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ERROR CONTROL CODING FOR SEMICONDUCTOR MEMORIES 

Abstract 

All modern computers have memories built from VLSI RAM chips. 

Individually, these devices are highly reliable and any single chip 

may perform for decades before failing. However, when many of the 

chips are combined in a single memory, the time that at least one 

of them fails could decrease to mere few hours. The presence of 

the failed chips causes errors when binary data are stored in and 

read out from the memory. As a consequence the reliability of the 

computer memories degrade. These errors are classified into hard 

errors and soft errors. These can also be termed as permanent and 

temporary errors respectively. 

In some situations errors may show up as random errors, in 

which both 1-to-O errors and 0-to-l errors occur randomly in a 

memory word. In other situations the most likely errors are 

unidirectional errors in which 1-to-O errors or 0-to-l errors may 

occur but not both of them in one particular memory word. 

To achieve a high speed and highly reliable computer, we need 

large capacity memory. Unfortunately, with high density of 

semiconductor cells in memory, the error rate increases 

dramatically. Especially, the VLSI RAMs suffer from soft errors 

caused by alpha-particle radiation. Thus the reliability of 

computer could become unacceptable without error reducing schemes. 

In practice several schemes to reduce the effects of the memory 

errors were commonly used. But most of them are valid only for hard 
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errors. As an efficient and economical method, error control 

coding can be used to overcome both hard and soft errors. 

Therefore it is becoming a widely used scheme in computer industry 

today. 

In this thesis, we discuss error control coding for 

semiconductor memories. The thesis consists of six chapters. 

Chapter one is an introduction to error detecting and correcting 

coding for computer memories. Firstly, semiconductor memories and 

their problems are discussed. Then some schemes for error reduction 

in computer memories are given and the advantages of using error 

control coding over other schemes are presented. 

In chapter two, after a brief review of memory organizations, 

memory cells and their physical constructions and principle of 

storing data are described. Then we analyze mechanisms of various 

errors occurring in semiconductor memories so that, for different 

errors different coding schemes could be selected. 

Chapter three is devoted to the fundamental coding theory. In 

this chapter background on encoding and decoding algorithms are 

presented. 

In chapter four, random error control codes are discussed. 

Among them error detecting codes, single* error correcting/double 

error detecting codes and multiple error correcting codes are 

analyzed. By using examples, the decoding implementations for 

parity codes, Hamming codes, modified Hamming codes and majority 

logic codes are demonstrated. Also in this chapter it was shown 

that by combining error control coding and other schemes, the 



reliability of the memory can be improved by many orders. 

For unidirectional errors, we introduced unordered codes in 

chapter five. Two types of the unordered codes are discussed. They 

are systematic and nonsystematic unordered codes. Both of them are 

very powerful for unidirectional error detection. As an example of 

optimal nonsystematic unordered code, an efficient balanced code 

are analyzed. Then as an example of systematic unordered codes 

Berger codes are analyzed. Considering the fact that in practice 

random errors still may occur in unidirectional error memories, 

some recently developed t-random error correcting/all 

unidirectional error detecting codes are introduced. Illustrative 

examples are also included to facilitate the explanation. 

Chapter six is the conclusions of the thesis. 

The whole thesis is oriented to the applications of error 

control coding for semiconductor memories. Most of the codes 

discussed in the thesis are widely used in practice. Through the 

thesis we attempt to provide a review of coding in computer 

memories and emphasize the advantage of coding. It is obvious that 

with the requirement of higher speed and higher capacity 

semiconductor memories, error control coding will play even more 

important role in the future. 
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CHAPTER ONE INTRODUCTIONS 

Development in computer and its application has progressed 

rapidly during the last decades. Computer of today are much better 

in their performance and cheaper in cost. These have been achieved 

through dramatic improvement in hardware manufacturing as well as 

development of sophisticated software. 

Reliability of the computers has also become a major issue as 

its applications become widespread. These criteria among other 

things require efficient and error free digital transmission and 

storage systems in computers. Computer memories, as one of the 

main subsystems of computer are playing a significant role towards 

computer's reliability and performance. As the memory system 

becomes larger, failures, including hardware and software failures, 

influence the behaviours of computer more seriously than ever. 

1.1 Computer and Its Memory 

A block diagram of a digital computer is shown in Fig. 1.1. 

In this diagram there are four basic units, the input unit, central 

processing unit (CPU), main memory and output unit. 

The input unit enables operator to feed in the information 

data and instructions to the computer. The output unit allows the 

results of computing to be sent outside . Both input and output 

unit are equipments that interface with outside. CPU, which 

consists of control unit and arithmetic unit, is the heart of 



Fig.1.1 A bock diagram of a digital compute 

2 
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computer. CPU controls flows of data and instructions between 

different parts of computer and processes these data such that 

computer can accomplish various functions. Because the rate of data 

transfer of the input unit is generally slow compared to the 

processing speed of CPU. It is necessary to hold the data and 

instructions in a place for immediate use which allows fast access 

to the stored data. This storage place is called main memory. 

During operations, CPU directs the input information data to 

memory and reads them out as needed and applies arithmetic 

operations such as addition, subtraction, multiplication and 

division to the information data, and then, after being processed, 

the immediate results or final results are returned to the memory 

by CPU for preparation for output. 

It can be seen that large amount of data communications 

between subsystems takes place in computer. Among these 

communications, the data traffic between CPU and main memory is of 

the highest rate. For example, for a high speed computer it may be 

of the order of 100 million bits every second'^'^^. A large computer 

memory stores more data and allows data communication between 

memory and CPU to be faster. Therefore a large main memory is 

essential for high speed computer systems. 

High density memories and their problems 

As a result of the greater need for storage capacity and 

speed, computer memories are becoming high density and high speed. 

This increased memory density has generally been achieved through 
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a reduction of storage cell size. Nowadays the memory chips 

containing IM-bit are quite common. Table 1.1 gives a view of 

the progress of densities of semiconductor DRAMs (Dynamic RAM, 

which is one type of the semiconductor memories. In chapter two 

various other semiconductor memories will be discussed). It shows 

that DRAM size is being quadrupled in about every two to four 

years in the past 20 years. 

However, extremely small cell size and complexity of VLSI 

circuitry are more vulnerable to manufacturing failures and various 

interferences, especially alpha-particle radiation etc. This has 

largely increased the probability of failures in semiconductor 

memories. This in turn has increased error rates in computer 

systems and obstructed the progress of even higher density and 

higher speed memories. 

The errors in semiconductor memories can be basically divided 

into two types: hard errors and soft errors. A hard error occurs 

when a memory location of hardware becomes permanently defective. 

It is an irreversible error caused by connection failures like 

internally shorted or open leads. Soft errors are temporary and 

random in time and locations. They may occur during one particular 

memory cycle time but disappear in the next cycle. The soft errors 

result from system noise, power surges, atmospheric interference 

and alpha-particle radiation^’--^^ . 



Table 1.1 Storage geometry parameters in RAM 

memory size 

(bits) 

storage area 

(cm^) 

cell area 

year 

4K 

16K 

64K 

256K 

IM 

4M 

16M 

64M 

0.07 

0.1 

0.15 

0.3 

0.2 

0.3 

0.3 

0.6 

1764 

800 

216 

96 

20 

9 

1.5 

0.7 

1973 

1976 

1978 

1982 

1984 

1986 

1987 
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Some schemes for increasing the reliability of memory system 

It is important that the memory system enables to detect and 

correct errors as and when they occur. Otherwise the errors will 

lead to incorrect computation or even serious malfunction of the 

system operations. 

There have been several approaches to reduce or overcome the 

consequences of errors in computer memories. Some of them are 

discussed as follows: 

a) Memory Organizations Scheme'^'^' 

For some hard errors, proper memory organizations can be used 

to limit the number of errors within a memory word or to 

disperse errors into single error per word so that simple 

error correcting scheme is used effectively. For example, 

one-bit-per-chip organization is one of such designs. In this 

organization every bit of a word is stored in a different 

memory chip. A word of n bits then is stored in n chips in 

the memory. As a result, when a whole chip in the memory 

fails, it can affect, at most, only one bit of the word. 

b) Hardware Redundancy Scheme 

In this scheme, some amount of spare hardware components or 

memory cells are provided in memory chips during its 

fabrication. Whenever a memory cell is found permanently 

defective, the spare cell is automatically switched in to 

replace the defective ones. This scheme greatly increases the 

system reliability but causes a low efficiency in storage 

area usage. 



c) Hardware Maintenance Strategy 

In a system environment, another option for memory reliability 

is the system maintenance strategy. This strategy allows 

memory to accumulate certain correctable failures in memory 

until they reach a threshold which is intolerable to the 

computer memory. Then the faulty memory chips are physically 

replaced. Such a substitution strategy is scheduled 

periodically during service time of computer. 

d) Error Control Coding (ECC) Scheme'^'^' 

All methods mentioned above are valid only for hard errors. 

By adding some redundancy bits to information data, the 

scheme of ECC enables to combat both hard and soft errors 

occurring in memory words. By using the encoding and decoding 

logic, the ECC scheme enable to detect and even to correct 

errors as they occurred. 

Because of its high efficiency, ECC along with some other 

techniques mentioned above produces a versatile and robust scheme 

to improve the reliability of semiconductor memories. Therefore 

they are becoming quite common features in modern high performance 

computer systems. 

1.2 Coding for computer memories 

As an example, a simple illustration is shown in Figure 1.2 to 

explain the concept of memory with ECC technique. 

Let us assume that the possible information data from input 



1001 1001101 0001101 1001 

Fig.1.2 Simple illustration of a memory system 
with EDC scheme 

8 
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(to be stored in the memory) are 1001. Instead of being stored in 

memory directly, the data is firstly sent to the encoder where, 

according to certain coding rules, some redundancy digits 101 are 

formed and added to the information data 1001. This process is 

called encoding and the new data which contain information digits 

and redundancy digits are called encoded word or codeword while 

the redundancy digits 101 are usually called parity check bits or 

check bits. Then the encoded data are sent to memory and stored 

there as 1001101. 

Due to some faults in the memory, the codeword may be 

corrupted to an erroneous word. For example, suppose at the first 

position of the codeword, 1 is changed to 0 such that the actual 

codeword stored in the memory becomes 0001101 which differs from 

the original codeword. 

However, when the codeword is read out from the memory, the 

decoder will make it sure that the information portion of the 

codeword is 0001. Following the same rule as in the encoder, the 

decoder will regenerate new check bits, say 100, and compare them 

with the old check bits 101. If there is no differences between 

them, the codeword from the memory is accepted as correct. 

Otherwise error(s) is detected. By comparing the differences, the 

decoder will also be able to locate the position of the error and 

then correct it. As a result, after decoder, the original 

information data 1001 is recovered and sent to its destination. 

By proper design, ECC coding enables to detect and correct 

either single error or multiple errors in a codeword 
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Generally, most coding schemes do not require very complicated 

computations and implementations. Therefore it has found wide use 

in computer memories to improve the performance and reliability. 

In early computers, for example, the IBM/650, UNIVAC and the 

Whirlwind computers, the simplest ECC schemes, single error 

detecting codes were used to enhance memory system reliability. 

These codes added a single parity bit to the information data bits 

for error detection only. Today many different ECC codes are 

implemented in computer industry worldwide. The most common codes 

are Hamming codes, modified Hamming codes'^'^^^ and unidirectional 

error correcting codes'’“^^' . Some VLSI chips which support 

modified Hamming codes are commercially available (e.g. 

SN54/74LS630) . These chips are used externally to the memory 

while designing computer systems. In other ECC systems error 

correcting codes are implemented on memory chips . 

Use of ECC enables modern semiconductor memory to maintain the 

advantage of low cost, low power, high density and high speed while 

still achieving acceptable level of memory reliability. Figure 1.3 

[1.18] provides a comparison between memories with ECC and without 

ECC with respect to the operating hours under certain error 

probability. In the figure. Pie represents the error probability 

for the memory without ECC and Pje for the memory with ECC. As can 

be seen, a 32-bit, 64k word memory without ECC Pie will reach 50% 

in 350 hours of operation. While for the memory with ECC, which 

can correct any single error within the 32-bit word, at the same 

error probability the operating time is extended up to 4500 hours. 
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1.3 Siimmary 

Main memory systems are of significance for computer's 

performance and reliability. Due to its fast development of VLSI 

and computer applications, semiconductor memories are becoming 

larger (in capacity) and faster. Meanwhile the extremely high 

density memory products suffer from various errors including hard 

errors and soft errors. To minimize the consequence of these 

errors, several schemes are practically implemented in main memory 

systems. 

Among those schemes mentioned above, ECC is one of the most 

effective techniques. ECC is the art of adding redundancy 

effectively so that most messages, if corrupted, can be detected or 

recovered correctly. Combined with some other schemes, ECC coding 

has shown dramatic improvements in computer memory reliability. 

Throughout the chapters of this thesis, based on 

considerations mentioned above, several ECC codes for computer 

memories are discussed. The main attention will be concentrated on 

semiconductor main memories. In the following, when memories are 

mentioned, they refer to semiconductor main memories. 
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CHAPTER TWO SEMICONDUCTOR MEMORIES 

In computer systems there are two types of memories. Main 

memory and secondary storage. By main memory it refers to the 

memory that is built-in along with the computer CPU. Main memory 

offers very fast access speed so that computer can take the 

advantage of the high processing speed of CPU. 

In modern computers, semiconductor devices are widely used as 

main memories. Implementation of VLSI (Very Large Scale 

Integration ) technology has allowed many fold increase in the 

memory capacity within a compact size. 

Main memory can be classified as Read-Only-Memory ( ROM ) and 

Random-Access-Memory ( RAM ) . RAM memories allow the user (or CPU) 

to read data or instructions into it, read them out and also allow 

to change the data stored in the memory on demand. While ROM 

memory only allows CPU to read and use the information it has 

stored but not change them. 

When enormous quantities of data are to be stored, a secondary 

storage is required. Secondary storage is external storage 

equipment, which provide very large storage capacity but needs more 

access time. Secondary storages store data relatively longer or 

even permanently. When needed, the data stored in the secondary 

storage have to be transferred to the main memory so that CPU can 

access them directly. Commonly used secondary storage devices are 

usually made of tapes, floppy disks and magnetic drums. 

For both memories, the trends are towards extremely high 
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capacity and speed. 

The basic unit of the memory which can store and retrieve a 

binary bit, 0' or 1', is called storage cell. Modern semiconductor 

techniques make it possible that hundred of thousands storage cells 

are integrated in a tiny silicon chip. Many such chips are 

organized together to form a whole computer memory. One of the 

main advantage of semiconductor memory is its high density and low 

cost. 

It is beyond the scope of this thesis to describe either 

physics or fabrications of semiconductor memory and its cells. 

However, in order to have a better understanding of error control 

coding for semiconductor memories, in this chapter, we provide a 

brief review of semiconductor memories in principle. At First, in 

section 2.1, semiconductor storage cells are discussed. The 

discussion includes ROM memory cells, RAM memory cells and DRAM 

cells. Then in section 2.2, three types of organizations for 

computer memories are presented. All practioal memories are 

organized in these forms with some small variations. In section 

2.3, the mechanisms of semiconductor memory errors are analyzed. 

Different types of errors are also classified in this section so 

that for different type of errors the corresponding error control 

codes can be selected and employed. 

2.1 Memory Cells 

a) Read only memory cells 

In a computer, many operations are carried out more than once 
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without changing the content. This fact makes fixed memory or so 

called read only memory (ROM) very useful. ROM are constantly used 

in computer for character generation, bootstrap programs and look- 

up tables etc’^'^’. 

A ROM consists of a matrix of addressable cells. Several 

types of ROM cells are implemented in practice, 

i) ROM diode cell‘^~^^ 

Fig.2.1 shows a diode memory array. The information bits 1' 

and 0' stored in cells are represented by the presence or absence 

of diode between x and y lines (the x and y lines are also called 

word line and bit line) . The reading operation is very simple. 

When a 1' information stored in a cell (in which the diode is 

connected to x and y lines) is to be read out, a constant current 

is applied to the x line connected to the cell while the associated 

y line holds a low voltage so that the diode conducts and the 

corresponding output provides a low current. Otherwise if a 0' is 

stored in the cell, where the diode is absent, the constant current 

from X line will flow through the output directly. Therefore the 

information 1' and 0' is distinguished by a low current and a 

constant current in the output. In this example suppose the first 

X line WQ and all four y lines are selected, then a word 1100 is 

read out. 

It can be seen that to address a particular cell, the 

associated x and y selection lines have to be coincident. 
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ii) ROM bipolar transistor 

Bipolar transistor can be used in ROM in very nearly the same 

way as in diode memory. A typical circuit of a bipolar cell is 

shown in Fig. 2.2. Two types of cells for 1' and 0' can be 

distinguished . In the 1' cell, the emitter of the transistor is 

connected to y line while in 0' cell the emitter of the transistor 

is disconnected from y line. Suppose the x-line in the figure 

is driven high. This would turn on all transistors connected to 

it. Current would then flow through the transistors, through their 

emitter resistors and through the resistors at the bottom of the 

sense lines. A voltage drops across the sense line resistor 

indicates a binary information 1', such as Q7 in the figure. While 

in the 0' cells (i.e., Q5, Qg, and Qg) , since there is no such a 

emitter current at all, there would be no voltage changed at the 

corresponding sense line, hence the 0' is sensed. A word 0010 is 

then read out. 

iii) MOS ROM cell^^'^^ 

MOS (Metal-Oxide-Semiconductor) technology is ideal for ROM 

due to its high density. A typical MOS ROM cell is shown in Fig. 

2.3. The 1' and 0' cells are distinguished by connecting or 

disconnecting the gate of FET to the word line. For example when 

a positive pulse is applied on line Wg, current will flow up 

through (and Q3) and FET load to line. The voltage across 

the load drops the YQ and Y2- As a result, a 0' is read out. Since 

Q2 (and Q4) is inactive, there is no voltage drop on y^ (and y3> , 

it will stay high , indicating a 1' being read out. Thus a word 
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0101 is sensed. 

b) Random access memory cells 

Random Access Memory (RAM) allows not only to read out the 

content it stores but also to change (write) the content of the 

memory on demand, 

i) Bipolar memory cell 

Fig.2.4 illustrates the circuitry of a TTL (Transistor- 

Transistor-logic) memory cell. and Q2 form a bistable flip-flop. 

The X and y lines are for selection or address of cells. The 

bit/sense line pair are for writing and reading, respectively. 

Write and read operations are described as follows. 

