
ERROR CONTROL CODING FOR
SEMICONDUCTOR MEMORIES

A THESIS SUBMITTED TO
LAKEHEAD UNIVERSITY

IN PARTIAL FULFILMENT OF REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

BY
HAO BAOMING @

ProQuest Number; 10611858

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10611858

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work Is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106 - 1346

Biblioth^que Rationale
du Canada 1^1 National Library

of Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1A0N4 K1A0N4

Youf (He Votre r6(6rence

Ouf file Notre r6f6rence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-315-86154-1

Canada

ERROR CONTROL CODING FOR SEMICONDUCTOR MEMORIES

Abstract

All modern computers have memories built from VLSI RAM chips.

Individually, these devices are highly reliable and any single chip

may perform for decades before failing. However, when many of the

chips are combined in a single memory, the time that at least one

of them fails could decrease to mere few hours. The presence of

the failed chips causes errors when binary data are stored in and

read out from the memory. As a consequence the reliability of the

computer memories degrade. These errors are classified into hard

errors and soft errors. These can also be termed as permanent and

temporary errors respectively.

In some situations errors may show up as random errors, in

which both 1-to-O errors and 0-to-l errors occur randomly in a

memory word. In other situations the most likely errors are

unidirectional errors in which 1-to-O errors or 0-to-l errors may

occur but not both of them in one particular memory word.

To achieve a high speed and highly reliable computer, we need

large capacity memory. Unfortunately, with high density of

semiconductor cells in memory, the error rate increases

dramatically. Especially, the VLSI RAMs suffer from soft errors

caused by alpha-particle radiation. Thus the reliability of

computer could become unacceptable without error reducing schemes.

In practice several schemes to reduce the effects of the memory

errors were commonly used. But most of them are valid only for hard

2

errors. As an efficient and economical method, error control

coding can be used to overcome both hard and soft errors.

Therefore it is becoming a widely used scheme in computer industry

today.

In this thesis, we discuss error control coding for

semiconductor memories. The thesis consists of six chapters.

Chapter one is an introduction to error detecting and correcting

coding for computer memories. Firstly, semiconductor memories and

their problems are discussed. Then some schemes for error reduction

in computer memories are given and the advantages of using error

control coding over other schemes are presented.

In chapter two, after a brief review of memory organizations,

memory cells and their physical constructions and principle of

storing data are described. Then we analyze mechanisms of various

errors occurring in semiconductor memories so that, for different

errors different coding schemes could be selected.

Chapter three is devoted to the fundamental coding theory. In

this chapter background on encoding and decoding algorithms are

presented.

In chapter four, random error control codes are discussed.

Among them error detecting codes, single* error correcting/double

error detecting codes and multiple error correcting codes are

analyzed. By using examples, the decoding implementations for

parity codes, Hamming codes, modified Hamming codes and majority

logic codes are demonstrated. Also in this chapter it was shown

that by combining error control coding and other schemes, the

reliability of the memory can be improved by many orders.

For unidirectional errors, we introduced unordered codes in

chapter five. Two types of the unordered codes are discussed. They

are systematic and nonsystematic unordered codes. Both of them are

very powerful for unidirectional error detection. As an example of

optimal nonsystematic unordered code, an efficient balanced code

are analyzed. Then as an example of systematic unordered codes

Berger codes are analyzed. Considering the fact that in practice

random errors still may occur in unidirectional error memories,

some recently developed t-random error correcting/all

unidirectional error detecting codes are introduced. Illustrative

examples are also included to facilitate the explanation.

Chapter six is the conclusions of the thesis.

The whole thesis is oriented to the applications of error

control coding for semiconductor memories. Most of the codes

discussed in the thesis are widely used in practice. Through the

thesis we attempt to provide a review of coding in computer

memories and emphasize the advantage of coding. It is obvious that

with the requirement of higher speed and higher capacity

semiconductor memories, error control coding will play even more

important role in the future.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere

thanks to my supervisor Dr. M. H. Kkan for his encouragement and

support throughout the course of this program.

Thanks to Dr. Hasegawa for his invaluable advice.

Also I want to thank my family for their moral and patient

support and understanding during the years of my study.

ERROR CONTROL CODING FOR SEMICONDUCTOR MEMORIES

Chapter One Introduction

1.1 Computer and Its Memory 1

1.2 Coding for Computer Memories 7

1.3 Summary 12

References 13

Chapter Two Semiconductor Memories

2.1 Memory Cells 17

2.2 Memory Organizations 31

2.3 Errors in Semiconductor Memories 41

2.4 Summary 48

References 49

Chapter Three Linear codes

3.1 Basic Concepts of Linear Codes 51

3.2 Hamming Codes 63

3.3 Cyclic Codes and BCH Codes 67

3.4 Summary 76

References 79

Chapter Four Codes Used in Computer Memory

4.1 Criteria for Code Selection 80

4.2 Error Detection Codes 83

4.3 SEC-DED Codes 96

4.4 Multiple Error Correction Codes 118

4.5 Erasures 133

4.6 Summary 134

References 137

Chapter Five Unidirectional Error Correction Codes

5.1 Unidirectional Error Detecting Codes 142

5.2 tEC-AUED Codes 150

5.3 Summary 158

References 161

Chapter Six Conclusions 163

CHAPTER ONE INTRODUCTIONS

Development in computer and its application has progressed

rapidly during the last decades. Computer of today are much better

in their performance and cheaper in cost. These have been achieved

through dramatic improvement in hardware manufacturing as well as

development of sophisticated software.

Reliability of the computers has also become a major issue as

its applications become widespread. These criteria among other

things require efficient and error free digital transmission and

storage systems in computers. Computer memories, as one of the

main subsystems of computer are playing a significant role towards

computer's reliability and performance. As the memory system

becomes larger, failures, including hardware and software failures,

influence the behaviours of computer more seriously than ever.

1.1 Computer and Its Memory

A block diagram of a digital computer is shown in Fig. 1.1.

In this diagram there are four basic units, the input unit, central

processing unit (CPU), main memory and output unit.

The input unit enables operator to feed in the information

data and instructions to the computer. The output unit allows the

results of computing to be sent outside . Both input and output

unit are equipments that interface with outside. CPU, which

consists of control unit and arithmetic unit, is the heart of

Fig.1.1 A bock diagram of a digital compute

2

3

computer. CPU controls flows of data and instructions between

different parts of computer and processes these data such that

computer can accomplish various functions. Because the rate of data

transfer of the input unit is generally slow compared to the

processing speed of CPU. It is necessary to hold the data and

instructions in a place for immediate use which allows fast access

to the stored data. This storage place is called main memory.

During operations, CPU directs the input information data to

memory and reads them out as needed and applies arithmetic

operations such as addition, subtraction, multiplication and

division to the information data, and then, after being processed,

the immediate results or final results are returned to the memory

by CPU for preparation for output.

It can be seen that large amount of data communications

between subsystems takes place in computer. Among these

communications, the data traffic between CPU and main memory is of

the highest rate. For example, for a high speed computer it may be

of the order of 100 million bits every second'^'^^. A large computer

memory stores more data and allows data communication between

memory and CPU to be faster. Therefore a large main memory is

essential for high speed computer systems.

High density memories and their problems

As a result of the greater need for storage capacity and

speed, computer memories are becoming high density and high speed.

This increased memory density has generally been achieved through

4

a reduction of storage cell size. Nowadays the memory chips

containing IM-bit are quite common. Table 1.1 gives a view of

the progress of densities of semiconductor DRAMs (Dynamic RAM,

which is one type of the semiconductor memories. In chapter two

various other semiconductor memories will be discussed). It shows

that DRAM size is being quadrupled in about every two to four

years in the past 20 years.

However, extremely small cell size and complexity of VLSI

circuitry are more vulnerable to manufacturing failures and various

interferences, especially alpha-particle radiation etc. This has

largely increased the probability of failures in semiconductor

memories. This in turn has increased error rates in computer

systems and obstructed the progress of even higher density and

higher speed memories.

The errors in semiconductor memories can be basically divided

into two types: hard errors and soft errors. A hard error occurs

when a memory location of hardware becomes permanently defective.

It is an irreversible error caused by connection failures like

internally shorted or open leads. Soft errors are temporary and

random in time and locations. They may occur during one particular

memory cycle time but disappear in the next cycle. The soft errors

result from system noise, power surges, atmospheric interference

and alpha-particle radiation^’--^^ .

Table 1.1 Storage geometry parameters in RAM

memory size

(bits)

storage area

(cm^)

cell area

year

4K

16K

64K

256K

IM

4M

16M

64M

0.07

0.1

0.15

0.3

0.2

0.3

0.3

0.6

1764

800

216

96

20

9

1.5

0.7

1973

1976

1978

1982

1984

1986

1987

6

Some schemes for increasing the reliability of memory system

It is important that the memory system enables to detect and

correct errors as and when they occur. Otherwise the errors will

lead to incorrect computation or even serious malfunction of the

system operations.

There have been several approaches to reduce or overcome the

consequences of errors in computer memories. Some of them are

discussed as follows:

a) Memory Organizations Scheme'^'^'

For some hard errors, proper memory organizations can be used

to limit the number of errors within a memory word or to

disperse errors into single error per word so that simple

error correcting scheme is used effectively. For example,

one-bit-per-chip organization is one of such designs. In this

organization every bit of a word is stored in a different

memory chip. A word of n bits then is stored in n chips in

the memory. As a result, when a whole chip in the memory

fails, it can affect, at most, only one bit of the word.

b) Hardware Redundancy Scheme

In this scheme, some amount of spare hardware components or

memory cells are provided in memory chips during its

fabrication. Whenever a memory cell is found permanently

defective, the spare cell is automatically switched in to

replace the defective ones. This scheme greatly increases the

system reliability but causes a low efficiency in storage

area usage.

c) Hardware Maintenance Strategy

In a system environment, another option for memory reliability

is the system maintenance strategy. This strategy allows

memory to accumulate certain correctable failures in memory

until they reach a threshold which is intolerable to the

computer memory. Then the faulty memory chips are physically

replaced. Such a substitution strategy is scheduled

periodically during service time of computer.

d) Error Control Coding (ECC) Scheme'^'^'

All methods mentioned above are valid only for hard errors.

By adding some redundancy bits to information data, the

scheme of ECC enables to combat both hard and soft errors

occurring in memory words. By using the encoding and decoding

logic, the ECC scheme enable to detect and even to correct

errors as they occurred.

Because of its high efficiency, ECC along with some other

techniques mentioned above produces a versatile and robust scheme

to improve the reliability of semiconductor memories. Therefore

they are becoming quite common features in modern high performance

computer systems.

1.2 Coding for computer memories

As an example, a simple illustration is shown in Figure 1.2 to

explain the concept of memory with ECC technique.

Let us assume that the possible information data from input

1001 1001101 0001101 1001

Fig.1.2 Simple illustration of a memory system
with EDC scheme

8

9

(to be stored in the memory) are 1001. Instead of being stored in

memory directly, the data is firstly sent to the encoder where,

according to certain coding rules, some redundancy digits 101 are

formed and added to the information data 1001. This process is

called encoding and the new data which contain information digits

and redundancy digits are called encoded word or codeword while

the redundancy digits 101 are usually called parity check bits or

check bits. Then the encoded data are sent to memory and stored

there as 1001101.

Due to some faults in the memory, the codeword may be

corrupted to an erroneous word. For example, suppose at the first

position of the codeword, 1 is changed to 0 such that the actual

codeword stored in the memory becomes 0001101 which differs from

the original codeword.

However, when the codeword is read out from the memory, the

decoder will make it sure that the information portion of the

codeword is 0001. Following the same rule as in the encoder, the

decoder will regenerate new check bits, say 100, and compare them

with the old check bits 101. If there is no differences between

them, the codeword from the memory is accepted as correct.

Otherwise error(s) is detected. By comparing the differences, the

decoder will also be able to locate the position of the error and

then correct it. As a result, after decoder, the original

information data 1001 is recovered and sent to its destination.

By proper design, ECC coding enables to detect and correct

either single error or multiple errors in a codeword

10

Generally, most coding schemes do not require very complicated

computations and implementations. Therefore it has found wide use

in computer memories to improve the performance and reliability.

In early computers, for example, the IBM/650, UNIVAC and the

Whirlwind computers, the simplest ECC schemes, single error

detecting codes were used to enhance memory system reliability.

These codes added a single parity bit to the information data bits

for error detection only. Today many different ECC codes are

implemented in computer industry worldwide. The most common codes

are Hamming codes, modified Hamming codes'^'^^^ and unidirectional

error correcting codes'’“^^' . Some VLSI chips which support

modified Hamming codes are commercially available (e.g.

SN54/74LS630) . These chips are used externally to the memory

while designing computer systems. In other ECC systems error

correcting codes are implemented on memory chips .

Use of ECC enables modern semiconductor memory to maintain the

advantage of low cost, low power, high density and high speed while

still achieving acceptable level of memory reliability. Figure 1.3

[1.18] provides a comparison between memories with ECC and without

ECC with respect to the operating hours under certain error

probability. In the figure. Pie represents the error probability

for the memory without ECC and Pje for the memory with ECC. As can

be seen, a 32-bit, 64k word memory without ECC Pie will reach 50%

in 350 hours of operation. While for the memory with ECC, which

can correct any single error within the 32-bit word, at the same

error probability the operating time is extended up to 4500 hours.

P
ro

b
ab

ili
ty

of
 E

rr
or

s

Operating Time in Hours

Pie ; The probability of errors of the memory without ECC

Pze : The probability of errors of the memory with ECC

Note: Only memory failures are considered here.

Fig. 1.3 Probability of errors for 32-bit, 64K word memoryP®!

1 1

12

1.3 Siimmary

Main memory systems are of significance for computer's

performance and reliability. Due to its fast development of VLSI

and computer applications, semiconductor memories are becoming

larger (in capacity) and faster. Meanwhile the extremely high

density memory products suffer from various errors including hard

errors and soft errors. To minimize the consequence of these

errors, several schemes are practically implemented in main memory

systems.

Among those schemes mentioned above, ECC is one of the most

effective techniques. ECC is the art of adding redundancy

effectively so that most messages, if corrupted, can be detected or

recovered correctly. Combined with some other schemes, ECC coding

has shown dramatic improvements in computer memory reliability.

Throughout the chapters of this thesis, based on

considerations mentioned above, several ECC codes for computer

memories are discussed. The main attention will be concentrated on

semiconductor main memories. In the following, when memories are

mentioned, they refer to semiconductor main memories.

13

References

1.1 T. R. N. Rao, E. Fujiwara, "Error-control Coding for Computer

Systems" Prentice-Hall Inc., 1989

1.2 Pinaki Mazumder, Janak K. Patel, "Parallel Testing for

Pattern-Sensitive Faults in Semiconductor Random-Access

Memories" IEEE Transactions on Computers, No. 3, March

1989 pp 394

1.3 Suneel Rajpal, John. Mick, "Fast Error-correcting ICs Aid

Large Memory System" Electronic Design, Feb. 1987, pp 123-126

1.4 Richard E. Matick "Computer Storage & Technology" A Wiley &

Sons 1977

1.5 S. Middelhock, P. Gorge, P. Deker, "Physics of Computer

Memory Devices" Academic Press, 1976

1.6 Chitoor V. Srinivsan, "Code for Error Correction in High-

speed Memory Systems—Part I: Correction of Cell Defects in

Integrated Memories" IEEE Transaction on Computers, vol. c-

20, No. 8, Aug. 1971, pp 882-888

1.7 Ramachanda P. Kunda, Bharat Deep Rathi, "Improving Memory

Subsystem Availability Using BIST" IEEE International

14

Conference on Computer Aided Design, ICCAD-87, Digest of

Technical Papers, 1987, pp 340-343

1.8 D. C. Bossen, M. Y. Hsiao, ”A System Solution to the Memory

Soft Error Problem" IBM Journal of Research and Development,

vol. 24, No. 3, May 1980, pp 390-397

1.9 Chen, C.L, Hsiao, M.Y "Error-correcting Code for

Semiconductor Memories Application: a State-of-the-art Review"

IBM J. Res. Develop., vol. 28, No. 2, Mar. 1984, pp 124-134

1.10 W. Wesley Peterson, E. J. Welson, JR. Error Correcting Codes

MIT press 1986

1.11 Bary W. Johnson, "Design and Analysis of Fault Tolerant

Digital System" Addison Wesley, 1989

1.12 M. Y. Hsiao, "A Class of Optimal Minimum Odd-weight-column

SEC-DED Codes" IBM J. Res. and Develop, 14, (July 1970) pp

395-401

1.13 Serban D. Constantin, T. R. N. Rao, "On the Theory of

Asymmetric Error Correcting Codes" Information and Control

40, 20-36 (1979) pp 20-35

1.14 Bella Bose, Thammavaram R. N. Rao, "Theory of Unidirectional

Error correcting/detecting Codes" IEEE Transactions on

15

Computers, vol. c-31. No. 6, June 1982, pp 521-530

1.15 Dhiraj K. Pradhan, ”A New Class of Error-correcting

/detectincf Codes for Fault-tolerant Computer Applications”

IEEE Transactions on Computers, vol. c-29. No. 6, June 1980,

pp 471-481

1.16 Dale Hunt, Thomas J. Tyson, "Error Detection and Correction

Using SN54/74LS630 or SN54/74LS631*' Microprocessors and

Microsystems, vol. 13, No. 7, Sept. 1989, pp 473-480

1.17 Howard L. Kalter, "A 50-ns 16-Mb DRAM with a 10-ns Data Rate

and On-Chip ECC" IEEE Journal of Solid-State Circuits, No. 5,

Oct. 1990, pp 1118-1127

1.18 Len Levine, Ware Meyers, "Semiconductor Memory Reliability

with Error Detecting and Correcting Codes", Computers,

October 1976, pp 43-49

16

CHAPTER TWO SEMICONDUCTOR MEMORIES

In computer systems there are two types of memories. Main

memory and secondary storage. By main memory it refers to the

memory that is built-in along with the computer CPU. Main memory

offers very fast access speed so that computer can take the

advantage of the high processing speed of CPU.

In modern computers, semiconductor devices are widely used as

main memories. Implementation of VLSI (Very Large Scale

Integration) technology has allowed many fold increase in the

memory capacity within a compact size.

Main memory can be classified as Read-Only-Memory (ROM) and

Random-Access-Memory (RAM) . RAM memories allow the user (or CPU)

to read data or instructions into it, read them out and also allow

to change the data stored in the memory on demand. While ROM

memory only allows CPU to read and use the information it has

stored but not change them.

When enormous quantities of data are to be stored, a secondary

storage is required. Secondary storage is external storage

equipment, which provide very large storage capacity but needs more

access time. Secondary storages store data relatively longer or

even permanently. When needed, the data stored in the secondary

storage have to be transferred to the main memory so that CPU can

access them directly. Commonly used secondary storage devices are

usually made of tapes, floppy disks and magnetic drums.

For both memories, the trends are towards extremely high

17

capacity and speed.

The basic unit of the memory which can store and retrieve a

binary bit, 0' or 1', is called storage cell. Modern semiconductor

techniques make it possible that hundred of thousands storage cells

are integrated in a tiny silicon chip. Many such chips are

organized together to form a whole computer memory. One of the

main advantage of semiconductor memory is its high density and low

cost.

It is beyond the scope of this thesis to describe either

physics or fabrications of semiconductor memory and its cells.

However, in order to have a better understanding of error control

coding for semiconductor memories, in this chapter, we provide a

brief review of semiconductor memories in principle. At First, in

section 2.1, semiconductor storage cells are discussed. The

discussion includes ROM memory cells, RAM memory cells and DRAM

cells. Then in section 2.2, three types of organizations for

computer memories are presented. All practioal memories are

organized in these forms with some small variations. In section

2.3, the mechanisms of semiconductor memory errors are analyzed.

Different types of errors are also classified in this section so

that for different type of errors the corresponding error control

codes can be selected and employed.

2.1 Memory Cells

a) Read only memory cells

In a computer, many operations are carried out more than once

18

without changing the content. This fact makes fixed memory or so

called read only memory (ROM) very useful. ROM are constantly used

in computer for character generation, bootstrap programs and look-

up tables etc’^'^’.

