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ABSTRACT 

The Photon Number Density Operator 

BY 

Thomas Melde 

A new operator is introduced to represent the density of photons in configuration space. It 
has some features in common with operators previously introduced by Mandel and Cook but 
has better transformation properties. 
The operator is introduced first in the Coulomb gauge where only transverse photons are 
necessary to describe physical states. It is the first component of the four vector obtained by 
contracting the electromagnetic field tensor with the vector potential. It is also shown that in 
the free field case the corresponding photon current and the photon number density operator 
satisfy a continuity equation. 
In the Lorentz gauge, longitudinal and scalar photons are allowed and the operators are 
defined in respect to an indefinite metric as proposed by Gupta. The Coulomb gauge operator 
expressed in the new metric cannot give the right number of ghost photons for arbitrary states 
and has to be discarded as a valid photon number density operator in the Lorentz gauge. It is 
shown that the photon number density operator in the Lorentz gauge differs from the one in 
the Coulomb gauge by a divergence term. The total number of photons for physical states is 
the same for both operators. The ghost states, which are the longitudinal and scalar photon 
states, in respect to the old metric are different for the two operators. 
The form of the photon number operator in the Lorentz gauge using the new metric can 
be substantiated by symmetry arguments. The new operator is able to count the ghost state 
photons in respect to the old metric in a free field and in the case of two fixed charges present. 
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Chapter 1 
Introduction 

Kunst gibt nicht das sichtbare wieder, sondern macht sichtbar. 
(Art does not reflect the visible, but makes visible.) 

-Paul Klee 

1 Out of the darkness 
Msion is probably the strongest of our senses and it is no surprise that we are eager 
to understand the concept that allows us to see and distinguish objects. Early theories 
thought of the eye as a testing device sending out signals to investigate the world 
around us. Greek philosophers however concluded that the eye is merely a detector 
that depends on signals sent by the observed object. Those signals are known as light 
and objects can either reflect or emit them. 

But what is the nature of these signals? One of the first observations was the 
fact that light appears to travel in straight lines and objects throw shadows. This 
behavior suggests that light consists of particles travelling the distance between the 
observed light emitting object and the eye with some velocity. If another object 
which cannot be traversed by the particle is in the way, it is impossible for our eye 
to observe the light emitting object. Newton supported this theory because he could 
not observe with his equipment that light would bend around comers and therefore 
wordd foUow a curved path. 

Robert Hooke, a contemporary of Newton, suggested that light is some kind 
of oscillatory behavior in a medium that yet had to be foxmd, which made a far 
more complicated theory necessary to explain the nature of light. In the year 1687 
Christiaan Huygens used this idea and formulated indeed a wave theory of light. 
Newton’s reputation and the simplicity of the theory however was reason enough that 
the corpuscle theory was predominant for some time. 

Another question of interest was the velocity with which light can travel. The 
first attempt to measure the speed of light was probably made by GaUleo Galilei, 
but with his equipment he only could show that light travels extremely fast. He 
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nevertheless predicted a finite value for the speed of light. The first value given 
for the speed of light is the one of Ole Roemer, who used solar data to obtain a 
value of 2 X 10®^. In the year 1849 Hippolyte Fizeau conducted the first terrestrial 
measurement and his result is the value accepted today. The riddle of the speed of 
light was solved, but the question of the nature of light was still unanswered. 

In the early 1800s (approximately at the same time as Fizeau’s experiments) 
the wave theory of light was able to explain the observation that light can in fact 
bend aroimd comers and Young performed interference experiments that could, not 
be explained with Newton’s particle theory. At the end of the century Maxwell 
formulated his famous set of equations and predicted the existence of electromagnetic 
waves, which travel with the speed of light. In the same centuiy Heinrich Hertz was 
able to show the existence of the proposed waves. The nature of light had to be an 
electromagnetic wave. 

2 The dawn of modern physics 
It did not take long to destroy this new confidence in the description of the nature 
of light, because in the year 1900 Max Planck was able to explain the black body 
radiation problem with an approach that contradicted classical physics. He concluded 
that the vibrational energy of the oscillators in the black body problem is discrete, 
or quantized as he called it, with a smallest possible finite unit of energy. Albert 
Einstein used this revolutionary idea to explain the photo-electric effect in the year 
1905 and treated hght as a stream of Planck’s energy quanta, which he called photons. 
The concept of photons is more similar to the particle approach and the confusion 
was evident, sometimes light seems to behave like a wave and sometimes like a 
particle. The only explanation was that both theories are models of something more 
complicated and are only valid in special cases. 

At the same time Einstein published his theory of special relativity, in which 
light plays an important role. Photons in this theory have zero rest mass and their 
finite speed is the fastest speed with which information can be transmitted. Simul- 
taneously the theory of quantum mechanics was developed independently by Erwin 
Schroedinger and Werner Heisenberg and the basic principles for modem physics 
were bom. The theories are completely abstract models and by far more difficult to 
runderstand than the classical theories. It seems that the more completely a model 
can describe nature the more difficult it is to understand it. Feynman even suggested 
that “nobody understands quantum mechanics”, but because the theory is so powerfiil 
most undergraduate students in physics are confronted with it today. In quantum 
mechanics physical states are described by wave functions in abstract spaces and 
observable quantities are represented by quantum mechanical operators. This and the 



9 

fact that certain measurements can only be performed up to a given uncertainty are 
the main concepts of the first quantized system. 

In the year 1927 Dirac published his paper on The Quantum Theory of the 
Emission and Absorption ofBadiation which was the foundation of a systematic theory 
of quantized fields. This is known today as second quantization and once again light 
played an important role in this development. A year later Dirac coupled his theory 
of radiation with a relativistic theory of the electron and Quantum electrodynamics 
was bom. Photons could now be interpreted as the excitation modes of the fi^ee 
electromagnetic field in this new theory and the description of the nature of light 
once again changed. 

3 The position of light today 
The particle aspect of the photons still constitutes difficulties, because as a particle the 
photon should be localizable in space and time like every other elementaiy particle and 
it would be possible to define a quantum mechanical position operator for photons. 
But photons have zero mass and Newton and Wigner [1] showed that particles of that 
kind are not strictly localizable. Modem physics tries to solve this problem, because 
in experiments photons are detected on a daily basis and experimentalists think of 
them in a way as point like. Jauch and Piron [2] suggested that photons are weakly 
localizable particles foUowing an approach to describe photons, which was developed 
by Mackey [3]. It is based on the so called representation theory, which is an 
abstract mathematical model describing positions with projection operators. Amrein 
[4] investigated this approach and its consequences and was able to define operators 
describing the number of particles in a given small volume of space in relativistic 
quantum field theory. He also compared this operator with a similar operator given 
earlier by Mandel [5] for the photon field. Amrein’s approach however is not the one 
investigated in this thesis. 

MandeTs photon number operator was the first of its kind and it was followed 
up by Cook [6][7], who extended the operator and was able to give a continuity 
equation for photons. Recently Inagaki [8] published a paper reformulating Cook’s 
photon dynamics in conventional quantum mechanics and giving an interpretation 
why Cook disregarded negative frequency solutions. All those approaches will be 
briefly discussed in this thesis. 

Initially Quantum electrodynamics was studied in the Coulomb gauge ^\llere the 
longitudinal modes of the field could be replaced by the Coulomb interaction. Only 
transverse photons were necessary to describe the physical system, but the system was 
not relativistically invariant. The covariant theory introduced a new kind of photons, 
the scalar photons, and treated the four kind of photons symmetrically. The scalar 
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photon however makes a change in the sign of its commutation relations necessary and 
it was proposed that the roles of emission and absorption operators for scalar photons 
should be reversed. This would destroy the symmetry of the theory and leads to 
difficulties. Suraj N. Gupta [9] used a different approach to solve this problem in a 
paper published in the year 1950. He introduced an indefinite metric and modffied 
the gauge condition for physical states. The difficulties in the physical interpretation 
were solved, because in his theory only the transverse photons are observable and the 
longitudinal and scalar photon states are allowed to have negative norms. As long 
as no constraints are apphed, those unphysical states which Michio Kaku [10] calls 
Ghosts are allowed to propagate in the theory. 

In this thesis a new photon number operator will be introduced in the Coulomb 
gauge first and in the Lorentz gauge later. The Lorentz description will be more 
complicated, because longitudinal and scalar photons will he allowed, hi the Lorentz 
gauge an indefinite metric as proposed by Gupta will be used. It also will be shown 
that the proposed operators will yield the same result as the usual photon number 
operators in the appropriate limits. It is also hoped that the description in the Lorentz 
gauge will give a better imderstanding of the role of scalar and longitudinal photons 
in physical situations. 
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Chapter 2 
Principles of Quantum 
Electrodynamics in the Coulomb 
Gauge 

And now for something completely different. 

-Monty Python’s Flying Circus 

In this chapter a brief introduction to the theory of Quantum electrodynamics will 
be given. The concept of Maxwell’s equations and Fourier transformations are the 
starting point and the quantization of the field will be explained in the second part of 
this chapter. The quantization will be performed in the Coulomb gauge first and in 
the Lorentz gauge in a later chapter. Throughout the thesis Sl-units wiU be used. 

1 Maxwell’s equations and the reciprocal space 
This section gives an introduction to the basic principles needed to develop quan- 
tum electrodynamics. It starts with the definition of Maxwell’s equations and their 
transformation into reciprocal space. Then the normal variables of the field will be 
derived, because they are the natural starting point for a quantization of the field. 

Maxwell’s equations in real space are 

V-E(r,<) = -^(r,t) (2.1.1) 
^0 

V-B(r,i) = 0 (2.1.2) 

V X E(r,t) =(2.1.3) 

V X B (r, i) = (r, t) + (r, t) (2.1.4) 
C CTCi SQ C 
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As usual E (r, t) is the electric field, B (r, t) is the magnetic field, p (r, t) is the 
charge density and j (r, t) is the current density due to matter. It is possible to show 
from Maxwell’s equations that the charge density and the current density satisfy the 
continuity equation 

^/9(r,t) + V • j (r,t) = 0, (2.1.5) 

which expresses the global conservation of charge. The fields E (r, t) and B (r, t) 
can also be written in respect to the vector potential A (r, t) and the scalar potential 
U (r,t) as 

B(r,i) = V X A(r,t) (2.1.6) 

E(r,i) = -^A(r,t)-Vt/{r,t). (2.1.7) 

With those definitions Eqn.(2.1.2,2.1.3) are satisfied and Eqn.(2.1.1,2.1.4) are given 
as 

/\U (r, t) ^ -—p (r, t) - V—A (r, t) (2.1.8) 
00 

□A (r, t) (r, t) V • A (r, t) 4- 
dt 

U (r, t) , (2.1.9) 

where □ = — A and A = V^. 
This is a system of coupled second order differential equations, the equations 

of motion. The potentials are not unique and it is possible to perform transformations 
that leave the fields invariant. They are known as gauge transformations and they are 
of the form 

A (r, t) ^ A (r, t) = A (r, t) 4- VF (r, t) (2.1.10) 

U (r, t) ^ U' (r, t) = U (r, t) - (r, i). (2.1.11) 

where the scalar fimction F {r,t) is arbitrary. It is therefore possible to choose 
different gauges to describe the same fields. The most commonly used gauges are 
the Lorentz gauge 

VA(r,t) + i^i7(r,t)-0 (2.1.12) 

and the Coulomb gauge 
V-A(r,t) = 0. (2.1.13) 

All the equations defined so far are global equations, that means the field at 
one point in space is dependent on points in its neighborhood and this neighborhood 
can be extended to the whole space of definition. It is possible to transform the set 
of Maxwell’s equations into a set of strictly localized equations. This is achieved by 
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performing a Fourier transformation and the space of this Fourier transform is called 
reciprocal or momentum space. The Fourier transformation is defined as 

E (k, t) = f d\K (r, t) (2.1.14) 
(27T)2 

where 
E (r, t) = 5- f cfrE (k, t) \ (2.1.15) 

(27T)2 J 

This Fourier transform is of the same form for all fields. The gradient operator V in 
real space transforms into multiplication by ik. in reciprocal space after performing 
the Fourier transformation and Maxwell’s equations in reciprocal space are 

ik-E (k, t) = —/O (k, t) (2.1.16) 
£■0 

ik-B(k,t) = 0 (2.1.17) 

ikxE{k,t)^—^B{k,t) (2.1.18) 

ikxB (k,t) =\^E (k,t) +^j{k,t), (2.1.19) 
C"* Ot CQC 

the continuity equation is 

ik-j (k, t) + (k, t) = 0 (2.1.20) 

and the relationships between the fields and the potentials are given by the equations 

H (k, t) = ikx^ (k, f) (2.1.21) 

E{k,t) ^-^A-ikU{k,t). (2.1.22) 

This means that for every given wavevector k the field at this point in the 
reciprocal space is described by the four Eqn.(2.1.16,2.1.13,2.1.18,2.1.19). For the 
magnetic field Eq.(2.1.13) yields the fact that the longitudinal component of the 
magnetic field is identically zero. The longitudinal part of the electric field is zero 
only in the special case of the free field. In the case of a given charge distribution the 
longitudinal part of the electric field is due to the Coulomb interaction of the charges^. 
Since this Coulomb interaction is dependent on the positions r„ of the particles a and 
therefore is not a dynamical variable of the field, the global system field + particles 
at time to can be expressed completely in terms of the set of dynamical variables 

rigourous treatment can be found in Ref. [11, p.ll] 
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(k, to), B [II, to), Tct [to), (^o)} - It is then only necessary to express Maxwell’s 
equations in terms of the transverse fields and one gets for Eqn.(2.1.18,2.1.19): 

~B (k, t) = (k, t) (2.1.23) 
at 

(k, t) = ic^]s.xB (k, t) - —j± (k, t) (2.1.24) 
at So 

It is important to notice that only the transverse part of the current appears in 
Eq.(2.1.24). 

