 3 1181.29793 
G*S 3 51.96185 
B-S(G) 6 38.62745 
N*S 15 306.87353 
G-N*S 15 168.93479 
B*N*S(G) 30 381.73758 
Tests of Hypotheses using the Type III MS 
N 5 101.369639 
G*N 5 82.9141059 
Tests of Hypotheses using the Type III MS 
S 3 1181.29793 
G-S 3 51.9618510 
B*S(G) 6 38.6274521 
Tests of Hypotheses using the Type III MS 
N-S 15 306.873526 
G*N*S 15 168.934793 

Mean Square 
1.40421 
0.16504 

20.27393 
16.58282 
16.97335 

393.76598 
17.32062 
6.43791 

20.45824 
11.26232 
12.72459 

for B*N(G) as 
20.273928 

16.5828212 
for B*S(G) as 

393.76598 
17.3206170 
6.4379087 

for B*N*S(G) a 
20.458235 
11.262320 

F Value 
0.12 
0.01 
1.69 
1.38 
1.41 

32.80 
1.44 
0.54 
1.70 

Pr > F 
0.7327 
0.9863 
0.1391 
0.2330 
0.1765 
0.0001 
0.2317 
0.7803 
0.0528 
0.5230 
0.3905 

0.94 
1.06 

an error term 
1.19 0.3779 
0.98 0.4767 

an error term 
61.16 0.0001 
2.69 0.1396 
0.51 0.7989 

s an error term 
1.61 0.1307 
0.89 0.5862 



APPENDIX D 

ANOVA TABLES FOR GAS EXCHANGE 

AND FOLIAR NITROGEN VARIABLES 

Measurement 2 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0 

Source 
G 
B (G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B^'-N*S (G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G-*^N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0 

Source 
G 
B(G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G^N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

A 2 
DF Sum of Squares Mean Square 
95 

192 
287 

■Square 
849039 

3863.36481 
686.91513 

4550.27995 
C. V. 

23.42114 

40.66700 
3.57768 

Root MSE 
1.89148 

F Value 
11.37 

Pr > F 
0.0001 

A Mean 
3.07594 

DF Type III SS Mean Square F Value Pr > F 
1 16.728292 16.728292 4.68 0.0318 
2 39.097551 19.548775 5.46 0.0049 
5 778.761241 155.752248 43.53 0.0001 
5 58.435560 11.687112 3.27 0.0074 

10 109.152378 10.915238 3.05 0.0013 
3 913.206023 304.402008 85.08 0.0001 
3 370.720740 123.573580 34.54 0.0001 
6 559.771724 93.295287 26.08 0.0001 

15 359.880325 23.992022 6.71 0.0001 
15 204.706150 13.647077 3.81 0.0001 
30 452.904830 15.096828 4.22 0.0001 

using the Type III MS for B*N(G) as an error term 
5 778.761241 155.752248 14.27 0.0003 
5 58.4355601 11.6871120 1.07 0.4313 

using the Type III MS for B"^S(G) as an error term 
3 913.206023 304.402008 3.26 0.1014 
3 370.720740 123.573580 1.32 0.3509 

using the Type III MS for B*N*S(G) as an error term 
6 559.771724 93.295287 6.18 0.0003 

15 359.880325 23.992022 1.59 0.1365 
15 204.706150 13.647077 0.90 0.5682 

Atotal 
DF~ 

95 
192 
287 

-Square 
, 774586 

Sum of Squares 
26177.4800 

7617.9709 
33795.4509 

C. V. 
77.96450 

Mean Square 
275.5524 
39.6769 

Root MSE 
6.29896 

F Value 
6.94 

Pr > F 
0.0001 

ATOTAL Mean 
8.07927 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
794.3102 

69.1326 
2309.2308 

166.2354 
900.0878 

14868.0714 
1102.4005 
396.4471 

3295.9921 
368.5661 

1907.0059 
Type III MS 

2309.23076 
166.235420 

Type III MS 
14868.0714 
1102.40051 

Type III MS 
396.447055 
3295.99215 
368.566145 

Mean Square F Val 
794.3102 20. 
34.5663 0. 

461.8462 11. 
33.2471 0. 
90.0088 2. 

4956.0238 124. 
367.4668 9. 
66.0745 1. 

219.7328 5. 
24.5711 0. 
63.5669 1. 

for B*N(G) as an erro 
461.84615 5. 
33.247084 0. 

for B*S(G) as an erro 
4956.0238 75. 
367.46684 5. 

for B*N*S(G) as an er 
66.074509 1. 
219.73281 3. 
24.571076 0. 

ue 
02 
87 
64 
84 
27 
91 
26 
67 
54 
62 
60 
r term 
13 
37 
r term 
01 
56 
ror term 
04 0 
46 0 
39 0 

r > F 
. 0001 
.4201 
. 0001 
. 5242 
. 0157 
. 0001 
. 0001 
. 1315 
. 0001 
. 8571 
. 0316 

. 0137 

. 8584 

. 0001 

. 0362 

.4198 

. 0019 

. 9725 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R 
0 

Source 
G 
B (G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B(G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

E 2 
DF Sum of Squares Mean Square 
95 

192 
287 

•Square 
793282 

141.524528 
36.879267 
178.403794 

C. V. 
24.14519 

1.489732 
0.192080 

Root MSE 
0.43827 

F Value 
7.76 

Pr > F 
0.0001 

E Mean 
1.81514 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.3055014 
4.2817681 

20.8193278 
4.0441319 
6.7802153 

17.5117861 
14.8220569 
26.2173597 
20.6436472 
6.7405097 

19.3582236 
Type III MS 
20.8193278 
4.04413194 

Type III MS 
17.5117861 
14.8220569 

Type III MS 
26.2173597 
20.6436472 
6.74050972 

Mean Square 
0.3055014 
2.1408840 
4.1638656 
0.8088264 
0.6780215 
5.8372620 
4.9406856 
4.3695600 
1.3762431 
0.4493673 
0.6452741 

for B*N(G) as 
4.1638656 

0.80882639 
for B*S(G) as 

5.8372620 
4.9406856 

for B*N*S(G) a 
4.3695600 
1.3762431 

0.44936731 

F Value Pr > F 
1.59 0.2088 

11.15 0.0001 
21.68 0.0001 
4.21 0.0012 
3.53 0.0003 

30.39 0.0001 
25.72 0.0001 
22.75 0.0001 
7.16 0.0001 
2.34 0.0043 
3.36 0.0001 

an error term 
6.14 0.0074 
1.19 0.3785 

an error term 
1.34 0.3479 
1.13 0.4089 

s an error term 
6.77 0.0001 
2.13 0.0378 
0.70 0.7680 

OPSII_2 
DF 
95 

192 
287 

-Square 
872215 

Sum of Squares 
11.0679747 
1.6215333 

12.6895080 
C. V. 

17.10971 

Mean Square 
0.1165050 
0.0084455 

Root MSE 
0.09190 

F Value 
13.79 

Pr > F 
0.0001 

OPSII Mean 
0.53712 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.0437587 
0.0156424 
0.1065809 
0.0419642 
0.0535368 

