
-ice Acceleration as a Function of the Wingate Anaerobic Test and a 
Biomechanical Assessment of Skating Technique, 

in Elite Ice Hockey Players 

by: 

NEIL ALEXANDER PURVES © 

B.Sc., B.P.H.E., Queen’s University 1998 

A Thesis 
Submitted to the School of Graduate Studies & Research 
in Partial Fulfillment of the Requirements for the Degree 

Master of Science 
(Applied Sport Science & Coaching) 

LAKEHEAD UNIVERSITY 
April, 2000 



ProQuest Number: 10611937 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

Pro 

ProQuest 10611937 

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 - 1346 



Acceleration in Elite Ice Hockey Players 

Abstract 

Success in ice hockey depends on an individual’s ability to accelerate from a standing 

start or change direction and continue skating quickly and efficiently. Previous research to 

determine those factors which had the greatest contribution to on-ice acceleration was limited to 

two-dimensional biomechanical analyses of skating technique, without regard for the influence 

of physiological measures. The purpose of the present study was therefore to predict on-ice 

acceleration using peak anaerobic power from a Wingate test and kinematic variables from a 

three dimensional analysis of the biomechanics of skating technique. A sub-purpose of the 

present study was to examine the variability of skating technique at the elite level. The 

participants in this research study were thirty-seven ice hockey players from the Florida Panthers 

and Los Angeles Kings of the National Hockey League participating in the 1999 Prospects Camp 

in Thunder Bay, Ontario. The players completed a thirty second, maximal intensity Wingate 

anaerobic cycle ergometer test against a resistance of 0.095 kg-kg bodyweight'\ Peak anaerobic 

power was calculated and recorded as the highest anaerobic power value (number of flywheel 

revolutions) produced during any of the five-second intervals. One week follovvhng the Wingate 

anaerobic test, the players performed two maximal, on-ice accelerations over a distance of 

twenty meters, while being taped by two, Panasonic™ CL-350 digital cameras mounted on Peak 

Performance^^ pan/tilt heads. The Peak Performance^'^ 3D Video Analysis System and a 23- 

point spatial model were used to extract the raw coordinates for the fastest of the two trials for 

each player, as measured by a photoelectric timer. The system was then used to smooth the raw 

data from both camera views and to combine the smoothed data to produce a three-dimensional 

image. Center of mass and kinematic variables of interest were measured at push-off and 

touchdown for the first five strides. Time, velocity and average acceleration were measured 
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1.52 m, 3.03 m, 4.54 m, and 6.06 m from the first push-off. Descriptive statistics for all 

kinematic data were performed using SPSS^*^, Version 9.0. Exploratory' principal components 

factor analyses (PCA) were used to a) filter the set of predictor variables by eliminating 

confounding kinematic variables from further analyses, and b) identify the underlying 

relationships between groups of kinematic variables which represent important characteristics of 

ice hockey skating. Performance measures for strides loading in series within variable sets 

identified by the PCA were transposed into a single composite score using a log-log 

transformation of the power function. The factor analyses and log-log transformations were 

performed using SAS^^, Version 6.12. Multiple regression analysis using a backward stepwise 

approach was used to determine the set of variables that best predict on-ice acceleration (time 

taken to skate 6.06 m). The variability in skating technique used by the players was examined 

using estimates of skewness and kurtosis for the variables identified by the PCA and predictors 

of time to skate six meters. The results of the PCA in this study highlighted three latent variables 

that described several important characteristics of skating technique that influence skating 

performance in ice hockey. The factor loadings on each latent variable indicated that in order to 

optimize skating performance, players should attempt to maximize their push-off during the first 

stride, prepare for propulsion with knees fully flexed at touchdown and most importantly 

maintain an efficient body position throughout acceleration to maximize propulsion. Regression 

analysis revealed that the time taken to skate six meters is best predicted by player height, stride 

length, propulsive time, peak anaerobic power, hip and knee angle at push-off on the first stride, 

hip abduction angle at push-off, and toe-to-center of mass distance at touchdown on the third 

stride. The homogeneity of variance in the kinematic measures that predicted skating 

performance indicates that little variability exists in the skating technique used by ice hockey 
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players at the elite level. Therefore, the results of the present study have shown that on-ice 

accleration can be predicted using peak anaerobic power from a Wingate test and kinematic 

variables from a three dimensional analysis of the biomechanics of skating technique. 
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Introduction 

The game of ice hockey has been referred to by sport scientists as the fastest sport in the 

world of professional athletics (Cox, Miles, Verde & Rhodes, 1995; Mascaro, Seaver & 

Swanson, 1992). For years, owners, coaches and players of the game of ice hockey have sought 

the support and expertise of sports scientists in an attempt to maximize athletic performance. 

Analysis of time-motion characteristics in professional and college ice hockey have 

shown that the typical shift is between 45 and 85 seconds in length, with 2-3 bouts of intense 

skating interspersed with short periods of recovery (Bracko, Fellingham, Hall, Fisher & Cryer, 

1998; Cox et al., 1995). Whether it be “hustling” back on defense, avoiding or initiating 

important checks, capitalizing on breakaway opportunities or consistently winning the race to the 

puck, the ability to skate quickly and efficiently is fimdamental to each shift in the game of ice 

hockey. However, frequent changes in direction are inevitable since the dimensions of the ice 

surface limit the maintenance of maximal skating velocities (Marino, 1983). Therefore, although 

skating speed and efficiency are important in ice hockey, the ability to accelerate rapidly from a 

standing start or from a minimal velocity to a maximal velocity in a short period of time is 

essential (Marino, 1983). 

Successful hockey players are generally assumed to be technically skilled skaters, 

however, there is a lack of scientific literature defining “good” skating technique (Twist & 

Rhodes, 1993). Further, sport scientists have indicated that although skating technique is 

important in ice hockey, biomechanical studies examining this characteristic are scarce (Cox et 

al., 1995; Page, 1976). Nevertheless, researchers have highlighted numerous kinematic variables 

in an attempt to predict skating speed or skating performance in ice hockey. 
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The motion of each leg during skating can be divided into three phases; glide, push-off, 

and recovery (AJlinger & Van den Bogert, 1997). The glide phase occurs when the body’s 

weight is supported over one leg, which remains nearly constant in length (Allinger & Van den 

Bogert, 1997). The push-off phase commences with the initiation of leg extension and ends 

when the leg nears full extension and the skate blade loses contact with the ice surface (Allinger 

& Van den Bogert, 1997; Marino, 1983; Marino & Weese, 1979). Finally, the recovery phase 

begins at the completion of push-off and finishes when the skate contacts the ice (touchdown) in 

its starting position, completing the skating cycle (Allinger & Van den Bogert, 1997; Marino, 

1983; Marino & Weese, 1979). Examining the combined action of the legs, there are alternating 

periods of single support (one skate in contact with ice) and double support (both skates in 

contact with the ice) (Marino, 1979). The single support period is often a glide phase and 

propulsion or push-off occurs during the double support period (Marino, 1979). However, 

Marino (1979) has suggested that during acceleration, propulsion can occur during the double 

support and single support periods. In an attempt to understand skating technique, researchers 

have focused their biomechanical analyses on two specific events during the skating stride, push- 

off and touchdown, which together reflect the three phases of skating (Marino, 1983; Marino, 

1979; Marino & Dillman, 1976; Page, 1976). 

Marino & Dillman (1976) performed multiple linear regression and forward selection 

stepwise regression analyses using selected mechanical variables to determine the predictability 

of average acceleration over twenty feet (6.06 m), instantaneous skating velocity at twenty feet 

(6.06 m) and time to skate twenty feet (6.06 m). Using Stein’s cross validation estimation, these 

researchers found that regression models using mechanical variables from each of the first three 

individual strides were not sufficient to account for the variance in acceleration (Marino & 
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Dillman, 1976). However, multiple regression using means of the mechanical variables over the 

first three strides was found to be more accurate in predicting acceleration (Marino & Dillman, 

1976). Forward selection stepwise analysis was used to find the best set of predictors which 

related acceleration, velocity and skate time to technique (Marino & Dillman, 1976). The results 

of this stepwise analysis produced the following regression equation for average acceleration 

(Marino & Dillman, 1976): 

Y = -2.466Xi - 0.062X2 + O.OI2X3 + 0.443X4 - O.OO7X5 + 2.070X6 + 2.938 

where, Xi = toe to hip distance at touchdown 

X2 = angle of takeoff 

X3 = weight 

X4 = stride rate 

X5 = forward lean at touchdown 

X6 = leg length 

Similarly for instantaneous velocity, toe to hip distance at touchdown, angle of takeoff, weight 

and stride length were found to be the best set of predictors. However, the multiple correlation 

coefficient of R = .58 (S.E.E. = .747) indicated a low predictability of velocity using this model 

(Marino & Dillman, 1976). Finally, Marino & Dillman (1976) reported the following regression 

equation for the time taken to skate twenty feet (6.06 m): 

Y = 0.004X] + 0.013X2 - 0.143X3 - 0.399X4 + 2.31 

where, Xi = forward lean at touchdown 

X2 = angle of takeoff 

X3 = stride rate 

X4 = height 
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The results of Marino & Dillman’s (1976) research provided insight into important 

mechanical variables associated with ice hockey skating as well as the use of statistical modeling 

to predict performance. 

In 1976, Page conducted a biomechanical analysis of skating technique for players of 

various ages and abilities in an attempt to discover factors that accoimted for observed 

differences in forward skating speed. Pairwise correlation analyses revealed significant (p<0.05) 

positive relationships between skating speed and five kinematic measures, width of the left and 

right strides, length of the left and right strides, and the range of knee extension (Page, 1976). 

Moreover, Page (1976) found significant negative relationships between skating speed and five 

different kinematic measures, angle of knee flexion, total recovery time of the skated blade, mid- 

recovery time of the skate blade, angle of the trunk, and time of knee extension. Following a 

multiple stepwise discriminant analysis. Page (1976) observed that faster skaters maintained a 

greater degree of forward lean of the upper body, smaller angle of knee flexion prior to the 

initiation of push-off, and a greater angle of abduction of the leg at push-off than slower skaters. 

Page (1976) concluded that these body positions enabled the faster skaters to maximize their 

propulsive force in a downward, sideways, and backwards direction, whereas the body positions 

of the slower skaters limited the amount of propulsive force that could be created in the sideways 

and backwards directions. 

Using the same data set as Marino & Dillman (1976), Marino (1983) created a Pearson 

product moment correlation matrix between mechanical variables and skating criterion variables. 

Using a significance level of p<0.01, Marino (1983) found significant relationships between 

three variables (single support time, stride rate, and toe to hip distance at touchdown) and 

acceleration. Single support time (SST) showed a significant negative relationship (r = -.37) 
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wath acceleration, while stride rate (SR) showed a significant positive relationship (r = .36) with 

acceleration. The placement of the recovery leg upon touchdown (THD) was found to have a 

significeuitly negative relationship (r = -.41) with acceleration. Marino (1983) also determined 

that the propulsive angle of the skate (PA) and lean angle at touchdown (LTD) showed indirect 

relationships with acceleration. Although PA was not significantly related to acceleration, it 

showed a significant relationship (r = .39) with SR. This suggested that a rapid acceleration was 

related to a rapid stride rate, which in turn was related to a large propulsive angle during push- 

off. Similarly, LTD was significantly related (r = .48) to skate time which showed a significant 

relationship (r = -.48) to acceleration. Thus, Marino (1983) proposed that LTD was an indication 

of the optimization of propulsive forces in magnitude and direction. Confirming the earlier 

findings of Marino & Dillman (1976) and Page (1976), Marino (1983) showed that acceleration 

is associated with a high stride rate, low angle of forward lean at touchdown, short single support 

period and placement of the recovery leg directly beneath the body. 

