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Abstract

The demand for large scale broadband networks is gaining immense popularity for convenient
access of information. A common concern of transmitting data through a wireless medium is the
effects of noise on the signal. Maintaining the reliability of the data becomes crucial. Employing Low
Density Parity Check (LDPC) codes specified by the IEEE 802.16e (WiMAX) standard simplifies the
encoding and decoding structure within a digital communication system, making it attractive for the

premise of this study.

The focus of the study is to develop LDPC decoding algorithms that require a simple decoding
structure. All examined decoding algorithms are based on an approximation of the Belief Propagation
(BP) decoding algorithm known as Min-Sum (MS) and Min-Sum based decoding. For this study, three
new Min-Sum based decoding algorithms will be proposed and compared to three existing MS based
decoding algorithms through software simulations. The objective of each proposed MS based decoding
algorithm is to further simplify the decoding structure of already existing Min-Sum based decoding

algorithms.
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1 Introduction

1.1 The motivations and premise of this Study

For this study, an in-depth investigation of Min-Sum based decoding algorithms for LDPC
codes will be examined. Until now, established Min-Sum based decoding algorithms include:
Normalized Min-Sum decoding [1], Offset Min-Sum decoding [2], and Self-Corrected Min-Sum
decoding [3]. The established decoding algorithms will be classified as known decoding algorithms
throughout this study. For this study, three new decoding algorithms will be proposed.

The objective of this thesis is to develop simplified Min-Sum based decoding algorithms with
simple decoding structures, and compare the results to known Min-Sum based decoding algorithms.
For this study, the IEEE 802.16e standard [4] serves as a practical scenario, suitable for investigating

the performances of all Min-Sum based algorithms at various lengths and code rates.

1.2 Applications of LDPC codes

LDPC codes are applicable to situations other than the IEEE 802.16e standard. Other
applications include IEEE 802.3an-2006 Standard (10GBase-T) [5]. This standard provides 10 Gbps
connections over unshielded or shielded twisted pair cables up to distances of 100 meters. Another
application of LDPC coding is the G.hn Standard [6]; a standard developed by International
Telecommunication Unit for networking (at a rate of 1 Gbps) over power lines, phone lines, and coaxial
cables. Lastly, DVB-S2 (Digital Video Broadcasting) [6] uses LDPC coding. The DVB-S2 allows

MPEG video and audio to be streamed over a channel.

1.3 Introduction to the IEEE 802.16e (WiMAX) Standard

The IEEE 802.16e is the successor to the IEEE standard 802.16-2004. The IEEE 802.16¢
standard builds on its predecessor by supporting subscriber stations moving at vehicular speeds, and
thus specifies a system for combined fixed and mobile broadband wireless access as mentioned in [7].
The significance of this standard is that it will close the gap between very high data rate wireless local
area networks (LANSs) and very high mobility cellular systems. For this thesis, this standard will serve

as basis for the encoding procedure, code rates, and block lengths are specified by the IEEE 802.16¢



standard.

WIMAX based applications are better suited for larger geographical networks compared to the
IEEE 802.11 standard [8] (Wi-Fi). Table 1.1 shows the range of various wireless communication
standards in comparison with the IEEE 802.16e standard. Traditionally, wide area networks (WANS)
are composed of two wireless technologies, national mobile networks and satellite providers. In
contrast, WIMAX standards are not as widely employed as Wi-Fi based networks, rather limited to
mobile networks. Wide LAN (WLAN) technologies, such as those underlying the Wi-Fi standard, are

capable of delivering data over a range of 150 meters and the Bluetooth standard provides access to

users within 10 meters.

Table 1.1: Coverages of various telecommunication standards

Standard Coverage

IEEE 802.15 (Bluetooth) 10 m

IEEE 802.11 (a, b, g) (WiFi) [150 m

IEEE 802.16- 2004 (WiMax) |50 km

IEEE 802.16¢ (WiMax) Nationwide (e.g. United States of America)

Mobile wireless is scalable in both radio access technology and network architecture. Thus, it
provides flexibility in network deployment and service offerings. Mobile WiMAX supports several
key features mentioned in [9]. To begin with, mobile WiMAX has a flexible spectrum allocation in that
it is scaled to work at various bandwidths from 1.25 to 20 MHz (varies for country requirements).
Furthermore, new authentication methods results in enhanced security features. High data rates with
the multiple input multiple output (MIMO) antenna techniques and flexible sub-channelization
schemes are features of the IEEE 802.16¢ standard, which can support peak rates of 63 Mb/s in
downlink and 28 Mb/s in uplink per sector.