10.0496344 
0.0800844 
0.1245604 
0.1567677 
0.1308344 
0.2646104 

Type III MS 
0.10658090 
0.04196424 

Type III MS 
10.0496344 
0.08008437 

Type III MS 
0.12456042 
0.15676771 
0.13083437 

Mean Square 
0.0437587 
0.0078212 
0.0213162 
0.0083928 
0.0053537 
3.3498781 
0.0266948 
0.0207601 
0.0104512 
0.0087223 
0.0088203 

for B*N(G) as 
0.02131618 
0.00839285 

for B*S(G) as 
3.3498781 

0.02669479 
for B*N*S(G) a 

0.02076007 
0.01045118 
0.00872229 

F Value Pr > F 
5.18 0.0239 
0.93 0.3979 
2.52 0.0307 
0.99 0.4228 
0.63 0.7837 

396.65 0.0001 
3.16 0.0258 
2.46 0.0259 
1.24 0.2467 
1.03 0.4233 
1.04 0.4112 

an error term 
3.98 0.0301 
1.57 0.2546 

an error term 
161.36 0.0001 

1.29 0.3616 
s an error term 

2.35 0.0555 
1.18 0.3342 
0.99 0.4899 



Dependent Variable: Nf MASS 2 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square F Value 
95 

0 
95 

R-Square 
1.000000 

10874.6314 

10874.6314 
C.V. 

0 

114.4698 

Root MSE 
0 

N_MASS Mean 
31.1175 

Source 
,G 
B (G) 
N 
G*N 
E*N(G) 
S 
G*S 
B*S(G) 
N-S 
G^-N*S 
B^N*S(G) 
Tests of 
N 
G*N 
Tests of 
S 
G-S 
Tests of 
B-"S (G) 
N*S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
281.32954 

93.57262 
4048.16811 
115.12753 
287.68295 

4281.72719 
54.50514 

118.79438 
1096.18305 
169.45365 
328.08725 

Hypotheses using the Type III MS 
4048.16811 
115.127525 

Hypotheses using the Type III MS 

Mean Square F Value 
281.32954 

46.78631 
809.63362 
23.02551 
28.76830 

1427.24240 
18.16838 
19.79906 
73.07887 
11.29691 
10.93624 

for B*N(G) as an error term 
809.63362 28.14 
23.025505 0.80 

for B*S(G) as an error term 

Pr > 

4281.72719 
54.5051375 

1427.24240 
18.1683792 

72.09 
0.92 

Hypotheses using the Type III MS for B*N*S(G) as an error term 
6 

15 
15 

118.794379 
1096.18305 
169.453650 

19.799063 
13.07887 

11.296910 

1.81 
6.68 
1.03 

. 0001 

. 5740 

. 0001 

.4868 

. 1307 

. 0001 

.4515 

Dependent Variable: Nf AREA 2 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.955009 

653.622699 
30.792533 

684.415232 
C.V. 

11.26261 

6.880239 
0.160378 

Root MSE 
0.40047 

F Value 
42.90 

Pr > F 
0.0001 

N_MASS Mean 
3.55576 

Source 
G 
B(G) 
N 
G*N 
B*N(G) 
S 
G-- S 
B-^S (G) 
N*S 
G>N*S 
B’^N^S (G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B'^S (G) 
N*S 
G+N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.657422 
7.549524 

158.324628 
4.972815 
8.028626 

398.994613 
1.749025 
4.571260 

36.020008 
9.852621 

22.902157 
Type III MS 

158.324628 
4.97281528 

Type III MS 
398.994613 
1.74902500 

Type III MS 
4.57125972 
36.0200083 
9.85262083 

Mean Square 
0.657422 
3.774762 

31.664926 
0.994563 
0.802863 

132.998204 
0.583008 
0.761877 
2.401334 
0.656841 
0.763405 

for B*N(G) as 
31.664926 

0.99456306 
for B*S(G) as 

132.998204 
0.58300833 

for B*N*S(G) a 
0.76187662 
2.4013339 

0.65684139 

F Value Pr > F 
4.10 0.0443 

23.54 0.0001 
197.44 0.0001 

6.20 0.0001 
5.01 0.0001 

829.28 0.0001 
3.64 0.0139 
4.75 0.0002 

14.97 0.0001 
4.10 0.0001 
4.76 0.0001 

an error term 
39.44 0.0001 

1.24 0.3604 
an error term 

174.57 0.0001 
0.77 0.5537 

s an error term 
1.00 0.4447 
3.15 0.0037 
0.86 0.6100 



Dependent Variable: PNUE 2 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.738331 

620.714005 
219.985067 
840.699072 

C.V. 
39.11773 

6.533832 
1.145756 

Root MSE 
1.07040 

F Value 
5.70 

Pr > F 
0.0001 

PNUE Mean 
2.73635 

Source 
G 
B (G) 
N 
G*N 
E*N(G) 
S 
G'^^S 
B-S(G) 
N-'^S 
G*N*S 
B*N*S(G) 
Tests of 
N 
G*N 
Tests of 
S 
G*S 
Tests of 
B-S(G) 
N*S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
1.184517 
4.170862 

224.951116 
10.605693 
6.236259 

123.800490 
50.297529 
63.832891 
36.808375 
41.637036 
57.189238 

Hypotheses using the Type III MS 
224.951116 
10.6056934 

Hypotheses using the Type III MS 
123.800490 
50.2975288 

Hypotheses using the Type III MS 
6 

15 
15 

63.8328910 
36.8083747 
41.6370358 

Mean Square 
1.184517 
2.085431 

44.990223 
2.121139 
0.623626 

41.266830 
16.765843 
10.638815 
2.453892 
2.775802 
1.906308 

for B*N(G) as 
44.990223 
2.1211387 

for B*S(G) as 
41.266830 

16.7658429 
for B*N*S(G) a 

10.6388152 
2.4538916 
2.7758024 

F Value Pr > F 
1.03 0.3105 
1.82 0.1648 

39.27 0.0001 
1.85 0.1047 
0.54 0.8570 

36.02 0.0001 
14.63 0.0001 
9.29 0.0001 
2.14 0.0097 
2.42 0.0030 
1.66 0.0222 

an error term 
72.14 0.0001 
3.40 0.0470 

an error term 
3.88 0.0743 
1.58 0.2904 

s an error term 
5.58 0.0006 
1.29 0.2692 
1.46 0.1852 

Dependent Variable: PWUE_2 
Source DF 
Model 95 
Error 192 
Corrected Total 287 

R-Square 
0.869882 

Sum of Squares 
670.723322 
100.327400 
771.050722 

C.V. 
15.43113 

Mean Square 
7.060245 
0.522539 

Root MSE 
0.72287 

F Value 
13.51 

Pr > F 
0.0001 

PWUE Mean 
4.68448 

Source DF Type III SS 
G 1 1.156467 
B(G) 2 8.811253 
N 5 7.349120 
G*N 5 4.733689 
B^N(G) 10 18.246001 
S 3 512.681459 
G*S 3 10.361182 
E>S(G) 6 2.418388 
N-S 15 43.725301 
G-N*S 15 21.662620 
B-N*S(G) 30 39.577841 
Tests of Hypotheses using the Type III MS 
N 5 7.34911979 
G>N 5 4.73368924 
Tests of Hypotheses using the Type III MS 
S 3 512.681459 
G*S 3 10.3611816 
Tests of Hypotheses using the Type III MS 
B"'-S(G) 6 2.41838819 
N*S 15 43.7253010 
G^N*S 15 21.6626205 