Although these investigations provided insight into important mechanical variables that 

can be used to predict acceleration, the robustness of the results is limited in three ways. First, 

these studies are limited by the use of two-dimensional, rather than three-dimensional analyses of 

skating technique. Perspective error restricts two-dimensional videography to relatively small 

field widths and linear motion where movements occur only in the X-Y coordinate system. 

Three-dimensional analyses (using pan & tilt), however, allow for the analysis of movements in 

larger field widths with movements in all three planes of motion; saggital, frontal, and 

transverse. Secondly, collapsing kinematic measures for the initial strides into a mean score, as 

done by Marino & Dillman (1976) and used again by Marino (1983), may obscure unique 

characteristics of the progression in the skating stride over time. The technique used by players 

14 



Acceleration in Elite Ice Hockey Players 

in their first stride may differ significantly from that of the second and third, therefore, it is 

important that biomechanical analyses examine each skating stride individually. Finally, 

biomechanical research on skating technique in ice hockey has neglected to investigate the 

contribution of physiological measures, such as anaerobic power and capacity, on skating 

performance. 

The physiological characteristics of ice hockey players, especially at the elite level, are 

tested regularly by coaches and trainers as a means of quantifying physical fitness (Cox et al., 

1995). Of greatest interest to the coach, trainer and athlete are the results of tests of anaerobic 

and aerobic fitness, as these results are most indicative of athletic and performance potential. 

The difficulty, however, lies in the development of standardized testing protocols that replicate 

the physiological demands placed on the players in game situations. Moreover, no international 

standards have been developed for the physiological assessment of elite ice hockey players (Cox 

et al., 1995). 

Vandewalle, Peres & Monod (1987) and Cox et al. (1995) reported that the most widely 

used off-ice test of anaerobic power and capacity is the Wingate anaerobic cycle ergometer test 

(WAT), developed by Ayalon, Inbar & Bar-Or (1974). Although a more precise measure of an 

athlete’s potential for anaerobic power and capacity could be derived through the analysis of 

muscle tissue following a biopsy, this procedure is invasive, expensive and time-consuming 

(Scott, Roby, Lohman & Bunt, 1991). The WAT protocol on the other hand is non-invasive, 

simple to administer, short in length, relatively inexpensive and provides instantaneous feedback 

of results. Therefore, coaches and sport scientists have used the WAT to quantify anaerobic 

fitness in ice hockey players. In 2in attempt to replicate the physiological demands placed on the 

players in game situations in ice hockey, researchers have manipulated the length, intensity and 
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the amount of resistance used in the WAT. However, criticism by researchers regarding the 

external validity of the WAT, has prompted the development of on-ice tests of anaerobic power 

and capacity, such as the Repeat Sprint Skate (RSS) (Reed, Hansen, Cotton, Gauthier, Jette, 

Thoden & Wenger, 1979). The major criticism of using the WAT as a test of anaerobic fitness in 

ice hockey is the difference in the motor pattern between cycling and skating (Watson & 

Sargeant, 1986). Although on-ice tests of anaerobic power and capacity incorporate skating 

motor patterns, performance on these tests is not based solely on physiological fitness but also on 

skating technique. Therefore, it is impossible to accurately measure anaerobic power and 

capacity using an on-ice test without factoring out the influence of skating technique on 

performance. Despite the difference in motor patterns, researchers have suggested that the WAT 

is an appropriate test since it replicates the fatigue patterns experienced by hockey players during 

on-ice anaerobic tests (Cox et al., 1995). Further, researchers have found that measures of peak 

power derived from the WAT demonstrate good test-retest reliability (Vandewalle et al., 1987). 

Nevertheless, the differences among researchers regarding the most appropriate and accurate test 

of anaerobic fitness has resulted in coaches and trainers using a variety of combinations of on-ice 

and off-ice tests in an attempt to evaluate their players. 

Although few studies have attempted to examine the influence of anaerobic power and 

capacity on skating performance, a recent study by Allinger & Van den Bogert (1997) indicated 

the importance of instantaneous and average power in speed skating. The researchers found that 

steady state skating velocity and the range of skating techniques used to achieve the same 

velocity in speed skating is limited by instantaneous and average power (Allinger & Van den 

Bogert, 1997). Further, Allinger & Van den Bogert (1997) proposed that the model could be 

applied to all skating sports, including ice hockey. 
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The skating model was designed with a “piston-like” leg action originating from a point 

mass (center of mass) to a mass-less skate (Allinger & Van den Bogert, 1997). Anatomical and 

physiological constraints on the skating model included maximum leg length as well as 

instantaneous power and average power, respectively (Allinger & Van den Bogert, 1997). 

Behaviour of the skating model was determined by stroke time, glide time and leg extension 

velocity, which formed the input function for horizontal leg length (as function of time) (Allinger 

& Van den Bogert, 1997). Using sequential quadratic programming, the researchers were able 

to perform repeated computations to determine the effects of stroke time, glide time, leg 

extension velocity, instantaneous power and average power on maximum skating speed and 

skating technique (Allinger & Van den Bogert, 1997). Through optimization of the simulation 

model, Allinger & Van den Bogert (1997) found the following; 

1. A number of skating techniques can be used to achieve the same steady state 
skating speed. 

2. As skating speed increases the range of techniques decreases. 
3. Either average power or instantaneous power constraints can limit the steady- 

state skating speed. 
4. Increasing instantaneous power or decreasing the height of the center of mass 

increases the range of possible skating techniques. 
5. IncreEising average power raises the top skating speed with an accompanying 

reduction in the range of skating techniques. 
6. It is more advantageous to increase instantaneous power through increases in 

strength rather than increases in the speed of leg extension. 
7. Full leg extension is not necessarily optimal to reach a top speed. 

Allinger & Van den Bogert (1997) discussed several limitations of this study based on 

their skating model. First, the skating model designed for this study assumed that the height of 

the center of mass of the body remained constant (Allinger & Van den Bogert, 1997). Although 

no studies have examined the path of motion of the center of mass in ice hockey, the assumption 

of a fixed center of mass is allowable for comparison of the trends only in the results. Second, 

the power calculations used in the model were solely mechanical and therefore neglected to 

17 



Acceleration in Elite Ice Hockey Players 

consider the metabolic costs of skating with different techniques (Allinger & Van den Bogert, 

1997). However, instantaneous power for the model was based on force-velocity data extracted 

from single leg extensions during the leg press^ (Allinger & Van den Bogert, 1997). Further, 

since average power in the model was merely a function of instantaneous power, values for 

average power were thus based on real physiological data. Again, since the values for power are 

based on real subjects, the results can only be used for comparison of the relationship between 

power, speed and the range of techniques possible in hockey skating. Third, the double support 

phase of the skating stride was not included and it was assumed that there was an instantaneous 

transfer of weight from the push-off skate to gliding skate (Allinger & Van den Bogert, 1997). 

Since double support times have been shown to represent less than 15% of total stride time in ice 

hockey, the assumption of instantaneous weight transfer is acceptable and the results may be 

compared (Marino, 1979). Finally, the skating model assumed that the foot remained parallel to 

the ice surface, thus neglecting to account for plantar flexion angles at push-off (Allinger & Van 

den Bogert, 1997). Literature describing the action of plantar flexion during the push-off in ice 

hockey and its influence on performance is lacking. However, Marino (1983) has shown that 

propulsive angles of the skate that reflect an outward rotation of the hip are significantly related 

to stride rate, which is in turn related to acceleration. This might suggest that in ice hockey, 

outward rotation of the hip increases propulsive angles of the skate compensating for the absence 

of a maximal plantar flexion of the foot. Therefore, despite the limitations of their study, it is 

proposed that the findings of Allinger & Van den Bogert (1997) with respect to the relationship 

between power, skating speed and the range of possible skating techniques should be validated 

for the sport of ice hockey. 

* Leg press results from Vandervoort, A. A., D.G. Sale, and J.Moroz. Comparison of motor unit activation during 
unilateral and bilateral leg extension. J. Appl. Physiol. 56:46-51, 1984. 
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Purpose 

The purpose of this study was to predict on-ice acceleration in elite ice hockey players 

using peak anaerobic power from the Wingate anaerobic test and kinematic variables from a 

three dimensional analysis of the biomechanics of skating technique. A sub-purpose of this 

study was to examine the variability of skating technique at the elite level. 

Preliminary Work 

Prior to data collection for the current research study, the researcher piloted all of the 

procedures to be used. During this time, the operation and set-up of the filming equipment was 

tested and the taping procedures were rehearsed and perfected. Further, the kinematic variables 

identified through previous research studies were identified, defined and tested following the 

data collection. 

Methods 

Thirty-seven (N = 37) elite male hockey players from the Florida Panthers (n = 18) and 

Los Angeles Kings (n = 19) “Prospects Camp” participated in the study. All procedures for the 

research study were approved by Ethics Advisory Committee to the Senate Research Committee 

at Lakehead University in Thunder Bay, Ontario. The players were explained the experimental 

protocol and informed of the associated risks of participation prior to obtaining their written 

consent. Prior to the completion of physical testing, anthropometric measurements, including 

height and weight, were determined and recorded. The subjects completed a thirty second , 

maximal intensity Wingate anaerobic test on a modified Monark™ cycle ergometer - 

^ This length of test is appropriate, despite some researchers stating that 30s. is too short to exhaust anaerobic energy 
stores, as hockey players do not completely exhaust anaerobic stores (Vandewalle et al., 1987). 
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Model # 1234, against a resistance of 0.095 kg-kg bodyweight *. One week later, the players 

performed two maximal, on-ice accelerations over a distance of twenty meters, while being taped 

by two, Panasonic™ CL-350 digital cameras. 

Testing Sequence 

The players, dressed in gym apparel, were asked to refrain from eating or drinking 

(except water) for two hours prior to reporting to the testing area. As part of the “Pro-Camp,” 

the players were required to perform a battery of physical tests at the request of their respective 

strength and conditioning coaches. The physical tests that were performed, a brief description of 

the test protocol and the order of testing may be found in Table 1. Time restrictions limited the 

physical testing to one day and only one session, therefore, the rest period between the estimated 

VO2 max test and the WAT was maximized (approximately thirty minutes) by placing these two 

tests as far apart as possible. 

