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ABSTRACT 

White-tailed deer (Odocoileus virginianus), of known age, collected in 

northeastern Minnesota (n=379) from November 1991 to May 1993 were 

examined for Parelaphostrongylus tenuis. Prevalence and intensity estimates were 

based on adult worms in the cranium and first-stage larvae in the feces of the 

same individuals. Prevalence of worms in the cranium was higher (82%) than 

prevalence of larvae in the feces (53%). The difference between these two 

measures was largely (78%) due to unisexual, occult infections. The spinal column 

does not seem to be an important site for adult P. tenuis since only one of 26 

animals had a worm (immature) located there. 

In fawns, the prevalence of larvae (35%) and adult worms (68%) was lower 

than in all older age classes (63%, 89%, respectively). The mean number of adult 

worms was lower in fawns (2.7) and yearlings (3.0) than in deer 7-15 yr (4.1). 

Conversely, the mean number of larvae in feces was higher in fawns (102 

larvae/g) than in adults 2-6 (36 1/g) and 7-15 yr (36 1/g). 

More larvae were passed in spring (mean of 77 1/g) than in fall (11 1/g) or 

winter (38 1/g). Mean fecundity was greater in fawns (52 larvae/g/female worm) 

than in adults 2-6 yr (15 1/g/f) and 7-15 yr (12 1/g/f). The sex ratio of worms did 

not change with increasing age of deer, nor did the ratio of worms in the sinuses 

to subdural space. The number of larvae in feces was not correlated with the 

number of female P. tenuis in the cranium, but was correlated with the ratio of 

iii 



A smaller sample of white-tailed deer (n = 34) from an area where density 

reached 30 deer/km^ was compared with animals from the study area where 

summer density was 3.7 deer/km^. The mean number of adult worms in deer of 

all ages was similar in both areas (3.2 and 3.5, respectively), but animals in the 

high density area passed more larvae (94 and 57 1/g, respectively). 

Results suggest that P. tenuis is long-lived and that deer infected in their 

first or second summer of life acquire few, if any, additional worms thereafter. A 

threshold number of adult worms in each deer limits infrapopulation larval 

production as deer density increases. Infrapopulation larval production, however, 

is highest in young animals and in the spring. Suprapopulation larval production 

will be affected by deer density, the proportion of young naive deer in a 

population and the ability of deer to produce an effective immune response to the 

parasite. 
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INTRODUCTION 

The meningeal worm, Parelaphostrongylus tenuis, is a common and widely 

distributed parasite of white-tailed deer (Odocoileus virginianus) in eastern North 

America (Anderson and Prestwood 1981, Comer et al. 1991, Anderson 1992). 

Infections in this normal definitive host are relatively benign but severe neurologic 

disorders and death can result in a variety of other ungulates (Anderson and 

Prestwood 1981). In areas where white-tailed deer are sympatric with moose and 

other susceptible ungulates, R. tenuis is an important management consideration. 

However, much remains to be learned about its biology and transmission within 

white-tailed deer populations before its importance as a pathogen to other species 

can be completely assessed. 

The adult nematodes, living in the cranial venous blood sinuses and 

subdural space of deer, produce eggs that develop into first-stage larvae within the 

lungs of the definitive host, and are subsequently shed in the feces (Anderson 

1963 and 1965). Larvae are found only in the mucus covering the outside of the 

fecal pellet (Lankester and Anderson 1968). Terrestrial snails and slugs are 

required intermediate hosts in which larvae from feces and soil develop to the 

infective stage. Infection of ruminants results from accidental ingestion of 

gastropods while eating vegetation. 

The proportion of a deer herd infected (prevalence) and the mean number 

of parasites per infected deer (mean intensity) are likely important variables in 
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determining the rate of transmission of this parasite (Lankester 1987, Peterson 

and Lankester 1991). Which of these two variables best reflects the risk of 

infection to cervids is presently unclear. Saunders (1973) reported that where the 

prevalence of P. tenuis was high in white-tailed deer, moose densities were low. 

On the other hand, Whitlaw and Lankester (1994), in a wider study of co-habiting 

deer and moose in Ontario, found moose density to be independent of the 

prevalence of the parasite in deer but inversely related to the intensity of larvae in 

deer feces. Other authors have failed to find any consistent relationship between 

the prevalence of P. tenuis and the density of white-tailed deer (see Peterson and 

Lankester 1991). 

Reported estimates of the prevalence of P. tenuis in deer vary considerably 

(Anderson and Prestwood 1981). Much of the apparent variation may be due, 

however, to differences in the two methods used to detect P. tenuis. Commonly, 

prevalence, as well as intensity, are determined by examining deer heads for adult 

worms. Heads have the added advantage of revealing the age of the host, but the 

procedure is laborious and recovering all of the worms present requires 

considerable skill and experience. Samples commonly are available only during 

the fall hunting season, and the age and sex of animals examined are usually 

dictated by game regulations. Alternatively, prevalence and intensity of P. tenuis 

are measured by examining feces for dorsal-spined larvae using the Baermann 

technique. Large samples can be examined with relative ease but the age of the 

deer, the number of different animals represented, and the identity of dorsal- 
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spined larvae recovered are often unknown. 

Although one or the other of the two methods is usually used exclusively, a 

few authors have used both on the same animals. Anderson (1963), and Garner 

and Porter (1991) found that examination of feces detected more infections than 

examination of heads, while Bogaczyk^^. (1993) found the reverse. Larger 

sample sizes are probably needed to resolve these conflicting results and to allow 

a better understanding of the relationship between the number of adult worms 

present and the number of larvae released by infected deer. 

Fundamental in understanding the dynamics of host-parasite systems is the 

rate of transmission of the parasite from one host to another (Anderson and May 

1982). Initially, transmission rates are affected largely by the production of larvae 

by the definitive host, although climatic factors influencing larval survival and 

availability of intermediate hosts are undoubtedly important as well. Rezac ^ ^ 

(1993), in modelling the infection of gastropods by first-stage protostrongylid 

larvae from sheep, concluded that the net rate of transmission from sheep to 

gastropods was directly proportional to the density of larvae times the density of 

gastropods. Schmitz and Nudds (1994) in constructing a theoretical model, also 

identified larval density as an important determinant, in understanding the 

transmission of P. tenuis. Larval density is a product of the number of animals 

releasing larvae and the number of larvae released per definitive host. In order to 

test hypothetical models of P. tenuis transmission, better empirical data on larval 

production and factors that affect it, are needed. 