A ROM consists of a matrix of addressable cells. Several

types of ROM cells are implemented in practice,

i) ROM diode cell‘^~^^

Fig.2.1 shows a diode memory array. The information bits 1'

and 0' stored in cells are represented by the presence or absence

of diode between x and y lines (the x and y lines are also called

word line and bit line) . The reading operation is very simple.

When a 1' information stored in a cell (in which the diode is

connected to x and y lines) is to be read out, a constant current

is applied to the x line connected to the cell while the associated

y line holds a low voltage so that the diode conducts and the

corresponding output provides a low current. Otherwise if a 0' is

stored in the cell, where the diode is absent, the constant current

from X line will flow through the output directly. Therefore the

information 1' and 0' is distinguished by a low current and a

constant current in the output. In this example suppose the first

X line WQ and all four y lines are selected, then a word 1100 is

read out.

It can be seen that to address a particular cell, the

associated x and y selection lines have to be coincident.

X
ad

dr
es

s

Wo

Wl

V2

!• 4 M

!-►—.

V3

Y address

Fig. 2.1 ROM Diode Cells

19

X
lin

es

sense lines ^0 ^1 ^2

Fig. 2.2 BIpolarROii Memory Cells

20

21

ii) ROM bipolar transistor

Bipolar transistor can be used in ROM in very nearly the same

way as in diode memory. A typical circuit of a bipolar cell is

shown in Fig. 2.2. Two types of cells for 1' and 0' can be

distinguished . In the 1' cell, the emitter of the transistor is

connected to y line while in 0' cell the emitter of the transistor

is disconnected from y line. Suppose the x-line in the figure

is driven high. This would turn on all transistors connected to

it. Current would then flow through the transistors, through their

emitter resistors and through the resistors at the bottom of the

sense lines. A voltage drops across the sense line resistor

indicates a binary information 1', such as Q7 in the figure. While

in the 0' cells (i.e., Q5, Qg, and Qg) , since there is no such a

emitter current at all, there would be no voltage changed at the

corresponding sense line, hence the 0' is sensed. A word 0010 is

then read out.

iii) MOS ROM cell^^'^^

MOS (Metal-Oxide-Semiconductor) technology is ideal for ROM

due to its high density. A typical MOS ROM cell is shown in Fig.

2.3. The 1' and 0' cells are distinguished by connecting or

disconnecting the gate of FET to the word line. For example when

a positive pulse is applied on line Wg, current will flow up

through (and Q3) and FET load to line. The voltage across

the load drops the YQ and Y2- As a result, a 0' is read out. Since

Q2 (and Q4) is inactive, there is no voltage drop on y^ (and y3> ,

it will stay high , indicating a 1' being read out. Thus a word

w
or

d
lin

es

sense lines

Fig. 2.3 MOS ROM Memory Cell

22

23

0101 is sensed.

b) Random access memory cells

Random Access Memory (RAM) allows not only to read out the

content it stores but also to change (write) the content of the

memory on demand,

i) Bipolar memory cell

Fig.2.4 illustrates the circuitry of a TTL (Transistor-

Transistor-logic) memory cell. and Q2 form a bistable flip-flop.

The X and y lines are for selection or address of cells. The

bit/sense line pair are for writing and reading, respectively.

Write and read operations are described as follows.

Store a 0' To store a 0' in a cell, the corresponding x and y

lines are driven high to address the cell. Then the write

circuit place a low condition on of . This turns on

and Q2 off regardless the previous state of the flip-flop.

When the write pulse is gone, the flip-flop remains the state

(Qi on and Q2 off) unchanged. With the x and y lines back to

normal (ground) , the emitters E2 and E3 on provide a path

for emitter current. The current flowing in is now from E2

and E3 to ground rather than from E^. Once the digit 0' is

stored, it is locked in the cell. The memory state can only

be changed by grounding the write sense line on the off

transistor. This change can only be made when the select

lines are high.

Store a 1' If a 1’ is to be stored, the x and y select lines

Fig. 2.4 Bipolar RAN Memory Cell

24

25

for the cell are driven high. The write circuit shorts on

Q2 to ground. The forward bias suddenly turns Qj on and the

flip-flop action turns off (regardless the previous state

of the flip-flop). Then the state (Qj off and Q2 on) is kept

until a next write operation comes.

Sense To read the content of the memory we simply drive the x

and y lines high. If is on and Q2 off which means a 0' is

stored in the cell, will conduct through the resistor of

sense amplifier. There will be no Q2 current flowing in the

sense amplifier connected to Ei on Q2, therefore there is no

output from the 1' sense amplifier. If the content of the

cell is 1', then only 1' sense amplifier has output and 0'

sense amplifier keeps unchanged,

ii) MOSFET memory cell

A basic MOS RAM memory cell is shown in Fig. 2.5. and Q2

constitute the bistable flip-flop. The drain load resistor is

found by series MOSFETs. Many variations to the basic circuit are

possible, but the principle of the operations are similar. The

operations of writing and reading are described as follows.

Write the memory To enter a digit into the memory cell, x and y

address lines have to be applied fV^d- If a 0' is to be

stored, the 0' bit line is placed to ground while the 1 bit

line is held high. As a result, will be turn on and Q2 off.

If a 1' is to be stored, the 1' bit line goes to ground and 0'

bit line holds high so that Qj is off and Q2 on.

Read the memory To read the condition of the cell, the x and y

Fig. 2.5 MOS ROM Memory Cell

26

27

address lines are switched from ground to +VDD- This high

voltage will turn on Q3, Q4, Q5 and Qg. These transistors act

now as closed switches such that the bit lines are both at

+VQD. However only the line connected to the 'on' flip-flop

will conduct. Suppose is on and Q2 off. In this case,

current can flow from ground up through Q^, Q3, Q5 to 0' bit

line. The current in this line is then sensed and amplified.

The output is recognized as a 0' in the memory. Meanwhile for

the 1' bit line, there is no current at all as Q2 is off.

c) Dynamic RAM memory

The RAM memory cells discussed above are all static memory

cells. That is, the state or condition of the cell would remain

unchanged until another write operation applies on the cell. To

hold two stable states for storing information '1 and O', the

static RAM cell needs at least 2 transistors or MOSFETs. In the

following we introduce a kind of dynamic memory cells. It contains

only one transistor hence a higher density fabrication can be

achieved.

A simple scheme of the single transistor cell is shown in Fig.

2.6 (a) . The capacitor Cg is the storage capacitance and the

MOSFET transistor acts as a switch. The capacitor C3 can be made

in the same technology with that of the transistor. The cell

structure in integrated technology is shown in Fig. 2.6 (b). In

both circuits bit line and sense line share a same line called

word line

bit/sense
line

1

(a) Single Transistor DRAM Cell
in Separated Devices

word line

(b) Integrated Structure

Fig. 2. 6 Single-Transistor DRAM Cell

28

bit/sense
line

_r

(a) Write a O' in the cell (b) read the cell

bit/sense
line

bit/sense
line

(c) Write a fin the cell (d) read the cell

Fig. 2.7 Read and Write Operations

29

30

bit/sense line. The electrode C is always applied at a voltage +VQ.

The information will be stored in the capacitor by presence and

absence of negative charges in the capacitor. The read and write

operations are described as follows.

Write and read a 0' When a 0' is to be written the cell, the

word line is pulsed high and the bit/sense line connected to

ground as shown in Fig. 2.7 (a). The dc voltage VQ charges

the capacitor with current i„rite ■ -A-S a result, the capacitor

is charged with negative charges which represents a 0' being

stored in the cell. When read the cell, the word line is

pulsed high and the sense/bit line is connected to a voltage

of Vg through the sense amplifier impedance Zj.. The equivalent

circuit is shown in Fig. 2.7 (b) . The current iread will

create a small signal across Z^, thus the 0' is sensed. We can

see that the current i^ead will discharge the 0' information

stored in during the reading operation. Therefore the

system has to be able to rewrite the information repeatedly or

refresh the cell periodically.

Write and read a 1' When write a 1', the word line is pulsed

high and bit/sense line is connected to +Vg as shown in Fig.

2.7 (c). Since there is no current flowing in the capacitor

circuit, there would be no charges being stored in the

capacitor. This indicates that a 1' has been stored in the

cell. When read the cell, the word line is driven high and the

sense/bit line is connected to Vg through the sense amplifier

impedance Z^. The equivalent circuit is shown in Fig. 2.7 (d) .

31

Since there is no current flowing in the circuit, there would

be no voltage across the Z^.. Thus the information 1' is

sensed.

2.2 Memory Organizations

There are three basic classes of memory organizations. They

are the two, three, and two and half dimensional organizations

(represented by 2D, 3D and 2-1/2D). The 2D and 3D types require a

basic storage cell with two and three functional terminals,

respectively. The 2-1/2D can use either types of cells. In

practice, there would be some variations to these basic

organization forms but the principle is the same. In some

applications several schemes are combined to meet different needs.

In the following we only discuss the three basic organizations

which are useful for our purpose.

1 2D—memory organization

The simplest practical memory is organized as 2D memory.

Fig.2.8 shows a block diagram of the scheme. All the memory cells

are arranged in the form of a matrix. The cells in the same row

are connected to a so-called word line. The cells in the same

column are connected to a bit line. Any cell can be accessed

randomly by the coincidence of a word line and a bit line. In the

read and write operations, when a word line is selected, all cells

associated with the word line will be available to be accessed.

Actually, all these bit lines are accessed simultaneously.

w
o

rd

lin
es

bit/sense lines

Fig. 2.8 2D Organized Memory

32

33

To write a word which consists of several bits in the memory,

a word address is firstly required from the CPU. According to the

address, a appropriate word line is energized. At the same time,

the content of the word which comes from the data register arrives

at bit lines. This causes the memory cell to be set to 1' state. If

a bit line signal is absent, the cell then remains in the 0' state.

To read a word from the memory, the desired word line is addressed

and the content of each cell connected to the word line will appear

on the corresponding bit line. Then through the sense amplifiers,

all the bits of the word are sensed simultaneously.

2 3D-memory organization

There are two basic types of 3D storage. The series and

parallel connections for the selection line. In semiconductor

memories parallel version is more favourable. We only consider

parallel 3D storage. Fig.2.9 is a illustration of 3D parallel

organization. The x and y selection lines are connected in

parallel between planes, the bit lines are connected in series on

a plane. Every plane is of the same structure and contains the

same number of cells.

The basic operations require the use of an x line, a y line

and bit line for writing, and an x line, a y line, and a sense line

for reading. For example, in a flip-flop memory, a coincidence of

the X and y lines, and 1' signal on the 1' bit lines cause a 1' to

be written in a corresponding cells and a coincidence of x and y

X line bit line Y line

Fig. 2.9 3D Organized Memory

34

35

lines, and 0' signal on the 0' bit lines will store O's in the

corresponding memory cell. For reading, energizing the x and y

lines makes all the intersection cells ready to be sensed on the

sense lines. In this scheme it can be seen that when a pair of x

and y line are selected all the cells in the vertical direction are

activated. All these cells each from different plane form a word.

Thus the number of cells in each plane is equal to the number of

the word that the memory contains. The number of the planes is

equal to the number of the bits per word.

3 2-1/2D memory organization

Almost all the main memories today are of 2-1/2D organization.

Both two and three terminal storage cells can be used in 2-1/2D

memory, therefore there are two fundamental forms of 2-1/2D for

each of the cells respectively.

In all main memories the number of word is greatly exceeds the

number of bits per word. This fact causes a difficulty that the

word address circuitry would be very large and therefore need a

long word addressing delay. To overcome the problem, we need to

reduce the number of word lines without reducing the number of

words which the memory contains. That is, one word line would

energize more than one words. Fig. 2.10 (a) and (b) illustrate

the principle of such organized memory matrices using two terminal

storage cells.

Each row of the memory matrix is now divided into four

bit_groups (can be any number of bit-groups in a row in practice).

When a word line is selected, four bit-groups are half activated.

w
o

rd

lin
e
s

bit lines

a □ Q a aaa a aaa a a □ a a
a }: ea aa t a- a aa > o a aa i-o-a- X

a aaa a aaa a O D a aaaa
bit-group

(a) Bit-Organized Memory

bit lines

 Qs_g_g_aaaa aaaa
o c

o
>

aaa a_aaaa_aaaa^aa ID

aaaa_^aaa_aaaa aaaa
aaa a aaa a aaa a aaaa

bit-group
(b) Word-Organized Memory

Fig. 2.10 2-1/2D Organization Using Two Terminal Storage Cells

36

37

In Fig. 2.10 <a) , a word consists of four bits, each bit comes from

different bit-group. This is a Bit-organized 2-1/2D memory-

organization . In Fig. 2.10 (b), a word consists of the bits that

come from a single bit-group. Hence it is a word-organized 2-1/2D

memory organization. Since two terminal cells are used in this

organization, the bit line and sense line are the same line called

bit/sense line.

To write a 1' into the memory, a word line and appropriate bit

line have to be coincident. If there is no signal on the bit line,

the cell remains in the 0' state. To read the memory, there is no

coincidence required. When a word line is selected, the contents of

all cells connected to the word line appear on the corresponding

sense/bit lines (four words are available to be read in Fig. 2.10) .

But only the desired sense lines are switched to the sense

amplifiers.

For three terminal cells, there are also two configurations

for the 2-1/2D organization. They are bit-organized and word-

organized organizations. The simplified illustrations are shown in

Fig. 2.11 (a) and (b), respectively. Since three terminal cells

are used, the bit lines and sense lines are separated. In the

figures, the connection of sense line are shown (for simplicity,

only two sense lines are illustrated, the other two sense lines can

be connected in a similar way) . The word lines and bit line remain

identical to those for two terminal cells as shown in Fig. 2.10.

The difference between Fig. 2.10 and Fig 2.11 is that in the

latter, the reading operation also requires a coincidence of a word

w
o

rd

lin
e
s

w
o

rd

lin
e

s

bit lines (only selected bit lines are indicated)

a. ia a ae a aa •ai se
a ai^a a aaa_e aaa a aea
a a as a a a:^a.aaa a aee
a a a a o a □ a a a aa ■Q ^ aaa

bit-group

sense lines

(a) Bit-Organized Memory

a aaa aaa a Cp fip [ip

a.eaa a cp cp up -□ aaa a aaa
□- eaa_a aaa aaa a aaa a
a aaa -cpi pcpcpi -cpcp[piip]4piaaa

bit lines

sense lines (only tvo sense lines are indecated)
bit-group

(b) Word-Organized Memory

Fig. 2.11 2-1/2D Organization Using Three Terminal Storage Cells

38

39

line and appropriate bit lines. This is because, for example, in

Fig 2.11 (a), on the first sense line there are as many as 16 cells

available to be read, but only the shadowed one is desired. The

coincidence can be used to specify the desired cell from many cells

associated with the same sense line. LSI (Large Scale Integrated)

semiconductor technology makes it possible to integrate many cells

on a tiny chip so that the memory capacity can be increased

dramatically. In our organizations shown in Fig.2.10 and Fig.2.11,

all bit-groups in vertical direction can be fabricated on a single

chip respectively. Thus the memory showed in Fig.2.11 is made up

four chips with each chip of 16 cells. Modern VLSI can make 64k

cells or more on a single chip. The high density chips not only

significantly increase the capacity of the main memory but also

greatly reduce the joints and connections between cells, therefore

reduce the potential circuitry faulty. On the other hand, the

maintenance of the memory on the level of chips becomes much easier

than that of on the level of individual cells. When chips are used

in the memory discussed above in Fig.2.11 (a) and (b) , they are

usually called bit-per-chip and word-per-chip organization,

respectively. There are also byte-per-chip organized memory in

practice.

An example of chip organized 2-1/2D memory organization

A typical chip organized memory board with IM-byte sold for

VAX computers is shown in Fig. 2.12 (a) Each chip is

organized internally as 256 X 256 square matrix of bits. This 64K

chip has 65536 single-bit locations as shown in Fig. 2.12 (b) . The

□ □□□□□□□□ □□□□□□□ 11 iiii
□ □□□□□□□□ □□□□□□□ 11 llli
□ □□□□□□□□ □□□□□□□mill
□□□□□□□□□ □□□□□□□mill
^ V ' ' V

Information chips panty chips
C 32 chips per rov) (7 chips per row)

(a) IM-byte memory organization

<n

d>
o

vO
in
CM

<

r
256 cells
_A

DDDDDDDDDDDD-
DDODDDDDDDDD-
ODD
□DD
DDD
DDD

□DO
DDD

DDDDDD
DDDDDD

aODDDD
ODDDDD

(b) Structure of chip

Fig. 2.12 IM-Byte Memory

40

41

memory board is organized as 4 x 39 matrix of chips. The first 32

chips in each row are used for storing information bits, and the

remaining 7 chips in the row are for parity check bits (we will

discuss the function of these parity check bits in the next

chapters latter on). Every word consists of 39 bits, each bit is

stored in a different chip in one row. Therefore this is a bit-

per-chip organized memory.

According to the organization, we can simply calculate the

parameters of the memory as follows:

Number of words in the memory (N„) = 256 x 256 x 4 = 256K

words

Number of bits in the memory (Nj,) = N„ x 39 = lOM bits

Number of bytes in the memory (N^) = N^ / 8 = IM bytes

Number of bits per word (word size W^) = 39 bits

It can be seen that in practice the number of words and word

lines are very large. The selection of a word or a cell is

therefore somehow complicated. In memory system the appropriate

selection is done by a so-called address decoder. The concept of

the address decoder was eliminated in the above discussions.

2.3 Errors in Semiconductor Memories

Due to the defective cells, failed connections between

selection lines, bit/sense lines and various interferences, there

exist faults in semiconductor memories. Particularly when memory

cells trend to be extremely small and the chips extremely dense,

the defects increase significantly. As a result, some bit (s), when

42

they are read out from the storage cells, would be different from

those which has been stored. In this case, we say error (s)

occurring in the word. The presence of these errors greatly

decreases the reliability of the computer memory.

There are several types of errors. Some of them are permanent

in position and nature, the others are temporary and random. These

errors are classified as hard and soft errors. On the other hand.

Some errors are symmetric in error directions (the errors can be

either I'-O' and 0'-1'), and others are asymmetric errors (only one

I'-O' or O'-l' is possible, but not both) . In this section we will

briefly discuss the errors and their mechanisms, including hard

errors, soft errors and unidirectional errors.

Hard errors

If the error in any position of a word is permanent in nature,

then it is called a hard error properties of hard

errors is that once it has happened at some locations the output of

this location is permanently stuck at 1' or 0' state regardless of

what was written in. Defective cells, internally failed

connections between selection lines, such as short and open leads,

are most likely sources of the hard errors. Several kinds of hard

failures have been reported'^'^^. A single cell failure , for

example, can occur as a hard error. There are also multiple errors

caused by row failure, column failure, row-column failure and even

a whole chip failure. However by proper memory organizations, the

error patterns can be limited to single errors in every memory

43

word.

Hard errors are random, permanent, and irreversible. They can

occur during the fabrication or latter on in the service time. In

practice some schemes are used to deal with the hard errors in

semiconductor memories. Such as on-line testing and switching to

spares, replacing the defective chips etc. With the improvement of

VLSI technology, the rate of hard errors has been decreased

dramatically.

By the improvement of VLSI techniques and proper memory

organizations, for example, one-bit-per-chip organization, the hard

errors in computer memory appear usually as single errors.

Erasures

A hard error has a fixed position, therefore once it has been

detected, the position is then known in next memory operation

cycles. Thus in the next read operation, we know if the bit is

correct or not. This type of errors is called erasures. With

erasures we define a symbol in a word with known location but with

unknown value'^'®' . Clearly a hard error is random in position while

an erasure's position is known.

Soft errors

If the error is of a transient type, then it is called soft

error. Soft errors are caused by system noise, power surges and

alpha-particles radiation. Compared with hard errors, soft errors

are random, temporary and reversible. In the next memory cycle the

44

faulty bit does not show any greater chance of being in error than

that of other bits in the memory. Therefore the schemes mentioned

above for hard errors are not effective to soft errors.

Experimental evidence indicates that most (more than 90

percent) soft errors seen in devices from several manufactures are

due to alpha-particle radiation from packaging materials. In the

following , we will give a brief discussion about the mechanism of

alpha-particle inducing soft errors in DRAM memories .

