
GROWTH OF WILD RICE, Zizania aquatica L., IN 
FLOCCULENT SEDIMENTS 

by 

William R. Day H.B.Sc. @ 

A thesis presented to 
Lakehead University 

in partial fulfillment of the requirements 
for the degree of M.Sc. 

in the Department of Biology. 

Thunder Bay, Ontario 

(c) William R. Day H.B.Sc., 1988. 



ProQuest Number: 10611768 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

Pro 

ProQuest 10611768 

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition ® ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106 - 1346 



National Library 
of Canada 

Canadian Theses Service 

The author has granted an 
irrevocable non-exclusive 
licence allowing the 
National Library of Canada 
to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means 
and in any form or format, 
making this thesis available 
to interested persons. 

The author retains ownership 
of the copyright in his/her 
thesis. Neither the thesis 
nor substantial extracts 
from it may be printed or 
otherwise reproduced without 
his/her permission. 

BibliothSque nationals du 
Canada 

Service des th§ses 
canadiennes 

L'auteur a accord§ une 
licence irrevocable et non 
exclusive permettant S la 
BibliothSque nationals du 
Canada de reproduire, preter, 
distribuer ou vendre des 
copies de sa thSse de quelque 
maniSre et sous quelque forme 
que ce soit pour mettre des 
exemplaires de cette thSse S 
la disposition des personnes 
interessSes. 

L'auteur conserve la 
propriSte du droit d'auteur 
qui protSge sa thSse. Ni la 
thSse ni des extraits 
substantiels de celle-ci ne 
doivent etre imprimSs ou 
autrement reproduits sans son 
autorisation. 

ISBN 0-315-48203-6 



TABLE OF CONTENTS 

Page 
Abstract . i 

Acknowledgements iii 

List of Tables iv 

List of Figures . v 

List of Appendices vii 

General Introduction . . 1 
Taxonomy   . 1 
Growth and Development..... 1 
Environmental Parameters .... 2 
Objectives   . 4 

1. The classification of sediments from wild rice lakes 5 
1.1. Introduction  5 
1.2. Methods   6 

1.2.1. Sampling sites and field procedures 6 
1.2.2. Laboratory procedures . . 6 
1.2.3. Data analysis  8 

1.3. Results    9 
1.3.1. Interrelationship of variables 9 
1.3.2. Separation of sediment types . . 11 
1.3.3. Characteristics of sediment types 15 

1.4. Discussion  17 
1.4.1. Organic sediments . , 17 

. 1.4.2. Flocculent sediments . . 17 
1.4.3. Clay sediments . . 18 
1.4.4. Hybrid groups  19 
1.4.5. Sediment types and wild rice productivity 19 

2. The effects of physical, chemical, and seasonal sediment 
characteristics on wild rice production in organic-flocculent 
and organic/clay sediments ..... ... 21 

2.1. Introduction. ... 21 
2.2. Methods  . 22 

2.2.1. Field procedures ... 22 
2.2.2. Laboratory procedures . 24 
2.2.3. Data analysis 24 

2.3. Results  25 
2.3.1. Sediment characteristics  25 
2.3.2. Interrelationship of sediment variables . 25 
2.3.3. Seasonal nutrient trends . 30 
2.3.4. Wild rice production . 34 

2.4. Discussion  34 
2.4.1. Sediment relationships . 34 
2.4.2. Seasonal nutrient trends 37 
2.4.3. Wild rice development . 38 



Page 
3. The identification of growth limiting nutrients in organic-flocculent 

sediments  40 
3.1. Introduction ...  40 
3.2. Methods  40 

3.2.1. Fertilizer trials 41 
3.2.2. Foliar minerial deficiency symptoms 41 

3.3. Results  42 
3.3.1. Raft Experiments  42 
3.3.2. Nutrient deficiency symptoms  44 

3.4. Discussion  47 

Summary and Conclusions . 50 

References . . 52 

Appendices 58 



ABSTRACT 

The objectives of this research were to classify sediments from wild rice 

lakes, and to examine, in detail, one type of sediment that is not suitable for 

commercial production of wild rice. 

Based on physical and chemical differences, cluster and discriminant analysis 

classified sediments from 39 potential and existing wild rice lakes into clay, organic, 

flocculent, organic-flocculent, organic-clay, and organic over clay (organic/clay) 

types. The major differences among the six sediment types were the percent loss on 

ignition, bulk density, phosphorus and cation content, and pH values. Wild rice 

production was best in organic, organic over clay, and organic-clay sediments. 

Flocculent, clay, and organic-flocculent sediments produced the lowest dry weights 

of individual plants. 

Organic-flocculent and organic/clay sediments were examined for further 

physical and chemical differences, as well as seasonal nutrient trends and wild rice 

production. Organic-flocculent and organic/clay sediments were found to have 

C:N>10, and similar inorganic biogenic composition, mineral content, pH, and redox 

values. Major differences in nutrient values were found to exist between the 

sediments. Lower nutrient values (except N) in organic-flocculent sediment appear 

to be closely linked to the origin, type, and degree of decomposition of the organic 

material within the sediment. A comparison of seasonal nutrient trends between 

organic-flocculent and organic/clay sediments showed no nutrient depletion during 

the exponential growth of wild rice. 

Fertilizer trials and foliar nutrient deficiency symptoms determined which 

nutrients were limiting production in organic-flocculent sediments. Phosphorus was 



found to be the main limiting nutrient; nitrogen deficiency played a secondary role. 

Plants grown in unfertilized organic-flocculent sediments displayed the purple leaves 

and slower maturation rate characteristic of phosphorus deficiency. 
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GENERAL INTRODUCTION 

Wild rice {Zizania aquatica L.), Canada’s only native cereal, may be known 

best as a gourmet food item (Grant, 1981). In Canada, this nutritious grain was first 

utilized by the native Indians (Ojibwa and Sioux) in parts of northwestern Ontario 

and Manitoba. The native people relied on the "manomin'' or good fruit from this 

annual aquatic grass as a food staple, so it is not surprising that native ritual and 

legend surround wild rice (Cary, 1984). Today the traditional rice beds are still 

harvested by the native people of northwestern Ontario as a foodstuff and a cash 

crop. To expand wild rice production in northern Ontario both native and 

non-native producers have seeded new lakes using techniques similar to Lee’s (1984, 

1986, 1987). 

Ta.xonomy 

The taxonomy of the annual species and varieties of genus Zizania is still 

being resolved. Fassett (1924) identified one species, Z. aquatica and 3 varieties 

(vars. brevis, angusti folia, and interior). Dore (1969) classified 2 distinct species, 

each with 2 varieties: Z. aquatica with vars. aquatica and brevis, and Z. palustris 

with vars. palustris and interior. Recent isozyme studies by Warwick and Aiken 

(1986) support Dore’s taxonomic split. As there is presently no concensus among the 

scientific community as to the correct taxonomy, all wild rice in this thesis will be 

referred to as Z. aquatica, which follows the major botanical manuals of Fassett 

(1957), Gleason and Cronquist (1963), and Fernald (1970). 

Growth and Development 

Wild rice is dispersed in a dormant state which inhibits germination. The seeds 
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overwinter in the sediment for a period of afterripening under conditions of cold 

temperatures and low oxygen tensions which break dormancy for spring germination 

(Simpson, 1966). 

Wild rice has a polymorphic life cycle with 3 distinct phenophases following 

germination. First, the submerged phase in which 2 to 4 submerged leaves are 

produced. The floating phase follows, during which 2 to 3 floating leaves are 

formed, and finally, the aerial phase. Atkins (1986) described the early phases and 

Oelke (1982) gave detailed descriptions of each phase. Anatomical characteristics of 

each phenophase in wild rice development were reported by Weir and Dale (1960). 

Hawthorn and Stewart (1970) described developmental changes in the superficial leaf 

anatomy. 

During the growth of wild rice, changes occur in both the accumulation and 

allocation of nutrients. During early stages of development there is greater biomass 

partitioned to the roots than the shoots. After establishment, the primary allocation 

of nutrients is to the production of shoot biomass (Whigham and Simpson, 1977; 

Grava and Raisanen, 1978). Dry matter production declines with the emergence of 

the flowering panicle. 

Flowering occurs from mid July to August when fertilization and caryopsis 

development occur. The structure of the caryopsis was described by Weir and Dale 

(1960). 

Environmental Parameters 

Stand establishment within newly seeded lakes has met with varied success 

(Lee, 1984; Lee, 1986; Lee, 1987; Lee and Stewart, 1984). Successful wild rice 

introductions met several environmental criteria, including: 

1. Sediment suitability. This includes adequate nutrient availability, sediment 



density and composition (Lee and Stewart, 1984; Lee, 1983; Lee, 1984; Lee, 1986; 

Lee, 1987; Garrod, 1984; Moyle, 1945). 