2 Normal variables 
In the last section Maxwell’s equations in reciprocal space were developed. It was 
shown that only the transverse parts of the field are dynamical variables and that 
Maxwell’s equations in respect to these variables are strictly localized. Maxwell’s 
equations are a set of coupled difierential equations and therefore one is tempted to 
find a new basis in which the equations are independent of each other. This new set 
of variables is called normal variables. It is possible to rewrite Eqn.(2.1.23,2.1.24) in 
a different form and to find the eigenfunctions of the system in the case the transverse 
current equals zero. The equations can be written as 

(k,t) = ic^'kxB['k,t) - —j^ (k,f), (2.2.1) 
at So 

g 
kx —B (k, t) = ik^£± (k, t). (2.2.2) 

at 
Sums and differences of Eqn.(2.2.1,2.2.2) yield 

g 
— [Ex_ (k, t) ± CKXB (k, t)) = [E± (k, i) ± CKXB (k, t)), (2.2.3) 
C/t' 

with the angular fi-equency co = ck and the unit wave vector = f - The normal 
variables are then defined as 

a (k, t) = l^± (k, t) - c/cxS (k, t)] (2.2.4) 

/? (k, i) = [£± (k. t) + CKXB (k, i)], (2.2.5) 

where Af [k) is a normalization coefficient, which has to be chosen later. The real 
character of the fields in real space makes it necessary for them to satisfy the condition 

(3 (k,t) = -a* (-k,t) (2.2.6) 
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and it is now possible to express the fields Ex_ (k, t) and B (k, t) in respect to the new 
complete set of independent variables a (k, t) as 

(k, t) = ij\f{k) [a {k, t) - a* (-k, t)] (2.2.7) 

B (k, t) = [/« X c» (k, t) + /c X a* (—k, t)] (2.2.8) 

The global system of the fields and the particles at time to is therefore de- 
scribed by the complete set of independent variables {a (k, to), (to), fo, (to)} , 
where a (k, to) is complex. The time evolution of the normal variables is described 
by the equation 

d (k, t) + ioja (k, t) = (k, t), (2.2.9) 

where Maxwell’s equations and the definition of the normal variables have been used. 
For the free field these equations are easily solvable. The normal variables stiU span 
a two dimensional space orthogonal to the wavevector k for every given wavevector 
k. It is usual to simplify the notation and introduce the orthonormal basis , 
where e and e describe two unit vectors transverse to the wavevector direction, n. 
Expanding a (k, t) in respect to this basis yields 

a (k, t) (k, i), 
e 

(2.2.10) 

where (k, t) = e ■ a (k, t). For an even more concise notation ai can be defined 
m the following manner: 

(k, t) —> Oke (t) (Mi. (2.2.11) 

In respect to this new set of variables the fields in real space can be expanded as 

i 

Ex 

ik,-r 1 iki-r 
aiSiC -I- ai SiB 

B = ES„. 
i 

aiKiXSie'^^'^'^ + a*Ki x , 

(2.2.12) 

(2.2.13) 

(2.2.14) 

where the constants B^. and have to be defined later and cji is given by the 
equation coi — cki. The longitudinal part. Ay, of the vector potential A is arbitrary 
and depends on the gauge. It is not a dynamical variable, because it only contributes 
to the longitudinal part of the electric field, which itself is not a dynamical variable. 

The relations between the electric field and the vector potential are 

Ex = - 
d 

Ax (2.2.15) 
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E|| =-^A|| - V£/ (2.2.16) 

In the Coulomb gauge Eq.(2.2.16) simplifies to the expression Ey = — VZ7, because 
A|j = 0 and therefore Ey depends only on U and Ej_ depends only on A in this 
gauge. Other gauges are equally possible and in a later chapter the Lorentz gauge 
will be chosen. 

3 Second quantization in the Coulomb gauge 
As seen in the preceding section the general system in the Coulomb gauge is defined 
by the particle variables and the field variables. The first quantization as usual 
treats the position and momentum variables as operators with certain commutation 
relations. The second quantization transforms the normal variables to operators with 
certain commutation relations. For the particle variables the usual quantization will 
be used, which interprets the variables and as operators with the commutation 
relations 

0 (2.3.1) 

(2.3.2) 

and i, j = x, y, z. Second quantization is achieved by interpreting the normal variables 
defined in the last section as operators, which satisfy commutation relations. 

The normal variables and a* are now replaced by the destruction operator 
tti and the creation operator a\ with the commutation relations 

[oi, aj\ = 0 (2.3.3) 

(2.3.4) 

With this new interpretation the physical fields can be expanded in terms of the new 
variables and one obtains 

and 

with 

Ax = , 
i 

El =iY,S^, - <4e, 

hu^i 
, = — and A, = —. 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 
2SQL^ 
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The longitudinal part of the vector potential A|| however depends on the gauge and 
since the Coulomb gauge is used it has to satisfy the equation 

A|| = 0. (2.3.9) 

The scalar potential U is simply given by the electrostatic potential 

1 —> 9a 
U = 

47r£f E T — 
(2.3.10) 

Since we are in the Coulomb gauge the vector potential A is identical to the per- 
pendicular part of the vector potential Aj_ following the condition given in Eq.(2.3.9). 
Therefore the index ± for the vector potential A will be omitted in the remainder 
of this chapter. If the theory is restricted to the free field, the Hamiltonian H and 
the momentum P are given by simple operator expressions. They can be foimd in 
Cohen-Tannoudji [11, p.l74] and are given as 

(2.3.11) 

and 
PR=eo [d^rE (r) x B (r) = K^alai (2.3.12) 

i 

Since the i-th state in the Hamiltonian represents a harmonic oscillator the states 
of the free field can be expressed by Fock states of the form |..., Ui,...) and the creation 
and destmction operators obey the usual relations 

al |..., rii,...) = y/rii + l \...,ni -t- 1,...) (2.3.13) 

(Xi |...j rii)...) = -y^I'--5 rii Ij -■-) (2.3.14) 

ai|...,0,...> =0 (2.3.15) 

If aU Hi are equal to zero the state is called the vacuum and every state of the system 
can be expressed in respect to the vacuum state following the usual rule 

'^1 -••) 

(4 
...,0,...>. (2.3.16) 

The so defined states are natural eigenvectors of the Hamiltonian and the momentum 
operators and the corresponding eigenvalue equations are 

^ ^rii-l- fuji |...,Tii,...) (2.3.17) 

Pji|...,rii,...) = |...,rii,...) . (2.3.18) 
i 

This completes the short introduction of Quantum Electrodynamics in the Coulomb 
gauge and in the next chapter this theory will be used to investigate the problem of 
defining a suitable photon number operator for the quantized field. 
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Chapter 3 
Photon Number Density Operators in 
the Coulomb Gauge 

The answer to the great question of..Life ,the Universe and Everything..Is...Forty-two. 

-Douglas Adams, ’’The Hitch Hikers Guide through the Galaxy ” 

In the previous chapter the radiation field was quantized and annihilation and creation 
operators for the field variables were introduced. The excited states of the system are 
obtained from the vacuum by applying the creation operators for the different modes 
several times. The state obtained in this manner has the form 

|ni, ...rii,...) , (3.0.19) 

with rii describing the number of times the creation operator of a specific mode and po- 
larization has been applied to the vacuum. The energy of this state is Yli (fh +2) 
and therefore is raised fiom the vacuum by the amount Yli niTkVi. Similarly the mo- 
mentum is raised by the amount nifiki and therefore this state can be interpreted 
as a state with n, particles, with the energy hcji and the momentum ^IQ. These par- 
ticles are called photons and they describe the excited modes of the quantized fields. 
Naturally the ground state has no excited modes and therefore is the state with no 
photon present. 

The total number of photons in any state can be found using the number operator 

N = (3.0.20) 
i 

as given in Loudon [12, p.l34]. That this operator indeed counts the photons present 
in a state can be seen when one lets the operator act on the state given in Eq.(3.0.19). 
The so defined photons are Bosons, because the field was quantized with commutators 
and the number of photons in a specific state can exceed one. The question arising 
is “how many photons are at a given point in space at a given time?”. The answer 
to this question is not trivial, because the photon has zero mass and Newton and 
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Wigner [1] stated in 1949 that a elementary system of this kind is not localizable. 
That means there does not exist a probability amplitude for the position operator 
of the photon. This is a slightly different question than the one investigated ia this 
thesis, but the same problem arises. In this chapter some proposals for photon number 
density operators, that were given earlier, will be investigated. 

1 Mandel’s Photon Number Operator for a finite 
Volume 
In 1966 Mandel [5] suggested that the operator 

riv,t = J (r,t) ■ A{r,t)d^x (3.1.1) 

represents the number of photons in a finite volume y at a given time t. He described 
this operator in terms of the detection operator A (r, t), which is not equal to the vector 
potential A(r, t) used in the last chapter. The detection operator is defined as 

A(r,*)= -j (3.1.2) 
{k,A} 

As usual the unit polarization vector ^ satisfies the orthogonality relation 

^k,A ■ ^k,A' ~ *^A,A' (3.1.3) 

and the integration volume is L^. The usual photon number operator is 

^,A ■ ^k,A; 
{k.A} 

(3.1.4) 

as given in Eq.(3.0.20). 
First it wiU be shown that if the integration in Eq.(3.1.1) is over the complete 

space V it coincides with the number operator defined in Eq.(3.1.4). It is possible to 
substitute Eq.(3.1.2) into Eq.(3.1.1) and one gets 

X L5 {k,A} 

^ V~' ^ _ A()c-r—ckt) 
TT ^ «k,A£^k,AS 

{k,A} 

1 t 

d^x 

((3.0.1)) 



20 

Peiforming the product and rearranging the terms this yields 

nv,t ~ L^Jv , ? 
{k,k',A,V} 

i I (k—k )-r—( 
- S.J .'B L 

(3.1.5) 

X^ic,A ■ ^k',A'e 
c(k—k )t 

i(rr. 

Integrating over the whole space and using periodic boundary conditions give the 
identity 

Jv 
(3.1.6) 

which gives a Delta function in the above expression and simplifies it to 

JJ. ^v>'^',A'^k,A ■ ^k',A'^k,k' ■ (3-1-7) 
{k,k',A,A'} 

The sum over k and k' reduces to a sum over k and one achieves 

4,A^,A'^k,A -^k,A'’ (3-1.8) 
{k,A,A'} 

which is equal to 
= Y 4,A“k-A (3.1.9) 

{k,A} 

using Eq.(3.1.3). This is the definition of the niunber operator as given in Eq.(3.1.4), 
which completes the proof. It should be mentioned that this result is only valid if 
the integration space is the total (normahzation) volume and periodic boundary 
conditions are applied. 

Another relation to Eq.(3.1.4) is given by the expectation values. For simple 
Fock states of the type |..., - • ) it will be shown that the expectation values are 
simply related by the expression 

{n) . (3.1.10) 

Substituting Eq.(3.1.1) into this expression 

~ (...?...I I.--} ^fe,A5 ...) (3.1.11) 

gives 

(^v,t> = rik,x, ...| A^(r, t) ■ A(r, t)cfr |..., Uk,x, ■■■) (3.1.12) 
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It is possible to take the integral outside and after substituting the detection operators 
Eq.(12) yields 

1 P 
^ ^ Y1 4,A%',A'4,A 

|k,k',A,A'} 

(3.1.13) 

xe 
(k—k )-r—c(fe—fe )t 

- \...,rik,x,...)cfr 

Using the fact that only the destruction and creation operators have an effect on the 
states gives 

= hL, V 
|k,k',A,A'} 

A • ^k',A'e 

(k—k )-r—c(fe—fc )t 
(3.1.14) 

X \...,nk,x,-)d^r. 

Allowing the operators to work on the states leaves one with the equation 

(k—k )-r—c(fc—fe )t 

= hfv 
{k,k',s,s'| 

^k,s ■ Sk',s'^ (3.1.15) 

X \J^k' ,s' ' \j‘^k,s + 1 'rik,si .--I-.-, 4- 1, 'IT'k' ,S 1, ...^ d r. 

The orthogonality relation for quantum mechanical states allows one to express this 
as 

= hL, T- A ■ ^k',A'^ 

(k—k )-r—c(k—k )t 
(3.1.16) 

X 

{k,k',A,A'} 

(Tr 

where the Kronecker delta is equal to one, only \£ k — k' and A = A . Therefore the 
equation simplifies to 

<"''•>> = hi, ? 
{k,k',A,A'} 

^k,A ■ ^k',A'^ 
(k—k )-r—c(fc—fc )t 

(3.1.17) 

Because the operators have to work successively this coincides with 

1 i'dv,t) = jsJ^Yl • y/-1) + 

{k,A} 

(3.1.18) 
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which gives the equation 

^ ^k,x = (^) (n) (3.1.19) 
{k,A} 

and completes the proof. 
The expectation value was calculated in respect to the simple Fock state |..., nk,x,...). 

A simple Fock state is obtained by operating on the vacuum state with creation op- 
erators as described by Milonni [13, p.333] and he mentions at the same place that 
those states have a definite photon number. 