4 

In the present study, a relatively large number of vehicle-killed deer of 

known age were available through much of the year from a population of known 

density. Numbers of adult P. tenuis in the head, and larvae in feces of the same 

animal, were counted. The purpose was to determine the relationships of deer age 

class, sex, density and season of the year to prevalence and intensity of P. tenuis. 

The relationships of number and location of female worms in the cranium to 

intensity of larvae in the feces were also examined. This enabled identification of 

factors, acting within individual deer, at the parasite infrapopulation level, that 

affect shedding of first-stage larvae by a white-tailed deer population, and thereby, 

rates of transmission in nature. 
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MATERIALS AND METHODS 

Prevalence and intensity of R tenuis in white-tailed deer were determined 

by examining the head (for adult worms) and feces (for larvae) from the same 

animal. Specimens were collected by Mr. Bill Peterson, Minnesota Department of 

Natural Resources, from Nov. 10, 1991 to May 31, 1993 in a traditional deer 

wintering area along the northwestern shore of Lake Superior, in the vicinity of 

Grand Marais, Minnesota. In summer, these deer range up to 20 or more 

kilometres inland and their density at this time of the year is estimated to be 3.7 

deer/km^ (Lenarz 1991, and 1993 unpubl. DNR report. Grand Rapids, MN). 

Most of the specimens were killed by vehicles between October and April (370); a 

few predator (3), hunter (2), and miscellaneous (4) kills were also included. 

Heads, along with a fecal sample (approx. 20 grams) from the same animal, 

were stored frozen until examination. Sex and date of death were recorded for 

each individual. Age was determined by tooth eruption (fawns and yearlings) and 

cementum ring counts (adults) (Severinghaus 1949). 

To determine if deer killed by vehicles and those in the rest of the 

population were similarly infected, the prevalence of larvae in fecal samples 

collected off snow, in March 1993 (n = 100) was compared to that from the road- 

killed sample collected in March 1993 (n = 50). 

To investigate any effects of deer density on prevalence and intensity of 

infection, a sample of heads and feces from a high density deer area near 
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Minneapolis, MN was also examined. Thirty-four animals were shot in March 

1993, in The Twin Cities Army Ammunition Plant (TCAAP), a fenced enclosure 

located approximately 10 km north of St. Paul. The year-round density of animals 

in this area was estimated to be 30 deer/km^ (Jordan, pers. comm.. University of 

Miimesota, Minneapolis, MN). 

At necropsy, heads were cut sagitally, while still frozen, using a butcher' s 

bandsaw and allowed to thaw for at least 24 hours. Shearing the hair on the 

dorsal surface of the head using animal clippers prevented the saw blade from 

jamming. Only heads free from gunshot wounds, or skull fractures due to vehicle 

collision, were examined for adult R tenuis. After thawing, the two halves of the 

brain were removed from the cranium and the surface and sulci were examined. 

Removal of the brain allowed examination of the exposed inner surface of the 

dura. All tissues and surfaces were examined for worms at 1.5-12.5X. 

Subsequently, the dura was stripped from the brain case and all venous blood 

sinuses, including the cavernous, intercavernous, transverse and sagittal sinuses 

were cut open in saline and examined at 6.4 to 40X. Toothed forceps inserted 

into foramena along cranial nerves, were gently extracted to remove any worms 

that might be present. 

The oral cavity and pharynx of some heads were examined for larvae using 

a modification of the Baermann procedure in order to determine if detection of 

larvae here correlated with what was found in the feces of the same animal. The 

back of the oral cavity in the vicinity of the epiglottis (throat), in each half of the 
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cut head, was doused with water. Rinsings were drained into a glass funnel. The 

funnel, with a short length of neoprene hose and clamp at the bottom, was 

covered with 2 mm mesh screening to catch any hair and undigested food 

particles. After settling for at least one hour, the sediment was drained from the 

funnel into a Syracuse watch glass (54 mm diam.) with a grid etched on the 

bottom and examined for larvae. 

Data recorded for each head included number and sex of nematodes 

(estimated from the number of intact worms plus the number of additional 

matched anterior and posterior ends of broken worms), presence of grossly visible 

lesions, and location of worms. Sex of broken worms was determined by presence 

of eggs or sperm (lOOX). A sample of intact worms was measured with the aid of 

a drawing tube at lOOX magnification and preserved in 10% glycerine in 70% 

ethanol. 

The location of adult worms, whether in the cranial subdural space, any of 

three venous blood sinuses, or in the epidural space, was recorded. Individually 

the locations were: 1) subdural space over and around the cerebral hemispheres 

(including the surface of the cerebrum, the dural surfaces in that area and along 

cranial nerves), 2) subdural space over and around the cerebellum (including the 

surface of the cerebellum, the dural surfaces in that area and along cranial 

nerves), 3) on the tentorium cerebelli (the dura forming the septum between the 

cerebrum and cerebellum), 4) on the falx cerebri (the dura lying in the 

longitudinal fissure between the two cerebral hemispheres), 5) on the diaphragm 
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sellae (the dura over the cavernous sinuses), 6) in the cavernous and 

intercavernous sinuses, 7) in transverse sinuses, 8) in the sagittal sinus, and 9) the 

epidural space. 

To determine if any adult P. tenuis reside in the spinal canal, the head and 

entire spinal column of 26 deer were examined. The frozen column was initially 

cut into 4 equal segments, each of which was cut sagitally with a bandsaw and 

allowed to thaw for 24 hours. The cord was removed by severing the spinal 

nerves; the leptomeningeal surfaces and the spinal dura mater were examined 

using a stereoscope at 1.5-12.5X. Following visual examination, all tissues were 

agitated vigorously in water in a settling flask. Flasks were later decanted and the 

sediment examined for worms. The epidural space was examined by scraping 

away fat deposits with forceps. Toothed forceps were inserted into foramena and 

gently pulled out along spinal nerves to extract any hidden worms. 

Weighed samples of feces from each deer were examined for dorsal-spined, 

first-stage larvae using the Baermann technique as described by Peterson and 

Lankester (1991). Larvae were counted and expressed as numbers of larvae per 

gram of fresh feces. 