2. Water depth. Optimal depth is between 0.3 to 1.0 m (Dore, 1969; Thomas 

and Stewart, 1969; Sain, 1981). 

3. Plant competition. Wild rice cannot tolerate severe infestations of 

perennial emergents or floating leaved macrophytes (Lee, 1984; Lee, 1986; Atkins 

1984; Atkins, 1985). 

Although both water depth and plant competition can severly limit wild rice 

production, these two environmental factors can be easily checked before selecting 

potential wild rice lakes. Experimental management of water levels and aquatic 

weeds in wild rice lakes was investigated by Lee (1984). Preliminary research into 

slow release fertilization of aquatic sediments was conducted by Lee (1983, 1984). 

Stevenson and Lee (1987) found that if there were adequate nutrients, increases in 

water depth during any phenological stage had no adverse effects on the final 

biomass of wild rice. 

Sediment suitability is difficult to determine because the effects of sediment 

characteristics (texture, nutrient availability) on wild rice production have not been 

completely defined. Initial attempts were made by Lee (1983, 1984, 1986, 1987) and 

Lee and Stewart (1984) to classify sediments in northwestern Ontario for wild rice 

production suitability. Garrod (1984) studied the relationships between sediment 

parameters and wild rice production in southern Ontario. Earlier researchers noting 

some habitat parameters associated with natural stands, measured water parameters, 

and observed that sediment type affected distribution (Moyle, 1944; Moyle, 1945; 

Chambliss, 1940). In general, deep organic sediments are considered to be the best 

(Lee, 1979), but wild rice can grow in sediments with high mineral content (Lee, 

1987) and in some flocculent sediments (Lee and Stewart, 1984). 



Objectives 

The overall objectives of this research were: 

1. to type sediments collected from a broad range of wild rice stands; 

2. to determine how chemical and physical differences among two sediment types 

influenced wild rice production. 

The thesis is presented as 3 separate but interrelated papers, each addressing 

rather specific questions relating to the general objectives outlined. In chapter 1, 

sediments from a variety of wild rice lakes in Ontario and Manitoba are classified 

into 6 types. Chapter 2 compares seasonal nutrient trends and biomass production 

between non-productive and productive wild rice lakes. Chapter 3 identifies nutrient 

deficiencies that occur in non-productive lakes. 

The thesis itself may be summarized in 3 statements. 

1. Wild rice grows in a variety of different sediments. 

2. Nutrient levels varied throughout the growing season in both 

productive and non-productive lakes. The low nutrient levels in the 

non-productive lakes were detrimental to wild rice biomass production 

and phenological development. 

3. Phosphorus was identified as the primary limiting nutrient in non- 

productive lakes. 

4 



Chapter 1 

THE CLASSIFICATION OF SEDIMENTS FROM WILD RICE LAKES 

1.1. INTRODUCTION 

Wild rice has been seeded in many shallow lakes in northwestern Ontario. The 

success or failure of these wild rice introductions was related directly to the 

environment into which the seeds were sown (Lee and Stewart, 1983). 

Wild rice, like other emergent macrophytes, obtains its nutrients from the 

bottom sediments (Trisal and Kaul, 1983). The plants grow vigorously if the nutrient 

supply is optimum (Lee, 1986), but, under natural conditions, nutrient availability 

seems to vary with the type of lake sediment. Wild rice production has been 

described on flocculent, organic, and clay lake sediments by Lee and Stewart (1984), 

and Lee (1986). The clay and flocculent sediments were reported as producing 

noncommercial wild rice stands, while the organic sediments were reported as good 

for wild rice production (Lee and Stewart, 1984; Lee, 1986). 

Flocculation is a term applied to a coagulation of dispersed particles (Buckman 

and Brady, 1961). In lakes with flocculent sediments, the organic particles in the 

water column coalesce into floccules, attract suspended matter and sink to the 

bottom, thus leaving the water clear. These flocculent sediments are typically brown 

or light grey in colour and often have low nutrient values (Lee and Stewart, 1984). 

Organic sediments are often rich in nutrients and their firm, more consolidated 

consistency provides a good rooting medium for wild rice (Lee and Stewart, 1984). 

The clay sediments have been described as light grey in colour, low in organic 

material, and deficient in essential nutrients, particularly phosphorus (Lee, 1987). 

Although these various types of sediments seem to influence wild rice 

production, the differences among these sediments have never been quantified. In 

this study, sediments from shallow lakes are compared in terms of their organic 
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content, nutrient values and wild rice production. The objectives were to determine 

i) if it is possible to classify the various sediment types, and ii) if any differences 

among the sediments influence the production of wild rice. 

1.2. METHODS 

1.2.1. Sampling Sites and Field Procedures 

Thirty nine lakes were sampled that either contained wild rice or had been 

seeded with wild rice. Thirty seven of the lakes were located in northern Ontario, 1 

in Manitoba, and 1 in southern Ontario (Fig. 1.1). Sampling occurred in late August 

from 1983 to 1986 after the wild rice plants had achieved their maximum biomass. 

The lakes were randomly sampled at a rate of one quadrat (0.25 m x 0.25 m) per 

three hectares. A total of 801 samples were collected from the 39 different lakes. 

Sediment samples were collected with a core sampler from the top 20 cm of the 

sediment, placed into four-ply plastic bags and sealed tightly to minimize air space. 

Wild rice plants were removed from each quadrat, rinsed in lake water to remove 

any sediment, and packed in plastic bags. Both sediment and wild rice samples were 

refrigerated in portable coolers for transport to the laboratory. Water depth was 

measured in the centre of each quadrat. 

1.2.2. Laboratory Procedures 

The plants from each site were dried in a drying oven at 80° C until there 

was no change in weight for each sample. The biomass per quadrat and mean weight 

per plant were calculated using the plant dry weights. The sediment samples were 

analyzed for loss on ignition (LOI), bulk density (BD), pH, extractable nitrogen (N), 

phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), calcium (Ca), 

magnesium (Mg), and potassium (K) using the methods of Lee (1986). 

6 



FIGURE 1.1. Locations (indicated by •) of 39 lakes sampled for sediment and wild 

rice production characteristics. The insert details the location of 9 sites near 

Ignace, Ontario. 
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1.2.3. Data Analysis 

A natural logarithm transformation was used to improve the normality of all 

the sediment variables (except pH) as recommended by Green. (1971). The data were 

tested for normality using normal-probability plots and skewness and kurtosis 

statistics. Heteroscedasticity of the data was tested using Cochran’s C statistic, 

and found to be nonsignificant (p>0.01) for all variables. Computer programs from 

the SPSSX statistical package (SPSS Inc., 1985) were used in the data analysis 

which proceeded in four steps. 

(1) Since sediment variables are known to be highly intercorrelated (Lee, 1979), 

a principal components analysis was used to define a new uncorrelated set of 

sediment variables. The new factors produced were transformed by a "varimax" 

orthogonal rotation to improve interpretability. 

(2) For each lake sampled, a Ward’s hierarchical cluster analysis was performed 

using the orthogonally rotated raw factor scores to determine if different 

environmental regions existed within the lakes (Lee, 1986). This separated the data 

for those locations that had a heterogeneous character into their component 

homogeneous groups. 

(3) Ward’s hierarchical cluster analysis classified the mean factor scores of the 

homogeneous sediment environments into sediment types. 

(4) Stepwise discriminant analysis tested the existence of the different 

sediment types. Wilks’ lambda was used as the separating statistic among the lake 

types with the probability for inclusion of variables set at P < 0.01. 
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1.3. RESULTS 

1.3.1. Interrelationship of Variables 

Eight orthogonally rotated components were generated from the sediment data 

which accounted for 91 % of the variance in the original data set. The subsequent 

components (twelve were derived in total) accounted for only 9 % of the total 

variance, and were not easily interpreted. 

Figure 1.2 shows the relative values of the sediment variables in the rotated 

factor matrix. The point of intersection for each axis on each star plot indicates 

the importance of that variable to the principal component. 

The first component (PCI) explained 38.8 % of the environmental variation. 

PCI, composed primarily of the alkaline earth metals, calcium and magnesium, and 

the metal manganese will be referred to as the alkaline earth manganese component, 

or AEM. 

Principal component 2 (PC2), which accounted for 15.8 % of the environmental 

variance, had a high positive loading of bulk density and a high negative loading of 

LOI, and may be interpreted as a measure of the ratio of sediment density to 

organic content. PC2 will be referred to as the densityiorganic component, or D:0. 

PCS, the third component, was primarily composed of zinc and copper. This 

component accounted for 8.2 % of the environmental variance, and will be referred 

to as the first metal component, or Ml. 

Principal component 4 (PC4) explained 8.0 % of the variation, and was 

primarily a function of phosphorus. This will be designated as the phosphorus 

component, or P. 