Table 1: Battery of tests performed by players 

a 

b 

Name of Test Description of Test 
1. Height and Weight N/a 
2. Bench Press® Number of repetitions vsath 185 lbs. 
3. Estimated VO2 Max - bicycle Max. 15 min. or Max. HR prior to last 

stage  
4. Rest 8-10 minutes 
5. Sit-ups Rhythm of metronome to exhaustion or 

break in rhythm  
6. Sit and Reach Flexibility N/a 
7. Wingate Anaerobic Test 3Qs. maximal test at Q.095kg-kg BW' 
8. Rest 8-10 minutes 
9. Standing Broad Jump Maximal distance of two foot hop 

- Denotes test was only done by Florida Panthers players 
- Denotes test was only done by Los Angeles Kings players 
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Procedures - Wingate Anaerobic Test 

Before beginning the measurement phase of the WAT, the players were given a ten- 

second acceleration phase, during which time they were told to begin pedalling slowly, gradually 

increasing to maximum speed in the final two seconds of the countdown. At the end of the ten- 

second countdown, the resistance (0.095 kg kg bodyweighf was applied to the flywheel of the 

bicycle and the measurement phase began. During the measurement phase, the players pedalled 

maximally against the prescribed resistance for a duration of thirty seconds. Following the 

conclusion of the measurement phase, the player was told to pedal at a low intensity for three to 

five minutes to return the body to its resting state. All players were given verbal encouragement 

throughout the test to obtain their best performance. Peak anaerobic power^ (AnP) was calculated 

and recorded as the highest anaerobic power value produced during any of the five-second 

intervals. Anaerobic capacity"^ was also calculated and recorded as the total amount of work 

done in the thirty-second measurement phase, however these values were not used further in this 

research study. 

^ Peak AnP (kg m-5s*‘) = [rev. max in 5 s x D/r (m) x resistance (kg)]/ time (5 s); where rev. max in 5 s = highest 
number of revolutions during any of the five second intervals, D/r = the distance that the flywheel travels per 
revolution (6 m) (Adams, 1994) 

AnC (kg m-30s *) = [total rev. in 30 s x D/r (m) x resistance (kg)]/ time (30 s); where rev. total in 30 s = total 
number of revolutions during thirty seconds, D/r = the distance that the flywheel travels per revolution (6 m) 
(Adams, 1994) 
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Procedures - On~ice Accelerations 

One week^ following the ofF-ice physical testing, the players reported to the arena to 

perform their on-ice accelerations. Of the thirty-seven players who completed the WAT testing, 

only thirty (Florida Panthers, n = 14; Los Angeles Kings, n = 16) completed the on-ice 

accelerations. The players performed the on-ice accelerations unobstructed, wearing tight 

clothing of contrasting colours with no ice hockey equipment except for their sticks, elbow pads 

and helmets. These pieces of equipment were necessary protection for the players in the event of 

a fall during or upon completion of one of the accelerations. The Los Angeles players were 

tested first, followed by the Florida players, with both teams performing their accelerations in 

different skating “Imes”^. 

The testing protocol for the on-ice accelerations is listed in Table 2. Each player began 

with five minutes of skating at low to medium intensity skating, in order to raise their body’s 

core temperature and prepare the specific muscles to be used in the maximal accelerations. The 

second phase allowed the players a period of up to five minutes to stretch those muscles that 

were to be active during the accelerations. The second pre-exercise phase, consisted of three to 

five minutes of low to medium intensity skating, interspersed with four to five sprints or 

accelerations, to allow the players to prepare for the measurement phase. 

^ This was the most suitable time for the teams to have their players tested on the ice. 
^ To reduce the resistance of ice Hfiction associated with ice that has been heavily travelled. 
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Table 2: On-ice acceleration test protocol 

Period Time Length Activity 
Skating at low-medium intensity Pre-Exercise I 5 minutes 
All major muscles; focussing on 
quadriceps, hamstrings, groin, calves 

Stretch 5 minutes 

Pre-Exercise II 3-5 minutes Skating at low intensity, with 4-5 sprints of 
4-5 seconds 

Measurement I 20 meters Maximal acceleration from stationary 
position, throughout full distance 

Recovery 3-5 minutes Skating at low intensity; light stretching 
Measurement II 20 meters Maximal acceleration from stationary 

position, throughout full distance 
Cool down 3-5 minutes Skating at low intensity 

The measurement phase consisted of a timed, maximal acceleration over twenty meters, using a 

photoelectric timing system located at the start and finish of the skating lane. Players were told 

to get into a stationary “Ready” position and then began accelerating from a front start position^ 

at the “Go” command. To allow for maximal regeneration of the anaerobic energy system 

(glycolytic and phosphagen), a recovery phase of three to five minutes of skating at low intensity 

followed by complete rest was given prior to performance of the second measurement phase 

(Bompa, 1994). The procedures for measurement phase II were performed exactly as the first 

measurement phase. Following the second measurement phase, players were given a cool down 

period of three to five minutes of low intensity skating to allow their bodies to recover to their 

resting state. 

^ Research has shown the front start to be the superior starting technique (Marino, 1979). 
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Videography 

The two Panasonic'^’^ CL-350 digital video cameras, sampling at a frequency of 60 Hz 

were mounted on Peak Performance^*^ pan/tilt heads then fixed to a surveying tripod using a 

tribrach adapter and a non-optical Topcon™ tribrach. Both cameras were then gen-locked and 

synchronized using a Peak Performance’^'^ Event Sychronization Unit (ESU) and a SMPTE'^'^ 

time code generator. To minimize perspective error associated with video analysis, the cameras 

were set-up approximately forty meters apart, at a distance of fifteen meters from the direction of 

travel, converging at the midpoint of the twenty meter field wddth (see Figure 1). 

Finish i i Start 

20 m. 

15 m. 

- </^a Camera # 1 Camera 

40 m. 

Figure 1: Camera orientation for on-ice acceleration 

Following the completion of the on-ice accelerations in each lane, calibration poles were filmed 

at three locations (start, middle and end of the twenty meter length) using the procedures outlined 

by Peak Performance'*^^ (3D Pan & Tilt Module©, Version, 1.0, May 1995) for calibrating a 

three-dimensional pan & tilt space 
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Video Analysis 

The faster of the two trials for each player, as measured by the photoelectric timer, was 

selected for further analysis. The two camera views were digitized using the Peak 

Performance™ 3D Video Analysis System and a 23-point spatial model (see Appendix A). 

Starting with the first push-off, the spatial model was digitized at every frame for the first five 

skating strides. To minimize the measurement error associated with digitization, a 4*^ order 

o 

Butterworth optimal frequency filter was used to condition the raw data from both camera 

views. Once the data was smoothed, a direct linear transformation (DLT) using the calibration 

pole measurements and pan & tilt angles recorded by the tribrach heads was used to combine the 

two, 2D views, to produce a three-dimensional image. 

^ Jackson Knee Method 
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Next, the center of mass parameters^ and kinematic variables of interest were defined (see 

Appendix B) and then calculated using the “3D Parameter Calculation” command in the PeakS^^ 

3D Pan & Tilt software. Joint angles (see Figure 2) were used to calculate the internal angle 

between two connected segments on a plane with values ranging between 0 and 180 degrees 

(Peak Performance'^’^ User’s Guide©, Version 5.3, 1995). 

Y-dir 

Figure 2: Joint angles (saggital view) 

^ Using the joint centers and percentage of mass distributions given by Hinrich (1988) 

26 



Acceleration in Elite Ice Hockey Players 

Segment angles (see Figure 3) were used to determine the internal angle between two 

unconnected segments (Peak Performance™ User’s Guide©, Version 5.3, 1995). 

SKTVJ 

Figure 3: Segment angles (transverse view) 
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Finally, segment-to-plane angles (see Figure 4, Figure 5, Figure 6) were used to calculate the 

angle between a segment and a defined plane (Peak Performance^'^ User’s Guide©, Version 5.3, 

1995). 

Figure 4: Segment-to-plane angles (saggital view) 

Figure 5: Segment-to-plane angles (frontal view) 
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Figure 6: Segment-to-plane angles (transverse view) 

The origin of the Y direction was translated from the center of mass to the right skate tip, such 

that the height of the center of mass could be calculated at touchdown (See Figure 5). For a 

more detailed description (based on spatial model) of the joint, segment and segment-to-plane 

angle set-up, refer to Appendix C. 

Time, instantaneous velocity and average acceleration at 1.52, 3.03,4.54 and 6.06 m 

were recorded for each player, while kinematic data was collected at push-off’^ and touchdown^ ^ 

for the first five (5) strides. 

Moment the skate tip loses contact with ice surface at completion of the push-off phase 
** Moment recovery skate contacts the ice in its starting position, completing a skating cycle. 
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Statistical Analyses 

Descriptive Statistics 

Descriptive statistics, including means, standard deviations, ranges, skewness and 

kurtosis were computed for all continuous variables. Independent samples t-tests were used to 

test for significant differences between the two teams and between the forwards and defencemen 

on either the time taken to skate six meters or peak anaerobic power. All descriptive statistics 

were performed using SPSS”*^^, Version 9.0. 

Factor Analyses 

Exploratory principal component factor analysis (PCA) was used to a) filter the set of 

predictor variables by eliminating confounding kinematic variables from further analyses, and b) 

identify the underlying relationships between groups of kinematic variables which represent 

important characteristics of ice hockey skating. All kinematic variables for each stride, with the 

exception of peak anaerobic power and time, velocity and average acceleration measurements at 

1.54 m, 3.03 m, 4.54 m, 6.06 m, were entered into the initial PCA. The exploratory PCA was 

then used to systematically remove those kinematic variables with no factor loadings or with 

weak factor loadings (< 60), and those variables exhibiting multicollinearity that were not 

identified prior to entry into the PCA (McPherson, Montelpare & Puumula, 1999). The final, 

PCA produced a factor structure of agglomerated kinematic variables with factor loadings 

greater than (0.60) that together described the important characteristics of ice hockey skating 

technique. The factor structure consisted of three latent variables, each describing a distinct 

component of skating technique. The latent variables highlighted “isolated variables” in which 

only one stride within a kinematic measure exhibited a strong factor loading and “variable sets” 
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in which repeated (two or more) strides within a kinematic measure demonstrated strong factor 

loadings. Isolated variables demonstrated the importance of critical skating movements at 

specific instances in time (i.e. ankle, knee and hip angle on the first push-off), whereas variable 

sets emphasized the progression of a kinematic variable on subsequent strides (i.e. hip angle at 

touchdown on stride one, two, three, and five). The sign (+, -) of each factor loading within a 

latent variable was used to interpret the relationship between each kinematic variable and the 

time taken to skate six meters. The relationship between the factor loading and the dependent 

measure time to skate six meters was then used to determine the tendency of each kinematic 

variable in order to optimize on-ice acceleration. All factor analyses were performed using the 

factor analysis command “proc factor” in SAS™, Version 6.12. 

Transposed Variables and the Power Function 

The “variable sets” identified within the latent variables included a minimum of two and 

maximum of five factor loadings for any specific kinematic variable. Factor loadings for sample 

strides within a variable set were primarily in series (i.e. strides one, two and three), whereas 

some variable sets included individual strides that were not in series with the remaining sample 

strides (i.e. strides one, two, three and five). A log-log transformation of the power function (see 

Equation 1 and Equation 2) transposed the raw scores, for the strides that loaded in series within 

a variable set, into a single composite score (Stevens, 1957). 

Equation 1: Power function 

v|/ = K + (j)^ 

Equation 2: Log-log transformation of the power function 

Logvi;, = Log K + p Log (j), 
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where, K = 1 

= stride interval (1-5) 

vj/i = raw score for given interval 

P = slope of line of best fit for transformed data set 

Each raw score (i.e. V|/K_T2 = 100.34, = 97.34) within a variable set was first assigned a 

corresponding interval (i.e. (|)K_T2 = 1, <1)K_T3 == 2 ). Next, the log-log transformation was applied to 

the raw scores and corresponding interval to create a transformed data set (i.e. {log (1)K_T2 = 0, log 

M/K_T2 = 2.00}, (log (|)K_T3 = 0.301, log vj/K_T3 ^ 1-99}). Finally, by setting K = 1 and plotting the 

transformed data set, linear regression was used to determine the slope (P) of a line of best fit 

through the data set, originating from the origin (0,0). The slope of the line was used as a single 

composite score which represented an evaluation of the progression of a player’s skating 

technique over a series of strides on a specific kinematic variable set (see Figure 7). 