Store a 0' To store a 0' in a cell, the corresponding x and y 

lines are driven high to address the cell. Then the write 

circuit place a low condition on of . This turns on 

and Q2 off regardless the previous state of the flip-flop. 

When the write pulse is gone, the flip-flop remains the state 

(Qi on and Q2 off) unchanged. With the x and y lines back to 

normal (ground) , the emitters E2 and E3 on provide a path 

for emitter current. The current flowing in is now from E2 

and E3 to ground rather than from E^. Once the digit 0' is 

stored, it is locked in the cell. The memory state can only 

be changed by grounding the write sense line on the off 

transistor. This change can only be made when the select 

lines are high. 

Store a 1' If a 1’ is to be stored, the x and y select lines 



Fig. 2.4 Bipolar RAN Memory Cell 
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for the cell are driven high. The write circuit shorts on 

Q2 to ground. The forward bias suddenly turns Qj on and the 

flip-flop action turns off (regardless the previous state 

of the flip-flop). Then the state (Qj off and Q2 on) is kept 

until a next write operation comes. 

Sense To read the content of the memory we simply drive the x 

and y lines high. If is on and Q2 off which means a 0' is 

stored in the cell, will conduct through the resistor of 

sense amplifier. There will be no Q2 current flowing in the 

sense amplifier connected to Ei on Q2, therefore there is no 

output from the 1' sense amplifier. If the content of the 

cell is 1', then only 1' sense amplifier has output and 0' 

sense amplifier keeps unchanged, 

ii) MOSFET memory cell 

A basic MOS RAM memory cell is shown in Fig. 2.5. and Q2 

constitute the bistable flip-flop. The drain load resistor is 

found by series MOSFETs. Many variations to the basic circuit are 

possible, but the principle of the operations are similar. The 

operations of writing and reading are described as follows. 

Write the memory To enter a digit into the memory cell, x and y 

address lines have to be applied fV^d- If a 0' is to be 

stored, the 0' bit line is placed to ground while the 1 bit 

line is held high. As a result, will be turn on and Q2 off. 

If a 1' is to be stored, the 1' bit line goes to ground and 0' 

bit line holds high so that Qj is off and Q2 on. 

Read the memory To read the condition of the cell, the x and y 
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address lines are switched from ground to +VDD- This high 

voltage will turn on Q3, Q4, Q5 and Qg. These transistors act 

now as closed switches such that the bit lines are both at 

+VQD. However only the line connected to the 'on' flip-flop 

will conduct. Suppose is on and Q2 off. In this case, 

current can flow from ground up through Q^, Q3, Q5 to 0' bit 

line. The current in this line is then sensed and amplified. 

The output is recognized as a 0' in the memory. Meanwhile for 

the 1' bit line, there is no current at all as Q2 is off. 

c) Dynamic RAM memory 

The RAM memory cells discussed above are all static memory 

cells. That is, the state or condition of the cell would remain 

unchanged until another write operation applies on the cell. To 

hold two stable states for storing information '1 and O', the 

static RAM cell needs at least 2 transistors or MOSFETs. In the 

following we introduce a kind of dynamic memory cells. It contains 

only one transistor hence a higher density fabrication can be 

achieved. 

A simple scheme of the single transistor cell is shown in Fig. 

2.6 (a) . The capacitor Cg is the storage capacitance and the 

MOSFET transistor acts as a switch. The capacitor C3 can be made 

in the same technology with that of the transistor. The cell 

structure in integrated technology is shown in Fig. 2.6 (b). In 

both circuits bit line and sense line share a same line called 
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bit/sense line. The electrode C is always applied at a voltage +VQ. 

The information will be stored in the capacitor by presence and 

absence of negative charges in the capacitor. The read and write 

operations are described as follows. 

Write and read a 0' When a 0' is to be written the cell, the 

word line is pulsed high and the bit/sense line connected to 

ground as shown in Fig. 2.7 (a). The dc voltage VQ charges 

the capacitor with current i„rite ■ -A-S a result, the capacitor 

is charged with negative charges which represents a 0' being 

stored in the cell. When read the cell, the word line is 

pulsed high and the sense/bit line is connected to a voltage 

of Vg through the sense amplifier impedance Zj.. The equivalent 

circuit is shown in Fig. 2.7 (b) . The current iread will 

create a small signal across Z^, thus the 0' is sensed. We can 

see that the current i^ead will discharge the 0' information 

stored in during the reading operation. Therefore the 

system has to be able to rewrite the information repeatedly or 

refresh the cell periodically. 

Write and read a 1' When write a 1', the word line is pulsed 

high and bit/sense line is connected to +Vg as shown in Fig. 

2.7 (c). Since there is no current flowing in the capacitor 

circuit, there would be no charges being stored in the 

capacitor. This indicates that a 1' has been stored in the 

cell. When read the cell, the word line is driven high and the 

sense/bit line is connected to Vg through the sense amplifier 

impedance Z^. The equivalent circuit is shown in Fig. 2.7 (d) . 
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Since there is no current flowing in the circuit, there would 

be no voltage across the Z^.. Thus the information 1' is 

sensed. 

2.2 Memory Organizations 

There are three basic classes of memory organizations. They 

are the two, three, and two and half dimensional organizations 

(represented by 2D, 3D and 2-1/2D). The 2D and 3D types require a 

basic storage cell with two and three functional terminals, 

respectively. The 2-1/2D can use either types of cells. In 

practice, there would be some variations to these basic 

organization forms but the principle is the same. In some 

applications several schemes are combined to meet different needs. 

In the following we only discuss the three basic organizations 

which are useful for our purpose. 

1 2D—memory organization 

The simplest practical memory is organized as 2D memory. 

Fig.2.8 shows a block diagram of the scheme. All the memory cells 

are arranged in the form of a matrix. The cells in the same row 

are connected to a so-called word line. The cells in the same 

column are connected to a bit line. Any cell can be accessed 

randomly by the coincidence of a word line and a bit line. In the 

read and write operations, when a word line is selected, all cells 

associated with the word line will be available to be accessed. 

Actually, all these bit lines are accessed simultaneously. 
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To write a word which consists of several bits in the memory, 

a word address is firstly required from the CPU. According to the 

address, a appropriate word line is energized. At the same time, 

the content of the word which comes from the data register arrives 

at bit lines. This causes the memory cell to be set to 1' state. If 

a bit line signal is absent, the cell then remains in the 0' state. 

To read a word from the memory, the desired word line is addressed 

and the content of each cell connected to the word line will appear 

on the corresponding bit line. Then through the sense amplifiers, 

all the bits of the word are sensed simultaneously. 

2 3D-memory organization 

There are two basic types of 3D storage. The series and 

parallel connections for the selection line. In semiconductor 

memories parallel version is more favourable. We only consider 

parallel 3D storage. Fig.2.9 is a illustration of 3D parallel 

organization. The x and y selection lines are connected in 

parallel between planes, the bit lines are connected in series on 

a plane. Every plane is of the same structure and contains the 

same number of cells. 

The basic operations require the use of an x line, a y line 

and bit line for writing, and an x line, a y line, and a sense line 

for reading. For example, in a flip-flop memory, a coincidence of 

the X and y lines, and 1' signal on the 1' bit lines cause a 1' to 

be written in a corresponding cells and a coincidence of x and y 
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lines, and 0' signal on the 0' bit lines will store O's in the 

corresponding memory cell. For reading, energizing the x and y 

lines makes all the intersection cells ready to be sensed on the 

sense lines. In this scheme it can be seen that when a pair of x 

and y line are selected all the cells in the vertical direction are 

activated. All these cells each from different plane form a word. 

Thus the number of cells in each plane is equal to the number of 

the word that the memory contains. The number of the planes is 

equal to the number of the bits per word. 

3 2-1/2D memory organization 

Almost all the main memories today are of 2-1/2D organization. 

Both two and three terminal storage cells can be used in 2-1/2D 

memory, therefore there are two fundamental forms of 2-1/2D for 

each of the cells respectively. 

In all main memories the number of word is greatly exceeds the 

number of bits per word. This fact causes a difficulty that the 

word address circuitry would be very large and therefore need a 

long word addressing delay. To overcome the problem, we need to 

reduce the number of word lines without reducing the number of 

words which the memory contains. That is, one word line would 

energize more than one words. Fig. 2.10 (a) and (b) illustrate 

the principle of such organized memory matrices using two terminal 

storage cells. 

Each row of the memory matrix is now divided into four 

bit_groups (can be any number of bit-groups in a row in practice). 

When a word line is selected, four bit-groups are half activated. 
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In Fig. 2.10 <a) , a word consists of four bits, each bit comes from 

different bit-group. This is a Bit-organized 2-1/2D memory- 

organization . In Fig. 2.10 (b), a word consists of the bits that 

come from a single bit-group. Hence it is a word-organized 2-1/2D 

memory organization. Since two terminal cells are used in this 

organization, the bit line and sense line are the same line called 

bit/sense line. 

To write a 1' into the memory, a word line and appropriate bit 

line have to be coincident. If there is no signal on the bit line, 

the cell remains in the 0' state. To read the memory, there is no 

coincidence required. When a word line is selected, the contents of 

all cells connected to the word line appear on the corresponding 

sense/bit lines (four words are available to be read in Fig. 2.10) . 

But only the desired sense lines are switched to the sense 

amplifiers. 

For three terminal cells, there are also two configurations 

for the 2-1/2D organization. They are bit-organized and word- 

organized organizations. The simplified illustrations are shown in 

Fig. 2.11 (a) and (b), respectively. Since three terminal cells 

are used, the bit lines and sense lines are separated. In the 

figures, the connection of sense line are shown (for simplicity, 

only two sense lines are illustrated, the other two sense lines can 

be connected in a similar way) . The word lines and bit line remain 

identical to those for two terminal cells as shown in Fig. 2.10. 

The difference between Fig. 2.10 and Fig 2.11 is that in the 

latter, the reading operation also requires a coincidence of a word 
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line and appropriate bit lines. This is because, for example, in 

Fig 2.11 (a), on the first sense line there are as many as 16 cells 

available to be read, but only the shadowed one is desired. The 

coincidence can be used to specify the desired cell from many cells 

associated with the same sense line. LSI (Large Scale Integrated) 

semiconductor technology makes it possible to integrate many cells 

on a tiny chip so that the memory capacity can be increased 

dramatically. In our organizations shown in Fig.2.10 and Fig.2.11, 

all bit-groups in vertical direction can be fabricated on a single 

chip respectively. Thus the memory showed in Fig.2.11 is made up 

four chips with each chip of 16 cells. Modern VLSI can make 64k 

cells or more on a single chip. The high density chips not only 

significantly increase the capacity of the main memory but also 

greatly reduce the joints and connections between cells, therefore 

reduce the potential circuitry faulty. On the other hand, the 

maintenance of the memory on the level of chips becomes much easier 

than that of on the level of individual cells. When chips are used 

in the memory discussed above in Fig.2.11 (a) and (b) , they are 

usually called bit-per-chip and word-per-chip organization, 

respectively. There are also byte-per-chip organized memory in 

practice. 

An example of chip organized 2-1/2D memory organization 

A typical chip organized memory board with IM-byte sold for 

VAX computers is shown in Fig. 2.12 (a) Each chip is 

organized internally as 256 X 256 square matrix of bits. This 64K 

chip has 65536 single-bit locations as shown in Fig. 2.12 (b) . The 
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memory board is organized as 4 x 39 matrix of chips. The first 32 

chips in each row are used for storing information bits, and the 

remaining 7 chips in the row are for parity check bits (we will 

discuss the function of these parity check bits in the next 

chapters latter on). Every word consists of 39 bits, each bit is 

stored in a different chip in one row. Therefore this is a bit- 

per-chip organized memory. 

According to the organization, we can simply calculate the 

parameters of the memory as follows: 

Number of words in the memory (N„) = 256 x 256 x 4 = 256K 

words 

Number of bits in the memory (Nj,) = N„ x 39 = lOM bits 

Number of bytes in the memory (N^) = N^ / 8 = IM bytes 

Number of bits per word (word size W^) = 39 bits 

It can be seen that in practice the number of words and word 

lines are very large. The selection of a word or a cell is 

therefore somehow complicated. In memory system the appropriate 

selection is done by a so-called address decoder. The concept of 

the address decoder was eliminated in the above discussions. 

2.3 Errors in Semiconductor Memories 

Due to the defective cells, failed connections between 

selection lines, bit/sense lines and various interferences, there 

exist faults in semiconductor memories. Particularly when memory 

cells trend to be extremely small and the chips extremely dense, 

the defects increase significantly. As a result, some bit (s), when 
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they are read out from the storage cells, would be different from 

those which has been stored. In this case, we say error (s) 

occurring in the word. The presence of these errors greatly 

decreases the reliability of the computer memory. 

There are several types of errors. Some of them are permanent 

in position and nature, the others are temporary and random. These 

errors are classified as hard and soft errors. On the other hand. 

Some errors are symmetric in error directions (the errors can be 

either I'-O' and 0'-1'), and others are asymmetric errors (only one 

I'-O' or O'-l' is possible, but not both) . In this section we will 

briefly discuss the errors and their mechanisms, including hard 

errors, soft errors and unidirectional errors. 

Hard errors 

If the error in any position of a word is permanent in nature, 

then it is called a hard error properties of hard 

errors is that once it has happened at some locations the output of 

this location is permanently stuck at 1' or 0' state regardless of 

what was written in. Defective cells, internally failed 

connections between selection lines, such as short and open leads, 

are most likely sources of the hard errors. Several kinds of hard 

failures have been reported'^'^^. A single cell failure , for 

example, can occur as a hard error. There are also multiple errors 

caused by row failure, column failure, row-column failure and even 

a whole chip failure. However by proper memory organizations, the 

error patterns can be limited to single errors in every memory 
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word. 

Hard errors are random, permanent, and irreversible. They can 

occur during the fabrication or latter on in the service time. In 

practice some schemes are used to deal with the hard errors in 

semiconductor memories. Such as on-line testing and switching to 

spares, replacing the defective chips etc. With the improvement of 

VLSI technology, the rate of hard errors has been decreased 

dramatically. 

By the improvement of VLSI techniques and proper memory 

organizations, for example, one-bit-per-chip organization, the hard 

errors in computer memory appear usually as single errors. 

Erasures 

A hard error has a fixed position, therefore once it has been 

detected, the position is then known in next memory operation 

cycles. Thus in the next read operation, we know if the bit is 

correct or not. This type of errors is called erasures. With 

erasures we define a symbol in a word with known location but with 

unknown value'^'®' . Clearly a hard error is random in position while 

an erasure's position is known. 

Soft errors 

If the error is of a transient type, then it is called soft 

error. Soft errors are caused by system noise, power surges and 

alpha-particles radiation. Compared with hard errors, soft errors 

are random, temporary and reversible. In the next memory cycle the 
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faulty bit does not show any greater chance of being in error than 

that of other bits in the memory. Therefore the schemes mentioned 

above for hard errors are not effective to soft errors. 

Experimental evidence indicates that most ( more than 90 

percent) soft errors seen in devices from several manufactures are 

due to alpha-particle radiation from packaging materials. In the 

following , we will give a brief discussion about the mechanism of 

alpha-particle inducing soft errors in DRAM memories . 

In a integrated DRAM storage cell, the presence and absence of 

the negative charges in the capacitor represents the 0' and 1' 

state respectively (in N-channel the minority carriers are 

electrons). If the negative charges stored in the capacitor are 

discharged or the no-charged capacitor acquires enough electrons by 

rather than an ordinary memory operation, the 0' state might change 

to 1' state or vice versa, then the stored bit would be erroneous. 

We will see that this is the way that alpha-particles cause errors. 

An alpha-particle is emitted by radioactive decay of Uranium 

and Thorium which are present in packaging materials. When an 

alpha-particle penetrates semiconductor memory devices, it can 

create enough electron-hole pairs near a storage node. These 

electrons and holes diffuse through the bulk silicon. For those 

which reach the edge of storage region (depletion region), the 

electrons are swept into depletion region while the holes ohmically 

move through the substrate. If the normal state of the capacitor 

is in the no charged state (1' state), the depletion region is said 

'empty'. In this situation, when an alpha-particle generates 
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enough electrons and holes near the depletion region, the swept 

electrons will be collected in the region such that the empty 

region is filled with the electrons which represent a 0' state. 

Thus an alpha-particle causes an I'-to-O' error. On the other 

hand, if the normal state of the capacitor is in the charged state 

(O' state) originally, the depletion region is initially full of 

electrons. In this situation when some generated electrons are 

swept into the depletion region, the 'full' state will not be 

changed, hence the cell remains the 0' state without being affected 

by the alpha-particle (holes can not been swept into the depletion 

region because holes do not move without electron's moving). 

Therefore alpha-particles only disturb the 'empty' state of the 

capacitor. Figure 2-13 shows graphically the mechanism of the 

alpha-particle inducing soft errors. 

Further research also shows that alpha-particles have other 

properties which is critical to the soft errors as following 

a) alpha-particle travels in nearly straight line 

b) the scatter in range is small 

c) alpha-particle emits at discrete energies 

d) alpha-particle emission is nuclear event and is unaffected by 

temperature, pressure, etc. 

Alpha-particle affects not only DRAM memories but also some 

high speed bipolar memories. When an alpha-particle hit the 

cell, it induces short transient current between the junctions of 

devices and circuit elements. These current flows through the 

collector of an N-P-N transistor to the substrate cause a potential 
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dip at the collector. If that happens to he the collector of OFF 

transistor, it may cause a state changing. As a result, the state 

of the flip-flop is changed. Thus an error occurs because of the 

alpha-particle. 

According to the discussion it can be seen that the 

distribution of the soft errors in semiconductor memories show up 

as single, random, and temporary errors. 

Unidirectional errors 

If all errors in a memory are of either I'-to-O', or O'-to-l' 

type, but not both, then the errors are called asymmetric errors. 

If all errors in a particular word are of either I'-to-O', or 0'- 

to-1' type, but not both, then the errors are called unidirectional 

errors. The most likely faults in some of the recently developed 

LSI/VLSI ROM and RAM memories cause unidirectional errors'^'“' 2-12] _ 

Such as the faults that affect address decoder, word lines, power 

supply, and stuck-fault in a sense bus, etc'^’^^^. 

i) Address decoder; Single and multiple faults in address 

decoder may result in either no access or multiple access. No 

access yields an all-O-word read out from the memory and 

multiple access cause the OR of the several word to be read 

out. In both cases the resulting errors are unidirectional 

errors. 

ii) Word line: An open word line may cause all bits in the word 

beyond the point of failure to be stuck at 0'. On the other 

hand, two word lines shorted together will form an OR function 

beyond the point where they shorted. 
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iii) Power supply: A failure in the power supply usually results 

in a unidirectional error. 