Difficulties in the theory arise if the commutation relations are investigated. 
The Mandel operators h and nv,t always commute, but they nevertheless do not 
necessarily have the same eigenvectors. Two operators rivi,ti and nv2,t2 with disjoint 
space-time regions do not strictly commute, which is due to the difficulty of localizing 
photons in space-time [5, p.l072]. To fiirther investigate the defined operator 
Mandel restricted his calculations to a finite volume, which is large compared with 
the wavelengths of all modes of the set {(k, A)}. With this restriction in mind he 
approximated the orthogonality relation for two different modes k, k as 

^k,A • ^k',A' ~ ^k',A ■ ^k',A' - ‘^A.AS 
(3.1.20) 

which basically means k k. This approximation is only possible if the investigated 
wave vectors are nearly the same. 

2 Cook’s Photon dynamics 
Mandel was not able to give a continuity equation for his photon number operator, 
which is expected to be possible, if nv,t is a photon number operator. 

In the year 1982 Cook [6],[7] presented a diiferent approach with two vector 
field operators. He introduced them as 

^(r) = (2L^)-2 X]£kA«kAe'’'-^ (3.2.1) 
k,A 

and 
4.(r) = (2i")-4 ;^( j) X (3.2.2) 

k,A ^ 

In contrast to Mandel he used the Heisenberg picture and therefore the time de- 
pendence is in the annihilation operator akA- The first one is identical to Mandel’s 
detection operator, except for a multiphcative constant. The second one is more 
complicated, but it can be written in a more obvious fashion as 

k,A 

(3.2.3) 
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where A' is always the opposite value of A and A is as usual 1 or 2. Therefore it is 
the same vector operator as in Eq.(3.2.1) , only with the opposite polarization vector 

^kA'- 
These operators can be used to construct a detection operator which Cook 

defined as 
D{T) = \h^(r) ■ ’4'(r) + 4»l(r) ■ '^(r). (3.2.4) 

This operator is positive definite and hermitian and therefore a good candidate for a 
quantum mechanical operator, as one would expect. Furthermore integration over the 
quantization volume gives the munber operator n: 

/dVZ?(r) = ^4^ • UkA (3.2.5) 
k,A 

Because Cook used the Heisenberg picture it is possible to derive an continuity 
equation for photons using the Heisenberg equation of motion for akA , which is 
given by 

«kA = ^ [ukA, H], (3.2.6) 

where H is the Hamiltonian of the system. Following a similar calculation as in 
Cohen-Tannoudji [11, p.l81] one obtains the relation 

where 

and 

. / 27T \ 2 
®kA ^^fcUkA "4“ i J '^kjAj 

A,x = ■ j(r)rfV = (uk,A(r) I j(r)) 

Uk,A(r) = L^ickAe'’^'’’- 

(3.2.7) 

(3.2.8) 

The fimction Uk,A(r) is normalized and can be regarded as the transverse mode fimc- 
tion. Therefore Jk,A is the projection of the electric current density on the transverse 
mode fimction. With these equations it is possible to derive the field equations. 

The first two equations state that the vector field operators ^(r) and ^(r) are 
transverse 

V - ^'(r) - 0 (3.2.9) 

V-4»(r) = 0. (3.2.10) 

Two more equations can be derived, if one calculates the time derivatives and 
^^(r). It is a straightforward calculation and the result is 

Vx^(r)-H-^4»(r) = -Si, 
COT C 

(3.2.11) 
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V X ^(r) - = -S2, 
c at c 

where Sj and S2 are defined as the hermitian source terms 

(3.2.12) 

Si(r) = , ■ „ / (Tr /  j- ( — X j 
{2TTY J J {hcJk}^ \k j(r')) ^i(r—r )-k 

and 

S3(r) = 
7T2 

(27T)' 

d^k k 

{tuok)' k \k 
X j(: r')^ e ,i(r—r )-k 

(3.2.13) 

(3.2.14) 

The hermitian source terms look complicated, but one simple case is in the absence 
of matter, because then they reduce to zero. 

It also can be shown that D satisfies the continuity equation 

a*z? + v-c = g, (3.2.15) 

where 
Q = Sj - ■4* + • Si + i(S2 • ^ - S2) (3.2.16) 

is the operator descrihing the interaction of the photon field with the sources and 

C = X ^X (3.2.17) 

is the photon current density. 
As one can see, this continuity equation is not equal to zero on the right hand 

side. Therefore this equation should be called a weak continuity equation for photons 
in the presence of matter and the extra terms can be interpreted as sources of the 
photons. For free photons the right hand side vanishes and the regular continuity 
equation is achieved. 

3 Inagaki’s Photon Wave function 

Recently Inagaki [8] used Cook’s photon dynamics and reformulated it in conventional 
quantum mechanical terms. Only free photons were investigated, therefore the source 
terms Si and S2 in Eqn.(3.2.11,3.2.12) are equal to zero. Furthermore no statement 
is made yet, if the negative frequency part in the plane wave expansions of ^(r) and 
^(r) should be disregarded like Cook and Mandel did in their detection operators. 

First the photon wave fimction ^ is defined as 

^ ’ 
^ = (3.3.1) 



25 

which is a six-component column matrix and has the physical meaniag of a probability 
amplitude. The probability density is then expected to be the scalar product of ^ 
with itself. The scalar product of two functions 0 and S is defined as usual: 

{9\S) = J &*{r) ■3{r)cfr (3.3.2) 

Therefore the probability of finding a fi'ee photon at position r and time t is given by 

^^1^^ = f (r,t) ■ '^(r,t)d^r — f [^*(r, f)^(r, t) + d»*(r,t)4*(r, t)] 
(3.3.3) 

This defines the probability density as 

D{r,t) = + ^*{v,t)^{r,t) (3.3.4) 

and clearly it coincides with the one given in Eq.(3.2.4). 
Before the current can be defined it is necessary to find a Schrodinger equation 

for the given wave function. It is possible to rewrite Eqn.(3.2.9,3.2.10,3.2.11,3.2.12) 
in respect to the new wave function ^(r, t) as 

div^ (x, t) — 
V-^(r,t) 

= 0 

and 
0 -I 
1 0 = c 

TV 0 
0 T - V 

(3.3.5) 

(3.3.6) 

where I equals the 3x3 unit matrix and T is a three-vector with 3x3 matrices as 
components,which are given as 

with {i,j, fc = 1,2, 3). (3.3.7) 

Multiplying by —i% ^ ^ ^ j from the left on both sides of Eq.(3.3.6) defines the 

Hamiltonian H for a free photon: 

H=c 0 -T 
T 0 •P (3.3.8) 

where p = —ihV is the quantum mechanical momentum operator. Another usefid 
definition is the velocity operator 

Vj = ~H ^ c 
dPi 

0 -Tj 

Tj 0 
(3.3.9) 
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Now one is able to define the photon current C(r, t) as 

C{r,t) = = c(^*(r,t) X 4»(r) -4»*(r) x ^{r,t)) (3.3.10) 

and with all this it is straightforward to show that the density D{r, t) and the current 
C(r, t) satisfy the continuity equation 

dtD{i:,t)+V ■C{r,t) = 0. (3.3.11) 

Inagaki was able to define a wave function for a free photon with the property 
that the usual probability density definition leads to the same operator as in the Cook 
theory[7] and the photon current is defined in the usual way too. He also argued 
that the negative fi*equency parts in the plane wave expansions can be disregarded as 
unphysical, although they are necessary for the completeness relation for the plane 
wave solutions. Furthermore it is shown that the second quantization of this theory 
coincides with Cooks theory. 

The operators described in this chapter are all fairly complicated constmctions 
and it is difficult to investigate their behavior under Lorentz and gauge transforma- 
tions. In the next chapter a new operator will be proposed which will be easier to 
work with and afiows a generalization to a covaiiant form. 
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Chapter 4 
A new Photon Number Density 
Operator in the Coulomb gauge 

I’m not suggesting that the play is without fault; all of my plays are imperfect, I’m 
rather happy to say- it leaves me something to do. 

-Edward Albee 

In this chapter a new photon number density operator will be defined with properties 
similar to the ones defined in the previous chapter. This operator will be written in 
terms of operators whose equations of motion and properties under transformations 
are well known. It also will be possible to define a photon number current density 
and both operators will satisfy a continuity equation in the case of the free field. In 
a later chapter it also will be shown that those operators define a four vector with 
interesting properties. But for now the theory will be restricted to the Coulomb gauge 
and the free field. 

1 Some comments about the notation used 
As in Cohen-Tannoudji[ll, p.l71], the fields E, B and A are given in respect to the 
creation and destruction operators afand as 

Ei*’W=E' 
i 

B<+)(r)=E; 

hjuji 

2eoL^ 

h 
2soL^uji 

CliSiS 
iki-r 

C 
X 

hwj 

2SQL^ 
ai(ki X 

(4.1.1) 

(4.1.2) 

(4.1.3) 
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E||(r) = A||(r)=t/(r)=0. (4.1.4) 

In the free field case no matter is present and the fields are purely transverse. In 
the rest of this section the index ± will be omitted. Furthermore only the positive 
frequency parts in the plane wave expansions of the fields are considered. 

The commutation relations for afand are 

[oi, aj\ a\,a] = 0 (4.1.5) 

(4.1.6) 

The task of this chapter is to find a photon number operator density, which is 
described in respect to already defined quantities. It is desirable to have an equality 
between the new total photon number operator and the old one, which is 

i 

(4.1.7) 

Before the new operator can be given it is helpftd to introduce simple basics of 
covariant notation, because this notation is needed to motivate the form of the new 
operator. A more complete introduction will be given iu a later chapter when the 
operator will be introduced in covariant form. 

A four vector A'“ in covariant notation uses Greek letters in contrast to the 
ordinary notation, which uses Latin indices. The contravariant components of the 
four vector are defined as 

(4.1.8) 

where A is the ordinary spatial potential three vector and the scalar As is equal to the 
ordinary scalar potential divided by the speed of light The covariant components 
Afj, are related to the contravariant components by the equation 

A^=g^A^, (4.1.9) 

where is the diagonal metric tensor ( goo — +l,pn = ^22 = S'ss = —1) and 
repeated Greek indiees are summed over. The standard free field Lagrangian density 

written in this notation is 

= (4.1.10) 

di^A^ 

where 
(4.1.11) 
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is the electromagnetic field tensor and derivatives are I. The electro- 

magnetic field tensor can also be written in the form 

pfjjy ^ 

\ 
c c 

By 

0 -5, 
-Ba, 0 y 

(4.1.12) 

In the rest of the thesis this notation will be used, unless otherwise stated. 

2 The photon density operator proposal in the 
Coulomb gauge 
In this section the new photon number density operator will be defined and it will 
be shown that in the appropriate limits it equals the usual photon number operator. 
But first it will be showoi how the new operator was found. In the Lagrangian theory 
symmetry transformations and conservation laws are closely related to each other 
following Noether’s theorem. In a recent paper Hawton and Melde showed [14] 
that a photon number current four vector could be seen as a direct consequence of 
a hypothetical phase change symmetiy of the Lagrangian and can be given by the 
contraction of the electromagnetic field tensor with the vector potential, This 
contraction is given by the equation 

/ 0 
^ o'" 

\ 
c 

By 

-B^ 
0 / 

■^x 
-Ay ’ 

V -A 
which equals 

F^A^ = 
( JE-A \ 

^ExU + Big Ay — ByA/g 

^EyU — B/gAx + BxAgi 

\ ^EJJ -(- ByAx — BxAy ) 

(4.2.1) 

(4.2.2) 

and this result can also be written in the form 

The achieved four vector gives the form of the new photon number density 
current four vector but this operator is not quantized. Quantization requires to 
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= ih 

split this operator in negative and positive firequency parts and to normal order them. 
It is also necessary to require that the operator is hermitian and normalized and the 
quantized operator therefore has to be 

c - A(-) • EW) \ 

(B(-) X AW + A(-) X ^ - £/(-)E^+))) ) ' 

(4.2.4) 
The photon number density operator Pp is therefore defined as 

Pp = (E(-)-AW - A(-) • EW) . (4.2.5) 

It has to be shown now that the integration over the definition space / pp dx is 
equal to the usual number operator N. Starting with the equation 

J(E^“^-AW _ • EW) dx (4.2.6) 

it is possible to write this as 

f , ^0 f \ J Pp^^ = -7^ 11^ Wo 
ihj^ 2SQL^ V (4.2.7) 

X (-«] ^ dx 

where Eqn.(4.1.1,4.1.2) were used. Rearranging the terms gives 

I Pp dx — 
2L^ w, 

(4.2.8) 

X 

3^ 

{-alaiS* - ~ a\ajs* - dx 

The only space dependance appears in the exponents and the integration over the 
whole space gives some delta functions. Performing this integration one yields the 
expression 

J Ppdx= y ^ 
ji V ^ 

which simplifies to 

J ppdx = -^YZ • ^t) - 

i 

This is equal to the photon number operator 

J Pp dx = YZ'^i^ ~ ^ (4.2.11) 

(4.2.9) 

(4.2.10) 

which completes the proof. 
Therefore it is shown that it is not inconsistent to interpret pp as the photon 

number density. 



31 

3 The continuity equation for photons in the case of a 
free field 
In this section it will be shown that the photon number density current operator 
satisfies a continuity equation in the case of a free field. Following the form of the 
four vector the photon current density is naturally defined as the hermitian operator 

j = ^ (B^-) X 4-X . (4.3.1) 
in ^ ' 

To show that this operator and the photon density operator pp satisfy a continuity 
equation of the form 

—+ V • jp = 0, (4.3.2) 

the time derivative of the photon number density will be calculated and compared to 
the gradient of the photon current density. 