Deer are assumed to have been born June 1. Data were analyzed using 

four grouped age classes: fawns (<1 yr, collected June 1 through to May 31); 

yearlings (1 yr, in their 2nd year of life); and 2 adult age classes (2-6 years and 7- 

15 years). Analyses of seasonal differences were done by pooling data according 

to summer (June-Aug.), fall (Sept.-Nov.), winter (Dec.-Feb.), and spring (Mar.- 



May). However, since sample sizes during the summer (n = 4) were low, deer 

collected in this period were omitted from seasonal analyses. 

Data were analyzed using the Statistical Package for the Social Sciences 

(SPSS) and SAS. Significance for all analyses was determined at p < 0.05. 

Statistical analyses included heterogeneity Chi-square tests to detect differences in 

prevalence of P. tenuis by age class and sex of deer and year of sampling. 

Standard univariate Chi-square tests were used to detect differences in prevalence 

by age class and season of sampling, and to detect any differences in the number 

of worms in the sinuses to those in the subdural space, in the proportion of 

unisexual infections and, in the number of female to male worms by age class. 

An attempt was made to normalize the data set for number of worms (total and 

female) in the cranium and number of larvae per gram of feces by using log, In, 

square root, arcsine, arctan and inverse hyperbolic sine transformations. None 

normalized the data. As a result, the Mann-Whitney U-test was used to detect 

any differences in intensity of infection by sex of deer and year of collection. 

Kruskal-Wallis (H-statistic) and multiple comparisons (Zar 1984) were used to 

detect differences in mean intensity of infection and mean fecundity between age 

classes of deer and season of the year. Spearman' s rank correlation coefficients 

(rj were calculated for relationships between mean intensity of infection (based 

on adults and larvae) and age of deer, and between the mean number of larvae 

per gram of feces, number of female worms in the cranium, and location of 

female worms (sinus or subdural space) and between age of deer and mean 

fecundity. 



10 

RESULTS 

The heads and feces from 379 deer were examined for evidence of P. 

tenuis infection. Adult P. tenuis were present in the cranium of 82% while only 

53% had dorsal-spined larvae in their feces. Overall, 84% had either worms in the 

cranium and/or larvae in their feces. All but two of 45 deer older than six years 

had worms in the cranium (Table 1). 

Infections with P, tenuis were manifested in different ways (Table 2). Of 

deer passing larvae, most (150) had both sexes of worm present, but in 43 (29 

with only females, 14 only males) only one sex was found, and no worms were 

detected in nine. One hundred and eighteen deer had occult infections, in which 

adult worms [either only one sex (92) or both sexes (26)] were found in the 

cranium but no larvae were present in the feces. Of the 26 with both sexes 

present, 18 (69%) were younger than two years, and, therefore, may not have 

been infected long enough for worms to mate and for larvae to appear in the 

feces. Seven of the 26 animals, ranging in age from one to six yrs, were killed in 

March and early April, and would have acquired their infection at least four to 

five months earlier. 

Prevalence of adult worms in the cranium was affected by age of deer 

regardless of sex or year of collection. The heterogeneity chi-square test indicated 

no differences in prevalence between collection years (X^ = 1.1, df = 3, P > .05), 

or between sexes (X^ = -4.07, df = 1, P > .05). Therefore, year and sex data 

were pooled for further analyses. Prevalence of adult worms in the 



Table 1. Prevalence (%) of Parelaphostrongylus tenuis by age of 
white-tailed deer collected in northeastern Minnesota, Nov. 1991 - 
May 1993. 

Age Number of 
deer 
examined 

Prevalence (%) 

Adults in Larvae in 
heads (n) feces (n) 

Overall 
prevalence 

(n)“ 

<1 

1 

2-6 

7-15 

132 

85 

117 

45 

68 (90)*^ 

87 (74) 

89 (104) 

96 (43) 

35 (46) 

58 (49) 

66 (77) 

67 (30) 

71 (93) 

91 (77) 

92 (107) 

96 (43) 

Total 379 82 (311) 53 (202) 84 (320) 

® percent of deer infected with larvae in the feces and/or adult 
worms in the cranium 

(number of deer infected) 



Table 2. Examination of white-tailed deer from northeastern Miimesota (Nov. 1991 - May 1993) for 
Parelaphostrongvlus tenuis. 

Deer with P. tenuis 
No evidence of 
P. tenuis 

Adults in heads No adults in 
heads 

Bisexual infection Unisexual infection 

Passing 
larvae 

Not 
passing 
larvae 

Passing 
larvae 

Not 
passing 
larvae 

Passing 
larvae 

Total 
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cranium was lower in fawns (68%) than in the three older age classes (89%, = 

26.5, P < .001), which did not differ from each other (X^ = 2.3, P = .31) (Table 

1). Prevalence of worms varied with season in the fawn age class (X^ =9.2, P < 

.009), but not in animals older than one year (X^ = .68, P = .71). Within fawns, 

prevalence of worms was lower in fall (43%) than in winter (68%, X^ = 3.84, P = 

.049) and in spring (79%, X^ = 9.29, P = .002) (Table 3). 

Similarly, prevalence of larvae in the feces was affected by age of deer 

regardless of sex or year of collection. The heterogeneity chi-square test indicated 

no difference in prevalence between collection years (X^ = 0.2, df = 3, P > .05) 

or between sexes (X^ = .18, df = 1, p > .05). Prevalence of larvae was lower in 

fawns (35%) than in the three older age classes (63%, X^ = 27.7, P < .001), which 

did not differ from each other (X^ = 1.7, P = .43) (Table 1). Prevalence of 

larvae in the feces varied with season in the fawn age class (X^ - 21.48, P < .001), 

but not in animals older than one year (X^ = 3.44, P = .17). Within fawns, 

prevalence of larvae was lower in fall (5%) than in winter (25%, X^= 4.2, P = 

.03) and in spring (58%, X^ = 16.6, P < .001) (Table 3). 

The prevalence of larvae in the feces collected at random off snow in 

March (71%) (n=100) did not differ from the prevalence in feces of animals 

killed by vehicles (58%) (n=50) in that same month (X^ = 2.54, p = .16). 