2.4 Siommary 

We have discussed semiconductor storage cells. Memory 

organizations and mechanisms of various errors. An important 

concept is that in modern computers almost all main memories are 

made of LSI/VLSI chips. Thousands of cells fabricated on a single 

chips makes it possible to form very large capacity memories. Any 

cell failure on a chip will cause the chip to be failed. Any type 

of chip failure will cause errors. The common type of chip failure 

is single-cell failure caused by alpha-particle radiation. However 

there are also several other types of chip failures caused by 

hardware defects. These failures may cause multiple errors in the 

memory as well. 

By proper memory organization design, for example, a bit-per- 

chip organized memory, it is able to disperse the multiple errors 

into different words such that when a chip is in failure, no 

matter what kind of failure, it only affects a single bit in a 

word. Thus in most cases the single bit error in a word is the 

dominating situation (comparing with memories of magnetic tapes and 

disks, in which, the usual errors are of random and burst 

distribution caused by defects, dust particles and magnetic head 

noises etc). Therefore for a semiconductor computer memory system 

the single error detecting and correcting ability is of particular 

significance. 
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CHAPTER THREE LINEAR CODES 

In this chapter we review the basic concepts of linear codes 

and introduce Hamming codes and BCH codes. The detailed 

discussions can be found in any text book on the coding theory. 

Some of them are listed in the end of the chapter. 

3.1 Basic concepts of linear codes 

We suppose that a message word which is to be stored in memory 

has a form of u = UQUI.-.U^-I- This is a k-tuple. For binary 

information (we only consider binary information in this chapter) 

the maximum number of message words is 2“^. By adding some 

redundant bits to the message word, we convert the k-tuple u to a 

n-tuple X (= XQXI. . .x„_i) . This process of converting is called 

encoding. The new n-tuple is accordantly called a codeword. The 

encoding is performed in a encoder. Every message word can be 

uniquely encoded into a codeword. All the codewords form a 

codeword set called code C (there are 2"^ codewords in C) . If we 

define the n-tuples as a vector space V„, then there are 2"-tuple 

vectors in the space. The code C is a subspace of the vector space 

V„. This code is also denoted as an (n, k) code. 

In a computer memory with coding, the message word u which is 

from a CPU data register is firstly encoded into a codeword x, and 

then the codeword is stored in the memory locations. Compared to 

the original message word of k bits, a codeword uses n bits to 

represent the same information. Thus r (= n - k) more bits are 
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used. Therefore a codeword needs more memory space to store the 

redundant bits. But we will see that these redundant bits make it 

possible to detect and correct errors when they occur in codewords. 

This way coding enables to improve the reliability of a memory with 

errors. As we have known, when a codeword is read out from memory, 

it may be different from what it was stored. Before the original 

message word u is recovered from the codeword, it is necessary to 

ensure the read codeword is error free. The process of correctly 

recovering the message from a read codeword is called decoding. 

Use of the redundancy, a decoder first checks if the read codeword 

is a valid codeword. If it is, the read codeword is accepted as 

correct, and the message word u is then extracted from the 

codeword. Otherwise the error (s) is said to be detected. The 

decoder can be designed to have ability of detecting, or correcting 

error(s) or both. Clearly, we hope using fewer redundant bits to 

detect and correct more errors in a codeword. The ratio of R = k/n 

is defined as the rate of the code. Redundancy coding is the study 

of using redundancy to detect and correct errors effectively. 

As an example we consider a memory, in which the probability 

of an error occurrence is p = 10“®. We suppose a message word 

consists of four bits. In this memory any one or more than one 

erroneous bit (s) in a message word will spoil the message word and 

result in an erroneous word. Therefore the probability of reading 

a word that is in error in the memory is expressed as following 

However if a (7, 4) code is applied to the memory, then every 

4-bit message word is encoded to a 7-bit codeword. We suppose the 
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4 

P-L = ^ ( ^] p^(l-p>^‘^ =4p+0(p^) - 4xl0‘* 

code is capable of correcting a single error occurring in the 

codeword. Thus any single bit error will no longer cause a 

erroneous word but any two or more than two bit errors do so. 

Therefore the probability of obtaining a erroneous codeword from 

the memory can be calculated as 

Pa = X) ( ^-) = 21pdO(p^) - 21 X 10“^^ 

It can be seen that coding uses more bits but provides 

significant improvement of reliability. 

There are systematic and nonsystematic codes. For a 

systematic code C, the first k bits of a codeword are a copy of 

message bits and the last r (= n - k) bits are the redundancy 

called parity check bits. In computer memories systematic codes 

are widely used. This is because these codes have simple 

implementations. 

Generator matrix of code C 

Since a code C is a subspace of V„, it is possible to find k 

linearly independent vectors go gi - . ^ such that every 

codeword x in C is a combination of these k vectors. This can be 

generally expressed as 

X = uogo + uigi + ... + Uk_igk_i 

- u.G (3.1) 

where u = UoUi...Uk_i, and gi's can be arranged as a matrix as 
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following 

G = 
9i 

9oo 

9i,o 

90, n-l 

91, n-l 

9k-X,n-1 

(3.2) 

Eq. <3.1) means that when the matrix of G is given, for any message 

word u = UoUi...Uk_i, the corresponding codeword can be uniquely 

generated through the rows of the G matrix. Therefore the code C 

is the row space of the G matrix. For this reason the matrix G is 

called a generator matrix for code C. 

A generator matrix G has the properties as following 

i) For a (n,k) code the generator Matrix G is a (k x n) matrix. 

ii) Every row of the G matrix is a codeword in C 

iii) Any k linearly independent codewords in C can be used to form 

a G matrix. 

iv) Elementary row operations performed on the G gives different 

generator matrices which also generate C. 

v) One generator matrix may be more useful than another. For 

example, after some elementary row operations we can obtain a 

generator matrix which has the form as following 

G = 

9o 

9k- 

10 0 

0 10 

0 0 0 

0 Poo 

0 Pio 

Poi 

Pll 

^ Pic-1,0 Pic-1,: 

Po, n-ic-l 

Pi,n-k-1 

Pk-l.n-k-1 

= \I>P\ (3.3) 
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where P is a (k x r) matrix of O's and I's, and is a (k x k) 

unit matrix. This is a generator matrix for systematic codes (note 

that row operations alone may not always result in a systematic 

form. Sometimes column permutation may be also required to obtain 

a systematic form'^-’^^). 

Example. A generator matrix G for a (7, 4) systematic code is 

given as following 

G = 

^0 

9-2 

ST3 

10 0 0 

0 10 0 

0 0 10 

0 0 0 1 

110 

oil 
111 

10 1 

(3.4) 

If the given message word is u = 1101, according to Eq. (3.1) 

the corresponding codeword is calculated as 

X = 1-go + 1-gi + 0-g2 + l-g3 

= (1000110) + (0100011) + (0000000) + (0001101) 

= (1101 000) 

The first four bits are message bits and the last three bit 

are the parity check bits. All 2“^ = 2“^ = 16 codewords 

generated same way are given in Table 3.1. 

Parity check matrix of code C 

In decoding, the first thing is to check the validity of a 

codeword read from the memory. 

Since G matrix is a (k x n) matrix with k linearly independent 



Table 3.1 A (7,4) code 

message word code 

0000 0000 
0001 0001 
0010 0010 
0011 0011 
0100 0100 
0101 0101 
0110 0100 
0111 0111 
1000 1000 
1001 1001 
1010 1010 
1011 1011 
1100 1100 
1101 1101 
1110 1110 
1111 1111 

word 

000 
101 
111 
010 
oil 
110 
100 
001 
110 
oil 
001 
100 
101 
000 
010 
111 

56 
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rows, there exists an (r x n) matrix H with r linearly independent 

rows such that any vector in the row space of G is orthogonal to 

the rows of the H matrix. Or in other words, any codeword x in C 

is orthogonal to the rows of the H matrix. These relationships can 

be expressed in Eg. (3.5a) and (3.5b) 

G = 0 (3.5a) 

X = 0 (3.5b) 

Such a H matrix can be used to verify the validity of a 

codeword in C. A codeword is a valid codeword if and only if it 

satisfies Eg. (3.5b), otherwise the codeword is in error. This H 

matrix is called the parity check matrix. 

Given a generator matrix G shown in Eg. (3.2), the parity 

check matrix for a systematic code can be derived as 

Poo Pio 

Poi Pll 

Po,r-l Pl,r-1 

Pjt-1,0 10 0. . 0 

Pjc-1,1 0 1 0 . . 0 

000. . 1 

(3.6) 

The first k columns in the H matrix are corresponding to the 

message bits and the last r columns to the parity check bits. 

The H matrix has following properties: 

i ) AH matrix for an (n, k) code is a (r, n) matrix, 

ii) Any valid codeword in C is orthogonal to the rows of the H 

matrix. That is 

X = 0 (3.7) 

According this property, we conclude that for any codeword x 
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and y in C, (xH'^ + yH^) = (x + y)H^' = 0. This means, in a 

linear code C, the sum of any two codewords is still a 

codeword in C. 

iii) An H matrix also defines the code C. In fact, the H 

matrix is more convenient to describe a code than the 

generator matrix does. 

Syndrome of a codeword 

For a codeword x, if Eq. (3.7) is not satisfied, error(s) is 

said to be detected. But Eq. (3.7) does not provide any information 

about the position of the error (s), so correction can not be 

performed. To do so, a so called syndrome of a codeword is 

required. 

Let us suppose that the codeword stored in the memory is x = 

XoXi...x„_i, and the codeword read from the memory is d = do di . . 

.dn_i. Due to the errors in the memory, d may differ from x in one 

or more bit positions. That is 

d = X + 6 (3.8) 

where e, is an n-tuple called the error vector or error pattern. 

It has O's in those positions where d and x agree and I's in those 

positions where d and x disagree. In other words, the I's in e 

mark the position where error have occurred. 

When d is read from the memory, the decoder uses the H matrix 

to calculate an r-tuple vector S: 

S = d.H^ = x.H^ + e.H^ 

= e.H^ = (So Si...Sn_k_i) (3.9) 

This is called the syndrome of d. If S = 0, then d is a valid 
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codeword. If S < > 0, then d is an invalid codeword, thus error (s) 

are detected. Furthermore, for different error patterns e, the 

syndrome S = (SQ Si...Sn_k_i) has different values. Therefore the 

syndrome can be used to determine the error patterns. Once the 

error pattern is specified, the correction of the codeword is 

achieved by bitwise XOR operations on d and e, namely, the correct 

codeword is obtained from (d + e) . There are 2"^ unique syndromes 

for an (n, k) code, hence a linear (n, k) code is capable of 

correcting up to 2^ error patterns. 

As an example, we consider a (7, 4) code generated by 

Eg. (3.4) . Eg. (3.10) is the H matrix of the code which is derived 

from Eg. (3.4) and Eg. (3.6) 

H = 

10 1110 0 

1110 0 10 
0 1110 0 1 

(3.10) 

Suppose a codeword which was stored in the memory is x = 

1000110, and the read codeword is d = 1000111, in which the last 

bit position is in error. So the error pattern is e = 0000001. 

According to Eg. (3.9), the syndrome of the read codeword d can 

calculated as 

S = d'H^=|l 0 0 0 1 111 (0 0 1) (3.11) 
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or use the error pattern 

S = e • = lOOOOOOl 

110 

Oil 

111 

10 1 

10 0 

0 10 

0 0 1 

(0 0 1) (3.12) 

Of cause, before the syndrome has been obtained the decoder 

does not know the error pattern, only Eq. (3.11) is performed in 

the decoder. Once the syndrome (001) is obtained, the error pattern 

e = 0000001 is specified. In the same way the other seven single- 

bit error patterns and their syndromes can be calculated and are 

shown in Table 3.2. 

Unfortunately, the syndrome calculated from Eq.(3.9) does not 

specify an unique error pattern. For example, both 0000001 and 

1010000 error patterns result in a syndrome 001. In Table 3.2 we 

have also provided two-bit error patterns which are sharing the 

same syndrome. They are denoted as error-pattern (I) and error- 

pattern (II), respectively. In fact, for a any codeword d, there 

are as many as 2^ error patterns that satisfy the Eq. (3.9) . Only 

one of them is the real error pattern’^-^^. Therefore when a 

syndrome is obtained from Eq.(3.11), the decoder has to determine 

which error pattern is the real one. Strictly speaking, this is 

very difficult. Fortunately in computer memories, in which the 1 



Table 3.2 Syndrome and error patterns 

syndrome error pattern I error pattern II 

001 

010 

100 

101 

111 

Oil 

110 

0000001 

0000010 

0000100 

0001000 

0010000 

0100000 

1000000 

1010000 

0100001 

0110000 

0010010 

1000001 

1001000 

0000110 

error pattern I: 

error pattern II: 

all possible single errors. 

some combinations of double errors. 
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-error and 0-error occur with the same probability, single error is 

dominant. Most probable error patterns are assumed to be ones that 

has the smallest number of I's shown up in the column of error- 

pattern (I) in Table Otherwise multiple error correcting 

codes are required. 

The capacity of error detection and correction 

In coding we have another problem. If there are several 

errors occurring in a codeword, the codeword may be changed into 

another valid codeword in C rather than into an invalid codeword. 

In this case, neither the H matrix or the syndrome is impotent. 

To reduce the occurrence of such decoding errors, it requires 

as many as possible bit positions in which the two codewords differ 

such that few errors are not able to change a valid codeword into 

another valid codeword. This idea can be accurately described by 

parameters of Hamming weight, Hamming distance and the minimum 

distance of a code. 

The Hamming weight of a codeword or a vector x, denoted W(x), 

is the number of I's in x. 

The Hamming distance between two codewords x and y, denoted 

d(x,y), is the Hamming weight of (x - y). It also equal to the 

number of the positions in which the two codewords differ. That 

is. 

d(x, y) = W (x - y) = W (y - x) (3.13) 
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The minimum distance of a code, denoted d„,in is the minimum 

Hamming distance between all pairs of codewords in the code. 

Clearly, the bigger the minimum distance of a code, the more 

errors are tolerant to change a valid codeword to another. 

Therefore the capability of error detection and error correction of 

a code is associated with the minimum distance of the code. A code 

of minimum distance d„in is able to detect (d„,i„ - 1) errors or 

correct t =< [ (d„in “ l)/2] errors in a codeword, where [Z] is the 

integer part of Z. 

To create a code with required minimum distance d^in, we have 

following statement: A linear code with minimum distance d^^n has 

a H matrix such that any - 1) or fewer columns of the H matrix 

are linear independent This property can be used to construct 

linear codes of minimum distance d„,in. In chapter four we will use 

this property to construct the modified Hamming codes. 

3.2 Hamming codes 

In this section we will construct a very interesting class of 

single error correcting (SEC) codes. This codes are known as 

Hamming codes. Since the Hamming codes have capability of 

correcting single error in a codeword, the Minimum Hamming distance 

of the codes are at least d^^n >= 3. According to the relationship 

between dj^^n and the H matrix, the H matrix satisfies: i) no column 

of the matrix is a zero vector, ii) every column vector is 

distinct, that is the sum of any two columns in the H matrix is not 
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a zero vector, iii) for systematic codes, the left most r columns 

form an (r x r) unit matrix (a Hamming code is not necessary a 

systematic code). Thus, for a given integer r, we can construct a 

(r X 2^) H matrix of a Hamming code by using all r-tuples except 

the zero vector to be the columns of the H matrix. Therefor a 

hamming code has following parameters: 

code length n = 2^^ - 1 

message word length k = 2'' -r -1 

parity bit number r = n - k 

minimum distance d^^n = 3 

error correcting t = 1 

A typical Hamming code is a (15, 11) code with distance-3. 

The H matrix of the code is given as follows 

P0P1P2-P3 ^5 0 1 2 3 *^14 

000100001111111 

001001110001111 
H= (3.14) 
010010110110011 

100011011010101 

A codeword in the (15, 11) code has a form of x = 

P0P1P2P3X4X5X6X7X8X9X10X11X12X13X14, where p^ are parity bits and x^ are 

message bits. The parity bit are calculated through the parity 

check equations 

Po — ^4X5^7^8^10^12^14 

Pi = X4X6X7X9X10X13X14 

P2 = X5X6X7X11X12X13X14 (3.15) 

Pa “ X8X9X10X11X12X13X14 

The encoder for the code is then accordingly formed in 
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Fig.3.1. 

The decoding of a read codeword 

d = dodxd2d3d4d5dgd7d8d9dio*iii^i2^i3*ii4 

uses the syndrome equations to identify the error position 

50 ~ d3+d8+dg+d3o+d3i+di2tci33+d34 

51 = d2+d5+d6+d7+dii+di2+di3+d34 (3.16) 

52 — d3td41 dgtd7tdgtd3Q"^'d33“i“d34 

53 = dQ+d4+d5+d7+dg+d3o+d]^2'*“di4 

If the syndrome S = (S0S3S2S3) is identical to the i’'” column of 

the H matrix then a single error is assumed occurring at the i*"^ 

position of the codeword. The diagram of a decoder is shown in 

Fig.3.2. 

However, if double errors occur, for instance, at position 2 

and 6, the syndrome would be calculated as S = (0010) + (0101) = 

(0111). This will leads to a decoding error at position 8. To 

prevent decoding errors due to double error, a single-error- 

correcting/ double error detecting (shorted as SEC-DED) Hamming 

code can be easily obtained by adding a so called overall parity 

check to the H matrix of Eq.(3.14). The SEC-DED code has a H matrix 

as follows 

I 0 I 
I 0 I 

H = I . H I (3.17) 
I . I 
I 1 1 1 ... 1 I 

The parity check equation corresponding to the last row of the 

new H matrix is an overall parity check 



message word input 

X4 

THT 
X& X7 X8 X 10 X 11 X 12 X 13 X 14 

N f 

XgX^XioXi 1X12X13X14 

parity bits 

generating 

>1/ \|^ \|^ \|^ \|^ \|^ 

x= X6 ><7 X8 '10 '1 1 M2 M3 M4 

codeword output 

Fig. 3.1 An encoder for (15, 11) Hamming code 
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The Minimum Hamming Distance of the SEC-DED code is then 

changed to d^in='4 and every codeword has an even Hamming Weight. 