The major variable in the fifth component (PC5) was pH. PCS explained 7.1 % 

of the variation, and will be referred to as the pH component, or pH. 

Principal component 6 (PC6) accounted for 5.1 % of the environmental 
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FIGURE 1.2. Star plots of eight principal components derived from the sediment 

variables. The point where each ray intersects each axis on each plot is 

proportional to the contribution of that variable to the principal component. 
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variance, and was primarily composed of nitrogen. PC6 will be referred to as the 

nitrogen component, or N. 

Principal component 7 (PC7), which accounted for 4.3 % of the variation, was 

primarily composed of the alkali metal, potassium, and the alkaline earth metal, 

magnesium. This component will be referred to as the alkali-alkaline earth 

component, or AAE. 

Iron and manganese had the largest loadings in component 8. PCS accounted 

for 3.7 % of the variation, and will be referred to as the second metal component, 

or M2. 

1.3.2, Separation of Sediment Types 

Of the 39 locations sampled, eight showed a bimodal clustering which indicated 

that two different sediment environments were located within one lake. The data 

from these 47 homogeneous sediment environments were used in the cluster analysis. 

Six groups were derived from the cluster analysis (Fig. 1.3) that categorized the 

sediment into three major groups - organic (O), flocculent (F), clay (C), and three 

hybrid groups - organic-flocculent (OF), organic-clay (OC), and organic over clay 

(O/C). 

The discriminant analysis of these six groupings derived five discriminant 

functions that statistically confirmed the results of the cluster analysis. The first 

three functions explained 92.33 % of the among-groups variability (Table 1.1) and 

were able to correctly classify 46 of the 47 sediments. 

Figure 1.4 shows how discriminant functions one, two, and three separate the 

six sediment types. Function one (FI), which was composed primarily of AEM, Ml 

and pH separated sediment types based on their Ca, Mg, Cu, Zn, and Mn contents 

relative to pH. This function accounted for 55.40 % of among-groups variability and 

isolated the flocculent sediments (F) from the others. 
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FIGURE 1.3. Cluster analysis of sediment variables from the 47 homogeneous 

sediment environments. A similarity value of 11.0 was used to separate the 6 

sediment types. 
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TABLE 1.1. Discriminant function characteristics. The unstandardized coefficients (U) 

are the actual values of the variables composing the discriminant functions; the absolute 

values of the standardized coefficients (S) indicate the relative contribution of each 

variable in the discriminant functions. Coefficients in bold print indicate the largest 

coefficients for a function. 

Coefficients 

U 

Discriminant Function 

2 

Coefficients 

~U S 

Coefficients 

U 

Principal 
Component 

1 2.01 

2 -0.18 

3 2.34 

4 0.57 

5 -1.15 

6 -0.67 

7 -0.08 

8 0.51 

Constant 0.52 

% among - 
group variation 

cumulative 
percentage 

0.95 

-0.09 

1.30 

0.41 

-0.77 

-0.39 

-0.83 

0.28 

55.40 

55.40 

0.24 

1.75 

-0.15 

-0.78 

0.36 

0.99 

-0.66 

0.88 

-0.43 

0.11 

0.93 

-0.08 

-0.56 

0.24 

0.57 

-0.32 

0.49 

20.50 

75.90 

1.41 

0.13 

-0.59 

0.96 

0.51 

-0.27 

1.53 

0.13 

0.17 

0.66 

0.07 

-0.33 

0-.70 

0.34 

-0.16 

0.75 

0.07 

16.43 

92.33 



FIGURE 1.4. Separation of the centroids (indicated by *) of the six sediment types 

according to the three derived discriminant functions. 
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Function two (F2), which explained 20.50 % of the among-groups variability, 

primarily used D;0 to separate the sediment types. As bulk density increased, the 

LOI tended to decrease. As the ratio decreased the sediments became increasingly 

more organic, and less dense. Thus F2 separated the clay sediments from the 

organic, organic-flocculent, organic-clay, and organic over clay types. 

Function three, which was composed primarily of AEM, P, and AAE, separated 

sediment types O, OF, OC, and O/C based on their P, Mg, Mn, Ca, and K values. 

F3 explained 16.43 % of the among-groups variance. 

1.3.3. Characteristics of Sediment Types 

Table 1.2 contains the nutrient, pH, LOI, bulk density, and plant weights for 

the major and hybrid groups. The major differences among the six sediment types 

were the LOI, bulk density, phosphorus, cation, and pH values. In terms of mean 

LOI, organic-flocculent sediments (56.04 %) > flocculent sediments (55.23 %) > 

organic over clay sediments (48.51 %) > organic sediments (47.57 %) > organic-clay 

sediments (29.42 %) > clay sediments (8.11 %). Mean bulk densities (g.cm"^) in clay 

sediments (0.69) > organic-clay sediments (0.31) > organic over clay sediments (0.22) 

> organic sediments (0.21) > organic-flocculent sediments (0.18) > flocculent 

sediments (0.13). Mean phosphorus values (g.m‘^) in organic sediments (1.9) > 

organic-clay sediments (1.2) > organic over clay sediments (1.1) > organic-flocculent 

sediments (0.85) > clay sediments (0.84) > flocculent sediments (0.67). Cation values 

were found to follow the overall trend of organic-clay sediments > clay sediments > 

organic sediments > organic over clay sediments > organic-flocculent sediments > 

flocculent sediments. Mean pH values also differed depending upon the sediment 

type with flocculent sediments (6.9) > clay sediments (6.3) > organic-clay sediments 

(6.2) > organic over clay sediments (6.0) > organic sediments (5.9) > 

organic-flocculent sediments (5.8). 
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TABLE 1.2. Means and standard deviations of sediment variables and total wild rice 

dry weight for the major and hybrid sediment types. 

Variable Organic 

Mean + SD 

Clay 

Mean -i- SD 

Lake Type 

Flocculent 

Mean ± SD 

Organic-Clay Organic/Clay Organic-Flocculent 

Mean + SD Mean + SD Mean + SD 

N(g.m'’) 

P(g.m-2) 

K(g.m'*) 

Fe(g.nr’) 

Mn(g.m“^) 

Zn(g.m"^) 

Cu(g.m'^) 

Ca(g.m'^) 

Mg(g.m'^) 

pH 

LOI(%) 

BD(g.cm‘^) 

Biomass 

(g.0.25m-2) 

4.40 + 6.86 

1.87 t 0.40 

6.26 + 3.36 

84.38 + 24.34 

2.96 ± 0.91 

0.84 ± 0.29 

0.83 ± 0.24 

232.22 ± 63.93 

42.25 ± 32.03 

5.9 ± 0.3 

47.57 + 10.43 

0.21 ± 0.10 

93.31 +41.25 

3.19 

0.84 

10.77 

311,44 

18.04 

0.65 

0.81 

271.43 

43.01 

6.3 

8.11 

0.69 

27.30 

± 1.95 

+ 0.70 

+ 4.31 

+ 199,32 

+ 5.90 

+ 0.21 

+ 0.63 

± 152.05 

+ 27.34 

± 0.3 

± 2.22 

+ 0.11 

+ 16.93 

2.98 ± 0.67 

0.67 + 0.31 

2.48 ± 0.30 

13.95 ± 8.43 

0.72 ± 0.45 

0.17 + 0.07 

0.19 + 0.05 

80.32 + 16.02 

7.13 + 2.17 

6.9 + 0.35 

55.23 ± 10.55 

0.13 ± 0.06 

0.00 ± 0.00 

2.52 + 1.08 

1.19 +0.55 

12.69 ± 4.77 

111.81 + 36.27 

6.80 ± 2.58 

0.71 + 0.52 

0.66 ± 0.21 

415.19 + 75.68 

76.03 + 56.68 

6.2 ± 0.2 

29.42 + 12.58 

0.31 ± 0.13 

83.60 ± 61.44 

2.32 ± 2.09 

1.10 + 0.6 

1.98 ± 1.47 

69.57 + 37.43 

4.82 + 3.98 

0.83 ± 0.45 

1.14 + 0.32 

329.93 + 138.54 

24.79 + 14.93 

6.0 + 0.46 

48.51 + 19.96 

0.22 + 0.08 

100.46 ± 151.61 

1.97 

0.85 

2.95 

52.89 

1.25 

0.57 

1.01 

105.27 

9,16 

5.8 

56.04 

0.18 

27.86 

+ 0.96 

+ 0.30 

± 1.98 

+ 40.83 

± 0.69 

+ 0.31 

+ 0.22 

+ 31.17 

+ 3.49 

+ 0.3 

± 22.4 

± 0.11 

+ 40.77 



1.4. DISCUSSION 

The results (Fig. 1.3) showed that there were three major types of lake 

sediments - organic, clay, and flocculent, and three hybrids - organic-flocculent, 

organic - clay, and organic over clay. Discriminant analysis (Fig. 1.4) revealed that 

these sediment types differed from one another in their cation (Ca, Mg, Cu, Zn, and 

Mn) relative to pH values (FI), organic content (F2), and P, Mg, Mn, Ca, and K 

values (F3). 