Intensity of larvae in the feces and adult worms in the cranium of infected 

animals did not differ between years or sex of deer. Year had no effect on the 

mean number of worms in the cranium of infected deer (fawns, U = 830.5, P = 



Table 3. Seasonal prevalence and mean intensity of Parelaphostrongylus tenuis in heads and feces of white- 
tailed deer collected in northeastern Minnesota, Nov. 1991 - May 1993. 

Prevalence (%) Intensity 

Age 
Adults in heads Larvae in feces 

Season 
Adults in heads Larvae in feces (/g) 

% (n)^ % Mean ± SD Mean ± SD 

<1 Summer N/A (0/0) 

Fall 43 (9/21) 

68 

79 

68 

Winter 

Spring 

Total 

> 1 Summer 75 

Fall 93 

Winter 88 

Spring 90 

Total 89 

Overall Summer 75 

Fall 73 

Winter 80 

Spring 87 

Total 82 

(40/59) 

(41/52) 

(90/132) 

(3/4) 

(28/30) 

(77/88) 

(113/125) 

(221/247) 

(3/4) 

(37/51) 

(117/147) 

(154/177) 

(311/379) 

N/A (0/0) 

5 

25 

58 

35 

50 

56 

60 

67 

63 

50 

35 

46 

64 

53 

(1/21) 

(15/59) 

(30/52) 

(46/132) 

(2/4) 

(17/30) 

(53/88) 

(84/125) 

(156/247) 

(2/4) 

(18/51) 

(68/147) 

(114/177) 

(202/379) 

N/A 

1.8 ± 0.9 

2.7 ± 2.0 

2.8 ± 1.8 

2.7 ± 1.8 

1.7 ± 0.6 

3.5 ± 2.5 

3.8 ± 2.5 

3.2 ± 2.2 

3.4 ± 2.4 

1.6 ± 0.6 

3.1 ± 2.3 

3.4 ± 2.4 

3.1 ± 2.1 

3.2 ± 2.2 

N/A 

0.2 ± N/A 

52.3 ± 58.1 

131.8 ± 133.3 

102.9 ± 118.9 

39.8 ± 53.8 

11.2 ± 13.2 

33.1 ± 41.2 

57.0 ± 64.4 

43.5 ± 55.3 

39.8 ± 53.8 

10.6 ± 13.0 

37.5 ± 45.7 

76.8 ± 93.5 

57.1 ± 78.4 

(Number of animals infected/number of animals examined) 
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.23; >1 yr, U = 5201, P = .44) nor on the mean number of larvae per gram of 

feces (fawns, U = 205, P = .65; >1, U = 1166, P = .30). Sex of deer had no 

effect on the mean number of worms in the cranium (U = 7834, P = .10) nor on 

the mean number of larvae per gram of feces (U = 3425, P = .44). Therefore, 

year and sex data were pooled for further analyses. 

Intensity of infection, as measured by the mean number of worms per 

infected deer, increased with the age of deer (r^ = 0.20, P < .001) (Table 4). The 

mean number of worms in the cranium was lower in fawns (2.7) and yearlings 

(3.0) than it was in adults 7-15 yr (4.1); but adults 2-6 yr (3.5) did not differ from 

other age classes (H = 14.6, P = .002). Conversely, intensity of infection as 

measured by the mean number of larvae per gram of feces (in only those deer 

that were passing larvae) decreased with the age of deer (r^ = -0.28, P < .001). 

The mean number of larvae per gram of feces was greater in fawns (102.9 1/g) 

than in adults 2-6 yr (36.2 1/g) and 7-15 (35.6 1/g); but yearlings (59.8 1/g) did not 

differ from the two adult age classes (H = 13.17, P = .004) (Table 4). 

Animals passed more larvae in spring (mean 77 1/g) than in fall (11 1/g) 

and winter (38 1/g) (H = 17.6, P = .0002). On the other hand, the mean number 

of adult worms in heads did not vary with season (H = 3.2, P = .20) (Table 3). 

The intensity of larvae in feces was not correlated with the number of adult 

female P. tenuis in the cranium (includes only those animals that were passing 

larvae and had female P. tenuis in their heads) (r^ = .11, P = .06). However, 

intensity of larvae in feces was correlated with location of female 



Table 4. Mean intensity of adult Parelaphostrongvlus 
tenuis and larvae/gram of feces in white-tailed deer 
collected in northeastern Minnesota, Nov. 1991 - May 
1993. 

Age Adults in heads 

Mean ± SD 

Larvae in feces 

Mean ± SD 

<1 

1 

2-6 

7-15 

2.7 ± 1.8 

3.0 ± 2.1 

3.5 ± 2.5 

4.1 ± 2.5 

102.9 ± 118.9 

59.8 ± 64.7 

. 36.2 ± 45.9 

35.6 ± 60.0 

Total 3.2 ± 2.2 57.1 ± 78.4 
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worms (ij = .58, P < .001); as the ratio of female worms in the venous sinuses to 

subdural space increased, so did the number of larvae released in the feces. 

Mean fecundity of female worms (mean number of larvae/gram of 

feces/female worm in only deer with both female P. tenuis in their heads and 

larvae in their feces) decreased with the age of deer (r^ = -.34, P < .001) (Table 

5). Mean fecundity was greater in fawns (51.6 larvae/gram of feces/female 

worm) than in adults 2-6 yr (14.6 1/g/f) and 7-15 yr (11.6 1/g/f); but yearlings (28 

1/g/f) did not differ from fawns or the two adult age classes (H = 19.13, P = 

.0003). Mean fecundity was greater in spring (44.1 1/g/f) than in fall (6.3 1/g/f) 

(H = 18.37, P = .0001). 

Although the highest proportion of unisexual infections (40%) was found in 

the fawn age class, it did not change significantly with age of deer (yearlings = 

28%; 2-6 yr = 24%; 7-15 yr = 23%; = 7.07, P > .05). Bisexual, occult 

infections were most frequent in favms (12%) (Table 6). 

The overall sex ratio of adult worms was 1.5 females:! male. In all age 

classes of deer, female worms outnumbered males, but the sex ratio did not 

change with age of deer (r^ = 2.33, P > .05) (Table 7). 