The equation for the time derivative of the photon number density operator 
yields 

1^' = I (-S ■ (4.3.3) 
Using the product rule for the differentiation and keeping the same order of the terms 
gives 

d 
dt Pp 

gp 
ih 

4-1 

(i'-i (M (4.3.4) 

a. 
^A(-) . E^+) + A(-> . ^E^+) 

dt ’) 
and substituting Maxwell’s equations for the respective terms gives the expression 

d 
dt Pp 

gp 
ih 
sp 

(V X B^-)) •A^+) - A^“) • (V X B(+^)] (4.3.5) 

But collecting aU terms this yields 

d 
dt Pp 

gpc" 
ih 

"(v X B<->) -A<+> - A<-) • (v X . (4.3.6) 

Next it will be shown that V • jj, leads to the negative of this expression. In- 
serting the expression for the current gives 

V-j, = V 
gpc^ 
ih 

(B^-) X A^+) A^“) X B^+^) (4.3.7) 
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which is equal to 

V-j,= 
gpc 
ih 

V- (B^-) X A(+>) + V- (A^-) X . (4.3.8) 

Usiug a well known formula for the gradient operation this can be expressed as 

VL = 
gpc" 

ih 
gpc^ 
ih 

(v X B^-)) • A^+^ - B^-) ■ (v X A^+^)] (4.3.9) 

- [(V X A^-)) • B^+^ - A^-) - (V X B^+^)] 

and coUecting aU terms gives 

V-j„ = 
SpC^ 
ih 

(v X B^“)) ■ A^+) - A^-) - (v X B^+^)] (4.3.10) 

remembering that V x A*^^^ = Adding the terms in Eqn.(4.2.6,4.2.10) yields 

dt Pv + V - j V (4.3.11) 

gpc" 

ih 
gpc' 

ih 

(V X B^-^) • A^+) - A^-^ ■ (V X B^+))] 

- (V X B^-)) A^+^ + PS-^ ■ (V X B^+^) 

which is obviously equal to zero and it is shown that for the free field the continuity 
equation given in Eq.(4.2.2) is valid. 

It is therefore possible to define a photon number density and a photon current 
operator, described in respect to well known operators, that satisfy a continuity equa- 
tion in the case of the free field. The transformation properties of this operator are 
simple, because only well known field equations were used to define the new photon 
number density operator. It is believed that this operator is a good alternative to the 
ones described in the last chapter. In a later chapter this operator will also be given 
in the Lorentz gauge, but in the next section a simple case of interaction with matter 
will be investigated. 

4 The case of a field with matter interaction 
In this section the proposed photon density and photon current will be modified to 
allow the interaction with matter. It is not possible to use Maxwell’s equations in the 
same way as it was done in the last section, because now the interaction terms have 
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to be included. The annihilation operators now satisfy the dififerential equations in 
reciprocal space 

ihai - huJiCLi - 
h 

2soAf^"' 

The general solution of this equation can be derived with the Ansatz 

(4.4.1) 

(4.4.2) 

where oj can be positive and negative, and Eq.(4.4.1) yields 

{in {iuj) —nwi)ai = - ^,rji, 

which gives for the annihilation operator the expression 

_ 1 

(oji + oj) 2£O-A/”^*' 

Furthermore it can be assumed that the driving force is of the form 

(4.4.3) 

(4.4.4) 

ji ~ (4.4.5) 

and Eq.(4.4.4) gives 

Oi = , ^ .Ae<^\ (4.4.6) 
{l^i + 

where A is a proportionality constant. If the matter is not dense as was argued in a 
paper by Hawton[15] the frequency shift = Wj — w is very small and the driving 
force only contributes significantly if u; is negative. Thus, if the driving force satisfies 
ji ~ the annihilation operator has a big contribution and if it satisfies ji ~ 
the annihilation operator has a small contribution. In the same way one can show 
that the creation operator has big contribution if ji ~ and a small contribution 
if ji ~ is valid. It is therefore possible to say that the part of the driving force 
that is proportional to only contributes to the annihilation operator and the part 
that is proportional to only contributes to the creation operator. In this special 
case it is therefore possible to split the driving force term in negative and positive 
frequency parts that solely contribute to the annihilation or creation operators. Now 
it is possible to investigate the existence of a continuity equation for this special case 
of matter interaction. 

It is necessary to return to Eq.(4.2.4) and the photon current 

jp = ^ ^B^-) X X ^ . (4.4.7) 

Next it will be investigated, if the so defined photon density and photon current 
satisfy a continuity equation. In Maxwell’s equations the charge density and the 



34 

current density are obviously not equal to zero anymore. The separated equations are 
of the form 

(r,*) = —pW (r,i) 
^0 

V • (r, t) = (r, t) 
^0 

V X BW (r,t) = (r,^) 
at eoc 

V X B<-) (r,t) _ (r,i) + (r,i) 
eoc“ 

(4.4.8) 

(4.4.9) 

(4.4.10) 

(4.4.11) 

and the other Maxwell equations behave in the same manner. 
Now it is possible to calculate the continuity equation ^pp + V • jj,. Starting 

with the first term and substituting the expression for the density in this term one 
yields 

d 

dt Pv 
So 
ih 

d 

I + E^-)- ( 

(I-) 
A(-) 1 . EW _ • 

(i*“) 
(s'"’) 

(4.4.12) 

Following the same calculation as in the last section this is equal to 

= -J^|e^(VxB<-)).AW-Aj(-).AW+A dt^ 
£o 
ih 

1 

So 
1 

(4.4.13) 

where 

+ ^ A^-^ • (V X - — A^-^ • j 
za L ^ So 

and rearranging the terms gives 

&t Pp 
So 
ih 
So 

i_A^-) . j^+) - J-j(-).AW 
So So 

(4.4.14) 

(4.4.15) 

P ((^ ^ • (v X 

Now calculate the second term of the continuity equation. 
Substituting the new expression for the proposed photon current density operator 

the second term is equal to 

V - = V-^ X A(+) + A^-) X B(+) - ^ 

^ (4.4.16) 
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and in this expression the first part will yield the same result as it did in the last 
section. Therefore it is only necessary to calculate the term 

S = V- 
SQC 

ih 

2 r 

(4.4.17) 

which is equal to 

S - [(V • E^-)) + E^-) ■ (VC/(+^)] (4.4.18) 

+~ [(V17(-)) ■ E^+) + C/^-) (V • E^+^)] . 

Using Maxwell’s equations this can be rewritten as 

^0 

ih 
(4.4.19) 

’) 
which is equal to 

^0 

ih 
— - A 
So ^ ' ■ 

(4.4.20) 

with A defined by Eq.(4.3.14). 
Combining aU these steps yields the final result 

(4.4.21) 

It is easy to see that the tree field case is a special case of this equation, because if 
the charge density and the current equals zero the right hand side vanishes. 

It is furthermore possible to simplify the right hand side of Eq.(4.3.21), if it is 
written as ^A^~^ - j(+)+^Hy(+))f-A< ^ +/0^ which shows this term is 
purely imagiaary and therefore the right hand side of Eq.(4.3.21) is purely real. Note 
that neither the negative, nor the positive fi^equency parts themselves were assumed 
to be purely real, or purely imaginary. In the case of matter present the photon 
munber and current operators are not satisfying a continuity equation anymore. A 
term describing the photon matter interaction has to be included which acts like a 
source or a sink for photons in physical space. Cook’s theory had a similar result and 
therefore it is not surprising that the extra terms appeared. 



36 

Chapter 5 
Lagrangian and Hamiltonian 
formalism in the Lorentz Gauge 

There is nothing worse than a brilliant image of a fuzzy concept 

-Ansel Adams 

In this chapter the covariant formulation of quantum electrodynamics will be in- 
troduced. It starts with an introduction to the covariant notation and Lagrangian 
formalism in this new description. A new Lagrangian density will be introduced and 
new physical variables will be derived from this Lagrangian density. The theory will 
also be described in reciprocal space and the normal modes will be extended. Later 
in the chapter important physical variables will be expressed in respect to a suitable 
basis and problems like negative energy states will be shown. At the end of the 
chapter the field will be quantized and the problems solved. 

1 The Lagrangian formalism in covariant notation 
Before the vector potential A can be expressed in the Lorentz gauge and the theory 
can be quantized, it is necessary to formulate Lagrange’s and Hamilton’s formalisms 
in covariant notation. The four vector notation was already introduced in an earlier 
chapter, but nevertheless it will be included in this chapter, because it is the starting 
point for a covariant theory. 

The potential four vector in covariant notation uses Greek letters in contrast 
to the ordinary notation, which uses Latin indices. The contravaiiant components of 
the four vector are defined as 

(5.1.1) 

where A is the ordinary spatial potential three vector and the scalar As is equal to the 
ordinary scalar potential divided by the speed of light, The covariant components 
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Afj, are related to the contravariant components by the equation 

\ = 9^luA^, (5.1.2) 

where is the diagonal metric tensor ( 5-00 = = 922 = 9zz = —1) and 
repeated Greek indice are summed over. The standard free field Lagrangian density 

written in this notation is 

(5.1.3) 

where 
^ - d^A^ (5.1.4) 

is the electromagnetic field tensor and derivatives are = I I. Now it is 

possible to formulate the Lagrange formalism in this notation. 
In the covariant formulation U (r) and Aj (r) are treated symmetrically, but the 

standard Lagrangian does not depend on U (r) and therefore U (r) does not possess 
a conjugate momentum. A new Langrangian density for the free field FR, which 
depends explicitly on U (r) and is manifestly covariant has to be defined. Consider 
the Lagrangian density 

CK=~^{3^A.)(a^A"), (5.1.5) 

as defined iu Cohen-Tannoudji [11, p.365], which is clearly covariant and depends 
explicitly on U(r). It is interesting to note that this Lagrangian density only involves 
first order derivatives of the potentials and quadratic terms of A^, which insures 
that the derived Lagrange equations will be linear in the potentials. This Lagrangian 
density also can be written as 

FR = 
£0 

2 
+ (vuf . (5.1.6) 

The spatial and scalar parts in this equation have opposite signs and this situation 
followed naturally from the definition of the Lagrangian density given in Eq.(5.L5). 

Furthermore one cannot expect the Lagrange equations in respect to this La- 
grangian density to be the same as Maxwell’s equations, which were derived from 
the standard Lagrangian, without imposing a subsidiary condition. If interaction of 
the field with particles is allowed, one has to add the interaction Lagrangian density 

Fj = -AA^ (5.1.7) 
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where is the current four vector (cp,j). The Lagrange equations regarding the 
Lagrangian density C — JCR 4- are easily calculated and the result is the set of 
symmetric equations 

□A = 
eoc^ 

□t/= —p 
So 

where □ = — A is the d’Alembertian. 
On the other hand Maxwell’s equations in covariant form are 

(5.1.8) 

(5.1.9) 

□A = VA 
eoc^ 

where 

(5.1.10) 

(5.1.11) 

(5.1.12) 

There is a choice of the potentials for which Eqns.(5.1.8,5.1.9) coincide with Maxwell’s 
equations. These are the potentials that satisfy the subsidiary condition 

A= 4^t^ + VA-0, 
ot 

(5.1.13) 

which is, written in the covariant notation. 

- 0. (5.1.14) 

This defines the Lorentz gauge. 
It is possible to derive an equation of evolution for A fi-om the Eqns.(5.1.8,5.1.9) 

and the result is 

(5.1.15) 

where the conservation of charge was used. Furthermore A can be calculated using 
Eq.(5.1.9) and the following result is achieved 

A = -V • E + — = 0. 
So 

(5.1.16) 

This ensures that if A = A = 0 is true at the initial time, then A = 0 is true at all 
times. Finally it has to be mentioned that there are still some gauge changes allowed. 
The potential = A^— d^f still satisfies the Lorentz condition, if □/ = 0. In every 
Lorentz gauge the new Lagrangian density yields the same equations of motion as 
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the standard Lagrangian density, which makes the new Lagrangian density a suitable 
choice for a covariant theory. 

It is also possible to write this Lagrangian density in reciprocal space. To dis- 
tinguish the Lagrangian densities in the different base representations, the Lagrangian 
density expressed in respect to the reciprocal space is CR and A is the Fourier trans- 
form of A. The calculation is a Fourier transformation and the result is 

-Cn = £o A* ■ A-uj'^A* ■ A-AlAs + uj'^AlAs (5.1.17) 

with oj = ck. This Lagrangian density describes four harmonic oscillators, three 
associated with the spatial components and one with the time component of the 
potential four vector. The time component oscillator has again the opposite sign of 
the spatial component oscillators. 

The Lagrangian for the radiation field has therefore the two representations 

LR^ J d^r£R = jT d^kCR (5.1.18) 

where /* denotes integration over half the space. This happens, because the potentials 
Aj and As are necessarily real, which implies that their Fourier transforms satisfy the 
equations 

AAk) = A'j(-k) (5.1.19) 

A(k) = .4:(-k). (5.1.20) 

The system is therefore completely defined if the vector potentials are known in one 
half space. 

The conjugate momenta TTJ and TT^ are defined by the equations 

8CR • 
nj = -A = toAj (5.1.21) 

dC, 
7T^=-^ = -£OA (5.1.22) 

A% 
and equations analogous to Eqn.(5.1.21,5.1.22) for the conjugate momenta TT^ and 
have to be true. The sign difference between the spatial equations and the scalar 
equation is important and will give rise to some difSculties. 