In a integrated DRAM storage cell, the presence and absence of

the negative charges in the capacitor represents the 0' and 1'

state respectively (in N-channel the minority carriers are

electrons). If the negative charges stored in the capacitor are

discharged or the no-charged capacitor acquires enough electrons by

rather than an ordinary memory operation, the 0' state might change

to 1' state or vice versa, then the stored bit would be erroneous.

We will see that this is the way that alpha-particles cause errors.

An alpha-particle is emitted by radioactive decay of Uranium

and Thorium which are present in packaging materials. When an

alpha-particle penetrates semiconductor memory devices, it can

create enough electron-hole pairs near a storage node. These

electrons and holes diffuse through the bulk silicon. For those

which reach the edge of storage region (depletion region), the

electrons are swept into depletion region while the holes ohmically

move through the substrate. If the normal state of the capacitor

is in the no charged state (1' state), the depletion region is said

'empty'. In this situation, when an alpha-particle generates

45

enough electrons and holes near the depletion region, the swept

electrons will be collected in the region such that the empty

region is filled with the electrons which represent a 0' state.

Thus an alpha-particle causes an I'-to-O' error. On the other

hand, if the normal state of the capacitor is in the charged state

(O' state) originally, the depletion region is initially full of

electrons. In this situation when some generated electrons are

swept into the depletion region, the 'full' state will not be

changed, hence the cell remains the 0' state without being affected

by the alpha-particle (holes can not been swept into the depletion

region because holes do not move without electron's moving).

Therefore alpha-particles only disturb the 'empty' state of the

capacitor. Figure 2-13 shows graphically the mechanism of the

alpha-particle inducing soft errors.

Further research also shows that alpha-particles have other

properties which is critical to the soft errors as following

a) alpha-particle travels in nearly straight line

b) the scatter in range is small

c) alpha-particle emits at discrete energies

d) alpha-particle emission is nuclear event and is unaffected by

temperature, pressure, etc.

Alpha-particle affects not only DRAM memories but also some

high speed bipolar memories. When an alpha-particle hit the

cell, it induces short transient current between the junctions of

devices and circuit elements. These current flows through the

collector of an N-P-N transistor to the substrate cause a potential

vord line
+ + + +• + + + + + + + + + + + +

XZJ 'sUlJ
(a) ‘O' state is represented by ’full veil’

(b) alpha-particle penertrating

and disturbing the ‘O’ state

word line
+ + + + + + + + + + + + + 4- + + +

CD C3Z7
(a‘) '1 ’ state is represented by 'empty well'

(b‘) alpha-particle penertrating

and disturbing the '1' state

<c) 'full weir is still in'O'state

without being affected by

alpha-particle

(c') ’empty weir is changed to

full by alpha-particle and

'1 ■ state is changed to "O' state

Fig. 2-13 Mechanisms of soft error induced bij alpha-particle

46

47

dip at the collector. If that happens to he the collector of OFF

transistor, it may cause a state changing. As a result, the state

of the flip-flop is changed. Thus an error occurs because of the

alpha-particle.

According to the discussion it can be seen that the

distribution of the soft errors in semiconductor memories show up

as single, random, and temporary errors.

Unidirectional errors

If all errors in a memory are of either I'-to-O', or O'-to-l'

type, but not both, then the errors are called asymmetric errors.

If all errors in a particular word are of either I'-to-O', or 0'-

to-1' type, but not both, then the errors are called unidirectional

errors. The most likely faults in some of the recently developed

LSI/VLSI ROM and RAM memories cause unidirectional errors'^'“' 2-12] _

Such as the faults that affect address decoder, word lines, power

supply, and stuck-fault in a sense bus, etc'^’^^^.

i) Address decoder; Single and multiple faults in address

decoder may result in either no access or multiple access. No

access yields an all-O-word read out from the memory and

multiple access cause the OR of the several word to be read

out. In both cases the resulting errors are unidirectional

errors.

ii) Word line: An open word line may cause all bits in the word

beyond the point of failure to be stuck at 0'. On the other

hand, two word lines shorted together will form an OR function

beyond the point where they shorted.

48

iii) Power supply: A failure in the power supply usually results

in a unidirectional error.

2.4 Siommary

We have discussed semiconductor storage cells. Memory

organizations and mechanisms of various errors. An important

concept is that in modern computers almost all main memories are

made of LSI/VLSI chips. Thousands of cells fabricated on a single

chips makes it possible to form very large capacity memories. Any

cell failure on a chip will cause the chip to be failed. Any type

of chip failure will cause errors. The common type of chip failure

is single-cell failure caused by alpha-particle radiation. However

there are also several other types of chip failures caused by

hardware defects. These failures may cause multiple errors in the

memory as well.

By proper memory organization design, for example, a bit-per-

chip organized memory, it is able to disperse the multiple errors

into different words such that when a chip is in failure, no

matter what kind of failure, it only affects a single bit in a

word. Thus in most cases the single bit error in a word is the

dominating situation (comparing with memories of magnetic tapes and

disks, in which, the usual errors are of random and burst

distribution caused by defects, dust particles and magnetic head

noises etc). Therefore for a semiconductor computer memory system

the single error detecting and correcting ability is of particular

significance.

49

References

2.1 O.R. Lawrence "Computer Technology" McGraw-Hill Ryerson

Limited, 1984

2.2 S. Middelhock, P.K. George, P.D. Dekker "Physics of Memory

Devices" Academic Press Inc. 1976

2.3 Walter A. Triebel, Alfred E. Chu "Handbook of Semiconductor

and Bubble Memories" Prentice-Hall, Inc. , Englewood Cliffs,

NJ 07623, 1982

2.4 Richard E. Matick "Computer Storage & Technology" Wiley-

Inter science Publication John Wiley & sons, 1977

2.5 Mario Blaum, Rodney Goodman, and Robert Mceliece "The

Reliability of Single-Error Protected Computer Memories" IEEE

Transactions on Computer No. 1, Jan. 1988 pp 114-119

2.6 Carl-Erik W. Sundberg "Erasure and Error Decoding for

Semiconductor Memories" IEEE Transactions on Computers

vol.c-27 No.8, August 1978, pp 696-705

2.7 T. R. N. Rao E. Fujiwara "Error-control Coding for Computer

Systems" Prentice-Hall Inc 1989

2.8 Timothy. May "Alpha-particle-induced Soft Error in Dynamic

Memories" IEEE Transaction on Electron Devices, vol. ed-2.

No, 1, Gin. 1979 pp 2-9

50

2.9 Robert J. McEliece " The Reliability of Computer Memory"

Scientific American Vol. 252. No. 1, Gin. 1985, pp 88-92

2.10 Denndy. Tang, Ching-Te Chuang "A Circuit Concept for Reducing

Soft Error in High-speed Memory Cells” IEEE of solid-state

circuits, Vol. 23, No. 1, Feb. 1988, pp 201-203

2.11 Dimitris Nikolo "Theory and Design of t-error Correcting d-

Error Detecting (d>t) and All Unidirectional Error Detecting

Codes" IEEE Transaction on Computers 40, No. 2, Feb 1991, pp

132-141

2.12 Serban D. Constantin and T. R. N. Rao "On the Theory of

Asymmetric Error Correcting Codes" Information and Control 40,

(1979), pp 200-235

2.13 D. K. Prandhan, J. J. Stiffler "Error-correcting and Self-

Checking Circuits" IEEE Computer, March 1980, pp 37-37

51

CHAPTER THREE LINEAR CODES

In this chapter we review the basic concepts of linear codes

and introduce Hamming codes and BCH codes. The detailed

discussions can be found in any text book on the coding theory.

Some of them are listed in the end of the chapter.

3.1 Basic concepts of linear codes

We suppose that a message word which is to be stored in memory

has a form of u = UQUI.-.U^-I- This is a k-tuple. For binary

information (we only consider binary information in this chapter)

the maximum number of message words is 2“^. By adding some

redundant bits to the message word, we convert the k-tuple u to a

n-tuple X (= XQXI. . .x„_i) . This process of converting is called

encoding. The new n-tuple is accordantly called a codeword. The

encoding is performed in a encoder. Every message word can be

uniquely encoded into a codeword. All the codewords form a

codeword set called code C (there are 2"^ codewords in C) . If we

define the n-tuples as a vector space V„, then there are 2"-tuple

vectors in the space. The code C is a subspace of the vector space

V„. This code is also denoted as an (n, k) code.

In a computer memory with coding, the message word u which is

from a CPU data register is firstly encoded into a codeword x, and

then the codeword is stored in the memory locations. Compared to

the original message word of k bits, a codeword uses n bits to

represent the same information. Thus r (= n - k) more bits are

52

used. Therefore a codeword needs more memory space to store the

redundant bits. But we will see that these redundant bits make it

possible to detect and correct errors when they occur in codewords.

This way coding enables to improve the reliability of a memory with

errors. As we have known, when a codeword is read out from memory,

it may be different from what it was stored. Before the original

message word u is recovered from the codeword, it is necessary to

ensure the read codeword is error free. The process of correctly

recovering the message from a read codeword is called decoding.

Use of the redundancy, a decoder first checks if the read codeword

is a valid codeword. If it is, the read codeword is accepted as

correct, and the message word u is then extracted from the

codeword. Otherwise the error (s) is said to be detected. The

decoder can be designed to have ability of detecting, or correcting

error(s) or both. Clearly, we hope using fewer redundant bits to

detect and correct more errors in a codeword. The ratio of R = k/n

is defined as the rate of the code. Redundancy coding is the study

of using redundancy to detect and correct errors effectively.

As an example we consider a memory, in which the probability

of an error occurrence is p = 10“®. We suppose a message word

consists of four bits. In this memory any one or more than one

erroneous bit (s) in a message word will spoil the message word and

result in an erroneous word. Therefore the probability of reading

a word that is in error in the memory is expressed as following

However if a (7, 4) code is applied to the memory, then every

4-bit message word is encoded to a 7-bit codeword. We suppose the

53

4

P-L = ^ (^] p^(l-p>^‘^ =4p+0(p^) - 4xl0‘*

code is capable of correcting a single error occurring in the

codeword. Thus any single bit error will no longer cause a

erroneous word but any two or more than two bit errors do so.

Therefore the probability of obtaining a erroneous codeword from

the memory can be calculated as

Pa = X) (^-) = 21pdO(p^) - 21 X 10“^^

It can be seen that coding uses more bits but provides

significant improvement of reliability.

There are systematic and nonsystematic codes. For a

systematic code C, the first k bits of a codeword are a copy of

message bits and the last r (= n - k) bits are the redundancy

called parity check bits. In computer memories systematic codes

are widely used. This is because these codes have simple

implementations.

Generator matrix of code C

Since a code C is a subspace of V„, it is possible to find k

linearly independent vectors go gi - . ^ such that every

codeword x in C is a combination of these k vectors. This can be

generally expressed as

X = uogo + uigi + ... + Uk_igk_i

- u.G (3.1)

where u = UoUi...Uk_i, and gi's can be arranged as a matrix as

54

following

G =
9i

9oo

9i,o

90, n-l

91, n-l

9k-X,n-1

(3.2)

Eq. <3.1) means that when the matrix of G is given, for any message

word u = UoUi...Uk_i, the corresponding codeword can be uniquely

generated through the rows of the G matrix. Therefore the code C

is the row space of the G matrix. For this reason the matrix G is

called a generator matrix for code C.

A generator matrix G has the properties as following

i) For a (n,k) code the generator Matrix G is a (k x n) matrix.

ii) Every row of the G matrix is a codeword in C

iii) Any k linearly independent codewords in C can be used to form

a G matrix.

iv) Elementary row operations performed on the G gives different

generator matrices which also generate C.

v) One generator matrix may be more useful than another. For

example, after some elementary row operations we can obtain a

generator matrix which has the form as following

G =

9o

9k-

10 0

0 10

0 0 0

0 Poo

0 Pio

Poi

Pll

^ Pic-1,0 Pic-1,:

Po, n-ic-l

Pi,n-k-1

Pk-l.n-k-1

= \I>P\ (3.3)

55

where P is a (k x r) matrix of O's and I's, and is a (k x k)

unit matrix. This is a generator matrix for systematic codes (note

that row operations alone may not always result in a systematic

form. Sometimes column permutation may be also required to obtain

a systematic form'^-’^^).

Example. A generator matrix G for a (7, 4) systematic code is

given as following

G =

^0

9-2

ST3

10 0 0

0 10 0

0 0 10

0 0 0 1

110

oil
111

10 1

(3.4)

If the given message word is u = 1101, according to Eq. (3.1)

the corresponding codeword is calculated as

X = 1-go + 1-gi + 0-g2 + l-g3

= (1000110) + (0100011) + (0000000) + (0001101)

= (1101 000)

The first four bits are message bits and the last three bit

are the parity check bits. All 2“^ = 2“^ = 16 codewords

generated same way are given in Table 3.1.

Parity check matrix of code C

In decoding, the first thing is to check the validity of a

codeword read from the memory.

Since G matrix is a (k x n) matrix with k linearly independent

Table 3.1 A (7,4) code

message word code

0000 0000
0001 0001
0010 0010
0011 0011
0100 0100
0101 0101
0110 0100
0111 0111
1000 1000
1001 1001
1010 1010
1011 1011
1100 1100
1101 1101
1110 1110
1111 1111

word

000
101
111
010
oil
110
100
001
110
oil
001
100
101
000
010
111

56

57

rows, there exists an (r x n) matrix H with r linearly independent

rows such that any vector in the row space of G is orthogonal to

the rows of the H matrix. Or in other words, any codeword x in C

is orthogonal to the rows of the H matrix. These relationships can

be expressed in Eg. (3.5a) and (3.5b)

G = 0 (3.5a)

X = 0 (3.5b)

Such a H matrix can be used to verify the validity of a

codeword in C. A codeword is a valid codeword if and only if it

satisfies Eg. (3.5b), otherwise the codeword is in error. This H

matrix is called the parity check matrix.

Given a generator matrix G shown in Eg. (3.2), the parity

check matrix for a systematic code can be derived as

Poo Pio

Poi Pll

Po,r-l Pl,r-1

Pjt-1,0 10 0. . 0

Pjc-1,1 0 1 0 . . 0

000. . 1

(3.6)

The first k columns in the H matrix are corresponding to the

message bits and the last r columns to the parity check bits.

The H matrix has following properties:

i) AH matrix for an (n, k) code is a (r, n) matrix,

ii) Any valid codeword in C is orthogonal to the rows of the H

matrix. That is

X = 0 (3.7)

According this property, we conclude that for any codeword x

58

and y in C, (xH'^ + yH^) = (x + y)H^' = 0. This means, in a

linear code C, the sum of any two codewords is still a

codeword in C.

iii) An H matrix also defines the code C. In fact, the H

matrix is more convenient to describe a code than the

generator matrix does.

Syndrome of a codeword

For a codeword x, if Eq. (3.7) is not satisfied, error(s) is

said to be detected. But Eq. (3.7) does not provide any information

about the position of the error (s), so correction can not be

performed. To do so, a so called syndrome of a codeword is

required.

Let us suppose that the codeword stored in the memory is x =

XoXi...x„_i, and the codeword read from the memory is d = do di . .

.dn_i. Due to the errors in the memory, d may differ from x in one

or more bit positions. That is

d = X + 6 (3.8)

where e, is an n-tuple called the error vector or error pattern.

It has O's in those positions where d and x agree and I's in those

positions where d and x disagree. In other words, the I's in e

mark the position where error have occurred.

When d is read from the memory, the decoder uses the H matrix

to calculate an r-tuple vector S:

S = d.H^ = x.H^ + e.H^

= e.H^ = (So Si...Sn_k_i) (3.9)

This is called the syndrome of d. If S = 0, then d is a valid

59

codeword. If S < > 0, then d is an invalid codeword, thus error (s)

are detected. Furthermore, for different error patterns e, the

syndrome S = (SQ Si...Sn_k_i) has different values. Therefore the

syndrome can be used to determine the error patterns. Once the

error pattern is specified, the correction of the codeword is

achieved by bitwise XOR operations on d and e, namely, the correct

codeword is obtained from (d + e) . There are 2"^ unique syndromes

for an (n, k) code, hence a linear (n, k) code is capable of

correcting up to 2^ error patterns.

As an example, we consider a (7, 4) code generated by

Eg. (3.4) . Eg. (3.10) is the H matrix of the code which is derived

from Eg. (3.4) and Eg. (3.6)

H =

10 1110 0

1110 0 10
0 1110 0 1

(3.10)

Suppose a codeword which was stored in the memory is x =

1000110, and the read codeword is d = 1000111, in which the last

bit position is in error. So the error pattern is e = 0000001.

According to Eg. (3.9), the syndrome of the read codeword d can

calculated as

S = d'H^=|l 0 0 0 1 111 (0 0 1) (3.11)

60

or use the error pattern

S = e • = lOOOOOOl

110

Oil

111

10 1

10 0

0 10

0 0 1

(0 0 1) (3.12)

Of cause, before the syndrome has been obtained the decoder

does not know the error pattern, only Eq. (3.11) is performed in

the decoder. Once the syndrome (001) is obtained, the error pattern

e = 0000001 is specified. In the same way the other seven single-

bit error patterns and their syndromes can be calculated and are

shown in Table 3.2.

Unfortunately, the syndrome calculated from Eq.(3.9) does not

specify an unique error pattern. For example, both 0000001 and

1010000 error patterns result in a syndrome 001. In Table 3.2 we

have also provided two-bit error patterns which are sharing the

same syndrome. They are denoted as error-pattern (I) and error-

pattern (II), respectively. In fact, for a any codeword d, there

are as many as 2^ error patterns that satisfy the Eq. (3.9) . Only

one of them is the real error pattern’^-^^. Therefore when a

syndrome is obtained from Eq.(3.11), the decoder has to determine

which error pattern is the real one. Strictly speaking, this is

very difficult. Fortunately in computer memories, in which the 1

Table 3.2 Syndrome and error patterns

syndrome error pattern I error pattern II

001

010

100

101

111

Oil

110

0000001

0000010

0000100

0001000

0010000

0100000

1000000

1010000

0100001

0110000

0010010

1000001

1001000

0000110

error pattern I:

error pattern II:

all possible single errors.

some combinations of double errors.

61

62

-error and 0-error occur with the same probability, single error is

dominant. Most probable error patterns are assumed to be ones that

has the smallest number of I's shown up in the column of error-

pattern (I) in Table Otherwise multiple error correcting

codes are required.

The capacity of error detection and correction

In coding we have another problem. If there are several

errors occurring in a codeword, the codeword may be changed into

another valid codeword in C rather than into an invalid codeword.

In this case, neither the H matrix or the syndrome is impotent.

To reduce the occurrence of such decoding errors, it requires

as many as possible bit positions in which the two codewords differ

such that few errors are not able to change a valid codeword into

another valid codeword. This idea can be accurately described by

parameters of Hamming weight, Hamming distance and the minimum

distance of a code.

The Hamming weight of a codeword or a vector x, denoted W(x),

is the number of I's in x.

The Hamming distance between two codewords x and y, denoted

d(x,y), is the Hamming weight of (x - y). It also equal to the

number of the positions in which the two codewords differ. That

is.

d(x, y) = W (x - y) = W (y - x) (3.13)

63

The minimum distance of a code, denoted d„,in is the minimum

Hamming distance between all pairs of codewords in the code.

Clearly, the bigger the minimum distance of a code, the more

errors are tolerant to change a valid codeword to another.

Therefore the capability of error detection and error correction of

a code is associated with the minimum distance of the code. A code

of minimum distance d„in is able to detect (d„,i„ - 1) errors or

correct t =< [(d„in “ l)/2] errors in a codeword, where [Z] is the

integer part of Z.

To create a code with required minimum distance d^in, we have

following statement: A linear code with minimum distance d^^n has

a H matrix such that any - 1) or fewer columns of the H matrix

are linear independent This property can be used to construct

linear codes of minimum distance d„,in. In chapter four we will use

this property to construct the modified Hamming codes.

