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ABSTRACT 

Arvonio, A. 2000. Black spruce (Picea mariana [Mill.] B.S.P.) Boreal 
ecosystems: how tree-length and full-tree harvesting affect soil microbial 
populations. 106 pp + append. Advisor: N. Luckai 

Key Words: microbial biomass, soil organic matter, soil respiration, API 20E, 
substrate utilization, chloroform fumigation extraction. 

To evaluate the hypothesis that microbial populations are affected by 
organic biomass removals, a study was designed to complement ongoing work in a 
black spruce {Picea mariana [Mill.] B.S.P.) Boreal ecosystem. The treatments 
included a control (uncut) and two harvest levels, tree-length (TL) and full-tree 
(FT). Soil samples from the organic and mineral horizons were taken from nine 
plots, representing three each of the treatments. Samples were taken once a month 
for four consecutive months; May through August during 1998. Soil respiration 
on two dates in September was estimated using the soda-lime technique. Bacterial 
cultures were prepared from the soil samples and pure strains identified using 
morphological and substrate utilization characteristics (specifically API 20E). Soil 
descriptors, including pH, total nitrogen, total phosphorus, organic matter content, 
and moisture content, were measured to investigate relationships with microbial 
biomass. Microbial biomass carbon (MBc) and nitrogen (MBN) were estimated 
using chloroform fumigation extraction. The data were statistically analyzed, using 
ANOVA, Pearson and Spearman correlations and, in the case of the MBc and 
MBN, ANCOVA, to determine if there were any treatment or seasonal effects. 
Soil respiration demonstrated a significant treatment effect where the efflux was 
significantly greater on the control treatment compared to the harvest treatments. 
Five bacterial cultures were identified from the soil samples, Chryseomonas 
luteola, Aeoromonas salmonicida, Serratia marcescens, Syntrophomonas 
multifilia, and Pseudomonas fluorescens. MBc and MBN values measured were in 
agreement with other published values for boreal coniferous soils. The MBc in the 
organic horizon was significantly affected by the interaction of the treatment and 
month factors. There was a significant treatment effect on the MBc in the mineral 
horizon, with the control mean significantly higher than those of the harvest 
treatments. The MBN revealed no significant effects in either the organic or the 
mineral horizons. The author concludes that soil moisture and temperature did 
affect the values for microbial biomass and that these environmental conditions 
were likely impacted by the level of harvest. 
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INTRODUCTION 

The microbial biomass, defined as the functional component of the micro-biota 

primarily responsible for decomposition, organic matter turnover, and nutrient 

transformation, is an important component of soil (Haron et al. 1998). Microbial 

biomass includes organisms such as bacteria, fungi, actinomycetes, microfauna and algae 

(Killham 1994). Acting as both a source and a sink of nutrients in soils, the microbial 

biomass, which depends mainly on organic matter for energy, influences the amount of 

available nutrients to plants via the mineralization-immobilization process (Gallardo and 

Schlesinger 1994). Microorganisms, therefore, play a major role in determining the 

relative quality of forest soil within the limitations of climate and topography (Entry et al. 

1986). 

Microbial biomass has been used to indicate and predict changes in various 

ecosystems caused by natural and anthropogenic disturbances (Weber 1990). Microbial 

biomass has been used as an indicator of global warming (Anderson and Joergensen 

1997), sustainable development (Cairns and Meganck 1994), and biodiversity (Staddon et 

al 1996). Microbial biomass has served many research applications in forestry. For 

example, it has been used in monitoring the effects of: municipal solid waste leachate on 

forest soils (Gordon et al. 1988); xenobiotic substances in soil (Dictor et al 1998); fire 

(Diaz-Ravina et al 1992); tillage induced changes (Carter 1986); pesticide application 

(Wardle and Parkinson 1990); response to thinning (Thibodeau et al. 2000) and microbial 

stress (Anderson and Joergensen 1997). 
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In addition, some components of the soil microbial biomass may act as natural 

biological control agents (Staddon et al. 1996). For example, the hdiCX&Lidi Pseudomonas 

fluorescens is antagonistic to soil-borne root pathogens that inhabit the soil rhizosphere 

(Killham 1994). This bacterial strain restricts a wide range of pathogens including: 

Erwinia carotovora, black leg in potatoes; Pythium spp., damping-off fungi; Rhizoctonia 

solani, cereal bare patch; and Thielaviopsis basicola, tobacco black root rot (Killham 

1994). Continued study of these microorganisms and analysis of the molecular genetics 

of these antagonistic responses may lead to new biocontrols for other plant pathogens 

through genetic manipulation (Killham 1994). 

Since little is known about the diversity of Boreal (northern) forest soil 

microorganisms, species loss or modification may deprive the ecosystem of processes, 

products, or genetic material provided by undescribed microbes (Staddon et al 1996). 

Many studies have reported that the microbial biomass is affected by various timber 

harvesting treatments (Hendrickson et al 1985; Entry etal 1986; Foster and Morrison 

1987; Weber 1990; Smolander et al 1998). For example, timber harvesting may 

indirectly alter microbial biomass and activity by changing the amount and type of organic 

matter inputs, soil pH, soil temperature, and soil moisture (Entry et al 1986). 

The author was fortunate to have access to an established trial investigating the 

effects of various levels of biomass removal on a black spruce {Picea mariana [Mill.] 

B.S.P.) Boreal ecosystem. This study will attempt to augment the existing trial by asking 

the following questions; 
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1. Do increasing levels of biomass removal result in quantitative differences in soil 
microbial populations? 

2. Do increasing levels of biomass removal result in differences in the bacterial 
species isolated from treated plots? 

3. Do soil microbial populations exhibit seasonal responses and are these responses 
influenced by biomass removal? 

4. Are there correlations between observed/measured fluctuations in soil microbial 
populations and soil parameters, such as pH, organic matter, total nitrogen, total 
phosphorous, and moisture content? 

These questions will be addressed as follows: 

1. Using the fumigation-extraction technique (Voroney et al. 1993), estimate the 
microbial biomass C and N found in representative samples from the study area, 

2. Following the traditional taxonomic approach, isolate, culture and describe (Gram 
stain, cell and colony appearance, etc.) representative and unique bacteria, 

3. Using the soda-lime respiration technique (Edwards 1982), estimate the soil 
respiration, 

4. Using a functional or substrate utilization approach, specifically API 20E 
(Anonymous 1996), attempt to identify/characterize the isolated bacteria, and. 

Using appropriate statistics, attempt to identify relationships between the 
microbial populations, treatment regimes and certain environmental parameters. 

5. 
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LITERATURE REVIEW 

The microbial biomass, which acts as both a source and a sink for nutrients, 

influences the availability of nutrients in the soil through the complementary processes of 

mineralization and immobilization. Mineralization is the process of releasing organically 

bound nutrients into mineral forms, which are then available for plant uptake, while 

immobilization refers to the process of microbial uptake of mineral nutrients, thus 

rendering them unavailable to plants (Killham 1994). The rates of these two processes 

depend, in part, upon the size of the microbial biomass, the composition of the microbial 

community (e.g., fiingi versus bacteria, nitrifiers versus denitrifiers), the quality of organic 

matter inputs, physical and chemical characteristics of the soil (e.g, temperature, water 

content, % clay, pH) as well as the vegetation and climate above the ground. Each 

component will influence the others ultimately affecting the condition of the soil. Using 

forest canopy as an example, the presence of closely spaced spruce trees may cause the 

cycling of nutrients to slow down due to lower soil temperatures and acidic foliage 

inputs, whereas the presence of alder, with less acidic foliage and nitrogen fixing root 

nodules, may improve soil fertility (Bradley and Fyles 1995). Since microorganisms 

influence decay processes, mineral conversions, and plant root activity in the soil 

environment, plant growth conditions are therefore affected (Entry et al 1986). 

The elements affecting nutrient cycling and availability are numerous, complicated 

and interconnected. A change in any one may lead to subsequent changes in some or all 

of the other elements. The concept of “stability” or steady state in the microbial biomass 
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must, therefore, be used advisedly under such dynamic conditions. Nonetheless, some 

trends have been reported in the literature and will be summarized here. 

In the literature review, the author will attempt to cover the major factors 

affecting microbial biomass quantity and composition: organic matter (OM) inputs, soil 

pH, soil temperature, soil moisture content, and seasonal conditions. Soil microbial 

activity measurements, specifically respiration, are also included due to their potential as 

ecosystem monitors following disturbance events. A discussion on microorganism 

culturing techniques follows, providing insights to the advantages and disadvantages of 

the various methodological approaches. 

ORGANIC MATTER INPUTS AND DECOMPOSITION 

Approximately half of OM is carbon (C) (Paul and Clark 1989). Carbon 

compounds incorporated in the organic matter of soil are required primarily by the soil 

micro-biota for energy and nutrition (Paul and Clark 1989). Carbon consumption by 

microbes generates energy required to synthesize and break down other chemical 

compounds, such as organically bound nitrogen (N) and phosphorus (P), which are used 

for nutrition (Killham 1994). 

Carbon and nitrogen are utilized by the micro-biota for cell wall formation and 

maintenance (Paul and Clark 1989). The cell walls of bacteria are made up of sugar 

derivatives, N-acteylglucosamine and N-acetylmuramic acid, that are linked by amino 

acids via peptide bonds (Paul and Clark 1989). Organic matter containing both these 

elements is therefore necessary for microbial biomass growth. 
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Carbon is present in the soil organic matter (SOM) in a variety of inorganic and 

organic forms. The latter, however, predominate and may include other elements like N 

and P. These organic compounds could occur as biomass C, root exudates, cellulose, 

lignin, chitin, or humus (Killham 1994). The biomass C is made up of soil microbes and 

animals (Killham 1994). This pool of C represents only 1-2% of the total organic C in 

soil. However, it is the backbone of the soil C-cycle and all other nutrient cycles (Killham 

1994). Root exudates, a highly decomposable form of organic C (Paul and Clark 1989) 

represent less than 1% of total soil organic carbon, but provide an immediate substrate 

for many species of soil microbes (Killham 1994). 

Cellulose and lignin (remnants of plant residues), chitin (remnants of soil animals 

and fungal residues), and soil humus (previously decomposed material) comprise 90% of 

the total soil organic C (Killham 1994). These compounds are highly resistant to 

decomposition due to their complex chemical nature. Decomposition follows a process 

whereby each compound is slowly broken down into smaller units, and then eventually 

into a form available for assimilation by the microbial biomass. Cellulose, for example, is 

broken down into glucose by specialized cellulytic saprophytes, such as the fungal species 

Fusarium and Aspergillus, or the bacterial species Bacillus and Pseudomonas (Killham 

1994). 

Lignins, having random structures and strong linkages, are even more resistant to 

decomposition than cellulose (Killham 1994). White rot fungi, such as Coriolus 

\ersicolor and Phanerochaete chrysosporium mediate the degradation of lignin into CO2 

and H2O (Paul and Clark 1989). Humus, the product of decomposition of fresher 
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material, has three constituents, humic acid, flilvic acid, and humin (Anderson and 

Schoenau 1993). Because each constituent is recalcitrant, humus is constantly present in 

the SOM and is continually being formed at the same time that it is being degraded 

(Alexander 1961). 

The quality and availability of the substrate, as defined by the chemical 

composition of decomposing material, influences the microbial growth rate (Bosatta and 

Agren 1994). Thus, properties of the original litter together with soil physical factors are 

important in determining the amount of microbial biomass in the soil (Bosatta and Agren 

1994). Bauhus et al. (1998) state that microbial biomass amounts are sensitive to 

changes in soil physical and chemical composition. For example, soils high in lignin 

residues can only support a low level of microbial activity. This is because lignin is 

relatively high in N and is a poor quality resource for soil microbes that require C (Brady 

and Weil 1996). Furthermore, Killham (1994) states that resource quality is described by 

C/N ratios; low C/N ratios indicate high litter quality and rapid rates of decomposition; 

high C/N ratios indicate poor litter quality and slow decomposition rates. 

Litter inputs are basically from two sources - plant and animal residues. Plant 

litter may include any part of the plant from seed to root, and the decomposition rates of 

the various tissues vary according to the chemical structure involved (Haynes 1986). For 

example, the leaves and stems of a plant could contain up to 60% of N occurring as 

enzymes or proteins and 40% as free amino acid-N. The former require much time and 

energy for degradation, while the latter are water soluble and easily broken down 

(Haynes 1986). 
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Animal residues vary in components and turnover rates, just as plants do. Some 

important differences between animal and plant residues do exist, such as the presence of 

chitin in animal residues (Haynes 1986). Chitin, a contribution from the exoskeletons of 

arthropods and eggs of nematodes, is stable in soil (Haynes 1986). Furthermore, animals 

contribute urine and feces to the soil. Urine, containing 50-80% of N in the form of urea, 

is easily degraded following the soil process of hydrolysis to form ammonium (NH4^) 

which is readily immobilized by microbes and plants (Haynes 1986). Feces, in 

comparison, has a slower turnover rate due to its composition of highly resistant organic 

forms ofN (Haynes 1986). 

In addition, the type of organic matter in the soil is also dependent on the quality 

of foliage found in the ecosystem. For example, the soils of mixed-wood stands more 

often contain simple sugars, starches and cellulose (Rowell 1994) which are easily broken 

down and assimilated by microbes (Bradley and Fyles 1995). In contrast, the soil of 

coniferous stands includes more complex organic residues exhibiting slower turnover 

rates which in turn restricts microbial numbers (because of the poor quality and acidic soil 

conditions) thus slowing decomposition (Bradley and Fyles 1995). Furthermore, Bradley 

and Fyles (1995) state that previous studies have found that environmental factors, such 

as extremely low pH and reduced organic matter (OM) residues in coniferous stands, 

negatively influenced microbial activity and litter turnover rates. Also, as stand age 

increases the quality of organic matter inputs decreases, and this was reflected in declines 

in the microbial biomass carbon-to-soil organic carbon ratio and the microbial biomass 

nitrogen-to-soil organic nitrogen ratio found by Bauhus et al (1998). 
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Assuming that sufficient C is available in the OM, it is appropriate to consider the 

presence and availability of macronutrients such as N and P. It is generally accepted that 

soil microbial populations under steady state conditions maintain an average C/N ratio of 

8:1 (Rowell 1994) with the range being from 15:1 for some fungi to 3:1 for some bacteria 

(Paul and Clark 1989). Since only one-third of the carbon metabolized by 

microorganisms is assimilated (the rest is lost to respiration), substrates with a 24:1 C/N 

ratio could be considered ideal. Paul and Clark (1989) noted that OM inputs at 25:1 

ratios result in no net mineralization or immobilization. Organic matter inputs in forest 

systems usually exceed this relatively low ratio. For example, leaves of oak trees have 

ratios of 65:1 while pine needles have ratios of 225:1 (Haynes 1986). When high C/N 

ratio residues are added to the soil, competition among microorganisms for scarce N 

resources restricts the rate of decomposition and limits the amount of inorganic N 

available for plant uptake. Complex chemical structures, such as lignins found in conifer 

needles, decompose very slowly as evidenced by low C oxidation and N mineralization 

rates (Brady and Weil 1996). Therefore, N may be limiting to microbial activity and 

numbers even when adequate C supplies are present (Brady and Weil 1996). 