The subsidiary condition in reciprocal space is 

ik-A=—(5.1.23) 

It is also possible to write the radiation field Hamiltonian density in reciprocal space. 
HR, as 

HR — So -^7T* ■ 7T -I- U>^A* 
4 2'”’s 

^0 
^ 4 (5.1.24) 
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Furthermore it is possible to write Hamilton-Jacobi equations, which give the time 
evolution of the vector potential and its conjugate momentum. The set of equations 
for the configuration space parts is given by 

  
&H R 

” —% So 

m 
'^3 = 

R 

dA* 

and for the scalar parts it is given by 

As — 
&H R 

divl 

1 
 TTs 
So 

(5.1.25) 

(5.1.26) 

(5.1.27) 

= -^7 = sowMs. (5.1.28) 

Once again it is important to see the sign difference between the right hand sides of 
the equations in respect to the three space variables and the scalar variables. In the 
next section the normal modes for this system will be defined. 

2 The normal modes in the covariant notation 
In chapter two the normal modes were a set of equations that describe the system 
completely and evolve independent of each other following an equation of the form 

a-^iuja = 0 (5.2.1) 

in the absence of sources. For the spatial part one can define the normal variables 

<Xj ^Aj H  
^0 

(5.2.2) 

Using Eqn.(5.1.21,5.1.22,5.1.25,5.1.26) it is possible to show that these variables 
satisfy an equation like the one in Eq.(5.2.1). 

Because of the plus sign in TTS the normal variable for the scalar part is defined 
slightly differently. It is necessary to define the normal variables for the scalar part 
as 

/ £o 
~ V 2huj 

U3AS TTS 

So . 

and this equation satisfies Eq.(5.2.1) too. 

(5.2.3) 



41 

Now it is possible to express the vector potentials in respect to this new ba- 
sis. The potentials Aj and As are necessarily real, which implies that their Fourier 
transforms satisfy the equations 

Aj (k) = A- (-k) (5.2.4) 

A (k) = A: (-k) (5.2.5) 

and analogous equations for the conjugate momenta Wj and TT^. This condition can 
only be satisfied if the vector potentials expressed in respect to the new basis, are of 
the form   

Aj (k, t) = K' 

As (k, t) - 

2BQUJ 

I n 
2eoc^ 

[as (k, t) -1- a* (-k, t)] 

Therefore the potentials in real space are given in normal variables by 

Aj (r, t) = —f d^kAj (k, t) 
(27T)2 J 

(5.2.6) 

(5.2.7) 

(5.2.8) 

which can be expressed as 

d?k ^3 (r, *) = /' 
h 

2SQUJ (27T) 
aj (k, t) -I- a* (-k, t) 

or 

(r.t)-/ d^k 
\ 

h 
a^ ij (k, t) + a^ (k, t) e 

^ikr 

—ik-r 

(5.2.9) 

(5.2.10) 
2SOU3 (27T)^ 

where k was changed to —k, which is possible, because the integral is symmetric. 
In a similar way the scalar component becomes 

A. (r,t) = l d^k 
h 

2SQU3 {2'rry 
a. (k, t) 4- (k, t) e —tk-r (5.2.11) 

In respect to the fiee field, aj (k, i) = aj (k) e follows from Eq.(5.2.1) and the 
expansion of the potentials in travelling plane waves is given by 

4- (r, ^) = / 

(r, J 

d^k. 
h 

\ 2£OU3 (27T)^ 
[aj (k): ,i(k-r—wt) + a*j (k) e —i(k.r—oit) (5.2.12) 

drkj 
h 

\ 2£QU) (27T)" 
[a^ (k) -f a; (k) (5.2.13) 
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This appears to represent four degrees of freedom in reciprocal space for every 
wavevector k, described by the normal variables aj, with j = (1,2, 3) and as. 

No special coordinate system has been chosen yet, but it is usual to choose the 
following. Assuming the unit vectors e and e form a right-handed coordinate system 
together with the unit wavevector one can choose as a basis for the spatial com- 
ponents the two transverse normal variables (k) = e ■ a (k) and a^^ (k) = s - a (k) 
and the longitudinal normal variable ai (k) = K - a (k) = ^ {k^ao; + kyay -i-k^a^). 
The free potential therefore has for every k four normal modes of vibration described 
by the set 

{a^ (k), (k), (k), (k)} (5.2.14) 

After quantization these four modes will correspond to four different kinds of photons, 
as will be shown later. As will be seen later it is possible to choose a coordinate 
system that is even simpler than this one using the form of the subsidiary condition. 

Using the subsidiary condition defined in Eq.(5.1.13) and the expansion of the 
potentials in normal variables one can show that the subsidiary condition for the 
Lorentz gauge can be expressed as 

V • A + — = f cfk.   gZ (k • a - kas) + c.c. = 0 (5.2.15) 
c J 2eo<^ (27T) 

where c.c. means complex conjugate and k- a =kai- This can only be satisfied, if 
the coefficient of every exponential is identically zero and the subsidiary condition 
takes the simple form 

ai (k) — as (k) = 0 Vk. (5.2.16) 

The very simple form of the subsidiary condition suggests another basis transformation 
to write this condition in an even more simple form. If the two new normal variables 
ad and ag can be defined as 

\/2 

OLg ’ 

the new notation yields for the subsidiary condition the expression 

aa = 0. 

(5.2.17) 

(5.2.18) 

(5.2.19) 

It should be mentioned that any gauge transformation modifies only the normal vari- 
able ag, which makes this set of basis vectors very useful, because gauge transfor- 
mations will have no effect on the transverse modes of physical states. 
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3 The potential four vector and the Hamiltonian in 
configuration space expressed in the new basis set 
Before closing this section the potential four vectors and the Hamiltonian in configu- 
ration space wUl be e?q)ressed in this new set of basis vectors. In covariant form the 
potential four vector of the free field can be written as 

= / cPk 
h 

(k) + < (k) e 
^ 2eo^ (2^)" 

where is the four vector k) and w = c |k|, satisfying 

—ikvx'' (5.3.1) 

k^k^ = 0. (5.3.2) 

In Eq.(5.3.1) the coefficients (k) are still undefined. If the four vectors 

£^=(0,s) (5.3.3) 

e ^ = (O, s') (5.3.4) 

k^=(Q,K) (5.3.5) 

77^ = (1,0) (5.3.6) 

are considered, the coefficients (k) are defined in the new basis system as 

(k) = cte (k) 4- (k) -I- ai (k) (k) (5.3.7) 

which yields using Eqn.(5.2.17,5.2.18) 

/ 1 
(k) - oie (k) -I- (k) ^ K (k) (k) ~ (5.3.8) 

The potential is therefore represented by three independent parts correlating to the 
transverse-, the g- and the d-component of the modes. The transverse component 

(x^) is given by the equation 

dPk 
\ 

h 

2SQ(JJ (27T)’' 
{[«e (k) 4- a^/ (k) e' 

-ikvx^ -hc.c.}. (5.3.9) 

To find the component corresponding to the g-mode it is helpful to observe the 
following properties. 

First it is seen that 4- r]^ is equal to (1, AV) = ^ (A:, k), which are just the 
components of the four vector Now it is possible to define a function / with 
the property that 

□/ = d^d^f = 0, (5.3.10) 
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which basically describes gauge transformations. The function / that satisfies Eq.(5.3.10) 
can he written as 

/ (x-) = -/d’fc. 
h 

\ 2SQU; {2TTY kV2 
iag (k) e —ikux‘' 

+ C.C. (5.3.11) 

Comparing this equation with the Eqn.(5.3.1,5.3.8), the g-component of the vector 
potential can he expressed as 

(a^) =-dj (xn (5.3.12) 

and the g-component has the explicit form of a gauge term ( which explains the use 
of the letter G for the component). 

Finally the d-component is written as 

~ s/2 

h 
2SQUJ (27T)" 

(k) e ^ ikiyX^ a. w(k) = 0, 

(5.3.13) 
where the subsidiary condition Eq.(5.2.19) is taken into account. The electromagnetic 
field tensor is 

Fjxu — dixAix di/A^ V-1 (5.3.14) 

which is the same as 
- a^Al = (5.3.15) 

because the gauge term does not contribute to the field tensor, as can be seen using 
Eq.(5.3.10). This shows that for states satisfying the Lorentz condition the electro- 
magnetic field without sources is purely transverse, as it should be. 

The Hamiltonian in configuration space is 

H R J{oilcte + cieCc*) -|- (5.3.16) 

[{o^iCKi + aia*i) - {alas + . 

This equation shows that the energy of the radiation field can become negative, 
because of the opposite sign of the term associated with the time component. This 
appears to be a problem, because it allows scalar photon states with negative energy. 
It will be seen later however that it is possible to construct a theory in which the 
subsidiary condition prevents this from happening for physical states. The introduc- 
tion of the longitudinal and scalar photons create a new subspace of photons, the 
so called Is-space. This space does not describe physical photons and therefore the 
states representing this space will be called ghosts. In physical observables however 
no ghosts shoidd be present. In the next chapter the field will be quantized and a 
photon number operator in covariant notation will be given. 
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Chapter 6 
Quantization of the Radiation Field in 
the Lorentz Gauge 

A play should give you something to think about. When I see a play and understand 
it the first time, then I know it can’t be much good. 

-T. S. Eliot 

Considering the free radiation field, problems arise in the quantization of this field, 
because of the introduction of scalar and longitudinal photons. In this section the 
problems will be shown and one way to solve them will be suggested. A new metric 
will be introduced, which is not positive definite and allows scalar photon states with 
negative norm. The new class of d- and g- photons will be introduced and properties 
of the physical states in respect to those new photons will be described. Also a 
new basis representation for the physical kets in respect to the new metric will be 
introduced and the subsidiary condition wiU be investigated in the new and the old 
metric. 

1 The indefinite metric 
^ / 

For the spatial part of the system the three orthogonal unit vectors k, e, e are chosen 
and replacing the normal variables with the creation and absorption operators for the 
free field the following commutation relations are achieved 

Oi (k), a] (k')j = 5ij8 (k - k ) (6.1.1) 

[a« (k), al (k')] = (k - k') . (6.1.2) 

The minus sign in Eq.(6.1.2) yields some difficulties as wiU be seen later. It arises 
from the fact the conjugate momentum of the scalar part of the vector potential has 
an additional minus sign as was seen in the last chapter. With a commutation relation 
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like this it is not possible in the theory used to construct a basis for scalar photon states 
with positive deiSnite norms. However, this would be necessary to allow a probability 
interpretation and one has to constmct a theory that is able to define observables in a 
way that they satisfy the commutation relation given in Eq.(6.2.2) without the minus 
sign. 

The subsidiary condition for physical states cannot be written as 

ai (k) — as (k) = 0 Vk, (6.1.3) 

because the longitudinal and the scalar part of the given four vectors are in different 
subspaces, Eq.(6.1.3) can never be tme. Here ai (k) is the longitudinal spatial part 
K • a (k) of the annihilation operators. A weaker subsidiary condition has to be used 
to obtain physical states. For the free field one can use the condition 

[tt^ (k) — (k)] = 0 Vk A physical |f') (6.1.4) 

which states that the operator [ai (k) — (k)] working on any physical state |ff) must 
give zero. This procedure was first suggested in a paper by Gupta [9] and later also 
used by Bleuler[16] . A special state is the vacuum and it seems natural to require 
that every annihilation operator (k) working on the vacuum |0) should give zero. 
This state satisfies Eq.(6.1.4) and therefore is a physical state. 

Next the photon states will be described as states created from the vacuum with 
the creation operators for the different kind of photons and the problem arising for the 
scalar photons will he shown and solved. The spatial photon states can be constructed 
from the vacuum as usual with the creation operators aK, a\ and the obtained state 
is 

n^,n^',rii) 
(4)"-(4)’‘V4) 

|o>. (6.1.5) 

If the same procedure would be used for the scalar part every state with an uneven 
number of scalar photons would have a negative norm. For example the state 

= aj (k) |0> (6.1.6) 

has the norm 
<*li) = (0| a, (k) 4 (k) |0> > - (0|0>, (6.1.7) 

where the commutation relation Eq.(6.1.2) and the fact that the annihilation operator 
working on the vacuum gives zero was used. The norm of the state with one scalar 
photon has therefore the opposite sign to the norm of the vacuum state. This does 
not allow a probabilistic interpretation in the underlying Hilbert space. The positive 
definiteness of the norms of the Hilbert space has to be abandoned to allow the first 
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excited state of the scalar part. This is done in Cohen-Tannoudji [11, p.387] by 
introducing an indefinite metric. 