H_T1 
H_T2 
H_T3 
H_T4 
H T5 

Figure 7: Depiction of the log-log transformation of a variable set 

The composite scores were then recoded and entered into SPSS as a new variable. This 

procedure was repeated for each variable set identified by the PCA, using only the strides that 

loaded on a latent variable in series. Individual strides that were not in series but were a part of 

the variable set (i.e. stride 5 for a series; 1,2,3,5) were not transposed using the power function, 
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however, these individual strides were included as isolated variables in the regression analysis. 

All composite scores for the variable sets were generated using the descriptive statistics 

procedures of “proc univariate” in SAS^^, Version 6.12. 

Regression Analysis 

Multiple regression analysis using a backward stepwise approach was used to determine 

the set of variables that best predict the time taken to skate 6.06 m. The variables entered into 

the regression analysis included, height, weight, peak anaerobic power (normalized for 

bodymass) and all “isolated variables” and transposed “variable sets” with factor loadings of 

greater than (.60) identified by the final exploratory PCA. Isolated variables that were 

inconsistent with the characteristics of a clearly defined latent variable within the factor structure 

were excluded from the regression analysis. The regression analysis was performed using 

SPSS™, Version 9.0. 
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Variability of Skating Technique 

Estimates of skewness and kurtosis were used to determine the variability in skating 

technique among the subjects in this study. More specifically, skewness and kurtosis was 

calculated for each kinematic variable identified within the PCA and the set of variables which 

best predicted the time taken to skate six meters. A skewness value of zero indicated that the 

mean and median scores for a kinematic measure were equal and the distribution, symmetrical. 

Likewise, a kurtosis value of zero indicated that the scores for a kinematic measure were 

normally distributed with equal variance above and below the mean score. Positive and negative 

values for skewness indicated the respective direction of skewness and the magnitude of the 

skewness value determined the degree of skewness (Diekhoff, 1992). Similarly, positive and 

negative kurtosis values indicated leptokurtic (small amount of variance about mean) and 

platykurtic (large amount of variance about mean) distributions, respectively, with the degree of 

kurtosis determined by the magnitude of the respective value (Diekhoff, 1992). 
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Results 

Video data could not be obtained for six of the players, and three of the players started 

with a left foot push-off, therefore, the analysis was limited to twenty-one (N = 21) players who 

completed both the WAT and the on-ice accelerations. 

Descriptive Statistics 

Descriptive statistics of the physical characteristics for the participants in this study are 

shown in Table 3. Means, standard deviations, minimums and maximums for all raw kinematic 

data, along with estimates of skewness and kurtosis, may be found in Appendix D. 

Table 3: Physical characteristics of the players (N = 21) 

Variable Mean S.D. Minimum Maximum 
Age (years) 19.95 1.80 18 24 
Height (m) 1.87 0.05 1.73 1.93 
Weight (kg) 91.19 5.00 78.0 100.0 
Peak Anaerobic Power 
(W>kg-^)  

12.21 1.02 10.55 15.07 

Anaerobic Capacity 
(W-kg')  

9.19 0.49 7.86 10.12 
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The mean time taken to skate six meters was 1.22 s (S.D. = 0.11), with a mean 

instantaneous velocity at six meters of 6.44 m-s ’ (S.D. = 0.32). The mean average acceleration 

over the six meters was 5.33 m-s‘^ (S.D. = 0.58). The mean time, mean instantaneous velocity 

and mean average acceleration values at 1.52 m, 3.03 m, 4.54 m, 6.06 m are listed in Table 4. 

Table 4: Time, Velocity and Average Acceleration (X ± SD) 

Variable 
1.52 

Distance (meters) 
3.03 4.54 6.06 

Time to Skate (s) 0.41 ± 0.06 0.71 ± 0.08 0.97 ± 0.09 1.22 ±0.11 

Instantaneous Velocity 4.68 ± 0.51 5.37 ± 0.27 5.92 ± 0.35 6.44 ± 0.32 

Avg. Acceleration 
(m-s~^)  

11.86 ± 2.89 2.21 ± 1.29 2.12 ± 1.12 2.09 ± 1.67 

An independent samples t-test revealed no significant differences between players from 

the Florida Panthers (n = 12) and Los Angeles Kings (n = 9) on measures of peak anaerobic 

power (t(19) = -1.036, p>0.05) or the time taken to skate six meters (t(19) = 0.928, p>0.05). 

Similarly, no significant differences were found between forwards (n = 13) and defencemen (n = 

8) on peak anaerobic power (t(19) = -0.097, p>0.05) or the time taken to skate six meters (t(19) = 

0.725, p>0.05). 
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Factor Analyses 

The exploratory PCA’s resulted in the removal of nine of the seventeen original 

kinematic measures. Using the eight remaining kinematic measures collected over five strides 

(fifty variables), the final, PCA produced three distinct latent variables with factor loadings of 

greater than (.60). Within the three latent variables, six “variable sets” and eight “isolated 

variables” were found. Of the six observed variable sets, three sets included all skating strides 

loading in series, and three sets contained individual strides that were not in series with the 

remaining strides. The kinematic measures hip abduction angle at push-off, stride length, and 

propulsive time, formed variable sets in which all skating strides within the set loaded in series. 

However, the remaining variables sets for hip angle at touchdown, take-off angle, and knee angle 

at touchdown included individual strides that were not in series with the remaining strides in the 

variable set. All of the variable sets loaded on the first latent variable except, knee angle at 

touchdown, which loaded on the third latent variable. Two of the eight isolated variables, toe to 

center of mass distance at touchdown on the third stride, and knee angle at touchdown on the 

fourth stride appeared in the first latent variable. The second latent variable included only 

isolated variables. The isolated variables were ankle angle, knee angle and hip angle at push-off 

for the first stride, hip angle at push-off for the fifth push-off, and toe to center of mass distance 

at touchdown on the fifth stride. Finally, the only “variable isolation” for the third latent variable 

was the take-off angle at push-off for the first stride. The variables and their factor loadings for 

each of the three latent variables are listed in Table 5. 
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Table 5: PCA latent variables and their respective factor loadings 

Latent Variable 

Variable Loading Variable Loading Variable Loading 
H T1 .781 H PI .838 K T2 .636 
H T2 .679 H P5 .733 K T3 .778 
H T3 .913 K PI .691 TO PI .702 
H T4 
H T5 
HABD P2 
HABD P4 
HABD P5 
TO P3 
TO P4 
TO P5 
SL 1 
SL 2 
SL 3 
SL 5 
PT 2 
PT 3 
PT 4 
TCD T3 
K T4 

.792 A PI 

.782 TCD T5 
-.698 
.617 
.624 
.692 
.791 
.771 

-.653 
-.627 
-.715 
-.721 
-.682 
-.759 
-.628 
.641 
.602 

.805 
-.688 

The eigenvalues, percentage of variance explained and cumulative variance explained for 

the three latent variables is listed in Table 6. 

Table 6: Eigenvalues and variance explained by the three latent variables 

Latent Variable Eigenvalue % of Variance 
Explained 

Cumulative % of 
Variance Explained 

14.26 28.52 28.52 
7.78 15.55 44.07 
6.04 12.08 56.15 
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Power Function and the Transposed Variable 

Descriptive statistics for the six transposed variable sets, hip angle at touchdown, hip 

abduction angle at push-off, take-off angle, stride length, propulsive time and knee angle at 

touchdown are listed in Table 7. 

Table 7: Descriptive statistics for transposed variables 

Variable Strides Mean S.D. Skewness Kurtosis 
H T 1 -5 3.474 0.078 -1.795 4.926 
HARD P 4,5 3.968 0.548 -0.025 -0.757 
TO P 3-5 4.173 0.057 -0.736 0.902 
SL 1-3 0.380 0.107 -0.502 -0.551 
PT 2-4 -1.409 0.085 -0.339 -0.114 
K T 2,3 6.656 0.083 -1.122 1.481 
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Regression Analysis 

Backward stepwise multiple regression analysis was used to identify the variables that 

best predicted the time taken to skate six meters. Variables entered into the regression analysis 

included, height, weight, peak anaerobic power and all variables (transposed sets and 

isolations)^^ identified by the PCA listed previously in Table 5. The variables that best predict 

the time taken to skate six meters can be found in Equation 3. 

Equation 3: Regression equation for time to skate six meters 

Y = 0.291 + 0.845 Xi - 0.016 X2 + 0.007 X3 + 0.007 X4 + 0.453 X5 

- 1.500X6- 1.688 X7-0.006 Xg-0.004 X9 

where; 

Xi = Player height 

X2 = Peak anaerobic power (normalized) 

X3 = Knee angle - push-off 

X4 = Transposed variable - hip abduction (Stride 4, 5) 

X5 = Transposed variable - propulsive time (2, 3,4) 

X6 = Transposed variable - stride length (1, 2, 3) 

X7 = Toe to center-of-mass distance - 3"^ touchdown 

Xg = Hip angle - r' push-ofF 

X9 = Hip abduction - 2“*^ push-off 

Except H_P5 and TCD T5, which were inconsistent with the characteristics of the second latent variable. 
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The multiple correlation coefficient (R = .976) for the above regression equation was 

significantly different from zero (F(9,20) = 24.933, p<0.001), with 95.3% (S.E.E. = .031) of the 

variance in the time to skate six meters being explained by the set of nine predictors. After 

adjusting for shrinkage due to the small sample size and large set of predictors in this study, the 

prediction equation accounted for 91.5% of the variance in the time taken to skate six meters. 

The results of the test of significance for the unstandardized (b) and standardized coefficients (P) 

are listed in Table 8. 

Table 8: Coefficients and t-values for regression analysis variables 

Variable S.E.b Sig.T 

(Constant) 0.291 0.927 0.314 0.759 
HT 0.845 0.302 0.379 2.796 0.017 
An P -0.016 0.007 -0.152 -2.238 0.047 
K PI 0.007 0.003 0.555 2.619 0.024 
TV HABD 0.007 0.027 0.350 2.529 0.028 
TV PT 0.453 0.125 0.363 3.606 0.004 
TV SL -1.500 0.174 -1.848 -8.63 0.000 
TCD T3 -1.688 0.382 -0.961 -4.415 0.001 
H PI -0.006 0.001 -0.697 -4.366 0.001 
HABD P2 ■0.004 0.002 -0.267 -2.267 0.045 
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Variability of Skating Technique 

Estimates of skewness and kurtosis were used to determine the variability of the players 

skating technique on those variables identified by the PCA and the regression analysis. A critical 

value of positive one (1) for skewness or kurtosis represented a positively skewed or leptokurtic 

distribution, while a critical value of negative one (-1) represented a negatively skewed or 

platykurtic distribution. The variability estimates for the kinematic measures loading on the first 

latent variable of the PCA are listed in Table 9. 