Mean Square 
1.156467 
4.405627 
1.469824 
0.946738 
1.824600 

170.893820 
3.453727 
0.403065 
2.915020 
1.444175 
1.319261 

for B*N(G) as 
1.46982396 
0.94673785 

for B*S(G) as 
170.893820 
3.4537272 

for B*N*S(G) a 
0.40306470 
2.9150201 
1.4441747 

F Value Pr > F 
2.21 0.1385 
8.43 0.0003 
2.81 0.0178 
1.81 0.1123 
3.49 0.0003 

327.05 0.0001 
6.61 0.0003 
0.77 0.5933 
5.58 0.0001 
2.76 0.0007 
2.52 0.0001 

an error term 
0.81 0.5709 
0.52 0.7571 

an error term 
423.99 0.0001 

8.57 0.0137 
s an error term 

0.31 0.9291 
2.21 0.0315 
1.09 0.4009 



APPENDIX E 

ANOVA AND ANCOVA TABLES FOR GROWTH VARIABLES 

Measurement 1 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0 

Source 
G 
B(G) 
N 
G*N 
B*N(G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
HTO 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B(G) 
N 
G^N 
B*N(G) 
S 
G-S 
B*S(G) 
N-S 
G*N*S 
B*N*S(G) 
DIAO 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

HEIGHT_1 (cm) 
DF Sum of Square; 
96 174028.006 

191 6944.392 
287 180972.399 

-Square C.V. 
961627 26.80144 

DF Type III SS 
2730.0888 1 

2 
5 
5 

10 
3 
3 
6 

15 
15 
30 
1 

15.2068 
768.2195 
288.4446 
455.6374 

16836.3228 
3777.4035 

83.0648 
2033.0860 
742.5167 

2231.3440 
136.9875 

using the Type III MS 
768.219548 
288.444553 

using the Type III MS 
3 16836.3228 
3 3777.40355 

using the Type III MS 
6 

15 
15 

83.0648308 
2033.08599 
742.516694 

; Mean Square 
1812.792 

36.358 

Root MSE 
6.02977 

Mean Square 
2730.0888 

7.6034 
153.6439 
57.6889 
45.5637 

5612.1076 
1259.1345 

13.8441 
135.5391 
49.5011 
74.3781 
136.9875 

for B*N(G) as 
153.643910 
57.688911 

for B*S(G) as 
5612.1076 
1259.13452 

for B*N*S(G) a 
13.8441385 
135.53907 
49.501113 

F Value 
49.86 

F Value 
75.09 
0.21 
4.23 
1.59 
1.25 

154.36 
34.63 
0.38 
3.73 
1.36 
2.05 
3.77 

an error te 
3.37 
1.27 

an error te 
405.38 
90.95 

s an error 
0.19 
1.82 
0.67 

Pr > F 
0.0001 

HTl Mean 
22.4979 
Pr > F 
0.0001 
0.8115 
0.0011 
0.1656 
0.2598 
0.0001 
0.0001 
0.8907 
0.0001 
0.1699 
0.0021 
0.0537 

rm 
0.0482 
0.3500 

rm 
0.0001 
0.0001 

term 
0.9784 
0.0790 
0.7960 

DIAMETER_1 (mm) 
DF Sum of Square; 
96 330.214361 

191 55.164947 
287 385.379308 

-Square C.V. 
,856855 39.11383 

DF Type III SS 
29.878644 1 

2 
5 
5 

10 
3 
3 
6 

15 
15 
30 
1 

1.338583 
2.540103 
1.593165 
7.337215 

226.031290 
10.930079 
3.286889 

15.140985 
5.382259 

18.963771 
5.691253 

using the Type III MS 
5 2.54010278 
5 1.59316525 

using the Type III MS 
3 226.031290 
3 10.9300788 

using the Type III MS 
6 3.28688893 

15 15.1409846 
15 5.38225911 

i Mean Square 
3.439733 
0.288822 

Root MSE 
0.53742 

Mean Square 
29.878644 
0.669292 
0.508021 
0.318633 
0.733721 

75.343763 
3.643360 
0.547815 
1.009399 
0.358817 
0.632126 
5.691253 

for B*N(G) as 
0.50802056 
0.31863305 

for B*S(G) as 
75.343763 
3.6433596 

for B*N*S(G) a 
0.54781482 
1.0093990 

0.35881727 

F Value 
11.91 

Pr > F 
0.0001 

F Value 
103.45 

2.32 
1.76 
1.10 
2.54 

260.87 
12.61 
1.90 
3.49 
1.24 
2.19 

19.71 
an error 

0.69 
0.43 

an error 
137.54 

6.65 
s an erro 

0.87 
1.60 
0.57 

DIAl Mean 
1.37399 
Pr > F 
0.0001 
0.1013 
0.1232 
0.3601 
0.0067 
0.0001 
0.0001 
0.0833 
0.0001 
0.2433 
0.0008 
0.0001 

term 
0.6409 
0.8151 

term 
0.0001 
0.0246 

r term 
0.5305 
0.1341 
0.8764 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R 
0 

Source 
G 
B(G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B(G) 
N 
G*N 
B*N(G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

TOTAL SEEDLING WEIGHT 1 (g) 
DF Sum of Squares Mean Square 
95 

192 
287 

■Square 
933765 

9525.09138 
675.64967 

10200.74104 
C. V. 

31.27227 

100.26412 
3.51901 

Root MSE 
1.87590 

F Value 
28.49 

Pr > F 
0.0001 

TOTWT Mean 
5.99861 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
459.39857 

8.17596 
78.73615 
32.62216 

109.11137 
7315.03387 
739.88015 
10.46188 

240.09454 
127.06451 
404.51222 

Type III MS 
78.7361486 
32.6221611 

Type III MS 
7315.03387 
739.880146 

Type III MS 
10.4618764 
240.094543 
127.064508 

Mean Square 
459.39857 

4.08798 
15.74723 
6.52443 

10.91114 
2438.34462 
246.62672 

1.74365 
16.00630 
8.47097 

13.48374 
for B*N(G) as 

15.7472297 
6.5244322 

for B*S(G) as 
2438.34462 
246.626715 

for B*N*S(G) a 
1.7436461 
16.006303 
8.470967 

F Value 
130.55 

1.16 
4.47 
1.85 
3.10 

692.91 
70.08 
0.50 
4.55 
2.41 
3.83 

an error term 
1.44 
0.60 

an error term 
1398.42 
141.44 

Pr > F 
0.0001 
0.3151 
0.0007 
0.1042 
0.0011 
0.0001 
0.0001 
0.8113 
0.0001 
0.0032 
0.0001 

0.2901 
0.7031 

0.0001 
0.0001 

s an error term 
0.13 
1.19 
0.63 

0.9916 
0.3327 
0.8284 

TLA_1 (cm^2) 
DF Sum of Squares 
95 23465.3249 

192 1795.9057 
287 25261.2306 

-Square C.V. 
928907 55.62162 

Mean Square 
247.0034 

9.3537 

Root MSE 
3.05838 

F Value 
26.41 

Pr > F 
0.0001 

LNEWAREA Mean 
5.49854 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
218.9627 