3.2 Hamming codes

In this section we will construct a very interesting class of

single error correcting (SEC) codes. This codes are known as

Hamming codes. Since the Hamming codes have capability of

correcting single error in a codeword, the Minimum Hamming distance

of the codes are at least d^^n >= 3. According to the relationship

between dj^^n and the H matrix, the H matrix satisfies: i) no column

of the matrix is a zero vector, ii) every column vector is

distinct, that is the sum of any two columns in the H matrix is not

64

a zero vector, iii) for systematic codes, the left most r columns

form an (r x r) unit matrix (a Hamming code is not necessary a

systematic code). Thus, for a given integer r, we can construct a

(r X 2^) H matrix of a Hamming code by using all r-tuples except

the zero vector to be the columns of the H matrix. Therefor a

hamming code has following parameters:

code length n = 2^^ - 1

message word length k = 2'' -r -1

parity bit number r = n - k

minimum distance d^^n = 3

error correcting t = 1

A typical Hamming code is a (15, 11) code with distance-3.

The H matrix of the code is given as follows

P0P1P2-P3 ^5 0 1 2 3 *^14

000100001111111

001001110001111
H= (3.14)
010010110110011

100011011010101

A codeword in the (15, 11) code has a form of x =

P0P1P2P3X4X5X6X7X8X9X10X11X12X13X14, where p^ are parity bits and x^ are

message bits. The parity bit are calculated through the parity

check equations

Po — ^4X5^7^8^10^12^14

Pi = X4X6X7X9X10X13X14

P2 = X5X6X7X11X12X13X14 (3.15)

Pa “ X8X9X10X11X12X13X14

The encoder for the code is then accordingly formed in

65

Fig.3.1.

The decoding of a read codeword

d = dodxd2d3d4d5dgd7d8d9dio*iii^i2^i3*ii4

uses the syndrome equations to identify the error position

50 ~ d3+d8+dg+d3o+d3i+di2tci33+d34

51 = d2+d5+d6+d7+dii+di2+di3+d34 (3.16)

52 — d3td41 dgtd7tdgtd3Q"^'d33“i“d34

53 = dQ+d4+d5+d7+dg+d3o+d]^2'*“di4

If the syndrome S = (S0S3S2S3) is identical to the i’'” column of

the H matrix then a single error is assumed occurring at the i*"^

position of the codeword. The diagram of a decoder is shown in

Fig.3.2.

However, if double errors occur, for instance, at position 2

and 6, the syndrome would be calculated as S = (0010) + (0101) =

(0111). This will leads to a decoding error at position 8. To

prevent decoding errors due to double error, a single-error-

correcting/ double error detecting (shorted as SEC-DED) Hamming

code can be easily obtained by adding a so called overall parity

check to the H matrix of Eq.(3.14). The SEC-DED code has a H matrix

as follows

I 0 I
I 0 I

H = I . H I (3.17)
I . I
I 1 1 1 ... 1 I

The parity check equation corresponding to the last row of the

new H matrix is an overall parity check

message word input

X4

THT
X& X7 X8 X 10 X 11 X 12 X 13 X 14

N f

XgX^XioXi 1X12X13X14

parity bits

generating

>1/ \|^ \|^ \|^ \|^ \|^

x= X6 ><7 X8 '10 '1 1 M2 M3 M4

codeword output

Fig. 3.1 An encoder for (15, 11) Hamming code

67

The Minimum Hamming Distance of the SEC-DED code is then

changed to d^in='4 and every codeword has an even Hamming Weight.

When decoding, an overall syndrome component SQV is required

in addition to the syndrome set (3.16)

SQV ~ do+dj^+d2+d3+d4+d5+d6+d7+dg+d9+d]^Q+d]^]^+d]^2'^*^i3'*“*^i4

Then S = (S0VS0S1S2S3) can be interpreted as

1) If S = 0, the codeword is assumed error free.

2) If SQV = 1, a single error is assumed and the error position

is located by syndrome (S0S3S2S3) .

3) If Sov = 0 and (S0S1S2S3) not equal to zero, double errors (or

even number of errors) are detected. These errors are

uncorrectable.

By adding an overall parity check to the H matrix, we have

obtained an even weight code which can correcting a single error

and detect double errors simultaneously. On the other hand, by

deleting some columns of H matrix of (3.17), we will obtain an odd

weight Hamming code which can also correct single error and detect

double errors. This odd weight Hamming code is called modified

Hamming code and widely used in modern computer memories . We

will discuss the Modified Hamming codes in Chapter four in details.

3.3 Cyclic codes and BCH codes

In this section we only review the most important concepts of

cyclic codes and BCH codes.

received codeword input

do

T
'10 '11 '12 '13 14

^ I Jt V f I l'

dsdgdgd^Qd^ 1^12*^13“^ 14 dod4d5d^dgd^ Qd^ 2^^ 4

syndrome
generating

syndrome
interpreter

VQ do di ^2 d2 ^12 <^12 ^13 ^13 ''^14 ^^4

corrected
codeword
output

Fig. 3.2 A decoder for (15, 11) Hamming code

68

69

BCH codes are a class of cyclic codes.

Cyclic codes are well described by Galois field GF(q^) of q“

symbols. For binary codes the fields are limited to GF(2”) .

Three representations of elements of field GF(2°‘)

i) The elements of a field can be represented by the powers of

its primitive element(s) u, that is

GF(2™) = {0, u°, u^ . . . uS ...

Such a primitive element u of a field is the generator element

of the field.

ii) The elements of the field can be represented by polynomials

modula a so called primitive polynomial p(x) of degree m. Any

polynomial representation of an element has degree at most m-1.

The coefficients of the polynomial are over GF(2) or {0, 1}. The

primitive polynomial P(x) has degree m and has u as its root. For

different m, the primitive polynomials of field GF(2”) can be

easily found in literatures (see, e.g.[3.1]).

iii) The elements of the field can also be represented by m-tuple

vect^ors. Each vector is corresponding to the coefficients of the

polynomial described above.

The three representations are corresponded one by one. The

power form representation is convenient to multiplication

arithmetic and the polynomial representation is convenient to

addition arithmetic.

Table 3.3 Three representations of elements of field GF(2^)

powers of u polynomials vectors

u

u

u"
u"
u'
u-

u®

u
u
u
u
u

15

10

11

12

13

14

X"

X'

x'

X”

X

x'
X
x'

X

+ X
+

X
2

X

X

+ X

0
1

+ 1

X'

+ x"
+ x'
+ x'

X +

+ 1
X

+ X +

+ X

+ X +
+

+

0000
0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001

Primitive polynomial p(x) = x^ + x + 1

70

71

As a example, a field GF(2^) represented in three forms are

shown Table 3.3, where u is the primitive element and p(x) = x^ +

X + 1 is the primitive polynomial. Therefore + u + 1 = 0.

Minimal polynomials

For any element b (=u^) of a field GF(2”), there exists one

and only one polynomial, m^Cx), which has b as its root. This

polynomial is called minimal polynomial of the smallest degree (m

or less) of b. For element u, the minimal polynomial is m^ (x) .

Since the mu(x) has u, the primitive element, as its root,

the m^, (x) is also the primitive polynomial. Similarly, for

element u^, the minimal polynomial is m^^ (x) and so on.

Any minimal polynomial m^ (x) , which has as its root, has

as its roots as well, since [m^ (u^)] ^=mj2 (u^^) =0 .

Some elements of GF(2”) may share a same minimal polynomial

with some others. For example, my (x) is the minimal polynomial of

u, so is of u^, u'*, . . . etc.

Cyclic codes

A linear code C (=CoCiC2. . . is a cyclic code if every shift

of a codeword in C is also a codeword in C.

A cyclic codeword of length n, c= (C0C1C2. . . Cn_i) , can be

represented by a code polynomial C (x) =CQ+CIX . . Cn_ix'’“’^' The degree of

the polynomial is at most n-1.

A cyclic code C can be generated by a polynomial called

generator polynomial. Suppose a(x) is the information

72

polynomial and g(x) is the generator polynomial, then the

encoded codeword polynomial c(x) is obtained from

c (x) = a(x)g(x) mod x"-l (3.18)

The generator polynomial g(x) has following properties:

a) g(x) is a factor of x" - 1, or say, x"-l = g(x)h(x)

b) The degree of g(x) is r = n-k

c) g(x) is the smallest degree monic polynomial in C, that

is, if the general form of g (x) is

g(x) = g^x"^ + g^-iX^"^ + ... + giX + go (3.19)

then g,. and go have to be always 1.

To encode a systematic cyclic code, three steps are required:

1) multiple a (x) by

2) find the remainder polynomial b(x) resulting from

dividing x"“’^a(x) by g(x), that is, x'’"’^ a(x) = d(x)g(x)

+ b(x) .

3) Form a systematic cyclic codeword

c (x) = b (x) + x"“’^a(x) (3.20)

The decoding of a cyclic code C is based on

r(x) h(x) = 0 mod x"-l (3.21)

where r(x) is the received codeword polynomial and h(x) is the

parity polynomial.

BCH codes

Given code length n, information length k and error correction

number t, a BCH code has parameters as follows

73

n = 2™ - 1

r = n - k <= mt

d >= 2t + 1

The generator polynomial of the BCH code is constructed as

follows:

g(x) = LCM { mi(x) m3<x) ... m2t_i(x)} (3.22)

where mj(x) is the minimal polynomial of u^.

A BCH codeword is encoded as

c(x) = a(x)g(x)

The syndrome of a received codeword r(x) is a 2t-tuple

S = (Si S2 ... S2t)

where

51 = r (u) = e (u)

52 = r(u^)= e(u^)

S2t= r(u^*^) = e(u^*^)

where e(x) is the error polynomial: e (x)=a (x)+r(x) .

For double error correcting BCH codes the possible error

combination is

e (x)=0 no error

= x^ single error at position i

= x^ + x^ double error at positions i and j

The syndrome is interpreted as

a) if there is no error, then S = (0000)

b) if there is a single error, then

74

51 = e (u^) =

52 = e (u^^) = = Si^

53 = e(u^^) = = Si^

84 = 6 (u"®^) = = Si'’

c) if there are two errors

51 - e (u^ + u^) =

52 = e Si^

53 = e

54 = e + u'*^) === + 0“*^= Si^

Among these syndrome components, Si and S3 are independent.

Let Si = = A + B

Then S3 = = (u^ + u^) + AB)

= Si(Si^ + AB)

and AB = S3/S1 + s^i

A and B contain the information about error positions. To

calculate A and B, form a equation

z (x) - (1 + Ax) (1 + Bx) = 1 + (A + B)x + ABx^

= 1 + SiX + (S3/S1 +s^i) x^ = 0 (3.23)

The roots of the equation are Xi = A~^ and X2 = B"’^. Therefore the

roots of the equation locate the error positions. The equation of

Eq.(3.23) is called error location equation.

To solve the Eq. (3.23) over field GF(2™), it is necessary to

try every element of GF(2”) . If there are two errors in the

codeword, there must be two elements that satisfy the error

location equation (or say there are two elements that will be the

roots of the equation) respectively. Then the inverse of these two

elements indicate the error positions.

75

Example Consider a (15, 7) double error correcting BCH code in

which

n = 15 = 2'’ - 1 (so the code is defined on GF(2”), m = 4)

k = 7 (message bits)

t = 2 (error correcting capability)

r=n-k=15-7=8 (=mt) (parity bits)

d >= 2t + 1 = 5 (minimum Hamming distance)

The elements of field GF(2^), which has primitive polynomial

p(x) = + X + 1, has been shown in Table 3.3

Suppose a received codeword polynomial is

r(x) x^° + X® + X® + x^ + x^

= (0000 1110 0010 100)

The syndrome is calculated as S = (s^ S2 S3 s^)

Si = r (u) = u^° + u® + u® + u^ + u^ = u^^

S3 = r(u®) = (u^°)® + (u®)® + (u®)® + (u^*)® + (u®)®

= u®° + u®® + u®'* + u®® + u®

= 1 + u®® + u® + u®® + u® = u®°

Thus the error location equation is, since S3/S1 +s®i=u®°,

z (x) = 1 + u®®x + u®°x® = 0

Replace x by every element of GF(2^) to find out the roots of

the equation.

Since z (u®®) = 1 + u®®u®® + u®°u®®

= 1 + u® + u®

= 0001 + 0101 + 0100 = 0

and

76

z (u®) = 1 + + u^°u^®

= 1 + u® +

= 0001 + 1100 + 1101 = 0

the two roots are

Xi = u“

X2 = u®

the inverse of x^ and X2 indicate the error positions

(xi)-" = u'

(X2)-' = u®

therefore the error pattern is found out

e (x) = X® + x"®

the corrected codeword is then obtained by

r' (x) = r (x) + e (x)

= (x^° + X® + X® + x"* + x^) + (x® + x'*)

= X^° + X® + X® + X® + x^

- (0000 1110 iO^O 100)

where the underlined bits are bits that are corrected.

3.4 Summary

This chapter has presented basic concepts of linear codes. By

adding some redundancy bits to the message bits, coding can detect

and correct errors in the codeword. Therefore coding can be used

to improve the reliability of computer memories.

A code is defined by either generator matrix or parity check

matrix. A syndrome of a codeword provides the information of error

positions in the codeword. Systematic codes are more suitable for

computer memories. Generally, more redundancy in a code has more

77

error correcting ability. But as we have seen redundant bits

require more storage space and longer encoding/decoding time. When

a code is determined or selected for a computer memory, one has to

consider these unfavourable factors. In most cases, the error in

semiconductor memories affect single bits and are distributed

randomly. Therefore, single error correcting (SEC) Hamming codes

are widely used. If a single overall parity check bit is simply

added to the SEC code, we can obtain a single error correcting and

double error detecting (SEC-DED) code. On the other hand, by

deleting some message bits from a SEC-DED code, we can obtain a

code of different length without loosing the original ability of

error correcting and detecting. This is very important to meet the

requirement of computer message word length which usually contain

2^ bits.

In some situations, multiple error correcting ability may be

required. Cyclic codes are designed for these purposes. An

important subclass of the cyclic codes is BCH codes. BCH codes are

well described by Galois fields GF(2'") . Like the generator matrix

for Hamming codes, a BCH code is defined by its generator

polynomial. When a syndrome of a BCH codeword is calculated, we

still need to locate the positions of errors. In this chapter we

have demonstrated the error locating process for double errors. If

there are more than two errors in the codeword, the error locating

process will be more complicated.

So far, the BCH codes are not very popular in computer

memories. But, because of their multiple error correcting ability.

78

they are still attractive candidates.

In chapter four we will introduce an alternative multiple

error correcting code, Orthogonal Latin Square codes which is more

suitable for computer memories.

79

References

3.1 W. Wesley Peterson, E. J. Welson, JR. "Error Correcting

Codes”, MIT press 1986

3.2 Arnold M. Michelson, Allen H. Levesque "Error-control

Techniques for Digital Communication". A Wiley-Interscience

Publication Johnwiley & Sons, 1985

3.3 Shu lin, Daniel J. Costello, JR, "Error Control Coding

Fundamental and Applications", Prentice-Hall, Inc., Englewood

Cliffs New Jersey, 1983

3.4 Sccot A. Vanstone, Paul C. Van Orschot "An Introduction to

Error-Correction Codes with Applications". Kluwer Academic

Publishers, 1989

3.5 Bary W. Johnson, Design and Analysis of Fault Tolerant

Digital System, Addison Wesley, 1989

3.6 T. R. N. Rao/E. Fujiwara, Error-control Coding for

Computer Systems , Prentice-Hall Inc., 1989

80

CHAPTER FOUR CODES USED IN COMPUTER MEMORIES

In computer memories both error detecting and error correcting

codes are used. Error detecting codes are simple in implementation

compared to error correcting codes. But error correcting codes

provide more improvements of memory reliability, which is essential

for modern computer systems.

In various applications either of them respectively or both

of them simultaneously are implemented. In this chapter several

commonly used error control codes are discussed. They are

classified as error-detecting codes, single-error-correcting/

double-error-detecting codes and multiple error correcting codes.

Next chapter another type of codes which are used for detecting and

correcting unidirectional errors will be discussed.

4.1 Criteria for code selection

Coding can dramatically improve the performance and the

reliability of computer memories. But, it requires additional

memory cells for storing check bits and extra circuitry for

implementation of encoding and decoding logic. These not only

consume additional memory space and VLSI area but also

significantly increase the risk of potential hard errors and soft

errors. The encoding and decoding processes will increase the

memory access time. Even a delay of one microsecond in handling

critical path information in a computer could be unacceptable for

high speed computer systems. Hence, though it has many advantages

81

towards the reliability of computer memory, coding might also bring

some liability to the performance of computer memories if not

properly designed.

when making a decision to use ECC codes and to select a

particular type of ECC code, several factors should be considered

carefully. The first consideration is whether error detecting,

error correcting, or both are really required. The second

consideration is the number of bit errors that need to be detected

and corrected. Generally speaking, the coding delay (including

encoding and decoding delay), circuitry complexity, extra memory

cells and cost will increase when more error detection or error

correction capability is required. Sometimes the decision is

really based on a kind of tradeoff between benefits and

disadvantages. However, when a code is to be used in the memory

following general criteria of design have to be considered.

i) Speed of performance

In a high speed memory the detection and correction process of

a code should not unduly increase the memory access time. The

delay should be less than five to ten per cent of the memory

access time. For this reason, the codes which can accommodate

parallel encoding and decoding, for example separable linear

codes, are almost the first selection. Cyclic codes such as

BCH codes are usually not suitable for semiconductor memories.

ii) Simplicity of Encoding and Decoding

82

Simplicity of implementation of ECC is essential for a large

capacity memory due to the limited area in the VLSI memory.

The simpler ECC scheme generally means less cost and more

space for information data.

Since in semiconductor memories single errors are dominant

error patterns, single error correcting and double error

detecting codes are often preferable candidates in computer

memory designs.

iii) Efficiency of Implementation

The efficiency means use of as little extra encoding and

decoding circuitry as possible to perform error detection and

correction. It is not only for economy, but also for

eliminating potential source of circuit failures. It will be

seen that modified Hamming codes are those very high

efficiency codes.

Error detection codes provide faster decoding and simpler

implementation than error correction codes, therefore, are

preferable in small memories in which error detection is considered

sufficient. In large memories, however, since the probability

of errors could be much higher than in small memories, error

detection itself becomes not enough to maintain the high

reliability. As a consequence, error correction ability has to be

considered. On other hand, considering the error distributions in

semiconductor memories, single error correcting codes are usually

83

sufficient for improvement of reliability. Moreover, if we add one

more check bits to a single error correcting code, we can easily

obtain a new code which has capability of single error correcting

and double error detecting simultaneously (SEC-DED). Such SEC-DED

codes are suitable and economical to large memories. Multiple

error correcting codes provide even more reliability improvement,

but as we have seen in chapter three, multiple error correction

usually results in complicated implementation and longer decoding

delay. Thus high speed computers can not afford it. However, in

some special applications multiple error correction code might be

required.

4.2 Error detecting codes

As mentioned earlier, due to its simplicity of

implementations, error detecting codes are very suitable for small

memories. In this section following error detecting codes will be

discussed

i) Parity codes

ii) Duplication codes

iii) m-of-n codes

4.2.1 Parity codes

The simplest form of a error detecting codes are the parity

codes. A single-bit parity code is constructed by adding an extra

bit to the binary information data such that the resulting codeword

has either odd number of I's or even number of I's. If the

84

information has n-1 bits then the code word has length of n. The

code can be expressed as (n, n-1). Depending on odd or even number

of I's in each of its codeword, there are odd parity code and even

parity code. In most implementation of computer memories, even

parity codes are used, but both odd and even parity codes have

exactly the same properties. For the convenience of describing

only even parity codes are included in the following discussion.

Encoding and decoding

The single-bit parity codewords have a typical construction of

ii iz - ■ - ik P

where ij^, ij and iK are arbitrary information bits and p is the

parity bit. The parity bit p is chosen in a way to satisfy the Eq.

(4.1)

ii + i2 + ... ij^ + p = 0 (mod 2) (4.1)

As a codeword is read from the memory decoding is performed.

The decoding starts with syndrome generation. The syndrome is

given by

S = di + d2 + ... + d)(+ Pi (mod 2) (4.2)

where di, d2 and dj^ are the received data bits and pi is the parity

bit read from the memory.

If S = 0, the codeword read from the memory is assumed

correct;

Table 4.1 (4, 3) parity codes for BCD data

decimal
digit

BCD odd parity code even parity code

0
1
2
3
4
5
6
7
8
9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

00001
00011
00101
00111
01001
01011
01101
01111
10001
10011

00001
00011
00101
00111
01001
01011
01101
01111
10001
10010

85

data

data in

parity L
generator

parity parity
parity

checker

data

error signal

data out

Fig. 4.1 An organization of a memory

using single-bit parity code

86

87

if S =1, the decoder declares the codeword to be in error.