Of the nine regions searched in the cranium, most worms were found in 

the cavernous, venous blood sinuses (39%, n = 388); the dura over the cerebrum 

was the second most frequented site (24%, n = 239). The three venous blood 

sinuses, collectively, were occupied more frequently (58%, n = 578) than the 

subdural (40%, n = 403) or epidural space (1%, n = 10) (Table 8). The ratio of 



Table 5. Fecundity of female Parelaphostrongylus tenuis by age of white- 
tailed deer collected in northeastern Minnesota, Nov. 1991 - May 1993. 
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Age of deer Mean no. of female 
worms/deer ± SD 

Mean no. of Mean 
larvae/g ± SD fecundity^ ± SD 

<1 

1 

2-6 

7-15 

2.0 ± 1.2 (79/39)'’ 

2.3 ± 1.4 (99/44) 

2.5 ± 1.8 (171/69) 

3.3 ± 2.0 (89/27) 

103.2 ± 105.2 

64.4 ± 66.6 

36.5 ± 46.3 

38.3 ± 59.4 

51.6 ± 64.8 

28.0 ± 30.7 

14.6 ± 26.3 

11.6 ± 27.9 

Total 2.4 ± 1.7 (438/179) 58.1 ± 74.1 24.2 ± 40.8 

® Mean number of larvae per gram of feces/female worm. 

Mean (total number of female worms/number of deer with female 
worms in their head and larvae in their feces). 



Table 5. Fecundity of female Parelaphostrongylus tenuis by age of white- 
tailed deer collected in northeastern Minnesota, Nov. 1991 - May 1993. 
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Age of deer Mean no. of female Mean no. of Mean 
worms/deer ± SD larvae/g ± SD fecundity* ± SD 

<1 2.0 ± 1.2 (79/39)” 103.2 ± 105.2 51.6 ± 64.8 

1 2.3 ± 1.4 (99/44) 64.4 ± 66.6 28.0 ± 30.7 

2-6 2.5 ± 1.8 (171/69) 36.5 ± 46.3 14.6 ± 26.3 

7-15  3.3 ± 2.0 (89/27) - 38.3 ± 59.4 11.6 ± 27.9 

Total 2.4 ± 1.7 (438/179) 58.1 ± 74.1 24.2 ± 40.8 

* Mean number of larvae per gram of feces/female worm. 

” Mean (total number of female worms/number of deer with female 
worms in their head and larvae in their feces). 



Table 7. Sex ratio of Parelaphostrongylus tenuis by age class of 
white-tailed deer collected in northeastern Minnesota, Nov. 
1991-May 1993. 
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Age Total no. of 
female worms 

Total no. of 
male worms 

Ratio of f:m 

<1 

1 

2-6 

7-15 

133 

134 

214 

113 

101 

88 

145 

63 

1.3:1 

1.5:1 

1.5:1 

1.8:1 

Total 594 397 1.5:1 



Table 8. Location of female and male Parelaphostrongylus tenuis (n=991) in 
crania of white-tailed deer (n=379) collected in northeastern Minnesota, Nov. 
1991-May 1993. 

Location Female % of total Male % of total Total 
females males 

Subdural space 

Around cerebrum 

Around cerebellum 

Fak dura 

Tentorial dura 

Diaphragm sellae 

Total 

Venous sinuses 

Sagittal sinus 

Transverse sinus 

Cavernous sinuses 

Total 

Epidural space 

Overall 

140 

16 

10 

42 

35 

238 

51 

71 

225 

347 

4 

594 

23.5 

2.7 

1.6 

7.0 

5.9 

40.1 

8.5 

11.9 

37.9 

58.4 

0.7 

99 

18 

3 

27 

13 

154 

34 

34 

163 

231 

6 

397 

24.9 

4.5 

0.7 

6.7 

3.2 

38.4 

8.5 

8.5 

40.6 

57.6 

1.5 

239 

34 

13 

69 

48 

403 

85 

105 

388 

578 

10 

991 
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worms in the sinus to subdural space did not change with age of deer (X^ = 7.2, P 

> .05) (Table 9). 

Both the heads and spinal canals of 26 animals older than one year were 

examined. Fifteen of these animals were passing larvae in their feces and 11 were 

not. Of the fifteen, 10 had bisexual infections in the cranium, three had unisexual 

infections and two had no worms in the cranium nor in the spinal canal. Only 

one female, subadult worm was found in the spinal canal of a three-year-old 

female that had larvae in the feces and worms in the cranium and was killed on 

Jan. 15, 1993. The worm was flushed from the canal and the precise location was 

not determined; it probably inhabited the spinal subdural space. 

A total of 62 throat washes were performed. All of twenty-six animals with 

bisexual infections and larvae in the feces also had larvae in the oral cavity and 

throat. Ten animals with bisexual infections, but without larvae in the feces, also 

had no larvae in throat washes. Of 24 animals with unisexual infections, six had 

no larvae in the feces and negative throat washes, and 18 had larvae in both the 

feces and the throat wash. Two animals with no worms in the cranium had no 

larvae in the feces or in throat washes. In the absence of fecal samples, throat 

washes can be relied upon to detect animals passing larvae. 

Most of the worms located on the dura were partially embedded under 

fibrinous strands associated with little, if any, inflammatory exudate. In 22 deer, 

the dura was thickened and covered by a yellowish-red exudate in the vicinity of 

the worms. All but five of these latter animals were older than two years. In 29 



Table 9. Numbers of Parelaphostrongylus tenuis found in venous blood 
sinuses and the subdural space by age class of white-tailed deer collected in 
northeastern Minnesota, Nov. 1991 - May 1993. 

Age No. deer Total Number of 
infected worms worms in the 

subdural space 

Number of 
worms in the 
sinuses 

Ratio^ 

<1 

1 

2-6 

7-15 

90 

74 

104 

43 

234 

221 

359 

177 

108 

80 

136 

79 

125 

138 

220 

95 

1.2:1 

1.7:1 

1.6:1 

1.2:1 

Total 311 991 403 

‘ Ratio of worms in sinuses to subdural space 

578 1.4:1 

bO w 
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deer, almost all of which were older than two years, the sagittal and transverse 

blood sinuses were occluded with masses of up to 10 worms. Thickening of the 

sinus walls and inflammatory exudate were invariably associated with such masses. 

When the exudate was pressed between glass plates and examined under the 

stereo-microscope (40 X), numerous eggs and active larvae were seen. Three 

adult deer had worms located under the pia-arachnoid with portions of the worms 

penetrating between sulci of the brain, but they did not appear to penetrate the 

neural tissue. 