7.5682 
219.3467 
70.5242 

199.4357 
20721.5686 

533.2722 
20.3367 
635.8249 
231.0532 
607.4320 

Type III MS 
219.346675 
70.5242236 

Type III MS 
20721.5686 
533.272186 

Type III MS 
20.3366542 
635.824883 
231.053168 

Mean Square 
218.9627 

3.7841 
43.8693 
14.1048 
19.9436 

6907.1895 
177.7574 

3.3894 
42.3883 
15.4035 
20.2477 

for B*N(G) as 
43.869335 

14.1048447 
for B*S(G) as 

6907.1895 
177.757395 

for B*N*S(G) a 
3.3894424 
42.388326 
15.403545 

F Value Pr > F 
23.41 0.0001 
0.40 0.6678 
4.69 0.0005 
1.51 0.1891 
2.13 0.0238 

738.45 0.0001 
19.00 0.0001 
0.36 0.9020 
4.53 0.0001 
1.65 0.0649 
2.16 0.0010 

an error term 
2.20 0.1352 
0.71 0.6314 

an error term 
2037.85 0.0001 

52.44 0.0001 
s an error term 

0.17 0.9836 
2.09 0.0415 
0.76 0.7070 



APPENDIX F 

ANOVA AND ANCOVA TABLES FOR GROWTH VARIABLES 

Measurement 2 



80 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0 

Source 
G 
B (G) 
N 
G-N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G>N*S 
B*N*S(G) 
HTO 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G'^S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N-^S 

HEIGHT_2 
DF S 
96 

191 
287 

-Square 
,969692 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 
1 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

(cm) 
um of Square: 

258255.944 
8071.893 

266327.837 
C. V. 

24.02968 
Type III SS 

1912.3964 
176.6333 

2932.7785 
637.2394 
701.2541 

31342.9562 
1635.4816 
409.8867 

7583.0615 
766.8495 

2823.9120 
607.0472 

Type III MS 
2932.77847 
637.239396 

Type III MS 
31342.9562 
1635.48161 

Type III MS 
409.886689 
7583.06152 
766.849545 

1 Mean Square 
2690.166 

42.261 

Root MSE 
6.50086 

Mean Square 
1912.3964 

88.3167 
586.5557 
127.4479 
70.1254 

10447.6521 
545.1605 
68.3144 

505.5374 
51.1233 
94.1304 

607.0472 
for B*N(G) as 

586.55569 
127.447879 

for B*S(G) as 
10447.6521 
545.16054 

for B*N*S(G) a 
68.314448 
505.53743 
51.123303 

F Value 
63.66 

HT2 
27 

F Value P 
45.25 0 
2.09 0 
13.88 0 
3.02 0 
1.66 0 

247.22 0 
12.90 0 
1.62 0 

11.96 0 
1.21 0 
2.23 0 
14.36 0 

an error term 
8.36 0 
1.82 0 

an error term 
152.93 0 

7.98 0 
s an error term 

0.73 0 
5.37 0 
0.54 0 

r > F 
. 0001 

Mean 
. 0535 
r > F 
. 0001 
. 1265 
. 0001 
. 0121 
. 0929 
. 0001 
. 0001 
. 1445 
. 0001 
.2671 
. 0006 
. 0002 

. 0024 

. 1970 

. 0001 

. 0162 

. 6323 

. 0001 

. 8938 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0. 

Source 
G 
B (G) 
N 
G'^N 
B*N(G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
DIAO 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 

G-S 
Tests of Hypotheses 
B-S(G) 
N*S 
G^'N*S 

DIAMETER_ 
DF S 
96 

191 
287 

■Square 
889531 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 
1 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

2 (mm) 
um of Square: 

452.849915 
56.238385 

509.088300 
C. V. 

20.63240 
Type III SS 

45.151870 
2.362946 
10.283219 
4.227075 
9.412579 

278.311759 
0.898632 
3.748929 

35.309471 
9.565781 

35.159111 
6.901482 

Type III MS 
10.2832189 
4.22707463 

Type III MS 
278.311759 
0.89863226 

Type III MS 
3.74892933 
35.3094714 
9.56578126 

; Mean Square 
4.717187 
0.294442 

Root MSE 
0.54262 

Mean Square 
45.151870 
1.181473 
2.056644 
0.845415 
0.941258 

92.770586 
0.299544 
0.624822 
2.353965 
0.637719 
1.171970 
6.901482 

for B*N(G) as 
2.0566438 
0.84541493 

for B*S(G) as 
92.770586 

0.29954409 
for B*N*S(G) a 

0.62482155 
2.3539648 
0.63771875 

F Value 
16.02 

F Value 
153.35 

4.01 
6.98 
2.87 
3.20 

315.07 
1.02 
2.12 
7.99 
2.17 
3.98 

23.44 
an error te 

2.18 
0.90 

an error te 
148.48 

0.48 
s an error 

0.53 
2.01 
0.54 

Pr > F 
0.0001 

DIA2 Mean 
2.62997 
Pr > F 
0.0001 
0.0196 
0.0001 
0.0159 
0.0008 
0.0001 
0.3861 
0.0526 
0.0001 
0.0088 
0.0001 
0.0001 

rm 
0.1371 
0.5182 

rm 
0.0001 
0.7084 

term 
0.7787 
0.0507 
0.8931 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R 
0 

Source 
G 
B(G) 
N 
G^'N 
B^N(G) 
S 
G*S 
B-S(G) 
N-S 
G>N*S 
B-N*S(G) 
Tests of Hypotheses 
N 
G>N 
Tests of Hypotheses 
S 
G-S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B(G) 
N 
G-N 
B*N (G) 
S 
G-S 
B*S(G) 
N*S 
G*N*S 
B^'N*S (G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

TLA 2 (cm^2) 
DF Sum of Squares Mean Square 
95 

192 
287 

•Square 
868963 

6112.67384 
921.77273 

7034.44658 
C. V. 

62.60770 

64.34394 
4.80090 

Root MSE 
2.19110 

F Value 
13.40 

Pr > F 
0.0001 

LNEWAREA Mean 
3.49972 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
23.72457 

0.12580 
293.42238 

19.59731 
76.77961 

4643.77305 
10.41222 
4.49432 

795.22867 
57.31733 

187.79860 
Type III MS 

293.422378 
19.5973069 

Type III MS 
4643.77305 
10.4122153 

Type III MS 
4.49432083 
795.228667 
57.3173264 

Mean Square 
23.72457 

0.06290 
58.68448 
3.91946 
7.67796 

1547.92435 
3.47074 
0.74905 

53.01524 
3.82116 
6.25995 

F Value 
4.94 
0.01 

12.22 
0.82 
1.60 

322.42 
0.72 
0.16 

11.04 
0.80 
1.30 

for B*N(G) as an error term 
58.684476 7.64 
3.9194614 0.51 

for B*S(G) as an error term 
1547.92435 2066.51 
3.4707384 4.63 

for B*N*S(G) as an error term 
0.74905347 
53.015244 
3.8211551 

0.12 
8.47 
0.61 

r > F 
. 0274 
. 9870 
. 0001 
. 5393 
. 1092 
. 0001 
. 5394 
. 9877 
. 0001 
6813 