1.4.1. Organic sediments 

The organic sediments contained a mean value of 47.57 % organic matter. This 

organic material was quite densely packed, with a mean bulk density of 0.21 g.cm'®, 

and thus provided a rooting media for developing wild rice plants that was resistent 

to uprooting. In the organic group, Ca, Mg, Zn, Mn, Cu, K, and P values were 

higher and pH (5.9) was lower than clay (6.3) and flocculent (6.9) types. The black 

colour of the organic sediments was indicative of sediments rich in organic colloids 

capable of adsorbing cations that, under acidic conditions, are readily available to 

higher plants (Hansen, 1959a; Buckman and Brady, 1961). The presence of these 

acid humus colloids would explain the high values of Ca, Mg, Mn, K, Cu, and Zn in 

these sediments. Organic sediments had high values of P and N when compared to 

clay and flocculent sediments. This is consistent with other studies that have shown 

organic content to be significantly correlated to phosphorus and nitrogen within 

lake sediments (Trojanowski et al, 1985; Trisal and Kaul, 1983; Peltier and Welch, 

1970; Golachowska, 1984). 

1.4.2 Flocculent sediments 

The flocculent sediments had a bulk density value of only 0.13 g.cm’® and an 

LOI value of 55.23 %. These characteristics made them unconsolidated and watery in 

nature, and would cause wild rice plants growing in these sediments to be uprooted 
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easily by wind and wave action. 

Sediments from flocculent lakes were low in cations and phosphorus, and had 

the least acidic pH (6.9). If only the organic content of flocculent sediments was 

considered, it would be expected that they would have high phosphorus values 

(Trojanowski et al, 1985; Golachowska, 1984; Trisal and Kaul, 1983; Peltier and 

Welch, 1970). The low phosphorus and cation values found in flocculent sediments 

may be due to the effects of pH and turbulent mixing. Lake bottom sediment of 

neutral pH was found to be low in P and cations (except Mg) due to the uptake of 

these ions by the surface water (Hayes, 1964; Macpherson et al, 1958). Mortimer 

(1941) found that under reduced conditions insoluble ferric complexes in the 

sediment surface liberated bases, including ammonia, ferrous iron, and other reduced 

materials adsorbed on these complexes. The release of ferrous iron, accompanied by 

ammonia and phosphate, in turn increases the alkalinity of bottom waters (Hayes, 

1964; Mortimer, 1941). Bostrom (1984) found that phosphorus release from sediments 

was redox sensitive and strongly favoured by high pH values and turbulent mixing. 

1.4.3. Clay sediments 

Clay sediments were the most dense with a bulk density of 0.7 g.cm'^ and 

contained only 8.11 % organic material. They were also characterized by low 

extractable phosphorus (0.84 g.m'^) values, possibly because this element is strongly 

adsorbed by clays (Buckman and Brady, 1961) and was not available for plant growth 

(Lee, 1987). Golachowska (1984) found clay minerals showed special capabilities for 

the adsorption and retention of phosphorus. This adsorption may be particularly 

pronounced under acidic conditions and results in a slow rate of decomposition of 

organic compounds. As is typical with clay in terrestrial environments clay 

sediments had high concentrations of extractable Mg, Ca, ^nd K (Buckman and 

Brady, 1961). 
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1.4.4. Hybrid groups 

The hybrid sediment types shared characteristics from both their parent types 

(Table 1.3). 

Organic-flocculent sediments, like flocculent sediments, were low in 

phosphorus, cations, and bulk density, while the more acidic pH was closer to the 

organic sediments. The most distinctive feature of this group was the low nitrogen 

values. 

The organic-clay sediment was high in cations, phosphorus, and nitrogen. The 

pH was similar to that of the clay group. The feature that was most particular to 

this group was the high levels of Mg, Ca, K, and other cations. This was probably 

due to the increased cation exchange capacity caused by the combined effects of 

both the clay and humus colloids. 

The organic over clay sediments were very similar to the organic sediments in 

terms of LOI, bulk density, phosphorus and pH, but had lower cation and nitrogen 

values than the organic-clay sediments. 

1.4.5. Sediment Types and Wild Rice Productivity 

Table 1.3 shows that sediment types that produced the highest dry weights of 

wild rice were organic, organic-clay, and organic over clay. Flocculent, clay, and 

organic-flocculent types were in most cases nonproductive. Sediments with higher 

production were characterized by high phosphorus (1.1-1.9 g.m"^) and cation values, 

medium to high nitrogen (2.3-4.4 g.m’^) values, bulk densities ranging from 2.0-3.0 

g.m"^, LOI’s ranging from 29.42-48.51 %, and a pH of 5.9-6.2. This compares to 

optimum levels of phosphorus of 1.0 g.m‘^, and LOTs of 40-60 % found by Lee 

(1986). These sediments were a mixture of clay and organic material that provided a 

firm nutrient rich substrate in which wild rice could grow. These findings were 

similar to those of Barko and Smart (1970) who found that plant biomass was 
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greater in silt-clay sediments than in clay or sand sediments. Golachowska (1984) 

found that organic matter and clay minerals in bottom sediments were capable of 

accumulating and retaining phosphorus. 

The nonproductive lakes were either clay, or flocculent and organic-flocculent. 

The clay lakes were very firm which made root penetration difficult, and were low 

in extractable phosphorus (0.84 g.m'^) and organic material (LOI 8.11 %). Lee (1986) 

found that such low LOI and phosphorus values supported only poor growth of wild 

rice. The flocculent and organic-flocculent lakes were too unconsolidated (bulk 

density 0.13-0.18 g.cm'^) to prevent uprooting and were low in extractable 

phosphorus (0.67-0.85 g.m'^) and cations. 

In summary, six sediment types were identified in wild rice lakes- organic, 

clay, flocculent, organic-clay, organic-flocculent, and organic over clay. Production 

was best on organic over clay, organic, and organic-clay sediments. The next 

chapter will look at seasonal nutrient trends, wild rice production, and chemical and 

physical characteristics of organic-flocculent and organic/clay sediments. 
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Chapter 2 

THE EFFECTS OF PHYSICAL, CHEMICAL, AND SEASONAL 
SEDIMENT CHARACTERISTICS ON WILD RICE PRODUCTION 

IN ORGANIC-FLOCCULENT AND ORGANIC/CLAY SEDIMENTS 

2A. INTRODUCTION 

In chapter 1, sediments from wild rice lakes were classified into three major 

types - organic, clay, and flocculent, and three hybrid types - organic over clay 

(organic/clay), organic-clay, and organic-flocculent. These divisions were based on 

variations in the organic content, bulk densities, and nutrient values. 

Wild rice production also varied in the six sediment types. Organic, organic- 

clay, and organic/clay sediments were good producers of wild rice, while flocculent 

and organic-flocculent sediments were poor producers. The flocculent sediments 

were characterized by low phosphorus (< 1.0 g.m'^), bulk density (< 0.2 g.cm"^), and 

cation values. The reason for these low nutrient values is not known. Other studies 

have shown that redox, pH, turbulent mixing, rate of decomposition, and physical 

composition influence nutrient values in sediments (Bostrom, 1984; Sain, 1984; 

Twilley et al, 1985; Jordana, 1983; Twinch and Ashton, 1983; Zicker et al, 1956; 

Hayes, 1964; Mortimer, 1941; Macpherson et al, 1958). The type of organic matter 

can also affect nutrient levels. Swain (1963) found lower nutrient levels in gyttja 

(neutral humus) versus dy (acid humus). Hansen (1961) classified dy and gyttja 

sediments on the basis of the carbon to nitrogen ratio, and the amounts of 

organic, minerogenic, and inorganic biogenic matter. 

Previous research revealed that such physical and chemical variations in the 

sediment greatly influence wild rice growth and development (Lee and Stewart, 1984; 

Lee, 1986; Lee, 1987). The low nutrient levels detected in flocculent sediments 

seem to be in limiting concentrations and would be expected to be detrimental to 

normal wild rice growth. However, it is not known if these low levels occur 
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throughout the growing season, or if wild rice, like other macrophytes depletes the 

reserves by nutrient uptake (Trisal and Kaul, 1983). 

In the present study, unproductive organic-flocculent sediments are compared 

to a productive organic/clay sediment. The specific objectives of the study were 

(i) to determine whether the physical and chemical characteristics of organic- 

flocculent sediments differed from organic/clay sediment; and (ii) to determine 

whether seasonal nutrient trends and wild rice production differed between 

organic-flocculent versus organic/clay sediments. 