When decoding, an overall syndrome component SQV is required 

in addition to the syndrome set (3.16) 

SQV ~ do+dj^+d2+d3+d4+d5+d6+d7+dg+d9+d]^Q+d]^]^+d]^2'^*^i3'*“*^i4 

Then S = (S0VS0S1S2S3) can be interpreted as 

1) If S = 0, the codeword is assumed error free. 

2) If SQV = 1, a single error is assumed and the error position 

is located by syndrome (S0S3S2S3) . 

3) If Sov = 0 and (S0S1S2S3) not equal to zero, double errors (or 

even number of errors) are detected. These errors are 

uncorrectable. 

By adding an overall parity check to the H matrix, we have 

obtained an even weight code which can correcting a single error 

and detect double errors simultaneously. On the other hand, by 

deleting some columns of H matrix of (3.17), we will obtain an odd 

weight Hamming code which can also correct single error and detect 

double errors. This odd weight Hamming code is called modified 

Hamming code and widely used in modern computer memories . We 

will discuss the Modified Hamming codes in Chapter four in details. 

3.3 Cyclic codes and BCH codes 

In this section we only review the most important concepts of 

cyclic codes and BCH codes. 



received codeword input 

do 

T 
'10 '11 '12 '13 14 

^ I Jt V f I l' 

dsdgdgd^Qd^ 1^12*^13“^ 14 dod4d5d^dgd^ Qd^ 2^^ 4 

syndrome 
generating 

syndrome 
interpreter 

VQ do di ^2 d2 ^12 <^12 ^13 ^13 ''^14 ^^4 

corrected 
codeword 
output 

Fig. 3.2 A decoder for (15, 11) Hamming code 
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BCH codes are a class of cyclic codes. 

Cyclic codes are well described by Galois field GF(q^) of q“ 

symbols. For binary codes the fields are limited to GF(2”) . 

Three representations of elements of field GF(2°‘) 

i) The elements of a field can be represented by the powers of 

its primitive element(s) u, that is 

GF(2™) = {0, u°, u^ . . . uS ... 

Such a primitive element u of a field is the generator element 

of the field. 

ii) The elements of the field can be represented by polynomials 

modula a so called primitive polynomial p(x) of degree m. Any 

polynomial representation of an element has degree at most m-1. 

The coefficients of the polynomial are over GF(2) or {0, 1}. The 

primitive polynomial P(x) has degree m and has u as its root. For 

different m, the primitive polynomials of field GF(2”) can be 

easily found in literatures (see, e.g.[3.1]). 

iii) The elements of the field can also be represented by m-tuple 

vect^ors. Each vector is corresponding to the coefficients of the 

polynomial described above. 

The three representations are corresponded one by one. The 

power form representation is convenient to multiplication 

arithmetic and the polynomial representation is convenient to 

addition arithmetic. 



Table 3.3 Three representations of elements of field GF(2^) 

powers of u polynomials vectors 

u 

u 

u" 
u" 
u' 
u- 

u® 

u 
u 
u 
u 
u 

15 

10 

11 

12 

13 

14 

X" 

X' 

x' 

X” 

X 

x' 
X 
x' 

X 

+ X 
+ 

X 
2 

X 

X 

+ X 

0 
1 

+ 1 

X' 

+ x" 
+ x' 
+ x' 

X + 

+ 1 
X 

+ X + 

+ X 

+ X + 
+ 

+ 

0000 
0001 
0010 
0100 
1000 
0011 
0110 
1100 
1011 
0101 
1010 
0111 
1110 
1111 
1101 
1001 

Primitive polynomial p(x) = x^ + x + 1 
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As a example, a field GF(2^) represented in three forms are 

shown Table 3.3, where u is the primitive element and p(x) = x^ + 

X + 1 is the primitive polynomial. Therefore + u + 1 = 0. 

Minimal polynomials 

For any element b (=u^) of a field GF(2”), there exists one 

and only one polynomial, m^Cx), which has b as its root. This 

polynomial is called minimal polynomial of the smallest degree (m 

or less) of b. For element u, the minimal polynomial is m^ (x) . 

Since the mu(x) has u, the primitive element, as its root, 

the m^, (x) is also the primitive polynomial. Similarly, for 

element u^, the minimal polynomial is m^^ (x) and so on. 

Any minimal polynomial m^ (x) , which has as its root, has 

as its roots as well, since [m^ (u^) ] ^=mj2 (u^^) =0 . 

Some elements of GF(2”) may share a same minimal polynomial 

with some others. For example, my (x) is the minimal polynomial of 

u, so is of u^, u'*, . . . etc. 

Cyclic codes 

A linear code C (=CoCiC2. . . is a cyclic code if every shift 

of a codeword in C is also a codeword in C. 

A cyclic codeword of length n, c= (C0C1C2. . . Cn_i) , can be 

represented by a code polynomial C (x) =CQ+CIX . . Cn_ix'’“’^' The degree of 

the polynomial is at most n-1. 

A cyclic code C can be generated by a polynomial called 

generator polynomial. Suppose a(x) is the information 
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polynomial and g(x) is the generator polynomial, then the 

encoded codeword polynomial c(x) is obtained from 

c (x) = a(x)g(x) mod x"-l (3.18) 

The generator polynomial g(x) has following properties: 

a) g(x) is a factor of x" - 1, or say, x"-l = g(x)h(x) 

b) The degree of g(x) is r = n-k 

c) g(x) is the smallest degree monic polynomial in C, that 

is, if the general form of g (x) is 

g(x) = g^x"^ + g^-iX^"^ + ... + giX + go (3.19) 

then g,. and go have to be always 1. 

To encode a systematic cyclic code, three steps are required: 

1) multiple a (x) by 

2) find the remainder polynomial b(x) resulting from 

dividing x"“’^a(x) by g(x), that is, x'’"’^ a(x) = d(x)g(x) 

+ b(x) . 

3) Form a systematic cyclic codeword 

c (x) = b (x) + x"“’^a(x) (3.20) 

The decoding of a cyclic code C is based on 

r(x) h(x) = 0 mod x"-l (3.21) 

where r(x) is the received codeword polynomial and h(x) is the 

parity polynomial. 

BCH codes 

Given code length n, information length k and error correction 

number t, a BCH code has parameters as follows 
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n = 2™ - 1 

r = n - k <= mt 

d >= 2t + 1 

The generator polynomial of the BCH code is constructed as 

follows: 

g(x) = LCM { mi(x) m3<x) ... m2t_i(x)} (3.22) 

where mj(x) is the minimal polynomial of u^. 

A BCH codeword is encoded as 

c(x) = a(x)g(x) 

The syndrome of a received codeword r(x) is a 2t-tuple 

S = (Si S2 ... S2t) 

where 

51 = r (u) = e (u) 

52 = r(u^)= e(u^) 

S2t= r(u^*^) = e(u^*^) 

where e(x) is the error polynomial: e (x)=a (x)+r(x) . 

For double error correcting BCH codes the possible error 

combination is 

e (x)=0 no error 

= x^ single error at position i 

= x^ + x^ double error at positions i and j 

The syndrome is interpreted as 

a) if there is no error, then S = (0000) 

b) if there is a single error, then 
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51 = e (u^) = 

52 = e (u^^) = = Si^ 

53 = e(u^^) = = Si^ 

84 = 6 (u"®^) = = Si'’ 

c) if there are two errors 

51 - e (u^ + u^) = 

52 = e Si^ 

53 = e 

54 = e + u'*^) === + 0“*^= Si^ 

Among these syndrome components, Si and S3 are independent. 

Let Si = = A + B 

Then S3 = = (u^ + u^) + AB) 

= Si(Si^ + AB) 

and AB = S3/S1 + s^i 

A and B contain the information about error positions. To 

calculate A and B, form a equation 

z (x) - (1 + Ax) (1 + Bx) = 1 + (A + B)x + ABx^ 

= 1 + SiX + (S3/S1 +s^i) x^ = 0 (3.23) 

The roots of the equation are Xi = A~^ and X2 = B"’^. Therefore the 

roots of the equation locate the error positions. The equation of 

Eq.(3.23) is called error location equation. 

To solve the Eq. (3.23) over field GF(2™), it is necessary to 

try every element of GF(2”) . If there are two errors in the 

codeword, there must be two elements that satisfy the error 

location equation (or say there are two elements that will be the 

roots of the equation) respectively. Then the inverse of these two 

elements indicate the error positions. 
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Example Consider a (15, 7) double error correcting BCH code in 

which 

n = 15 = 2'’ - 1 (so the code is defined on GF(2”), m = 4) 

k = 7 (message bits) 

t = 2 (error correcting capability) 

r=n-k=15-7=8 (=mt) (parity bits) 

d >= 2t + 1 = 5 (minimum Hamming distance) 

The elements of field GF(2^), which has primitive polynomial 

p(x) = + X + 1, has been shown in Table 3.3 

Suppose a received codeword polynomial is 

r(x) x^° + X® + X® + x^ + x^ 

= (0000 1110 0010 100) 

The syndrome is calculated as S = (s^ S2 S3 s^) 

Si = r (u) = u^° + u® + u® + u^ + u^ = u^^ 

S3 = r(u®) = (u^°)® + (u®)® + (u®)® + (u^*)® + (u®)® 

= u®° + u®® + u®'* + u®® + u® 

= 1 + u®® + u® + u®® + u® = u®° 

Thus the error location equation is, since S3/S1 +s®i=u®°, 

z (x) = 1 + u®®x + u®°x® = 0 

Replace x by every element of GF(2^) to find out the roots of 

the equation. 

Since z (u®®) = 1 + u®®u®® + u®°u®® 

= 1 + u® + u® 

= 0001 + 0101 + 0100 = 0 

and 
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z (u®) = 1 + + u^°u^® 

= 1 + u® + 

= 0001 + 1100 + 1101 = 0 

the two roots are 

Xi = u“ 

X2 = u® 

the inverse of x^ and X2 indicate the error positions 

(xi)-" = u' 

(X2)-' = u® 

therefore the error pattern is found out 

e (x) = X® + x"® 

the corrected codeword is then obtained by 

r' (x) = r (x) + e (x) 

= (x^° + X® + X® + x"* + x^) + (x® + x'*) 

= X^° + X® + X® + X® + x^ 

- (0000 1110 iO^O 100) 

where the underlined bits are bits that are corrected. 

3.4 Summary 

This chapter has presented basic concepts of linear codes. By 

adding some redundancy bits to the message bits, coding can detect 

and correct errors in the codeword. Therefore coding can be used 

to improve the reliability of computer memories. 

A code is defined by either generator matrix or parity check 

matrix. A syndrome of a codeword provides the information of error 

positions in the codeword. Systematic codes are more suitable for 

computer memories. Generally, more redundancy in a code has more 
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error correcting ability. But as we have seen redundant bits 

require more storage space and longer encoding/decoding time. When 

a code is determined or selected for a computer memory, one has to 

consider these unfavourable factors. In most cases, the error in 

semiconductor memories affect single bits and are distributed 

randomly. Therefore, single error correcting (SEC) Hamming codes 

are widely used. If a single overall parity check bit is simply 

added to the SEC code, we can obtain a single error correcting and 

double error detecting (SEC-DED) code. On the other hand, by 

deleting some message bits from a SEC-DED code, we can obtain a 

code of different length without loosing the original ability of 

error correcting and detecting. This is very important to meet the 

requirement of computer message word length which usually contain 

2^ bits. 

In some situations, multiple error correcting ability may be 

required. Cyclic codes are designed for these purposes. An 

important subclass of the cyclic codes is BCH codes. BCH codes are 

well described by Galois fields GF(2'") . Like the generator matrix 

for Hamming codes, a BCH code is defined by its generator 

polynomial. When a syndrome of a BCH codeword is calculated, we 

still need to locate the positions of errors. In this chapter we 

have demonstrated the error locating process for double errors. If 

there are more than two errors in the codeword, the error locating 

process will be more complicated. 

So far, the BCH codes are not very popular in computer 

memories. But, because of their multiple error correcting ability. 
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they are still attractive candidates. 

In chapter four we will introduce an alternative multiple 

error correcting code, Orthogonal Latin Square codes which is more 

suitable for computer memories. 
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CHAPTER FOUR CODES USED IN COMPUTER MEMORIES 

In computer memories both error detecting and error correcting 

codes are used. Error detecting codes are simple in implementation 

compared to error correcting codes. But error correcting codes 

provide more improvements of memory reliability, which is essential 

for modern computer systems. 

In various applications either of them respectively or both 

of them simultaneously are implemented. In this chapter several 

commonly used error control codes are discussed. They are 

classified as error-detecting codes, single-error-correcting/ 

double-error-detecting codes and multiple error correcting codes. 

Next chapter another type of codes which are used for detecting and 

correcting unidirectional errors will be discussed. 

4.1 Criteria for code selection 

Coding can dramatically improve the performance and the 

reliability of computer memories. But, it requires additional 

memory cells for storing check bits and extra circuitry for 

implementation of encoding and decoding logic. These not only 

consume additional memory space and VLSI area but also 

significantly increase the risk of potential hard errors and soft 

errors. The encoding and decoding processes will increase the 

memory access time. Even a delay of one microsecond in handling 

critical path information in a computer could be unacceptable for 

high speed computer systems. Hence, though it has many advantages 
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towards the reliability of computer memory, coding might also bring 

some liability to the performance of computer memories if not 

properly designed. 

when making a decision to use ECC codes and to select a 

particular type of ECC code, several factors should be considered 

carefully. The first consideration is whether error detecting, 

error correcting, or both are really required. The second 

consideration is the number of bit errors that need to be detected 

and corrected. Generally speaking, the coding delay (including 

encoding and decoding delay), circuitry complexity, extra memory 

cells and cost will increase when more error detection or error 

correction capability is required. Sometimes the decision is 

really based on a kind of tradeoff between benefits and 

disadvantages. However, when a code is to be used in the memory 

following general criteria of design have to be considered. 

i) Speed of performance 

In a high speed memory the detection and correction process of 

a code should not unduly increase the memory access time. The 

delay should be less than five to ten per cent of the memory 

access time. For this reason, the codes which can accommodate 

parallel encoding and decoding, for example separable linear 

codes, are almost the first selection. Cyclic codes such as 

BCH codes are usually not suitable for semiconductor memories. 

ii) Simplicity of Encoding and Decoding 
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Simplicity of implementation of ECC is essential for a large 

capacity memory due to the limited area in the VLSI memory. 

The simpler ECC scheme generally means less cost and more 

space for information data. 

Since in semiconductor memories single errors are dominant 

error patterns, single error correcting and double error 

detecting codes are often preferable candidates in computer 

memory designs. 

iii) Efficiency of Implementation 

The efficiency means use of as little extra encoding and 

decoding circuitry as possible to perform error detection and 

correction. It is not only for economy, but also for 

eliminating potential source of circuit failures. It will be 

seen that modified Hamming codes are those very high 

efficiency codes. 

Error detection codes provide faster decoding and simpler 

implementation than error correction codes, therefore, are 

preferable in small memories in which error detection is considered 

sufficient. In large memories, however, since the probability 

of errors could be much higher than in small memories, error 

detection itself becomes not enough to maintain the high 

reliability. As a consequence, error correction ability has to be 

considered. On other hand, considering the error distributions in 

semiconductor memories, single error correcting codes are usually 
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sufficient for improvement of reliability. Moreover, if we add one 

more check bits to a single error correcting code, we can easily 

obtain a new code which has capability of single error correcting 

and double error detecting simultaneously (SEC-DED). Such SEC-DED 

codes are suitable and economical to large memories. Multiple 

error correcting codes provide even more reliability improvement, 

but as we have seen in chapter three, multiple error correction 

usually results in complicated implementation and longer decoding 

delay. Thus high speed computers can not afford it. However, in 

some special applications multiple error correction code might be 

required. 

4.2 Error detecting codes 

As mentioned earlier, due to its simplicity of 

implementations, error detecting codes are very suitable for small 

memories. In this section following error detecting codes will be 

discussed 

i ) Parity codes 

ii) Duplication codes 

iii) m-of-n codes 

4.2.1 Parity codes 

The simplest form of a error detecting codes are the parity 

codes. A single-bit parity code is constructed by adding an extra 

bit to the binary information data such that the resulting codeword 

has either odd number of I's or even number of I's. If the 
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information has n-1 bits then the code word has length of n. The 

code can be expressed as (n, n-1). Depending on odd or even number 

of I's in each of its codeword, there are odd parity code and even 

parity code. In most implementation of computer memories, even 

parity codes are used, but both odd and even parity codes have 

exactly the same properties. For the convenience of describing 

only even parity codes are included in the following discussion. 

Encoding and decoding 

The single-bit parity codewords have a typical construction of 

ii iz - ■ - ik P 

where ij^, ij and iK are arbitrary information bits and p is the 

parity bit. The parity bit p is chosen in a way to satisfy the Eq. 

(4.1) 

ii + i2 + ... ij^ + p = 0 (mod 2) (4.1) 

As a codeword is read from the memory decoding is performed. 

The decoding starts with syndrome generation. The syndrome is 

given by 

S = di + d2 + ... + d)( + Pi (mod 2) (4.2) 

where di, d2 and dj^ are the received data bits and pi is the parity 

bit read from the memory. 

If S = 0, the codeword read from the memory is assumed 

correct; 



Table 4.1 (4, 3) parity codes for BCD data 

decimal 
digit 

BCD odd parity code even parity code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

00001 
00011 
00101 
00111 
01001 
01011 
01101 
01111 
10001 
10011 

00001 
00011 
00101 
00111 
01001 
01011 
01101 
01111 
10001 
10010 
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if S =1, the decoder declares the codeword to be in error. 

An example of single bit parity codes (both odd and even) are 

illustrated in the Table 4.1, The second column of the Table 

contains information data. The third column shows corresponding 

odd parity codes and the fourth column contains even parity 

codewords. The parity bits are underlined to make them distinct. 

In Fig. 4.1 the organization of a memory that uses single 

bit parity codes is shown. In the encoding process the parity 

generator creates a parity bit Pi. Then the parity bit and the 

original information bits are stored in the memory as a complete 

codeword. When the codeword is read out from the memory the 

decoding will be first performed. Based on the information data 

of codeword, a new parity bit is regenerated in the parity checker. 

The parity checker compares the new parity bit and the old parity 

bit read from the memory. If they agree, the codeword is assumed 

to be correct. If they are in disagreement, an error is then 

detected and an error signal is sent out the system. 

Analysis of Error Detection 

The parity generator and the parity checker used in the memory 

system are very simple and they have almost the same circuitry. In 

Fig.4.2 an even parity generator and parity checker for 4-bit 

information data are shown. It can be seen that single bit parity 

codes have minimum Hamming distance of 2. A codeword of minimum 

Hamming distance d^^ is able to detect d (=< d^in-1) errors. 