Thirty-four additional deer heads and feces were examined from a location 

where deer density was known to be unusually high (TCAAP). The prevalence of 

adult worms did not differ significantly between the TCAAP (94%) and Grand 

Marais animals (82%) (X^ = 1.8 , P = .17). However, prevalence of larvae was 

higher in the TCAAP animals (77%) than in those from Grand Marais (53%) (X^ 

= 6.7, P = .01) (Table 10). 

The mean number of adult worms in the Grand Marais animals (3.2) was 

not different from the TCAAP animals (3.5) (U = 4023.5, P = .12), but TCAAP 

animals (93.8 1/g) passed a greater mean number of larvae than those from 

Grand Marais (57.1 1/g) (U = 1802.5, P = .01) (Table 6). Moreover, mean 

fecundity of female worms was higher in the TCAAP animals (42.6 1/g/f) than in 

those from Grand Marais (24.2 1/g/f, U = 2326.0, P = .002). 



Table 10. Prevalence (%) and mean intensity of Parelaphostrongylus tenuis in heads and feces of white-tailed deer 
collected from two localities of differing deer densities: Grand Marais and TCAAP. 

Location Deer/km^ Age 

Adults in heads 

No. deer Prevalence Mean 
examined (%) intensity 

± SD 

Larvae in feces 

Prevalence Mean intensity ± 
(%) SD (n) 

Overall 
prevalence® 

Grand 
Marais 

TCAAP 

3.7 

30 

<1 132 

>1 247 

Total 379 

<1 8 

>1 26 

Total 34 

68 

90 

82 

88 

96 

94 

2.7 ± 1.8 

3.4 ± 2.4 

3.2 ± 2.2 

3.7 ± 2.6 

3.5 ± 1.6 

3.5 ± 1.8 

35 

63 

53 

62 

81 

77 

102.9 ± 118.6 (46) 71 

43.5 ± 55.3 (156) 92 

57.1 ± 78.4 (202) 84 

134.0 ± 73.5 (5) 88 

84.1 ±83.0(21) 96 

93.8 ± 82.3 (26) 94 

percent of deer infected with larvae in the feces and/or adult worms in the cranuim 
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DISCUSSION 

Of the 379 white-tailed deer examined, 82% had adult P. tenuis in the 

cranium, but only 53% were passing larvae in their feces. Almost one-third of the 

infections in deer were occult since no larvae were present in feces. Some occult 

infections in fawns and yearlings, were probably pre-patent, but in older animals, 

most were sterile because parasites of only one sex were present. 

Young deer were rapidly infected during their first two summers of life. 

Nearly 90% of yearlings had worms in the cranium. Other authors have reported 

similar rapid increases in prevalence of R tenuis within the first few years of a 

deer' s life (Anderson 1963, Behrend and Witter 1968, Behrend 1970, Beaudoin ^ 

al. 1970, Thurston and Strout 1978, Dew 1988, Garner and Porter 1991, Bogaczyk 

^ al 1993). Samuel et al. (1985), studied a closely related nematode, P. 

odocoilei. in mule deer (Odocoileus hemionus) and found that fawns first picked 

up infected gastropods in September, after arriving on their wintering grounds. 

By January, 100% of the fawns were passing larvae in their droppings. 

Prevalence of infection did not differ significantly among older age classes 

of deer but eventually most animals became infected. All but 2 of 45 deer 7-15 

years old had worms in the cranium. Karns (1967), was the first to suggest that 

almost all deer in an enzootic area probably become infected with R tenuis. 

Although his sample size was limited and feces were not examined, adult R tenuis 

occurred in the head of every one of 19 deer older than 4.5 years. Behrend and 



27 

Witter (1968) reported similar results. -Other reports of many older deer being 

free of infection (Anderson 1963, Beaudoin et ^ 1970) may be due to incomplete 

searches of the cranium for adult worms. 

Peterson and Lankester (1991) studied the same Grand Marais deer 

population, but examined only feces. They found a similar pattern of infection. 

The prevalence of larvae peaked in yearlings at 57% but thereafter increased little 

in older animals. They found it difficult to explain why nearly half of the older 

animals appeared to be free of infection. My results demonstrate that most older 

animals are infected, but deer with unisexual infections fail to pass larvae. 

Prevalence of P. tenuis is greater in spring than in the preceding fall or 

winter, only in fawns. Although worms appeared in the cranium of fawns as early 

as September, larvae did not appear in the feces of any fawns until mid- 

December, with the majority beginning to shed larvae in January. This is because 

it takes at least 50 days for worms to reach the cranium and at least 90 days for 

larvae to appear in the feces (Anderson 1963). Therefore, fawns, over their first 

year of life, will develop more patent infections as the year progresses. No 

change in prevalence with season is observed in older animals, because most are 

already infected. Similarly, Garner and Porter (1991) found no difference in the 

prevalence of worms in the cranium by season. 

The pre-patent period for R tenuis in naturally infected deer may 

occasionally be longer than the 80-91 days observed in experimental infections 

(Anderson 1963 and 1965). Of the 26 animals examined here with bisexual. 
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occult infections, seven were killed in early March to April. Assuming that the 

opportunity to pick up infected gastropods ceases after mid-November snow-falls, 

then these animals would have been infected for at least four to five months and 

yet were still not passing larvae. Samuel et al. (1992) observed pre-patent periods 

from 88-128 days, in experimental infections using low doses of infective P. tenuis 

larvae. Infection in nature probably involves small numbers of infective larvae, 

similarly increasing the period required for patency. 

Neither the prevalence of adults in the cranium nor prevalence of larvae in 

the feces were correlated with the sex of deer. Garner and Porter (1991) also 

found no significant difference in prevalence between males and females, however 

others have reported that males tend to be infected more than females (Thurston 

and Strout 1978) or females more than males (Dudak et al. 1965). Gilbert (1973) 

suggested that sex-related behavioral differences in cover-type selection during 

fawn rearing may predispose adult females to greater contact with infected 

gastropods. Results reported here, however, show that most female deer become 

infected before they ever rear young. The lack of consistent results regarding 

infection rates by sex seems to suggest that both sexes generally are equally 

infected (Lankester 1987). 