For mobile applications power consumption is a critical factor. Mobile WiMAX provides two
modes for power efficient operations; sleep and idle modes. Sleep mode aims to minimize mobile user
power consumption and also provides flexibility that allows a mobile user to scan base stations (BS) to
collect hand-off related information. Whereas, in idle mode the user can transverse multiple BSs and

periodically capture downlink broadcast messages without registering to a particular BS.



1.4 Thesis Overview

Chapter 2 shows the digital communication system model this study employs. Also, a

description of the changes for each signal (or vector) is described as it passes through the system.

Chapter 3 reviews general concept of LDPC coding, introduces the Belief Propagation decoding
algorithm, followed with a numerical example of LDPC decoding, and the structure of the parity-check

matrix defined by the IEEE 802.16e standard and LDPC encoding using the IEEE802.16e standard.

Chapter 4 describes existing and newly proposed Min-Sum based decoding algorithms. Also,

the merits of the newly proposed decoding algorithms will be discussed.

Chapter 5 shows simulation results and provides a discussion of the results. The discussion

compares and contrasts the performances of existing and newly proposed LDPC decoding algorithms.

Chapter 6 will discuss the merits of the proposed LDPC decoding algorithms in comparison to
existing Min-Sum based decoding algorithms. Lastly, future work extending this study will be

discussed.

1.5 The original contribution of this thesis

Three new Min-Sum based decoding algorithms will be proposed for LDPC coding. All
proposed decoding algorithms are an improvement of known Min-Sum based decoding algorithms.
Thus, each proposed decoding algorithm is expected to show better performance results than the known
Min-Sum based decoding algorithms. The new decoding algorithms are obtained by a combination or
modification of known Min-Sum based decoding algorithms, while maintaining the simple Min-Sum
decoding structure. Software based simulations will be performed to compare the performances of

proposed Min-Sum based decoding algorithms versus the known Min-Sum based decoding algorithms.
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2 Description of system model

Figure 2.1 shows the system that will be employed for this study. The data is generated in the form of
binary symbols. These information symbols are sent serially. The key parameter of information is the
code rate, R, which is the minimum number of bits per second needed to represent the output signal.
The channel encoder code accepts the information bits as inputs. The encoder data is then
organized into blocks of &-bits [10] each denoted by u = (4o ui,...,ur). The LDPC encoder then maps
the ¥ linear block code into a coded sequence of n-bits, ¢ = (¢y cy,...,co1), with n > k. For this system,
the u blocks represents the information bits and ¢ represents the codeword. The codeword contains
both message and parity-check bits. This system will assume that the messages are composed of

statistically independent [11] bits.

The output, ¢, from the encoder is fed into the input of the modulator. The system will use
binary shift phase keying (BPSK) modulation [11]. Once BPSK modulation is applied, the signal is
redefined as vector x = (x; x,,...,x,;). The modulated signal is sent through the channel. Equation 2.1

shows the process of BPSK modulation.

x,=(—1)" , where 0<i<n—1 2.1
Dat “ rppc | © o] Besk
ata PS
Source Z Fncoder | Modulator
Information Codeword X

AWGN

L——:> Channel
); x+w

Output Output 4 1.DPC ¢ BPSK
Signal <: Transducer Decoder ] Demodulator

Estimated Recetved
Information vector

Figure 2.1: System model

The channel adds noise to the modulated vector. For this study, Additive White Gaussian Noise

[13] (AWGN) is added to the vector and is denoted by w= (w, w,..., wy.r). Vector w and its elements

11



follow the Gaussian distribution with mean of 0 and variance of 022—59- . Figure 2.2 shows the

resultant vector, y= (Yo yi,...,¥us), when AWGN is added to the modulated vector. Equation 2.2 shows
the process of adding AWGN to a modulated signal.