. 1466 

0034 
7628 

. 0001 

. 0527 

. 9932 

. 0001 

. 8432 

FOLIAGE WEIGHT_2 (g) 
DF Sum of Squares 
95 851.078588 

192 323.887600 
287 1174.966187 

-Square C.V. 
724343 42.37274 

Mean Square 
8.958722 
1.686915 

Root MSE 
1.29881 

F Value 
5.31 

Pr > F 
0.0001 

LTOTWT Mean 
3.06521 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
81.642901 
1.270514 

55.560317 
21.951219 
47.723786 

390.167401 
20.991779 
11.633681 

122.818136 
43.109033 
54.209819 

Type III MS 
55.5603167 
21.9512194 

Type III MS 
390.167401 
20.9917792 

Type III MS 
11.6336806 
122.818136 
43.1090333 

Mean Square 
81.642901 
0.635257 

11.112063 
4.390244 
4.772379 

130.055800 
6.997260 
1.938947 
8.187876 
2.873936 
1.806994 

for B*N(G) as 
11.1120633 
4.3902439 

for B*S(G) as 
130.055800 
6.9972597 

for B*N*S(G) a 
1.9389468 
8.187876 

2.8739356 

F Value Pr > F 
48.40 0.0001 
0.38 0.6867 
6.59 0.0001 
2.60 0.0265 
2.83 0.0027 

77.10 0.0001 
4.15 0.0071 
1.15 0.3354 
4.85 0.0001 
1.70 0.0528 
1.07 0.3758 

an error term 
2.33 0.1196 
0.92 0.5064 

an error term 
67.08 0.0001 
3.61 0.0848 

s an error term 
1.07 0.4004 
4.53 0.0002 
1.59 0.1361 



Dependent Variable: STEM WEIGHT 2 (g) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.923271 

3969.21360 
329.86567 

4299.07927 
C.V. 

33.03992 

41.78120 
1.71805 

Root MSE 
1.31074 

F Value 
24.32 

Pr > F 
0.0001 

STEMWT Mean 
3.96715 

Source DF Type III SS 
G 1 154.05976 
B(G) 2 2.99309 
N 5 70.49451 
G^'N 5 22.14088 
B*N(G) 10 35.20738 
S 3 3248.08956 
G*S 3 126.07238 
B*S(G) 6 9.36433 

15 178.25858 
G*N*S 15 52.78780 
B*N*S(G) 30 69.74534 
Tests of Hypotheses using the Type III MS 
N 5 70.4945111 
G*N 5 22.1408819 
Tests of Hypotheses using the Type III MS 
S 3 3248.08956 
G*S 3 126.072378 
Tests of Hypotheses using the Type III MS 
B*S(G) 6 9.36432639 
N*S 15 178.258578 
G*N*S 15 52.7878014 

Mean Square 
154.05976 

1.49655 
14.09890 
4.42818 
3.52074 

1082.69652 
42.02413 
1.56072 

11.88391 
3.51919 
2.32484 

for B*N(G) as 
14.0989022 
4.4281764 

for B*S(G) as 
1082.69652 
42.024126 

for B*N*S(G) a 
1.56072106 
11.883905 
3.5191868 

F Value 
89.67 
0.87 
8.21 
2.58 
2.05 

630.19 
24.46 
0.91 
6.92 
2.05 
1.35 

an error te 
4.00 
1.26 

an error te 
693.72 
26.93 

s an error 
0.67 
5.11 
1.51 

Pr > F 
0.0001 
0.4201 
0.0001 
0.0278 
0.0305 
0.0001 
0.0001 
0.4899 
0.0001 
0.0141 
0.1163 

0.0296 
0.3532 

rm 
0.0001 
0.0007 

term 
0.6735 
0.0001 
0.1624 

Dependent Variable: SHOOT WEIGHT 2 (g) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.877550 

7537.31762 
1051.72813 
8589.04575 

C.V. 
33.28654 

79.34019 
5.47775 

Root MSE 
2.34046 

F Value 
14.48 

Pr > F 
0.0001 

SHWT Mean 
7.03125 

Source DF Type III SS 
G 1 459.85336 
B(G) 2 7.56294 
N 5 225.26738 
G*N 5 60.18782 
B*N(G) 10 139.13015 
S 3 5591.91199 
G*S 3 227.54326 
B*S(G) 6 41.41521 
N*S 15 511.07197 
G*N*S 15 127.80014 
B*N*S(G) 30 145.57340 
Tests of Hypotheses using the Type III MS 
N 5 225.267379 
G*N 5 60.1878236 
Tests of Hypotheses using the Type III MS 
S 3 5591.91199 
G*S 3 227.543264 
Tests of Hypotheses using the Type III MS 
B*S(G) 6 41.4152111 
N*S 15 511.071968 
G*N*S 15 127.800140 

Mean Square 
459.85336 

3.78147 
45.05348 
12.03756 
13.91301 

1863.97066 
75.84775 
6.90254 

34.07146 
8.52001 
4.85245 

for B*N(G) as 
45.053476 
12.0375647 

for B*S(G) as 
1863.97066 
75.847755 

for B*N*S(G) 
6.9025352 
34.071465 
8.520009 

F Value 
83.95 
0.69 
8.22 
2.20 
2.54 

340.28 
13.85 
1.26 
6.22 
1.56 
0.89 

an error te 
3.24 
0.87 

an error te 
270.04 
10.99 

as an error 
1.42 
7.02 
1.76 

Pr > F 
0.0001 
0.5026 
0.0001 
0.0562 
0.0067 
0.0001 
0.0001 
0.2777 
0.0001 
0.0896 
0.6410 

0.0537 
0.5365 

0.0001 
0.0075 

term 
0.2388 
0.0001 
0.0924 

rm 



Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R 
0 

Source 
G 
B(G) 
N 
G*N 
B*N (G) 
S 
G*S 
B^S(G) 
N*S 
G-N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B(G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B-N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

ROOT WEIGHT_2 (g) 
DF Sum of Squares 
95 1235.72173 

192 305.98673 
287 1541.70846 

-Square C.V. 
,801527 55.56861 

Mean Square 
13.00760 
1.59368 

Root MSE 
1.26241 

F Value 
8.16 

Pr > F 
0.0001 

ROOTWT Mean 
2.27181 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
62.347222 
2.291211 

31.269390 
7.711774 

32.036297 
916.234325 
52.787981 
5.547967 

32.774196 
22.138040 
70.583325 

Type III MS 
31.2693903 
7.71177361 

Type III MS 
916.234325 
52.7879806 

Type III MS 
5.54796667 
32.7741958 
22.1380403 

Mean Square 
62.347222 
1.145606 
6.253878 
1.542355 
3.203630 

305.411442 
17.595994 
0.924661 
2.184946 
1.475869 
2.352778 

F Value 
39.12 
0.72 
3.92 
0.97 
2.01 

191.64 
11.04 
0.58 
1.37 
0.93 
1.48 

for B*N(G) as an error term 
6.2538781 

1.54235472 
1.95 
0.48 

for B*S(G) as an error term 
305.411442 330.30 0 
17.5959935 19.03 0 

for B*N*S(G) as an error term 
0.92466111 
2.1849464 
1.4758694 

0.39 
0.93 
0.63 

r > F 
. 0001 
.4886 
. 0021 
.4387 
. 0342 
. 0001 
. 0001 
.7459 
. 1649 
.5362 
. 0626 