The new scalar product is defimed in terms of the unitaiy operator M as 

(4> I ^) = (4>| M |T'), (6.1.8) 

with the unitarity condition M = It also will be possible to constmct 
this new scalar product in a way that M will change the sign of the scalar part. All 
conditions for a scalar product are still valid except the positive definiteness. For a 
linear operator A the adjoint in the new metric in relation to the one in the old metric 
is 

A = MA^M, (6.1.9) 

where A denotes the adjoint of A in the new metric to distinguish it firom the old one. 
The operator A is the same in both metrics, but the notion of a hermitian operator in 
the new metric is different. An operator A is called hermitian in the new metric, if 

A^A. (6.1.10) 

The new mean value in the state 'P of an operator A is then by definition the quantity 

(4-1*) • (6.1.11) 

If this quantity is real, then the operator A is hermitian. 
Physical observables are now required to be hermitian in the new metric. The 

potential operators which have to be hermitian in the new sense, are now given 
by   

A. V- 

h 

\ 2SQCU> (27T)" 
(k, t) (k, t) e ik-r 

(6.1.12) 

with the commutation relations 

Ui (k), Oj ^k'^j =6'ij'5(k —k) (6.1.13) 

as (k), as (k')j = -5 (k - k') (6.1.14) 

assmned to be valid in the new metric and all other operators commute. 
All the problems arise because of the minus sign in Eq.(6.1.14) and to construct 

a basis for the scalar photons, with positive norm regarding the old metric, one 
requires the operator M to satisfy the equations 

aj = MajM = a^ (6.1.15) 
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= Ma\M = -4. (6.1.16) 

The only change in the commutation relations regarding the old metric occurs in 
the scalar part and the commutation relation for the scalar creation and absorption 
operators regarding the old metric is now 

Os (k), 4 (k')] = 5 (k - k') . (6.1.17) 

Now it is possible to construct a basis for the scalar photons, because this commutation 
relation is well known and the creation and absorption operators act in the usual 
manner. The basis for the scalar photons is given by 

ris) - (6.1.18) 

where |0s) is the vacuum state of the scalar photons. The basis vectors are normalized 
in the usual manner and the creation and absorption operators m respect to the old 
metric yield 

\ns) = \/rrs + 1 + 1) (6.1.19) 

Ns) = \/^ Ns ~ 1) (6.1.20) 

as |0.)=0. (6.1.21) 

With this new basis it is possible to describe states with one scalar photon and a 
positive norm in respect to the old metric and the problems mentioned earlier are 
solved, but not without paying a price. 

The vector potential Ag regarding the old metric is now anti-hermitian and 
therefore would not be considered a physical observable in the old sense. It is a small 
price to pay remembering that the scalar potential is not a truly physical observable 
in the first place. The operator M given by the expression 

^ Ns> = (-i)”"" Ns) (6.1.22) 

is suitable to define the new metric. Using Eqn.(6.1.19,6.1.16) the action of is 
foxmd to be 

Ns) = + 1 Ns + 1) • (6.1.23) 

Now it is possible to calculate the new scalar product between two scalar photon 
states and the result is 

(ri^Nl) = NJ ^ 1^1) = (-1)’"" (6.1.24) 

As expected the norm for the vacumn is positive and the norm for the states 
with an uneven number of scalar photons is negative. The space of physical scalar 



49 

photons expressed in respect to the old metric now behaves nicely. In the new metric 
the consequences that arise from the negative norms in the scalar states yield no 
problem, because states with negative norm are allowed in the new metric. The main 
difference between the metrics is that the scalar operators that are hermitian in respect 
to the new metric wiU now be anti-hermitian in respect to the old metric and therefore 
would not be considered observables in the old sense. For physical states this wUl 
yield no problem as will be seen later, because of the subsidiary condition. 

2 A new class of photons 
The simple form of the subsidiary condition for physical states suggests another 
basis transformation in the space of photons. In this section the d(ifference) and 
g(auge)-photons will be defined and their properties in the old and new metric will 
be investigated. The two orthonormal operators representing the new photons are 
defined as 

(6.2.1) 

and 
+ ^s) ■ (6.2.2) 

The first operator is essentially the subsidiary condition for physical states and the 
physical states are constructed so that they have no d-photons. Using Eqn.(6.2.1,6.2.2) 
and the definition of the vacuum shows that the vacuum states for the Is-photons and 
the gd-photons coincide, which gives the identity 

OdOp) = |0s0«). (6.2.3) 

The basis of the state space for physical photons will as usual be given in respect 
to the vacuum state in the old metric using the creation operators expressed in the old 
metric, because the positive definiteness of the scalar product allows a probabilistic 
interpretation of the theory. The orthonormal basis for the space of physical states is 
therefore given by the expression 

Inen^^OdUg) = 

(4)- (4)V (gt)- 
|0> (6.2.4) 

and obviously die transverse and the g-photons can be in any excited state. The 
g-photon is responsible for the possibility to have gauge transformations in the old 
metric, which leave the physical states unchanged. The orthonormality relation in 
regard to the old metric for this basis is given by the equation 

(n,n,'0anjn,n^,0an^') = (6.2.5) 
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The scalar product between physical states in the new metric however is differ- 
ent. The transverse part remains the same, but the gd- (or Is-) part is not that simple. 
It is necessary to explicitly calculate the scalar product {pd'ng\Qci'>^^ in this subspace. 

The ket Oarig^ remains basically the same and can be given in respect to the vacuum 
state as a function of the creation operator at. To be able to give an expression for 
the physical bra it is necessary to exploit the remaining properties of the new scalar 
product, which give the relation between the kets and bras as 

('h'l - - (6.2.6) 

where A is any linear operator. Using this correspondence it is straightforward to 
show the correspondence between the physical kets and bras in the new metric and 
the result is _ 

Odn'g) = (4)’ 
|0) (0dn'g\ = (0| 

(4) 
rig 

(6.2.7) 

The operator al is simply the new adjoint of the creation operator a^. 
This operator will now be written solely in the notation of the new metric. 

Using Eqn.(6.2.1,6.2.2) and Eqn.(6.1.15,6.1.16) gives the equations 

aa = -iaj (6.2.8) 

and 
ag = iah. (6.2.9) 

Furthermore Eq.(6.2.8) gives the relation 

o,g = —iad- (6.2.10) 

Using Eqn.(6.2.1,6.2.2) and Eq.(6.1.13,6.1.14) the commutation relation for d-photons 
is given as 

[ad,^] = 0. (6.2.11) 

Now it is possible to calculate the new scalar product and using the definition in 
Eq.(6.2.7) and the relations given in Eqn.(6.2.8,6.2.10,6.2.11) gives the equation 

(Od^glOrf^) = (6.2.12) 

This result is interesting, because it states that the new scalar product between aU 
the basis vectors of the gd-sub space of physical kets is identical to zero, unless the 
number of g-photons is zero. 

Even though it is possible to describe a physical state with a whole class of 
physical kets, namely the ones with a fixed transverse part , but an arbitrary gd- 
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(Is-) part, only the vacuum of the g-photons gives a non zero scalar product between 
physical states. It can be shown that mean values of physical observables in respect 
to the new metric are the same as the mean values of the transverse parts in respect 
to the old metric and that the vector potential is the same in the two metrics except an 
additional gauge term. The physical kets themselves in the new metric describe the 
gauge arbitrariness, without changing the predictions for physical observables. Those 
calculations however are not necessary for the theory that will be proposed in the 
next chapter and are therefore omitted. 

3 The subsidiary condition 
Because the form of the subsidiary condition will play a cmcial part in the remaining 
chapters, the subsidiary condition as given by Gupta and Bleuler will be investigated 
and equivalent descriptions in the two metrics will be given in this section. This will 
be achieved by investigating the expectation value for the operator which is 
given by the expression 

(*| ji) = [d^k   (^1 Ua, + ^ ^ ^ 1^) (g 3 y 
J \ 2eoitj (27r) \ c / 2soOJ (27T) 

The first term in the scalar product is equal to zero, beeause it naturally gives the 
subsidiary condition for physical ket states. The hermitian conjugate term however 
yields 

{<lf\h.c. I’T) = ^—ikai + (6.3.2) 

which can be written as 

(T'l h.c. |T^) = (T'l (a, - ai) |T^) (6.3.3) 

using the equations of motion. 
This is the subsidiary condition for physical bra states in the new metric using 

the correspondence between bras and kets as shown in Eq.(6.2.6). It is also possible 
to write this subsidiary condition in respect to the old metric when one starts with 
the equation 

(q,' I = (qf I [a^ - ai] = (T'l M [a^ - ai] (6.3.4) 

where the correspondence between the old and the new bra was used. Using Eqn.(6.1.15,6.1.16) 
it can be shown that following Eq.(6.1.24) this is equal to 

(K'I = (■fl [a, - 3,1 = (■I-l ai a] M, (6.3,5) 
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which is the usual subsidiary condition working on the bra. So this term is also zero 
and the expectation value for the operator is as expected equal to zero. 

The subsidiary condition has therefore the same form in the old and in the new 
metric. This result will be needed in the next chapter, where a new photon number 
density operator in covariant notation will be defined. 
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Chapter 7 
The photon number density in the 
new metric 

The job is to ask questions -it always was- and to ask them as inexorably as I can. 
And to face the absence of precise answers with a certain humility. 

-Arthur Miller 

In the last chapter a new metric was introduced and in this chapter the photon number 
density operator defined in chapter four will be expressed in this new metric. The 
operator now has to be hermitian in respect to the new metric and therefore the 
daggers in the creation operators have to be replaced by bars. It also has to be the 
first component of the four vector obtained by contracting the electro magnetic field 
tensor with the vector potential as in chapter four. It will be shown that this operator 
can be indeed interpreted as a photon number density in respect to the new metric. 

In the last part it will be shown however that this operator does not completely 
act as expected, because of the ghosts that propagate in the theory until the subsidiary 
condition is applied. In the next chapter the problem will be solved and an explanation 
will be given why this strange behavior occurs. 

1 The Photon Current Four Vector in the new metric 

It was stated that in the new metric physical observables have to be hermitian in 
respect to the new metric. The photon current four vector defined in the Coulomb 
gauge was hermitian in respect to the old metric and therefore changes have to 
be made. The proposed density operator then will have to be integrated over the 
configuration space to obtain the total number operator. 

It was mentioned in chapter four that the photon number and current density op- 
erators can be foimd by contracting the electromagnetic field tensor with the potential 
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four vector. The photon current four vector then has to be 

where the positive and negative frequency parts of the electromagnetic field tensor 
are 

(7.1.2) 

and the new potential four-vector is 

-4;. (rr-) = J cPk. 
h 

M 2eo {27rf 
(7.1.3) 

with the usual split in negative and positive frequency parts. This operator differs 
from the ones used earlier, because the potential four vector is now required to be 
hermitian in the new sense. It is important to note that Eq.(7.1.3) is only valid in 
the case of a free field, because time dependance where u; = A:c is assumed. 
The four-vector is defined as fkj with tt; = c |k| and satisfying the condition 

= 0. The operator defined in Eq.(7.1.1) is hermitian in respect to the new metric, 
because = A~. 

The scalar component of this four-vector can be split into a transverse part and 
a part that spans the longitudinal and the scalar components of the photons. This 
subspace will be denoted as the Is-space. In this notation the scalar component of the 
derived operator reads 

TO = T^-HT^^ (7.1.4) 

where To is scalar component of the operator defined in Eq.(7.1.1) and the right- 
hand-side of the equation is given by the transverse and the Is-component of the 
operator. The transverse component is 

TJ- =\]<ek (k) a,, (k-) (7.1.5) 

and the Is-component is 

= ^s^kscpk' 

X (ko + k'o^ ai (k) ai (^k'^ -I- (k) k • a (^k')j + |^k'-a (k) (k'j |. 

Integrating over the configuration space the leaves one with the expressions 

(7.1.6) 

J d^xT^ — 2 j .ikuX'^ ^ Oar (k) Or (k) (7.1.7) 
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and 

Jd^xTQ^ = — ^ Jd^kdi (k) [a^ (k) — ai (k)] + [ds (k) — di (k)] ai (k). (7.1.8) 

In the next section the mean values of those operators will be calculated in the new 
metric. 

2 Mean values of the photon number operator 
Now it is possible to calculate the mean values of these two operators in the new 
metric. For the Is-part the mean value in respect to the new metric is 

_ f Ls\r^^LS) 

(7.2.1) 
because the Is-part of the operator only works on the LS-subspace and the integration 
over configuration space can be taken outside the scalar product. Inserting Eq.(7.1.8) 
yields 

/ dr X LS 
y'LS 
^ 0 / d^k 

2 ('I'z.sl'I'z.s) 

(^x,s| di (k) [ttg (k) — ai (k)] |^x,s) 

+ i'^Lsl [ds (k) - di (k)] ai (k) 

(7.2.2) 

and this is identical to zero, because the terms in the scalar product are simply stating 
the subsidiaiy condition for physical states. 

The mean value of / d^xT^ in respect to the new metric is given in a similar 
way by the expression 

and because the transverse part is not affected by the new metric this can be written 
as 

f 1^?^) ^ f QT (k) Or (k) |^T) 

Therefore the mean value of the new operator in respect to the new metric is equal 
to the mean value of the operator 

J d^kn (k) = N, (7.2.4) 
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where h (k) = ^ (k) oy (k) in respect to the old metric. It is therefore shown that 
only the transverse photons contribute to the total number of photons in position-space 
and that the zeroth component of the hermitian operator 

I^ (F-Af-* - A'‘-F+) (7.2.5) 

can be iuterpreted as the photon number density regarding the new metric. In the 
next section it will be shown that this operator is not able to describe the ghost states 
in the expected way and therefore cannot be the right photon number density operator 
in the Lorentz gauge. 

3 Mean values of the operators in respect to the old 
metric 
In this section the mean value of a known physical state will he calculated in respect 
to the old metric and it will be shown that the result does not coincide with the 
expected value. Problems only arise because of the ghosts in the system, which only 
propagate in the Is-part, and therefore the transverse part of the operator will always 
act as expected. 