Gallardo and Schlesinger (1994) reported that P also has a limiting effect on 

microbial biomass. They found that P was less frequently immobilized than N by soil 

microorganisms in litter, causing an increase of N/P ratio in the litter. This ratio increase 

suggests that P and not N may be limiting in the F-H horizon. Phosphorous availability 

could also become limiting in the lower horizons through adsorption by A1 and Fe 

sesquioxides (Gallardo and Schlesinger 1994). 
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The rate of OM decomposition is also dependent upon the various species of 

microbes present in the soil, and the timing of the OM inputs. Rapid turnover of biotic 

residues, for example, is mediated by zymogenous (bacilli and spore forming bacteria) 

soil microbes, which do not occur as a numerically significant component of the soil 

community under “normal” conditions, but proliferate when large amounts of organic 

residues are added into the soil (Killham 1994). The on-going, low level cycling of 

organic C is a fianction of autochthonous (coccoid bacteria) soil microbes (Killham 1994). 

These bacteria are most competitive at low substrate concentrations and persist actively 

in soil for long periods of time (Killham 1994). However, while bacteria alone may 

“stall” on complex substrates such as lignins, net mineralization has been noted when 

fungi are present (Paul and Clark 1989). 

Timber harvesting can affect above- and below-ground aspects of the forest 

ecosystem. For example, the removal of a forest canopy will immediately affect annual 

organic matter inputs in the form of foliage and fine root mortality. One-time additions 

of coarse woody debris, such as large roots and branches, will drastically change the 

organic matter pools in the soil and at the forest floor (Chatarpaul et at 1984; 

Hendrickson et al 1985; Entry et al. 1986; Foster and Morrison 1987). Measured 

characteristics which support reported reductions in fungal and bacterial biomass include 

slowed rates of leaf and woody litter decay, excessive drying and high temperatures at the 

forest floor surface, increased CO2 efflux and changes in soil N levels (Hendrickson et al 

1985). While the act of harvesting itself results in significant changes in the soil 

environment, there is evidence that harvesting intensity further influences the magnitude 
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of the change (Chatarpaul et al 1984; Hendrickson et al 1985; Entry et al 1986; Foster 

and Morrison 1987). Thibodeau et al. (2000) investigated the effect of pre-commercial 

thinning on microbial populations in balsam fir stands in Quebec. They hypothesized that 

both the change in the soil temperatures and the input of foliage and branches would 

positively affect the microbial biomass immediately following treatment. In fact, no 

significant changes were noted in either MBc nor MBN in the mineral layer but a strong 

relationship was found between MBN and soil temperature. 

In the Boreal forest of Canada, clear-cutting predominates. Most commonly, 

either a stems-only (also known as conventional) or full-tree technique is employed. In 

the former, the tree is processed at the stump leaving foliage and branches scattered 

throughout the site. In the latter, the tree is processed at roadside with foliage and 

branches being removed from the site. The chief difference in the two techniques lies in 

the amount and type of organic residue left in the stand. As of 1987, 65% of harvesting 

in Ontario’s boreal forest was full-tree (Wiensczyk 1992). 

Many authors have considered the question of nutrient capital depletion due to 

the removal of relatively nutrient rich foliage and small branches (for a summary see 

Wiensczyk 1992). The project upon which this thesis is based was established in 

response to concerns expressed about full-tree harvesting in the Class Environmental 

Assessment (Ontario Ministry of Environment 1994). In addition to the “balance-sheet” 

approach employed by many researchers, it is also necessary to consider potential 

changes in the microbiological system responsible for nutrient transformations. 
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Entry et al (1986) observed that the bacterial biomass was significantly higher in 

a cutover where the organic residue was left on-site {i.e. stems-only) compared to 

treatments where organic residues were removed. Hendrickson et al. (1985) found that 

whole-tree harvesting resulted in decreased microbial biomass when compared to 

conventional harvest methods. The difference was attributed to a loss of residual OM in 

the former. Hendrickson et al. (1985) also reported that due to greater on-site traffic 

during the whole tree harvest, increased mixing of the forest floor with mineral soil 

resulted in a reduction of water-holding capacity and OM content of the soil, which 

implied a reduction in microbial activity. 

After harvest, silvicultural treatments intended to promote the growth of crop tree 

species may also affect microbial populations. Ohtonen et al. (1992) found that intensive 

silvicultural activities {e.g., scarification, fertilization and herbicide application) generally 

reduced microbial biomass on coniferous sites found in Central Ontario (Petawawa 

Research Forest). The modified scarification treatment alone, which removed the humus 

layer, caused a nutrient limitation as evidenced by a widening of the C/N ratio in the 

mineral soil (Ohtonen et al. 1992). 

Bauhus et al. (1998) suggested that microbial biomass was influenced by soil 

texture and SOM quality. Microbial populations were found to be sensitive to changes in 

the soil chemistry and physical environment, and were negatively influenced by forest 

management practices. Management practices, such as harvesting and silviculture, could 

cause the microbial population to decline, and ultimately have a negative affect on OM 

turnover rates. Ohtonen et al. (1992) noted that the reduction of microbial biomass per 
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unit OM and the reduction of microbial biomass C in surface organic and mineral layers 

was indicative of a reduced capacity of the ecosystem to maintain its nutrient reservoir. 

This reduced nutrient reservoir results in slower decay rates because substrates containing 

readily mineralizable N were less available (Hendrickson et al 1985). 

SOIL MOISTURE AND TEMPERATURE 

The general consensus throughout the literature seems to be that moisture and 

temperature levels are key components in determining the nature and size of soil 

microbial populations. Soil bacteria require a water film for movement and can only 

remain active if there is suitable moisture in the soil, so that nutrients and waste products 

can diffuse in and out of the bacterial cell (Wong and Griffen 1976a & b). Thus, bacterial 

activity may increase or decrease as the water potential rises and falls, respectively. 

Changes in microbial activity can be estimated by soil respiration rates. According to 

Schlentner and Van Cleve (1985), soil respiration fluctuates as moisture or temperature 

changes, depending on which of the two parameters is most limiting at the time of 

measurement. At moisture contents less than 75%, by weight of soil, temperature 

increases had little effect on respiration, whereas at moisture contents of 100-250%, 

respiration increased with temperature. Alternatively, moisture levels had little influence 

on respiration when temperatures were below 5”C; however, at temperatures of 10-20”C, 

respiration increased with moisture changes. 



Lundgren and Soderstom (1983) reported that in podzolic soils, seasonal changes 

in precipitation and moisture content exerted strong influences on soil bacteria numbers. 

Precipitation provides moisture and available nutrients to the soil, thus, immediately 

altering the soil environment. This increases the soil moisture content and the soil 

microbial biomass (Lundgren and Soderstom 1983). Evaporation, which is dependent on 

air temperature and humidity, may rapidly decrease this moisture content so that no 

detectable changes in soil bacteria populations can be found a few days after rainfall. 

Alternately, Weber (1990) reported that rainfall events did not result in higher 

water contents or altered soil respiration rates of cut and burned aspen ecosystems at the 

Petawawa Research Forest. Furthermore, he indicated that temperature is more closely 

correlated to soil respiration, with a strong temperature control exerted over respiration 

patterns in both cut and burned treatments of aspen. Howard and Howard (1979) found 

that in hardwood stands, microbial numbers were not significantly correlated with 

moisture content. Moisture and temperature accounted for 5% and 64%, respectively, of 

the variation in soil respiration. Orchard and Cook’s (1983) results correspond with 

those of Lundgren and Soderstom (1983), where they found a correlation between soil 

respiration (an indicator of microbial activity) with soil moisture content; as the soil 

moisture content decreased, respiration decreased, reflecting an estimated 10% reduction 

in microbial activity. Rapid increases in respiration rate immediately following rewetting 

of the soil indicated 1) the death of some organisms, and 2) that many microorganisms 

are capable of surviving water stress and resuming activity quickly in response to 

favourable changes in their environment. Orchard and Cook (1983) also suggested that it 
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was likely that an increase in activity, rather than in biomass, was responsible for 

increased respiration rates. 

Berg et al (1998) suggested that seasonal conditions might have a direct 

influence on the microbial biomass by inducing specific microbial community responses to 

soil moisture and temperature. For example, microbial biomass declines during periods 

with extreme climate conditions. They further speculated that seasonal effects on plant 

productivity and organic matter release also indirectly influence densities of soil fauna 

populations, and interactions between grazers and microflora. 

Salonius (1983b) suggested that air drying of soils may lower species diversity, 

resulting in a significant reduction of the metabolic activity of the population (using a soil 

suspension method), as compared to that of an undried soil. Damage due to drying was 

found to be less in the H horizon than in the L and F horizons. Salonius (1983b) further 

recommended that if a soil is not to be studied immediately after sampling then it should 

be stored moist to maximize the amount of living microbial biomass. 

Mixing of humus with mineral soil, as Salonius (1983 a) reported, may also lead 

to increased soil temperatures, and enhanced organic matter decomposition. Clay 

colloids may act to buffer the soil environment against toxic accumulation of metabolic 

end products of the developing microbial population, thus allowing activity levels to be 

enhanced. However, this buffering effect may simply be more obvious in populations at 

temperatures of 20-40X, as compared to less active populations at 10“C (Salonius 

1983a). Anderson (1978) suggested that enhanced decomposition may be attributed to 
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increased microbial activity and species diversity resulting from the mixing of soil layers, 

which has subsequently created a greater diversity of micro-habitats. 

SOIL pH 

Any removal of forest vegetation may result in a change of soil pH, with 

subsequent consequences for the integrity of microbial functional groups, as well as for 

microbial processes (Gallardo and Schlesinger 1994). Gallardo and Schlesinger (1994) 

speculated that P limitations in soils with highly basic or acidic pH levels will affect the 

activity and nature of microorganisms present. Baath et ah (1995) suggested that pH 

may have the ability to alter other soil properties, such as the C/N ratio, which indirectly 

affect microbial community composition by restricting available nutrients. Staddon et al. 

(1996) reported that a change in soil pH results in a loss of species in microbial functional 

groups. They stated that cellulose decomposition, for example, is predominately 

mediated by filamentous fungi at conditions below pH 5.5, whereas other species of fungi 

and bacteria dominate at neutral to alkaline pH. The change in microbial functional 

groups, as environmental habitats change in soil pH and chemistry, may also limit the 

activity of the remaining members. Hendrickson et al (1985) reported a significant pH 

increase (4.7 to 5.2) in the forest floor in a mixed-wood stand, after whole-tree 

harvesting. Foster and Morrison (1987) showed that forest removal using the fiill-tree 

method resulted in an acidifying effect of the forest soil and suggested that the 

incorporation of forest phytomass into the soil would have a neutralizing effect, thereby 

reducing the limiting effect of pH on microbial organisms. 



17 

Fungi tend to dominate the microbial community in acid forest soils (Anderson 

and Domsch 1975; Bewley and Parkinson 1985; Scheu and Parkinson 1994; Matthies et 

al 1997). Matthies etal (1997) reported that culturable fungi predominated over 

bacteria at a pH range of 2.2-6.5. Not surprisingly, they found that the bacterial 

populations in acidic forest soils were more tolerant of the ambient conditions than were 

bacteria from less acidic forest soils. It has also been reported that bacteria have 

predominated over fungi in acidic Boreal forest soils (Frostegard et al 1993; Baath et al 

1995; Berg et al 1998). After many pH-raising treatments, Baath et al (1995) 

concluded that the fungal-to-bacterial biomass ratio remained fairly constant across a 

range of pH, suggesting that fungi and bacteria may not have varying pH optima. 

Further, Berg et al (1998) noted that high N levels in soil may influence the shift of 

dominance from fungi to bacteria. They also hypothesized that high atmospheric N 

deposition may eventually lead to N saturation of the soil, which would impose a stress 

on fungal communities, and cause a decrease in their abundance and activity. 

METHODS OF DETERMINING MICROBIAL BIOMASS 

Many methods have been developed and applied in the estimation of microbial 

biomass and activity. These approaches are: 1) direct and 2) indirect. Direct methods 

involve assays and measurements of the actual microbial biomass (Hartmann et al 1997) 

Indirect methods estimate the size of the microbial biomass by measuring the metabolic 

activities of microbes (Hartmann et al 1997). Direct techniques include; 1) chloroform 

fiimigation incubation (CFI) (Jenkinson and Powlson 1976), and 2) chloroform 
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fumigation extraction (CFE) (Voroney et al. 1993). Indirect techniques include: 1) 

substrate induced respiration (SIR) (Sparling 1985), and 2) soil CO2 evolution methods 

(Edwards 1982). The soil fumigation methods, as described by Jenkinson and Powlson 

(1976), assume that: 

1. Carbon in dead organisms is more rapidly mineralized than that in living 

organisms. 

2. Fumigation leads to a complete kill. 

3. Death of organisms in the unfumigated soil is negligible compared with that in 

fumigated soil. 

4. The only effect of soil fumigation is to kill the microbial biomass. 

5. The fraction of dead biomass C mineralized over a given time period does not 

differ in different soils. 

This method was originally developed for soils with a water holding capacity of 50-55% 

fJenkinson and Powlson 1976T which mav be limitine and nroblematic for soils outside 
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West 1988). Furthermore, the question of a correct “control” has plagued the 

methodology (Voroney 1985). 

The CFE method, on the other hand, is reported to provide stable estimates of 

soil microbial biomass (Tate et al. 1988; Sparling and West 1988; Merckx etal. 1988; 

Vance et al. 1987). Chloroform fumigation extraction may be used on soils with low pH, 

high organic matter, and excessive water content (Inubushi et al. 1991). Further, CFE is 

not dependent on the physiological state of the soil microflora, suggesting that the 

dormant population may also be captured (Martens 1995). Feigl et al. (1995) concluded 

that the CFE method is more convenient and suitable for estimating both microbial C and 

N in the same extract, as compared to the CFI and SIR methods. Beck et al. (1997) also 

recommended CFE over CFI and SIR techniques with respect to forest soils. 

Martikainen and Palojarvi (1990) compared CFE to microscopic counting in ten forest 

soils with a range of pH (3.6-6.8) and organic C (2.6-36%), and concluded that CFE was 

better suited for all ten soils. 

The SIR technique utilizes the physiological respiration response of soil organisms 

to substrate amendment to provide an estimate of soil microbial biomass C (Sparling 

1985). Like the soil fumigation techniques, the SIR method also follows assumptions 

implicit in the estimation of microbial biomass. The SIR assumes that (Sparling 1985): 

1. The response of different organisms to the method is reasonably constant. 

2. The majority of the soil micro-biota will respond during the period of 

measurement. 
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3. Glucose is a suitable substrate to induce the maximal response of respiration. 

4. The contribution to microbial C from non-glucose metabolizing organisms is 

insignificant or consistently low. 