Therefore the codes can detect a single error in a codeword but not 



Fig 4.2 A 4-bit generation and checker 

circuit for even parity 
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correct it. For example, in a even parity code, a single error 

(either 1-error or 0-error) will change the codeword into another 

codeword which has odd number of I's. This is not a valid codeword 

in the even parity code, hence the error is detected. But when a 

second error occurs in the same codeword, the total number of I's 

will change back to even and the codeword then becomes a valid 

codeword in the even parity code. Thus the errors will not be 

detected. Any codeword that contains even number of errors will be 

incorrectly taken as a correct codeword. 

For a random error memory, the probability of any particular 

pattern of j errors for a n-bit word is 

Prob (j-error) = p^ (l-p)"“^ (4.3) 

where p is the probability of occurrence of bit-error in the 

memory. In most cases, p << 1. 

The probability of zero errors in a codeword is then 

Prob(no-error) = (1-p)" (4.4) 

Using Eq. (4.3) and Eq. (4.4), the probability of any particular 

pattern of two errors (for which the parity code can not detect) 

can be derived as following: 

Prob (2-errors) - (1 - p) = 
1-p 

)' (1-P)” 

- Prob(0-errors) P ^2 
1-p' 

(4.5) 
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Since (1-p) >> p, the Prob(2-error) is much lower than the 

Prob(0-errors). That means the probability of correct decoding is 

much higher than that of incorrect decoding (when two errors 

occur). 

In general, for single-bit parity codes, the probabilities of 

correct decoding, error detection and decoding failure are 

expressed as follows: 

P(correct decoding) = (1-p)" (4.6) 

P (error detection) = X) p^(l-p)"“^ (4.7) 
j»l,j^odd 

P (decoding failure) = 53 pMl-p)"^ (4.8) 
j*2; j^even 

other parity codes 

The concept of single-bit parity code can be extended to other 

forms which provide additional error detecting capability. Some of 

the forms are described as following: 

a. Bit-per—word parity code 

Bit-per-word parity code is the simplest type of parity codes. 

The form of a codeword is shown in Fig.4.3 (a). This code usually 

can detect odd number of errors. However, if a codeword including 



■'15 '14 '13 '12 '11 10 *^9 

(a) bit-per-word 

odd 
or 

even 

'15 '14 '13 '12 '11 '10 d4 PI 

even 
(b) bit-per-byte 

chip 5 chip 4 chip 3 

odd 

chip 2 chip 1 

(c) bit-per-muUiple-chip 

chip 5 chip 4 chip 3 chip 2 

'IS '14 '13 '12 '11 '10 d4 

P4 Pi chip 1 

(d) bit-per-chip 

'IS '14 '13 '12 '11 '1C d4 
P4 Pi 

 1-- ■ 

(e) interlaced parity 

Fig. 4.3 The basic forms of parity codes 
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the parity bit becomes all I's due to a complete failure of a bus 

or a set of data buffers, an odd parity code will fail to detect 

them because the faulty codeword would have odd number of 

1's(supposing a codeword has a odd number length), similarly an 

even parity code will fail to the all O's error. 

b. Bit-per-byte parity codes 

A bit-per-byte parity code is effective against the above 

failures. In coding, a word is segmented into two bytes. The 

parity bit of the first byte is formed by even parity rule and the 

parity bit of the next byte is formed by odd parity rule as shown 

in Fig.4.3 (b). One parity bit is for all I's failure and another 

parity bit detects the all O's failure. 

c. Bit-per-multiple-chip parity codes 

Many memories have multiple-bit-per-chip organization with 

each chip containing 4-bit, 8-bit or more. In these organizations 

if one chip fails, several bits in one codeword can be affected. 

It is easy to see that both bit-per-word and bit-per-byte 

parity codes discussed above are ineffective for the situation. 

Bit-per-multiple-chip parity codes, shown in Fig.4.3 (c), can be 

used successfully for this type of errors. Since a faulty chip 

will corrupt every parity bit, a whole chip failure is .detected. 

d. Bit-per-chip parity code 

If a bit-per-chip parity code is employed, it not only detects 
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errors but also locates the failed chip of failure. In this 

approach each parity bit is associated with one chip of memory, as 

in Fig. 4.3 (d) . For instance, pi is the parity bit for data group 

containing data bits 0, 1, 2, and 3. If a single bit becomes 

erroneous, the chip that contains the erroneous bit can be 

identified and the existence of the error is detected. This is 

very useful when the hardware maintenance scheme is employed in the 

memory. 

e. Interlace parity codes 

Interlace parity code is illustrated in Fig.4.3 (e). As can 

be seen from the figure, no two adjacent information bits are 

associated with the same parity group, therefore when any two 

adjacent bits are in error, two parity bits will be affected, and 

the errors are detected. 

4.2.2 Duplication codes 

The principle of duplication codes is very simple. It 

duplicates the original information bits to form a codeword. That 

is , there are two portions in a codeword, the first portion is the 

original information bits and the second portion is exactly the 

copy of the first portion. The decoding is done simply by 

comparing the two portions in a codeword. If the two portions do 

not agree, the errors are detected. The primary advantage of the 

code is its simplicity of encoding and decoding, but it occupies 

twice the storage space. 
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Types of duplication codes 

A variation of the basic duplication code is to take the 

complement of original information bits as its duplicated portion, 

as shown in Fig.4.4 (a). 

The effectiveness of this code can be analyzed as follows. 

Suppose that one bit slice of the memory becomes faulty such that 

every bit in that slice stuck at 1 regardless of what it should be. 

The complemented duplication code can detect this error. Because 

any two bits belonging to different portions (information portion 

and complemented portion) are supposed to be complement of each 

other. 

Another variation is the swap and compare approach. The first 

portion of the codeword is divided into two parts called upper half 

and lower half. In the duplicated portion of the codeword, the 

upper half and lower half are swapped as shown in Fig.4.4 (b). A 

single bit slice that is faulty affects upper half and lower 

half,but the other two halves remain correct. By comparing the 

appropriate halves, the error is detected. 

4.2.3 m-of-n codes''* '’' 

In a m-of-n code, every codeword of length n contains m I's. 

Therefore it is a constant weight code. Any single-bit error will 

cause the codeword to have either m+1 or m-1 I's and a second bit 

error might change the erroneous codeword back to m I's. The m-of 

-n code is of d^^n = 2 and hence has the capability of detecting one 

error in a codeword. 



error slice L 1 — Lower half of word 1 
U i — upper half of word i 

(a) Complement duplicate codes (b) swaped duplicate code 

Fig 4.4 duplicate codes 
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The easiest way to construct an m-of-n code is to take the 

original k information bits and append another k bits. The 

appended k bits are the bit by bit complement of the original 

information bits. This is a k-of-2k code with systematic 

construction. This code is also called balanced code since it has 

equal number of O's and I's in each of its codewords. However, 

most of m-of-n code are non-systematic codes. 

The m-of-n codes can be used not only for single error 

detecting, but also for multiple-unidirectional error detecting'"*'^^ 

purposes. We will discuss the issue in the next chapter. 

Now, in the following section error correcting codes will be 

discussed. 

4.3 Single—error—correcting and double—error-detecting codes 

In semiconductor memories, especially in the bit-per-chip 

organized memories, the single-bit errors are dominant error 

patterns^'’’®'. The probability of soft errors show much higher than 

hard errors. Therefore single error correcting codes are of 

significance for the reliability of large capacity and high speed 

semiconductor memories. In addition, the implementation of single 

error correcting codes are much simpler and the decoding speed is 

much faster than the multiple error correcting codes. Hence single 

error correcting codes are widely used in computer industries. 

In this section two classes of single error correcting codes, 

H-V-parity codes and modified Hamming codes, are discussed. 
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4.3.1 H-V-parity codes 

Single-bit parity codes detect errors occurring in a codeword 

but not correct them. This is because each information bit is 

associated with only one parity bit. If each of the information 

bits is allowed to appear in more than one parity groups (overlap 

parity check), the code will be able to correct errors as well. 

The construction of the H-V-parity codes 

The H-V-parity codes are constructed directly on a principle 

of overlap parity check. As shown in Fig.4.5, the information bits 

are arranged in a two-dimensional array in memory. Each row has a 

single parity bit calculated along the horizontal direction and 

each column has a single parity bit along the vertical direction. 

Each row data are called H-group data and each column data are 

called V-group data. In this array every information bit belongs 

to both a H-group data and a V-group data. For example, a 

horizontal parity bit (H-parity) is formed by data bits dg, di,d2 

and dj in the first row of the array, and the vertical parity bit 

(V-parity) Pj is formed by data bits dg, d4, dg and d^j in the left- 

most column etc.. Notice that Pg is the parity bit of parity bits. 

It can be calculated on either H-parity bits or V-parity bits. In 

some cases this bit is not used at all. 

Analysis of Error Correction/detection 

In such a memory array, a single bit error in any row (or 



do dj d2 

d4 ds dg d7 
dg dg djo djj 

di2 di3 dj^^ djg 

Pi 
Pa 

P3 
P4 

a P7 Pg 

(a) two dimensional array (b) one dimensional array 

Fig 4.5 H-V- parity code 

98 



99 

column) will cause both the H- and V-parity bits to declare error 

detected. The location of the error bit is then determined at the 

intersection of the row and column of the corresponding parity 

bits. Then the correction can be done. If two errors occur along 

a row, two V-parity bits associated with the errors will be in 

failure. However the H-parity bit, which is associated with the 

two errors in the row, fails to detect the presence of the errors. 

As a result, the locations of the errors can not be identified 

uniquely. Therefore, the H-V-parity code is a type of single- 

error-correcting and double-error-detecting code. 

In fact, the H-V-parity code can be considered as a product of 

single-bit row parity code and single-bit column parity code. Both 

of them are linear codes. Therefore the minimum Hamming distance 

of the product code is the product of that of two single-bit parity 

codes''*'®', that is dn^i„= 2 x 2= 4. 

Due to its simple encoding and decoding logic and 

implementation, the H-V parity code is suitable for on-chip error 

correcting and error detecting scheme. In the following, we 

discuss a possible implementation of the H-V-parity decoder for 

computer memory'*'®'. 

The decoding of the H-V-parity codes 

A block diagram of decoding logic is given in Fig.4.6. There 

are six main blocks in the diagram. H-group data selector, V-group 

data selector, H-parity generator, V-parity generator, correction 

circuitry and output multiplexer. 

The data bits are organized into a one dimensional array from 
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a two dimensional array containing information bits and parity 

bits. Fig.4.5 is an example of such a transformation. It can see 

that each bit of the array is now connected with a word-line in the 

memory so that all of them can be accessed in parallel. During the 

error correction, according to the decoding logic, the H- and V- 

group data selectors transfer proper data bits into H-parity and V- 

parity generators respectively. In the parity generator, new H- 

and V-parity bits are generated. By comparing the new parity bits 

and the corresponding memory cell parity bits (the parity bits read 

from the memory), error (s) can be detected. If the error is 

detected as a single-bit error, the correction is then performed 

through a multiplexer and correction circuits. 

It can be seen that the data selectors which feed in the 

desired data bits to corresponding parity generators and the 

multiplexer are the vital components for the whole process of 

error detecting and correcting. 

An analysis of a decoder for a (19, 12) H-V-parity code 

To have a better understanding of the process, a more detailed 

error correcting circuit is shown in Fig.4.7. This is a decoder 

for a (19, 12) H-V-parity code. Each codeword is transferred from 

a 4 X 5 array which contains twelve information bits, three H- 

parity bits and four V-parity bits. The twelve information data 

bits are denoted as d^, d2, . . . di2. The procedure of correction is 

divided into twelve subcycles. Each subcycle is able to check and 

correct one bit. In every subcycle, according to the decoding 

logic, data selectors feed in appropriate data bits to different 
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blocks so that correcting decisions can be properly made. Table 

4.2 shows the bit sequences that are transferred into H-parity 

generator, V-parity generator and output multiplexer in each 

subcycle. 

Let us suppose that bit d^ is in error, then during the 

second subcycle, bits dg, d^, d2, and dj are fed in H-parity 

generator and bits d^, dj and in V-parity generator. 

Consequently, the new H-parity bits h^' and the new V-parity bit 

are generated. Since the new parity bits do not agree with the 

corresponding memory cell parity bits, the error is detected in 

both H- and V-direction at the same time. As a result, the 

correction circuit outputs a correcting signal '1', and correction 

is then made by toggling the output of multiplexer. 

The whole decoding process has to be completed during one 

read cycle of the memory. That is, in this example, the time to 

correct one bit or one subcycle is less than 1/12 of the read 

cycle. 

This ECC scheme using H-V-parity code has been applied to the 

design of 256k . In addition to fundamental 256k memory 

cells, the RAM employs 24k parity cells for H- and V-parity bits. 

In the scheme, each word line is connected to 512 (=16x32) memory 

cells and 48 (=16+32) parity cells. There are total 500 such word- 

lines. All of the memory cells can be checked within 4 seconds 

with each subcycle being 16 ns. The scheme has substantially 

improved the reliability of the memory compared to that of the 

memory without the ECC. The estimated improvement is reported up 
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# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Table 4.2 Decoding logic for a (19, 12) H-V-parity code 

bits feed in 
H-parity 
generator 

new H- 
parity 
bis 

bits feed in 
V-parity 
generator 

new V- bits feed 
parity in 
bits multiplexer 

^0 
do 
do 

di 
di 
di 

dz 
d2 
d2 

dn di d, d. 
d, 
d4 
d4 
d4 
da 
dg 
dp 

ds 
ds 
ds 
ds 
dg 
dg 
dp 

de 
dfi 
de 
dg 

d? 
d? 
d? 
d? 
di 

dp da 

dlO*^!! 
diodii 

diodii 

diodii 

h'o 
h'o 
h'l 

h'l 
h'2 
hS 
h'2 
hS 

do d4 
di ds 
d2 dg 
da d, d 
do d4 dg 
di dg dg 
da dg d 
da da d 
do d4 dg 
di ds dg 
d2 dg d 
da da d 

no 
11 

10 

11 

10 

11 

v'o 
V'l 
v'a 
vS 
v'o 
vS 
v' , 

v'o 
V'l 
V'2 
V'p 

do 
di 
da 
da 
d4 
ds 
dg 
di 
da 
dg 
dio 
dll 
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to 10®. 

The concept of the product of two single-bit parity codes can 

be extended to any other linear codes. For example, the product 

codes that are obtained from any combinations of SEC-DED codes, DEC 

codes and even TEC (triple-error correction) codes will have more 

capacity of error correction and error detection, but accordingly 

need more complicated implementations of encoding and decoding. 

4.3.2 Modified Hamming codes 

It has been shown in Chapter three that an (n, k) linear 

Hamming code is uniquely specified by a parity check matrix H. 

This H matrix has r rows and n columns (among n columns, k of them 

correspond to information bit columns and r of them to the parity 

check bit columns) as shown in Eq. (4.9) . 

H = 

^0,0 ^0,1 

^j,0 ^j.l 

^r-1,0 ^r-1,1 

h 0, n-1 

h j,n-l 

h. 

Hr. 

H r-l 

(4.9) 

r-l, /3-1 

where HQ, HJ^, and are row vectors of H matrix. 

To determine the error patterns, a decoding syndrome S = (So, 

Si, S2...Sj-_i) is necessary. The components of the syndrome can be 

calculated from the received codeword D and row vectors of the H 

matrix as given below. 

50 = D 

51 = D Hi^ 
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s,_i = D (4.10) 

The codeword is accepted as error free if S is an all zero 

vector. 

From the implementation point of view, the total number of I's 

in each row vector of the H matrix is related to the number of 

logic level necessary to generate the syndrome bit corresponding to 

that row. Let be the number of I's in the i*"^ row vector of the 

H matrix, and be the number of logic levels required to generate 

the i*^^ syndrome component. The relationship between and can 

be expressed as 

Li = L logb Ni J (4.11) 

where |_xj denotes the smallest integer equal to or greater than x, 

and b is the number of input of X-OR gate. 

As can be seen, in order to minimize L^, it is necessary to 

minimize N^. Also, in order to achieve a least decoding delay, it 

is necessary to make the number of I's in every row vector to be 

equal. 

Based on above considerations, a class of optimal Hamming 

codes is derived, known as modified Hamming codes 

The construction of the H matrix of modified Hamming codes 

The H matrix of a conventional Hamming code has 2^-1 r-tuples 

as its columns, r columns for parity bits and k columns for 

information bits. By deleting 1 information bit column from the H 

matrix, it is possible to obtain a new matrix H„ which satisfies 

the following requirements; 
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1) Every column vector has odd number of 1's 

2) The total number of I's in the matrix is minimum. 

3) The number of I's in each row vectors is equal to, or as 

close as possible to the average number ( i.e., the total 

number of I's in H„ divided by the number of rows) 

The code specified by this new parity check matrix is 

called a modified Hamming code. 

The first requirement guarantees that the code has d^^n > 4, 

(since the sum of any three columns of odd number I's can not be a 

zero vector). Therefore the modified Hamming codes can be used as 

SEC-DED codes. The second and third requirements lead to a least 

logic levels in implementation and optimal delay in encoding and 

decoding. 

According to above properties, the H matrix of the modified 

Hamming codes can be constructed by the following procedures'"’’^’: 

1) Take all (^i) weight-1 r-tuples as the most right r columns of 

H matrix which are corresponding to parity check bit columns. 

2) If (^^3) >= k, select k out of all ('^3) weight-3 r-tuples as 

left k columns of the H„ matrix (thus the H matrix is 

completed) . If (“"3) < k, take all (^^3) weight-3 r-tuples as 

the left columns of the H„, matrix, then keep going 3) . 

3) Select weight-5 r-tuples from all (^5) weight-5 tuples as the 

columns of H matrix and then select weight-7 r-tuples etc, 

until the H matrix is completed. 

Only odd-weight r-tuples are used for the H„ matrix. The 

modified Hamming codes are sometimes called odd-weight-column 
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codes. 

Fig.4.8 shows examples of H matrices of modified SEC-DED codes 

used in some IBM systems*^'^^'. In Table 4.3 the parameters of some 

modified Hamming codes as well as the corresponding Hamming codes 

commonly used in computer memories are compared. It can be seen 

that modified Hamming codes are shortened Hamming codes. The 

shortening of the information bits makes it possible to meet the 

needs of data sizes in computer memory systems which are usually 4, 

8, 16, 32, 64 etc. (i.e., the powers of 2). 