YVi=x;+w, where 0<i<n-—1 (2.2)

—

Channel

Iﬂ
|
‘Z

w

Figure 2.2: System channel

The system takes the y vector and employs an antipodal binary signaling scheme using a
maximum-likelihood detection, or ML detection [10]. In ML detection, for this detector to be optimal
[13], it is assumed that the probability of 0 or 1 transmission is equiprobable. The reconstructed

codeword is represented by ¢ and is passed into the LDPC decoder.

The LDPC decoder uses a unique decoding algorithm. LDPC decoding uses a specialized
algorithm known as Belief Propagation (BP) [12] decoding. For this study, an approximation of the BP
algorithm known as the Min-Sum (MS) [13] decoding will be examined. LDPC decoding algorithms
consist of applying a series of mathematical equations which will be discussed thoroughly in Chapter 3.
Once the LDPC decoding procedure has been applied to the signal the resultant vector becomes # .
A final operation is performed to verify the reliability of the information data # . This operation is

known as an orthogonality check.

12



3 LDPC Codes

3.1 Introduction to Low Density Parity Check (LDPC) Codes

LDPC codes were first introduced by Robert Gallager in 1963 in his PhD dissertation [12]. In
his dissertation, Gallager introduced the Sum Product algorithm. In order to study the applications of
LDPC codes powerful computers, virtually non-existent, were required. In 1998, David MacKay [14]
revisited LDPC codes by developing the Belief Propagation (BP) decoding algorithm [15].

LDPC codes are a class of linear block codes used as an iteration based error-correction coding
method. LDPC codes are studied using long codewords, usually greater than 1000 bits. LDPC codes
are characterized by their parity-check matrix which has a sparse amount of 1's and a dense amount of
0's. If the number of 1's is fixed in each column and row of the parity check matrix, then the LDPC

code 1s known as regular [16]. Otherwise the LDPC code will be classified as irregular [17].

The overall effectiveness of LDPC coding has allowed for data transmission rates to reach close
to the theoretical maximum, determined by the Shannon limit [18]. From [17] very long irregular
LDPC codes have been designed to operate within 0.0045 dB of the Shannon limit. LDPC codes have
the following characteristics: better performances compared to using Turbo codes when the block
length is large, greater flexibility, simple description and resulting theoretical verifiability, lower
decoding complexity compared to using Turbo codes, parallel capability, which facilitates hardware
implementation, and higher throughput, which results in high-speed decoding. Furthermore, LDPC

codes perform extremely well on Binary Symmetric Channels (BSC) [19] and AWGN [11] channels.

3.2 General Description of LDPC codes

3.2.1 LDPC codes Definitions

This section defines the notations that will be throughout this thesis for describing messages. For this
study each message is represented by log-likelihood ratios (LLR). An LLR is a statistical test for
making a decision between two hypotheses based on the value of this ratio. The definitions introduced

in this section will discussed in detail in section 3.2.3.

* nis a variable node, a vertex on a bipartite graph, corresponding to each bit in codeword of

13



length N.

* mis a check node, a vertex on a bipartite graph, corresponding to each check equation in a

parity check matrix H of M rows.
*  M(n) is a set of check nodes connected to a variable node 7.

*  N(m) is a set of variable nodes connected to a check node m (m=n-k).

. r(,,',) » 18 a message from a check node m to a variable node # at the ith iteration on the bipartite

graph. In this case a message serves as information for decoding.

* q (/1[) » 18 a message from a variable node # to a check node m at the ith iteration on the bipartite

graph. In this case a message serves as information for decoding.

. { ,(f) is an LLR output of a coded bit n at the ith iteration and / 510) 1s an initial LLR of the bit

from the channel observation.

3.2.2 Parity-check Matrix

Longer block lengths result in using larger parity-check and generator matrices. The
complexity of multiplying a codeword with a matrix depends on the density of 1's in the matrix. If
there are a greater amount of 1's than 0's in a given matrix, the matrix will be considered dense. For
linear block codes the parity-check matrix, H, is put in the form of H = [PT | I, - 4]
via Gaussian elimination of the generator matrix, G, this computation will be quite complicated for
longer code lengths. For this parity matrix, H, structure PT of (n - k) by k dimensions , and represents
the parity check bits and I, -y is the (n — k) by (n - k) identity matrix. Also, ' denotes a concatenation.
The generator matrix is determined by G = [Ie| P]. The sub-matrix, P, is generally dense, so the
encoding complexity will be quite high. By employing LDPC codes, a sparse parity-check matrix is
used instead of a generator matrix. The structure of the parity-check matrix used for LDPC coding is

shown below (3.1). The parity-check matrix is defined by N XM dimensions.