Physical states of the free field always have the same number of 1- and s-photons 
and one special physical state is 

|l^,l,) = at4|0^,0,). (7.3.1) 

The Is-part of the photon number operator was given in Eq.(7.1.8) in respect to the 
new metric as 

JCI^XTQ^ = —^ Jd^kai (k) (k) - ai (k)] -1- [a^ (k) - ai (k)] ai (k). (7.3.2) 

Using the identities that 

and 

ai (k) = 4 (k) 

(k) = -4 (k) 

(7.3.3) 

(7.3.4) 

yields for Eq.(7.3.2) 

which can be written as 

Jd^xTQ^ = — j— 24 (k) ai (k) + aj (k) (k) — 4 (k) (k) - (7.3.6) 
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Taking the expectation value of this operator in respect to the old metric one finds 
that the last two terms of the integrand do not contribute to the expectation value, 
because of the orthogonality relation of the final states. Taking the expectation value 
of this operator in respect to the old metric yields 

{Is, 
= 7^^ = 1. (7.3.7) 

This is not the expected value, because the inspected state does not only have a 
longitudinal photon, but also a scalar photon. This is because scalar photons are not 
counted using this operator which was defined in the Coulomb gauge originally. 

The operator therefore cannot describe the physical state in Eq.(7.3.1) that in- 
cludes the ghosts in respect to the old metric. It is no surprise however that the 
right result in respect to the new metric was achieved, because in the new metric the 
subsidiary condition was applied and the ghosts vanished completely. It is therefore 
necessary to find an operator that gives the same result in respect to the new met- 
ric, but fiuthermore is also able to describe the system in respect to the old metric 
correctly. This will be done in the next chapter and an explanation of why the fom 
vector has to have a different form than the one used in the Coulomb gauge will also 
be given in that chapter. 

4 Interaction of the free field with two fixed charges 
in the covariant notation 
In the last section it was shown that the proposed operator cannot describe the ghost 
states in an expected way, but it is nevertheless helpful to investigate the behavior 
of this operator in respect to the new metric in the case of two charges present. The 
operator was able to describe the physical states in the right way and therefore is still 
useful and investigating this generalized case will give some ideas to what one can 
expect when using the same case with the operator that wiU be proposed in the next 
chapter. This case wiU be treated analogous to the fi*ee field case and very formaUy. 
In the next chapter a more direct approach wUl be used and some of the properties 
used in this chapter wiU be shown explicitly. 

In the interaction case the Lagrangian wiU include the interaction term 

JO-T = 

In the case of two fixed charges this simplifies to the equation 

— — cp^As (7.4.1) 
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(r) = qi6 (r - ri) + ^2^ (r - ^2) ■ 

and in reciprocal space this equation gives 

(7.4.2) 

Pe (k) = 
(27T) 

(7.4.3) 

The Lagrangian density is therefore 

C = 
eoC‘‘ 

(df^Ay) {d^A') — cqiS (r — ri) - ccfyS (r - rg) (7.4.4) 

In the case of the &ee field it was possible to obtain the time dependence of the 
annihilation and creation operators. This is not possible anymore and the proposed 
photon current operator is now the more general operator 

T r r/ 
n 

2eo (27T)^ 

where S is now given by the expression 

(7.4.5) 

4 (5, (k,i) e-*-*) - 61, (a„ (k,t) 6-*'='*)] <6- (k'.t) e*' " (7.4.6) 

—o6 (k,i) e“"'‘ * \di^ ^o, (k', t) e‘“ — S, (a^ (k , e"‘ . 

Since we are only interested in the scalar component of this four vector operator it is 
possible to restrict the theory to the case ?] = 0. The equation can then be written as 

S = (k,t) e (k', + (Va^ (k,t) e a (k', (7.4.7) 

- (k»^) (k', e"’" (k,f) a (k', ij 

-a^ (k,i) (k', t) - a (k,t) ■ Va, (k', t) 

+a, (k,t) (k', t) - a (k,t) (k',i) 

and collecting similar terms yields 

H = -a (k,t) - Va« (k', i) + (Va^ (k,t) a (k', tj '^7.4.8) 

+ (k,t) e-«-^ a (k', i) e*' * - a (k,t) ^-•‘""^a (k',t) 6-*“'-. 
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Since the gradient only affects the exponential function and the time derivative only 
affects the operators the equation is also equivalent to the expression 

S = —e^ ^ [^a (k,t) - k' ^k', (k,t) k - a (^, j (7.4.9) 

+e 

The equations of motion for the spatial part remain the same as before, because the 
charges are fixed and therefore no current is present and following result is achieved 

+e 
i^k —k^-3i 

a (k,t) • k' as (^k', + as (k,t) k • a ^k', j 
f 

—a (k,t) • a (k'j + a (k,t) • —a ^k (7.4.10) 

The only dependance on space coordinates is in the exponential function and integra- 
tion over the configuration space yields 

(7.4.11) 

J d^xS = — (27T)^ (5 ^k — k^ [a (k,t) • k ^k, (k,t) k • a ^k , j 

+ (2-Tr)^ 6 ^k' — k^ ^ a (k,t) - a ^k', 

The integrated form of Eq.(7.4.5) is therefore 

—6 ^k' — k^ l^a (k,t) - k' (k,t) k • a ^k\ j , (7.4.12) 

which reduces to the expression 

/Jz r 2 1 1 
d^xTs = 7-— / d^k—a (k,t) - a (k, i) a (k,t) • ka^ (k, t) (k,t) k - a (k, t), 

2SQ J C LO to 
(7.4.13) 

because of the delta function. Exploiting the definition for the longitudinal part of 
the operators and performing the scalar products leaves one with 

% I d^xTs = 

2e cl (7.4.14) 
—di (k,t) as (k, t) — ds (k,t) ai (k,t) 

and once again it is possible to split this expression into a transverse and a Is-part. 
The transverse part is as before given by the expression 

n 
f d^xT^ = — f d^ksiT (k,t) • a^ (k, i). 

J SQC J 
(7.4.15) 
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The Is-part however is now given by the expression 

h I - 

^ 2eoc 
jcfkai (k,t) [ai (k,t) - (k, *)] + [ai (k,t) — (k,i)] ai (k,t) 

(7.4.16) 

and adding zero yields 

/ h 

" 2eoc 

+ 

J d^kai (k,i) [ai (k,i) — (k, t) + A (k, t)] (7.4.17) 

ai (k,t) — ds (k,t) + A (k, t) ai (k,t) 

di (k,t) A (k, i) - A (k, t) ai (k,t), 

where A (k, t) is a constant that will be defined in the next chapter. If the mean value 
of this term is calcrdated in respect to the new norm, the terms in the brackets will 
vanish, because they include the subsidiary condition for the case of the free field 
interacting with two fixed charges, which will be shown explicitly in the next chapter. 

If the mean value is calculated in respect to the new ground state, the two 
terms with A’s will disappear too, because the A’s are the eigenvalues of the scalar 
operators acting on the new ground state and acting with a longitudinal annihilation 
and a scalar creation operator on a physical state wUl give a state orthogonal to the 
original one. The number of photons counted is therefore equal to the number of 
transverse photons. 
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Chapter 8 
Covariant photon number density 

To be or not to be: that is the question: 

-Shakespeare’s Hamlet 

In the last previous chapters a Photon Number Density four vector that is Lorentz 
invariant was introduced and it was shown that the proposed operator indeed counts 
physical photons in configuration space using the new metric. The operator was not 
able to describe the ghost state photons and in this chapter that problem will be solved. 
A new Photon Number Operator which yields the same results in respect to the new 
metric, but is also able to describe the photons in the ghost states in respect to the old 
metric, will be introduced. It will be shown in the first section how this modification 
is achieved and why the same results are expected. In the following section it will 
be shown that the new operator can be justified using symmetry arguments and at the 
end of the chapter it then wfil be shown that the expected results are indeed achieved. 

1 Modifying the proposed operator 
In chapter four the Photon Number Density Operator was integrated to achieve a 
result that is comparable to already known operators. This leaves the possibility of 
changing the density operator without changing the result of the integration, because 
integrating over the divergence of a term gives a zero contribution to the value of 
the integral. In this section it wiU be shown how the operator proposed in the last 
chapter can be modified to obtain a new operator that should yield the same results 
in respect to the new metric. 

Starting with the scalar component of the operator used in the last chapter, 
which is given by the expression 

(8.1.1) 
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or in more explicit form 

Tf, = ^ - (d.A-) A“* - A^‘-^^A* + Af^-a.A*) , (8.1.2) 

yields after performing the summation and collecting equal and similar terms 

VA- • A+ + -A--A+-A- • VA+ - -A--A^) . (8.1.3) 
tn \ c c ) 

To change this to the new proposal, which should be just different by a divergence 
term, it is necessary to investigate the expression 

V • (AA,) = (V • A) A, + A • VA,, (8.1.4) 

which is equal to 

A . VA, = - (^A,) A, + V • (AA,), (8.1.5) 

where the Lorentz condition was used. The same result can be achieved by using 
positive and negative frequency parts in the expression and Eq.(8.1.3) can be written 
as 

T, = ^ - KK + A--A+ - K- k* + cV ■ (A;A+) - cV • (A-^J)) . 

* (8.1.6) 
The divergence terms wiU have no effect, because they do not contribute to the 
integral over configuration space that has to be calculated later. It is therefore possible 
to define the new Photon Number Density operator, which should have the same 
properties as the old one when integrated, by the expression 

Tf, = g {A:At - + A-.A+ - A--A+) . (8.1.7) 

This operator has some advantages when symmetry arguments are used and they will 
be discussed briefly in the next section. 

2 Symmetry arguments 
The first photon number density operator introduced in this thesis was given in the 
Coulomb gauge and it was obtained by contracting the electromagnetic field tensor 
with the vector potential. In the covariant theory this operator was generalized and it 
was shown that the new operator could describe the transverse photons for physical 
states, but it was not able to describe the ghost states. In the last section this operator 
was modified and in this section an argument will be given why this modification 
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is reasonable. The rigorous discussion of those arguments can be found in a recent 
paper by Hawton and Melde[14], 

The theory goes back to Emi Noethers theorem, which states that each symmetry 
of a given Lagrangian generates a conservation law. In the case of the Coulomb gauge 
the Lagrangian is defined as 

■eg =(8-2.1) 

and if a phase change symmetry would apply the corresponding conserved den- 
sity/current four vector would yield 

( B " 

However, the same result is achieved contracting the electromagnetic field tensor and 
the vector potential times —soc^, which yields 

XM = (8.2.3) 

A phase change can only make sense if the fields are not real and it is therefore 
necessary to separate the fields into negative and positive frequency parts. The 
hermitian photon density operator that generalizes Eq.(2) after the field were quantized 
and the operator was normal ordered can be given as 

_ So ( C(E(-)-A^+)-A(-)-EW) \ y c2 (B(-) X A<+) + A(-) X ^ ) ' 

(8.2.4) 
Comparing Eq.(l) and Eq.(3) shows how the photon number/current four vector de- 
pends on the given Lagrangian. 

In the last section the photon density/current four vector was modified in a way 
so that the integrated form of both operators give the same mean value in respect to 
the new metric. The operator themselves however differ by a divergence term and 
the new operator is 

Tf, = ^ - AjAt + A--A+ - A- A*) . (8.2.5) 

It is possible to rewrite this operator in the form 

T. =. ^ (3)A;) 4"+ + h.c., (8.2.6) 

where h.c. means hermitian conjugate. If multiplied by c this is the first component 
of a four vector and it has a similar relation to the Lagrangian used in this case as the 
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relation that was found between the density/current four vector and the Lagrangian 
in the Coulomb gauge. The Lagrangian in the Lorentz gauge is 

£i! = (a^A-) (8^‘A'') (8.2,7) 

and as before the conserved density/current four vector is obtained by contracting the 
negative frequency part of the first term in the Lagrangian with the positive jfrequency 
part of the vector potential and taking the hermitian conjugate. 

This is only a crude comparison of the two cases, but it illustrates why the 
photon number density operator had to be modified in the Lorentz gauge. In the 
paper by Hawton and Melde this argument is shown explicitly, but the theory needed 
to show this argumentation is of a completely different kind than the theory developed 
in this thesis and therefore omitted. In the next section this new operator and it’s 
properties will be investigated. 

3 The number of Photons in the case of two fixed 
charges present 
In this section the proposed Photon Number Density operator wiU be integrated over 
the configuration space and the expectation value in respect to the new ground state 
will be taken. Only the equations of motion and a new subsidiary condition for 
physical states will be used and the calculations are of the same form as in chapter 
five. But first the operator has to be expressed in respect to the new vector potential 
expressed in respect to the new metric, which yields 

2i (27T) J J -S/ijjijJ 
(8.3.1) 

{§t^ • a (k', t) + a (k, t) • ^^a (W, . 

The equations of motion have to be used to simplify this result and to be able to 
do so it is necessary to solve the differential equation satisfied by the annihilation 
operators. The equations of motion are 

and 

coj + iojaj — 0 (8.3.2) 

CIQ -|- %UJOJQ — 

i 
(8.3.3) 
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The spatial equations are ordinary homogeneous differential equations of the first 
order and the general solution of an equation of this kind is 

aj (k, t) = aj (k) (8.3.4) 

The scalar part however is an ordinaiy inhomogeneous differential equation of first 
order and the general solution is 

a3(k,i) = of(k,t)+af(k,<), (8.3.5) 

where the right hand side is given by the homogeneous solution plus a particular 
solution. As before the homogeneous solution is of the form 

af = (8.3.6) 

One solution of this differential equation is given by the expression 

< (k) = oj\^2eohu} 
(k) , (8.3.7) 

which implies that 
af (k) = 0 (8.3.8) 

and the particular solution is a constant in time. Using these relations Eq.(8.2.1) is 
given by the expression 

T. = fcPkf 
2i (27rf J J 

iu-a. (k) (a, (k') (k')) 

+ (k) + —^=cpl (k)^ iJ (k') * 

(cj + a (k) - a ^k'^ )*_ 

Collecting similar terms yields 

l7rf J J 
T .S - 

2i {27TY 

(8.3.9) 

(8.3.10) 

xi ^ (k) tts ^k ^ — a (k) ■ a ^k e ^ ^ 
/ • ' 

vUJG- . . / '\ vUJ G- •* / \ / '\ 
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and integrating over the configuration space leaves one with the expression 

J ct‘xr, = -iyd='fc2(a,(k)o,(k)-a(k)-a(k)) (8.3.11) 

‘ k(k)p,(k)e"‘+,9;{k)a,(k)e-‘“‘l 
uj\/2eohuj - 

which equals 

J d^xTs = J d^koT (k) • Or (k) 

-ds (k) (k) + di (k) ai (k) 

(8.3.12) 

+- 
2 

tts (k) A (k) + A* (k) (k) e —iuit 

where the A’s are 

The transverse part is the usual number operator for physical photons and the Is-part 
is given by the expression 

Jd^xTf^ = Jd^kdi (k) ai (k) - d^ (k) (k) (8.3.14) 

[a, (k) A (k) e"-' + A* (k) a, (k) . 