Decoding of the codes 

The modified Hamming codes are capable of correcting single 

errors and detecting double errors as well as detecting multiple 

odd number errors. The algorithm of the decoding of the codes is 

illustrated in Fig . 4.9 

i) According to the codeword R' read from the memory, generate 

the syndrome vector S = (Sj, Sj, • • - , s^) . 

ii) Test whether S = 0 or (s^ + Sj +. . . Sj.) = 0, where + denotes OR 

operation. If S = 0, the codeword is assumed to be error-free. 

iii) If S <> 0, try to find a perfect match between the S and the 

i*^^ column in the H matrix. If it matches, the bit in the i*^^ 

position of the codeword is in error, hence the correction can 

be done. 

iv) If S < > 0 and no match is found, then test if 

So®Si©. . .©Sr_i 0 (4.12) 



t 

1 
1 
0 

1 11110 0 
1110 0 11 

0 0 0 1111 

10 0 10 10 

0 1 0 0 0 0 1 

0 0 10 10 0 

1 10 10 0 0 

10 10 10 0 
0 1 10 0 10 
1110 0 0 1 

(a) 

0 10 0 10 1 

1 0 10 0 0 0 

1 0 0 10 10 

0 111110 

0 1110 0 1 

1 0 0 0 111 

(b) 

0 0 10 0 0 0 0 
10 0 10 0 0 0 

0 1 0 0 10 0 0 

0 0 0 0 0 1 0 0 

11 0 0 0 0 10 

11 0 0 0 0 0 1 

11111111 1111111100010001 00010001 0010001C 00100010 00100010 00010100 10000000 
10001000 10001000 11111111 111111110001000100010001 10001000 10000010 01000000 
01000100 01000100 10001000 10001000 11111111 11111111 01000100 01000001 00100000 
00100010 00100010 01000100 01000100 10001000 10001000 00100010 00101111 00010000 
00010001 00010001 00110011 00110011 01110111 01110111 00000000 00001111 00001000 
00001111 00001111 00001111 00001111 00001111 00001111 11111111 00000000 00000100 
00000000 11111111 00000000 11111111 00000000 11111111 11110000 1111111100000010 
11110000 00001111 11100001 000llllO 11000011 00111100 00001111 11110111 00000001 

(c) 

11111111 00000000 00000000 11111111 10001110 10001110 10001110 10001111 10000000 
11111111 11111111 00000000 00000000 01001101 01001101 01001101 01001101 01000000 
00000000 11111111 11111111 00000000 00101011 00101011 00101011 00101011 00100000 
00000000 00000000 11111111 11111111 00010111 00010111 00010111 00010111 00010000 
10001110 10001110 10001110 10001110 11111111 00000000 00000000 11111111 00001000 
01001101 01001101 01001101 01001101 11111111 11111111 00000000 00000000 00000100 
00101011 00101011 00101011 00101011 00000000 11111111 11111111 00000000 00000010 
00010111 00010111 00010111 oodoioil 00000000 00000000 11111111 11111111 00000001 

(d) 

Fig. 4.8 Parity matrice of some SEC-DED codes: 

(a) a (8, 4) code 
(b) a (22, 16) code 
(c) a (72, 64) code 
(d) a (72, 64) cOde 

(IBM System/3) 
(IBM 3033) 
(IBM 3081) 
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Table 4,3 Some parameters of Hamming codes and 
modified Hamming codes 

n 

31 
63 
127 
255 
511 
1023 

Hamming codes 

k 

26 
57 
120 
247 
502 
1013 

5 
6 
7 
8 
9 
10 

Modified Hamming codes 

n k r 1' 

13 
22 
39 
72 
137 
266 

8 
16 
32 
64 
128 
256 

5 
6 
7 
8 
9 
10 

18 
41 
88 
183 
374 
757 

1* the number of eliminated bits 
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— Sum of mod 2 

FIG. 4.9 Algorithm of decoding modified Hamming codes 
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If it does, a double error is then detected, 

vi) If S <> 0 and no match is found and Eq. (4.12) does not 

hold, three or more odd number of errors are detected. 

A decoding block diagram implementing the above algorithm is 

shown in Fig.4.10. The diagram consists of following blocks, 

syndrome-generator, syndrome-decoder, single-error-corrector, 

error-detector, double-error-detector and multiple-error-detector. 

The syndrome-generator is composed of r n-input X-OR gates, 

calculating r syndrome bits according to Eq.(4.10). The output of 

the gates is a r-tuple syndrome. 

The syndrome decoder checks whether the syndrome matches a 

column of the H matrix. It consists of n r-input AND gates. The 

inputs of each AND gate corresponds to a column of the H„, matrix. 

When a syndrome matches a column, the corresponding AND gate output 

a '1' so that the correction can be done in the error-corrector. 

The error-detector is a r-input OR gate which test if S = 0. 

An error detected signal is output if S < > 0. 

The double error-detector is composed of a r-input X-OR gate. 

If the output of the decoder equals to 0, a double error detected 

signal is given out. 

The multiple-error-detector consists of a n-input NOR gate and 

an AND gate. If none of the n-output of syndrome-decoder is equal 

to '1', (which means no correction will be done) and the output of 

error-detector is ' 1' , then the multiple-error-detector outputs 

' 1', indicating that three or more odd number errors are detected. 
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Fig. 4.10 A diagram of the decoder for 
modified Hamming code 
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To illustrate a whole decoding process, in the following we 

consider the circuit of decoder for a (8, 4) SEC-DED code. 

Example: The H matrix of the (8, 4) code is as follows 

do di dj d3 Co c, C2 c, 
11101000 

11010100 
H — 

10110010 

01110001 

The syndromes can be calculated 

-^2 = Cfo©C?2©d3©C2 

Sj = d3^©d2©d3©C3 

Fig.4.11 gives the circuits of the decoder. It can be seen 

that the correction is performed in parallel, therefore has a high 

decoding speed. 

Applications of Modified Hamming Codes 

Many of the IBM system 370 models (e.g. 145, 155, 165, 158, 

and 168) use a (72, 64) SEC-DED modified Hamming code for error 

control in main memories. 

In these applications encoder and decoder form additional 

circuitry. Recently Modified Hamming codes are also used in on- 

chip ECC schemes'^'^^' in [4.14], it has been demonstrated 

that combined use of memory cell redundancy and ECC scheme has 
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enhanced the reliability significantly and brought effective 

improvement of yield of the memory chips. In Fig.4.12 the 

resulting yield as a function of the average number of (failing) 

single cells per chip is presented. 

In a practical memory system with ECC, both of the parity 

codes and SEC codes are employed. For example, a (72, 64) modified 

Hamming code is used for memory error control while the parity 

code is used for validity checking of a data transferred in the 

data bus. 

When a (72, 64) codeword is read from main memory, the 

decoding circuit generates a 8-bit syndrome. If the syndrome 

indicates no errors in the codeword, the 64 data bits are extracted 

and divided into 8 bytes. Then 8 parity bits are added to these 

bytes on the bit-per-byte basis as shown in Fig.4.13. 

If a single error is detected in the (72, 64) codeword, the 

correction is performed and the corrected word is sent to CPU. In 

case a double error or a multiple error are detected, an interrupt 

signal will be generated. CPU then decides on further operations. 

In some systems the read instruction is retried. In other systems 

a duplication word (which is stored in the spare memory cells) is 

accessed. Or sometimes other outside operation may be required to 

deal with the errors. 

When a data word (which has the form shown in Fig.4.13 from 

the data bus) is to be stored in the memory, the parity-encoded 

codeword (which has the form of Fig.4.13) is first checked. If it 

is a valid data word, the 8 parity bits are removed and the 64 data 



Fig 4.12 Yield curves for ECC and bit-line redundancy 
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bits are then encoded into a (72, 64) SEC-DED Hamming codeword and 

then is stored in the memory. 

4.4 Multiple error correcting codes 

In some cases when a memory cell has been permanently 

defective, a soft error caused by alpha-particle radiation will 

result double errors in a codeword. Modified Hamming codes will 

fail to correct the double errors. And the probability of double 

errors might be high under certain conditions. In order to maintain 

a high memory reliability, double error correcting or multiple 

error correcting codes are required. Usually, in practice, 

hardware maintenance strategies are used for repairing the 

defective memory chips in regular intervals. Use of multiple error 

correcting codes allows the maintenance strategy to accumulate the 

hard failures up to certain threshold, thus defer the replacement 

and reduce the down time of the systems. 

In theory there are several multiple error correcting codes, 

e.g., BCH codes, R-S codes, majority logic codes etc But 

these codes are cyclic codes, which as we discussed in chapter 3, 

require relatively complicated decoding logic and longer decoding 

time. In this section, we introduce a type of fast decoding codes, 

majority orthogonal Latin square codes which can be used as SEC 

codes as well as multiple error correcting codes. These codes are 

linear codes. 

We first consider a parity check matrix H of a SEC code as 

follows 



parity bit 
'\r 

2"'^ parity bit 8 parity bit 

8 data bits 8 data bits 

(a) data format from/to bus 

64 data bits 8 parity bits 

(b) data format in storage 

Fig.4.13 Data format in/not-in storage 
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H = 

do dj do d, do dg d, dg p, p^ P3 p, p^ p^ 

111 1 

111 3 
111 1 

1 11 
111 1 
11 1 

(4.13) 

From the H matrix, a set of parity equations can be derived as in 

Eq. (4.14) 

Pi = do + di + do 

Po = do + d4 + do 

Po = dg + d, + dg 

P4 = do + do + dg 

Ps = di + d4 + di 

Pg = do + ds + dg (4.14) 

When a codeword D=(dg dj ...d, dg Pi ... Pg) with a single-bit 

error is read from the memory, the decoding might be processed on 

majority voting basis. For instance, in the decoder, three copies 

of bit do are regenerated. Two of them are derived from parity 

equations Pi and p^, that is 

do = Pi + di + do 

do = P4 + do + dg (4.15) 

and the third one is dg itself received from the memory. The 

correct do is then recovered from a three majority voting gate. 

The output of a majority vote gate depends on the majority values 
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of its input. If there is a single-bit error, data do can be 

recovered correctly, because any single-bit error affect at most 

one vote of the majority gate. In fact, as long as the parity 

equations p^ and p^ given in Eg. (4.14) are orthogonal to the data 

bit do, the error correction by majority voting is always valid. 

A set of parity equations are said to be orthogonal on d^, if 

for all the equations, d^ is the only common variable involved. 

For example, in Eq. (4.15), pi and p^ are orthogonal on do, P2 and Ps 

are orthogonal on d4, etc. 

If there is a set of 2t parity equations orthogonal on dj, 

then dj can be decoded correctly by majority decoding logic 

(majority voting among 2t parity equations and d^ itself, totally 

2t + l votes are involved) . In the above example, the code is 

designed as SEC code, so every two equations are orthogonal on each 

data bit. 

In the following, according to Hsiao we will discuss a 

type of majority-logic codes for multiple-error correcting. These 

codes are defined on a set of so called Orthogonal Latin Squares, 

hence are called Orthogonal Latin Square (OLS) codes. The codes 

are a class of one-step decodable majority logic codes which can be 

decoded in parallel manner. 

The most attractive feature for one step majority decodable 

codes is that they can be decoded at an exceptionally high speed. 

For the OLS codes, there is another noticeable unique advantage. 

That is, the decoder of the code can be built in a modular form 

such that each additional modular adds a further error correcting 
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Orthogonal Latin Squares 
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A Latin square of order m is an m x m square array of the 

digits 0, 1, m-1, with each row and column a permutation of 

the digits. Two Latin squares are orthogonal if one Latin square 

is superimposed on the other, every ordered pair of elements appear 

only once. 

Following are three (4 x 4) Latin squares L^, L2, and L3. 

0 12 
10 3 
2 3 0 1 
3 2 10 

L, 

0 
1 
2 
3 

2 3 1 
3 2 0 
0 13 
10 2 
L, 

0 
1 
2 
3 

3 1 
2 0 
1 3 
0 2 

L. 

2 
3 
0 
1 

The result of a superposition of the first two Latin squares 

is as follows 

0,0 1,2 2,3 3,1 
1.1 0,3 3,2 2,0 

2.2 3,0 0,1 1,3 

3.3 2,1 1,0 0,2 

In this array, each of the 4^ possible ordered pairs occur exactly 

once. This holds for all other squares as well, and hence these 

Latin squares are orthogonal. 

Given a integer m, there exists a set of h orthogonal Latin 

squares, where h is the number of orthogonal Latin squares that m 

elements can generate. The relationship between h and m is 

expressed as h = min ( p^®^ -1), where p^®^ are integer powers of the 

prime factors of the integer m. The method of constructing 
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Orthogonal Latin squares is included in Hsiao or it can be 

found from tables of Fisher and Yates . 

The construction of the H matrix 

A OLS code which can correct t errors in a codeword is defined 

on a set of orthogonal Latin squares. The codes have following 

parameters 

k = m^ 

r = 2tm 

n — m 2 

the number of data bits 

the number of check bits 

m^ + 2tm the length of the codeword 

d = h + 3 the minimum Hamming distance 

Let m^ data bits be denoted by a vector 

^ ^ *^2, . . . f d,j,2 _J ) (4.16) 

Then the 2tm parity check equations for t-error correcting can be 

obtained from the following parity check matrix H: 

(4.17) 

M, 
2tm X im^*2tm) 

where l2tm is an identity matrix of order 2tm and M2, . . - , M2t are 

submatrices of size m x m^. These submatrices are expressed as 

following 
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Ml 

1111100000000000000000000 

0000011111000000000000000 

0000000000111110000000000 
0000000000000001111100000 

0000000000000000000011111 

(4.18) 

^2 [ Im Im • • - Im 

The matrices M3, M4, . . . , 

of orthogonal Latin squares L 

Denote the Latin squares as 

J m X m2 

M2t are 

1/ 

derived 

• • ! L2t-2 

(4.19) 

from the existing set 

of the size m x m. 

Li 

L2 

[ it . ] L Xf J J m X 

[ 1^. , ] 
L 1, j J m X 

(4.20) 

where 1 and i,je{l, 2, m}. 

For any given Latin square having m elements, there exists an 

incidence matrix defined on one of its elements as follows. 

Let L = [ ] be a Latin square; then an incidence matrix 

defined with respect to the element c (1 < == c < = m, integer) , 

denoted by = [q'^ij] , is defined by the rules 

qF. = 1, if lij = c 

0, if li3 <> c (4.21) 

For each Latin square of m element, there are m incidence matrices 

Qi, Q2/ -‘-r Qm- Each incidence matrix is concatenated into a vector 

form. 
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V. [q^ 11 ■ Im 21 2m ml ' " ^ mm 3 (4,22) 

If submatrix is derived from a unique Latin square L^, then 

Vj^, Vj, . . . , are derived from 

Mi = (4.23) 

Examples of constructing OLS codes 

Given m = 5, then k = m^ = 25 

Example-A Let t = 1, then r = 2tm =10, n = m^ +2tm = 35. This 

is a (35, 25) SEC OLS code. The H matrix of the code has the form 

as follows 

if, = I. 10 (4.24) 

where, according to Eq.(4.18) and Eq.(4.19) Ml and M2 are derived 

M, = 

111110000000000000000000 

000001111100000000000000 

000000000011111000000000 

000000000000001111100000 

000000000000000000011111 

(4.25) 
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1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

0 0 0 0 1 

(4.26) 

The whole H matrix of the code is given in Fig.4.14 (a) . For 

ECC codes. Orthogonal Latin squares are not needed. 

Example-B Let t = 2, then r= 2tm = 20, n = +2tm =45. This is 

a (45, 25) DEC OLS code. The Hj matrix has the form. 

M, 
(4.27) 

where and Mj are identical to Eq. (4.25) and (4.26) . To 

construct M3 and M4, it is necessary to find (5 x 5) Latin squares. 

The existing Latin squares are given in follows 

0 12 3 4 
1 2 3 4 0 
2 3 4 0 1 
3 4 0 1 2 
4 0 12 3 

LI 

0 12 3 4 
2 3 4 0 1 
4 0 12 3 
1 2 3 4 0 
3 4 0 1 2 

L2 

0 12 3 4 
3 4 0 1 2 
1 2 3 4 0 
4 0 12 3 
2 3 4 0 1 

L3 

0 12 3 4 
4 0 12 3 
3 4 0 1 2 
2 3 4 0 1 
1 2 3 4 0 

L4 

From LI, the incidence matrix QQ, Q^, Q2, Q3 and can be 

derived as following 



Mi 

(a) 

M 
2 

dfl ... dg ... djg... djg .. 6^Q . d^^ Cf 

11111 00000 00000 00000 00000 
00000 11111 00000 00000 00000 
00000 00000 11111 00000 00000 
00000 00000 00000 11111 00000 
00000 00000 00000 00000 11111 

10000 10000 10000 10000 10000 
01000 01000 01000 01000 01000 
00100 00100 00100 00100 00100 
00010 00010 00010 00010 00010 
00001 00001 00001 00001 00001 

M3 

(b) 

M, 

■ ^20 ■ <^24 

M 
M 

1 
2 

,c 20 

10000 00001 00010 00100 01000 
0100010000000010001000100 T 

00100 01000 10000 00001 00010 -^20 
00010 00100 01000 10000 00001 
0000100010 00100 01000 10000 

10000 00010 01000 00001 00100 
01000 00001 00100 10000 00010 
00100 10000 00010 01000 00001 
00010 01000 00001 00100 10000 
00001 00100 10000 00010 01000 

(c) 

dfl ... dg ... djQ... .. d23 . d^^   

Ml 

M3 

M, 
10000 00100 00001 01000 00010 
01000 0001010000 00100 00001 I 
00100 0000101000 0001010000 
00010 10000 00100 0000101000 
00001 01000 0001010000 00100 

10000 01000 00100 00010 00001 
01000 00100 00010 00001 10000 
00100 00010 00001 10000 01000 
00010 00001 10000 01000 00100 
00001 10000 01000 00100 00010 

(a) Single error correcting code (35, 25) 
(b) Double error correcting code (45, 25) 
(c) Triple error correcting code (55,25) 

Fig. 4. 14 H-mathces for OSL codes and decoder 
for do. 

do 
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1 
0 

0 0 0 01 
0 0 0 11 

0 0 0 1 0 
0 
0 

1 0 01 
0 0 0 1 

Qo 

0 0 0 
0 0 1 
0 
1 

1 0 
0 0 

10 0 0 
0 0 0 0 

0 0 0 0 1 
Qs 

0 10 0 0 
1 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 10 0 

Qi 

0 0 0 0 
0 0 0 1 

100100 
10 1 0 0 0 
110000 
100001 
100010 

Q2 

0 0 10 0 
0 10 0 0 
1 0 0 0 0 

Q4 

Qj is obtained by replacing all j's in for I's and replacing all 

values rather than j for O's. Then concatenate row by row into 

a vector Vj, as follows 

10000 

01000 

00100 

00010 

00001 

00001 

10000 

01000 

00100 

00010 

00010 

00001 

10000 

01000 

00100 

00100 

00010 

00001 

10000 

01000 

01000 

00100 

00010 

00001 

10000 

(4.28) 

In the similar way, can obtained from Latin square L2, as 

follows 

M. = 

10000 00010 01000 00001 00100 
01000 00001 00100 10000 00010 
00100 10000 00010 01000 00001 
00010 01000 00001 00100 10000 
00001 00100 10000 00010 01000 

(4.29) 

The whole H matrix of the double error correcting OLS code is 



129 

2shown in Fig. 4.14 (b) . In this example, Latin squares and L2 

were used to derive M3 and M4. 