Unlike CFI, SIR can be applied to soils of low pH, and to leaf and forest floor 

materials (Sparling 1985). Also, very small soil samples can be analyzed and the relative 

contributions by bacteria and fungi to rhizosphere populations can be distinguished 

through the incorporation of inhibitors (Sparling 1985). A limitation is that SIR, like 

most other methods, requires calibration using another estimate of the microbial biomass 

(Feigl el al 1995). Furthermore, SIR relies on the active soil population showing a 

respiratory response within a few hours after the addition of substrate. Therefore, the 

dormant population will not be captured by the assay (Feigl et al. 1995). Feigl et al. 

(1995) found SIR to be inappropriate for acidic soils with high clay content, in 

comparison to CFI and CFE methods. Ocio and Brookes (1990) suggested that the SIR 

response per unit of microbial biomass C may not be constant throughout the whole 

biomass range. It has also been reported that if the microorganisms are actively growing, 

SIR will overestimate the microbial biomass C (Sparling 1985). 

Soil respiration, an indirect method, is defined as the sum total of all soil 

metabolic fiinctions in which carbon dioxide is produced (Singh and Gupta 1977). It 

includes microbial, microfaunal, mycorrhizal, rhizospheral, and root respiration (Weber 

1985). These components may be measured using dynamic or static procedures, both of 

which are forms of indirect sampling methods. Dynamic methods use an infrared gas 

analyzer (IRGA), whereby a sample of air of known composition is drawn over a known 
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area and the increase in CO2 concentration is measured (Schlentner and Van Cleve 1985). 

Static techniques use alkali absorbents, like soda-lime, whereby an air-tight chamber 

covered with aluminum foil is inverted over an open tin can containing previously dried 

and weighed absorbent. After a measured period of time, the absorbent is removed and 

the amount of CO2 absorbed is calculated (Edwards 1982). Pongracic et al. (1997) 

reported that estimates of soil CO2 efflux using an IRGA were consistently greater than 

those calculated using soda-lime. However, explanations for the discrepancy between the 

two methods were not given. 

The use and interpretation of soil respiration has historically been complicated by 

the difficulty of separating root respiration from microbial respiration. Attempts by 

various researchers, such as Singh and Gupta (1977) and Schlentner and Van Cleve 

(1985), have not resolved this problem. However, soil respiration remains a widely used 

method for assessing biological and metabolic activity (Reiners 1968; Schlentner and Van 

Cleve 1985; Weber 1985; Gordon et al. 1987; Weber 1990; Pongracic etal 1997). As 

Weber (1990) stated, soil respiration measurements help to assess the metabolic activity 

of a site in relation to forest practices, thereby determining the degree of impact imposed 

by these practices on site productivity and recovery rates of ecosystem processes. 

The usefulness of respiration measurements may be limited because of the 

occurrence of soil atmosphere alterations during sampling. This may affect the level of 

microbial activity (Prosser 1997) in that the gaseous phase in which the soil normally 

exists may be altered if there is a passage of gas over or through the soil. This could 

increase the mixing of the gases and ultimately change the concentration of the O2 and 
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CO2 , thereby resulting in a false measurement of microbial activity (Prosser 1997). 

Prosser (1997) suggested that since the microbial biomass is quite sensitive to the 

chemical and physical environment, and because the forest soil environment is 

considerably heterogeneous, it is difficult to measure microbial activity without error or 

bias. 

Reiners (1968) speculated that soil respiration measurements did not capture the 

transfer of carbon compounds other than CO2. While these losses may cause an under- 

estimation of the rate of energy release, the inclusion of tree root respiration may cause 

an over-estimation of activity rates. Schlentner and Van Cleve (1985), however, reported 

that static methods, such as soda-lime, are feasible approaches for estimating total soil 

respiration at remote field locations, such as forest sites. 

MICROORGANISM CULTURE AND IDENTIFICATION 

Even though the fungal biomass exceeds that of bacteria, the latter will be the 

focus of this aspect of the study because bacteria act as excellent indicators of 

physicochemical conditions in the soil (Killham 1994) exhibiting higher sensitivity, over 

fungi, to changes in environmental parameters. Berg et al. (1998) reported that fungi 

were less susceptible to drying than bacteria, suggesting that spatial distribution patterns 

of bacteria may be predicted or determined by soil moisture. In addition, bacterial 

growth and activity are strictly limited by substrate quality (Killham 1994), and as such 

are indicators of how organic matter biomass removal influences the microbial biomass as 

a whole. 
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Microbial diversity encompasses a large array of taxonomic, physiological, and 

genetic characteristics, as well as the diversity of functional groups (Staddon et al. 1996). 

Difficulties occur in describing these attributes because current cultural methods for 

bacteria isolate no more than a small fraction of species (Staddon et al 1996). This 

limitation is due to a variety of factors. For example, Staddon et al (1996) described the 

effect of the association of r-strategist microbes (which grow well in vitro) with the K- 

strategist microbes (which are non-culturable) occurring in the same habitat. Drawbacks 

may also lie with the type of species of bacteria being cultured. For example, nitrifying 

bacteria are quite sensitive to techniques such as direct plating because organic materials 

introduced with the inoculum permit growth of heterotrophic contaminants (Schmidt and 

Belser 1982). Initial isolation of nitrifiers is difficult and, once isolated, these bacteria are 

slow growing in culture, sparse in yield, and susceptible to contamination (Schmidt and 

Belser 1982). Furthermore, bacteria occur in patches, which may be only a few cubic 

micrometres in volume, throughout soil (Coleman and Crossley 1996). Because bacteria 

are passive, they depend on episodic events such as rainfall or root growth for movement. 

Thus, bacterial distribution and abundance are difficult to estimate without a high 

variance about the mean (Coleman and Crossley 1996). 

In order to isolate highly oxygen-sensitive anaerobic populations, specific 

cultivation techniques are required to avoid exposing the microbes to oxygen (Casida 

1968). Bacteria which are parasitic on other bacteria may be present in the soil, but may 

not be demonstrated in isolations due to the lack of the presence of a suitable host 

(Casida 1968). Casida (1968) also suggested that much of the soil bacterial population 
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may exist in such a manner that antibiotics or other inhibitors in the soil stabilize their 

growth. Alexander (1961) advised that since the soil atmosphere contains such high 

levels of CO2, the CO2 level in the laboratory should be adjusted to reflect that found in 

the soil so that growth of soil microorganisms may occur under more natural conditions. 

For these reasons, cultural methods tend to be biased in that only a minor fraction 

of the bacterial population may be available for characterization in pure cultures (Bakken 

1997). Thus, the cultured isolates may or may not be representative of the bacterial 

species inhabiting the soil. Due to the diversity and variability of microbial communities 

found in the soil, classic taxonomic methodology does not always yield a clear 

identification (Bakken 1997). Sorheim et al (1989) compared cultures of microbes 

growing on various nutrient media, and found only a partial overlap between populations 

growing on similar media. The Gram staining technique is used to identify between gram 

positive and gram negative bacteria based on cell wall characteristics. Gram negative 

bacteria belong to the family Enterobacteriaceae, which includes most bacteria that occur 

in the soil (Holt et al. 1994). The traditional method used in the identification of Gram 

negative bacteria is C substrate utilization (Palmieri et al. 1988). Such C sources may 

include glucose, xylose, mannitol, lactose, sucrose, maltose, fructose, galactose, 

mannose, rhamose, lysine, ornithine, arginine, phenylalanine, esculin, and gelatin (Palmieri 

et al. 1988). These bacteria will yield either a positive or a negative result in a pattern 

characteristic of a particular bacterial species. However, this approach may be 

impractical for assessments on diverse populations due to it being very labour intensive, 

time consuming, and expensive. 
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Modern automated systems, which are much less labour intensive and less 

expensive, were introduced originally and developed primarily for the identification of 

clinical isolates (Palmieri et al 1988). Many of these commercial test systems have been 

modified to suit other situations, such as the identification of microorganisms isolated 

fi-om soil. For example, the Biolog system has been used to determine activity patterns 

for assessing functional diversity of soil microorganisms (Zak et al. 1994). But, this 

system has limitations in that reactions are sensitive to inoculum densities, the selection of 

C sources is biased to clinical isolates, and it is unable to determine fungal activity (Zak et 

al 1994). 

Washington et al. (1971) evaluated the accuracy of another multitest 

micromethod system, Analytab, which is also used for the identification of soil 

Enterobacteriaceae. They found this system to be about 93% accurate after repeat 

testing with a heavier inoculum of those strains failing to ferment glucose initially 

(Washington et al 1971). At the time, this system was the most complete commercially 

available test series for Enterobacteriaceae identification that provided an initial testing 

accuracy of 90%. 

A study conducted by Robertson et al (1976), revealed that identification kits, 

such as API 20E, have generally demonstrated satisfactory performance identifying 

clinical isolates when compared with traditional culturing methods. The authors 

concluded that the identification kits offered savings in both time and material costs, 

while allowing about the same rate of accuracy (exact percentage not stated). 

Furthermore, the study concluded that the kits offered, 1) improved quality control; 2) a 
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standardization of methods, which allowed the use of interpretative pattern directories; 

and 3) the application of these tests by less sophisticated operators (Robertson et al. 

1976). 

Palmieri et al (1988), however, concluded that the API 20E system had 

limitations in the identification of various bacterial species in clinical trials. They stated 

that the API 20E system has deficient characterization of some test organisms, especially 

at the species level. This identification system was unable to distinguish, for example, 

between various Pseudomonas spp., and simply grouped them under the category of 

other Pseudomonas species (Palmieri et al 1988). It was suggested that the API 20E 

system may be useful as a rapid screening method for preliminary characterization of 

various bacteria groups. The API 20E system has been employed successfully in the 

characterization and identification of bacteria isolates in other forest ecology studies, such 

as Mireku (1981) and Roy (1984). Nevertheless, whether traditional technique, or kit 

systems are used, there is no one technique ensures an accurate representation of all soil 

bacteria. 

More recent techniques for assessing soil microbial biomass include phospholipid 

fatty acid (PLEA) profiles (Baath et al 1995), fatty acid methyl ester (FAME) assays 

(Bailey et al 1997), and deoxyribonucleic acid (DNA) extractions (Liesack etal 1997). 

These methods are often used to determine the microbial population and community 

structure and activity via chemical means. The PLFA profiles use phospholipids, found in 

membranes of all living cells, as biomarkers (Morgan and Winstanley 1997). 

Phospholipids, comprising a constant proportion of the bacterial biomass, emit different 
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patterns for different subsets of microbial communities (Baath et al 1995). This method 

is applicable to the study of mixed populations of varying degrees and complexity 

(Morgan and Winstanley 1997). The PLFA profiles can also be used to detect 

environmental changes, stress responses or periods of activity by tracking differences in 

lipid profiles of microbes (Morgan and Winstanley 1997). 

The FAME assays are similar to PLFA's in that fatty acids are used to identify 

bacteria species rather than to estimate biomass (Bailey et al. 1997). The profiles are 

generated using extracted cellular fatty acid methyl esters that are assayed via gas/liquid 

chromatography (Bailey et al 1997). A third technique uses DNA extraction. This 

entails direct cell lysis once separated from the soil matrix. The method retrieves up to 

35% of the microbial biomass from the soil (Liesack et al 1997). This technique, 

however, only selects for those microbes that have less affinity for soil particles (Liesack 

et al 1997). Direct cell lysis, where the cells are first lysed in the soil then the DNA is 

extracted and purified, detects the overall genetic potential of the sample (Liesack et al 

1997). However, the method of lysis chosen is critical since this may influence the 

microbial biomass potential detected in the soil (Liesack et al 1997). 

Microbial diversity is not only demonstrated in the number of species contained 

within a community and in the number of functions they provide, but also in the number 

of rare habitats that they occupy (Staddon et al 1996). Therefore, as Staddon et al 

(1996) proposed, there may be a vast number of habitats yet unexplored, containing new 

species still unknown. Unless current culturing techniques are modified to include 
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methods that allow for these unknown species to be sampled, a clear understanding of 

microbial biodiversity may not be possible. 
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METHODOLOGY 

SAMPLE SITE 

The study site for the microbial biomass investigation is located about 80 km 

north of Thunder Bay, ON, to the west of highway 527 (Figure 1). The sample site 

consists of a 110 year old black spruce (Picea mariana [Mill.] B.S.P.) stand. The 

topography consists of gentle rolling hills, based on bedrock formed by morainal parent 

material. The site represents an ES20, spruce/pine feathermoss ecosite (Racey et al. 

1996). The soil is classified as gleyed dystric brunisol with a very fresh moisture regime 

(3) (Sims et al 1989). A description of the soil profile is provided in Table 1. 

Harvested in the winter of 1994, four different biomass removal treatments were 

applied (Gordon et al 1993), which included: 

1. Tree-length harvesting system, where the slash is left near the stump. 

2. Full-tree harvesting system, where the slash is removed to the roadside. 

3. Whole-tree harvesting system, where the slash, duff, and stumps are removed to 

roadside. 

4. Full-tree chipping system, where slash is removed to roadside, chipped and 

redistributed on cut blocks 

5. Control, where the block remains uncut. 

Only the tree-length, full-tree, and control treatments were considered for the purposes of 

the study reported here. 
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Table 1. Physical soil characteristics and classification of soil profiles associated with the 
black spruce study site. 

Horizon 
Particle Distribution (%) 

Thickness 
(cm) 

Soil 
Texture 

Soil 
Moisture 

Soil 
Classification 

sand silt clay 

F 7 n/a n/a n/a 

H Discontinuous 
(<1 cm) 

Bm 15 Silty loam 42 52 6 

Bcgj 1 Sandy loam 46 49 5 

Very Gleyed Dystric 
Fresh (3) Brunisol 

Note: Coarse fragment content represented slightly over 32%, by volume, of the mineral soil profile. 
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FIELD SAMPLING TECHNIQUES 

Figure 2 demonstrates the layout of the treatment plots found on the study site. 

Originally, each plot (30mx30m) was allocated a number from 1 to 12, and each plot 

was randomly allocated 1 of 4 different harvesting treatments, as specified earlier. The 

control plots (50 m x 50 m) were left untreated. Sampling for this study occurred once a 

month (at the end of the month), for four consecutive months. May, June, July, and 

August, in 1998. 

Figure 3 presents the soil temperature and precipitation values for May through 

September of 1998. The temperature is averaged weekly, and the precipitation is event- 

based. Soil temperature, at a depth of 15 cm, was measured in the treatment plots. 

Precipitation was measured at a centrally located (on site) weather station. During the 

measurement period, the full-tree treatment displays consistently higher soil temperatures 

than do the tree-length or control treatments, with the control having the lowest 

temperatures. During the month of May, only 30 mm of rainfall was recorded. However, 

soil moisture content at this time was augmented by spring thaw and snow melt. June and 

August were relatively dry with only 42 mm and 55 mm of rain, respectively. July 

experienced the most amount of rain during the year of sampling (103 mm), with 

September following closely behind at 90 mm. 