2.2. METHODS 

2.2.1. Field Procedures 

In the spring of 1985, 0.25 h plots (50 m x 50 m) were seeded with wild rice 

in 3 lakes, Collins, Tag, and No-Name which have organic-flocculent sediments and 

Beavero Lake, which has organic/clay sediment. All lakes are shallow (< 1.0 m in 

depth) and are located near Ignace, Ontario, Canada (Fig. 2.1). The wild rice seed 

was from Beavero Lake. The plots were sampled biweekly from June 3 to August 27 

using transects 50 m in length. The starting position of the transect was randomly 

determined. At 5 m intervals along the transect, 10, 0.25 m x 0.25 m quadrats were 

sampled each sampling period. At each quadrat wild rice plants were harvested, 

the top 20 cm of the sediment was sampled, and the depth was measured in the 

centre of the quadrat. The plant and sediment samples were packaged and stored in 

portable coolers for transport to the laboratory. 

In early September, in situ redox measurements were made with a Fisher 

Accumet Portable pH/mV meter (Model 640) and an Orion redox electrode at random 

intervals throughout the lakes at a rate of 1 per 3 hectares. The electrode was 

placed in a protective submersible housing, which allowed the platinum tip to be 
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FIGURE 2.1. The locations of the three lakes with organic-flocculent sediment 

(Tag, Collins, and No-Name) and the lake with organic/clay sediment (Beavero). 

The town of Ignace, Ont. is approximately 20 km to the south. 



No-Name 

Tag Lake 

o 
Collins Lake 



lowered into the sediment. A sediment sample was also collected at each location. 

2.2.2. Laboratory Procedures 

The seasonal sediment samples collected along the transects were analyzed for 

loss on ignition (LOI), bulk density (BD), pH, and extractable nitrogen (N), 

phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), calcium (Ca), 

magnesium (Mg), and potassium (K) using the methods of Lee (1986). 

Using the samples collected at the end of the season, the carbon to nitrogen 

ratio (C:N), inorganic biogenic component, and the mineral component were 

determined. C:N ratios were calculated using a Model 240-XA elemental analyzer 

(Control Equipment Corp.). Inorganic biogenic material was determined by visually 

inspecting the sediments under a light microscope. X-ray diffraction (Philips X-ray 

Diffractometer) was used to determine the mineral composition of the sediments 

(Whittig, 1965). 

2.2.3. Data Analysis 

A three step analysis of the seasonal sediment data determined which 

characteristics differed among the lakes: (1) The data were transformed into time 

independent values following the method of Lee and Stewart (1981). (2) Since 

sediment variables are highly intercorrelated (Lee, 1979), principal components 

analysis defined a new uncorrelated set of time independent sediment data (SPSS 

Inc., 1985). A "varimax" orthogonal transformation was used to improve the 

interpretability of the factors produced. (3) Stepwise discriminant analysis (SPSS 

Inc., 1985) separated the sediments from the 4 lakes based on the new set of 

uncorrelated time independent sediment data. Wilks’ lambda was used as the 

separating statistic with the probability for inclusion of variables set at P<0.01. 
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2.3. RESULTS 

2.3.1. Sediment Characteristics 

Mean values for sediment variables and the type of minerals present are 

contained in Table 2.1. The organic/clay sediments had higher extractable P, Fe, 

Mn, Ca, and Mg values than the organic-flocculent sediments. Values for extractable 

N and K were higher in organic-flocculent sediments. LOI (organic content) was 

higher in organic- flocculent sediments while BD was generally lower. 

The organic matter in Beavero sediments appeared to be more decomposed than 

organic matter in the organic-flocculent sediments (Fig. 2.2). A larger portion of 

both orgainc-flocculent and organic/clay sediment types were composed of diatom 

frustules (Fig. 2.3), and quartz and feldspar (Appendix 1). All sediments were 

reduced with redox levels ranging from -149 to -201 mV. Mean pH values ranged 

from 6.0 to 6.4. All sediments had C:N > 10 which indicates that they were acid 

humus (Hansen, 1959). 

2.3.2. Interrelationship of Sediment Variables 

A total of eleven uncorrelated orthogonally rotated principal components were 

generated from the time independent sediment data. The first seven principal 

components accounted for 97.1 % of the variation within the original data set (Table 

2.2). The first principal component (PCI), which explained 47.2 % of the variance, 

could be interpreted as a mineral component and had high positive loadings for BD, 

P, Mn, Mg, and Ca which were all highly correlated with each other. Principal 

component 2 (PC2) explained 18.4 % of the variance, and had high positive loadings 

of LOI and N, and high negative loadings of P and BD. This component could be 

interpreted as the ratio of organic and N content to the mineral and P content. The 

third principal component (PC3) was primarily composed of pH and accounted for 

11.9 % of the variance. Principal component 4 (PC4) explained 9.8 % of the variance 
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TABLE 2.1. Means and standard deviations of sediment variables, carbon to 

ratios (C:N), and minerals present for Beavero, Collins, Tag, and No-Name Lakes. 

Lake Beavero Collins Tag No-Name 

Bulk density 0.15±0.04 

Loss on 41.OHIO.00 
ignition (%) 

pH 

Nitrogen 
(g-m'2) 

6.H0.3 

0.49±0.35 

Phosphorus 1.27±0.33 
(g.m-2) 

0.1H0.06 0.04±0.03 0.10±0.03 

52.98±15.81 82.04+5.96 68.18±6.36 

6.4±0.3 6.0±0.4 6.210.4 

1.1310.88 1.8811.32 0.8510.58 

0.8910.30 0.3710.22 0.8210.21 

Potassium 
(g-m'2) 

Iron 
(g.nr^) 

2.3710.33 4.1817.26 5.67110.75 5.4018.15 

96.71i20.25 28.18l23.28 47.03l25.22 96.14l31.56 

Manganese 4.5111.67 
(g.m'2) 

Zinc 
(g.m-2) 

Copper 
(g.m-2) 

Calcium 
(g-m"2) 

0.3010.13 

0.9310.44 

0.3810.18 0.6010.54 0.9410.45 

0.2610.11 0.2710.25 0.4910.21 

0.9610.48 0.9210.28 LlOlO.36 

200.64l46.34 154.58175.78 115.07l86.94 166.63ll49.86 

Magnesium 17.4915.67 
(g.nr2) 

11.2616.55 9.5H9.30 7.1914.26 

Redox 
(mV) 

C;N 

-190.25l38.47 -200.63l57.91 -149.83l40.73 -168.31l36.75 

13:1 11:1 12:1 11:1 

Mineral 
content 

quartz 
feldspar 

quartz 
feldspar 

quartz 
feldspar 

quartz 
feldspar 



FIGURE 2.2. Comparison of the organic material in organic-flocculent and 

organic/clay sediments. Organic/clay sediments were composed of more strongly 

decomposed organic material (magnification 450X). 





FIGURE 2,3. Diatom frustules which contributed a large portion of the inorganic 

biogenic component in organic/clay and organic-flocculent sediments (magnification 

450X). 





TABLE 2.2. Coefficients of the total factor matrix and the variance explained for 

the first seven principal components of the time independant sediment data. Bold 

print indicates the largest coefficient(s) for a variable. 

Principal Component 

Loss on 
ignition 

Bulk density 
(g.cm’2) 

pH 

Phosphorus 
(g-m-2) 

Nitrogen 

Iron 
(g.m-2) 

Manganese 

Zinc 
(g.m'2) 

Copper 
(g.m-2) 

Calcium 
(g-nr2) 

Magnesium 
(g-iti-2) 

Potassium 
(g.m-2) 

Percent of 
variance 

-.147 -.927 -.101 -.103 -.134 -.182 -.191 

.700 .597 .136 .121 .094 -.005 .097 

.023 

.573 

.300 

.786 

.123 

.774 

.982 

.040 

-.488 -.791 -.076 

.252 .359 

.355 

.043 

.077 

-.114 

.297 

.060 

-.130 

-.006 

.088 

.069 -.096 

.015 -.028 

•.148 -.162 

.341 .707 

-.270 -.020 -.106 -.042 .308 

-.114 .173 .089 .097 .284 .916 .139 

-.052 .046 .061 -.057 .964 .240 .035 

.750 .396 .267 -.106 .107 .021 .215 

.934 .168 -.006 -.237 -.093 -.124 -.020 

-.154 .139 .046 .965 -.058 .086 .110 

47.2 18.4 11.9 9.8 4.2 3.7 1.9 



and was primarily a function of K. The fifth, sixth, and seventh principal 

components were primarily composed of Cu, Zn, and Fe respectively, and in total, 

accounted for only 9.8 % of the total variance. 