Example—C Let t = 3, then r = 2tm =30, n = m2 2tm = 55. This is 

a (55,25) triple error correcting OLS code. The H3 matrix has the 

form 

H, = 

^2 

Ms 

‘■30 

where M^, Mj, M3, M4, are completely the same as Eq. (4.25), (4.26), 

(4.28) and (4.29). In the same way, M5 and Mg can be derived from 

Latin squares L3 and L4 respectively. The whole H3 matrix of the 

codes is shown in Fig.4.14 (c). In fact this code is a result of 

extension of H2. Since there are no more Latin squares that can be 

used, the code of m=5 has a maximum error correcting capability of 

three. 

In Fig. 4.14, the decoders of data bit do for three codes are 

also provided. It is seen that, whenever higher bit error 

correcting capability is required, the decoding logic allows to add 

a modular to the existing circuitry to perform the additional error 

correcting without interfering the original mechanisms of the 

decoder. The added modulars are identical in form to existing 

ones. That is, all modulars are composed of mod 2 adders with the 

same inputs and (2t + 1) voting gates. The simplicity and 
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regularity are useful for extending the error correcting capability 

for an existing system. 

It can be noticed that the maximum error correcting capability 

of a OLS code is related to m, the size of corresponding Latin 

squares. For an existing set of h (m x m) orthogonal Latin 

squares (h < = m - 1), the maximum error correcting t is 

t = [h / 2 ] + 1 (4.30) 

In most cases of m, the number of Orthogonal Latin squares are 

(m - 1) with the exception of m =6 and m = 10. In these two 

cases, the SEC codes can not be extended to multiple error 

correcting codes. 

Shortening of the OLS codes 

The maximum length of data for the OLS codes are m^, but in 

computer memory systems, commonly used data size are 8, 16, 32, 64 

etc. To meet the needs for memory systems, the procedure of 

shortening a regular code, like in modified Hamming codes, can also 

be performed on OLS codes. That is, choose and delete 1 columns 

from m^ data bit columns of the OLS H matrix. The deletion of 

column neither affects the orthogonality of the set of parity 

equations nor reduces the number of orthogonal parity equations, 

hence does not affect the validity of the majority logic. 

Therefore as many columns as required can be deleted to meet 

different applications. For instance, in example-C mentioned above, 

there are k=m^=25 data columns in the H3 matrix. To meet a need for 

16 bit data size. 9 columns from 25 have to be deleted. 
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Obviously, there are several deleting approaches to be chosen. 

1) Delete the left-most 9 columns 

In this case, among the 9 deleted columns, the first m columns 

are included, thus the parity pi is now independent of any 

data bits, hence can be deleted. On the other hand because 

of the deletion, some of the adders in the decoder need less 

inputs than they did in original decoder. For instance, the 

adders corresponding to the parity p6, p7, p8 etc. now need 

three inputs instead of five. But some of the others (p2, p3, 

p4, and p5) still need five input. This means the deleting 

does not improve the speed of decoding. The shortened H 

matrix thus obtained is given in Fig.4.15 (a). 

2) Delete the first m (= 5) columns and then columns d5, dlO, dl5 

and d20. 

As a result of the deleting scheme, pi and p5 become 

independent of any data bits, hence can be deleted. Moreover, 

the maximum number of inputs that adders need reduces to 4, 

therefore this scheme also enhances the decoding speed. The 

shortened H matrix thus obtained is shown in Fig.4.15 (b). 

It seems that, when a shortened OLS code is required, by 

proper choice of deleted columns, it is possible to improve the 

decoding speed as well. If 1 < m, the deleting can be done 

randomly. If 1 = m, each deleted column is chosen from each m-bit 

group (columns dO to d4 is the first m-bit group, d5 to d9 the 

second m-bit group etc), we call this per-column-per-m-bit-group. 
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0000 0000 
nil 0000 
0000 1111 
0000 0000 
0000 0000 

0000 0000 
1000 1000 
0100 0100 
0010 0010 
0001 0001 

0001 0010 
0000 0001 
1000 0000 
0100 1000 
0010 0100 
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1000 0001 
0100 0000 

0100 0001 
0010 0000 
0001 1000 
0000 0100 
1000 0010 
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0010 0001 
0001 0000 
0000 1000 

■dig ,.d25 

0000 0000 
0000 0000 
0000 0000 
1111 0000 
0000 1111 

0000 0000 
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0100 , 0100 
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0001 0001 
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0000 0001 
1000 0000 
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1000 0001 
0100 0000 
0010 1000 

1000 0010 
0100 0001 
0010 0000 
0001 1000 
0000 0100 

0010 0001 
0001 0000 
0000 1000 
1000 0100 
0100 0010 

(b) H matrix of 

shortened code 

Fig. 4.15 H matrices* of shortened codes 

* onlu information portions are qiven 

1
3

2
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If 1 > m, the first m columns deleted can be any m-bit group, then 

delete other (1 - m) columns on per-column-per-m-bit-group basis. 

4. 5 Erasures 

Another method for coping with multiple errors in RAM memories 

without introducing excessive decoding delays or excessively 

complex hardware is to take advantage of the erasure correcting 

capability of transfer error-control codes‘‘*'^°' ‘’■22] _ Thg 

following is a brief review of erasure correcting scheme. 

An erasure is an error for which the location of the error in 

memory block is known but the magnitude is not. Usually hardware 

defections cause erasures. The task of a decoder is to restore (or 

fill) the erasure position. 

Erasure correction has two major advantages: 

1) A code with minimum Hamming distance d can be used to correct 

up to (d -1) erasures (compare to correct up to (d-l)/2 random 

errors) . 

2) Erasures can be corrected more quickly than random errors. 

The erasure correction procedure is briefly described as 

follows: 

stepl locate the defective positions in memory 

step2 store the syndromes associated with the various 

combinations of erasures 

step3 generate the syndrome of the codeword read from the 

memory 
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step4 compare the generated syndrome and stored syndromes 

Steps if a match is found, the error is then determined 

step6 if no match is found, a new erasure is occurring. Use 

stepl to find the erasure location and add the new 

syndrome to the stored syndrome set for further use. 

The correction is based on a kind of 'look-up-table', hence 

provides a fast decoding speed. 

There are several approach to locate the erasure positions in 

stepl. Following is one of them 

a) write an arbitrary data word d (= d^ dj. . .d^) into a 

location of the memory 

b) read the same location, obtaining a memory word y^ 

c) repeat step a) and b) with data word d', where d' is bitwise 

complement of d, obtaining a memory output word YZ- 

e) the positions of the erasure are I's in the n-bit word 

E = y^e Y2 

Example, let us write a data word d=00010110 into a specific 

memory block. Suppose when the word is read out from the memory, it 

becomes yi-00010111, in which the bit is stuck at 1. To find out 

the erasure position, we rewrite a data word d' (=11101000) into the 

same memory block, where d' is the bitwise complemented of d. When 

the word d' is read out, it becomes Y2= 11101001. By calculating 

E = yi @ y2 =(00010111) © (11101001)=00000001, the erasure position 

is located at 8*^^ position. 
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4.6 Siimmary 

In this chapter four classes of error control methods, namely 

error detection, single error correction, multiple error correction 

and erasure were presented. As has been seen, the error detection 

and correction capability is directly related to the distance of a 

code, and so does the redundancy requirement. A decision of using 

and selecting an error control code depends on several 

considerations as descbribed in 4.1. 

Error detection codes are the simplest codes with respect to 

implementation of encoding and decoding. These codes can be used 

in small memory systems and some applications in which error 

detection is normally sufficient e. g., those with the capability 

of repeated transmission or re-configuration. 

Single error correcting and double error detecting codes are 

widely used in computer memories. This is because most memory 

errors caused by hard failure or soft failures are single bit 

errors. H-V-parity codes discussed in section 4.2 using 

bidirectional parity checking has a simple decoding circuit 

structure, hence suitable for on-chip ECC schemes. There are 

several reports on the implementations of the H-V-parity codes used 

in computer memories 4.25]^ some modified H-V-parity 

codes''*’^®^ . Modified Hamming codes are a type of optimal Hamming 

codes from the practical point of view. With the same coding 

efficiency, the modified Hamming codes provide improvement over 

Hamming codes in speed, cost and reliability. The decoding circuit 

of the codes can also be built in memory chips, such that the 
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memory system can be made more compact, high yield and high 

reliability 

Multiple error correcting codes combined with memory 

maintenance strategies make it possible to delay the replacement of 

defective memory cells thus reduce the system down time. In 

section 4.3, the OLS codes which can correct multiple errors are 

presented. These codes are attractive because of their exceptional 

decoding speed and flexible circuit features. Even though the OLS 

codes require higher redundancy, they are becoming a strong 

candidate for multiple error correcting applications. 
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CHAPTER FIVE UNIDIRECTIONAL ERROR CONTROL CODES 

Most of the codes discussed in the previous chapters are 

effective against random errors. In computer memories there are 

other types of errors as well. They are asymmetric errors and 

unidirectional errors'^'^^. According to the predominant occurrences 

of the error types computer memories are referred as symmetric, 

asymmetric and unidirectional error memories. 

By random error memories, we mean that the probability of 1 to 

0 errors (1-error) is identical to the probability of 0 to 1 errors 

(0-error). While in symmetric error memories the probability of 

1—errors is significantly greater than that of 0—errors (or vice 

versa), an ideal asymmetric error memory allows only 1-errors (or 

0-errors, but not both) occurring. In the unidirectional error 

memories, both 1—error and 0-error are possible but in any 

particular codeword all the errors are of the same type (1-errors 

or 0-errors). Generally speaking, the asymmetric error memories are 

a subset of the unidirectional error memories. 

In some recently developed LSI/VLSI ROM and RAM memories the 

most likely errors or faults are unidirectional errors. Also the 

number of symmetric errors, which are random errors, are relatively 

limited . In these situations unidirectional error control 

codes may be more effective. 

In this chapter some codes which are used for unidirectional 

error control in computer memories will be discussed. First, in 

section 5.1 unidirectional error detecting codes will be analyzed. 

Following that in section 5.2 t-random error correcting and all 
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unidirectional error detecting codes are discussed. 

5.1 Unidirectional error detecting codes 

Let X and Y be two binary n-tuples, we define N(X, Y) as the 

number of 1 to 0 crossovers from X to Y. N (X, Y) and N(Y,X) can be 

calculated as 

n n 

N(X, Y) Ni Y, X) = (5.1) 
1=0 1=0 

Using these parameters, the Hamming distance of the code can be 

then expressed as 

d(JY, y) = N(,X,Y) + N{Y,X) (5.2) 

A codeword X = ( x^, X2, . . . , x^) is said to cover another 

codeword Y = (y^, yj, . . . , yn) / if for all y^ = 1, where i = l, 2, . . . , 

n, the corresponding values of x^ are x^ = this case we 

say X >= Y. It can be seen that if X >= Y, then N(Y, X) =0. 

Unordered codes 

A binary code C is called an unordered code if there is no 

codeword that covers another codeword, that is, for any pair X and 

Y in C, N(X, Y) >= 1 and N(Y, X) >= 1. For example, let 

X - (1011) Y = (1101) 

Xi= (1011) Yi= (1001) 

Then N(X,Y) = 1 and N(Y,X) = 1, hence X and Y are unordered 
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codewords. On the other hand, N(X]^,Yi) = 1 and N(Yj^,Xi) = 0, 

therefore X^ > Y^ and they are not unordered codewords. The 

Hamming distances of the two codes are d(X,Y) = N(X,Y) + N(Y,X) = 

2 and d{X^,Yi) = N(Xi,Yi) + N(Yi,Xi) = 1, respectively. 

According to [5.3, 5.4], a code C is capable of detecting all 

unidirectional errors (AUED) occurring in a codeword if and if only 

the code is unordered, i.e. 

Vx, Fee, NiX,Y)i: 1 A N{Y,X)^1 

The above theorem can be proved by the following argument. 

Let X be a valid codeword in unordered code C and X^ is an 

erroneous codeword containing any number of unidirectional errors 

(1-errors 0-errors, but not both) from codeword X. It is easy to 

see that for m 1-errors occurring in X, N(X,Xi)= m >= 1 and N(Xi,X) 

= 0 and for m 0-errors occurring in X, N(X,X;^) = 0 and N(Xj^,X) = m 

>= 1. In each case X^ is not a valid codeword in the set of 

unordered codewords, hence can be detected as an erroneous 

codeword. 

In chapter 3 we have stated that a linear code of minimum 

Hamming distance of d^^^ is capable of detecting up to d„,in-l errors 

(random errors). Now we see that an unordered code is capable of 

detecting all unidirectional errors in a codeword. In this sense 

unordered codes are more effective in unidirectional error cases. 

Systematic and nonsystematic unordered codes 

There are two classes of unordered codes, one is systematic 
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and. the other is nonsystematic. Generally, nonsystematic codes 

need fewer check bits and provide a higher code rate, but need 

complicated decoding logic. Systematic codes can be encoded and 

decoded in parallel, but need more check bits. 

As an example of nonsystematic unordered codes, we will 

discuss a balanced code, which is one of optimal m-out-of-n codes. 

Unlike most of other nonsystematic unordered codes, this code has 

a high code rate as well as a simple decoding logic. 

As an example of systematic unordered codes, we will discuss 

Berger codes, which is the fundamental form of systematic unordered 

codes. 

m-out—of—n codes 

As we have discussed in section 4.1 that m-out—of—n codes are 

a class of single random error detecting codes. These codes can 

also be used for all unidirectional error detecting purposes. 

All codewords in the code are of length n and have m I's. For 

any X and Y in the code, if X < > Y, X does not cover Y. Therefore 

the code is unordered and capable of detecting all unidirectional 

errors. 

For given n and m, the number of the codewords can be calculated 

as 

/n! {n-m) ! 
n! (5.3) 

Freiman [5.4] and Leiss have shown that the number |c| is 
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maximized when m = [n/2]. The [n/2]-out-of-n codes are optimal 

codes in terms of maximum number of codewords. Every codeword in 

the code contains equally number of I's and O's. So they are also 

called balanced codes. In the following we will develop an 

approach to constructing a class of efficient balanced codes which 

can be decoded in parallel . 

Construction of efficient balanced codes 

To obtain a balanced codeword, some of the information bits 

need to be modified so that there are equal numbers of I's and O's 

in the resulting word. The resulting word is a balanced 

information word. Meanwhile some check bits (called check word) 

which carry the information about how many message bits has been 

complemented are added to the balanced word. A complete codeword 

is then composed of a balanced information word and balanced check 

word. In the following, we will show that for any message word it 

is always possible to obtain a balanced word and decode them. 

Let X be information word of k bits, W (X) be the weight of X, 

W(j) be the weight of the first j bits of X and X^ be the new word 

obtained from X by complementing the first j bits of X. Therefore 

W(X^) can be expressed as 

W(X^) = Wix)- Wij) 

= vnx) + j - 2W{j) (5.4) 

where 0 =< j =< k. It can be seen that whenever j increases by 

one, the weight of the new word X^ changes by +1 or -1, called 
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random walk' . Suppose W (X) = i, then W (X°) = i and W (X’^) = k - i. 

This means, when complementing the first j bit of X, the weight of 

new word X^ are changed between i and k-i. Hence there exist at 

least one j such that W(X^) = [k/2], that is, for any information 

word, we can always find a j such that by complementing the first 

j bits the information word can be changed to a balanced word. For 

example, 

if X = OHIO 01101 

then X^ = 10001 01101 

and X® = 10001 10011 

There are two j's that make X to be balanced, they are j = 5 and j 

= 9. Only one j is taken in a given code. 

In order to indicate the j, suppose a check word of r bits is 

required. Then the balanced r bits have to be sufficient to 

indicate the maximum possible j which is =< k. Therefore r has to 

satisfy the following relationship. 

( lr/2j) ^ ^ 

In the balanced code any number of unidirectional errors (1- 

errors or 0-errors) that occur in a codeword will affect the 

balance of the codeword, hence all unidirectional errors can be 

easily detected. 

As can be seen, even though the codes are nonsystematic (some 

of the information bits are modified), the parallel decoding can be 

achieved. For example, the values of j's (the number of the bits 
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complemented) can be determined by a table-lookup scheme. The table 

provides all values of j's corresponding to the check words. The 

size of the table is limited up to k. When the value of j has been 

determined the original information word will be recovered using X 

= 

Berger codes 

Another class of commonly used unordered codes are Berger 

codes. The construction of the Berger codes can be described as 

follows. 

Let X = (Xi X2 ... X],^) be an information word, the number of 

O's in X be kg and p(X) be the check word for X, then the codeword 

has the form: 

Xp (X) 

where p (X) is the representation of kg in binary. 

For example, if X = 00010110, then kg = 5 and p(X) = 101. The 

codeword is therefore 00010110 101. 

Here the information words are separated from the 

corresponding bits and no information bits are modified. Therefore 

Berger codes are systematic codes. 

On the other hand, if X and Y are two information words such 

that W(X) > W(Y), then p (Y) > p (X) and N (X, Y) >1. Since it is 

obvious that N(X,Y) > 1, the codeword encoded from X and Y are 

unordered. If W (X) = W(Y) and X < > Y, then they are already 

unordered. Therefore the Berger codes are unordered codes. 

When unidirectional errors occur in a codeword (without loss 
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of generality, only 1-errors are considered) they may affect the 

codeword in three ways. 

1) errors are in the information part X, in which kg will be 

increased and p(X) remains unchanged. 