Samples were taken from nine plots, representing three each of the tree-length, 

full-tree and control treatments. These two harvest treatments were chosen because they 

are the most commonly used in the forest industry and represent a range of biomass 

removal options. 
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Figure 3. Average temperature and cumulative precipitation values associated with 
the black spruce study site for 1998. 
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Three sample points were obtained at random locations, in each plot. At each sample 

point, the litter (feather moss) layer was peeled back and two soil samples were taken 

using a trowel. One sample was taken from the upper organic layer, the F/H horizon, and 

the second sample was taken from the upper mineral layer, the Bm horizon. Samples from 

each plot were bulked for each of the organic and mineral layers, so that there were nine 

organic and nine mineral samples taken each month. The samples were bulked in order to 

minimize the variability present within each plot. High spatial heterogeneity of chemical 

and physical properties of both the forest floor and soils has been recognized (Arp and 

Krause 1984) and bulking of samples is an attempt to reduce this variability. The samples 

were sealed in plastic bags and placed in frozen storage (-15°C) pending analysis. 

LABORATORY ANALYSIS 

Soil pH 

The pH of each soil sample was measured following procedures outlined by 

Forster (1995a). The distilled water method was used in order to conserve soil which was 

dried and reused in a different test. Ten grams of air-dried and sieved (2mm) mineral soil 

was weighed into a glass beaker with 25 mL of distilled water (1:2.5 v/v). Five grams of 

organic soil was weighed into a glass beaker with 50 mL of distilled water added to the 

beaker (1:10 v/v). Each sample was stirred immediately for one minute and then allowed 

to stand for 30 minutes. After a second short stirring, the pH was measured with a pH 

meter (Orion 520A) and a glass electrode (Orion 91-57). 
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Organic Matter Content 

The loss-on-ignition method described by Meyer and Vanson (1997) was used to 

determine the organic matter content of the soil sampled. The organic matter % of each 

sample was calculated as follows (Meyer and Vanson 1997); 1) In a crucible of known 

weight oven dried at 110“C, a 10 g sample of 2mm sieved soil was placed; 2) the sample 

was placed into a muffle furnace and the temperature was gradually raised to 600°C with 

the sample ignited for three hours; 3) samples were cooled in a desiccator, and reweighed 

to determine weight loss; 4) the organic matter content was calculated using the following 

formula: 

organic matter content (%) = [(soil weight before - soil weight after) / soil weight before] * 100 Eq. 1 

Water Content 

The gravimetric water content was measured following Forster (1995b). The 

procedure included weighing out 10 g of field-moist soil for each sample into an 

aluminium weighing tin, and the weight was recorded to the nearest O.OOlg. The tins of 

soil were placed into a drying oven at 105°C for 24 hours. Upon removal, the tins were 

cooled in a desiccator, then reweighed. The per cent water content was calculated using 

the following formula: 

% water content = [(moist weight - diy weight) / moist weight] x 100 Eq.2 
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Total Nitrogen and Phosphorous 

A modified Micro-Kjedahl method was used to measure the total N and P in the 

soil samples. Original methodology follows steps outlined by Bremner and Mulvaney 

(1982). Soil was air dried at 65°C for 48 hours, ground by grinder, and sieved through a 

2mm screen. The soil was placed in a container with an air-tight lid and labelled. For 

digestion, 1.0 g of soil was weighed and placed into a digestion tube. Two replications 

per sample were weighed out. One blank was included at the beginning and at the end of 

the digestion rack. Two or three boiling chips were added to each tube including the 

blanks and controls. Four mL of digestion solution (mixture of H2SO4 and salicylic acid) 

was added, and the tube was turned to wash down sides, then shaken gently. A rubber 

stopper was placed on all digestion tubes which were then left over night. 

Stoppers were removed under the fumehood and one level scoop of crushed 

sodium thiosulphate was added to each tube. The digestion tubes were placed on a rack in 

the digester and placed along the sides were side plates. The digester was set to 350“C. 

After the sample tubes finished frothing, they were removed from the digester to a 

wooden stand and were allowed to cool for 5 minutes. One scoop of catalyst mixture 

(potassium sulfate, cupric sulfate, and selenium) was added to each tube and the tubes 

were returned to the digester at 400°C for 1 hour. Tubes were then removed from the 

digester and cooled for 10 minutes. 

When cooled, 10 mL of distilled water was added. The samples were placed into 

the sonicator for several hours until the digest was dissolved. The rubber stoppers were 

removed from the tubes and distilled water was added to each sample until about 1 cm 
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from the top of the tube. The tubes were rubber stoppered again and inverted gently once 

or twice to mix the digest with the distilled water. An Autoanalyzer was used to measure 

the total nitrogen and phosphorus. Standards were used to establish a linear relationship 

for each element. Actual readings for each sample were then transformed using the line 

generated for the standards. This value, in ppm, could be calculated as a per cent using 

the following formula: 

X = (y - a) / b, where a and b are calculated from a regression based on a series of standards; 
y = reading in ppm from the Autoanalyzer; 
X = ppm of nitrogen. 
% N or P = [(ppm N (or P) X 0.075 L ) / weight of sample (mg)] x 100 Eq.3 

Values were multiplied through by 1000 to reduce the number of decimal places, 

allowing for easier reporting and reading of figures. 

Culturing 

Culturing of bacteria followed methods outlined in Phillips et al. (1986). Twenty- 

five grams of fresh soil was placed in a 1 L graduated cylinder and distilled water was 

added so that the total volume was 250 mL. The suspension was then stirred and poured 

into a 1 L Erlenmeyr flask and shaken for 30 minutes. Using a sterilized pipette, 10 mL of 

the shaken suspension was drawn and transferred into a 90 mL sterile water blank. One 

mL of this diluted suspension was immediately transferred through successive 9 mL sterile 

water blanks, totalling six separate suspensions, each at various dilutions starting at 1:10 

and ending with 1:1 000 000. Each dilution was shaken for a few seconds and was kept in 

motion while a sample was drawn into the pipette. Using the Eppendorf tip-ejector 

pipette 4700, 0.5 mL of each dilution was transferred aseptically to previously prepared 
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plates of Tryptic Soy agar medium (Anonymous 1996). Each plate was sealed with 

parafiRn wax strips and incubated at 24”C for 48 hours. The bacteria colonies were then 

counted and described. Representative cultures were transferred to a separate plate of 

Tryptic Soy agar using the streak-plate method. The inoculated plates were incubated 

again at 24”C for an additional 36-48 hours. 

Identification 

Pure cultures were tested for Gram positive and Gram negative properties 

following the staining procedures outlined in Anonymous (1992). The identification of the 

isolated bacteria was done using a carbon substrate utilization system called API 20E 

(bioMerieux Vitek 1996). This system involved the following steps: 1) preparation of the 

inoculum, where a sterile loop of culture was mixed into a 5% saline solution; 2) 

preparation of the strips, where the holder was filled with sterile water and labelled; 3) 

inoculation of the strips, where each well was filled with the inoculation using a 5 mL 

pipette, and anaerobic tests were sealed with mineral oil; 4) incubation of the strips, where 

the strips were put into a dark chamber at 36 '’C for 24 to 48 hours; 5) reading of the 

strips, where each well was identified by colour and designated a set number for that 

colour, leading to a nine digit number code; and 6) identification of microorganisms, 

where the number code is registered in a profile index, and each code is linked with a 

bacterial species {i.e. 0040024-10 Pasteurella multocidd) and identified on a scale of poor 

to excellent probability. 
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Soil Respiration 

Two respiration measurements were taken approximately one week apart, in 

September, using the soda-lime technique as described by Edwards (1982). One plot for 

each treatment was randomly selected. Each plot was further sub-divided into three 

sections (Figure 2); five tins of soda-lime were randomly placed on each sub-division (15 

tins of soda-lime on each plot), plus one blank per plot. Within each pre-weighed tin, 35- 

40 grams of soda-lime was placed. The tins each have a diameter of 6.5 cm and a surface 

area of 33.18 cm^, thus meeting the requirement for a minimum surface area (Edwards 

1982). The tins of soda-lime were dried in an oven for 24 hours at 100°C and weighed 

before being placed on the sample sites. The tins were placed on the sites uncovered, and 

then a plastic tub (158.36 cm^) covered in aluminium foil was placed over each tin. The 

foil helped to reflect the sunlight so that photo synthetic respiration was not falsely 

elevated. Also, the tins were placed such that a minimal amount of green material was in 

the area covered by the tub. The tins were allowed to stand for 24 hours, retrieved and 

capped. The blanks of soda-lime remained covered for this entire period. The soda-lime 

was again oven-dried for 24 hours at 100“C and reweighed to measure the amount of 

carbon dioxide evolved. Calculations followed the formula: 

CO2 evolved = (weight of si. at time 2 - weight of si. at time 1 )/(§ hours * area m^) Eq.4 

Chloroform Fumigation-Extraction 

The method for determining microbial biomass carbon and nitrogen is described by 

Voroney et al (1993). Ten grams of wet soil were oven-dried at 100°C for 24 hours to 
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calculate the moisture content. Twenty-five grams of fresh soil was weighed into a glass 

jar; four replicates per soil sample. Two replicates were fumigated with chloroform 

(CHCI3) for 24 hours. The other two replicates of each set of four were immediately 

saturated with either 60 mL (organic samples) or 40 mL (mineral samples) of 0.5 M 

K2SO4. The replicates were shaken for one hour to allow for complete mixing of soil and 

K2SO4. The mixture was filtered through VWR glass fibre filter papers (grade. 696), and 

the extracts were frozen at -10°C in plastic vials for later analysis. The fumigated samples, 

after repeated evacuation of the chloroform, were subject to the same treatment. 

Biomass N and Biomass C 

The extracts were analyzed for total N and C, using a colorimetric method 

(Anonymous 1978; 1984). The N containing compounds in the soil extracts were 

oxidized to nitrate by digestion in acidic and basic conditions with ultraviolet light. In 

order to avoid a suppression of N by C in the sample, the concentration of the potassium 

persulfate solution was increased from 1 to 3% (Luckai et al in prep.). The nitrate was 

further reduced to nitrite by copper-hydrazine solution. The nitrite ion then reacted with 

sulfanilamide under acidic conditions to form a diazo compound, which then was coupled 

with N-(l-naphthyl)-ethylenediamine to form a reddish-purple colour. The intensity of the 

colour was measured at 520 nm. 

In order to measure the total organic C, inorganic C (carbonate) was removed by 

entraining the acidified stream with a high velocity stream of N or C free air. The sample 

was transformed into a thin turbulent liquid film that was transported rapidly through a 
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large bore coil providing the necessary surface area for efficient CO2 removal. At a purge 

rate of 500 mL per minute, up to 500 mg of inorganic C can be removed with minimal loss 

of volatiles. An aliquot of the carbonate free sample was air segmented, mixed with a 

stream of acid and potassium persulfate (4%) and subjected to UV radiation. The 

resultant CO2 was dialyzed through a silicone rubber membrane and reacted with a weakly 

buffered phenolphthalein indicator. The decrease in colour of the indicator was 

proportional to the original C concentration. Calculations for biomass C and N followed 

the formulae outlined in Voroney et al. (1993); 

1. Soil water content: 

WS (%) = [ soil wet weight (g) - soil oven-dry weight (g) / soil oven-dry weight (g)]*100 Eq.5 

2. Weight of soil sample (oven-dry weight equivalent) taken for microbial biomass measurements (MS): 

MS (g) = [soil wet weight (g) * 100] / [100 + WS (%)] Eq.6 

3. Total volume of solution in the extracted soil (VS): 

VS (mL) = soil wet weight (g) - soil oven-diy weight (g) + extractant volume (mL) Eq.7 

4. Total weight of extractable C and N in fumigated (Op) and unfiimigated (Oup) soil samples: 

OCp, OCuF (g/ g soil) = extractable C (g/ mL) * [VS (mL) / MS (g)] Eq.8 

ONp, ONup (g/ g soil) = extractable N (g/ mL) * [VS (mL) / MS (g)] Eq.9 

5. Microbial biomass C and N in the soil (MB-C, MB-N): 

a) MB-C (g/ g soil) = ( OCp - OCyp) / kpc Eq.lO 

where: kpc = 0.25 ± 0.05 and represents the efficiency of extraction of microbial biomass C. 

b) MB-N (g/ g soil) = ( ONp - ONup) / kpN Eq.l 1 

where: kpN = 0.18 ± 0.04 and represents the efficiency of extraction of microbial biomass N. 
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STATISTICAL ANALYSIS 

Overview 

The variables of interest in this study which are subject to statistical analysis are 

microbial biomass carbon (MBc) and nitrogen (MBN), soil organic matter (OM), soil total 

nitrogen (N), soil total phosphorus (P), soil pH (pH), soil water content (WC), and soil 

respiration. The terminology and approach to the statistical analysis follows that of Zar 

(1996). Full data-sets can be found in Appendices I and II. The objective of the statistical 

analysis was to determine if the independent or fixed variables {i.e. harvesting 

treatment and time of sampling) affected the dependant or response 

variables. In all cases “a”, or the probability of committing a Type I error, 

was set at 0.05. 

The data were investigated carefully for outliers. Side-by-side dot plots were 

constructed to aid in the identification of any outliers. However, after a thorough search 

all datum points were left in the analysis because there was no just cause for elimination. 

For example, the pH value of one of the control plots in the organic soil horizon was 

measured at 3.12, which was much lower than all the other points measured. However, a 

pH of 3.12 is a reasonable value on a control plot that has a high input of acidic foliage. 

Therefore, this datum, as well as others like it, remain in the data sets. 

In the case of the respiration data, an analysis of variance (ANOVA) was based on 

a two-way factorial, completely randomized design (see subsequent section for details). 

One-way analysis of variance (ANOVA) was employed to determine treatment effects, if 

any, on the soil descriptors (OM, N, P, pH, and WC). . When appropriate, the LSD Post 
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Hoc (Zar 1996) test for differences between treatment means was applied where the main 

effect (biomass removal) was found to be significant, and bar charts were constructed to 

demonstrate any differences. In an initial survey for variable response, MBc and MBN 

were also subject to two-way ANOVA; line graphs of MBc and MBN over time were used 

to identify trends and shed light on interaction effects. 

As stated in the Literature Review, soil characteristics, such as pH, OM content 

and nutrient levels, are reported to 1) change in response to disturbance events and 2) 

appear to affect the structure and function of soil microbial communities. The 

investigative approach taken in this study therefore included a number of these variables in 

anticipation that the application of covariance analysis might assist in the interpretation of 

results through either 1) adjusting for sources of bias on the response variable or 2) 

throwing light on the nature of treatment effects in randomized experiments (Snedecor and 

Cochran 1967). 

In order to explore and identify relationships between MBc and MBN, and the soil 

descriptors, scatter plots were constructed and Pearson and Spearman correlation 

coefficients were computed. Both correlation tests compute a value between +1 and -1. 

The closer the value is to either extreme, the more highly correlated are the two 

parameters. The Spearman correlation differs from the Pearson in that it uses ranked data 

rather than absolute numbers. This reduces the effect of extreme data points (Zar 1996). 