An example of single bit parity codes (both odd and even) are

illustrated in the Table 4.1, The second column of the Table

contains information data. The third column shows corresponding

odd parity codes and the fourth column contains even parity

codewords. The parity bits are underlined to make them distinct.

In Fig. 4.1 the organization of a memory that uses single

bit parity codes is shown. In the encoding process the parity

generator creates a parity bit Pi. Then the parity bit and the

original information bits are stored in the memory as a complete

codeword. When the codeword is read out from the memory the

decoding will be first performed. Based on the information data

of codeword, a new parity bit is regenerated in the parity checker.

The parity checker compares the new parity bit and the old parity

bit read from the memory. If they agree, the codeword is assumed

to be correct. If they are in disagreement, an error is then

detected and an error signal is sent out the system.

Analysis of Error Detection

The parity generator and the parity checker used in the memory

system are very simple and they have almost the same circuitry. In

Fig.4.2 an even parity generator and parity checker for 4-bit

information data are shown. It can be seen that single bit parity

codes have minimum Hamming distance of 2. A codeword of minimum

Hamming distance d^^ is able to detect d (=< d^in-1) errors.

Therefore the codes can detect a single error in a codeword but not

Fig 4.2 A 4-bit generation and checker

circuit for even parity

88

89

correct it. For example, in a even parity code, a single error

(either 1-error or 0-error) will change the codeword into another

codeword which has odd number of I's. This is not a valid codeword

in the even parity code, hence the error is detected. But when a

second error occurs in the same codeword, the total number of I's

will change back to even and the codeword then becomes a valid

codeword in the even parity code. Thus the errors will not be

detected. Any codeword that contains even number of errors will be

incorrectly taken as a correct codeword.

For a random error memory, the probability of any particular

pattern of j errors for a n-bit word is

Prob (j-error) = p^ (l-p)"“^ (4.3)

where p is the probability of occurrence of bit-error in the

memory. In most cases, p << 1.

The probability of zero errors in a codeword is then

Prob(no-error) = (1-p)" (4.4)

Using Eq. (4.3) and Eq. (4.4), the probability of any particular

pattern of two errors (for which the parity code can not detect)

can be derived as following:

Prob (2-errors) - (1 - p) =
1-p

)' (1-P)”

- Prob(0-errors) P ^2
1-p'

(4.5)

90

Since (1-p) >> p, the Prob(2-error) is much lower than the

Prob(0-errors). That means the probability of correct decoding is

much higher than that of incorrect decoding (when two errors

occur).

In general, for single-bit parity codes, the probabilities of

correct decoding, error detection and decoding failure are

expressed as follows:

P(correct decoding) = (1-p)" (4.6)

P (error detection) = X) p^(l-p)"“^ (4.7)
j»l,j^odd

P (decoding failure) = 53 pMl-p)"^ (4.8)
j*2; j^even

other parity codes

The concept of single-bit parity code can be extended to other

forms which provide additional error detecting capability. Some of

the forms are described as following:

a. Bit-per—word parity code

Bit-per-word parity code is the simplest type of parity codes.

The form of a codeword is shown in Fig.4.3 (a). This code usually

can detect odd number of errors. However, if a codeword including

■'15 '14 '13 '12 '11 10 *^9

(a) bit-per-word

odd
or

even

'15 '14 '13 '12 '11 '10 d4 PI

even
(b) bit-per-byte

chip 5 chip 4 chip 3

odd

chip 2 chip 1

(c) bit-per-muUiple-chip

chip 5 chip 4 chip 3 chip 2

'IS '14 '13 '12 '11 '10 d4

P4 Pi chip 1

(d) bit-per-chip

'IS '14 '13 '12 '11 '1C d4
P4 Pi

 1-- ■

(e) interlaced parity

Fig. 4.3 The basic forms of parity codes

91

92

the parity bit becomes all I's due to a complete failure of a bus

or a set of data buffers, an odd parity code will fail to detect

them because the faulty codeword would have odd number of

1's(supposing a codeword has a odd number length), similarly an

even parity code will fail to the all O's error.

b. Bit-per-byte parity codes

A bit-per-byte parity code is effective against the above

failures. In coding, a word is segmented into two bytes. The

parity bit of the first byte is formed by even parity rule and the

parity bit of the next byte is formed by odd parity rule as shown

in Fig.4.3 (b). One parity bit is for all I's failure and another

parity bit detects the all O's failure.

c. Bit-per-multiple-chip parity codes

Many memories have multiple-bit-per-chip organization with

each chip containing 4-bit, 8-bit or more. In these organizations

if one chip fails, several bits in one codeword can be affected.

It is easy to see that both bit-per-word and bit-per-byte

parity codes discussed above are ineffective for the situation.

Bit-per-multiple-chip parity codes, shown in Fig.4.3 (c), can be

used successfully for this type of errors. Since a faulty chip

will corrupt every parity bit, a whole chip failure is .detected.

d. Bit-per-chip parity code

If a bit-per-chip parity code is employed, it not only detects

93

errors but also locates the failed chip of failure. In this

approach each parity bit is associated with one chip of memory, as

in Fig. 4.3 (d) . For instance, pi is the parity bit for data group

containing data bits 0, 1, 2, and 3. If a single bit becomes

erroneous, the chip that contains the erroneous bit can be

identified and the existence of the error is detected. This is

very useful when the hardware maintenance scheme is employed in the

memory.

e. Interlace parity codes

Interlace parity code is illustrated in Fig.4.3 (e). As can

be seen from the figure, no two adjacent information bits are

associated with the same parity group, therefore when any two

adjacent bits are in error, two parity bits will be affected, and

the errors are detected.

4.2.2 Duplication codes

The principle of duplication codes is very simple. It

duplicates the original information bits to form a codeword. That

is , there are two portions in a codeword, the first portion is the

original information bits and the second portion is exactly the

copy of the first portion. The decoding is done simply by

comparing the two portions in a codeword. If the two portions do

not agree, the errors are detected. The primary advantage of the

code is its simplicity of encoding and decoding, but it occupies

twice the storage space.

94

Types of duplication codes

A variation of the basic duplication code is to take the

complement of original information bits as its duplicated portion,

as shown in Fig.4.4 (a).

The effectiveness of this code can be analyzed as follows.

Suppose that one bit slice of the memory becomes faulty such that

every bit in that slice stuck at 1 regardless of what it should be.

The complemented duplication code can detect this error. Because

any two bits belonging to different portions (information portion

and complemented portion) are supposed to be complement of each

other.

Another variation is the swap and compare approach. The first

portion of the codeword is divided into two parts called upper half

and lower half. In the duplicated portion of the codeword, the

upper half and lower half are swapped as shown in Fig.4.4 (b). A

single bit slice that is faulty affects upper half and lower

half,but the other two halves remain correct. By comparing the

appropriate halves, the error is detected.

4.2.3 m-of-n codes''* '’'

In a m-of-n code, every codeword of length n contains m I's.

Therefore it is a constant weight code. Any single-bit error will

cause the codeword to have either m+1 or m-1 I's and a second bit

error might change the erroneous codeword back to m I's. The m-of

-n code is of d^^n = 2 and hence has the capability of detecting one

error in a codeword.

error slice L 1 — Lower half of word 1
U i — upper half of word i

(a) Complement duplicate codes (b) swaped duplicate code

Fig 4.4 duplicate codes

96

The easiest way to construct an m-of-n code is to take the

original k information bits and append another k bits. The

appended k bits are the bit by bit complement of the original

information bits. This is a k-of-2k code with systematic

construction. This code is also called balanced code since it has

equal number of O's and I's in each of its codewords. However,

most of m-of-n code are non-systematic codes.

The m-of-n codes can be used not only for single error

detecting, but also for multiple-unidirectional error detecting'"*'^^

purposes. We will discuss the issue in the next chapter.

Now, in the following section error correcting codes will be

discussed.

4.3 Single—error—correcting and double—error-detecting codes

In semiconductor memories, especially in the bit-per-chip

organized memories, the single-bit errors are dominant error

patterns^'’’®'. The probability of soft errors show much higher than

hard errors. Therefore single error correcting codes are of

significance for the reliability of large capacity and high speed

semiconductor memories. In addition, the implementation of single

error correcting codes are much simpler and the decoding speed is

much faster than the multiple error correcting codes. Hence single

error correcting codes are widely used in computer industries.

In this section two classes of single error correcting codes,

H-V-parity codes and modified Hamming codes, are discussed.

97

4.3.1 H-V-parity codes

Single-bit parity codes detect errors occurring in a codeword

but not correct them. This is because each information bit is

associated with only one parity bit. If each of the information

bits is allowed to appear in more than one parity groups (overlap

parity check), the code will be able to correct errors as well.

The construction of the H-V-parity codes

The H-V-parity codes are constructed directly on a principle

of overlap parity check. As shown in Fig.4.5, the information bits

are arranged in a two-dimensional array in memory. Each row has a

single parity bit calculated along the horizontal direction and

each column has a single parity bit along the vertical direction.

Each row data are called H-group data and each column data are

called V-group data. In this array every information bit belongs

to both a H-group data and a V-group data. For example, a

horizontal parity bit (H-parity) is formed by data bits dg, di,d2

and dj in the first row of the array, and the vertical parity bit

(V-parity) Pj is formed by data bits dg, d4, dg and d^j in the left-

most column etc.. Notice that Pg is the parity bit of parity bits.

It can be calculated on either H-parity bits or V-parity bits. In

some cases this bit is not used at all.

Analysis of Error Correction/detection

In such a memory array, a single bit error in any row (or

do dj d2

d4 ds dg d7
dg dg djo djj

di2 di3 dj^^ djg

Pi
Pa

P3
P4

a P7 Pg

(a) two dimensional array (b) one dimensional array

Fig 4.5 H-V- parity code

98

99

column) will cause both the H- and V-parity bits to declare error

detected. The location of the error bit is then determined at the

intersection of the row and column of the corresponding parity

bits. Then the correction can be done. If two errors occur along

a row, two V-parity bits associated with the errors will be in

failure. However the H-parity bit, which is associated with the

two errors in the row, fails to detect the presence of the errors.

As a result, the locations of the errors can not be identified

uniquely. Therefore, the H-V-parity code is a type of single-

error-correcting and double-error-detecting code.

In fact, the H-V-parity code can be considered as a product of

single-bit row parity code and single-bit column parity code. Both

of them are linear codes. Therefore the minimum Hamming distance

of the product code is the product of that of two single-bit parity

codes''*'®', that is dn^i„= 2 x 2= 4.

Due to its simple encoding and decoding logic and

implementation, the H-V parity code is suitable for on-chip error

correcting and error detecting scheme. In the following, we

discuss a possible implementation of the H-V-parity decoder for

computer memory'*'®'.

The decoding of the H-V-parity codes

A block diagram of decoding logic is given in Fig.4.6. There

are six main blocks in the diagram. H-group data selector, V-group

data selector, H-parity generator, V-parity generator, correction

circuitry and output multiplexer.

The data bits are organized into a one dimensional array from

100

a two dimensional array containing information bits and parity

bits. Fig.4.5 is an example of such a transformation. It can see

that each bit of the array is now connected with a word-line in the

memory so that all of them can be accessed in parallel. During the

error correction, according to the decoding logic, the H- and V-

group data selectors transfer proper data bits into H-parity and V-

parity generators respectively. In the parity generator, new H-

and V-parity bits are generated. By comparing the new parity bits

and the corresponding memory cell parity bits (the parity bits read

from the memory), error (s) can be detected. If the error is

detected as a single-bit error, the correction is then performed

through a multiplexer and correction circuits.

It can be seen that the data selectors which feed in the

desired data bits to corresponding parity generators and the

multiplexer are the vital components for the whole process of

error detecting and correcting.

An analysis of a decoder for a (19, 12) H-V-parity code

To have a better understanding of the process, a more detailed

error correcting circuit is shown in Fig.4.7. This is a decoder

for a (19, 12) H-V-parity code. Each codeword is transferred from

a 4 X 5 array which contains twelve information bits, three H-

parity bits and four V-parity bits. The twelve information data

bits are denoted as d^, d2, . . . di2. The procedure of correction is

divided into twelve subcycles. Each subcycle is able to check and

correct one bit. In every subcycle, according to the decoding

logic, data selectors feed in appropriate data bits to different

V
-p

ar
ity

 b
it

s
H

-p
ar

ity
 b

it
s

da
ta

bi
ts

Fig. 4.6 A block diagram of decoding for H-V-parity code

101

O
utput M

ultiplexer

102

blocks so that correcting decisions can be properly made. Table

4.2 shows the bit sequences that are transferred into H-parity

generator, V-parity generator and output multiplexer in each

subcycle.

Let us suppose that bit d^ is in error, then during the

second subcycle, bits dg, d^, d2, and dj are fed in H-parity

generator and bits d^, dj and in V-parity generator.

Consequently, the new H-parity bits h^' and the new V-parity bit

are generated. Since the new parity bits do not agree with the

corresponding memory cell parity bits, the error is detected in

both H- and V-direction at the same time. As a result, the

correction circuit outputs a correcting signal '1', and correction

is then made by toggling the output of multiplexer.

The whole decoding process has to be completed during one

read cycle of the memory. That is, in this example, the time to

correct one bit or one subcycle is less than 1/12 of the read

cycle.

This ECC scheme using H-V-parity code has been applied to the

design of 256k . In addition to fundamental 256k memory

cells, the RAM employs 24k parity cells for H- and V-parity bits.

In the scheme, each word line is connected to 512 (=16x32) memory

cells and 48 (=16+32) parity cells. There are total 500 such word-

lines. All of the memory cells can be checked within 4 seconds

with each subcycle being 16 ns. The scheme has substantially

improved the reliability of the memory compared to that of the

memory without the ECC. The estimated improvement is reported up

V
pa

ri
ty

H
pr

ar
ity

da
ta

 b
it

s

to data bita

Fig 4. 7 A decoder circuit for H-V-parity code

103

1
2
3
4
5
6
7
8
9
10
11
12

Table 4.2 Decoding logic for a (19, 12) H-V-parity code

bits feed in
H-parity
generator

new H-
parity
bis

bits feed in
V-parity
generator

new V- bits feed
parity in
bits multiplexer

^0
do
do

di
di
di

dz
d2
d2

dn di d, d.
d,
d4
d4
d4
da
dg
dp

ds
ds
ds
ds
dg
dg
dp

de
dfi
de
dg

d?
d?
d?
d?
di

dp da

dlO*^!!
diodii

diodii

diodii

h'o
h'o
h'l

h'l
h'2
hS
h'2
hS

do d4
di ds
d2 dg
da d, d
do d4 dg
di dg dg
da dg d
da da d
do d4 dg
di ds dg
d2 dg d
da da d

no
11

10

11

10

11

v'o
V'l
v'a
vS
v'o
vS
v' ,

v'o
V'l
V'2
V'p

do
di
da
da
d4
ds
dg
di
da
dg
dio
dll

104

105

to 10®.

The concept of the product of two single-bit parity codes can

be extended to any other linear codes. For example, the product

codes that are obtained from any combinations of SEC-DED codes, DEC

codes and even TEC (triple-error correction) codes will have more

capacity of error correction and error detection, but accordingly

need more complicated implementations of encoding and decoding.

4.3.2 Modified Hamming codes

It has been shown in Chapter three that an (n, k) linear

Hamming code is uniquely specified by a parity check matrix H.

This H matrix has r rows and n columns (among n columns, k of them

correspond to information bit columns and r of them to the parity

check bit columns) as shown in Eq. (4.9) .

H =

^0,0 ^0,1

^j,0 ^j.l

^r-1,0 ^r-1,1

h 0, n-1

h j,n-l

h.

Hr.

H r-l

(4.9)

r-l, /3-1

where HQ, HJ^, and are row vectors of H matrix.

To determine the error patterns, a decoding syndrome S = (So,

Si, S2...Sj-_i) is necessary. The components of the syndrome can be

calculated from the received codeword D and row vectors of the H

matrix as given below.

50 = D

51 = D Hi^

106

s,_i = D (4.10)

The codeword is accepted as error free if S is an all zero

vector.

From the implementation point of view, the total number of I's

in each row vector of the H matrix is related to the number of

logic level necessary to generate the syndrome bit corresponding to

that row. Let be the number of I's in the i*"^ row vector of the

H matrix, and be the number of logic levels required to generate

the i*^^ syndrome component. The relationship between and can

be expressed as

Li = L logb Ni J (4.11)

where |_xj denotes the smallest integer equal to or greater than x,

and b is the number of input of X-OR gate.

As can be seen, in order to minimize L^, it is necessary to

minimize N^. Also, in order to achieve a least decoding delay, it

is necessary to make the number of I's in every row vector to be

equal.

Based on above considerations, a class of optimal Hamming

codes is derived, known as modified Hamming codes

The construction of the H matrix of modified Hamming codes

The H matrix of a conventional Hamming code has 2^-1 r-tuples

as its columns, r columns for parity bits and k columns for

information bits. By deleting 1 information bit column from the H

matrix, it is possible to obtain a new matrix H„ which satisfies

the following requirements;

107

1) Every column vector has odd number of 1's

2) The total number of I's in the matrix is minimum.

3) The number of I's in each row vectors is equal to, or as

close as possible to the average number (i.e., the total

number of I's in H„ divided by the number of rows)

The code specified by this new parity check matrix is

called a modified Hamming code.

The first requirement guarantees that the code has d^^n > 4,

(since the sum of any three columns of odd number I's can not be a

zero vector). Therefore the modified Hamming codes can be used as

SEC-DED codes. The second and third requirements lead to a least

logic levels in implementation and optimal delay in encoding and

decoding.

According to above properties, the H matrix of the modified

Hamming codes can be constructed by the following procedures'"’’^’:

1) Take all (^i) weight-1 r-tuples as the most right r columns of

H matrix which are corresponding to parity check bit columns.

2) If (^^3) >= k, select k out of all ('^3) weight-3 r-tuples as

left k columns of the H„ matrix (thus the H matrix is

completed) . If (“"3) < k, take all (^^3) weight-3 r-tuples as

the left columns of the H„, matrix, then keep going 3) .

3) Select weight-5 r-tuples from all (^5) weight-5 tuples as the

columns of H matrix and then select weight-7 r-tuples etc,

until the H matrix is completed.

Only odd-weight r-tuples are used for the H„ matrix. The

modified Hamming codes are sometimes called odd-weight-column

108

codes.

Fig.4.8 shows examples of H matrices of modified SEC-DED codes

used in some IBM systems*^'^^'. In Table 4.3 the parameters of some

modified Hamming codes as well as the corresponding Hamming codes

commonly used in computer memories are compared. It can be seen

that modified Hamming codes are shortened Hamming codes. The

shortening of the information bits makes it possible to meet the

needs of data sizes in computer memory systems which are usually 4,

8, 16, 32, 64 etc. (i.e., the powers of 2).