2) errors are in the check word p(X), in which kg will remain 

the same and p(X) will decrease. 

3) errors are in both of information part X and check word part 

p (X) , in which both kg and p (X) will change, but kg increases 

and p(X) decreases. 

In all the above cases, the consistency between kg and p(X) is 

affected, hence any number of the unidirectional errors occurring 

in a codeword can be detected. 

In the Berger codes. The maximum number of kg in a codeword is 

k. To represent such a kg in binary, the check bits required are 

at least [log(k + 1)], where [x] denotes the smallest integer 

greater than or equal to x. This number has been proven to be 

optimal for systematic unordered codes . 

The decoding of the Berger codes is as simple as separating 

the information word from the check bits. So it is easy to achieve 

a parallel decoding. 

It needs to be emphasized that both m-out-of-n codes and 

Berger codes are the basic forms for constructing unordered codes 

in the unidirectional error control and combinational errors 

control. 

tED-AUED codes 
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Unordered codes can effectively detect all unidirectional 

errors but fail to detect random errors. To prevent some random 

errors from passing undetected , it is necessary to add some 

ability of random error detecting to the unordered code. These 

types of codes are tED-AUED codes that can detect t random errors 

as well as all unidirectional errors. In the following we 

introduce a general technique of constructing the tED-AUED 

codes'^’®' . 

Let k be the number of information bits, t be the required 

random error detecting capability. The construction of the codes 

is divided into two steps. 

Step-1 Select an (n^, k) code with dn,i„ = t+ 1. Then 

encode the k information bit into a (n^, k) codeword of code Ci. 

Step-2 Select an (n, n^) Berger code Cj, where n^ bits are a 

codeword of . Then encode the n^ bits into a codeword of Berger 

code. 

The length of the final code is n = n^ + [log(ni+l) ] . The code 

is capable of detecting t or fewer random errors and all 

unidirectional errors. In the implementation, the two steps 

mentioned above can be interchanged. The parameters shown in Table 

5.1 for a set of tED-AUED codes where t = 2 and t = 3, are derived 

by using distance-3 and distance-4 Hamming codes as C^. 

The applications of this codes can be seen in ROM control 

stores of PDPll/40, IBM 370/168, and Nanodata QMl. The sizes of 

control words in these machines, respectively, are 56, 108, and 360 

bits. 
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5.2 tEC-AUED codes 

By tEC-AUED codes we mean the codes that correct t or fewer 

random errors and detect (t + 1) or more errors if all of the 

errors are unidirectional errors. 

It is given in [8] that for all distinct codeword X and Y in 

code C, if N(X,Y) >= t + 1 and N(Y,X) >= t + 1, then C is capable 

of correcting t or fewer random errors and detecting all 

unidirectional errors. 

This is because of the fact that N(X,Y) >= t + 1 and N(Y,X) >= 

t + 1, the code is unordered, hence is capable of detecting all 

unidirectional errors. On the other hand, the Hamming distance 

d(X,Y) is calculated as d(X,Y) = N(X,Y) + N(Y,X) >= 2t + 2, hence 

is capable of correcting t or fewer random errors. 

As can be seen, all the m-out—of-n codewords with minimum 

Hamming distance (2t + 2) is a tEC-AUED code . For example a 

SEC-AUED code can be constructed by selecting the subset of all its 

codewords of m weight with d=4. This is a nonsystematic code. 

However, there is no known efficient decoding scheme for it. 

In the following we first discuss a general technique for 

constructing tEC-AUED codes, then introduce some other construction 

methods of tEC-AUED codes. Among them, SEC-AUED codes (t = 1) are 

the most interesting ones for computer memories. 

General technique for constructing tEC-AUED codes 

The following technique is based on the concept of the product 

of two codes. This concept was also previously discussed in H-V- 
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parity codes in section 4.2. 

Let k be the number of the information bits and not a prime 

number. Then it can be represented as k = k^ x k2 for some k^ and k2 

and be rearranged to a matrix form of k^ x k2. The code construction 

is then divided into two steps. 

Step-1 Encode k^ rows using an (n^, kj) linear error 

correcting code Cl. This Cl code must have d„,in >= t + 1. The 

resulting matrix will have a size of k^ x n2. 

Step-2 Encode the nj columns into Berger codewords, The final 

matrix will be an n^ x nj matrix where n^ = k^ + [log(ki + 1) ] . 

The bits in the n^ x n2 matrix represent the codeword while the 

bits in ki x k2 are information bits. This is a systematic code. 

An illustration of constructing a SEC-AUED code using above steps 

are shown in the following example. 

Example: Let k = 6, be arranged into a 3 x 2 matrix as given 

in Fig 5.1 (a) . Since the single-bit parity code has a minimum 

Hamming distance of 2, it is used as row code. The matrix of this 

row code is shown in Fig 5.1 (b). The columns of Fig 5.1 (b) are 

encoded to Berger codewords. The final matrix is shown in Fig 5.1 

(c) . 

The algorithm for decoding for SEC-AUED is as follows, 

a) Check the top k^^ rows. Let the number of rows found in errors 

be e^. 

b) Check all of n2 columns. Let the number of columns found in 

errors be e2. 

c) If = e2 = 0, no errors are assumed. 
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(a) Information bits (b) Row code matrix 
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0 1 I 0 
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I 

(c) The final codeword matrix 

Fig.5.1 Encoding of a SEC-AUED code 
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d) If = 02 = 1, there is a single bit error in the 

information block located at the intersection of the row and 

the column where errors were found. This error bit is then 

corrected. 

e) If e^ and ej are not the value mentioned in c) or d) , then 

multiple errors are detected. 

Some specific tEC-AUED codes 

Bose-Pradhan (BP) codes 

The codes are systematic codes. The codewords typically have 

the following form: 

X Bi B2. . . B^+i 

Here X represents the encoding of the given information bits 

into a codeword in a systematic code C* where C* has a minimum 

Hamming distance of (2t + 2) . B^ Bj . . . B^+i are Berger type 

checkbits defined as follows. 

The decimal value of B^ is equal to the number of O's in X and 

Bj is equal to the number of 0's in (X Bj^...Bj_i) for j = 2, 3, ..., 

t + 1. 

Suppose X = 000 110 100 101 010 is a codeword in C* with d„jin>= 

2t+2 = 6. The checkbits are computed as bellow 

X = 000 110 100 101 010 there are nine O's in X, 

Bi= 1001 there are eleven O's in (X B^) 

B2= 1011 there are twelve O's in (X B^ B2) 

63= 1100 
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Then the entire codeword is expressed as 

QOOIIOIQOIOIOIO 1001 1011 1100 
X B2 B3 

The well-known Berger codes can be considered as a special 

case (t = 1) of these codes. The number of the check bits is 

(tlogj n) where n is the length of codeword of C*. It can be seen 

that the coding rate of this type of codes is much higher than 

those constructed by general technique discussed above. 

The decoding algorithm of the BP codes can be described as 

follows. 

Let R = X B;^B2 . . be an error free codeword that is to be 

stored in memory and R'= X'B'^. . . B'be a codeword read from the 

memory which is corrupted by random errors and unidirectional 

errors. 

1) Compute Bj" (= The number of O's in X') and Bj" (= the number 

of O's in (X' B/. . . B') , and then compute the syndromes 

Sj- I BP' - B/ I 

where IZ| denote the absolute value of Z 

2) If all of Sj's have values of greater than t, then more than 

t errors are detected but they are uncorrectable. 

3) If at least one of the s^'s has value less than t, then there 

are t or fewer errors in the codeword. 

4) Apply the error correction procedure of code C* to X'. The 

resulting word is now X". 

5) Recompute Bj" to recover the complete codeword R. In some 

applications, recovering X is sufficient, so the step 5) can 
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be omitted. 

NGP codes 

These codes are also systematic codes which have the same 

codeword form as BP codes discussed above, but need fewer 

checkbits, hence provide higher coding rate, the codewords of the 

code have the form 

XBiBj . . B^+]^ 

where X is the systematic parity check codeword of code C* with 

length n and minimum Hamming distance d^ij,>= 2t + 1, and B^ Bj. . .B^+i 

are the binary representations of (B^) (B2) . . . (B^+j) , where (Bj) 's 

are related to the number of O's in X. Let ko be the number of 0' s 

in X, then (Bj) can be generated from the following 

(S.) ^ I-\ (5.6) 
^ 2j-l 

Comparing with BP codes , this codes have higher coding rate. 

Decoding algorithm 

The detection and correction algorithm for the codes is 

described as follows. 

Let R = X Bj. . -Bt+i be the error free codeword which is 

stored in the memory, R'= X' B/ Bj' . . be the codeword read 

from the memory which is corrupted by random errors or 

unidirectional errors. 

1) According to the decoding procedure for the parity check code 

C*, compute the syndrome S of X' . 
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2) According to the rules of generating Bj's described above, 

compute the values of check symbols D2 ...D^+i which 

correspond to X', and set 

Q1 - W(B/ B/ ... B't+i © D2 ...D^+i) 

3) If S = 0 and Q1 = 0, no error has occurred. The received 

codeword R', is assumed to be correct. Otherwise some errors 

have occurred. 

4) Let the syndrome S correspond to q multiplicity error. If q > 

t then the errors are detected but uncorrectable. Other wise 

set Z = k. 

5) Correct X' by using the correction procedure in the parity 

check code C* and obtain X" as the resulting word. 

6) Recompute the values of check symbols D2' ...D'^+i which 

correspond to X" and set 

Q = Z + W{B/ B2' . . . B',^1 © D/ D'2- - -D't,i) . 

7) If Q =< t, the word X"D'iD'2 ■ - - D''t+i is the correct word. 

Otherwise the errors are only detectable. 

Among the above seven steps, steps 1) and 2) are independent, 

hence can be implemented in parallel. 

Examples of SEC-AUED NGP codes and their decoding 

In computer memories SEC-AUED codes are special interest. In 

the following an example of encoding and decoding of a SEC-AUED 

code is described. 
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Let X = 11101000 be a (8,4) SEC modified Hamming code with the 

parity check matrix 

1 1 1 0 1 0 0 O' 

11010100 

10110010 

01110001 

To form a SEC-AUED codeword, we generate and B2 according 

to Eq.(5.6) 

Bi = 0100 82 = 01 

The complete codeword is therefore R = 11101000 0100 01. 

Random error correction: 

Let us assume that random error occurred at position 3 of the 

codeword R, thus the erroneous codeword becomes 

R' = 11^01000 0100 01 

where the underline bit is in error and B'^ = 0100, B'2 = 01- The 

decoding is as follows 

1) According to Eq. (4.10) S = H x"^ = [1011]^ 

2) Regenerate = 0101, D2 = 01 and set 

Q1 = W(B%, B% 0 DI,D2) = 1 

3) Since S < > 0, some errors have occurred. 

4) Since S = (1011) which matches to the third column of the H 

matrix, a single error is assumed at the third bit. Therefore 

set Z = 1. After the correction is done. The resulting word 

is now X" 11101000. 
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5) Recompute the check bits D/= 0100, Dj' = 01 and set 

Q = Z + W ( B/, B2' © D/, D2') = 1 + 0 = 1 

6) Since Q =< t = 1, the corrected codeword is taken as correct. 

That is R" = R = 11101000 0100 01. 

Unidirectional error correction: 

We suppose that there are five 1-errors occurring at position 

1, 3, 5, 10 and 14 of the same codeword R = j^l 1^0^00 0 OJ^OO OJ^ where 

the underline bits are to be in error. Thus the erroneous codeword 

becomes 

X' = 01000000 B'i= 0000 B'2 = 00 

1) Compute S=HX""= [ 1101 I’' 

2) Regenerate =0111, Dj = 10 and set 

Q1 = W (B/ , B2 © Di, D2) = 4 

3) Since S < > 0, errors have occurred. 

4) Since S (= [1101] ) matches to the second column of the H 

matrix, a single error at the second bit is assumed. Therefore 

set Z = 1. After the correction, the resulting word becomes X" 

= 00000000. 

5) Recompute the checkbits D/ = 1000 and D2' = 10 and set 

Q = Z + W (B/, B2' + D/, Dj') =1 + 2 = 3 

6) Since Q = 3 >t = 1, the errors are only detectable. 

Summary 

In this chapter unidirectional errors control codes have been 

5.3 
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discussed. The most important concept for all unidirectional error 

detection is that the codes have to be unordered. There are two 

basic types of unordered codes, nonsystematic and systematic 

unordered codes. An m-out-of-n code is a typical nonsystematic 

unordered code. The optimal m-out-of-n codes are [n/2]-out-of-n 

codes. This is also called balanced codes. We discussed a class 

of efficient balanced codes which can be decoded in an efficient 

way. 

Well-known Berger codes are the most common type of 

systematic unordered codes. Many other codes used for 

unidirectional error control are constructed based on Berger codes 

and the like. 

In section 5.2 some tEC-AUED codes are discussed. The general 

way to generate a tEC-AUED code is to append some Berger type 

checkbits to a tEC systematic parity check code C*. The product 

codes have a simple encoding and decoding concept but need more 

redundancy. The BP code are much better than the product codes in 

term of coding rate. The NGP codes provide even more improvement 

with respect to the redundancy. In recent years many proposals 

regarding methods of constructing and decoding tEC-AUED codes have 

come forward^^'^' . 

Since the decoding complexity and delay tend to increase 

rapidly with the number of errors to be corrected, in practice 

only single or double error correcting codes are used. That is the 

main reason for why we only illustrated the encoding /decoding of 

SEC-AUED codes in the chapter. 
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Finally it is necessary to note that the methods for 

constructing tEC-AUED codes discussed in the section 5.2 can be 

extended to constructing t-EC/d-ED/AUED codes with d > t + 1 by 

selecting a systematic code C* with capacity of t-random error 

correcting and d-random error detecting'^'®'. The codes that can 

correct t random errors and detect d random errors and also detect 

all unidirectional errors (t-EC/d-ED/AUED) are presented. 

However, we also notice that the unidirectional error codes we 

discussed in this chapter have not yet found widespread application 

in computer memories. There are two reasons: The requirement 

of higher redundancy than that of the linear parity codes and the 

incompatibility with parity-check codes which have been used widely 

in computer memories fields for many years. Even though, there is 

significant potential for high performance computers in future with 

the advancement even larger capacity memory technology. 
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CHAPTER SIX CONCLUSION 

In computer memories there exist hard errors and soft errors. 

Hard errors are caused by permanent failures occurred in memory 

during manufacture or service time. Soft errors are 

environmentally induced and not permanent. For example, the 

radiation of alpha particles are known as the most likely source 

of soft errors. 

For hard errors, commonly used scheme to reduce their 

consequences are such as spares of memory cells, periodical 

maintenance of memory devices and replacement for those failed 

memory components. Proper memory organization is also very 

effective to decrease the effects caused by such errors. Per—bit- 

per-chip organization, for example, enables memory to disperse 

several errors into several memory words so that every word could 

be contaminated by only one bit. In this organization the dominant 

error patterns are usually single error patterns. 

For soft errors, since they occur randomly not only in 

positions but also randomly in time, it is very difficult to 

predict them before their happening and is very difficult to 

replace them when they have happened. Therefore some on line or 

real time protection have to be employed. Error control coding 

techniques are very effective for these purposes. In this thesis 

we have discussed several error control codes used in computer 

memories. Some of them are practically implemented in computer 

industry while others have not yet been widely used. For the 

latter we have pointed out their potential uses in future 
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applications. 

Error detecting codes are simple in terms of implementation of 

encoding and decoding. As an example, parity codes, which have one 

bit redundancy attached to message bits, are of ability of 

detecting one bit error or odd number of errors in a codeword. 

Error detecting codes do not correct any errors. Once an error is 

detected there is no way to recover the original codeword. 

Computer memory has to employ other methods to get rid of the error 

word and obtain correct one. A request for repeat transmission of 

the codeword until correct one is received is one of the methods 

which was frequently used in early computers. Error detecting 

codes are usually used in small memory systems. 

To achieve higher reliability of computer memory, error 

correcting ability is required. Hamming codes are among firstly 

selected codes for error correcting and error detecting purposes. 

Hamming codes provide with capability of single bit error 

correcting or double bits error detecting. It has simple encoding 

and decoding logic. When a syndrome of a particular codeword is 

calculated and the syndrome is found out matched to one of the 

columns of the H matrix, the location the error bit is then 

determined. If there is no such a match at all, double errors are 

detected without indicating the locations of the errors. Modified 

Hamming codes have higher decoding speed. This is because the 

decoder of the code is optimized in terms of the levels the XOR 

gates used in decoder. A report shows that combined use of memory 

cell redundancy and modified Hamming code could enhance the 
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reliability and improve the yield of the memory by thousand 

times(see figure 4.12) . As an alternative of single error 

correcting and double error detecting code, in the thesis we have 

introduced a so called H-V-parity code. Due to the simple 

circuit structure of its decoder, it is well suited for on-chip 

error control schemes. The improvement of reliability by using 

this code is reported to be up to 10®. 

For multiple error correcting codes, we found that some codes 

which are usually used in communication systems , such as BCH code, 

are not very convenient for computer memories. This is because the 

decoding of BCH code is performed serially and therefore is 

relatively slow in speed. Modern high speed computers can not 

afford its decoding delay. We have studied a new class of multiple 

error correcting codes, orthogonal latin square codes (OLS). The 

OLS codes are one step decidable codes. The most attractions of 

these codes are their high decoding speed and flexible circuit 

features that allows to add more error correcting capability by 

adding corresponding circuit modules without changing the existing 

circuit structure. This is essential for computer memory to expand 

its error correcting capability. The disadvantage of the OLS 

codes is its high redundancy requirement. However, with the 

development of VLSI technology they are becoming a very strong 

candidate for multiple error correcting applications. 

In some recently developed LSI/VLSI ROM and RAM memories the 

most likely error are of unidirectional characteristics. In this 

special case a class of unidirectional error detecting /correcting 
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codes could be more effective. We have pointed out that an 

unordered code is capable of detecting all unidirectional errors in 

a code word. Well known Berger codes are a class of typical 

systematic unordered codes. Many other unidirectional codes are 

based on Berger codes. Unfortunately, unidirectional codes have not 

been widely used in computer memory systems. One of the reasons 

for this is that the encoding and decoding of unordered codes are 

more complicated than Hamming codes and modified Hamming codes. In 

most cases Hamming codes and modified hamming codes are believed to 

be effective enough. Unidirectional error control codes are 

incompatible with parity codes while the parity codes have already 

been implemented in practice. However, unidirectional codes are 

very interesting and promising in large, high reliable computer 

memory systems. 