Given that some soil descriptors exhibited correlation with either or both MBc and MBN, 

the investigation of the data was then conducted using analysis of covariance (ANCOVA). 

Microbial biomass data are treated as a split-plot design with covariates, with the mineral 
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and organic layers separate. One difficulty associated with this approach and this data set 

is the resultant limited number of degrees of freedom, particularly when cases with unfilled 

cells were excluded from the ANCOVA. 

All data were analyzed using DataDesk 6.0 software (Velleman 1997). Tests of 

normal variance were run on the data and they met a normal variance of distribution of 

means, as assumed by the Central Limit Theorem (Zar 1996). Expected mean square 

(EMS) tables were constructed to determine the appropriate tests for the null hypotheses, 

as well as to confirm the significance of the various response variables measured by the 

analysis of variance. Bar charts present treatment means and illustrate the results of the 

LSD Post Hoc tests. 
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Soil Respiration 

As stated previously, the soil respiration data were subjected to a two-way analysis 

of variance with a completely randomized design (CRD). This design may be represented 

by the following equation; 

Yijki = p+ Ti + Dj + TDij + E(ij)k Eq 12. 

i= 1,2,3; j = l,2; k=l,2,...,15 

where 

Yijk = the carbon evolution of the tin of the j* sample date within the i^ treatment, 

p = the overall mean. 

Ti = the fixed effect of the i^ treatment. 

Dj = the fixed effect of the sample date. 

TDij = the fixed interaction effect of the i^ treatment with the j* sample date. 

C(ij)k = the random effect of the k^ tin in the ij* treatment combination, 

assumed IID N(0, o^). 

The treatment (T) factor represents three levels of biomass removal: control, tree-length, 

and full-tree. The sample date (D) is represented by two different sample dates on which 

the respired carbon was measured at different locations within the selected plots. 

The expected means square (EMS) table (Table 2) will help to determine the test statistic 

for the following null hypotheses; 

i. Ho; (T) = 0; 

ii. Ho:(D) = 0; 

iii. Ho: (TD) = 0. 
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Table 2. EMS table associated with Eq 12. 

Source 

3 2 15 
F F R 
i j k df EMS 

T, 

D, 

TD.J 

0 2 15 2 o^ + 30(T) 

3 0 15 1 o2 + 45 (D) 

0 0 15 2 a2 + 15 (TD) 

84 o2 

Microbial Biomass 

The analyses of the microbial biomass carbon and nitrogen in the organic and 

mineral soil horizons are represented by a two-factor analysis of covariance 

(ANCOVA) with the possible inclusion of up to five covariate variables 

(note: covariates were included only if the Pearson correlations were 

significant at a = 0.05). This ANCOVA followed a split-plot design, whereby 

the harvest treatments were allocated to the main plots with 3 replicates and the month 

factor was allocated to the subplots. This experiment may be represented by the following 

linear model: 

Yijki - p+ Ti+ Q(i)j + + Mk + TMik+ coM(i)jk + C(ijk) Eq 13. 

where 

Yijk = the microbial biomass of the soil sample for the month in the j* plot within the 

• th 

1 treatment. 

= the overall mean. 
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Ti = the fixed effect of the harvest treatment. 

0(i) = the random effect of the j* plot within the i* harvest treatment. The 0(i)j's 

are assumed to be IID N (0, o^). 

??6(ij) = the restriction error due to the restriction on the randomization of the 4 months 

within the plot within the i^ harvest treatment. The 6(y)'s are assumed to 

be IID N (0, o^). 

Mk = the fixed effect of the month. 

TMik = the interaction effect of the i^^ harvest treatment with the month. 

coM(i)jk= the interaction effect of the k‘‘'month with the plot within the i^ harvest 

treatment. 

C(ijk) = due to bulking, there is no between sample variability of the k* month in the j* 

plot within the i^** treatment. 

The month (M) factor represents four points in time: May, June, July, and August. 

The treatment (T) factor is described by three levels of biomass removal: control, tree- 

length, and full-tree. Also, theoretically up to five covariates (pH, N, P, OM, and WC) 

could be included depending on the strength of their relationship to the dependent variable 

(measured with the Pearson Correlation test). The expected means square (EMS) table 

(Table 3) is used to determine the test statistic for the following null hypotheses: 

i. Ho: (T) = 0; 

ii. Ho.- (M)=^0; 

iii. Ho: (TM) = 0. 
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The table would include the covariate factors where appropriate. 

Table 3. EMS table associated with Eq. 13. 

Source 

T. 

"(i)i 

Mk 

TMac 
G)M(i)jk 

^qjk) 

F F R F 
1 J k 1 

10 3 4 
113 4 
11 14 

13 3 0 

10 3 0 
11 10 
1111 

df 

3 

6 
18* 

0 

EMS 

0^ + 4 8^+ 4 12 cp (T) 
0^ + 4 6^+ 4 
<j2 + 4 5^ 

+ COM^ + 9 9 (M) 

+ 3 <p (TM) 
2 2 

O + G)M 

*The degrees of freedom will vary depending on the number of covariate factors included in the analysis. 



50 

RESULTS 

BACTERIOLOGY 

The objective of the bacterial culturing was to determine if increasing levels of 

biomass removal would result in differences in the bacterial species isolated from the 

treated plots. Throughout the sampling season, the amount of cultures produced on the 

plates of solid media varied. Quantitatively speaking, in May a very high number of 

bacterial cultures were produced in each of the six dilutions up to 1:1 000 000. As the 

season of study progressed, the number of cultures gradually declined, and in August only 

a few cultures were produced in each of the first three dilutions, up to 1:1000. 

Five different bacterial species were isolated from the soil collected from the 

sample sites; Chryseomonas luteola, Pseudomonas fluorescens, Aeromonas salmonicida, 

Serratia marcescens, and Syntrophomonas multifilia (Table 4). These species each 

occurred on all three treatment plots (control, tree-length, and full-tree), except for P. 

fluorescens which only occurred on the harvested plots. The number of colonies counted 

varied, however, a greater amount was generally observed from samples of the organic 

horizon compared to the mineral layer. Furthermore, species occurrence varied from 

month to month. For example, S. multifilia was found during June and July in the organic 

horizon, and during August in the mineral horizon. However, C. luteola was present 

throughout the entire season in both the organic and mineral horizons. 
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SOIL RESPIRATION 

Mean values for CO2 respired (g hr'^ m'^) at locations in the control, tree-length 

and full-tree plots are summarized in Table 5. The values recorded range from 0.0069 to 

0.0165 g hr'^ m'^. The control treatment had the highest mean for both sampling dates. 

Table 6 presents the results of the ANOVA for the respiration data. 

Table 5. Summary of the amount of carbon respired (g hr'^ m'^) from the three 
treatments associated with the black spruce study site. Summer 1998. 

C Efflux (Date 1) C Efflux (Date 2) 

Treatment mean max min mean max min 

Control 0.0123 0.0159 0.0094 0.0131 0.0165 0.0103 

Tree-Length 0.0109 0.0139 0.0069 0.0114 0.0137 0.0074 

Full-Tree 0.0101 0.0126 0.0069 0.0107 0.0133 0.0078 

Date 1= September 5, 1998; Date 2= September 12, 1998. 

Table 6. ANOVA table associated with CO2 evolved (g hr‘^ m'^). 

Sums of 

Source df Squares F-ratio Prob 

Treatment (T) 

Sample Date (D) 

TD 

Error 

2 8.5 E-05 

1 9.3 E - 06 

2 2.7 E - 07 

84 2.8 E-04 

12.867 0.000* 

2.8188 0.097 

0.0412 0.959 

* Significant at a = 0.05. 
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The fixed effect of treatment (T) significantly affected the amount of carbon evolved. 

The raw data revealed a normal distribution. The LSD Post Hoc test revealed that the 

microbial activity (indexed by soil respiration) of plots in the uncut, mature stand differed 

significantly from those of the harvest treatments, even though soil temperatures were 

lower on the uncut areas (Figure 4). Neither the fixed effect of the sample date (D) nor 

the interaction (T x D) appeared to significantly affect the amount of carbon evolved. 
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Harvest Treatments 

September 5/1998 

September 12/1998 

Figure 4. Results of the LSD Post Hoc test demonstrating similar and dissimilar harvest 
treatments, using mean CO, efflux (g hr'm'") as the response variable. The 
letters on the bars represent which groups are similar to or different from each 
other. 
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SOIL DESCRIPTORS 

The soil descriptors measured in this experiment were pH, organic matter (OM), 

moisture content (WC), total P and total N. These parameters were measured in order to 

provide further insight into possible relationships with the microbial biomass. Mean 

treatment values within either the organic or mineral layers were similar (Table 7) 

however, one pattern did arise. Within the organic horizon, means for all descriptors 

except pH were highest for the tree-length treatment. With respect to pH, the range was 

from 3.12 (in a control sample) to 4.18 (in a full-tree sample). Ranges in the other 

parameters were relatively consistent from one treatment group to another with the 

exception of total N, where that of the full-tree treatment exceeded that of tree-length by a 

factor of 0.5 and that of the control by a factor of nearly three. 

Within the mineral layer, no single treatment group exhibited consistently high or 

low values and ranges were, once again, very comparable with the exception of total N in 

the control group. Interestingly, with regard to pH, the lowest and highest values 

mirrored those found in the organic layer. 
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Table 7. Summary of the soil parameters measured in the organic and mineral soil 
horizons, summer 1998. 

Soil Parameter Control Tree-Length Full-Tree 

mean max mm mean max mm mean max mm 

Organic Horizon 

pH 

Organic Matter (%) 

Moisture Content (%) 

Total Phosphorus (mg/kg) 

Total Nitrogen (mg/kg) 

3.47 3.93 3.12 

82 95 69 

70 

161 

65 

151 

nil 

55 

144 

3.92 4.02 3.84 

84 91 77 

77 

181 

74 

159 

71 

150 

1138 1072 1178 1268 1139 

4.09 

78 

71 

149 

1 152 

4.18 3.98 

93 59 

76 61 

161 133 

1232 1057 

Mineral Horizon 

pH 3.73 4.34 3.38 

Organic Matter (%) 13 20 8 

Moisture Content (%) 31 42 20 

Total Phosphorus (mg/kg) 32 36 30 

Total Nitrogen (mg/kg) 167 225 118 

3.83 

11 

36 

32 

135 

4.18 

13 

38 

38 

141 

3.7 

9 

34 

26 

121 

4.04 

12 

34 

33 

136 

4.26 

16 

40 

36 

142 

3.8 

8 

28 

28 

121 

One-way analysis of variance, where the treatment factor was tested against each 

of the five soil descriptors (pH, P, N, WC, and OM), was employed to determine if there 

were any effects due to the increasing levels of biomass removal. Table 8 presents a 

summary of the results. Only pH in the organic layer was significantly affected. The 

LSD test revealed that the control treatment mean was significantly lower than those of 

the harvest treatments (Figure 5). The one-way ANOVA employed on the mineral data 

(Table 8) revealed no significant effects of the treatment factor on any of the soil 

descriptors. 
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Table 8. One-way ANOVA table associated with the harvest treatment factor tested 
against the environmental parameters in the organic and mineral soil horizons. 

Source df 

Sums of 
Squares F-ratio Prob. 

Organic Horizon 

pH 

H itrogen 

Phosphorus 

Moisture Content 

Organic Matter 

Treatment 

Error 

Treatment 

Error 

Treatment 

Error 

Treatment 
Error 

Treatment 

Error 

2 

25 

2 

32 

2 

31 

2 
o o 
JO 

2 

24 

1.3 E-7 

3.9 E-7 

54520 

473222 

788 

18462 

509 

2886 

119 

3685 

4.110 0.029* 

.843 

0.662 

2.908 

0.387 

0.175 

0.52: 

0.069 

0.68: 

Mineral Horizon 

pH 

Nitrogen 

Phosphorus 

Moisture Content 

Organic Matter 

Treatment 

Error 

Treatment 

Error 

Treatment 

Error 

Treatment 
Error 

Treatment 

Error 

2 

33 

2 

33 

2 

33 

2 
o n 2)J) 

2 
o o 

6.2 E-9 

9.2 E-8 

6058 

98399 

1 1 

1649 

129 

9146 

34 

919 

1.115 

.016 

0.112 

0.232 

0.606 

0.340 

0.373 

0.895 

0.794 

0.552 

Significant at a= 0.05. 
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5 

X 
(X 
c 
CJ 
(O 

1 

0 

Harvest Treatments 

Figure 5. LSD Post Hoc test demonstrating similar and dissimilar harvest treatments in 
the organic soil horizon, using mean pH as the response variable. The letters on 
the bars represent which groups are similar to or different from each other. 
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MICROBIAL BIOMASS 

Variability in Original Observations 

Table 9 displays values for soil microbial biomass carbon and nitrogen (pg/g soil) 

in the organic and mineral soil horizons, respectively. The full data set can be found in 

Appendix I. A considerable numeric difference was observed between the microbial 

biomass carbon (MB^) values of the organic and mineral soil layers regardless of the 

month. Biomass values for the organic layer range in the thousands (pg/g soil), whereas 

those of the mineral layer range in the hundreds (pg/g soil). Microbial biomass nitrogen 

(MBN) follows a similar pattern, where the organic layer samples had much higher values 

than did those of the mineral layer. The C:N ratios (Table 9) are all generally within 

normal ranges for microbial biomass, that is 15:1 to 3:1 depending on the relative amount 

of fungi and bacteria (Paul and Clark 1989). 

Results of the analyses of variance for the microbial biomass C are presented in 

Tables 10 and 11 (organic and mineral horizons, respectively). The ANOVA for the MB^ 

in the organic layer revealed a significant treatment (T) factor, as well as the Treatment x 

Month interaction factor. In the mineral layer, the month and treatment main effects were 

found to significantly affect microbial biomass C. 
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Table 10. 

Table 11. 

ANOVA table associated with the microbial biomass carbon in the 

organic soil horizon. 

Source df Sums of F-ratio Prob. 
Squares   

Treatment (T) 2 

Whole Plot Error (co) 6 

Restriction Error (5) 0 

1.8E + 7 6.0625 0.036* 

9.1 E + 6 no test 

no est. no test 

Month (M) 3 

TM (TM) 6 

oM (oM) 17 

Error 0 

1.3 E + 7 1.9697 0.156 

3.8 E+ 7 2.9315 0.037* 

3.7 E + 7 no test 

0 

Significant at a = 0.05. 

ANOVA table associated with the microbial biomass carbon in the 
mineral soil horizon. 

Source df Sums of F-ratio Prob. 
Squares  

Treatment (T) 2 

Whole Plot Error (CD) 6 

Restriction Error (6) 0 

1.3 E+ 6 20.011 0.002* 

194645 no test 

no est. no test 

Month (M) 

TM (TM) 

G)M (COM) 

Error 

3 1.3 E+ 6 5.0855 0.010* 

6 1.4 E+ 6 2.6236 0.053 

15 1.6 E+ 6 no test 

0 0 

Significant at a = 0.05. 
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The ANOVA for the MB^ in the organic layer (Table 12) found no factors to be 

significant. In the mineral horizon (Table 13), however, the month factor was found to 

have a significant effect on the MB^ • 

Table 12. ANOVA table associated with the microbial biomass nitrogen in the organic 
soil horizon. 