Decoding of the codes

The modified Hamming codes are capable of correcting single

errors and detecting double errors as well as detecting multiple

odd number errors. The algorithm of the decoding of the codes is

illustrated in Fig . 4.9

i) According to the codeword R' read from the memory, generate

the syndrome vector S = (Sj, Sj, • • - , s^) .

ii) Test whether S = 0 or (s^ + Sj +. . . Sj.) = 0, where + denotes OR

operation. If S = 0, the codeword is assumed to be error-free.

iii) If S <> 0, try to find a perfect match between the S and the

i*^^ column in the H matrix. If it matches, the bit in the i*^^

position of the codeword is in error, hence the correction can

be done.

iv) If S < > 0 and no match is found, then test if

So®Si©. . .©Sr_i 0 (4.12)

t

1
1
0

1 11110 0
1110 0 11

0 0 0 1111

10 0 10 10

0 1 0 0 0 0 1

0 0 10 10 0

1 10 10 0 0

10 10 10 0
0 1 10 0 10
1110 0 0 1

(a)

0 10 0 10 1

1 0 10 0 0 0

1 0 0 10 10

0 111110

0 1110 0 1

1 0 0 0 111

(b)

0 0 10 0 0 0 0
10 0 10 0 0 0

0 1 0 0 10 0 0

0 0 0 0 0 1 0 0

11 0 0 0 0 10

11 0 0 0 0 0 1

11111111 1111111100010001 00010001 0010001C 00100010 00100010 00010100 10000000
10001000 10001000 11111111 111111110001000100010001 10001000 10000010 01000000
01000100 01000100 10001000 10001000 11111111 11111111 01000100 01000001 00100000
00100010 00100010 01000100 01000100 10001000 10001000 00100010 00101111 00010000
00010001 00010001 00110011 00110011 01110111 01110111 00000000 00001111 00001000
00001111 00001111 00001111 00001111 00001111 00001111 11111111 00000000 00000100
00000000 11111111 00000000 11111111 00000000 11111111 11110000 1111111100000010
11110000 00001111 11100001 000llllO 11000011 00111100 00001111 11110111 00000001

(c)

11111111 00000000 00000000 11111111 10001110 10001110 10001110 10001111 10000000
11111111 11111111 00000000 00000000 01001101 01001101 01001101 01001101 01000000
00000000 11111111 11111111 00000000 00101011 00101011 00101011 00101011 00100000
00000000 00000000 11111111 11111111 00010111 00010111 00010111 00010111 00010000
10001110 10001110 10001110 10001110 11111111 00000000 00000000 11111111 00001000
01001101 01001101 01001101 01001101 11111111 11111111 00000000 00000000 00000100
00101011 00101011 00101011 00101011 00000000 11111111 11111111 00000000 00000010
00010111 00010111 00010111 oodoioil 00000000 00000000 11111111 11111111 00000001

(d)

Fig. 4.8 Parity matrice of some SEC-DED codes:

(a) a (8, 4) code
(b) a (22, 16) code
(c) a (72, 64) code
(d) a (72, 64) cOde

(IBM System/3)
(IBM 3033)
(IBM 3081)

109

Table 4,3 Some parameters of Hamming codes and
modified Hamming codes

n

31
63
127
255
511
1023

Hamming codes

k

26
57
120
247
502
1013

5
6
7
8
9
10

Modified Hamming codes

n k r 1'

13
22
39
72
137
266

8
16
32
64
128
256

5
6
7
8
9
10

18
41
88
183
374
757

1* the number of eliminated bits

110

— Sum of mod 2

FIG. 4.9 Algorithm of decoding modified Hamming codes

111

112

If it does, a double error is then detected,

vi) If S <> 0 and no match is found and Eq. (4.12) does not

hold, three or more odd number of errors are detected.

A decoding block diagram implementing the above algorithm is

shown in Fig.4.10. The diagram consists of following blocks,

syndrome-generator, syndrome-decoder, single-error-corrector,

error-detector, double-error-detector and multiple-error-detector.

The syndrome-generator is composed of r n-input X-OR gates,

calculating r syndrome bits according to Eq.(4.10). The output of

the gates is a r-tuple syndrome.

The syndrome decoder checks whether the syndrome matches a

column of the H matrix. It consists of n r-input AND gates. The

inputs of each AND gate corresponds to a column of the H„, matrix.

When a syndrome matches a column, the corresponding AND gate output

a '1' so that the correction can be done in the error-corrector.

The error-detector is a r-input OR gate which test if S = 0.

An error detected signal is output if S < > 0.

The double error-detector is composed of a r-input X-OR gate.

If the output of the decoder equals to 0, a double error detected

signal is given out.

The multiple-error-detector consists of a n-input NOR gate and

an AND gate. If none of the n-output of syndrome-decoder is equal

to '1', (which means no correction will be done) and the output of

error-detector is ' 1' , then the multiple-error-detector outputs

' 1', indicating that three or more odd number errors are detected.

co
d

ew
o

rd

in
p

u
t

codeword input
II I • ■ • • I I— inpu t

corrected codeword
output

Fig. 4.10 A diagram of the decoder for
modified Hamming code

113

114

To illustrate a whole decoding process, in the following we

consider the circuit of decoder for a (8, 4) SEC-DED code.

Example: The H matrix of the (8, 4) code is as follows

do di dj d3 Co c, C2 c,
11101000

11010100
H —

10110010

01110001

The syndromes can be calculated

-^2 = Cfo©C?2©d3©C2

Sj = d3^©d2©d3©C3

Fig.4.11 gives the circuits of the decoder. It can be seen

that the correction is performed in parallel, therefore has a high

decoding speed.

Applications of Modified Hamming Codes

Many of the IBM system 370 models (e.g. 145, 155, 165, 158,

and 168) use a (72, 64) SEC-DED modified Hamming code for error

control in main memories.

In these applications encoder and decoder form additional

circuitry. Recently Modified Hamming codes are also used in on-

chip ECC schemes'^'^^' in [4.14], it has been demonstrated

that combined use of memory cell redundancy and ECC scheme has

input data corrected output data

do

di

di
da
Co

Cl

C2
C3

error detection

Fig 4. 1 1 A decoder for (8, 4) Modified Hamming code

n
>

o
>
 n

>
o

>
 Q

L>
 C

L>
 c

a>
 Q

->

W

K
>

M
.

o

-
o

116

enhanced the reliability significantly and brought effective

improvement of yield of the memory chips. In Fig.4.12 the

resulting yield as a function of the average number of (failing)

single cells per chip is presented.

In a practical memory system with ECC, both of the parity

codes and SEC codes are employed. For example, a (72, 64) modified

Hamming code is used for memory error control while the parity

code is used for validity checking of a data transferred in the

data bus.

When a (72, 64) codeword is read from main memory, the

decoding circuit generates a 8-bit syndrome. If the syndrome

indicates no errors in the codeword, the 64 data bits are extracted

and divided into 8 bytes. Then 8 parity bits are added to these

bytes on the bit-per-byte basis as shown in Fig.4.13.

If a single error is detected in the (72, 64) codeword, the

correction is performed and the corrected word is sent to CPU. In

case a double error or a multiple error are detected, an interrupt

signal will be generated. CPU then decides on further operations.

In some systems the read instruction is retried. In other systems

a duplication word (which is stored in the spare memory cells) is

accessed. Or sometimes other outside operation may be required to

deal with the errors.

When a data word (which has the form shown in Fig.4.13 from

the data bus) is to be stored in the memory, the parity-encoded

codeword (which has the form of Fig.4.13) is first checked. If it

is a valid data word, the 8 parity bits are removed and the 64 data

Fig 4.12 Yield curves for ECC and bit-line redundancy

117

118

bits are then encoded into a (72, 64) SEC-DED Hamming codeword and

then is stored in the memory.

4.4 Multiple error correcting codes

In some cases when a memory cell has been permanently

defective, a soft error caused by alpha-particle radiation will

result double errors in a codeword. Modified Hamming codes will

fail to correct the double errors. And the probability of double

errors might be high under certain conditions. In order to maintain

a high memory reliability, double error correcting or multiple

error correcting codes are required. Usually, in practice,

hardware maintenance strategies are used for repairing the

defective memory chips in regular intervals. Use of multiple error

correcting codes allows the maintenance strategy to accumulate the

hard failures up to certain threshold, thus defer the replacement

and reduce the down time of the systems.

In theory there are several multiple error correcting codes,

e.g., BCH codes, R-S codes, majority logic codes etc But

these codes are cyclic codes, which as we discussed in chapter 3,

require relatively complicated decoding logic and longer decoding

time. In this section, we introduce a type of fast decoding codes,

majority orthogonal Latin square codes which can be used as SEC

codes as well as multiple error correcting codes. These codes are

linear codes.

We first consider a parity check matrix H of a SEC code as

follows

parity bit
'\r

2"'^ parity bit 8 parity bit

8 data bits 8 data bits

(a) data format from/to bus

64 data bits 8 parity bits

(b) data format in storage

Fig.4.13 Data format in/not-in storage

119

120

H =

do dj do d, do dg d, dg p, p^ P3 p, p^ p^

111 1

111 3
111 1

1 11
111 1
11 1

(4.13)

From the H matrix, a set of parity equations can be derived as in

Eq. (4.14)

Pi = do + di + do

Po = do + d4 + do

Po = dg + d, + dg

P4 = do + do + dg

Ps = di + d4 + di

Pg = do + ds + dg (4.14)

When a codeword D=(dg dj ...d, dg Pi ... Pg) with a single-bit

error is read from the memory, the decoding might be processed on

majority voting basis. For instance, in the decoder, three copies

of bit do are regenerated. Two of them are derived from parity

equations Pi and p^, that is

do = Pi + di + do

do = P4 + do + dg (4.15)

and the third one is dg itself received from the memory. The

correct do is then recovered from a three majority voting gate.

The output of a majority vote gate depends on the majority values

121

of its input. If there is a single-bit error, data do can be

recovered correctly, because any single-bit error affect at most

one vote of the majority gate. In fact, as long as the parity

equations p^ and p^ given in Eg. (4.14) are orthogonal to the data

bit do, the error correction by majority voting is always valid.

A set of parity equations are said to be orthogonal on d^, if

for all the equations, d^ is the only common variable involved.

For example, in Eq. (4.15), pi and p^ are orthogonal on do, P2 and Ps

are orthogonal on d4, etc.

If there is a set of 2t parity equations orthogonal on dj,

then dj can be decoded correctly by majority decoding logic

(majority voting among 2t parity equations and d^ itself, totally

2t + l votes are involved) . In the above example, the code is

designed as SEC code, so every two equations are orthogonal on each

data bit.

In the following, according to Hsiao we will discuss a

type of majority-logic codes for multiple-error correcting. These

codes are defined on a set of so called Orthogonal Latin Squares,

hence are called Orthogonal Latin Square (OLS) codes. The codes

are a class of one-step decodable majority logic codes which can be

decoded in parallel manner.

The most attractive feature for one step majority decodable

codes is that they can be decoded at an exceptionally high speed.

For the OLS codes, there is another noticeable unique advantage.

That is, the decoder of the code can be built in a modular form

such that each additional modular adds a further error correcting

capability without affecting the existing modulars.

Orthogonal Latin Squares

122

A Latin square of order m is an m x m square array of the

digits 0, 1, m-1, with each row and column a permutation of

the digits. Two Latin squares are orthogonal if one Latin square

is superimposed on the other, every ordered pair of elements appear

only once.

Following are three (4 x 4) Latin squares L^, L2, and L3.

0 12
10 3
2 3 0 1
3 2 10

L,

0
1
2
3

2 3 1
3 2 0
0 13
10 2
L,

0
1
2
3

3 1
2 0
1 3
0 2

L.

2
3
0
1

The result of a superposition of the first two Latin squares

is as follows

0,0 1,2 2,3 3,1
1.1 0,3 3,2 2,0

2.2 3,0 0,1 1,3

3.3 2,1 1,0 0,2

In this array, each of the 4^ possible ordered pairs occur exactly

once. This holds for all other squares as well, and hence these

Latin squares are orthogonal.

Given a integer m, there exists a set of h orthogonal Latin

squares, where h is the number of orthogonal Latin squares that m

elements can generate. The relationship between h and m is

expressed as h = min (p^®^ -1), where p^®^ are integer powers of the

prime factors of the integer m. The method of constructing

123

Orthogonal Latin squares is included in Hsiao or it can be

found from tables of Fisher and Yates .

The construction of the H matrix

A OLS code which can correct t errors in a codeword is defined

on a set of orthogonal Latin squares. The codes have following

parameters

k = m^

r = 2tm

n — m 2

the number of data bits

the number of check bits

m^ + 2tm the length of the codeword

d = h + 3 the minimum Hamming distance

Let m^ data bits be denoted by a vector

^ ^ *^2, . . . f d,j,2 _J) (4.16)

Then the 2tm parity check equations for t-error correcting can be

obtained from the following parity check matrix H:

(4.17)

M,
2tm X im^*2tm)

where l2tm is an identity matrix of order 2tm and M2, . . - , M2t are

submatrices of size m x m^. These submatrices are expressed as

following

124

Ml

1111100000000000000000000

0000011111000000000000000

0000000000111110000000000
0000000000000001111100000

0000000000000000000011111

(4.18)

^2 [Im Im • • - Im

The matrices M3, M4, . . . ,

of orthogonal Latin squares L

Denote the Latin squares as

J m X m2

M2t are

1/

derived

• • ! L2t-2

(4.19)

from the existing set

of the size m x m.

Li

L2

[it .] L Xf J J m X

[1^. ,]
L 1, j J m X

(4.20)

where 1 and i,je{l, 2, m}.

For any given Latin square having m elements, there exists an

incidence matrix defined on one of its elements as follows.

Let L = [] be a Latin square; then an incidence matrix

defined with respect to the element c (1 < == c < = m, integer) ,

denoted by = [q'^ij] , is defined by the rules

qF. = 1, if lij = c

0, if li3 <> c (4.21)

For each Latin square of m element, there are m incidence matrices

Qi, Q2/ -‘-r Qm- Each incidence matrix is concatenated into a vector

form.

125

V. [q^ 11 ■ Im 21 2m ml ' " ^ mm 3 (4,22)

If submatrix is derived from a unique Latin square L^, then

Vj^, Vj, . . . , are derived from

Mi = (4.23)

Examples of constructing OLS codes

Given m = 5, then k = m^ = 25

Example-A Let t = 1, then r = 2tm =10, n = m^ +2tm = 35. This

is a (35, 25) SEC OLS code. The H matrix of the code has the form

as follows

if, = I. 10 (4.24)

where, according to Eq.(4.18) and Eq.(4.19) Ml and M2 are derived

M, =

111110000000000000000000

000001111100000000000000

000000000011111000000000

000000000000001111100000

000000000000000000011111

(4.25)

126

1 0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

(4.26)

The whole H matrix of the code is given in Fig.4.14 (a) . For

ECC codes. Orthogonal Latin squares are not needed.

Example-B Let t = 2, then r= 2tm = 20, n = +2tm =45. This is

a (45, 25) DEC OLS code. The Hj matrix has the form.

M,
(4.27)

where and Mj are identical to Eq. (4.25) and (4.26) . To

construct M3 and M4, it is necessary to find (5 x 5) Latin squares.

The existing Latin squares are given in follows

0 12 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 12 3

LI

0 12 3 4
2 3 4 0 1
4 0 12 3
1 2 3 4 0
3 4 0 1 2

L2

0 12 3 4
3 4 0 1 2
1 2 3 4 0
4 0 12 3
2 3 4 0 1

L3

0 12 3 4
4 0 12 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

L4

From LI, the incidence matrix QQ, Q^, Q2, Q3 and can be

derived as following

Mi

(a)

M
2

dfl ... dg ... djg... djg .. 6^Q . d^^ Cf

11111 00000 00000 00000 00000
00000 11111 00000 00000 00000
00000 00000 11111 00000 00000
00000 00000 00000 11111 00000
00000 00000 00000 00000 11111

10000 10000 10000 10000 10000
01000 01000 01000 01000 01000
00100 00100 00100 00100 00100
00010 00010 00010 00010 00010
00001 00001 00001 00001 00001

M3

(b)

M,

■ ^20 ■ <^24

M
M

1
2

,c 20

10000 00001 00010 00100 01000
0100010000000010001000100 T

00100 01000 10000 00001 00010 -^20
00010 00100 01000 10000 00001
0000100010 00100 01000 10000

10000 00010 01000 00001 00100
01000 00001 00100 10000 00010
00100 10000 00010 01000 00001
00010 01000 00001 00100 10000
00001 00100 10000 00010 01000

(c)

dfl ... dg ... djQ... .. d23 . d^^

Ml

M3

M,
10000 00100 00001 01000 00010
01000 0001010000 00100 00001 I
00100 0000101000 0001010000
00010 10000 00100 0000101000
00001 01000 0001010000 00100

10000 01000 00100 00010 00001
01000 00100 00010 00001 10000
00100 00010 00001 10000 01000
00010 00001 10000 01000 00100
00001 10000 01000 00100 00010

(a) Single error correcting code (35, 25)
(b) Double error correcting code (45, 25)
(c) Triple error correcting code (55,25)

Fig. 4. 14 H-mathces for OSL codes and decoder
for do.

do

127

128

1
0

0 0 0 01
0 0 0 11

0 0 0 1 0
0
0

1 0 01
0 0 0 1

Qo

0 0 0
0 0 1
0
1

1 0
0 0

10 0 0
0 0 0 0

0 0 0 0 1
Qs

0 10 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 10 0

Qi

0 0 0 0
0 0 0 1

100100
10 1 0 0 0
110000
100001
100010

Q2

0 0 10 0
0 10 0 0
1 0 0 0 0

Q4

Qj is obtained by replacing all j's in for I's and replacing all

values rather than j for O's. Then concatenate row by row into

a vector Vj, as follows

10000

01000

00100

00010

00001

00001

10000

01000

00100

00010

00010

00001

10000

01000

00100

00100

00010

00001

10000

01000

01000

00100

00010

00001

10000

(4.28)

In the similar way, can obtained from Latin square L2, as

follows

M. =

10000 00010 01000 00001 00100
01000 00001 00100 10000 00010
00100 10000 00010 01000 00001
00010 01000 00001 00100 10000
00001 00100 10000 00010 01000

(4.29)

The whole H matrix of the double error correcting OLS code is

129

2shown in Fig. 4.14 (b) . In this example, Latin squares and L2

were used to derive M3 and M4.

Example—C Let t = 3, then r = 2tm =30, n = m2 2tm = 55. This is

a (55,25) triple error correcting OLS code. The H3 matrix has the

form

H, =

^2

Ms

‘■30

where M^, Mj, M3, M4, are completely the same as Eq. (4.25), (4.26),

(4.28) and (4.29). In the same way, M5 and Mg can be derived from

Latin squares L3 and L4 respectively. The whole H3 matrix of the

codes is shown in Fig.4.14 (c). In fact this code is a result of

extension of H2. Since there are no more Latin squares that can be

used, the code of m=5 has a maximum error correcting capability of

three.

In Fig. 4.14, the decoders of data bit do for three codes are

also provided. It is seen that, whenever higher bit error

correcting capability is required, the decoding logic allows to add

a modular to the existing circuitry to perform the additional error

correcting without interfering the original mechanisms of the

decoder. The added modulars are identical in form to existing

ones. That is, all modulars are composed of mod 2 adders with the

same inputs and (2t + 1) voting gates. The simplicity and

130

regularity are useful for extending the error correcting capability

for an existing system.

It can be noticed that the maximum error correcting capability

of a OLS code is related to m, the size of corresponding Latin

squares. For an existing set of h (m x m) orthogonal Latin

squares (h < = m - 1), the maximum error correcting t is

t = [h / 2] + 1 (4.30)

In most cases of m, the number of Orthogonal Latin squares are

(m - 1) with the exception of m =6 and m = 10. In these two

cases, the SEC codes can not be extended to multiple error

correcting codes.

Shortening of the OLS codes

The maximum length of data for the OLS codes are m^, but in

computer memory systems, commonly used data size are 8, 16, 32, 64

etc. To meet the needs for memory systems, the procedure of

shortening a regular code, like in modified Hamming codes, can also

be performed on OLS codes. That is, choose and delete 1 columns

from m^ data bit columns of the OLS H matrix. The deletion of

column neither affects the orthogonality of the set of parity

equations nor reduces the number of orthogonal parity equations,

hence does not affect the validity of the majority logic.

Therefore as many columns as required can be deleted to meet

different applications. For instance, in example-C mentioned above,

there are k=m^=25 data columns in the H3 matrix. To meet a need for

16 bit data size. 9 columns from 25 have to be deleted.

131

Obviously, there are several deleting approaches to be chosen.

1) Delete the left-most 9 columns

In this case, among the 9 deleted columns, the first m columns

are included, thus the parity pi is now independent of any

data bits, hence can be deleted. On the other hand because

of the deletion, some of the adders in the decoder need less

inputs than they did in original decoder. For instance, the

adders corresponding to the parity p6, p7, p8 etc. now need

three inputs instead of five. But some of the others (p2, p3,

p4, and p5) still need five input. This means the deleting

does not improve the speed of decoding. The shortened H

matrix thus obtained is given in Fig.4.15 (a).

2) Delete the first m (= 5) columns and then columns d5, dlO, dl5

and d20.