PA,, PA,Z PA,'”, | PB,, By PB,_,,,
H=[p P)=| P Pan o Pal | Py Py Py G
PA,, PAQ P, | PH, PB,_. Py

14



The parity matrix contains two major sub-divisions. When multiplied by a column vector
codeword, ¢/, using modulo-2 operations, the result should be a column vector of 0's. Otherwise the
encoded codeword is not valid for that particular parity-check matrix. Equation (3.2) shows algebraic
relationship between a valid codeword and its parity-check matrix. The codeword contains a block of
parity check bits, which has the same length as the number of rows as the parity-check matrix. The rate

of the code (R) is the number of information bits, , divided by the number of columns in the matrix, n.
H =0 where " =[k ko k, | Ky Fapnosy o Kenri (3.2)

The significance of the two major sub-divisions P and P of the parity matrix is that something
is multiplied with the information bits, &, and parity bits, n — £, of the codeword, respectively. The
process of encoding is determining the set of parity-check bits that, when concatenated with the data
bits, will multiply with the parity check matrix and create a column of zeros. The decoding process

determines the set of bits that were transmitted with this property based on the received packet.

3.2.3 Tanner (bipartite) Graphs

Tanner graphs [20] are a visual representation that shows the relationship between the parity-
check matrix and message nodes. Tanner graph nodes are partitioned into two classes, check nodes and
variable nodes. For LDPC codes the check nodes denote the rows of the parity check matrix, H. The
check nodes correspond to the parity-check bits of a codeword. The variable nodes denote the columns
of the parity-check matrix. The variable nodes correspond to the codeword vector ¢. An edge connects
a check node to a variable node if a nonzero entry exists in the intersection of the corresponding row

(check node) and column (variable node).

Let the degree of every variable node be the degree at every check node. For LDPC coding the
amount of connected check nodes to variable (and vice-versa) nodes are very small compared to the
code length. The Tanner graph corresponds to a sparse parity-check matrix. Equation (3.3) shows a
sample parity-check matrix. The first row of the parity-check matrix, m 1, corresponds to the first check
node of the Tanner graph shown in Figure 3.1. The one-to-one mapping shown in Figure 3.1 shows the
intersection of the variable node for a given check node. For every check node, an intersection exists
between columns (variable nodes) in the parity-check matrix. For example, the row of m, is intersected
with the columns of n,, n,, and n,. Equivalently, on the Tanner graph the first check node (m,) are

connected to first (rn,), second (n/), and fourth (r,) variable nodes.

15



1.0 1 0 0fm
H=0 11 0 1 0 m,

1 01 0 0 1 m,

n[ }’12 I’lj 7’14 I’lj }’l() (33)

17’11 77’12 7’}’13
Check nodes
Variable nodes
I’l/ I’lz }’l3 Vl4 I’l). 7’16

Figure 3.1: Tanner (bipartite) graph

3.2.4 Belief Propagation (BP)

As mentioned in [1], LLR domain messages are probabilistically advantageous, since
multiplications are replaced by addition operations and the normalization step 1s eliminated. The
decoding procedure has five steps: initialization, check node update, variable node update and LLR

update, hard decision, and orthogonality check.

The LLR-BP decoding algorithms are based on the tanh rule. Other LLR-BP based decoding
algorithms include the Gallager [12] and Jacobian approaches [1]. Following the LLR-BP [21]]22]

based on the tanh rule [21], the algorithm is summarized as follows.

Initialization: each symbol node # is assigned an a posteriori LLR lf,,o) . For every position

2
(m,n) such that H,, = 1, qE,??,FZ(nO) and i = 0. In LLR-BP decoding, ! f,n =Y, , where
o

N
y,=%14+w, and w, is the AWGN with mean of 0 and variance of 0"2:—:-252

* Step 1) Check-node update: For each m, and for each n€N(m) | compute

16



3
U TT tann| 2o

(e _. n €N (m\n
P =100 " (3.4)
1"" H tanh ( QH'Jn)
n'eN{m\n 2

Figure 3.2 shows a pictorial representation of edge of the check node [23] update process (also
denoted by equation (3.4)). Every check node represents a single parity-check bit. In every iteration,
the output of the check node update messages in LLRs have to be passed to the variable nodes by

exclusion of the incoming message from the tanh operation of every outgoing message.