Table 9: Estimates of skewness and kurtosis for the variables in the first latent variable 

Variable Skewness Kurtosis 
H T1 -0.526 0.102 
H T2 -0.970 1.847 

H T3 -0.803 1.239 

H T4 ■1.411 4.213 

H T5 -1.098 1.267 

HARD P2 0.142 -0.288 

HARD P4 0.281 -0.246 

HARD P5 0.612 -0.554 

TO P3 -0.350 -0.956 

TO P4 ■0.940 1.666 
TO P5 -0.232 -0.322 

SL 1 -0.736 1.086 

SL 2 0.607 0.858 

SL 3 0.007 -1.251 

SL 5 -0.487 -1.032 

PT 2 0.368 -0.677 

PT 3 -0.135 -0.828 

PT 4 -0.190 0.143 

TCD T3 1.134 3.007 

K T4 0.269 0.153 

All of the factor loadings for the variable set, hip angle at touchdown, were negatively skewed 

and with the exception of the first stride, leptokurtic in distribution. The factor loadings for the 

set of hip abduction angles at push-off, however, were positively skewed with a mildly 
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platykurtic distribution. The take-off angles used during push-off were mildly skewed in the 

negative direction for all strides. Strides three and five were found to have a platykurtic 

distribution and stride four, a leptokurtic distribution. The stride length used during the 

acceleration was rather leptokurtic in the initial strides, yet the variance in the length of stride 

increased during the later strides. Propulsion times for the players showed very little skewness 

and moved from a moderately platykurtic distribution to a mesokurtic distribution by the fifth 

stride. The players showed little variance in the distance between the toe and center of mass at 

touchdown on the third stride, yet some of the players caused the distribution to distinctly skew 

in the positive direction. Finally, the player’s knee angle at touchdown of the fourth stride, 

followed a mesokurtic distribution with a very small amount of skewness in the positive 

direction. 

The variability estimates for the kinematic measures loading on the second latent variable 

can be found in Table 10. 

Table 10: Estimates of skewness and kurtosis for the variables in the second latent variable 

Variable Skewness Kurtosis 
H PI ■1.052 1.401 

K PI •1.195 2.860 
A PI -0.419 -0.399 

All of the variables loading on factor two were skewed in the negative direction with the hip and 

knee angle at push-off having a leptokurtic distribution, and ankle angle at push-off having a 

moderately platykurtic distribution. 
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Finally, the variability estimates for the kinematic measures loading on the third latent 

variable of the PCA can be found in Table 11. 

Table 11: Estimates of skewness and kurtosis for the variables in the third latent variable 

Variable Skewness Kurtosis 
K T2 0.286 -0.171 
K T3 -0.951 1.112 
TO PI 1.232 3.190 

The skewness and kurtosis for the knee angle at touchdown for the second and third strides 

differed considerably. For the second stride, the knee angles used at touchdown were skewed 

mildly in the positive direction, whereas the knee angles at touchdown for the third stride were 

largely skewed in the negative direction. Similarly, the somewhat platykurtic distribution of the 

knee angles at touchdown for the second stride was very different from the very leptokurtic 

distribution of the knee angles at touchdown for the third stride. The angle of take-off on the 

first stride was positively skewed and highly leptokurtic in distribution. 

The skewness and kurtosis estimates for the variables identified by the regression 

analysis as the best set of predictors for the time taken to skate six meters are listed in Table 12. 

Table 12: Estimates of skewness and kurtosis for the predictors of time to skate six meters 
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With the exception of hip abduction angle at push-off, all kinematic measures found to be 

significant predictors of the time taken to skate six meters were leptokurtic in distribution. 

Similarly, the height of the players and their peak anaerobic power were also leptokurtic in 

distribution. However, the stride characteristics, stride length and propulsive time, found to be 

significant predictors of the time taken to skate six meters were relatively platykurtic in 

distribution. The skewness and kurtosis estimates for the remaining variables can be found in 

Appendix D. 
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Discussion 

The heights and weights of the players from the Florida Panthers and Los Angeles Kings 

who participated in this research study were similar to those of professional hockey players from 

the National Hockey League. The average height of the thirteen forwards participating in the 

study was 1.86 m (S.D. = 0.05) and the average weight was 90.31 kg (S.D. = 5.19). The average 

height and weight for the eight defencemen who participated in the study was 1.90 m (S.D. = 

0.03) and 92.63 kg (S.D. = 4.63), respectively. Twist & Rhodes (1993) found that the average 

height for veteran NHL forwards was 1.89 m (S.D. = 0.04), with an average weight of 92.9 kg 

(S.D. = 3.82). Similarly, Rhodes, Cox & Quinney (1988) found that the average height and 

weight for fourty NHL forwards was 1.83 m (S.D. = 0.05) and 87.1 kg (S.D. = 5.60), 

respectively. For veteran defencemen. Twist & Rhodes (1993) reported an average height of 

1.89 m (S.D. = 0.05) and an average weight of 94.14 kg (S.D. = 4.23). Likewise, Rhodes et al. 

(1988) reported an average height and weight for twenty-seven defencemen of 1.86 m (S.D. = 

0.05) and 90.30 kg (S.D. = 4.30), respectively. The similarities observed in height and weight to 

previous research were expected, as all of the players in this research study were members of 

NHL organizations. 

The peak anaerobic power results obtained from the Wingate anaerobic test in this study 

were also similar to the results of NHL players that have been reported in previous literature. 

The players in this study cycled against a resistance of 0.095 kg-kg bodyweighf \ resulting in an 

overall mean score for peak anaerobic power of 12.21 W kg ' (S.D. = 1.02). There were no 

significant differences (t (19) = -0.10, p > 0.05) found in this study between the peak anaerobic 

power of the forwards (X = 12.19 W-kg'*, S.D. = 1.22) and the peak anaerobic power of the 

defencemen (X = 12.24 W kg ', S.D. = 0.68). Rhodes, Cox & Quinney (1988) and Smith, 
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Quinney, Steadward, Wenger & Sexsmith (1982) also reported no significant difference in peak 

anaerobic power scores between forwards and defencemen. Rhodes, Cox & Quinney (1988) 

reported that the mean peak anaerobic power score for twenty-seven NHL defencemen and 

fourty NHL forwards cycling against a resistance of 0.090 kg kg body weight'^ was 12.04 W-kg ' 

(S.D. = 1.50) and 12.00 W-kg'^ (S.D. = 1.19), respectively. Smith et al. (1982) reported peak 

anaerobic power scores of 11.7 W-kg‘^ (S.D. = 1.0) and 11.5 W*kg ’ (S.D. = 0.4) respectively for 

forwards and defencemen of the 1980 Canadian Olympic Hockey Team. The resistance used by 

Smith et al. (1982) was based on bodyweight as well as leg volume, and therefore might explain 

the somewhat lower peak anaerobic power values when compared to the values reported by 

Rhodes et al. (1988) and those observed in the present study. 

The mean time taken by the players to skate 6.06 meters in this study was 1.22 s (S.D. = 

0.11), with times ranging from 1.07 s to 1.40 s. Marino (1983) reported a much slower average 

time of 1.95 s (S.D. = 0.13) to skate a distance of six meters. In 1956, St. Denis reported that 

high school players were able to skate a distance of twenty-four feet (7.27 m) in an average time 

of 1.74 s (S.D. = 0.12). The disparity between the findings of the present study and of previous 

literature in the time taken to skate six meters may be explained by differences in the expertise 

(skating ability and physical fitness) of the participants and the methods in which time was 

measured. While fourteen of the sixty-nine hockey skaters in his study were members of a 

university club hockey team and the remaining fifty-five were volunteers from intramural teams 

or hockey classes, Marino (1983) reported that none of the participants could be considered elite 

performers. St. Denis (1956) reported that all seventeen subjects in his research study were 

members of a “high caliber” high school hockey team. However, as members of the NHL 

organization, the subjects participating in the present study would be considered elite skaters 
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when compared to subjects in previous research. Therefore, skating ability (i.e. optimization of 

push-off and summation of muscle forces) and physical fitness (strength and power) might 

explain a portion of the difference observed in the average time taken to skate six meters. 

Another explanation for the differences between the present study and previous research in the 

time to skate six meters is the method of timing. Timing of the accelerations began upon the 

skater’s first voluntary movement and on a “GO” command, in the respective studies by Marino 

(1983) and St. Denis (1956). However, the timing of the on-ice accelerations in the present 

study began with the player’s first push-off (right foot for all skaters) and therefore does not 

include the time taken by the players to begin and complete their first push-off 

The mean instantaneous velocity at six meters for the players in this study was 6.44 m-s'^ 

(S.D. = 0.32) with velocities ranging from 6.00 to 7.26 m s *. The mean average acceleration 

over the six meters was 5.33 m s‘^ (S.D. = 0.58) with a range of 4.41 to 6.47 m-s'^. Marino 

(1983) reported a similar mean instantaneous velocity of 5.75 m-s'*, yet a much lower mean 

'y 

average acceleration of 2.96 m s' over the six meters. The differences in mean instantaneous 

velocity and average acceleration can again be attributed to differences in the skating ability and 

physical fitness of the players, and the method of timing the acceleration. Further, players in the 

present study had already attained an increased velocity upon the initiation of the timing and 

therefore would have an inflated average acceleration, when compared to previous research by 

Marino (1983) and St. Denis (1956) in which the initial velocity was zero. 
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Kinematics of Skating 

Although kinematic data was collected for the first seven strides starting with right foot 

push-off, the kinematic analysis was limited to the first five strides since all players had 

completed five strides before having travelled a distance of six meters. 

The results of the kinematic analysis of the first five strides revealed that the players 

tended to use short, rapid strides initially, followed by longer, slower strides in the later part of 

the acceleration. Average stride length increased progressively from 1.02 m (S.D. = 0.27) in the 

first stride to 1.85 m (S.D. = 0.23) by the fifth stride. Similarly, an increase in the first stride 

propulsion time from 0.245 s (S.D. = 0.028) to the fifth stride propulsion time of 0.295 s (S.D. = 

0.028), resulted in a decrease in stride rate from 3.74 strides*s'^ (S.D. = 0.27) to 3.61 strides-s*^ 

(S.D. = 0.42), over the first five strides. After taking the average of the first three strides 

combined, Marino (1983) reported a slightly shorter mean stride length of 1.11 m and a slightly 

slower mean stride rate of 3.31 strides-s‘\ The difference in stride length could be attributed to 

the differences in the height of the subjects, and the difference in the stride rate is likely due to 

differences in the leg power and skating experience. 

In the present research study, the average double support time was negative during the 

first four skating strides, which indicated that for most players no glide phase existed in which 

both skates were simultaneously in contact with the ice surface. Earlier research by Marino & 

Dillman (1976) suggested that no double support period existed during rapid accelerations, 

confirming the findings of the present study. Further supporting the findings of the present 

study, Marino (1979) found that during acceleration the glide phase occurs during a portion of 

the single support period. Propulsive time in this research study was defined as the time taken 

from touchdown of the skate at the end of the recovery phase to the end of the next push-off 
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phase. The mean propulsive time increased from 0.245 s (S.D. = 0.03) in the first stride to 0.295 

s (S.D. = 0.03) by the fifth stride. Marino (1983) reported that the average single support time 

for the first three strides was approximtely 0.262 s (S.D. = 0.03). However, since there was no 

period of double support during the first four strides in this study, the propulsive time by 

definition is synonymous to single support time as defined by Marino (1983). Therefore, the 

propulsive times found in the present study, are similar to those reported by Marino (1983). 