As a result of the deleting scheme, pi and p5 become

independent of any data bits, hence can be deleted. Moreover,

the maximum number of inputs that adders need reduces to 4,

therefore this scheme also enhances the decoding speed. The

shortened H matrix thus obtained is shown in Fig.4.15 (b).

It seems that, when a shortened OLS code is required, by

proper choice of deleted columns, it is possible to improve the

decoding speed as well. If 1 < m, the deleting can be done

randomly. If 1 = m, each deleted column is chosen from each m-bit

group (columns dO to d4 is the first m-bit group, d5 to d9 the

second m-bit group etc), we call this per-column-per-m-bit-group.

do - •-d4
11111
00000
00000
00000
00000

10000
01000
00100
00010
00001

10000
01000
00100
00010
00001

10000
01000
00100
00010
00001

10000
01000
00100
00010
00001

10000
01000
00100
00010
00001

ds.. .d9 dio • -di4 dj5 . .di9 djo..d
00000 00000 00000
11111
00000
00000
00000

10000
01000
00100
00010
00001

00001
10000
01000
00100
00010

00010
00001
10000
01000
00100

00100
00010
00001
10000
01000

01000
00100
00010
00001
10000

00000
11111
00000
00000

10000
01000
00100
00010
00001

00010
00001
10000
01000
00100

01000
00100
00010
00001
10000

00001
10000
01000
00100
00010

00100
00010
00001
10000
01000

00000
00000
11111
00000

10000
01000
00100
00010
00001

00100

00010
00001
10000
01000

00001
10000
01000
00100
00010

01000
00100
00010
00001
10000

00010
00001
10000
01000
00100

20-U25

00000
00000
00000
00000
11111

10000
01000
00100
00010
00001

01000

00100
00010
00001
10000

00100
00010
00001
10000
01000

00010
00001

10000
01000
00100

00001
10000
01000
00100
00010

d? djo..d^4 dj5 ,.di9 d2o ..dis
0 ooooo ooooo ooooo
1 ooooo ooooo
0 mil ooooo
0 ooooo 11111

ooooo ooooo

10000
01000
00100
00010
00001

00010
00001
10000
01000
00100

01000
00100
00010
00001
10000

00001
10000
01000
00100
00010

00100
00010
00001
10000
01000

10000
01000
00100
00010
00001

00100

00010
00001
10000
01000

00001
10000
01000
00100
00010

01000
00100
00010
00001
10000

00010
00001
10000
01000
00100

ooooo
ooooo
ooooo
11111

10000
01000
00100
00010
00001

01000
00100
00010
00001
10000

00100
00010
00001
10000
01000

00010
00001
10000
01000
00100

00001
10000
01000
00100
00010

Hmatrix from Ha (a) H matrix of

shortened code

.. dg • -dj^4

0000 0000
nil 0000
0000 1111
0000 0000
0000 0000

0000 0000
1000 1000
0100 0100
0010 0010
0001 0001

0001 0010
0000 0001
1000 0000
0100 1000
0010 0100

0010 1000
0001 0100
0000 0010
1000 0001
0100 0000

0100 0001
0010 0000
0001 1000
0000 0100
1000 0010

1000 0100
0100 0010
0010 0001
0001 0000
0000 1000

■dig ,.d25

0000 0000
0000 0000
0000 0000
1111 0000
0000 1111

0000 0000
1000 1000
0100 , 0100
0010 0010
0001 0001

0100 1000

0010 0100
0001 0010
0000 0001
1000 0000

0001 0100
0000 0010
1000 0001
0100 0000
0010 1000

1000 0010
0100 0001
0010 0000
0001 1000
0000 0100

0010 0001
0001 0000
0000 1000
1000 0100
0100 0010

(b) H matrix of

shortened code

Fig. 4.15 H matrices* of shortened codes

* onlu information portions are qiven

1
3

2

133

If 1 > m, the first m columns deleted can be any m-bit group, then

delete other (1 - m) columns on per-column-per-m-bit-group basis.

4. 5 Erasures

Another method for coping with multiple errors in RAM memories

without introducing excessive decoding delays or excessively

complex hardware is to take advantage of the erasure correcting

capability of transfer error-control codes‘‘*'^°' ‘’■22] _ Thg

following is a brief review of erasure correcting scheme.

An erasure is an error for which the location of the error in

memory block is known but the magnitude is not. Usually hardware

defections cause erasures. The task of a decoder is to restore (or

fill) the erasure position.

Erasure correction has two major advantages:

1) A code with minimum Hamming distance d can be used to correct

up to (d -1) erasures (compare to correct up to (d-l)/2 random

errors) .

2) Erasures can be corrected more quickly than random errors.

The erasure correction procedure is briefly described as

follows:

stepl locate the defective positions in memory

step2 store the syndromes associated with the various

combinations of erasures

step3 generate the syndrome of the codeword read from the

memory

134

step4 compare the generated syndrome and stored syndromes

Steps if a match is found, the error is then determined

step6 if no match is found, a new erasure is occurring. Use

stepl to find the erasure location and add the new

syndrome to the stored syndrome set for further use.

The correction is based on a kind of 'look-up-table', hence

provides a fast decoding speed.

There are several approach to locate the erasure positions in

stepl. Following is one of them

a) write an arbitrary data word d (= d^ dj. . .d^) into a

location of the memory

b) read the same location, obtaining a memory word y^

c) repeat step a) and b) with data word d', where d' is bitwise

complement of d, obtaining a memory output word YZ-

e) the positions of the erasure are I's in the n-bit word

E = y^e Y2

Example, let us write a data word d=00010110 into a specific

memory block. Suppose when the word is read out from the memory, it

becomes yi-00010111, in which the bit is stuck at 1. To find out

the erasure position, we rewrite a data word d' (=11101000) into the

same memory block, where d' is the bitwise complemented of d. When

the word d' is read out, it becomes Y2= 11101001. By calculating

E = yi @ y2 =(00010111) © (11101001)=00000001, the erasure position

is located at 8*^^ position.

135

4.6 Siimmary

In this chapter four classes of error control methods, namely

error detection, single error correction, multiple error correction

and erasure were presented. As has been seen, the error detection

and correction capability is directly related to the distance of a

code, and so does the redundancy requirement. A decision of using

and selecting an error control code depends on several

considerations as descbribed in 4.1.

Error detection codes are the simplest codes with respect to

implementation of encoding and decoding. These codes can be used

in small memory systems and some applications in which error

detection is normally sufficient e. g., those with the capability

of repeated transmission or re-configuration.

Single error correcting and double error detecting codes are

widely used in computer memories. This is because most memory

errors caused by hard failure or soft failures are single bit

errors. H-V-parity codes discussed in section 4.2 using

bidirectional parity checking has a simple decoding circuit

structure, hence suitable for on-chip ECC schemes. There are

several reports on the implementations of the H-V-parity codes used

in computer memories 4.25]^ some modified H-V-parity

codes''*’^®^ . Modified Hamming codes are a type of optimal Hamming

codes from the practical point of view. With the same coding

efficiency, the modified Hamming codes provide improvement over

Hamming codes in speed, cost and reliability. The decoding circuit

of the codes can also be built in memory chips, such that the

136

memory system can be made more compact, high yield and high

reliability

Multiple error correcting codes combined with memory

maintenance strategies make it possible to delay the replacement of

defective memory cells thus reduce the system down time. In

section 4.3, the OLS codes which can correct multiple errors are

presented. These codes are attractive because of their exceptional

decoding speed and flexible circuit features. Even though the OLS

codes require higher redundancy, they are becoming a strong

candidate for multiple error correcting applications.

137

References

4.1 Len Levine and Ware Meyers, "Semiconductor Memory Reliability

with Error Detecting and Correcting Codes", Computers, October

1976, pp 43-49

4.2 Arnold M. Michelson, Allen H. Levesque,Error-Control

Techniques for Digital Communications, John Wiley & Sons 1985

4.3 Bary W. Johnson, Design and Analysis of fault tolerant digital

system, Addison Wesley, 1989

4.4 T. R. N. Rao/E. Fujiwara, Error-Control Coding for Computer

Systems, Prentice-Hall Inc., 1989

4.5 Bella Bose, "On Unordered Codes", IEEE Transactions on

Computers, vol. 40, No. 2, Feb. 1991, pp 125-131

4.6 Mario Blaum, Rodney Goodman, and Robert Mceliece, "The

Reliability of Single-Error Protected Computer Memories",

IEEE Transactions on Computers, vol. 37 No. 1, Jan. 1988,

pp 114-119

4.7 Loe Cohen, Robert Green, Kent Smith and J. Leland Seely,

"Single-Transistor Cell Makes Room for More Memory on An MOS

Chip" f Electronics, Aug. 2, 1971, pp 69-76

138

4.8 W. Wesley Peterson, E. J. Welson, JR. "Error Correctlncf

Codes", MIT press 1986

4.9 Tsuneo Mano, Junzo Yamada, "Circuit Techniques for a VLSI

Memory", IEEE Journal of Solid-State Circuits No. 5, Oct.

1983,pp 463-469

4.10 Shu lin/Daniel J. Costello, JR, "Error Control Coding

Fundamental and Applications", Prentice-Hall, Inc., Englewood

Cliffs New Jersey, 1983

4.11 C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for

Semiconductor Memory Application; A State-of-the-Art Review",

IBM Journal of Research and Development, 28 March 1984, pp

124-134

4.12 D. C. Bossen and M. Y. Hsiao, "A System Solution to the Memory

Soft Error Problem", IBM Journal of Research and Development,

24 May 1980, pp 390-397

4.13 Kiyohiro Furutani, "A Built-in Hamming Code ECC Circuit for

DRAM^ s", IEEE Journal of Solid-State Circuits No. 1, Feb.

1989, pp 50-55

4.14 Howard L. Kalter et al., "A 50-ns 16-Mb DRAM with a 10-ns Data

139

Rate and On-Chip ECC", IEEE Journal of Solid-State Circuits

No. 5, Oct. 1990, pp 1118-1127

4.15 A. Field, C.H. Stapper, "High-Speed On-chip ECC Synergistic

Fault-Tolerant Memory Chips". IEEE Journal of Solid-State

Circuits, vol. 26, No. 10, Oct. 1991, pp 1449-1452

4.16 William C. Carter an Charles E. McCarthy, "Implementation of

an Experimental Fault-Tolerant Memory System", IEEE

Transaction on Computers, c-25, June 1976, pp 557—568

4.17 M.Y. Hsiao and D. C. Bossen and R. T. Chen, "Orthogonal Latin

Sguare Codes", IBM Journal of Research and Development, 14

July 1970, pp 390-394

4.18 R. A. Fisher and F.Yates, "Statistical Tables for Biological

Agricultural and Medical Research". Hafner Publishing Co.,

1957

4.19 Mu. Y. Hsiao, Douglas C. Bossen, "Orthogonal Latin Sguare

Configuration for LSI Memory Yield and Reliability

Enhancement". IEEE Transactions on Computers, vol. c-24. No.

5, May 1975, pp 512-516

4.20 D. K. Pradhan, J. J. Stiffler "Error-Correcting Codes and

Self-Checking Circuits" IEEE Computer March 1980, pp 27-37

140

4.21 J. J. Stiffler "Coding for Random-Access Memories" IEEE

Transactions on Computers, vol. c-27. No. 6, June 1978, pp

526-531

4.22 Carl-Erik W. Sundberg "Erasure and Error Decoding for

Semiconductor Memories" IEEE Transactions on Computers, vol.

c-27. No.8, August 1978, pp 696-705

4.23 T. Mano et al., "Circuit Technologies for 16M-bit DRAM^s", in

ISSCC Dig. tech. Papers, Feb. 1987, pp 22-23

4.24 J. Yamada, "Selector-line Merged Built-in ECC Technique for

DRAM^ s ", IEEE J. Solid-state Circuits, vol. sc-22 pp 868-873

Oct. 1987

4.25 J. Yamada et al., "A 4-Mbit DRAM with 16-blt Concurrent

ECC", IEEE J. Solid-state Circuits, vol.23 pp 20-26 Feb. 1988

4.26 Sang H. Han and Miroslaw Malek, "A New Technique for Error

Detection and Correction in Semiconductor memories". IEEE

International Test Conference Papers, pp 864-870, 1987

CHAPTER FIVE UNIDIRECTIONAL ERROR CONTROL CODES

Most of the codes discussed in the previous chapters are

effective against random errors. In computer memories there are

other types of errors as well. They are asymmetric errors and

unidirectional errors'^'^^. According to the predominant occurrences

of the error types computer memories are referred as symmetric,

asymmetric and unidirectional error memories.

By random error memories, we mean that the probability of 1 to

0 errors (1-error) is identical to the probability of 0 to 1 errors

(0-error). While in symmetric error memories the probability of

1—errors is significantly greater than that of 0—errors (or vice

versa), an ideal asymmetric error memory allows only 1-errors (or

0-errors, but not both) occurring. In the unidirectional error

memories, both 1—error and 0-error are possible but in any

particular codeword all the errors are of the same type (1-errors

or 0-errors). Generally speaking, the asymmetric error memories are

a subset of the unidirectional error memories.

In some recently developed LSI/VLSI ROM and RAM memories the

most likely errors or faults are unidirectional errors. Also the

number of symmetric errors, which are random errors, are relatively

limited . In these situations unidirectional error control

codes may be more effective.

In this chapter some codes which are used for unidirectional

error control in computer memories will be discussed. First, in

section 5.1 unidirectional error detecting codes will be analyzed.

Following that in section 5.2 t-random error correcting and all

142

unidirectional error detecting codes are discussed.

5.1 Unidirectional error detecting codes

Let X and Y be two binary n-tuples, we define N(X, Y) as the

number of 1 to 0 crossovers from X to Y. N (X, Y) and N(Y,X) can be

calculated as

n n

N(X, Y) Ni Y, X) = (5.1)
1=0 1=0

Using these parameters, the Hamming distance of the code can be

then expressed as

d(JY, y) = N(,X,Y) + N{Y,X) (5.2)

A codeword X = (x^, X2, . . . , x^) is said to cover another

codeword Y = (y^, yj, . . . , yn) / if for all y^ = 1, where i = l, 2, . . . ,

n, the corresponding values of x^ are x^ = this case we

say X >= Y. It can be seen that if X >= Y, then N(Y, X) =0.

Unordered codes

A binary code C is called an unordered code if there is no

codeword that covers another codeword, that is, for any pair X and

Y in C, N(X, Y) >= 1 and N(Y, X) >= 1. For example, let

X - (1011) Y = (1101)

Xi= (1011) Yi= (1001)

Then N(X,Y) = 1 and N(Y,X) = 1, hence X and Y are unordered

143

codewords. On the other hand, N(X]^,Yi) = 1 and N(Yj^,Xi) = 0,

therefore X^ > Y^ and they are not unordered codewords. The

Hamming distances of the two codes are d(X,Y) = N(X,Y) + N(Y,X) =

2 and d{X^,Yi) = N(Xi,Yi) + N(Yi,Xi) = 1, respectively.

According to [5.3, 5.4], a code C is capable of detecting all

unidirectional errors (AUED) occurring in a codeword if and if only

the code is unordered, i.e.

Vx, Fee, NiX,Y)i: 1 A N{Y,X)^1

The above theorem can be proved by the following argument.

Let X be a valid codeword in unordered code C and X^ is an

erroneous codeword containing any number of unidirectional errors

(1-errors 0-errors, but not both) from codeword X. It is easy to

see that for m 1-errors occurring in X, N(X,Xi)= m >= 1 and N(Xi,X)

= 0 and for m 0-errors occurring in X, N(X,X;^) = 0 and N(Xj^,X) = m

>= 1. In each case X^ is not a valid codeword in the set of

unordered codewords, hence can be detected as an erroneous

codeword.

In chapter 3 we have stated that a linear code of minimum

Hamming distance of d^^^ is capable of detecting up to d„,in-l errors

(random errors). Now we see that an unordered code is capable of

detecting all unidirectional errors in a codeword. In this sense

unordered codes are more effective in unidirectional error cases.

Systematic and nonsystematic unordered codes

There are two classes of unordered codes, one is systematic

144

and. the other is nonsystematic. Generally, nonsystematic codes

need fewer check bits and provide a higher code rate, but need

complicated decoding logic. Systematic codes can be encoded and

decoded in parallel, but need more check bits.

As an example of nonsystematic unordered codes, we will

discuss a balanced code, which is one of optimal m-out-of-n codes.

Unlike most of other nonsystematic unordered codes, this code has

a high code rate as well as a simple decoding logic.

As an example of systematic unordered codes, we will discuss

Berger codes, which is the fundamental form of systematic unordered

codes.

m-out—of—n codes

As we have discussed in section 4.1 that m-out—of—n codes are

a class of single random error detecting codes. These codes can

also be used for all unidirectional error detecting purposes.

All codewords in the code are of length n and have m I's. For

any X and Y in the code, if X < > Y, X does not cover Y. Therefore

the code is unordered and capable of detecting all unidirectional

errors.

For given n and m, the number of the codewords can be calculated

as

/n! {n-m) !
n! (5.3)

Freiman [5.4] and Leiss have shown that the number |c| is

145

maximized when m = [n/2]. The [n/2]-out-of-n codes are optimal

codes in terms of maximum number of codewords. Every codeword in

the code contains equally number of I's and O's. So they are also

called balanced codes. In the following we will develop an

approach to constructing a class of efficient balanced codes which

can be decoded in parallel .

Construction of efficient balanced codes

To obtain a balanced codeword, some of the information bits

need to be modified so that there are equal numbers of I's and O's

in the resulting word. The resulting word is a balanced

information word. Meanwhile some check bits (called check word)

which carry the information about how many message bits has been

complemented are added to the balanced word. A complete codeword

is then composed of a balanced information word and balanced check

word. In the following, we will show that for any message word it

is always possible to obtain a balanced word and decode them.

Let X be information word of k bits, W (X) be the weight of X,

W(j) be the weight of the first j bits of X and X^ be the new word

obtained from X by complementing the first j bits of X. Therefore

W(X^) can be expressed as

W(X^) = Wix)- Wij)

= vnx) + j - 2W{j) (5.4)

where 0 =< j =< k. It can be seen that whenever j increases by

one, the weight of the new word X^ changes by +1 or -1, called

146

random walk' . Suppose W (X) = i, then W (X°) = i and W (X’^) = k - i.

This means, when complementing the first j bit of X, the weight of

new word X^ are changed between i and k-i. Hence there exist at

least one j such that W(X^) = [k/2], that is, for any information

word, we can always find a j such that by complementing the first

j bits the information word can be changed to a balanced word. For

example,

if X = OHIO 01101

then X^ = 10001 01101

and X® = 10001 10011

There are two j's that make X to be balanced, they are j = 5 and j

= 9. Only one j is taken in a given code.

In order to indicate the j, suppose a check word of r bits is

required. Then the balanced r bits have to be sufficient to

indicate the maximum possible j which is =< k. Therefore r has to

satisfy the following relationship.

(lr/2j) ^ ^

In the balanced code any number of unidirectional errors (1-

errors or 0-errors) that occur in a codeword will affect the

balance of the codeword, hence all unidirectional errors can be

easily detected.

As can be seen, even though the codes are nonsystematic (some

of the information bits are modified), the parallel decoding can be

achieved. For example, the values of j's (the number of the bits

147

complemented) can be determined by a table-lookup scheme. The table

provides all values of j's corresponding to the check words. The

size of the table is limited up to k. When the value of j has been

determined the original information word will be recovered using X

=

Berger codes

Another class of commonly used unordered codes are Berger

codes. The construction of the Berger codes can be described as

follows.

Let X = (Xi X2 ... X],^) be an information word, the number of

O's in X be kg and p(X) be the check word for X, then the codeword

has the form:

Xp (X)

where p (X) is the representation of kg in binary.

For example, if X = 00010110, then kg = 5 and p(X) = 101. The

codeword is therefore 00010110 101.

Here the information words are separated from the

corresponding bits and no information bits are modified. Therefore

Berger codes are systematic codes.

On the other hand, if X and Y are two information words such

that W(X) > W(Y), then p (Y) > p (X) and N (X, Y) >1. Since it is

obvious that N(X,Y) > 1, the codeword encoded from X and Y are

unordered. If W (X) = W(Y) and X < > Y, then they are already

unordered. Therefore the Berger codes are unordered codes.

When unidirectional errors occur in a codeword (without loss

148

of generality, only 1-errors are considered) they may affect the

codeword in three ways.