. 1722 

. 7828 

. 0001 

. 0018 

. 8776 

. 5449 

. 8292 

TOTAL SEEDLING WEIGHT 2 (g) 
DF Sum of Squares Mean Square 
95 

192 
287 

■Square 
872785 

14577.3958 
2124.7590 
16702.1548 

C.V. 
35.75898 

153.4463 
11.0665 

Root MSE 
3.32663 

F Value 
13.87 

Pr > F 
0.0001 

TOTWT Mean 
9.30292 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
860.4335 
17.0849 

416.5336 
107.6669 
275.1611 

10988.9845 
490.2495 
72.1732 

771.2005 
248.6943 
329.2138 

Type III MS 
416.533563 
107.666882 

Type III MS 
10988.9845 
490.249508 

Type III MS 
72.1732111 
771.200457 
248.694304 

Mean Square 
860.4335 

8.5425 
83.3067 
21.5334 
27.5161 

3662.9948 
163.4165 
12.0289 
51.4134 
16.5796 
10.9738 

for B*N(G) as 
83.306713 
21.533376 

for B*S(G) as 
3662.9948 

163.416503 
for B*N*S(G) a 

12.0288685 
51.413364 
16.579620 

F Value 
77.75 
0.77 
7.53 
1.95 
2.49 

331.00 
14.77 
1.09 
4.65 
1.50 
0.99 

an error te 
3.03 
0.78 

an error te 
304.52 
13.59 

s an error 
1.10 
4.69 
1.51 

rm 

rm 

Pr > F 
0.0001 
0.4636 
0.0001 
0.0886 
0.0080 
0.0001 
0.0001 
0.3716 
0.0001 
0.1089 
0.4850 

0.0640 
0.5846 

0.0001 
0.0044 

term 
0.3874 
0.0002 
0.1635 



APPENDIX G 

ANOVA TABLES FOR BIOMASS ALLOCATION VARIABLES 

Measurement 1 



Dependent Variable: ROOT/FOLIAGE 1 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.723099 

5.17666667 
1.98233333 
7.15900000 

C.V. 
24.28931 

0.05449123 
0.01032465 

Root MSE 
0.10161 

F Value 
5.28 

Pr > F 
0.0001 

RS_TOTLF Mean 
0.41833 

Source 
G 
B(G) 
N 
G*N 
B*N(G) 
S 
G*S 
B*S(G) 
N’^S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G^-S 
Tests of Hypotheses 
B*S(G) 
N*S 
G’-'N^S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.03042222 
0.02520556 
0.23425417 
0.16579028 
0.13516111 
3.32533889 
0.28098333 
0.03486111 
0.27524028 
0.21887083 
0.45053889 

Type III MS 
0.23425417 
0.16579028 

Type III MS 
3.32533889 
0.28098333 

Type III MS 
0.03486111 
0.27524028 
0.21887083 

Mean Square 
0.03042222 
0.01260278 
0.04685083 
0.03315806 
0.01351611 
1.10844630 
0.09366111 
0.00581019 
0.01834935 
0.01459139 
0.01501796 

F Value 
2.95 
1.22 
4.54 
3.21 
1.31 

107.36 
9.07 
0.56 
1.78 
1.41 
1.45 

for B*N(G) as an error term 
0.04685083 
0.03315806 

3.47 
2.45 

for B*S(G) as an error term 
1.10844630 
0.09366111 

190.78 
16.12 

for B*N*S(G) as an error term 
0.00581019 
0.01834935 
0.01459139 

0.39 
1.22 
0.97 

r > F 
. 0877 
.2973 
. 0006 
. 0083 
.2279 
. 0001 
. 0001 
. 7596 
. 0403 
. 1441 
. 0701 

. 0447 

. 1065 

. 0001 

. 0028 

.8816 

.3094 

.5054 

Dependent Variable: ROOT/SHOOT 1 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.695974 

1.29888750 
0.56740000 
1.86628750 

C.V. 
22.09456 

0.01367250 
0.00295521 

Root MSE 
0.05436 

F Value 
4.63 

Pr > F 
0.0001 

RS_TOT Mean 
0.24604 

Source 
G 
B (G) 
N 
G*N 
B-N(G) 
S 
G^^S 
E>S (G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G^^N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.00001250 
0.00566944 
0.05936667 
0.05894167 
0.03996389 
0.76059306 
0.09952639 
0.01361944 
0.06759444 
0.07828611 
0.11531389 

Type III MS 
0.05936667 
0.05894167 

Type III MS 
0.76059306 
0.09952639 

Type III MS 
0.01361944 
0.06759444 
0.07828611 

Mean Square 
0.00001250 
0.00283472 
0.01187333 
0.01178833 
0.00399639 
0.25353102 
0.03317546 
0.00226991 
0.00450630 
0.00521907 
0.00384380 

for B*N(G) as an 
0.01187333 
0.01178833 

for B*S(G) as an 
0.25353102 
0.03317546 

for B*N*S(G) as 
0.00226991 
0.00450630 
0.00521907 

F Value Pr > F 
0.00 0.9482 
0.96 0.3850 
4.02 0.0017 
3.99 0.0018 
1.35 0.2054 

85.79 0.0001 
11.23 0.0001 
0.77 0.5959 
1.52 0.0995 
1.77 0.0420 
1.30 0.1488 

error term 
2.97 0.0672 
2.95 0.0684 

error term 
111.69 0.0001 
14.62 0.0036 

an error term 
0.59 0.7352 
1.17 0.3430 
1.36 0.2307 



Dependent Variable: FOLIAGE 1 (%) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.729083 

1.12476908 
0.41794733 
1.54271641 

C. V. 
9.654342 

0.01183967 
0.00217681 

Root MSE 
0.04666 

F Value 
5.44 

Pr > F 
0.0001 

FOLIAGE Mean 
0.48327 

Source 
G 
B(G) 
N 
G*N 
B-N(G) 
S 
G*S 
B*S(G) 
N'^S 
G-N*S 
B*N*S(G) 
Tests of 
N 
G*N 
Tests of 
S 
G*S 
Tests of 
B^S(G) 
N-S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
0.03425653 
0.01018276 
0.02810685 
0.00811007 
0.02142328 
0.70282834 
0.07249618 
0.02470399 
0.05005397 
0.06440130 
0.10820580 

Hypotheses using the Type III MS 
5 0.02810685 
5 0.00811007 

Hypotheses using the Type III MS 
0.70282834 
0.07249618 

Hypotheses using the Type III MS 
6 

15 
15 

0.02470399 
0.05005397 
0.06440130 

Mean Square 
0.03425653 
0.00509138 
0.00562137 
0.00162201 
0.00214233 
0.23427611 
0.02416539 
0.00411733 
0.00333693 
0.00429342 
0.00360686 

for B*N(G) as 
0.00562137 
0.00162201 

for B*S(G) as 
0.23427611 
0.02416539 

for B*N*S(G) a 
0.00411733 
0.00333693 
0.00429342 

F Value Pr > F 
15.74 0.0001 
2.34 0.0992 
2.58 0.0275 
0.75 0.5906 
0.98 0.4586 

107.62 0.0001 
11.10 0.0001 
1.89 0.0841 
1.53 0.0967 
1.97 0.0190 
1.66 0.0231 

an error term 
2.62 0.0911 
0.76 0.6001 

an error term 
56.90 0.0001 
5.87 0.0323 

s an error term 
1.14 0.3630 
0.93 0.5482 
1.19 0.3305 

Dependent Variable: ROOT 1 (%) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.569727 