Utilizing these 7 principal components, discriminant analysis derived 3 

discriminant functions that gave 100 % separation of the 4 lakes (Fig. 2.4). The first 

2 functions accounted for 92.43 % of the among group variability and were primarily 

responsible for separating the 4 lakes (Table 2.3). PCI, PC2, and PC7 were the 

major components of discriminant function 1. All values of the variables composing 

these principal components, except N, were higher in the organic/clay sediment of 

Beavero Lake (Table 2.1). Function 2 primarily used PC3 (pH) to separate the lakes. 

From low to high mean sediment pH of the lakes were in the order of Tag (6.0), 

Beavero (6.1), No-Name (6.2), and Collins (6.4). 

2.3.3. Seasonal Nutrient Trends 

The seasonal values for the sediment variables that were important in 

separating the organic-flocculent sediments of Tag, Collins, and No-Name lakes 

from the organic/clay sediment of Beavero Lake, are shown in Figure 2.5. Appendix 

2 contains the complete set of seasonal sediment variables. These trends were 

similar for the organic-flocculent and organic/clay sediments. Nitrogen values 

increased until mid August and then decreased. Phosphorus, manganese, and LOI 

values were fairly constant throughout the growing season. Following peak levels in 

the spring Mg and Ca decreased in value until early August and then increased to 

spring concentrations. Iron values decreased from June to July and the increased in 

August. Bulk density and pH increased in value in the spring, then decreased during 

June and July before again increasing in August. 
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FIGURE 2.4. Separation of Tag (T), Collins (C), No-Name (N), and Beavero (B) 

sediments according to discriminant functions 1 and 2. The ellipses describe the 

bivariate distributions that contain 90 % of the sampling observations within each 

lake. 



Plot of Discriminant Function 1 
and Function 2 

Function 1 



TABLE 2.3. Discriminant function characteristics for organic-flocculent and 

organic/clay sediments. The unstandardized coefficients are the actual values of the 

variables composing the discriminant functions. Coefficients in bold print indicate 

the largest coefficients for a function. 

Discriminant Function 

Coefficients Coefficients 

Unstandardized Standardized Unstandardized Standardized 

Principle 
Component 

1 

2 

3 

4 

5 

6 

7 

2.501 

5.502 

0.356 

1.167 

0.730 

1.085 

1.348 

1.656 

2.651 

0.298 

1.176 

0.722 

0.944 

1.187 

-1.544 

0.721 

1.503 

0.142 

0.522 

0.112 

-0.980 

-1.020 

0.348 

1.260 

0.143 

0.516 

0.097 

-0.863 

Constant 

% among group 
variation 

Cumulative 
percentage 

0.327x10-2 

81.35 

81.35 

-0.235x10-2 

11.08 

92.43 



FIGURE 2.5. Seasonal levels of nitrogen, phosphorus, magnesium, iron, and pH from 

organic-flocculent lakes (No-Name, Collins, Tag) and the organic/clay lake 

(Beavero). 
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2.3.4. Wild Rice Production 

Figure 2.6 show the mean seasonal biomass (g.m‘^) and the phonological 

development of wild rice in organic-flocculent and organic/clay sediments. By 

August the organic/clay sediment produced a dense stand of large mature plants 

(biomass > 100 g.m‘^), while the organic-flocculent sediments produced small plants 

(biomass < 22 g.m'^) that entered the aerial stage but produced no grain. The 

leaves of the wild rice plants grown in the organic-flocculent sediments were 

initially green, but by the floating leaf stage many leaves had turned purple. 

2.4. DISCUSSION 

2.4.1. Sediment Relationships 

Organic/clay and organic-flocculent sediments shared many similarities. This 

included similar inorganic biogenic composition, mineral content, and redox values 

(Table 2.1). Many chemical relationships were also the same in the two types of 

sediments. PCI indicated that extractable phosphorus, manganese, magnesium, and 

calcium were highly correlated in both the organic-flocculent and the organic/clay 

sediments. Other studies have also shown P to be correlated to Mn and Ca in lake 

sediments (Trojanowski et al, 1985; Golachowska, 1984; Williams et al, 1971; Delfino 

et al, 1969; Swain, 1963). This implies that phosphorus in these sediments may be in 

the form of calcium, magnesium, and manganese phosphate compounds. However, 

X-ray diffraction did not reveal any mineral compounds which would contain 

extractable P. It is therefore more probable that P, Mn, Mg, and Ca were associated 

with organic matter, likely humic acids, which are known to complex with these 

elements (Challa and Roman, 1984; Swain, 1963). The correlation of nitrogen with 

LOI in PC2 also implicates the presence of organic complexes. This concurs with 

other studies that have shown sediment N increased with increasing organic content 
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FIGURE 2.6. Comparison of biomass production and phenological development of wild 

rice in organic-flocculent and organic/clay lakes. 
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(Trojanowski et al, 1985; Golachowska, 1984; Trisal and Kaul, 1983; Peltier and 

Welch, 1970). 

Although there were several similarities between the organic-flocculent and the 

organic/clay sediments, there were also important differences which might ultimately 

affect wild rice production. The discriminant analysis (Table 2.3) showed that PCI 

and PC2 were the most important factors in separating the two types of sediments. 

These components were comprised of organic content (correlated directly with LOI 

and inversely with BD) and the nutrients P, Mn, Ca, Mg, and N. The nutrient and 

bulk density values were higher in the organic/clay sediment than the 

organic-flocculent sediments, while LOI was lower. 

The variation in the nutrient content between the two sediment types may 

reflect the origin of the organic material. Detrital material within sediments acts as 

a sink for nutrients (Hayes and Philips, 1958; Swain, 1963; Johannes, 1968). 

Nutrients within sediments tend to increase with microbial decomposition, 

adsorption, deposition, and subsequent partial mineralization of large quantities of 

organic detritus (Trisal and Kaul, 1983). Much of the organic matter within 

organic-flocculent sediments is believed to be peat detritus derived from the 

surrounding peat bogs and may be classified as sedimentary peat (Swain, 1963). 

Sediments derived from peats tend to be resistant to decay and have low bacterial 

and nutrient content (Jordana, 1983; Swain, 1963). Macrophytes, algae, and straw, on 

the other hand, decompose at a faster rate than peat (Sain, 1984; Trisal and Kaul, 

1983; Johannes, 1968; Swain, 1963; Hayes and Phillips, 1958). Thus the decomposing 

wild rice straw within Beavero would be a major source of nutrients and could 

account for the higher nutrient values. The lower values of N in Beavero sediments 

was likely the result of cumulative nutrient depletion caused by years of wild rice 

cropping. Similar results were found by Keenan and Lee (1987) in another 
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commercially harvested wild rice lake in northwestern Ontario. 

Sediment density may also be affecting the release of phosphorus and other 

nutrients from the sediments and account for some of the nutrient variations 

between the two types of sediment. The principal components analysis (Table 2.2) 

showed that bulk density was correlated with the concentrations of several nutrients 

in PCI and PC2. Research has shown that turbulent mixing of sediments increases 

the rate of phosphorus loss to overlying water (Bostrom, 1984; Zicker et al, 1956). 

In shallow lakes the density of the sediments directly determines the severity of the 

turbulent mixing, with less dense sediments being more susceptible. Thus lower 

phosphorus values, and possibly other nutrients, may have resulted from greater 

turbulent mixing within the organic-flocculent sediments. 

2.4.2. Seasonal Nutrient Trends 

Most seasonal nutrient data for the four sediments studied showed no nutrient 

depletion during the period of exponential wild rice growth (July 17 to August 27). 

This was contrary to the results of Trisal and Kaul (1983) who showed that 

reductions in nutrient concentrations corresponded to the exponential growth of 

macrophytes. Fe and N showed reductions during the latter half of the growing 

season in both organic/clay and organic-flocculent sediments. The lack of obvious 

reductions in P and most other nutrients implies that mechanisms for nutrient 

replenishment exist within the lake-sediment environment (Hayes and Philips, 1958; 

Johannes, 1968). 

The seasonal nutrient trends also showed that for each nutrient, fluctuations 

were similar throughout the growing season and that organic/clay sediments, with 

the exception of N, had higher nutrient values. The lower nutrient values within the 

organic-flocculent sediments apparently affected wild rice production, since wild rice 

biomasses were much lower in these sediments (Fig. 2.6). 
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2.4.3. Wild Rice Development 

During the initial part of the vegetative growth phase, (germination to the 

floating leaf stage) wild rice plants (Fig. 2.6) matured at about the same rate, 

regardless of the sediment type, and accumulated about 2 % of their total dry 

weight per quadrat. Nitrogen, potassium, and phosphorus uptake would be about 

7.5 %, 5.0 %, and 3.8 % respectively, of the total amounts accumulated by maturity 

(Grava, 1982). Therefore, during this early growth phase, nutrient requirements were 

minimal and were adequately provided by the seed, nutrient translocation, and the 

sediment. 