During forward acceleration, the players increased the degree of forw£ird lean and hip 

flexion at touchdown, which caused a decrease in the hip angle (angle between the torso and 

thigh) at touchdown. Mean hip angle at touchdown for the first stride was 100.79° (S.D. = 

10.63), whereas the mean hip angle at touchdown during the fifth stride was 81.28° (S.D. = 

9.00). The angle of the hip at push-off also decreased during the acceleration as a result of 

increased forward lean and decreased hip extension. At the end of the first push-off, mean hip 

angle was 159.35° (S.D. = 13.13) and following the fifth push-off, mean hip angle increased to 

142.96° (S.D. = 9.85). Although lean angle at push-off and touchdown as well as hip flexion and 

extension have been reported separately in previous research studies, hip angle (angle between 

torso and thigh in 3D) at push-off and touchdown was used in this research study to represent 

both torso lean and thigh position. Nevertheless, the analysis of the lean angle at push-off and 

touchdown in this study were similar to values reported previously by Marino (1983). Marino 

(1983) reported a mean score for lean angle at push-off and touchdovm, when averaged over the 

first three strides, of 41.76° (S.D. = 7.52) and 43.44° (S.D. = 20.65), respectively. The lean 

angle at push-off in this study ranged between 43.31° (S.D. = 8.67) and 31.15° (S.D. = 5.96), 

and between 46.56° (S.D. = 6.96) and 54.04° (S.D. = 7.55) at touchdown. Further, Marino 
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(1983) reported a mean hip angle of 155.84° (S.D. = 9.75) at push-off over the first three strides, 

which is consistent with the findings of this study mentioned previously. 

Increased hip abduction rather than hip extension was observed at push-off, throughout 

the acceleration. Mean hip abduction increased from 5.93° (S.D. = 3.43) in the first push-off to 

16.75° (S.D. = 3.78) by the fifth push-off. On the other hand, hip extension decreased from 

26.16° (S.D. = 7.66) to 22.69° (S.D. = 5.21), between the first and fifth strides, respectively. 

Following an analysis of the start in speed skating, de Koning, Thomas, Berger, de Groot & van 

Ingen Schenau (1995) concluded that as skating speed increased the amount or hip extension (as 

measured by displacement in Y-coordinate) decreased and the amount of hip abduction (as 

measured by increase in X-coordinate) increased. Similarly, Page (1976) reported that the 

average angle of leg abduction during top-speed was 30.36° (S.D. = 6.62). Therefore, the results 

of the present study and of previous literature indicate that skaters generate propulsion primarily 

through hip extension during the initial strides, yet use primarily hip abduction to create 

propulsion in later strides. 

Knee angle at push-off remained constant throughout the acceleration with means for 

each stride ranging between 155.34° (S.D. = 5.46) and 158.18° (S.D. = 6.24), whereas knee 

angle at touchdown decreased in successive strides from 107.25° (S.D. = 5.22) in the first to 

97.21° (S.D. = 4.60) in the fifth. Similar values were reported by Marino (1983), who found that 

knee angle at push-off was 155.23° (S.D. = 13.43) when averaged over the first three strides. 

Although Marino (1983) did not report knee angle values at touchdown. Page (1976) reported 

knee flexion angles ranging from 95° to 130° during forward skating. Page (1976) measured the 

angle of knee flexion prior to the start of propulsion rather than at touchdown, which might 

therefore explain the large range of knee flexion angles observed. 
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The mean height of the center of mass decreased from 0.91 m (S.D. = 0.06) at the first 

touchdown to 0.87 m (S.D. = 0.05) at the fifth touchdown. The decreased height of the center of 

mass was primarily a function of an increase in forward lean of the torso and decrease in knee 

angle at touchdown. Consistent with the average push-off angle (take-off angle) reported by 

Marino (1983), the angle of take-off with the ice-surface decreased slightly in the present study, 

from 53.23° (S.D. = 4.62) in the first push-off to 50.30° (S.D. = 2.91) for the fifth push-off 

Researchers have suggested that a decreased height of the center of mass and take-off angle 

during acceleration permits a greater range of motion at the hip and knee joints and as a result, 

increased propulsion and skating speed (Allinger & van Den Bogert, 1997; de Koning et al. 

1995; Marino 1984). 

The angle between the skate blades at touchdown, or the skate-v angle, decreased 

considerably during the acceleration. The average skate-v angle for the first touchdown was 

108.51° (S.D. = 14.08), yet this value decreased to 77.02° (S.D. = 8.78) by the fifth touchdown. 

The decreased skate-v angle at touchdown was a function of the decreased propulsive angle of 

the skate with the direction of travel. The propulsive angle of the skate decreased from 65.44° 

(S.D. = 9.57) in the first push-off to 53.88° (S.D. = 7.69) in the fifth push-off. Marino (1983) 

reported a somewhat smaller mean propulsive angle of 40.54° (S.D. = 6.20) over the first three 

strides. Researchers investigating the push-off in speed skating have previously reported that 

speed skaters used large propulsive angles during the start in speed skating in order to push-off 

against a fixed position (de Koning et al., 1995; van Ingen Schenau, de Boer & de Groot, 1987). 

However, as forward skating speed increased, push-off forces no longer were directed against a 

fixed position and therefore, smaller propulsive angles were used (de Koning et al., 1995; van 

Ingen Schenau et al., 1987). 
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Plantar flexion, as measured by the angle of the ankle joint at push-off, remained 

relatively unchanged throughout the acceleration vsdth values ranging between 115.52° (S.D. = 

7.29) and 118.18° (S.D. = 6.68) for all five strides. Although, Marino & Weese (1979) reported 

that skaters used “some” plantar flexion in the ice hockey skating stride, no research studies to 

date have examined the role of plantar flexion during the acceleration. Van Ingen Schenau et al. 

(1987) reported that speed skaters are taught to suppress maximal plantar flexion to avoid 

undesirable increases in ice friction caused by the skate tip. Therefore, further research is 

necessary to determine the effect of plantar flexion and skate blade shape on ice friction and 

skating speed during acceleration in ice hockey. 

The vertical displacement of the left foot was monitored during the recovery phase of 

strides two, four and six. During these strides, players in this study consistently lifted their left 

foot between 0.19 m (S.D. = 0.06) and 0.20 m (S.D. = 0.06) above the ice surface. The vertical 

displacement of the foot during the recovery phase in this study is slightly greater than that 

(X = 0.14 m, S.D. = 0.04) reported by Marino (1983), however, these differences may have been 

proportional to the differences in the height of the subjects and their corresponding limb lengths. 

The distance between the toe of the skate and the center of mass at touchdown increased 

throughout the acceleration for the players in this study. The smallest toe to center of mass 

distance occurred at the first touchdown (X = -0.026 m, S.D. = 0.09) and the distance 

progressively increased to the greatest distance at the fifth touchdown (X = -0.174 m, S.D. = 

0.05). The placement of the foot upon completion of the recovery phase in this study differs 

greatly from the findings of Marino (1983), who reported that the mean toe to hip distance for 

the average of the first three strides was 0.263 m (S.D. = 0.078). Although, the present research 

used the toe to center of mass distance instead of the toe to hip distance at touchdown, these 
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discrepancies must be the result of differences in the calculation or interpretation of this value. It 

appears that most of the skaters in this study placed their recovery skate in a position which 

would have created a breaking force, caused them to decelerate and increased the time taken to 

skate the six meters. Marino (1983) hypothesized that placing the skate too far in front of the 

body, also shown in the present study, would delay the onset of the subsequent propulsive phase 

until the body was in a suitable position relative to the foot. 

Analysis of the arm action during the first five strides revealed that there was little 

change in the amount of flexion, extension and abduction of the shoulder joints during the 

acceleration. Shoulder flexion at push-ofFranged between -4.22° (S.D. = 16.24) and 3.42° (S.D. 

= 12.56), and shoulder extension ranged between 43.32° (S.D. = 11.20) and 45.53° (S.D. = 

14.93), both measured from the XY plane. Shoulder abduction was consistently between 40.57° 

(S.D. = 12.66) and 44.72° (S.D. = 10.84) to the YZ plane throughout the acceleration. There was 

however, a progressive increase in the amount of adduction (as measured by the angle of 

abduction) at the shoulder joint from 20.12° (S.D. = 14.77) at the first push-ofF to 1.85° (S.D. = 

12.31) at the fifth push-off. It has been suggested by hockey coaches that the arm action in ice 

hockey should complement and coordinate the propulsive action of the legs, although there is a 

lack of empirical evidence to support this claim (ASEP Youth Hockey Coaching Manual 1996; 

Tarasov, 1973). However, the results of the present indicate that players began with a front to 

back arm action and progressed to a more side to side arm action to balance the increased hip 

abduction and decreased hip extension during the later strides of the acceleration. Nevertheless, 

this is the first research study to the author’s knowledge that has examined the kinematics of the 

upper arm during ice hockey skating, and thus further research must be done to confirm these 

findings. 

54 



Acceleration in Elite Ice Hockey Players 

Kinematic Variable Structure 

Perhaps the greatest limitation to previous research investigating the kinematics of ice 

hockey skating was the grouping of kinematic data for the initial strides into a single mean score, 

thus concealing the uniqueness of each stride and the progression of the skating stride during 

acceleration. This was necessary because of the volume and complexity of collecting and 

analyzing kinematic data collected over numerous strides (i.e. stride I, stride 2, and stride 3). 

However, recent advances in technology have allowed biomechanists to collect kinematic data 

over a far greater field width than possible in previous research. Further, statistical applications 

in biomechanics have enabled researchers to subsequently analyze this kinematic data without 

collapsing the information into a single performance score (McPherson, Montelpare & Puumula, 

1999). 

In this research study, exploratory factor analyses were used to examine the association 

between the kinematic variables of interest, identify the underlying relationships between groups 

of kinematic variables and to eliminate confounding kinematic variables from further analyses 

(Diekhoff, 1992). The principal components factor analysis (PCA) identified statistically 

parsimonious relationships between the kinematic variables and was therefore used to create a 

reduced set of variables that described the kinematics of ice hockey skating during acceleration 

(McPherson, Montelpare & Puumula, 1999; Diekhoff, 1992). Further, by identifying isolated 

variables and variable sets, the PCA highlighted the importance of the individual stride as well as 

the progression of multiple strides to the overall acceleration. 

The final PCA resulted in a factor structure with three distinct latent variables, which 

together described the kinematics of ice hockey skating technique. The twenty-eight variables 

that loaded on the final factor structure accounted for more than fifty-six percent of the total 
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variance in the fifty kinematic variables that remained in the final PCA. Although the final 

model explained only fifty-six percent of the total variance, it is essential to note that the 

remaining variance may be attributed to the individual strides within a kinematic measure that 

did not have factor loadings of greater than (.60). Therefore, the remaining fourty-four percent 

of the variance in the model was not explained by different kinematic measures, but shared by 

individual strides within the same kinematic measures. 

Given that the first latent variable was composed of primarily variable sets, it can be 

concluded that this latent variable represented the progression of the skating stride during 

acceleration. Further, the variable sets were found within kinematic measures that researchers 

have previously identified as important variables for maintaining optimal propulsion during 

skating. In 1983, Marino suggested that although take-off angle and forward lean at touchdown 

and push-off were not significantly correlated with average acceleration, these measures were 

important factors in the optimization of both the magnitude and direction of propulsion. 