0.68716244 
0.51896333 
1.20612578 

C. V. 
26.45415 

0.00723329 
0.00270293 

Root MSE 
0.05199 

F Value 
2.68 

Pr > F 
0.0001 

ROOT Mean 
0.19653 

Source DF Type III SS 
G 1 0.00162450 
B(G) 2 0.01131947 
N 5 0.02637894 
G-N 5 0.01983375 
B-N(G) 10 0.03808228 
S 3 0.31999758 
G*S 3 0.01841403 
B*S(G) 6 0.02790097 
N^'S 15 0.04191858 
G*N*S 15 0.07215839 
B-N*S(G) 30 0.10953394 
Tests of Hypotheses using the Type III MS 
N 5 0.02637894 
G-N 5 0.01983375 
Tests of Hypotheses using the Type III MS 
S 3 0.31999758 
G*S 3 0.01841403 
Tests of Hypotheses using the Type III MS 
B-S(G) 6 0.02790097 
N*S 15 0.04191858 
G*N*S 15 0.07215839 

Mean Square 
0.00162450 
0.00565974 
0.00527579 
0.00396675 
0.00380823 
0.10666586 
0.00613801 
0.00465016 
0.00279457 
0.00481056 
0.00365113 

for B*N(G) as 
0.00527579 
0.00396675 

for B*S(G) as 
0.10666586 
0.00613801 

for B*N*S(G) a 
0.00465016 
0.00279457 
0.00481056 

F Value Pr > F 
0.60 0.4391 
2.09 0.1260 
1.95 0.0876 
1.47 0.2022 
1.41 0.1787 

39.46 0.0001 
2.27 0.0817 
1.72 0.1181 
1.03 0.4222 
1.78 0.0399 
1.35 0.1176 

an error term 
1.39 0.3084 
1.04 0.4449 

an error term 
22.94 0.0011 
1.32 0.3522 

s an error term 
1.27 0.2989 
0.77 0.7025 
1.32 0.2521 
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Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R 
0 

Source 
G 
B(G) 
N 
G-N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

Dependent Variable: 
Source 
Model 
Error 
Corrected Total 

R- 
0, 

Source 
G 
B (G) 
N 
G*N 
B*N (G) 
S 
G*S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of Hypotheses 
N 
G*N 
Tests of Hypotheses 
S 
G*S 
Tests of Hypotheses 
B*S(G) 
N*S 
G*N*S 

ROOT/ FOLI AGE_2 
DF Sum of Squares 
95 104.425132 

192 51.280067 
287 155.705199 

-Square C.V. 
,670659 67.22013 

Mean Square 
1.099212 
0.267084 

Root MSE 
0.51680 

F Value 
4.12 

Pr > F 
0.0001 

RS_TOTLF Mean 
0.76882 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.4140500 
0.8388014 
3.2584778 
1.0021958 
5.2831236 

49.2025125 
0.8142472 
3.1141097 

19.9429750 
2.4144403 
18.1401986 

Type III MS 
3.25847778 
1.00219583 

Type III MS 
49.2025125 
0.81424722 

Type III MS 
3.11410972 
19.9429750 
2.41444028 

Mean Square 
0.4140500 
0.4194007 
0.6516956 
0.2004392 
0.5283124 

16.4008375 
0.2714157 
0.5190183 
1.3295317 
0.1609627 
0.6046733 

for B*N(G) as 
0.65169556 
0.20043917 

for B*S(G) as 
16.4008375 
0.27141574 

for B*N*S(G) a 
0.51901829 
1.3295317 

0.16096269 

F Value Pr > F 
1.55 0.2146 
1.57 0.2106 
2.44 0.0359 
0.75 0.5867 
1.98 0.0376 

61.41 0.0001 
1.02 0.3866 
1.94 0.0758 
4.98 0.0001 
0.60 0.8707 
2.26 0.0005 

an error term 
1.23 0.3624 
0.38 0.8518 

an error term 
31.60 0.0005 
0.52 0.6822 

s an error term 
0.86 0.5363 
2.20 0.0323 
0.27 0.9955 

ROOT/STEM_2 
DF Sum of Squares 
95 7.71575000 

192 3.85780000 
287 11.57355000 

-Square C.V. 
,666671 22.90889 

Mean Square 
0.08121842 
0.02009271 

Root MSE 
0.14175 

F Value 
4.04 

Pr > F 
0.0001 

RS_STEM Mean 
0.61875 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

using the 
5 
5 

using the 
3 
3 

using the 
6 

15 
15 

Type III SS 
0.00568889 
0.05445556 
1.01683750 
0.06699861 
0.26721944 
4.70292222 
0.14658333 
0.11615556 
0.60525694 
0.11676250 
0.61686944 

Type III MS 
1.01683750 
0.06699861 

Type III MS 
4.70292222 
0.14658333 

Type III MS 
0.11615556 
0.60525694 
0.11676250 

Mean Square 
0.00568889 
0.02722778 
0.20336750 
0.01339972 
0.02672194 
1.56764074 
0.04886111 
0.01935926 
0.04035046 
0.00778417 
0.02056231 

for B*N(G) as 
0.20336750 
0.01339972 

for B*S(G) as 
1.56764074 
0.04886111 

for B*N*S(G) a 
0.01935926 
0.04035046 
0.00778417 

F Value Pr > F 
0.28 0.5953 
1.36 0.2604 

10.12 0.0001 
0.67 0.6490 
1.33 0.2168 

78.02 0.0001 
2.43 0.0664 
0.96 0.4512 
2.01 0.0165 
0.39 0.9811 
1.02 0.4400 

an error term 
7.61 0.0034 
0.50 0.7690 

an error term 
80.98 0.0001 
2.52 0.1542 

s an error term 
0.94 0.4804 
1.96 0.0566 
0.38 0.9749 



Dependent Variable: ROOT/SHOOT 2 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.672288 

2.43972778 
1.18926667 
3.62899444 

C. V. 
26.22206 

0.02568135 
0.00619410 

Root MSE 
0.07870 

F Value 
4.15 

Pr > F 
0.0001 

RS_TOT Mean 
0.30014 

Source 
G 
B (G) 
N 
G-N 
B^'-N (G) 
S 
G-S 
B*S(G) 
N*S 
G*N*S 
B*N*S(G) 
Tests of 
N 
G*N 
Tests of 
S 
G*S 
Tests of 
B*S(G) 
N'^S 
G-N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
0.01253472 
0.00861806 
0.14109861 
0.01732778 
0.07996528 
1.51930833 
0.05689583 
0.02394861 
0.31775417 
0.02794167 
0.23433472 