Some fairly simple manipulations allow one to write this equation in the form 

Jd^x'T^^ — — Jc^k (a^ + a^) [a^ — + A] + \di — + A*] (a^ + ft()B.3.15) 

-X*ai - diX. 

The expressions ia the square brackets are the subsidiary condition for the free field 
interacting with two fixed charges as can be seen by the following calculation. 

The subsidiary condition follows the expression 

h 
2eoU> (27T)' 

J d^k d. 
ikai H—^ + h.c. 

and can be given as 

ikai (k) + ds (k) 
|^> = 0 Vk. 

(8.3.16) 

(8.3.17) 

Using the equations of motion again makes it possible to write the subsidiary condition 
for physical states of the free field interacting with two fixed charges in the form 

[aak)-a,(k)+A(k)]|^)==0 Vk, (8.3.18) 
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which reduces to the one given for the free field in the absence of sources. Now it 
is possible to calculate the expectation value of the system of the operator given in 
Eq.(8.2.15) and the result is 

^) = lJ (I-1 {-X*ai aiX) 1^) (8.3.19) 

where the first two terms vanished because of the subsidiary condition for physical 
states. The right hand side of the achieved equation ean be changed in the following 
way. By definition of the scalar product the equation results, 

-(§|(A"a, + aA)|^) (^|M(A*ai + a,A)|^) = 0, (8.3.20) 

where M is the unitary operator that defines the new metric. The A’s can be taken 
outside the sealar product, because they do not represent an operator and the anni- 
hilation or creation of a longitudinal photon in either the Bra or the Ket will assure 
that the expression is equal to zero due to the orthogonality relation for different Bras 
and Kets. Therefore neither the longitudinal nor the scalar photons contribute to the 
expectation value of the Photon Number operator. This is the same result as the one 
that was achieved with the operators defined in the last section. In the next section 
expectation values of some physical and non physical states wiU be calculated. 

4 Mean values of the new operator in the old metric 
It was shown in the last section that the new photon number density operator describes 
physical states in the expected way using the new metric. In the case of physical 
states the ghost states disappeared in the new metric and only the transverse photons 
contributed to the number of photons in the system. In this section the operator will 
be translated in the old metric and mean values m respect to the old metric will 
be calculated. In the last chapter the proposed operator could not describe certain 
physical states correctly and it had to be abandoned. It is hoped that the new operator 
is able to describe those physical states correct and give more information about the 
ghost states. The case of a fiee field will be assumed for simplicity. 

As before the transverse part yields no problems and it is therefore only neces- 
sary to investigate the Is-part. The photon number operator for the Is-photons is 

Jd^xT~ J(k) Qi (k) — Us (k) (k) (8.4.1) 

+ 2L 
(k) A (k) e*"* -i A* (k) (k) e —iuit 

and next, the mean value of this operator m respect to the physical state with one 
scalar and one longitudmal photon in the case of a free field wUl be calculated. This 
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expectation value is given by the expression 

{li, ls| fcPxTf^ |lz, Is) 
{Jc?xrf) = / , s (8.4.2) 

^ 1 i \ f Is I (k) (k) - as (k) as (k) \ \i, 1^), \Hi ts|tZ5 J 

where the A terms are zero, because the free field is assumed. The expectation value 
can be written in respect to the old metric as 

< jd^xTf^} = 1 |i, 1 ) /““ 1^'’ 

(8.4,3) 
Each of the two terms counts one photon in respect to this physical state and the final 
result is 

( fd^xrf^) = 2, (8.4.4) 

as was expected. 
Assuming the free field again, the basis for the Is-subspace of physical states 

is given by the expression 

(8.4.5) H) = %= |0> 

and it is useful to investigate the mean values of the operator in respect to these states. 
The mean value is given as 

{[cfxTf^) = J ('^p? Odlrig, Od) 

^ /„ n L n \ / Od|vip) Ud/ -J 

Now the operator has to be expressed in respect to the creation and destruction 
operators for the gd-photons and using the identities 

and 

gives 

ai {ttg iaa) 

as   

(8.4.7) 

(8.4.8) 

{ f d xYg ) nin ^ (*^p i^g '^^d) l^pjOd) 
J {ng,^d\rig,^d) 9 ^ 

+ (%»0d| ^ (a\ - iaj) (ttp + iaa) \rig, 0d> (8.4.9) 
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Performing the multiplication in the first two terms and collecting equal terms yields 

(j - n n \ [ d?k {Ug^ Oa ota. —I— t 
n \ (8.4.10) 

For physical states the number of d-photons has to be zero and therefore the second 
term does not contribute to the expectation value. The final result is then given by 
the expression 

(ytg,0ri| Jd^xT^^ |%,0rf) 
0ci|n.g5 Od) 

(8.4.11) 

and this is the expected result. The new operator is able to count the gauge photons 
in the fi'ee field and behaves nicely in this case. 

Next, one special state in the case of two fixed charges are present will be 
investigated and the mean value of the Is-part of the photon number operator in 
respect to this state will be calculated. This mean value is 

(8.4.12) 

_1_ f ai (k) ai (k) — (k) as (k) 

a, (k) A (k) e""' + A* (k) a, (k) e~^^] ) , 

which can be written in respect to the old metric as 

= ^^|d"fc(4|a|(k)a,(k)+at(k)«,(k)|*) (8.4.13) 

+1 (^1 [-4 (k) A (k) + A- (k) a, (k) e" 
■iuli 

The last two terms disappear, because the final states are orthogonal as was seen in 
the last chapter. Each of the first two terms counts the number of 1- and s-photons in 
respect to this physical state and the final result is 

{J d^xTf^) = Tii+ Us, (8.4.14) 

as was expected. It has to be noted that in this case rii is not necessarily equal to 
Us anymore, as was the case in the firee field. The reason for this is the changed 
subsidiary condition for physical states and the operator will count all the photons 
present. 
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It is therefore shown that the new operator allows one to count physical photons, 
which are the only ones contributing to the mean value in respect to physical states, 
and to count photons in the ghost states when the old metric is used. This is a nice 
and rather unexpected result and in the next chapter the conclusion of the thesis will 
be given. 
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Chapter 9 
Conclusion 

An Artist is someone who produces things that people don’t need to have but that he 
-for some reason- thinks it would be a good idea to give them. 

-Andy Warhol 

1 Results in the Coulomb gauge 
In the &st part of the thesis a new photon number density operator was proposed in 
the Coulomb gauge. The form of this hermitian operator is simple, because it is con- 
structed only using the electromagnetic fields and the vector potential. Every previous 
attempt to define a photon number density operator had to use more difficult opera- 
tors and it was hard to describe their behavior imder physical operations. The photon 
number density operator proposed in this thesis on the other hand behaves nicely 
and it is not complicated to investigate its behavior under Lorentz transformations, 
because the Lorentz transformations of its constituents are well known. 

If the proposed photon number density operator is expressed in respect to the 
annihilation and creation operators for the field one has to sum over the different 
modes of the field. Every term in this sum has the weighting factor which 
shows that the weighting factor depends explicitly on the angular fi-equencies of 
the field. In the Mandel operator this factor is missing and the photon number 
densities in respect to the operator proposed here and the Mandel operator should 
be different, if polychromatic fields are allowed. After integration over aU space 
however this dependance vanishes and the total photon number operator is the sum 
of the equally weighted numbers of photons with different wave vectors. The new 
total photon number operator behaves like every previously defined operator, but 
it’s density operator is different and it’s transformation properties are simpler. We 
believe that this density operator is the physically correct one, because of the following 
properties. 

The proposed photon number density is the scalar part of a four vector, because 
it was constmcted by contracting the electromagnetic field tensor with the vector 
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potential. This is a nice result, because it can be immediately stated that this four 
vector contracted with another four vector has to be an invariant. One special four 

and it follows immediately that the proposed photon number density 

current satisfy a weak continuity equation where the invariant was 

vector is 

j photon and the p 
shown to be 

ih 

In the case of the free field this invariant is equal to zero, which means that for 
the ihee field the operators satisfy a continuity equation. It is not surprising that in 
the case of matter interaction the invariant in not zero anymore, because it is possible 
that sources or sinks of photons are present in the configuration space. The invariant 
depends on the charge density\current four vector, which explicitly manifests the 
possibility of photon sources present. 

2 Results in the Lorentz gauge 
Before a photon number density operator could be given in the Lorentz gauge it was 
necessary to solve problems arismg in the second quantization for the fields in the 
Lorentz gauge. It was shown that following the usual quantization scheme the norm 
for the states with an uneven nmnber of scalar photons will have a different sign 
than the norm for states with an even number of scalar photons. This is a problem, 
because it allows states with negative energy eigenvalues for the Hamiltonian and it 
was necessary to introduce a new theory that allowed states with negative and zero 
norms. The indefinite metric following an approach by Gupta was introduced and a 
new “scalar product” was defined that allowed the possibihty to have negative norms. 
Strictly speaking this is not a scalar product, but in this new metric it plays the same 
role as the usual scalar product plays m the HUbeit space. The beauty of the theory 
is that aU operations and conditions are defined in the new metric, where negative 
norms are allowed, but every physical entity described by an operator defined in this 
manner has a positive mean value in the old metric. 

The condition to be hermitian is now given in respect to this new metric and 
physical operators like observables and the vector potential have to be hermitian 
in respect to the new metric. In respect to the old metric those operators are not 
hermitian anymore, because their scalar parts are now anti-hermitian in respect to 
the old metric. Thus the commutation relations for the annihilation and creation 
operators for the scalar photons expressed in the old metric are the usual ones (i.e. 
no minus signs) and it was possible to construct a basis for the scalar photon states 
using the linear combinations of creation operators. These new basis vectors always 
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have positive norms in respect to the old metric, but in respect to the new metric the 
norms can also be negative or zero. 

The mean values of operators can be expressed in respect to the new metric now. 
The vector potential describing the system in this way would classically not be an 
observable, but this is no problem, because the vector potential is not an observable. 
However, mean values of every observable in respect to the new metric for physical 
states are equal to the mean values of the transverse parts in respect to the old metric. 
The physical states are the ones satisfying a new subsidiary condition, which assures 
that the mean value of the operator which basically represents the Lorentz 
gauge condition, is zero. 

Because of the simple form of the subsidiary condition, another base transfor- 
mation could be defined and the new classes of d-photons and gauge-photons were 
introduced. Physical states require that no d-photon is present, but the number of 
gauge-photons is arbitrary. 

Physical states can now be constmcted from the vacuum using the creation 
operators for transverse and gauge-photons and physical systems can be represented 
by a class of states, i.e. the states with the same number of transverse photons, but 
an arbitrary number of gauge-photons. This means that the gauge arbitrariness is 
included in the state vectors themselves. The orthonormality relations for physical 
states are the usual ones in respect to the old metric, but scalar products between 
states in respect to the new metric are always zero, unless the number of g-photons 
is zero. In the new metric the gauge-photons cannot contribute to expectation values 
in respect to physical states, but in the old metric they can. 

The photon number operator was then expressed in respect to the new metric and 
it was shown that although this operator could describe physical states in respect to the 
new metric it failed to describe the states m respect to the old metric correctly. The 
ghost states, which drop out for physical states in respect to the new metric, could 
not be counted correctly, because the number operator for scalar photons dropped 
completely out of the total photon number operator. 

An interpretation following symmetry arguments was given, which explained 
that the operator had to be modified, because the Lagrangian of the system has to be 
modified when using the Lorentz gauge. A number operator appropriate in the Lorentz 
gauge was obtained and the two photon munber density operators only differ by a 
gradient term (as do the Lagrangians) and therefore the two total number operators 
in respect to the new metric coimt the same number of photons. 

Inspecting mean values of different states in respect to the two metrics showed 
that this new operator describes physical systems as expected. The mean value of the 
operator m respect to the new metric for physical states gives the same result as the 
mean value of the transverse parts of the operator in respect to the old metric. That 
means that in the new metric for physical states only transverse photons are counted. 
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The same operator in respect to the old metric, where it is not a hermitian operator, 
counts the same number of transverse photons, but also counts the g-photons. It 
therefore automatically coimts the ghost photons that appear in respect to the old 
metric, because of the gauge arbitrariness. 

It also was shown that in the case of two fixed charges the operator can be 
generalized and additional terms, depending on the charges, appear. The subsidiary 
condition changes and the therefore the basis of physical states has to be modified. 

In summary it was shown in the thesis that a mathematical model can be defined 
that allows one to introduce new photon number and current density operators in the 
Coulomb and in the Lorentz gauges that can count physically relevant photons and 
gauge photons of physical states. 
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