From the second floating leaf stage to maturity, wild rice produces 98 % of its 

biomass, and takes up most of the required (P 96.2 %, K 95.0 %, and N 92.5 %) 

nutrients (Grava, 1982). In organic-flocculent sediments maturation rates slowed 

during the second floating leaf stage and growth stopped during the aerial leaf 

stage (Fig. 2.6). In organic/clay sediments wild rice tillered, flowered, formed seed, 

and reached maturity (Fig. 2.6). In other plants during this part of their life cycle, 

N, K, and P accumulate in the most actively growing parts, while Mg, Ca, and Fe 

accumulations are associated with older plant tissue (Malsner and Nihlgard, 1980). 

Certainly wild rice requires adequate concentrations of nutrients at maturity, since 

wild rice seeds contain high concentrations of P, K, Mg, and Ca, as well as some 

Zn and Fe (Anderson, 1976). Deficiencies in N, P, K, or any other required 

nutrient could explain the slow rate of growth and small plant size of wild rice 

grown in organic-flocculent sediments. 

Visual symptoms also suggested nutrient deficiencies in the organic-flocculent 

sediments. No unusual colour changes were observed in the plants from Beavero 

Lake, while the leaves and stalks of plants grown in the organic-flocculent 

sediments turned purple during the floating leaf stage. In other plants this may 
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indicate phosphorus, nitrogen, or micronutrient deficiencies (Chapman, 1966). Visual 

nutrient deficiency symptoms for wild rice have not been determined so it is not 

possible to state with any certainty which specific element is limiting in this case. 

In conclusion, major differences in nutrient values existed between organic/clay 

and organic-flocculent sediments. Lower nutrient values in organic-flocculent 

sediment were closely linked to the organic material and likely resulted from i) the 

origin, type, and degree of decomposition of the organic material, ii) slower 

nutrient mineralization and recycling of required nutrients, and iii) lower density 

and a high degree of turbulent mixing. A comparison of the seasonal trends 

between organic-flocculent and organic/clay sediments showed no nutrient depletion 

during the exponential growth of wild rice. Throughout the growing season 

organic/clay sediments had higher nutrient values with the exception of N. The 

maturation of wild rice grown in organic-flocculent sediments was retarded by 

nutrient deficiencies, while rice grown in the organic/clay sediment reached 

maturity. The next chapter will concentrate on the identification of the nutrient(s) 

limiting wild rice production in organic-flocculent sediments. 
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Chapter 3 

THE IDENTIFICATION OF GROWTH LIMITING NUTRIENTS 
IN ORGANIC-FLOCCULENT SEDIMENTS 

3.1. INTRODUCTION 

The sediments of wild rice lakes can be classified as organic, clay, flocculent, 

organic/clay, organic-clay, or organic-flocculent (chapter 1). Wild rice production 

and seasonal nutrient trends in lakes containing organic-flocculent or organic/clay 

sediments were described in chapter 2. Plants from the organic-flocculent sediments 

were smaller, took longer to mature, and had purple foliage. It was suggested that 

nutrient deficiencies (phosphorus, metals, or micronutrients) were causing low 

production in these sediments (Lee and Stewart, 1984). In this study, this hypothesis 

is examined by the application of fertilizer under natural and controlled conditions. 

The objective of the study was to determine which nutrients were limiting wild rice 

production in organic-flocculent sediments. 

3.2. METHODS 

3.2.1. Fertilizer Trials 

Fertilizer trials were conducted with wild rice cultivation rafts described by 

Stevenson and Lee (1987). Tubs containing sediment from 3 organic-flocculent lakes 

were suspended at a depth of 45 cm. The sediment sources were Tag, Collins, and 

No-Name lakes, located near Ignace, Ontario, Canada and previously described in 

chapter 2. 

The experimental procedure essentially followed Lee (1987). Three cultivation 

rafts, one for each sediment source, were used in a randomized block experimental 

design with two replicates of nine fertilizer treatments in each raft. Slow release 

fertilizers manufactured by the Sierra Chemical Company, Milpitas, Califoria were 

added in high (H) and low (L) concentrations in all but the control treatment. 
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Treatments consisted of the following: control (C, no fertilizer), +P, H (120 kg.h'^ 

P) and +P, L (30 kg.h'^ P) of 0-4-0; +NPK, H (800 kg.h-i N) and +NPK, L (200 

kg.h'i N) of 18-6-12; +N, H (800 kg.h"^ N) and +N, L (200 kg.h'^ N) of 40-0-0; +M, 

H (200 kg.h'^) and +M, L (100 kg.h'^) of a micronutrient mixture (12 % Fe, 2.5 % 

Mn, 1.0 % Zn, 0.5 % Cu, 0.1 % Bo, 0.05 % Mo, and 15.0 % S). 

Five seedlings were planted in each tub and grown until mature. The plants 

were then removed, soil was rinsed from the roots, and the height, dry weight, and 

number of seeds determined for each plant. Rafts were designed to accomodate 24 

tubs; therefore six additional control tubs were used on each raft to ensure that 

each tub in the experiment was bracketed on at least 2 sides by other tubs 

containing wild rice. This created equal shade for all plants in the experiment. The 

plants within these six additional tubs were not used in the analysis. 

Skewness and kurtosis statistics were calculated for the nine fertilizer 

treatments. The normality of the variables was improved with a square root 

transformation. Analyses of variance (SPSS Inc., 1985) of the transformed variables 

were then used to detect statistical differences among the nine fertilizer treatments 

in wild rice height, dry weight, and number of seeds per plant. 

3.2.2. Foliar Mineral Deficiency Symptoms 

Wild rice plants were initially grown to the aerial leaf stage in a greenhouse 

using culture tanks (Lee, 1984). A 16 hour photoperiod was used for the entire 

experiment. Day temperatures were kept at 23° C, while night temperatures were 

maintained at 15° C. To ensure that the plants had adequate nutrients, 10 g of 

slow release Osmocote 18-6-12 fertilizer (Sierra Chemical Company, Milpitas, 

Califoria) was mixed into the organic soil. 

Once the plants reached the aerial leaf stage, they were removed from their 

pots and the soil was gently washed from the roots. The roots were kept wet at all 
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times prior to transfer to the test solutions. 

Modified Hoagland solutions (Hoagland and Arnon, 1950) were used in the 

experiment. N, P, K, Ca, and Mg were mixed at half strength (50 % Hoaglands); 

micronutrients and Fe were 2.5 times normal strength to approximate sediment 

values (Lee, 1983). A complete solution (control) and solutions lacking N, P, K, Ca, 

Mg, Fe, and micronutrients (Bo, Mn, Zn, Cu, and Mo) were prepared for a total of 

8 treatments. The pH range of the solutions (5.5-6.5) was similar to that found in 

productive lake sediments (chapter 1). 

Five wild rice plants were used for each of the eight different treatments. 

Individual plants were placed in 2 L glass jars that had been washed with double 

distilled water. The jars were filled with the appropriate nutrient solution and 

placed in culture tanks. Nutrient solutions were replenished daily. Aeration of the 

media was not required since wild rice grows in reduced sediment conditions. In 

order to impede light penetration and prevent algal growth, the tanks were covered 

with two layers of black plastic. The leaves of the plants were left uncovered, and 

the stems were supported with clamps to prevent the plants from falling. The plants 

were monitored daily for a 30 day period and visual foliar symptoms were recorded. 

3.3. RESULTS 

3.3.1. Raft Experiments 

Wild rice production in the three different lake sediments responded similarly 

to the fertilization. Analyses of variance showed that differences among treatments 

were statistically significant (wt/plant F=(8_i6)l’7-0, p<0.01; ht/plant F=^g 

p<0.01; seeds/plant F=^gjgj87.1, p<0.01). Differences among the rafts were not 

significant. Figure 3.1 shuws the mean production values (weight, height, and 

number of seeds per plant) for each treatment in each of the three lake sediments. 
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FIGURE 3.1. Mean height, mean number of seeds per plant, and mean dry weight 

response of wild rice plants grown in sediment from Collins, Tag, and No-Name 

lakes to the nine fertilizer treatments. Error bars indicate one standard deviation 

from the mean. 
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Production values were highest in NPK and P treatments. N and micronutrient 

treatments did not significantly increase dry weight or plant height relative to the 

control. Similar results were obtained for seeds per plant, except in the Collins lake 

sediment where high nitrogen and micronutrient treatments resulted in greater seed 

numbers than the control. 

Figure 3.2 shows the results obtained for Collins Lake sediment. In the 

treatments containing phosphorus, plant growth and seed production were noticeably 

better than the treatments in which phosphorus was absent. Phenological 

development was also affected. Wild rice in the NPK and P treatments were well 

advanced into the aerial leaf stage, while plants in the N, micronutrients, and 

control treatments were still in floating leaf and early aerial leaf stages. 