Similarly, de Koning et al. (1995) reported that by the eighth stride in the speed skating start, 

skaters moved from a “running-like” skating technique to a “gliding” technique in order to 

maintain an effective push-off. The researchers found that as skating speed increased, the amount 

or hip extension (as measured by decreases in the Y-coordinate) decreased and the amount of hip 

abduction (as measured by increases in the X-coordinate) increased (de Koning et al., 1995). In 

addition, van Ingen Schenau et al. (1987) reported that performance in speed skating was 

significantly correlated to the direction of the push-off force in the X-Z plane. Therefore, given 

that the factor loadings within this variable represented the progressive changes in the skating 

stride throughout acceleration in an attempt to maximize the efficiency of propulsion, the first 

latent variable was referred to as the propulsion efficiency factor. By examining the sign of the 
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factor loadings, it can be concluded that in order to maintain propulsion efficiency, skaters must 

decrease (+ sign) their hip angle at touchdown and their angle of take-off, while simultaneously 

increasing (- sign) their hip abduction angle at push-off on successive strides. These tendencies 

are illustrated in Figure 8 and Figure 9. Further, the changes in the mechanics of the skating 

stride will then result in an increase (- sign) in stride length and propulsive time with each 

successive stride. 

Figure 8: Tendency of kinematic variables loaded on the first latent variable (saggital view) 
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Figure 9: Tendency of kinematic variables loaded on the first latent variable (frontal view) 

Factor loadings for the second latent variable highlighted the importance of the first push- 

off to the overall acceleration. Although hip angle at push-off and toe to center of mass at 

touchdown for the fifth stride exhibited strong factor loadings in this latent variable, these 

isolated variables were identified as inconsistent with the remaining factor loadings. The group 

of remaining variables, hip angle at push-off, knee angle at push-off and ankle angle at push-off 

in the first stride represented the summation of propulsive forces at push-off. Marino & Weese 

(1979) previously reported that the summation of propulsive forces in the driving leg included 

full extension of the knee, hyperextension of the hip and plantar flexion of the ankle at push-off 

Given that the factor loadings for these variables were for the first stride, the second latent 

variable indicated the importance of the first push-off to overall performance and was therefore 

referred to as the critical push-off factor. Players should attempt to maximize (+ sign) their hip 

angle, knee angle and ankle angle at push-off in order to optimize the propulsive phase in the 
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critical first stride and minimize the time taken to skate a given distance. These tendencies are 

illustrated in Figure 10. 

Figure 10: Tendency of kinematic variables loaded on the second latent variable. 

Finally, the third latent variable included three variables with factor loadings of greater 

than .60, which included knee angle at touchdown for strides two and three and take-off angle for 

the first stride. However, take-off angle was previously identified as an important kinematic 

measure in the propulsion efficiency factor, and therefore the factor loading for the first stride 

was inconsistent with the skating characteristic identified by this latent variable. The two 

remaining factor loadings for knee angle at touchdown on strides two and three indicated the 

importance of flexion at the knees to allow for a larger range of motion during propulsion. De 

Koning et al. (1995) reported that in speed skating, larger ranges of motion in hip and knee joints 

resulted in larger extension velocities in both the X and Y-directions. Similarly, Page (1976) 
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reported that the range of knee extension in ice hockey was significantly correlated to skating 

speed. This factor was referred to as the propulsion preparation factor, given that the factor 

loadings highlighted the importance of flexion at the knees prior to the initiation of propulsion 

(see Figure 11). Therefore, by maximally flexing (+ sign) the knee at touchdown, players can 

increase the duration in which propulsion can occur, and ultimately increase their potential 

skating speed. 

Figure 11: Tendency of kinematic variables loaded on the third latent variable. 

In summary, the PCA results revealed that for optimal skating performance, players must: 

maximize their push-off during the first stride, prepare for propulsion with knees fully flexed at 

touchdown and most importantly maintain an efficient body position throughout acceleration to 

maximize propulsion. 
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Prediction of Skating Time 

Nine variables were found to predict 95.3% of the variance in the time taken to skate six 

meters in the present study. These variables, in order of their predictive power, included: 

1) transpose variable - stride length (stride 1-3) 

2) toe-to-center of mass distance at touchdown (stride 3) 

3) hip angle at push-off (stride 1) 

4) transpose variable - propulsive time (stride 2-4) 

5) player height 

6) knee angle at push-off (stride 1) 

7) transpose variable - hip abduction at push-off (stride 4,5) 

8) hip abduction at push-off (stride 2) 

9) peak anaerobic power - normalized 

The results of the regression analysis in the present study differs from previous findings by 

Marino & Dillman (1976) and Marino (1983), in both the number of predictors and predictive 

accuracy of the regression equation for the time to skate six meters. Using multiple regression 

analysis with a forward stepwise approach, Marino & Dillman (1976) reported that four 

variables, forward lean angle at touchdown, take-off angle, stride rate and height, accounted for 

49% of the variance in the time taken to skate six meters. Two of the four variables reported by 

Marino & Dillman (1976), stride rate (measured as propulsive time in this study) and player 

height, were significant predictors of the time to skate 6.0 m in the present study. Although the 

remaining two predictors identified by Marino & Dillman (1976), forward lean at touchdown (as 

measured by hip angle at touchdown in this study) and take-off angle were highlighted by the 
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PCA as important skating characteristics, these variables were not significant predictors of the 

time taken to skate six meters in the present study. 

Previous research findings indicate that the remaining variables of the regression 

equation presented in this research study were also likely to influence skating performance. 

Specifically, stride length was a significant predictor in the present study, and was reported 

previously by Marino (1984) to be correlated (r = .76) to forward skating velocity. Likewise, 

toe-hip distance at touchdown was found to be a significant predictor of average acceleration by 

Marino & Dillman (1976). Marino & Dillman (1976) reported that leg length, a function of 

player height (shown in the present study), was also a significant predictor of average 

acceleration over six meters. Page (1976) and de Koning et al. (1995) suggested that the range of 

knee extension is related to skating velocity, while Marino & Weese (1979) described the 

importance of the summation of force (including knee extension) at push-off to propulsion. 

Although no research studies to date have examined hip abduction in ice hockey, it has been 

shown in the present study and in previous research that increased hip abduction is required 

during acceleration to maintain an effective propulsive action during skating (de Koning et al., 

1995). 

Finally, the inclusion of peak anaerobic power in the regression model of the present 

study confirms previous research by Allinger & Van den Bogert (1997), who reported that 

skating speed in speed skating could be limited by instantaneous power. Although peak 

anaerobic power had the least predictive power of all variables in the regression equation, it is 

apparent that this measure is related to skating performance and therefore can be used by 

coaches, trainers or players as an indicator of skating potential over short distances. Further, it is 
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proposed that an improvement in peak anaerobic power, will result in a concomitant decrease in 

the time taken to skate six meters, provided that skating technique remains constant. 

Variability of Skating Technique 

The estimates of skewness and kurtosis support the homogeneity of variance in those 

kinematic variables that best predict the time taken to skate six meters. In this research study, 

little difference was observed between individuals on all of the kinematic variables included in 

the regression equation for the time taken to skate six meters, with the exception of the 

transposed variable for hip abduction at push-off. However, the estimates of skewness and 

kurtosis revealed an increased heterogeneity of variance in both stride characteristics included in 

the final regression equation, stride length and propulsion time. It is important to note that while 

skating technique can be learned and reinforced through coaching and practice, the variables 

stride length and propulsion time are more likely a function of limb length and anaerobic power 

(Allinger & Van den Bogert, 1997). Therefore any comparison of variance estimates on these 

two stride characteristics will be directly proportional to the anatomical and physiological 

differences between subjects. 

In 1997, Allinger & Van den Bogert reported that as skating speed increased, the range of 

skating techniques that could be used to achieve a given skating speed decreased. Although 

Allinger & Van den Bogert (1997) used a simulation model for steady state speed skating, their 

research findings support the homogeneity of variance in skating technique used by ice hockey 

players during acceleration observed in the present study. 
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Conclusions 

The results of this research study have contributed substantially to our understanding of 

the biomechanics of ice hockey skating technique and the prediction of on-ice acceleration. The 

use of three-dimensional pan and tilt video-analysis in this study has allo\ved for a more precise 

analysis of the kinematics of hockey skating technique during on-ice acceleration. Exploratory 

factor analyses were used to filter the set of kinematic variables by eliminating confounding 

kinematic variables and variables exhibiting multicollinearity. Moreover, the factor analyses 

identified and quantified the relationship between kinematic measures that together described 

important characteristics of ice hockey skating technique. The structural relationships 

highlighted the importance of progression throughout acceleration for some kinematic variables 

as well as the importance of individual strides for other kinematic measures. 

The use of the log-log transformation of the power function to transpose raw scores 

within a variable set into a single composite score has captured the progressive nature of the 

skating stride without masking the unique contribution of each individual stride. The inclusion 

of peak anaerobic power in the multiple regression model confirmed Allinger & Van den 

Bogert’s (1997) theory that instantaneous power can limit skating performance in skating sports. 

Further, the inclusion of peak anaerobic power in the regression model demonstrates the 

importance of combining physiological and biomechanical measures in an attempt to accurately 

describe or predict sport performance. Finally, it is important to recognize that in this study the 

analysis of the skewness and kurtosis estimates for predictors of skating performance identify the 

homogeneity of variability in ice hockey skating technique, while also illustrating the 

heterogeneity in stride characteristics within the elite level ice hockey players sampled in this 

study. 
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Recommendations 

The following recommendations are offered for future research: 

1) Similar methodologies should be used to validate the kinematics of forward 

skating at steady state skating speeds as well as a combination of acceleration and 

steady state skating. 

2) These results of the present should be validated for a variety of levels of skating 

ability and over a range of age groups. 

3) Three-dimensional video analysis should be used to analyze and evaluate various 

other skating movements commonly performed in the sport of ice hockey, 

including, cross-overs, agility movements and stop-start actions. 

4) Further analysis of the action of the upper body during acceleration and its 

contribution to skating performance. 
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Appendix A: Spatial Model 
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Appendix B: Kinematic Variables of Interest 

Name of Variable Description Abbr. 
Hip Angle Angle between the trunk and thigh of push-ofF side H Pi 
Hip Angle Angle between the trunk and thigh of touchdown side H Ti 
Lean Angle Angle between the trunk and horizontal of push-off side LPO / 
Lean Angle Angle between the trunk and horizontal of touchdown 

side 
LTD i 

Knee Angle Angle between the thigh and shank at push-off K Pi 
Knee Angle Angle between the thigh and shank at touchdown K Ti 
Ankle Angle Angle between the foot and shank at push-off A / 
Skate-V Angle Angle between the skate blade of left and right skate 

blades at touchdown 
SKTV / 

Propulsive Angle Angle between the skate blade and the direction of travel 
at push-off  

PA / 

Take-off Angle Angle above the horizontal of a line from the toe of the 
boot to the hip at push-off  

TO Pi 

Hip Abduction 
Angle  

Angle between the thigh and the vertical plane at push- 
off 

HARD / 

Shoulder Flexion Angle between the humerus and the XY plane (positive 
Z-coordinate)   

SHFL / 

Shoulder Extension Angle between the humerus and the XY plane (negative 
Z-coordinate)  

SHE i 

Shoulder Abduction Angle between the humerus and the YZ plane (positive 
X-coordinate)   

SHAB / 

Shoulder Adduction Angle between the humerus and the YZ plane (negative 
X-coordinate 

SHAD i 

Stride Rate The number of strides per second SR / 
Stride Length The horizontal distance in the Z-direction from push-off 

of one leg to push-off of the other  
SL / 

Propulsion Time The time taken from touchdovm of skate to push-off of 
same skate 