Hypotheses using the Type III MS 
5 0.14109861 
5 0.01732778 

Hypotheses using the Type III MS 
1.51930833 
0.05689583 

Hypotheses using the Type III MS 
6 

15 
15 

0.02394861 
0.31775417 
0.02794167 

Mean Square 
0.01253472 
0.00430903 
0.02821972 
0.00346556 
0.00799653 
0.50643611 
0.01896528 
0.00399144 
0.02118361 
0.00186278 
0.00781116 

for B*N(G) as 
0.02821972 
0.00346556 

for B*S(G) as 
0.50643611 
0.01896528 

for B*N*S(G) a 
0.00399144 
0.02118361 
0.00186278 

F Value Pr > F 
2.02 0.1565 
0.70 0.5000 
4.56 0.0006 
0.56 0.7310 
1.29 0.2379 

81.76 0.0001 
3.06 0.0293 
0.64 0.6946 
3.42 0.0001 
0.30 0.9950 
1.26 0.1777 

an error term 
3.53 0.0425 
0.43 0.8157 

an error term 
126.88 0.0001 

4.75 0.0501 
s an error term 

0.51 0.7952 
2.71 0.0097 
0.24 0.9975 

Dependent Variable: FOLIAGE 2 (%) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.944588 

5.67309316 
0.33280067 
6.00589383 

C. V. 
10.79915 

0.05971677 
0.00173334 

Root MSE 
0.04163 

F Value 
34.45 

Pr > F 
0.0001 

FOLIAGE Mean 
0.38552 

Source 
G 
B (G) 
N 
G*N 
B^'N (G) 
S 
G*-S 
B*S(G) 
N’^S 
G'"'N*S 
B^^N*S (G) 
Te^sts of 
N 
G^N 
Tests of 
S 
G-S 
Tests of 
B*S(G) 
N*S 
G^'N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
0.00591328 
0.00077753 
0.02858368 
0.02779582 
0.02860492 
5.14095343 
0.00887648 
0.01172027 
0.20096230 
0.06119233 
0.15771310 

Hypotheses using the Type III MS 
0.02858368 
0.02779582 

Hypotheses using the Type III MS 
5.14095343 
0.00887648 

Hypotheses using the Type III MS 
6 0.01172027 

15 0.20096230 
15 0.06119233 

Mean Square 
0.00591328 
0.00038877 
0.00571674 
0.00555916 
0.00286049 
1.71365114 
0.00295883 
0.00195338 
0.01339749 
0.00407949 
0.00525710 

for B*N(G) as 
0.00571674 
0.00555916 

for B*S(G) as 
1.71365114 
0.00295883 

for B*N*S(G) a 
0.00195338 
0.01339749 
0.00407949 

F Value 
3.41 
0.22 
3.30 
3.21 
1.65 

988.64 
1.71 
1.13 
7.73 
2.35 
3.03 

an error te 
2.00 
1.94 

an error te 
877.28 

1.51 
s an error 

0.37 
2.55 
0.78 

rm 

Pr > F 
0.0663 
0.7993 
0.0070 
0.0084 
0.0952 
0.0001 
0.1670 
0.3481 
0.0001 
0.0040 
0.0001 

0.1644 
0.1737 

0.0001 
0.3038 

term 
0.8912 
0.0142 
0.6922 



Dependent Variable: STEM 2 (%) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.908361 

3.33064916 
0.33600800 
3.66665716 

C.V. 
10.75632 

0.03505946 
0.00175004 

Root MSE 
0.04183 

F Value 
20.03 

Pr > F 
0.0001 

STEM Mean 
0.38892 

Source 
G 
B (G) 
N 
G^N 
B*N(G) 
S 
G-S 
B*S(G) 
N'^S 
G*N*S 
B*N*S(G) 
Tests of 
N 
G*N 
Tests of 
S 
G^S 
Tests of 

(G) 
N*S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
0.00089959 
0.00072681 
0.04681631 
0.02166931 
0.02697156 
3.02389587 
0.00255295 
0.00717766 
0.06018857 
0.04055440 
0.09919613 

Hypotheses using the Type III MS 
5 0.04681631 
5 0.02166931 

Hypotheses using the Type III MS 
3 3.02389587 
3 0.00255295 

Hypotheses using the Type III MS 
6 0.00717766 

15 0.06018857 
15 0.04055440 

Mean Square 
0.00089959 
0.00036341 
0.00936326 
0.00433386 
0.00269716 
1.00796529 
0.00085098 
0.00119628 
0.00401257 
0.00270363 
0.00330654 

for B*N(G) as 
0.00936326 
0.00433386 

for B*S(G) as 
1.00796529 
0.00085098 

for B*N*S(G) a 
0.00119628 
0.00401257 
0.00270363 

F Value 
0.51 
0.21 
5.35 
2.48 
1.54 

575.97 
0.49 
0.68 
2.29 
1.54 
1.89 

an error te 
3.47 
1.61 

an error te 
842.59 

0.71 
s an error 

0.36 
1.21 
0.82 

Pr > F 
0.4743 
0.8127 
0.0001 
0.0335 
0.1274 
0.0001 
0.6922 
0.6631 
0.0052 
0.0929 
0.0057 

0.0445 
0.2445 

rm 
0.0001 
0.5798 

term 
0.8972 
0.3149 
0.6516 

Dependent Variable: ROOT 2 (%) 
Source 
Model 
Error 
Corrected Total 

DF Sum of Squares Mean Square 
95 

192 
287 

R-Square 
0.701576 

0.78985487 
0.33597400 
1.12582887 

C.V. 
18.54536 

0.00831426 
0.00174986 

Root MSE 
0.04183 

F Value 
4.75 

Pr > F 
0.0001 

ROOT Mean 
0.22556 

Source 
G 
B (G) 
N 
G*N 
B^N(G) 
S 
G^S 
B*S(G) 
N-S 
G-N*S 
B^'^N^S (G) 
Tests of 
N 
G-N 
Tests of 
S 
G*S 
Tests of 
B'-^S (G) 
M*S 
G*N*S 

DF 
1 
2 
5 
5 

10 
3 
3 
6 

15 
15 
30 

Type III SS 
0.00216701 
0.00277478 
0.05846046 
0.00462432 
0.02230147 
0.50850890 
0.01797357 
0.00606783 
0.09250635 
0.00995893 
0.06451125 

Mean Square 
0.00216701 
0.00138739 
0.01169209 
0.00092486 
0.00223015 
0.16950297 
0.00599119 
0.00101131 
0.00616709 
0.00066393 
0.00215037 

F Value 
1.24 
0.79 
6.68 
0.53 
1.27 

96.87 
3.42 
0.58 
3.52 
0.38 
1.23 

Hypotheses using the Type III MS 
5 0.05846046 
5 0.00462432 

Hypotheses using the Type III MS 
3 0.50850890 
3 0.01797357 

Hypotheses using the Type III MS 
6 0.00606783 

15 0.09250635 
15 0.00995893 

for B*N(G) as an error term 

Pr > F 
0.2672 
0.4540 
0.0001 
0.7545 
0.2473 
0.0001 
0.0183 
0.7477 
0.0001 
0.9830 
0.2043 

0.0127 
0.8283 

0.01169209 5.24 
0.00092486 0.41 

for B*S(G) as an error term 
0.16950297 167.61 0.0001 
0.00599119 5.92 0.0317 

for B*N*S(G) as an error term 
0.00101131 0.47 0.8248 
0.00616709 2.87 0.0068 
0.00066393 0.31 0.9904 