Source df Sums of F-ratio 
Squares 

Month (M) 

TM (TM) 

0)M (coM) 

Error 

Prob 

Treatment (T) 2 35454 0.0986 0.907 

Whole Plot Error (co) 6 1.1 E + 6 no test 

Restriction Error (6) 0 no est. no test 

3 175221 0.3441 0.793 

6 1.3 E + 6 1.2561 0.327 

15 2.9 E + 6 no test 

0 0 

Table 13. ANOVA table associated with the microbial biomass nitrogen in the mineral 
soil horizon. 

Source df Sums of 
Squares 

F-ratio Prob 

Treatment (T) 2 8093 

Whole Plot Error (co) 6 6803 

Restriction Error (5) 0 no est. 

3.5687 0.095 

no test 

no test 

Month (M) 

TM (TM) 

ooM (coM) 

Error 

6 

15 

0 

41727 

16248 

54144 

0 

4.6240 0.014* 

0.9002 0.516 

no test 

* at a = 0.0,5. 
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Line graphs of the MB^ (Figure 6) and MB^ (Figure 7) were used to identify 

trends in the treatment means over time. These figures represent the unadjusted treatment 

means and any pattern illustrated is indicative of the sum of all environmental influences 

on the dependant variable. In Figure 6, it appears that biomass (as estimated by MB^) 

declines from May through August and that these declines are most evident in the control 

samples. In both layers, control samples are clearly separated from harvest treatment 

samples in May and June, but achieve similar values in July and August. The pattern of 

increases and declines for tree-length is exactly the same in both the organic and mineral 

layers, while that for full-tree differs only in August. 

In Figure 7, the MB^ estimate of biomass varies widely in the organic layer as the 

season progresses. In the mineral layer, however, a general pattern of decline over the 

study period is evident. Initially, the full-tree treatment means are lower than the others, 

however, by July all three are displaying very similar amounts. 

With the exception of a general decline from May to June, there is little similarity 

between the two estimators of microbial biomass. 
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Figure 6. Mean MB^ (|.ig/ g soil) throughout the sampling season, demonstrating 
interactions between harvest treatments influenced by soil descriptors: 
a) organic soil layer; b) mineral soil layer. 
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Figure 7. Mean MBN (gg/ g soil) throughout the sampling season, demonstrating 
interactions between harvest treatments influenced by soil descriptors: 
a) organic soil layer; b) mineral soil layer. 
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Relationship Between Soil Descriptors and Microbial Biomass 

Scattergrams of the MB^ and MB^ against the soil descriptors demonstrate the 

association with each parameter (Figures 8 through 11). Comparisons between the 

organic and mineral layers must take scale into account. With the exception of pH, 

positive correlations between MB^ and MB^ and the soil descriptors are more apparent in 

the mineral layer. 

Pearson and Spearman correlations were done to discover statistical relationships 

between the measured variables (Table 14). The pH and moisture content factors were 

found, by the Pearson correlation and not the Spearman, to have a significant association 

with the MBc in the organic soil layer. Total N, moisture content, and the OM content 

factors had a significant association with both the MBc and the MB^ in the mineral soil 

horizon, as found by both the Pearson and Spearman correlations. Total N was found to 

be correlated with the MB^ in the organic soil horizon. The Spearman correlation also 

found total P to be significant with MB^ in the organic horizon. 

Interestingly, and rather unexpectedly, the Pearson analysis revealed no 

correlation between MB^ and MB^ in the organic layer. However, Spearman’s, which 

uses ranked, rather than absolute, values did identify this relationship as significant. The 

anticipated MB^ to MB^ relationship was identified by both tests in the mineral layer. 
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Total Phosphorus (mg/Kg) 

Total Nitrogen (mg/Kg) 

e) 

d) 

Figure 8. Scattergrams of the microbial biomass carbon with the soil description 
parameters in the organic soil horizon; a) pH; b) total P; c) total N; 
d) moisture content; and e) OM content. 
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Organic matter (%) 

Figure 9. Scattergrams of the microbial biomass carbon with the soil description 
parameters in the mineral soil horizon: a) pH; b) total P; c) total N; 
d) moisture content; and e) OM content. 
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Figure 10. Scattergrams of the microbial biomass nitrogen with the soil description 
parameters in the Organic Soil Horizon; a) pH; b) total P; c) total N; 
d) moisture content; and e) OM content. 
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a) b) 

Total Phosphorus (mg/Kg) 

C) 

Total Nitrogen (mg/Kg) 

e) 

d) 

Moisture content (%) 

Figure 11. Scattergrams of the microbial biomass nitrogen with the soil description 
parameters in the Mineral Soil Horizon: a) pH; b) total P; c) total N; 
d) moisture content; and e) OM content. 
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Table 14. Results of the Pearson (lower triangle) and Spearman (upper triangle) 
Correlation analyses for the organic and mineral soil horizons. 

MB, MB^ WC pH* N OM 

Organic Horizon 

MBe 1.000 .353* -.044 .165 .157 -.065 .288 

MBN .258 1.000 .193 -.023 .349* .407* -.067 

WC -.481* -.017 1.000 -.641* .040 .243 .055 

pH** .536* -.263 -.250 1.000 -.079 -.501* .031 

P .247 .323 -.073 -.225 1.000 .411* .004 

N .078 .367* .101 -.403* .448* 1.000 .022 

OM .367 -.018 -.032 .223 .074 -.178 1.000 

IVIineral Horizon 

MBc 1.000 .584* .468* -.017 .037 .424* .367* 

MBN .686* 1.000 .524* -.021 .227 .598* .582* 

WC .396* .362* 1.000 -.019 .323 .476* .470* 

pH** .209 .150 .329 1.000 .098 .114 .088 

P .022 .163 .348* .258 1.000 .557* .427* 

N .554* .525* .389* .415* .519* 1.000 .913* 

OM .494* .553* .400* .484* .428* .915* 1.000 

* Correlation is significant at the 0.05 level (2-taiIed). 

**pH was calculated as hydronium ion concentration (M). 

Note; Some data in the Organic Horizon was missing. 

Total N was significantly correlated with many soil descriptors in both the organic 

and mineral soil horizons. In the case of total N and % OM, the relationship is so strong 

as to suggest the inclusion of only one or the other as a covariate. 
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Variability in Microbial Biomass Adjusted for Covariates 

Summarized in Table 15 is the ANCOVA for the MB^ in the organic soil horizon, 

revealing that the interaction of the treatment and month significantly affected the 

response variable. The ANCOVA results for the MB^ in the mineral horizon are 

summarized in Table 16. This analysis showed that the treatment (T) significantly 

affected MB,;-. The LSD Post Hoc test found the control treatment to be significantly 

different from both of the harvest treatments, tree-length and full-tree (Figure 12). 

Because total N was independently correlated with OM content, an ANCOVA was run 

without the total nitrogen covariate factor. This did not result in any significant 

differences from the original ANCOVA, therefore, only the original analysis is presented. 

Table 15. ANCOVA table associated with the microbial biomass carbon in the 
organic soil horizon. 

Source df Sums of 
Squares 

F-ratio Prob. 

pH (pH) 1 

Moisture Content (WC) 1 

Treatment (T) 2 

Whole Plot Error (o)) 6 

Restriction Error (5) 0 

3924 no test 

155827 no test 

76222 0.0405 

5.6 E + 6 no test 

no est. no test 

0.961 

Month (M) 

TM (TM) 

toM (coM) 

Error 

3 207285 0.1303 0.939 

6 1.1 E +7 3.6322 0.048* 

8 4.2 E + 6 no test 

0 0 

* Significant at a = 0.05. 
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Table 16. ANCOVA table associated with the microbial biomass carbon in the 
mineral soil horizon. 

Source df Sums of F-ratio Prob. 
Squares 

Total Nitrogen (N) 

Moisture Content (WC) 

Organic Matter (OM) 

Treatment (T) 

Whole Plot Error (co) 

Restriction Error (5) 

89050 no test 

33172 no test 

96716 no test 

527640 5.5325 0.043* 

286111 no test 

no est. no test 

Month (M) 

TM (TM) 

(oM (coM) 

Error 

3 16141 0.0608 0.979 

6 606084 1.1416 0.386 

15 1.3 E + 6 no test 

0 0 

Significant at a = 0.05. 
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a 

Harvest Treatments 

Figure 12. LSD Post Hoc tests demonstrating similar and dissimilar harvest treatments, 
using mean MBc (gg/ g soil) as the response variable in the mineral soil 
horizon. The letters on the bars represent which groups are similar to or 
different from each other. 
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The ANCOVA results for microbial biomass N in the organic soil horizon, 

summarized in Table 17, show that neither the factors nor their interaction influence the 

response. The ANCOVA was run with only the total nitrogen covariate factor in attempt 

to increase the degrees of freedom. This was done because the total N and the organic 

matter were highly correlated with one another according to the Pearson and Spearman 

correlation tests. The ANCOVA results for MB^ in the mineral layer, summarized in 

Table 18, again revealed that no factors were found to be significant. 

Table 17. ANCOVA table associated with the microbial biomass nitrogen in the organic 
soil horizon. 

Source df Sums of F-ratio Prob 
Squares 

Total Nitrogen (N) I 39762 no test 

Treatment (T) 2 11242] 0.6634 0.549 

Whole Plot Error (OD) 6 508400 no test 

Restriction Error (5) 0 no est. no test 

Month (M) 3 100170 0.2351 0.870 

TM(TM) 6 1.3 E+ 6 1.4930 0.246 

OJM (coM) 15 2.1 E + 6 no test 

Error 0 0 
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Table 18. ANCOVA table associated with the microbial biomass nitrogen in the mineral 
soil horizon. 

Source df Sums of 
Squares 

F-ratio Prob 

Total Nitrogen (N) 1 4133 

Moisture Content (WC) I 2470 

Organic Matter (OM) 1 4496 

Treatment (T) 2 1326 

Whole Plot Error (co) 6 7556 

Restriction Error (6) 0 no est. 

no test 

no test 

no test 

0.5267 0.615 

no test 

no test 

Month (M) 

TM (TM) 

wM (o)M) 

Error 

6 

15 

0 

1932 

5348 

48604 

0 

0.1988 0.895 

0.2751 0.940 

no test 
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DISCUSSION 

BACTERIOLOGY 

The culturing, isolation and identification of bacteria was undertaken to determine 

if different levels of biomass removal affected the number and type of bacterial species 

found in the treatment plots. In this investigation, the number of bacteria cultured 

declined as the sampling season progressed. This observation may be attributed to the soil 

temperature and moisture differences measured throughout the season. In the spring, 

warm temperatures and high amounts of moisture due to snow-melt (see Figure 3), 

appeared to stimulate microbial activity. Lundgren and Soderstom (1983) and Schlentner 

and VanCleve (1985) also attributed increased microbial activity to increased temperatures 

and moisture. As the climate continued to become warmer and drier, the number of 

cultures declined. A summary and description for each of the five bacterial species 

identified follows below. 

Chryseomonas luteola was isolated on a number of occasions from the organic and 

mineral soil collected from all three treatment groups in this study, therefore, occurring in 

the general environment. Chryseomonas luteola is described in Bergey’s Manual (Holt et 

al 1994) as not being known to be present in the general environment but are saprophytes 

or commensals of humans. This discrepancy may be due to the limitations of the API 20E 

system to identify genetically similar strains (Palmieri et al 1988). In a study by Anzai et 

al (1997), it was found that C luteola has a 93.9% sequence homology of 16S rRNA 

with Pseudomonas spp. Thus, Anzai et al (1997) concluded that Chryseomonas is a 

junior subjective synonym of Pseudomonas spp. which are widely distributed in nature 
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(Holt et al. 1994). It is possible that what API 20E identified as C luteola, is a subspecies 

of Pseudomonas thus explaining its high occurrence of in our soil. 

Identified with a rating of “low discrimination”, meaning that it may have been 

misidentified, P. fluorescens was cultured from only the harvested plots during the month 

of July. P. fluorescens is an aerobic microorganism with a respiratory type of metabolism 

(Holt et al. 1994) that functions in the synthesis of urease and in the process of 

denitrification (Killham 1994). Furthermore, P. fluorescens decomposes pure proteins 

with the formation of end products such as ammonia (Holt et al. 1994). P. fluorescens 

also functions as an antagonist, providing effective biocontrol of pathogens, such as 

Gaeeumannomyces graminis (take-all root disease) and Pythium ultimum (damping-off 

fungi) (Whipps 1997). Since it is commonly found in a number of niches, the low 

frequency of P. fluorescens observed here may be due to the limitations of culturing 

techniques as well as the possibility for misidentification by the API 20E system (Palmieri 

etal. 1988). 

Aeromonas salmonicida was also identified with a “low discrimination” rating. 

Occurring on all three treatment plots throughout the entire sampling season, A. 

salmonicida is a facultative anaerobe that reduces nitrates and nitrites in the environment 

(Holt et al. 1994). This bacteria is chemolithotrophic (has both respiratory and 

fermentative types of metabolism); grows well at 22-28“C; occurs in fresh water and 

sewage; and may be pathogenic to frogs, fish, and humans (Holt et al. 1994). 



79 

Isolated throughout the entire sampling season from all three treatment plots, 

Serratia marcescens was identified with a confidence rating of “good to very good”. 

Serratia marcescens, like A. salmonicida, is facultatively anaerobic, chemolithotrophic, 

and reduces nitrates (Holt et al. 1994). This bacteria is capable of growth at 30-37 ”C 

(Holt et al 1994). Serratia marcescens usually appears in soils enriched with chitin, and 

decomposes these proteins into various end products, such as ammonia (Holt et al 1994). 

Further, this species functions as an antagonist, providing effective biocontrol of 

pathogens for plants (Whipps 1997). 

Syntrophomonas multifilia was identified with a rating of “good”, and was 

cultured only a few times during the sampling season; however, it did occur on all three 

treatment plots. Capable of growing at temperatures of 30-37 °C, S. multifilia functions 

as a fermenter (Holt et al 1994). Mostly occurring in anoxic (without O2) mud, this 

microbe obtains energy via p-oxidation of fatty acids, degrading the acids 

primarily to acetate and H2 (Holt et al 1994). This species was extracted from only those 

samples that happened to be from very wet pockets of soil. Having such a restricted 

niche, the low frequency of S. multifilia throughout the sampling season is therefore 

understandable. 

The occurrence of the various bacterial isolates seems to respond to moisture and 

temperature levels rather than levels of organic residue. However, residues may, over 

time, influence the moisture and temperature of the soil (Hendrickson et al 1985; Entry et 

al 1986), which will eventually influence the type and amount of bacteria inhabiting the 

soil. Further, considering that the bacterial species identified were primarily nitrifying and 
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denitrifying species, there is the potential for short and long-term effects on nitrogen 

presence and availability on this site. 