1) errors are in the information part X, in which kg will be

increased and p(X) remains unchanged.

2) errors are in the check word p(X), in which kg will remain

the same and p(X) will decrease.

3) errors are in both of information part X and check word part

p (X) , in which both kg and p (X) will change, but kg increases

and p(X) decreases.

In all the above cases, the consistency between kg and p(X) is

affected, hence any number of the unidirectional errors occurring

in a codeword can be detected.

In the Berger codes. The maximum number of kg in a codeword is

k. To represent such a kg in binary, the check bits required are

at least [log(k + 1)], where [x] denotes the smallest integer

greater than or equal to x. This number has been proven to be

optimal for systematic unordered codes .

The decoding of the Berger codes is as simple as separating

the information word from the check bits. So it is easy to achieve

a parallel decoding.

It needs to be emphasized that both m-out-of-n codes and

Berger codes are the basic forms for constructing unordered codes

in the unidirectional error control and combinational errors

control.

tED-AUED codes

149

Unordered codes can effectively detect all unidirectional

errors but fail to detect random errors. To prevent some random

errors from passing undetected , it is necessary to add some

ability of random error detecting to the unordered code. These

types of codes are tED-AUED codes that can detect t random errors

as well as all unidirectional errors. In the following we

introduce a general technique of constructing the tED-AUED

codes'^’®' .

Let k be the number of information bits, t be the required

random error detecting capability. The construction of the codes

is divided into two steps.

Step-1 Select an (n^, k) code with dn,i„ = t+ 1. Then

encode the k information bit into a (n^, k) codeword of code Ci.

Step-2 Select an (n, n^) Berger code Cj, where n^ bits are a

codeword of . Then encode the n^ bits into a codeword of Berger

code.

The length of the final code is n = n^ + [log(ni+l)] . The code

is capable of detecting t or fewer random errors and all

unidirectional errors. In the implementation, the two steps

mentioned above can be interchanged. The parameters shown in Table

5.1 for a set of tED-AUED codes where t = 2 and t = 3, are derived

by using distance-3 and distance-4 Hamming codes as C^.

The applications of this codes can be seen in ROM control

stores of PDPll/40, IBM 370/168, and Nanodata QMl. The sizes of

control words in these machines, respectively, are 56, 108, and 360

bits.

150

5.2 tEC-AUED codes

By tEC-AUED codes we mean the codes that correct t or fewer

random errors and detect (t + 1) or more errors if all of the

errors are unidirectional errors.

It is given in [8] that for all distinct codeword X and Y in

code C, if N(X,Y) >= t + 1 and N(Y,X) >= t + 1, then C is capable

of correcting t or fewer random errors and detecting all

unidirectional errors.

This is because of the fact that N(X,Y) >= t + 1 and N(Y,X) >=

t + 1, the code is unordered, hence is capable of detecting all

unidirectional errors. On the other hand, the Hamming distance

d(X,Y) is calculated as d(X,Y) = N(X,Y) + N(Y,X) >= 2t + 2, hence

is capable of correcting t or fewer random errors.

As can be seen, all the m-out—of-n codewords with minimum

Hamming distance (2t + 2) is a tEC-AUED code . For example a

SEC-AUED code can be constructed by selecting the subset of all its

codewords of m weight with d=4. This is a nonsystematic code.

However, there is no known efficient decoding scheme for it.

In the following we first discuss a general technique for

constructing tEC-AUED codes, then introduce some other construction

methods of tEC-AUED codes. Among them, SEC-AUED codes (t = 1) are

the most interesting ones for computer memories.

General technique for constructing tEC-AUED codes

The following technique is based on the concept of the product

of two codes. This concept was also previously discussed in H-V-

151

parity codes in section 4.2.

Let k be the number of the information bits and not a prime

number. Then it can be represented as k = k^ x k2 for some k^ and k2

and be rearranged to a matrix form of k^ x k2. The code construction

is then divided into two steps.

Step-1 Encode k^ rows using an (n^, kj) linear error

correcting code Cl. This Cl code must have d„,in >= t + 1. The

resulting matrix will have a size of k^ x n2.

Step-2 Encode the nj columns into Berger codewords, The final

matrix will be an n^ x nj matrix where n^ = k^ + [log(ki + 1)] .

The bits in the n^ x n2 matrix represent the codeword while the

bits in ki x k2 are information bits. This is a systematic code.

An illustration of constructing a SEC-AUED code using above steps

are shown in the following example.

Example: Let k = 6, be arranged into a 3 x 2 matrix as given

in Fig 5.1 (a) . Since the single-bit parity code has a minimum

Hamming distance of 2, it is used as row code. The matrix of this

row code is shown in Fig 5.1 (b). The columns of Fig 5.1 (b) are

encoded to Berger codewords. The final matrix is shown in Fig 5.1

(c) .

The algorithm for decoding for SEC-AUED is as follows,

a) Check the top k^^ rows. Let the number of rows found in errors

be e^.

b) Check all of n2 columns. Let the number of columns found in

errors be e2.

c) If = e2 = 0, no errors are assumed.

0 0
1 0
1 0

0 0
1 0
1 0

0
1
1

(a) Information bits (b) Row code matrix

0 0 1 0
1 0 i 1
1 011

0 1 I 0
1 ill

I

(c) The final codeword matrix

Fig.5.1 Encoding of a SEC-AUED code

152

153

d) If = 02 = 1, there is a single bit error in the

information block located at the intersection of the row and

the column where errors were found. This error bit is then

corrected.

e) If e^ and ej are not the value mentioned in c) or d) , then

multiple errors are detected.

Some specific tEC-AUED codes

Bose-Pradhan (BP) codes

The codes are systematic codes. The codewords typically have

the following form:

X Bi B2. . . B^+i

Here X represents the encoding of the given information bits

into a codeword in a systematic code C* where C* has a minimum

Hamming distance of (2t + 2) . B^ Bj . . . B^+i are Berger type

checkbits defined as follows.

The decimal value of B^ is equal to the number of O's in X and

Bj is equal to the number of 0's in (X Bj^...Bj_i) for j = 2, 3, ...,

t + 1.

Suppose X = 000 110 100 101 010 is a codeword in C* with d„jin>=

2t+2 = 6. The checkbits are computed as bellow

X = 000 110 100 101 010 there are nine O's in X,

Bi= 1001 there are eleven O's in (X B^)

B2= 1011 there are twelve O's in (X B^ B2)

63= 1100

154

Then the entire codeword is expressed as

QOOIIOIQOIOIOIO 1001 1011 1100
X B2 B3

The well-known Berger codes can be considered as a special

case (t = 1) of these codes. The number of the check bits is

(tlogj n) where n is the length of codeword of C*. It can be seen

that the coding rate of this type of codes is much higher than

those constructed by general technique discussed above.

The decoding algorithm of the BP codes can be described as

follows.

Let R = X B;^B2 . . be an error free codeword that is to be

stored in memory and R'= X'B'^. . . B'be a codeword read from the

memory which is corrupted by random errors and unidirectional

errors.

1) Compute Bj" (= The number of O's in X') and Bj" (= the number

of O's in (X' B/. . . B') , and then compute the syndromes

Sj- I BP' - B/ I

where IZ| denote the absolute value of Z

2) If all of Sj's have values of greater than t, then more than

t errors are detected but they are uncorrectable.

3) If at least one of the s^'s has value less than t, then there

are t or fewer errors in the codeword.

4) Apply the error correction procedure of code C* to X'. The

resulting word is now X".

5) Recompute Bj" to recover the complete codeword R. In some

applications, recovering X is sufficient, so the step 5) can

155

be omitted.

NGP codes

These codes are also systematic codes which have the same

codeword form as BP codes discussed above, but need fewer

checkbits, hence provide higher coding rate, the codewords of the

code have the form

XBiBj . . B^+]^

where X is the systematic parity check codeword of code C* with

length n and minimum Hamming distance d^ij,>= 2t + 1, and B^ Bj. . .B^+i

are the binary representations of (B^) (B2) . . . (B^+j) , where (Bj) 's

are related to the number of O's in X. Let ko be the number of 0' s

in X, then (Bj) can be generated from the following

(S.) ^ I-\ (5.6)
^ 2j-l

Comparing with BP codes , this codes have higher coding rate.

Decoding algorithm

The detection and correction algorithm for the codes is

described as follows.

Let R = X Bj. . -Bt+i be the error free codeword which is

stored in the memory, R'= X' B/ Bj' . . be the codeword read

from the memory which is corrupted by random errors or

unidirectional errors.

1) According to the decoding procedure for the parity check code

C*, compute the syndrome S of X' .

156

2) According to the rules of generating Bj's described above,

compute the values of check symbols D2 ...D^+i which

correspond to X', and set

Q1 - W(B/ B/ ... B't+i © D2 ...D^+i)

3) If S = 0 and Q1 = 0, no error has occurred. The received

codeword R', is assumed to be correct. Otherwise some errors

have occurred.

4) Let the syndrome S correspond to q multiplicity error. If q >

t then the errors are detected but uncorrectable. Other wise

set Z = k.

5) Correct X' by using the correction procedure in the parity

check code C* and obtain X" as the resulting word.

6) Recompute the values of check symbols D2' ...D'^+i which

correspond to X" and set

Q = Z + W{B/ B2' . . . B',^1 © D/ D'2- - -D't,i) .

7) If Q =< t, the word X"D'iD'2 ■ - - D''t+i is the correct word.

Otherwise the errors are only detectable.

Among the above seven steps, steps 1) and 2) are independent,

hence can be implemented in parallel.

Examples of SEC-AUED NGP codes and their decoding

In computer memories SEC-AUED codes are special interest. In

the following an example of encoding and decoding of a SEC-AUED

code is described.

157

Let X = 11101000 be a (8,4) SEC modified Hamming code with the

parity check matrix

1 1 1 0 1 0 0 O'

11010100

10110010

01110001

To form a SEC-AUED codeword, we generate and B2 according

to Eq.(5.6)

Bi = 0100 82 = 01

The complete codeword is therefore R = 11101000 0100 01.

Random error correction:

Let us assume that random error occurred at position 3 of the

codeword R, thus the erroneous codeword becomes

R' = 11^01000 0100 01

where the underline bit is in error and B'^ = 0100, B'2 = 01- The

decoding is as follows

1) According to Eq. (4.10) S = H x"^ = [1011]^

2) Regenerate = 0101, D2 = 01 and set

Q1 = W(B%, B% 0 DI,D2) = 1

3) Since S < > 0, some errors have occurred.

4) Since S = (1011) which matches to the third column of the H

matrix, a single error is assumed at the third bit. Therefore

set Z = 1. After the correction is done. The resulting word

is now X" 11101000.

158

5) Recompute the check bits D/= 0100, Dj' = 01 and set

Q = Z + W (B/, B2' © D/, D2') = 1 + 0 = 1

6) Since Q =< t = 1, the corrected codeword is taken as correct.

That is R" = R = 11101000 0100 01.

Unidirectional error correction:

We suppose that there are five 1-errors occurring at position

1, 3, 5, 10 and 14 of the same codeword R = j^l 1^0^00 0 OJ^OO OJ^ where

the underline bits are to be in error. Thus the erroneous codeword

becomes

X' = 01000000 B'i= 0000 B'2 = 00

1) Compute S=HX""= [1101 I’'

2) Regenerate =0111, Dj = 10 and set

Q1 = W (B/ , B2 © Di, D2) = 4

3) Since S < > 0, errors have occurred.

4) Since S (= [1101]) matches to the second column of the H

matrix, a single error at the second bit is assumed. Therefore

set Z = 1. After the correction, the resulting word becomes X"

= 00000000.

5) Recompute the checkbits D/ = 1000 and D2' = 10 and set

Q = Z + W (B/, B2' + D/, Dj') =1 + 2 = 3

6) Since Q = 3 >t = 1, the errors are only detectable.

Summary

In this chapter unidirectional errors control codes have been

5.3

159

discussed. The most important concept for all unidirectional error

detection is that the codes have to be unordered. There are two

basic types of unordered codes, nonsystematic and systematic

unordered codes. An m-out-of-n code is a typical nonsystematic

unordered code. The optimal m-out-of-n codes are [n/2]-out-of-n

codes. This is also called balanced codes. We discussed a class

of efficient balanced codes which can be decoded in an efficient

way.

Well-known Berger codes are the most common type of

systematic unordered codes. Many other codes used for

unidirectional error control are constructed based on Berger codes

and the like.

In section 5.2 some tEC-AUED codes are discussed. The general

way to generate a tEC-AUED code is to append some Berger type

checkbits to a tEC systematic parity check code C*. The product

codes have a simple encoding and decoding concept but need more

redundancy. The BP code are much better than the product codes in

term of coding rate. The NGP codes provide even more improvement

with respect to the redundancy. In recent years many proposals

regarding methods of constructing and decoding tEC-AUED codes have

come forward^^'^' .

Since the decoding complexity and delay tend to increase

rapidly with the number of errors to be corrected, in practice

only single or double error correcting codes are used. That is the

main reason for why we only illustrated the encoding /decoding of

SEC-AUED codes in the chapter.

160

Finally it is necessary to note that the methods for

constructing tEC-AUED codes discussed in the section 5.2 can be

extended to constructing t-EC/d-ED/AUED codes with d > t + 1 by

selecting a systematic code C* with capacity of t-random error

correcting and d-random error detecting'^'®'. The codes that can

correct t random errors and detect d random errors and also detect

all unidirectional errors (t-EC/d-ED/AUED) are presented.

However, we also notice that the unidirectional error codes we

discussed in this chapter have not yet found widespread application

in computer memories. There are two reasons: The requirement

of higher redundancy than that of the linear parity codes and the

incompatibility with parity-check codes which have been used widely

in computer memories fields for many years. Even though, there is

significant potential for high performance computers in future with

the advancement even larger capacity memory technology.

161

References

5.1 Serban D, Constantin and T, R. N. Rao, ”0n the Theory of

Asymmetric Error Correcting Codes” Information and Control

40, 20-36 (1979) pp 20-35

5.2 D.K. pradhan and J.J. Stiffler, "Error Correcting Codes and

Self-checking Circuits" IEEE Transactions on Computers,

(special issue on fault tolerant computing) pp 27-37 Mar. 1980

5.3 Bella Bose, "On Unordered Codes" IEEE Transactions on

Computers, vol. 40, No.2, Feb. 1991 pp 125-131

5.4 J.M Berger, "A Note on Error Detecting Codes for Asymmetric

Channel" Infer, contr., yol. 4, pp 68-73 Mar. 1961

5.5 C. V. Freiman "Optimal Error Detecting Codes for Completely

Asymmetric Binary Channel" Inform, contr., vol. 5, pp 64-71

Mar. 1962

5.6 E.L. Leiss, "Data Integrity in Digital Optical Disks" IEEE

Transactions on Computers, vol. c-33. No. 9, Sept. 1984 pp

818-827

5.7 Mrio Blaum, Rodney Goodman, and Robert Mceliece, "The

Reliability of Single-Error Protected Computer Memories" IEEE

162

Transactions on Computers, vol. 37, No. 1, Jan. 1988, pp

114-119

5.8 Dhiraj K. Pradhan, '*A New Class of Error-correcting

/detecting Codes for Fault—tolerant Computer Applications”

IEEE Transactions on Computers vol. c-29. No. 6, June 1980,

pp 471-481

5.9 Bella Bose, Thammavaram R. N. Rao, "Theory of Unidirectional

Error Correcting/detecting Codes" IEEE Transactions on

Computers, vol. c-31. No. 6, June 1982, pp 521-530

5.10 B. Bose and D.K. Pradhan, "Optimal Unidirectional Error

Detecting/correcting Codes" IEEE Transactions on Computers,

vol.c-31. No. 6, June 1982, pp 564-568

5.11 Dimitris Nikolos, Nicolas Gaitanis, and George Philokyprou,

"Systematic t-error Correcting/All Unidirectional Error

Detecting Codes" IEEE Transactions on Computers, vol. c-35.

No. 5, May 1986, pp 394-401

5.12 D. K. Pradhan, J.J. Stiffler, "Error-Correcting Codes and

Self-checking Circuits" IEEE Computer, March 1980, pp 27-37

163

CHAPTER SIX CONCLUSION

In computer memories there exist hard errors and soft errors.

Hard errors are caused by permanent failures occurred in memory

during manufacture or service time. Soft errors are

environmentally induced and not permanent. For example, the

radiation of alpha particles are known as the most likely source

of soft errors.

For hard errors, commonly used scheme to reduce their

consequences are such as spares of memory cells, periodical

maintenance of memory devices and replacement for those failed

memory components. Proper memory organization is also very

effective to decrease the effects caused by such errors. Per—bit-

per-chip organization, for example, enables memory to disperse

several errors into several memory words so that every word could

be contaminated by only one bit. In this organization the dominant

error patterns are usually single error patterns.

For soft errors, since they occur randomly not only in

positions but also randomly in time, it is very difficult to

predict them before their happening and is very difficult to

replace them when they have happened. Therefore some on line or

real time protection have to be employed. Error control coding

techniques are very effective for these purposes. In this thesis

we have discussed several error control codes used in computer

memories. Some of them are practically implemented in computer

industry while others have not yet been widely used. For the

latter we have pointed out their potential uses in future

164

applications.

Error detecting codes are simple in terms of implementation of

encoding and decoding. As an example, parity codes, which have one

bit redundancy attached to message bits, are of ability of

detecting one bit error or odd number of errors in a codeword.

Error detecting codes do not correct any errors. Once an error is

detected there is no way to recover the original codeword.

Computer memory has to employ other methods to get rid of the error

word and obtain correct one. A request for repeat transmission of

the codeword until correct one is received is one of the methods

which was frequently used in early computers. Error detecting

codes are usually used in small memory systems.

To achieve higher reliability of computer memory, error

correcting ability is required. Hamming codes are among firstly

selected codes for error correcting and error detecting purposes.

Hamming codes provide with capability of single bit error

correcting or double bits error detecting. It has simple encoding

and decoding logic. When a syndrome of a particular codeword is

calculated and the syndrome is found out matched to one of the

columns of the H matrix, the location the error bit is then

determined. If there is no such a match at all, double errors are

detected without indicating the locations of the errors. Modified

Hamming codes have higher decoding speed. This is because the

decoder of the code is optimized in terms of the levels the XOR

gates used in decoder. A report shows that combined use of memory

cell redundancy and modified Hamming code could enhance the

165

reliability and improve the yield of the memory by thousand

times(see figure 4.12) . As an alternative of single error

correcting and double error detecting code, in the thesis we have

introduced a so called H-V-parity code. Due to the simple

circuit structure of its decoder, it is well suited for on-chip

error control schemes. The improvement of reliability by using

this code is reported to be up to 10®.

For multiple error correcting codes, we found that some codes

which are usually used in communication systems , such as BCH code,

are not very convenient for computer memories. This is because the

decoding of BCH code is performed serially and therefore is

relatively slow in speed. Modern high speed computers can not

afford its decoding delay. We have studied a new class of multiple

error correcting codes, orthogonal latin square codes (OLS). The

OLS codes are one step decidable codes. The most attractions of

these codes are their high decoding speed and flexible circuit

features that allows to add more error correcting capability by

adding corresponding circuit modules without changing the existing

circuit structure. This is essential for computer memory to expand

its error correcting capability. The disadvantage of the OLS

codes is its high redundancy requirement. However, with the

development of VLSI technology they are becoming a very strong

candidate for multiple error correcting applications.

In some recently developed LSI/VLSI ROM and RAM memories the

most likely error are of unidirectional characteristics. In this

special case a class of unidirectional error detecting /correcting

166

codes could be more effective. We have pointed out that an

unordered code is capable of detecting all unidirectional errors in

a code word. Well known Berger codes are a class of typical

systematic unordered codes. Many other unidirectional codes are

based on Berger codes. Unfortunately, unidirectional codes have not

been widely used in computer memory systems. One of the reasons

for this is that the encoding and decoding of unordered codes are

more complicated than Hamming codes and modified Hamming codes. In

most cases Hamming codes and modified hamming codes are believed to

be effective enough. Unidirectional error control codes are

incompatible with parity codes while the parity codes have already

been implemented in practice. However, unidirectional codes are

very interesting and promising in large, high reliable computer

memory systems.