PT i 

Double Support 
Time 

The time during which both skates are in contact with the 
ice during a stride  

DST / 

Height of Center of 
Mass 

The height above the right skate tip at touchdown of the 
right leg  

HCM / 

Vertical Displ. of 
Foot 

The maximum vertical displacement of the left foot 
during the recovery phase  

FVD i 
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Appendix C: Joint, Segment and Segment-Plane Angles 

Angle Endpoint 1 Vertex Endpoint 2 
Left Hip 14 15 
Left Knee 16 15 14 
Left Ankle 15 16 18 
Right Hip 13 12 
Right Knee 11 12 13 
Right Ankle 12 11 

Angie Endpoint A1 Endpoint A2 Endpoint B1 Endpoint B3 
Skate-V 8 20 19 

Angle Endpoint 
A1 

Endpoint 
A2 

Plane 

Right Propulsive 8 YZ 
Left Propulsive 20 19 YZ 
Right Hip Abduction 12 13 YZ 
Left Hip Abduction 15 14 YZ 
Right Shoulder Abduction/Adduction YZ 
Left Shoulder Abduction/Adduction YZ 
Right Hip Flexion/Extension 12 13 XY 
Left Hip Flexion/Extension 15 14 XY 
Right Shoulder Flexion/Extension XY 
Left Shoulder Flexion/Extension XY 
Right Take-off 13 XZ 
Left Take-off 14 20 XZ 
Right Torso Lean 13 XZ 
Left Torso Lean 14 XZ 
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Appendix D: Descriptive Statistics for Raw Kinematic Data 

Variable N Mean Std. Dev. Min. Max. Skew. Knrt. 
H T1 21 100.79 10.63 75.71 117.91 -0.526 0.102 
H T2 21 102.77 10.89 71.72 117.27 -0.970 1.847 
H T3 21 90.29 9.19 66.13 106.35 -0.803 1.239 
H T4 21 96.17 8.85 68.04 110.50 •1.411 4.213 
H T5 21 81.28 9.00 58.06 93.88 -1.098 1.267 
H PI 21 159.35 13.13 124.30 176.20 -1.052 1.401 
H P2 21 148.52 9.16 133.69 164.21 0.133 -1.021 
H P3 21 150.68 7.29 134.89 164.59 -0.423 0.781 
H P4 21 139.84 6.12 125.97 148.86 -0.872 0.467 
H P5 21 142.96 9.85 124.51 158.37 -0.343 -0.885 
K T1 21 107.25 5.22 95.50 118.03 -0.332 0.568 
K T2 21 106.74 4.96 97.46 117.94 0.286 -0.171 
K T3 21 101.03 5.66 87.89 109.39 -0.951 1.112 
K T4 21 103.13 3.95 96.47 111.49 0.269 0.153 
K T5 21 97.21 4.60 87.32 105.90 -0.044 -0.084 
K PI 21 158.05 8.70 131.90 169.30 -1.195 2.860 
K P2 21 155.78 6.13 146.65 169.87 0.400 0.052 
K P3 21 158.18 6.24 147.78 169.38 -0.072 -1.133 
K P4 21 155.34 5.46 144.16 166.03 -0.040 0.231 
K P5 21 156.89 5.26 146.62 166.40 -0.020 -0.635 
A PI 21 117.09 7.47 102.78 128.26 -0.419 -0.399 
A P2 21 118.18 6.68 106.73 131.53 0.741 -0.008 
A P3 21 117.72 3.66 112.18 123.76 0.158 -1.017 
A P4 21 115.52 7.29 105.55 133.49 0.910 0.450 
A P5 21 116.22 5.89 100.22 125.74 -0.803 1.302 
SKTV 1 21 108.51 14.08 77.64 141.12 0.056 0.620 
SKTV 2 21 88.63 11.12 57.91 106.93 -0.760 1.844 
SKTV 3 21 89.97 8.82 66.39 103.84 -0.599 1.160 
SKTV 4 21 75.79 10.19 56.37 94.76 -0.432 -0.168 
SKTV 5 21 77.02 8.78 62.34 93.04 0.052 -0.883 
PA 1 21 65.44 9.57 48.70 79.63 -0.334 ■1.357 
PA 2 21 55.37 6.28 37.95 69.61 -0.502 2.538 
PA 3 21 59.25 9.15 43.09 72.89 -0.224 -1.213 
PA 4 21 52.04 4.18 46.18 59.82 0.193 -1.064 
PA 5 21 53.88 7.69 36.53 66.00 -0.491 -0.136 
HARD PI 21 5.93 3.43 0.39 13.06 0.298 -0.222 
HARD P2 21 12.15 6.59 1.40 26.62 0.142 -0.288 
HARD P3 21 8.13 6.83 0.05 24.26 0.913 0.517 
HARD P4 21 19.75 3.78 12.74 27.36 0.281 -0.246 
HARD P5 21 16.75 3.78 7.75 28.05 0.612 -0.554 
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Variable N Mean Std. Dev. Min. Max. Skew. Kurt. 
HF T1 21 38.17 6.68 25.49 48.96 -0.501 -0.707 

HF T2 21 41.32 5.45 32.36 52.31 0.338 -0.311 
HF T3 21 48.81 5.94 37.99 59.75 -0.046 -0.280 
HF T4 21 47.61 4.06 38.33 55.34 -0.058 0.157 
HF T5 21 55.09 4.61 45.98 63.56 0.008 -0.222 
HE PI 21 26.17 7.66 1.97 37.42 -1.390 4.011 
HE P2 21 24.27 5.09 15.26 38.95 0.977 2.455 
HE P3 21 25.35 4.78 18.74 35.84 0.507 -0.423 
HE P4 21 22.11 4.20 11.08 30.26 -0.529 1.192 
HE P5 21 22.70 5.21 10.32 32.18 -0.433 0.519 
SHE PI 21 44.10 12.74 24.94 70.39 0.361 -0.591 
SHF PI 21 -4.22 16.25 -30.92 36.38 0.533 0.323 
SHE P2 21 45.53 14.93 16.36 70.04 0.033 -0.689 
SHF P2 21 3.42 12.56 -25.50 23.48 -0.274 -0.076 
SHE P3 21 44.09 11.58 20.24 68.49 -0.127 0.125 
SHF P3 21 -0.51 13.16 -21.72 31.63 0.572 0.354 
SHE P4 21 43.32 11.20 17.75 66.43 0.043 0.272 
SHF P4 21 2.89 12.86 -27.21 26.17 -0.640 0.351 
SHE P5 21 44.42 13.39 12.80 73.75 -0.361 1.008 
SHF P5 21 ■1.02 9.39 -14.61 25.29 0.974 2.148 
SPIAB PI 21 42.79 11.46 15.15 60.58 -0.654 0.158 
SHAD PI 21 20.12 14.77 0.60 47.83 0.208 •1.097 
SHAB P2 21 40.57 12.66 17.31 57.02 -0.551 -0.924 
SHAD P2 21 14.13 17.34 -5.78 55.15 0.960 0.209 
SHAB P3 21 41.56 14.17 3.50 69.41 -0.675 1.719 
SHAD P3 21 8.52 9.97 -4.01 31.99 0.799 0.278 
SHAB P4 21 44.72 10.84 23.22 65.87 -0.196 -0.533 
SHAD P4 21 2.57 10.87 •16.46 33.32 1.057 2.138 
SHAB P5 21 42.63 14.51 13.75 77.07 0.355 0.479 
SHAD P5 21 1.85 12.36 -17.62 29.28 0.782 -0.196 
FVD 2 21 0.195 0.06 0.10 0.33 0.656 0.045 
FVD 4 21 0.193 0.05 0.10 0.30 0.013 -0.195 
FVD 6 21 0.193 0.06 0.11 0.30 0.397 -0.867 
TO PI 21 53.23 4.62 46.88 67.27 1.232 3.190 
TO P2 21 53.83 2.76 47.74 58.55 -0.413 0.018 
TO P3 21 52.57 2.82 47.39 56.49 -0.350 -0.956 
TO P4 21 52.02 2.62 44.92 56.34 -0.940 1.666 
TO P5 21 50.30 2.91 44.02 54.90 -0.232 -0.322 
SL 1 21 1.02 0.27 0.29 1.45 -0.736 1.086 
SL 2 21 1.18 0.18 0.84 1.57 0.607 0.858 
SL 3 21 1.47 0.19 1.15 1.76 0.007 -1.251 
SL 4 21 1.61 0.18 1.23 2.00 -0.086 0.572 
SL 5 21 1.85 0.24 1.42 2.19 -0.487 -1.032 
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Variable N Mean Std. Dev. Min. Max. Skew. Kurt. 
SR 1 21 3.74 0.27 3.16 4.29 -0.259 0.213 

SR 2 21 3.80 0.34 3.16 4.29 -0.017 -1.087 

SR 3 21 3.71 0.24 3.33 4.00 -0.333 ■1.068 

SR 4 21 3.76 0.28 3.33 4.29 0.201 -0.550 

SR 5 21 3.47 0.29 3.00 4.00 0.022 -1.122 
PT 1 21 0.245 0.03 0.18 0.30 ■0.173 0.035 

PT 2 21 0.248 0.02 0.22 0.30 0.368 -0.677 

PT 3 21 0.265 0.02 0.23 0.30 -0.135 -0.828 

PT 4 21 0.267 0.03 0.22 0.32 -0.190 0.143 

PT 5 21 0.295 0.03 0.25 0.33 -0.202 ■1.372 

DST 1 21 -0.024 0.016 -0.083 0.000 -2.522 8.873 

DST 2 21 -0.018 0.022 -0.083 0.017 -1.053 2.908 

DST 3 21 -0.006 0.015 -0.050 0.017 ■1.421 2.867 

DST 4 21 0.001 0.013 -0.017 0.033 0.727 0.699 

DST 5 21 0.004 0.011 -0.017 0.033 0.914 1.514 

HCM T1 21 0.91 0.06 0.78 1.00 -0.236 -0.241 

HCM T3 21 0.90 0.06 0.77 0.98 -0.680 -0.131 

HCM T5 21 0.87 0.05 0.75 0.94 -0.647 -0.050 

TCD T1 21 -0.026 0.09 -0.20 0.24 0.757 1.389 

TCD T2 21 -0.086 0.06 -0.18 0.04 0.378 -0.302 

TCD T3 21 -0.150 0.06 -0.26 0.03 1.134 3.007 

TCD T4 21 -0.155 0.03 -0.20 -0.08 0.831 0.437 

TCD T5 21 -0.174 0.05 -0.24 -0.09 0.136 -0879 

LTD 1 21 52.34 6.98 34.49 63.07 -0.654 0.860 

LTD 2 21 54.04 7.55 33.38 66.04 -0.869 1.670 

LTD 3 21 49.71 5.71 34.27 58.26 -0.892 1.421 
LTD 4 21 53.69 6.71 33.07 63.73 ■1.202 3.514 

LTD 5 21 46.56 6.96 30.48 56.24 -1.183 0.914 

LPO 1 21 43.31 8.67 28.79 58.64 0.028 -0.601 

LPO 2 21 35.62 7.70 23.06 52.10 0.041 -0.296 

LPO 3 21 36.99 6.77 21.93 49.23 -0.338 0.200 
LPO 4 21 31.15 5.96 16.03 41.86 -0.864 1.234 

LPO 5 21 32.95 6.33 20.05 42.93 -0.429 -0.725 
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