3.3.2. Nutrient Deficiency Symptoms 

The leaves of some of the plants in the complete and deficient solutions 

displayed chlorosis when first transplanted into the nutrient solutions. These 

chlorotic leaves were removed since these symptoms were believed to be the result 

of transplant shock. After this the plants in the complete solution remained green 

and healthy for the duration of the experiment. 

Figure 3.3 compares the visual deficiency symptoms of wild rice grown in 

complete and deficient nutrient solutions with the appearance of wild rice grown in 

organic-flocculent sediments. The first visible symptoms were recorded at day 10 of 

the experiment. As time progressed, the symptoms became more severe, affecting 

more leaf area and often the stalks. 

The appearance of wild rice grown in organic-flocculent sediment (field) most 

closely resembled the plants grown in the phosphorus deficient (-P) solution. These 

plants displayed purple colouration along the margins, interveinally, and on the 

stalks of the more recently affected leaves, while older leaves were necrotic. 
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FIGURE 3.2. The randomized block experimental design with 2 replicates of 9 

fertilizer treatments used for the Collins Lake sediment. High (H) and low (L) 

treatments were used for each fertilizer. The wild rice growing in the +NPK and 

+P treatments matured faster (shown in the aerial leaf stage) than did the +N, +M, 

and control (C) treatments (shown in the floating leaf stage). 
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FIGURE 3.3. Comparison of the visual nutrient deficiency symptoms displayed by 

wild rice grown in the field (organic-flocculent sediments) to wild rice grown in 

complete solution and in solutions deficient in nitrogen (-N), phosphorus(-P), 

potassium(-K), iron(-Fe), magnesium(-Mg), calcium(-Ca), and micronutrients (-micro). 
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Similarly, the plants in the phosphorus deficient treatment initially turned dark 

green, and then later purple along the leaf margins, interveinally, and on the stems. 

In the nitrogen deficient (-N) treatments, chlorosis first appeared at the tips 

and margins of the older leaves, and then progressed towards the base. Potassium 

deficient (-K) plants were scorched at the tips and margins of the most recently 

matured leaves. The iron deficient (-Fe) plants displayed interveinal chlorosis in the 

younger leaves. The visual symptom of wild rice in magnesium deficient (-Mg) and 

calcium deficient (-Ca) treatments was interveinal chlorosis in the older leaves. 

After 10 days, the plants grown in the micronutrient deficient (-micro) solution, 

displayed marginal and interveinal chlorosis and a slight purple colour along the 

margins and sheaths of the older leaves. These leaves later turned an orange-brown 

colour, and became necrotic after 20 days. After a 30 day period, all the above 

symptoms still prevailed for the respective treatments. Many of the earlier leaves 

that were affected became necrotic. 

3.4. DISCUSSION 

Evidence from the fertilizer trials and the nutrient deficiency results points to 

phosphorus as the limiting nutrient in organic-flocculent lakes. The plants from 

organic-flocculent lakes (Fig. 3.3) most closely resembled the phosphorus deficient 

treatment. Phosphorus deficient plants were characterized by purple colouration of 

the leaves, and a slower maturation rate. These same symptoms have been observed 

in other plants that are phosphorus deficient and occur as a result of anthocyanin 

pigment formation (Chapman, 1966). 

Plants subject to fertilizer regimes that included phosphorus were characterized 

by early maturation, good production and no chlorosis. By contrast, wild rice plants 

resulting from micronutrient, nitrogen, and control treatments (ie. lacking P) 
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displayed both slow maturation and purple foliage. These findings were similar to 

those of Enyi (1963) who found that phosphate fertilization of rice {Oryza saliva L.) 

increased plant weight and maturation rate. The high and low phosphorus treatments 

did result in some chlorosis in the mature leaves, symptoms that indicate nitrogen 

deficiency. A secondary deficiency of nitrogen may have resulted in the lower 

production values for the P treatments as compared to the NPK treatmeants. 

Phosphorus deficiency in these sediments seems reasonable when their 

composition is considered. Although past studies have indicated that high organic 

content is correlated to high phosphorus values within lake sediments (Trojanowski 

et al, 1985; Golachowski, 1984; Trisal and Kaul, 1983; Peltier and Welch, 1970), in 

chapter 1 and 2 the reverse was found to be true in organic-flocculent and 

flocculent sediments These sediments were characterized by high organic content (% 

LOI > 50) but low phosphorus values. This discrepancy may be due to the degree of 

decomposition of organic matter which influences the release of nutrients (Twilley 

et al, 1985; Sain, 1984; Jordana, 1983; Twinch and Ashton, 1983; Malsner and 

Nihlgard, 1980). Assuming there is a positive linear correlation between bulk density 

and the degree of decomposition, as determined for northern peats by Silc and 

Stanek (1977), the organic matter in organic-flocculent sediments would be 

undecomposed to moderately decomposed while organic sediments would be more 

completely decomposed and, therefore, more likely to have higher phosphorus values. 

Turbulent mixing of sediments is known to accelerate phosphorus release 

(Bostrom, 1984; Zicker et al, 1956) and this could also explain the lower phosphorus 

values in the organic-flocculent and flocculent sediments. Certainly the low bulk 

density of these sediments would allow them to be easily disturbed by wave and 

wind action, and in turn increase phosphorus release. 

Lee and Stewart (1984) suggest that in addition to deficiencies in phosphorus. 
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flocculent lake sediments might be deficient in some metals and micronutrients. 

Szalay (1974) found that Mn and Cu were deficient in plants grown in peat soils. 

However, the fertilizer study (Fig. 3.1) showed that additions of micronutrients had 

no affect on wild rice. 

In conclusion, wild rice production in organic-flocculent sediments was limited 

by phosphorus, with nitrogen acting as a secondary nutrient deficiency. Phosphorus 

deficiency in wild rice is characterized by slow maturation and anthocyanin pigment 

formation. Phosphorus deficiency may be related directly to the type of sediment. 

Organic-flocculent sediments contained a high percentage of poorly decomposed 

organic material which tends to be nutrient poor. Their low bulk densities makes 

these sediments susceptible to turbulent mixing which releases nutrients to the 

water column. 
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SUMMARY AND CONCLUSIONS 

Six sediment types were classified using statistical techniques. These included 

the following major and hybrid sediment types- organic, clay, flocculent, 

organic-clay, organic-flocculent, and organic/clay. Of the six sediments, only 

organic, organic/clay, and organic-clay produced plant dry weights that were 

commercially suitable. The sediment characteristics of flocculent and 

organic-flocculent sediments included high organic content (LOI), low bulk density 

(BD), poor consolidation, and low cation and P values. 

Many similarities were found between the sediment characteristics of 

organic-flocculent and organic/clay sediments including inorganic biogenic 

composition, mineral content, acid humus, pH, and redox values. P, Mn, Mg, Ca, and 

N were believed to be associated with humus in organic complexes rather than in 

mineral complexes within these sediment types. 

Major differences in nutrient values existed between organic/clay and 

organic-flocculent sediments. Lower nutrient values in organic-flocculent sediment 

were closely linked to the organic material and likely result from the following 4 

factors; 

1) the origin, type, rate, and degree of decompositon of the organic material. 

2) slow nutrient mineralization and recycling of P and N. 

3) lower density and higher degree of turbulent mixing of the sediments. 

4) lower availability of required nutrients. 

A comparison of the seasonal trends between organic-flocculent and 

organic/clay sediments showed no nutrient depletion during the exponential growth 

of wild rice. Throughout the growing season, with the exception of N, organic/clay 

lakes had higher nutrient values with the exception of N. The growth of wild rice 
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within organic-flocculent sediments was often retarded while normal development 

occurred in the organic/clay sediments. 

Fertilizer experiments showed that the symptoms displayed by the wild rice 

grown in organic-flocculent sediments (slow maturation and purple leaves) resulted 

primarily from a deficiency of P with N as a possible secondary deficiency. 

The results from these experimental and field studies have several implications 

for wild rice production. These have been discussed in the individual chapters, but 

to conclude this thesis, the more important points are summarized below. 

1. Lake sediments from wild rice stands can be classified into specific types. 

Wild rice production can be predicted for these various types. 

2. Nutrients required for wild rice production vary throughout the growing 

season. Inadequate amounts of these nutrients impedes normal wild rice development. 

3. Unproductive sediments that can be classified as flocculent are primarily 

deficient in phosphorus. Addition of fertilizer can correct this problem and result in 

normal wild rice growth. 
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APPENDIX 1. X-ray diffraction results for Tag, Collins, No-Name, and Beavero 

sediments. 
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APPENDIX 2. The seasonal sediment values of nitrogen (N), magnesium (Mg), 

phosphorus (P), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), calcium (Ca), 

potassium (K), loss on ignition (LOI), bulk density (BD), and pH for Beavero, No- 

Name, Collins, and Tag sediments. 
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