Comparisons of the prevalence of P. tenuis among deer populations should 

be made using similar data resulting from either examination of heads for adult 

worms or feces for larvae. Moreover, age composition of the deer herds being 

compared should also be similar. Samples of hunter-killed white-tailed deer 
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collected in fall, usually include a large number of fawns. Some animals in this 

age group will not yet have encountered the parasite while others will contain 

only migrating worms not yet visible in the cranium. Fawns killed in late winter 

or early spring will most accurately reveal the rate of parasite acquisition during 

the first summer on range. 

The kind of information sought will dictate which data collection method 

should be utilized. Heads alone provide the most accurate measure of how many 

deer in a population are infected. The possibility that some adults reside in the 

spinal canal can be ignored. Only immature, presumably newly acquired, worms 

occurred in the canal and with very low frequency. Thurston and Strout (1978), 

similarly, found only 0.8% of deer with adult P. tenuis on the spinal dura mater. 

Examination of feces, on the other hand, provides a measure of the number of 

deer passing larvae and of mean larval intensity and, thereby, estimates of the 

total production of first-stage larvae by the parasite suprapopulation. A serious 

problem exists, however, in interpreting results of fecal analyses. Other species of 

metastrongyloids in white-tailed deer produce dorsal-spined larvae 

indistinguishable from those of P. tenuis (Pybus and Samuel 1981, Lankester and 

Hauta 1989). Their presence must be either excluded or accounted for. 

Results presented here suggest that P. tenuis may live as long as their host. 

An immune response probably minimizes the acquisition of additional worms 

beyond those acquired in the animals' first two summers of life. Evidence for 

this is provided by the observations that the mean number of adult worms, their 
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sex ratio, and the proportion of unisexual infections, all remain unchanged in deer 

from 2-15 years old. Several other authors report that the mean intensity of P. 

tenuis is similar in deer older than one year (Behrend 1970, Gilbert 1973, Brown 

1983, Bogaczyk et ^ 1993, Jarvinen and Hedberg 1993). Also, worms in older 

deer are often found surrounded by exudate and adhering to the meninges, rather 

than being free on the surface, suggesting that they have been present for some 

time. Alternatively, P. tenuis may live only a few years, and balanced mortality 

and recruitment rates could establish a constant intensity of infection over time. 

However, studies on other species in the family Protostrongylidae strengthen the 

suggestion that P. tenuis lives for several years. Watson (1984) reported that 

Elaphostrongylus cervi lives for up to six years in red deer (Cervus elaphus 

elaphusl and Samuel (pers. comm.) had an experimentally infected mule deer 

passing larvae of P. odocoilei for 11 years. 

If P. tenuis is equally long-lived, the first few infective larvae to be ingested 

by a deer must initiate a protective immunity against further infection, in which 

case, worms in older deer would themselves be older. Prestwood and Nettles 

(1977) demonstrated that white-tailed deer develop an immunity to P. andersoni 

and resist subsequent challenge infections. It is also known that deer produce' a 

strong eosinophilic response upon infection with R tenuis (Anderson and Strelive 

1967). 

Bull (1964) reported that the prevalence of Taenia pisiformis cysticerci in 

its rabbit intermediate host, Oryctolagus cuniculus. increased with increasing host 
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age, but mean' intensity remained constant once a certain threshold number of 

cysticerci was reached in each rabbit. They concluded that the number of eggs 

initially consumed determined the long-term size of the infrapopulation since 

subsequent exposure did not increase the infrapopulation size. 

The low number of adult worms present in deer may result from ingesting 

only a few infected gastropods over a relatively short period of time. Although 

the success rate of individual infective larvae reaching maturity in deer is 

unknown, few may have to be ingested to establish the relatively low number of 

persistent worms present. It is known that most naturally infected gastropods 

harbour fewer than three infective P. tenuis larvae each (Lankester and Anderson 

1968). In the northern part of their range, white-tailed deer fawns have only four 

to five months to acquire infection before the snow comes. During winter, 

sufficient immune response may develop to prevent appreciable future infection. 

Most animals escaping infection in their first summer become infected in their 

second. Deer in southern areas have a slightly greater mean number of worms 

per animal than northern deer (Anderson and Prestwood 1981). Possibly, a 

transmission period extending through most of the year in southern regions allows 

them to acquire more infective larvae before immunity develops. 

Occasionally heavily infected gastropods are found, as was the case of one 

Deroceras laeve from Navy Island containing 97 larvae (Lankester and Anderson 

1968). The few massive infections of P, tenuis reported in deer (Prestwood and 

Smith 1969, Prestwood 1970), probably resulted from ingesting single heavily 
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infected gastropods, or several over a short interval, rather than accumulating 

worms over an extended period. 

A number of animals (52) passed larvae in their feces but did not have a 

bisexual infection in their cranium. Although some worms may have been 

overlooked, other suggestions are possible. Since the spinal canal is not an 

important site for adult worms, possibly some are swept to other locations via the 

circulatory system. This probably happened to the type specimen of P. tenuis 

which was not found in the cranium but in the lungs (Dougherty 1945). This first 

specimen was a male. Since males are smaller than females (Carreno and 

Lankester 1993), and because the number of female worms outnumbered males in 

all age classes of deer, it is conceivable that males are more prone to being swept 

from the cranial venous blood sinuses to other locations in the body. The nine 

deer with no adults in the head but larvae in feces, could have been infected with 

R andersoni. The adults of this species occur in muscles and the larvae are 

indistinguishable from those of R tenuis. However, Peterson and Lankester 

(1991), after examining the longissimus dorsi muscles of 35 deer from Grand 

Marais, concluded that P. andersoni was absent or infrequent in this population. 

The intensity of larvae in the feces is affected by a number of factors, one 

of which appears to be age of the host. The greatest numbers of larvae are 

released by young, recently infected deer and in older deer, larval production 

declines. Anderson (1963) suggested that the higher larval output in fawns was 

due to recent infection of naive animals. Declining larval production by older 
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deer could result from decreased egg output by older female worms and/or 

increased host immune response to eggs and larvae developing in the lungs. 

Individual effects of these two components could not be separated in my 

measurement of female fecundity. Fecundity was calculated here by apportioning 

larvae counted in feces with the number of female worms in the head. 

Nonetheless, despite having fewer adult worms, young deer produced the greatest 

number of first-stage larvae per female worm. In older deer the number of larvae 

passed per female worm was lower. 