SOIL RESPIRATION 

The objective of measuring the soil respiration was to determine if increasing levels 

of biomass removal would result in measurable differences. The ANOVA and subsequent 

LSD test revealed that CO2 evolved in the control (uncut) plots was significantly higher 

than that evolved in the harvested plots. Since soil respiration consists of both root and 

microbial contributions, it is difficult to separate the two. Killham (1994) states that roots 

may contribute up to 30% of total soil respiration. In the harvest plots, the measuring 

apparati were intentionally placed so as to minimize the effect of living plant roots. The 

difference in CO2 evolved (approximately 18%) could therefore be attributed to the 

presence or absence of roots. However, soil temperatures in the control plots were much 

lower than in the cut plots and, in general, respiration rates are reported to decline with 

temperature (Entry et al 1986). For example, the Qio for root respiration has been 

measured at 2.5 (Singh and Gupta 1977) and at 2.4 (Uchida et al. 1998). Weber (1990) 

also reported a decline in CO2 evolution when aspen stands were cut and burned. He 

attributed the difference to the loss of vegetation and biomass on site, contributing to 

lower metabolic activity. Furthermore, pH may be a factor affecting microbial respiration 

rates. Anderson and Domsch (1993) found that microbial communities released more 

CO2-C (per unit MB) under acidic soil conditions than those with a more neutral pH. 
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Since the control plots had a more acidic pH than the harvested plots, the difference in 

CO2 evolved may be related to this characteristic. 

Given the opposing influences of root presence, soil pH and soil temperature, it 

seems reasonable to also consider that some of the difference was due to a change in 

either the quantity or activity level of the microbial component of the soil. From the 

statistical analyses of the estimates of microbial biomass (Table 11) it appears that 

treatment alone did not contribute significantly to quantitative differences in the organic 

layer although ANCOVA did reveal a statistically significant effect in the mineral horizon 

(Table 12). However, looking at the treatment means for the month of August, just before 

the respiration trials, it is apparent that differences between treatments at this time were 

minimal. It could therefore be surmised that quantity is not driving the differences in 

respiration. The level of microbial activity, on the other hand, may be a factor. 

Orchard and Cook (1983) stated that an increase in respiration of a silt loam used 

for pastoral and crop farming, was most likely due to an increase in microbial activity. 

Weber (1990) attributed the decrease in soil respiration from uncut to harvested plots in 

his study to a decline in microbial activity. Metabolic activity of microorganisms is 

thought to depend on a number of factors including temperature, moisture and substrate 

(Orchard and Cook 1983; Lundgren and Soderstom 1983; Schlentner and Van Cleve 

1985; Bosatta and Agren 1994; Berg et al 1998; Bauhus et ah 1998). It is possible that 

the soil environment of the control plots is more conducive to higher rates of activity than 

is that of the cutover. Exposed areas may experience lower moisture levels, higher soil 

temperatures and lower quality organic matter inputs {i.e. essentially no root exudates or 
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foliar litterfall) all of which could depress microbial activity. Interestingly, chloroform- 

flimigation-extraction has as one of its advantages, the inclusion of all microbial organisms 

regardless of their metabolic state. Dormant organisms are therefore just as likely to be 

included in the quantitative estimate as are active organisms (Martens 1995). 

Although this one time measurement must be considered cautiously, however, it 

appears to be an indicator of a change in state, if not quantity, of the microbial biomass 

after a forest removal event. Given that microbial populations may respond to crop 

removal events, there are implications for nutrient cycling, nutrient availability and, 

ultimately, the success and growth of vegetative regeneration. This change in state implies 

a reduction of microbial activity, which in turn may lead to a reduction in nutrient cycling 

and availability. Further investigation into the nature of change in microbial communities 

must be conducted before we can be sure of the direction of the trajectory. 

VARIABILITY IN SOIL DESCRIPTORS 

One-way ANOVA for the soil descriptors revealed no significant treatment effects 

except for pH in the organic layer. It has been four years since the harvest treatments 

were imposed and it is interesting that, despite the obvious and dramatic change in the 

immediate environment, key soil characteristics such as % OM, moisture content, total P, 

total N and pH in the mineral layer do not differ significantly from one another. This 

observation must be made with caution however because other factors may have 

prevented the assignation of statistical significance. For example, there may be so much 

variability in the samples that trends due to treatment effect were obscured. Spatial 
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heterogeneity of the forest floor has been noted by other authors (Arp and Krause 1984). 

It is possible that random sampling may have captured a wide variety of combinations of 

mineral and organic elements. In this study, bulking of the samples was intended to 

reduce variation but may not have been sufficient given the number of samples actually 

incorporated. One means of determining the minimum sample size required to identify 

treatment differences is by calculating the required number of samples based on observed 

variance. Thus, the approximate minimum sample size required would be 1143. This is 

such a large number of samples that it is not practical to undertake. As always, scientific 

method must find a compromise between the resources available and the level of certainty 

associated with results. 

In the case of pH in the organic layer, ANOVA and subsequent application of the 

LSD test for differences between treatment means revealed that control treatment means 

were significantly lower than those of the harvested areas. This maintenance of low 

acidity in the uncut, mature forest plots may be attributed to the continual inputs of acidic 

foliage (Brady and Weil 1986) and to higher cation uptake by roots. Hendrickson et al. 

(1985) and others (Baath et al 1995; Smolander et al 1998) have reported increases in 

soil pH after forest cover removal. However, this change may be temporary. The removal 

of forest vegetation has been shown to accelerate leaching of nitrates and weathering of 

pedogenic minerals, which release hydronium ions, thus promoting a return to the soil’s 

original acidic level 

(Rowell 1994). 
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RELATIONSHIP BETWEEN SOIL DESCRIPTORS AND MICROBIAL 

BIOMASS 

Correlation analysis was used to identify relationships between two independent 

variables; it is not expected that change in one variable is dependant upon change in the 

other {i.e. regression) but rather that the magnitudes of change are somewhat similar (Zar 

1996). As stated previously, some of the results of the Pearson correlation test confirmed 

hypotheses about the samples while other results called our understanding of the system 

into question. A discussion of key findings follows. 

In the organic soil layer, MBc was found not to be correlated with MBN. This was 

somewhat unexpected considering that throughout the literature, the two are often linked 

with C/N ratios being used to confirm or estimate quantities of one or the other 

(Marumoto et al. 1982; Marumoto 1984; Ohtonen etal. 1992; Raubuch and Beese 1998; 

Haron et al. 1998). However, the result obtained here may be explained using two 

theories. For example, Alef (1993) suggested that fumigation of soil with chloroform 

(CHCI3) liberates C and N that is chemically bound in humic fractions. These liberated 

minerals may inflate the results of the MBc and MBN calculations and lead to false 

conclusions fi’om the correlation tests. 

Another theory suggests that even a “reasonable” range of soil C:N ratios {i.e. 

15; 1 to 3:1) might not reveal a correlation. Specifically, the MBC;MBN ratios for the full 

data set of the organic soil (Appendix I) ranges from 2.6:1 to 13.9:1. Even though these 

ratios are reasonable according to standards listed in the literature (Paul and Clark 1989), 
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the actual range of MBc and MBN values is so large that statistical relationships between 

the two may be difficult to determine. 

The result that MBc and MBN were correlated in the mineral horizon adds weight 

to Alef s (1993) proposed argument that fumigation with CHCI3 liberates C and N from 

humic fractions in addition to that from the MB. In samples from the mineral layer, mean 

% organic matter varied from 11 to 13 for the three treatments with a maximum of 30% 

measured in a control sample (high values are due to inexperienced sampling). These 

values are on the order of a fifth to a tenth that of the organic layer samples and are 

somewhat higher than others found in the literature. For example, Hendrickson et al 

(1985) reported mean % OM values of 4.11% to 4.99% in the mineral soil and 57 to 76% 

in the organic layer of a mixed-wood forest in Central Ontario treated with conventional 

and whole-tree harvest methods. Chatarpaul (1987) studied conventional and whole-tree 

harvest methods on a mixed-wood forest of Central Ontario, where mean % OM values of 

the mineral soil ranged from 3.13% to 7.59%, with mean values of 54% to 69% in the 

organic soil. 

The MBc and MBN were significantly correlated to % OM in the mineral layer but 

not in the organic layer. At first glance, these results may seem contradictory. However, 

two possible explanations for this apparent discrepancy present themselves. First, recall 

that samples from the organic layer averaged 80% (range 59 to 96%) organic matter while 

those of the mineral layer averaged 12% (range of 7 to 30%). Furthermore, estimates of 

MBc in the organic layer were at least an order of magnitude greater than those of the 

mineral layer and there were no apparent differences between treatment means for either 
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OM or MBc in the organic layer. It may be that variability in the measures of the organic 

layer was too great to reveal either similarities or differences in patterns of change. 

Second, the microbial biomass requires substrates. One might conclude that more OM in 

the soil matrix would be related to larger, or perhaps more active, populations of 

microorganisms (Hendrickson et ah 1985; Entry et al 1986; Ohtonen et al. 1992; Bauhus 

et al 1998). The range of OM in the mineral samples might have been sufficient to reveal 

a similar range in the microbial biomass while the much higher OM presence in the organic 

samples would be associated with a “saturation” effect. Treatment effects, either due 

directly to biomass removal or indirectly to changes in micro-environment, might be more 

easily detected in the mineral layer where numbers are naturally lower and populations are 

more likely to respond to moisture, temperature or substrate gradients. 

Total N was significantly correlated with many factors in both the organic and 

mineral soil horizons. Specifically, with MBN, pH and total P in the organic samples and 

with MBc, WC, OM, pH and total P in the mineral layer. The correlation to OM in the 

mineral samples is understandable as this material, particularly after some decomposition, 

may be nitrogen rich (Haynes 1986; Killham 1994), while that of the more surficial layer 

may be less decomposed and therefore contain materials with wider C/N ratios. For 

example, compounds such as chitin, cellulose and lignin represent highly resistant pools of 

organic C (Killham 1994). These compounds, which are relatively N poor, may persist in 

the soil for long periods of time, requiring much time, energy, and import of N for 

degradation to occur (Killham 1994). 



The correlation of total N to MBN in both layers may provide further evidence of 

the liberation of N due to CFE. With respect to the mineral samples, it may also be 

explainable in terms of larger microbial populations found in association with more 

nitrogen rich material. Nitrogen levels in the soil may be influenced by factors such as P 

levels, pH, and moisture content. For example, Gallardo and Schlesinger (1994) reported 

that P is less frequently immobilized than N by soil microbes, causing an increase of N/P 

ratios in the litter, and subsequently causing a limiting effect on the MB. They further 

speculated that P limitations in soils with extreme pH, where pH levels are highly acidic or 

highly basic, will affect the activity and nature of microorganisms present. In addition, 

Baath et al (1995) suggest that pH may have the ability to alter other soil properties, such 

as C/N ratios, which indirectly affect microbial biomass by restricting available nutrients. 

The level of moisture content may also affect the nitrogen levels, and subsequently 

C/N/P ratios. Soil bacteria, require a water film for movement and can only remain active 

if there is suitable moisture in the soil, so that nutrients and waste products can diffuse in 

and out of the cell (Wong and Griffen 1976a & b). Bacterial activity will increase or 

decrease as the water potential rises and falls, respectively. If moisture levels are 

inadequate, the mineralization-immobilization of nutrients may not occur, thus limiting the 

growth and activity of the microbial biomass. 

In the organic layer samples, pH was correlated positively to MBc and negatively 

to WC and total N. Bosatta and Agren (1994) speculated that properties of the original 

litter and soil physical factors partly determine the amount of MB in the soil. Bauhus et 

al (1998) stated that MB amounts are sensitive to changes in soil physical and chemical 
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composition. Therefore, in the organic samples, the pH was positively correlated to the 

MBc possibly because the organic residues remaining were less acidic, as compared to the 

continual inputs of more acidic spruce needles in the control plots. The less acidic sites 

(cut areas) did not have a continual input of acidic residues, making the environment 

tolerable for a greater variety of soil microbes. Although the site experienced a large 

deposit of needles during the harvest, this input may have been quickly assimilated, 

creating a surge in MB activity and growth, followed by a drop in biomass due to the lack 

of continual inputs. 

Moisture content and total N were negatively correlated with pH, suggesting that 

the moisture content may be implicated in changes to pH. On the harvested sites, where 

the soil is less acidic, the moisture will run off, evaporate or drain through the soil because 

there is little vegetation uptake. In addition, the total N decreases on these harvested sites 

because there is little vegetation to take up and retain the nutrients. As water moves down 

through the soil, N as NOs' ( as suggested by the bacteriology results) may be leached out 

and deposited into the water table (Haynes 1986). Also, the level of N-containing organic 

residues is decreased on the harvested sites due to the lack of continual inputs by 

vegetation. 

However, in the mineral samples, pH is positively correlated with OM and total N 

because more nutrients and OM may be translocated into the mineral horizon from the 

organic layer. Since mineral turnover rates and chemical processes are much slower in 

mineral soil compared to organic soil it stands to reason that as the pH increases, the level 

of OM and N increases in the mineral layer, due to the lack of assimilation by plants. 
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VARIABILITY IN MICROBIAL BIOMASS 

With respect to actual measurements of biomass reported elsewhere for boreal 

forest soils, the values obtained here are reasonable. For example, Thibodeau et al. 

(2000) reported very similar values for both MBc and MBN in the soil of thinned and 

unthinned balsam fir stands. Furthermore, the values reported here account for 1-3% of 

the total soil organic C which is the standard accepted by most soil ecologists (ICillham 

1994). For these reasons, as well as the C:N ratios, it appears that the actual values 

measured are credible. This is an important point as the estimates were arrived at using 

CFE without calibration against another method (usually CFI). The latter is used to 

determine a suitable conversion factor however, it appears that the conversion factors 

applied in this study were appropriate. 

Microbial Biomass Carbon 

Statistical analysis for the MBc in the organic horizon (ANCOVA, Table 15) found 

the interaction of the treatment and month factors to be significant. This suggests that a 

combination of seasonal conditions along with the amount of the organic residues present 

influences the amount of MBc found in the organic soil horizon. One way to decipher 

these influences is to consider the pattern of treatment means as presented in Figure 6a 

with the climatic information presented in Figure 3. As temperatures increased and 

moisture levels declined, the microbial biomass generally decreased. Specific evidence for 

the interplay between soil temperature and soil moisture is found in the values for the 
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control, tree-length and full tree treatments in July. Conditions on the full-tree plots, 

where all above-ground portions were removed, resulted in the lowest MBc value 

(approximately 5600 ug/g). It can be expected that the lack of coarse woody debris on 

the surface and/ vegetative regeneration led to high soil temperatures and evaporation. At 

this same time, values for the control and tree-length plots lie at 7000 ug/g 7800 ug/g, 

respectively. In the uncut plots, soil temperature is indeed lower and it could be predicted 

from a general knowledge of forested systems that soil water contents were reduced due 

to interception and uptake by the forest canopy. The latter effect would be exacerbated 

by a relative lack of precipitation over the growing season. In the tree-length harvested 

plots, soil temperatures would be higher but mitigated by surface debris while bulk 

precipitation would not be intercepted by standing vegetation. Thus, as indicated in the 

literature, microbial biomass is quite sensitive to unfavourable changes in temperature 

(Howard and Howard 1979; Weber 1990) and moisture content (Orchard and Cook 1983; 

Lundgren and Soderstom 1983). In this study, while microbial biomass numbers generally 

declined it is not clear which of treatment or environmental conditions were responsible. 

The ANCOVA for the MBc in the mineral layer found the treatment factor to have 

a significant effect on the MBc, suggesting direct influences of the harvest treatments. 

Figure 6b presents the treatment means by month. As noted earlier, the LSD test (based 

on ANOVA) confirms that mean MBc in the control plots is greater than that of the two 

harvest treatments. There are several possible reasons for this significant (at a = 

0.05) difference: 1) the removal of standing biomass and annual inputs has been 

documented to result in quantitative differences in the soil microbial populations 
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(Hendrickson et al 1985; Entry et al 1986; Chatarpaul 1987; Foster and Morrison 1987); 

2) a change in the microclimate to one less favourable for indigenous 

populations/communities may have contributed to declines in microbial numbers (Howard 

and Howard 1979; Orchard and Cook 1983; Lundgren and Soderstom 1983; Weber 1990; 

Berg et al 1998); 3) a change in the soil chemistry to one less favourable; and, 4) loss of 

root exudates. For example, less organic matter inputs and change in pH due to loss of 

acidic foliar inputs from the previous forest stand causes the soil properties to change 

(Brady and Weil 1996). 

However, it is important to note that qualitative changes in the microbial biomass 

are not captured by this method of measurement. It has been indicated in the literature 

that the removal of forest vegetation results in a change in the integrity of microbial 

functional groups (Gallardo and Schlesinger 1994; Baath et al 1995; Staddon etal 

1996). A possible shift in microbial populations is further substantiated by the results for 

the soil respiration data, where higher levels of CO2 efflux were found on the control 

treatment, indicating a higher level of microbial biomass/activity. 

Microbial Biomass Nitrogen 

The ANCOVA results for the MBN in both the organic and mineral horizons 

showed that the treatment and month factors, as well as their interaction, had no 

significant effects. Difficulties with the estimation of microbial biomass using nitrogen 

have been discussed elsewhere in this paper. Thibodeau et al. (2000) also reported a lack 

of change in the microbial biomass using both nitrogen and carbon as reference elements. 
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In general, Wardle and Ghani (1995) suggest that microbial biomass may not be 

reliably estimated when calibrating methods (CFE, CFI, and/or SIR) are employed on a 

spatially heterogeneous soil. Furthermore, they found that only comparatively large 

relative differences in the MB can be estimated reliably, suggesting that MB as a 

bioindicator of soil quality is limited. Therefore, as is the case with all experimental 

techniques, caution should be exercised when interpreting and attributing changes in soil 

microbial biomass to treatment or seasonal effects (Wardle and Ghani 1995). 
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CONCLUSIONS 

With respect to the isolations, only five bacteria that were cultured were in fact 

identified - two with low discrimination and three with good to very good discrimination. 

The species fulfilled a variety of roles in the soil ecosystem including N transformations. 

The API 20E system performed adequately on the organisms isolated. The author 

suspects that many more organisms were present than were cultured. 

With respect to soil respiration measurements, it was evident that CO2 evolved on 

control plots in the uncut, mature forest was significantly greater than that of the 

harvested plots. The author suggests that activity levels, and in turn, available C as root 

exudates, rather than biomass quantities, were responsible for the difference. 

With respect to the soil descriptors, one-way ANOVA revealed no differences 

among the treatments for %OM, WC, total N and total P. Soil pH did, however, vary 

significantly with the mean of the control plots lower than those of the harvested plots. 

Despite obvious and dramatic changes in the environment above the soil, the soil itself 

does not exhibit statistically significant modification four years after the treatments were 

imposed. 

Several of the soil descriptors exhibited correlation to each other as well as to the 

measures of microbial biomass. In the organic layer, it was noted that MBc and MBN did 

not in fact exhibit correlation with one another. A correlation between the two was 

determined in the mineral layer. The author presents several reasons for this apparent 

contradiction. Use of the chloroform fumigation extraction method without calibration by 

a second method gave reliable estimates of microbial biomass for boreal coniferous soils. 
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Application of ANCOVA to the measures of MBc and MBN produced different 

results for the two soil layers. Neither main effects nor the interaction term significantly 

affected MBN in either layer. The interaction of treatment and month was significant for 

MBc in the organic layer. Treatment alone significantly affected MBc in the mineral layer. 

In the latter, mean MBc in the control plots was nearly double that of the full-tree and 

tree-length plots. Throughout the data set, MBN appeared to fluctuate more so than MBc; 

some reasons are suggested. The most sensitive indicator of change in the system appears 

to be microbial biomass C in the mineral layer. This may be because gradients in 

temperature, moisture and substrate quality are more readily apparent and indigenous 

microbial populations more likely to respond when changes do occur. 

In general, descriptors of soil characteristics thought to reflect nutritional quality 

and quantity do not demonstrate statistically significant responses to harvest treatment 

although microbial response to soil moisture and temperature is evident. This particular 

black spruce system, four years after harvest, does not appear to have been adversely 

affected by the treatments imposed. It would be interesting to repeat this study in the 

future to determine if it is moving away from or closer to its pre-harvest set of conditions. 
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RECOMMENDATIONS 

Having had the opportunity to consider alternative approaches, the author would 

recommend the following as options for future work in this area; 

1. Increase the number of samples analyzed in order to better capture and apply 

statistically the effect of spatial heterogeneity, 

2. Avoid missing data by ensuring that generously sized soil samples are collected, 

3. Consider soil texture and modify soil characteristics, such as moisture content, 

which may have affected the results of chloroform fumigation extraction (CFE), 

4. Take respiration measurements much more frequently to account for rapid shifts in 

environmental conditions. 

5. Use chloroform fumigation incubation or substrate induced respiration as a means 

to calibrate a site specific conversion factor for CFE, 

6. Compare the impacts of anthropogenic disturbances to natural disturbances, such 

as wildfire, on soil microbial populations, 

7. Using a chronosequence, assess microbial changes through successional stages of 

development. 

8. Artificially change some of the soil descriptors in a contf oiled-factorial experiment 

to better isolate their effects. 
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APPENDIX I 

FULL DATA SET FOR THE ORGANIC AND MINERAL SOIL HORIZONS 



Appendix la. Complete data set for the Organic soil horizon. 

Harvest 
Treatment 

Month of 
Sampling 

MBc 
Oig/ g soil) 

MBN CVN H' Concentration 
O^g/ g soil) Ratio (M) 

Total Phosphorus 
(mg/Kg) 

Total Nitrogen 
(mg/Kg) 

Water 
Content (%) 

Organic Matter 
(%) 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

May 

May 

May 

May 

May 

May 

May 

May 

May 

June 

June 

June 

June 

June 

June 

June 

June 

June 

July 

July 

July 

July 

July 

July 

July 

July 

July 

August 

August 

August 

August 

August 

August 

August 

August 

August 

14889 

8385 

10087 

5256 

5618 

7094 

8086 

6693 

7041 

8383 

7932 

5416 

4647 

6797 

6211 

4896 

6114 

4956 

6240 

9268 

7229 

7179 

8389 

6696 

6217 

4081 

5347 

6004 

5582 

6270 

6218 

6483 

6666 

5066 

6603 

1790 

981 

724 

1702 

1115 

1326 

1782 

1136 

1025 

1425 

1963 

753 

845 

1239 

1013 

691 

1118 

734 

1075 

1148 

1213 

1218 

1559 

1321 

1029 

1441 

1644 

667 

1233 

1373 

945 

974 

2610 

1364 

955 

8.3 

8.5 

13.9 

3.1 

5.0 

5.3 

4.5 

5.9 

6.9 

5.9 

4.0 

7.2 

5.5 

5.5 

6.1 

7.1 

5.5 

6.8 

5.8 

8.1 

6.0 

5.9 

5.4 

5.1 

6.0 

2.8 

3.3 

9.0 

4.5 

4.6 

6.6 

6.7 

2.6 

3.7 

6.9 

0.0007585 

0.0000229 

0.0000316 

0.0000407 

0.0000537 

0.0000257 

0.0001862 

0.0000912 

0.0000309 

0.0000380 

0.0000575 

0.0000257 

0.0000157 

0.0000478 

0.0000117 

0.0001000 

0.0000776 

0.0000251 

0.0000218 

0.0000724 

0.0000537 

0.0000117 

0.0001174 

0.0000870 

0.000575 

0.0000288 

0.0000524 

0.0000229 

187 

123 

125 

141 

137 

179 

156 

164 

164 

127 

220 

137 

137 

166 

148 

117 

129 

153 

158 

123 

151 

179 

214 

151 

169 

137 

150 

133 

160 

169 

171 

143 

134 

1399 

1034 

981 

1151 

1157 

nil 

1151 

1224 

1136 

1032 

1168 

1200 

1157 

1106 

1209 

1369 

1128 

1200 

1139 

962 

1117 

1471 

1330 

1139 

1057 

1471 

1202 

1018 

1078 

1180 

1174 

1089 

1197 

1253 

994 

46 

49 

69 

68 

71 

75 

64 

35 

80 

65 

62 

73 

72 

69 

76 

80 

69 

78 

68 

63 

70 

78 

74 

78 

80 

63 

80 

68 

73 

70 

74 

76 

73 

78 

63 

77 

95 

91 

90 

78 

93 

93 

79 

89 

85 

88 

79 

77 

87 

76 

86 

80 

59 



Appendix Ib. Complete data set for the Mineral soil horizon. 

Harvest 
Treatment 

Month of 
Sampling 

MBc 
Cug/ g soil) 

MB„ 
Cug/ g soil) 

C/N 
Ratio 

H* Concentration 
(M) 

Total Phosphorus 
(mg/Kg) 

Total Nitrogen 
(mg/Kg) 

Water 
Content (%) 

Organic 
Matter (%) 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

Control 

Control 

Control 

Tree-length 

Tree-length 

Tree-length 

Full-tree 

Full-tree 

Full-tree 

May 

May 

May 

May 

May 

May 

May 

May 

May 

June 

June 

June 

June 

Jime 

Jime 

June 

June 

June 

July 

July 

July 

July 

July 

July 

July 

July 

July 

August 

August 

August 

August 

Ai^^ust 

August 

August 

August 

August 

1449 

1616 

414 

528 

358 

437 

851 

1087 

647 

1118 

1033 

1861 

371 

458 

237 

287 

300 

626 

482 

748 

605 

981 

443 

378 

486 

362 

383 

239 

296 

424 

502 

291 

215 

304 

148 

270 

212 

203 

77 

76 

87 

91 

59 

298 

84 

113 

172 

190 

53 

105 

75 

188 

114 

121 

40 

75 

48 

99 

123 

67 

89 

48 

111 

26 

76 

57 

52 

40 

33 

82 

34 

48 

6.8 

7.9 

5.4 

7.0 

4.1 

4.8 

14.5 

3.6 

7.6 

9.9 

6.0 

9.8 

6.9 

4.3 

3.2 

1.5 

2.6 

5.2 

11.9 

10.0 

12.5 

9.9 

3.6 

5.6 

5.5 

7.5 

3.4 

9.2 

3.9 

7.4 

9.6 

7.4 

6.5 

3.7 

4.3 

5.6 

0.0000436 

0.0002691 

0.0001071 

0.0000085 

0.0000177 

0.0001479 

0.0000288 

0.0000457 

0.0000177 

0.0000338 

0.0000025 

0.0000089 

0.0000354 

0.0000575 

0.0000602 

0.0000138 

0.0000407 

0.0000977 

0.0000208 

0.0000549 

0.0000275 

0.0000213 

0.0000165 

0.0000281 

0.0000060 

0.0000323 

0.0000213 

0.0000177 

0.0000549 

0.0001023 

0.0000199 

0.0001513 

0.0000251 

0.0000097 

0.0000218 

0.0000229 

35 

39 

35 

32 

43 

40 

34 

35 

40 

30 

26 

34 

25 

34 

21 

35 

29 

37 

37 

30 

25 

24 

52 

27 

31 

36 

35 

35 

41 

21 

28 

48 

30 

30 

30 

27 

134 

312 

231 

153 

142 

. 126 

168 

192 

196 

123 

161 

288 

108 

135 

121 

152 

160 

165 

121 

113 

121 

143 

257 

27 

114 

124 

158 

111 

170 

120 

123 

182 

115 

115 

90 

116 

59 

70 

65 

40 

68 

74 

74 

47 

62 

49 

41 

35 

34 

40 

29 

45 

19 

30 

19 

22 

19 

47 

36 

31 

43 

27 

34 

22 

27 

20 

40 

35 

30 

33 

24 

28 

9 

30 

21 

11 

10 

11 

13 

19 

16 

9 

14 

21 

10 

8 

10 

10 

19 

13 

9 

7 

9 

10 

22 

7 

8 

8 

11 

8 

13 

8 

10 

13 

7 

8 

7 

9 



APPENDIX n 

COMPLETE DATA SET FOR THE SOIL RESPIRATION STUDY 



Appendix II: Complete data set for the Soil Respiration study. 

Treatment C Efflux (09/05/98) 
(gCOj/hr/m^) 

C Efflux (09/12/98) 
(gCOj/hr/m") 

Control 0.0118 
0.0159 
0.0139 
0.0138 
0.0138 

0.0121 
0.0165 
0.0141 
0.0143 
0.0141 

0.0127 
0.0128 
0.0094 
0.0111 
0.0117 

0.0131 
0.0136 
0.0103 
0.0116 
0.0126 

0.0118 
0.0107 
0.0122 
0.0121 
0.0112 

0.0123 
0.0112 
0.0165 
0.0132 
0.0114 

Mean 0.0123 0.0131 

Tree-length 0.0128 
0.0100 
0.0117 
0.0126 
0.0109 

0.0133 
0.0137 
0.0128 
0.0133 
0.0152 

0.0139 
0.0128 
0.0129 
0.0090 
0.0095 

0.0116 
0.0084 
0.0117 
0.0099 
0.0113 

0.0095 
0.0088 
0.0108 
0.0069 
0.0107 

0.0105 
0.0094 
0.0109 
0.0074 
0.0118 

Mean 0.0109 0.0114 

Full-tree 0.0103 
0.0119 
0.0126 
0.0094 
0.0112 

0.0103 
0.0117 
0.0133 
0.0100 
0.0111 

0.0114 
0.0082 
0.0069 
0.0105 
0.0092 

0.0121 
0.0078 
0.0108 
0.0116 
0.0093 

0.0117 
0.0107 
0.0117 
0.0084 
0.0075 

0.0123 
0.0121 
0.0117 
0.0082 
0.0079 

Mean 0.0101 0.0107 