Larval output is also affected by season, increasing during spring. This 

could be the result of increased reproductive activity of worms triggered by 

seasonal changes. Esch and Fernandez (1993) suggested that the life cycles of 

hosts and parasites are synchronized since they are both responding to the same 

external stimuli, probably brought about by co-evolution. Alternatively, deer may 

be experiencing nutritional stress in spring that compromises the immune 

response allowing more larvae to successfully develop. Shaw and Moss (1989) 

concluded that the increase in numbers of Trichostrongylus tenuis eggs being 

released by experimentally infected red grouse (Lagopus lagopus scoticusl in the 

spring was due to variations in worm fecundity caused by a lowering of the hosts' 

resistance during a time of physiological stress associated with territorial 

behaviour. 

A number of other closely related elaphostrongyline nematodes also exhibit 

a spring rise in larval output, including odocoilei in mule deer (Samuel et al. 
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1985), and P. andersoni in caribou fRangifer tarandus groenlandicum and t. 

cariboul (see Lankester and Hauta 1989). Halvorsen et al. (1985) saw larval 

production of Elaphostrongylus rangiferi increase in male reindeer (Rangifer 

tarandus tarandus) in the fall following the rut and in females following 

parturition in the spring. These changes in larval output of E. rangiferi were 

thought to be due to reduced host resistance. 

The greatest numbers of larvae were released by deer with a higher 

proportion of female worms in the venous blood sinuses. The blood sinuses are 

ideal locations for female worms since they provide a direct route for eggs 

travelling to the heart and lungs. Worms in the subdural space lay their eggs on 

the dura where they become emneshed in fibrous tissue (Anderson 1963). Larvae 

that hatch on the dura may have a difficult time reaching the venous circulation 

and the lungs. In the present study there was no indication that more worms 

moved into the blood sinuses with increasing age of infection (i.e. in increasingly 

older deer). Similarly, Gilbert (1973) detected no differences in the location 

favoured by worms in relation to age of deer. Both Gilbert (1973), working in 

Maine, and Tburston and Strout (1978) in New Hampshire, reported the most 

frequent site of infection was the blood sinus within the tentorium cerebelli. 

Interestingly, the most common site of infection in my study were the cavernous 

sinuses, which are at the end of cranial venous blood flow draining into the 

jugular veins. 

There was no correlation between the number of female worms in the 
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cranium and the number of larvae in the feces. Bogaczyk (1990) similarly found 

no correlation using the total number of worms rather than only females. Possibly, 

the combined effects of deer age, age of infection, season, location of female 

worms, and the degree of host immune response mask any correlation with 

numbers of female worms. 

There may be an upper limit to the number of adult worms accommodated 

by an individual white-tailed deer and this threshold number is unaltered by 

increasing deer densities. Deer in a confined population reaching a year-round 

density of 30 animals/km^ had the same number of adult P. tenuis in heads as 

deer where summer density was only 3.7/km^. Similarly, Gilbert (1973) and 

Bogaczyk et al. (1993) found no correlation between deer density and the number 

of worms in the heads of infected deer. A threshold number of adult worms will 

result in similar numbers of larvae being produced by individual deer at varying 

densities. On the other hand, suprapopulation larval production will be related to 

deer density since in a dense population more animals will be releasing larvae. 

The mean number of larvae passed by animals in the TCAAP population, 

however, was greater than that by animals in the Grand Marais population. Since 

the mean intensity of adult worms was the same in both populations the higher 

larval production probably was not a direct response to deer density, but due 

possibly to more fecund worms in the TCAAP animals. The higher mean 

intensity could result from a more fecund strain of worm and/or a weaker 

immune response by the deer. 
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Over-all larval production by a deer herd could be increased if the 

proportion of sterile, unisexual infections in deer was reduced, thereby increasing 

the proportion of patent infections in the deer population. One way this might 

occur is as a result of increased prevalence and numbers of infective larvae in 

gastropods. This would increase the chances of a deer ingesting larvae of both 

sexes before resistance to further infection developed. Climatic conditions 

favouring survival of first-stage larvae, and increased abundance and movement of 

gastropods, could have this result. 

Schmitz and Nudds (1994), in an attempt to model a P. tenuis system, 

pointed out that no empirical data exists on the rate of transmission of this 

parasite from one definitive host to another. Although, Peterson and Lankester 

(1991) suggested that prevalence of P. tenuis infection in fawns generally reflects 

the suitability of conditions for transmission among deer, their prevalence 

estimates were based on fecal examinations and did not detect pre-patent animals 

or those infected with only one sex of worm. Transmission rates of P. tenuis are 

best estimated by the prevalence of adult worms found in the fawn cohort. The 

fawns must be sampled late enough in winter to allow sufficient time for maturing 

worms to reach the cranium. Infection rates would be more difficult to measure 

in southern parts of deer range where transmission to young animals probably 

occurs over a longer, less well defined, time period. 

In this study, 81% of fawns examined in late winter (Feb. 1 - Mar. 31) 

acquired infections over the summer of 1991 compared to 80% in the summer of 
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1992. Other studies reported that the prevalence of R tenuis can differ 

significantly from year to year (Gilbert 1973, Brown 1983, Peterson and Lankester 

1991, Bogaczyk et al. 1993). These variations in prevalence probably reflect 

differing conditions for transmission between years. Years of low rainfall 

presumably result in decreased survivability of first-stage larvae due to desiccation 

(Shostak and Samuel 1984), and decreased abundance and movement of 

gastropods (Lankester and Anderson 1968). 

Findings reported here have important implications for modelling R tenuis 

transmission within deer herds and in understanding factors that determine the 

risk of infection to susceptible cervids. Infrapopulation larval production may be 

largely independent of deer density. A threshold mean number of adult worms 

(3.2 ± 2.2) determines the maximum number of larvae produced per deer. Larval 

production is highest in young animals and in spring of the year. However, 

suprapopulation larval production does increase with higher deer density. As 

well, the proportion of young naive deer in a population and the ability of deer to 

produce an effective immune response to the parasite also can be expected to 

alter suprapopulation larval production by a deer herd. Climatic factors that 

increase the mean number of infective larvae per gastropod, and thereby, reduce 

the proportion of unisexual infections and increase the threshold intensity in deer, 

will also increase larval production. Further research should be directed toward 

understanding the ecological factors affecting the survival of first-stage larvae and 

the intensity of infection in gastropods as it affects transmission rates to cervid 

hosts. 
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