Q1 q/ y an

Figure 3.2: Selecting an
edge for Check node
message [24]

Step 2a) Variable-node update: For each n, compute

(+1)_.  (0) Z (]
qn,m —CIn,m+ rm',n (35)
e (n)m

The variable node receives LLR values from the AWGN channel (g~ in the Figure 3.3) and from
the corresponding check nodes where the variable nodes are connected. In every iteration the messages

in LLRs have to be passed to the check nodes by exclusion of the incoming message from the sum of

every outgoing message.

17



Figure 3.3: Selecting an edge
Jor Variable node message

[24]

Step 2b) LLR update: for each meM (n)

(i1} __ 4(0) i)
L= > (3.6)

meMin)

* Step 3) Hard decision of LLR outputs: Quantize &=[é,, cchM][ such that ¢,=0 if

1720 Jand e,=1 if 1"<q

n n

* Step 4) Parity check operation: if H gz =0 , the orthogonality is verified meaning the
decoder has detected zero errors in the reconstructed codeword. Otherwise the decoding
algorithm must return to Step 1), and i = i + 1. If the algorithm does not halt within ., a
predefined number of maximum iterations, a decoder failure is declared. The block error rate

(BLER) is increased by one.

3.3 Example of LDPC Decoding

Consider the following parity check matrix:

0

1101 0
H=|0 10 1 0. (3.7)
1 1 0 0 1

O e i

Suppose that the incoming information vector is u’—‘-[l 0 1] (I by k array). Then taking the first
three bits into as the information bits, the corresponding encoded word is c:[l 1 0 0 1 l] v

by n array). The transmitted codeword is then x:{ﬂ -1 1 1 -1 —1J (I by n array) using
BPSK  modulation. Due to the effects of the AWGN channel the received vector is

18



=[O.5 -1 1 1 -1 O] (/ by n array). The extrinsic probability with respect to the AWGN

_ 2 . o s
decoder is given by l,)= ¥, which goes through the detector to give the intrinsic probabilities
o
with respect to the LDPC decoder:

)
0_ &
l,,’—gz,»,, : (3.8)

For AWGN channel the assumed variance is  ¢’=1 , the input to the decoder is denoted by y. The

input to the LDPC decoder at the 0" iteration is denoted by vector [\ | containing Z(ﬂm elements,

and has a log-likelihood ratio of

=1 =2 2 2 =2 o] . (3.9)

At the O™ iteration vector gﬂ , containing qflo 1,, elements, is equivalent to /'

Using the parity-check matrix, H, the log-domain version of the message-passing algorithm is
applied. Initially, %, is set to zero. Applying the check node message update from equation (3.5)
solves for the edge of ¢/, shown in (3.10). Figure 3.4 shows the computation tree of the variable node
update for first iteration.

an/vﬂ] _Qn m+ z r(n?)’,n
m’'eM (n)\m
q(lolﬂ—l—l-O (3.10)
CJ1 1 =1
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Figure 3.4: Variable node update

The edge of the variable node message update is computed by r%,,,. For example, an entry of

the first row (r”; ;) is computed by

1+ H tanh(:—%)tanh(%)
(1’)_ n'€N {m)\n 2 2 =—1.325

. (3.11)
-2 2
11— 1—[ . tanh(—2—~> tanh (‘5)

n'eN(m

Using the same formula from (3.11) the remaining check node message updates are determined the

same way. Figure 3.5 shows the computation tree of the check node update after the first iteration.

Figure 3.5: Check node update afier the first iteration

Using equation (3.6) gives the extrinsic output for the first iteration of the decoder. Adding the

extrinsic output for the first iteration of the decoder with the intrinsic input /%, from the variable node

message update, denoted by equation (3.6), gives the posterior (LLR update) information for l(”i)
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The remainder of the [V array is shown in (3.13). In equation (3.12), an example calculating Z{‘]” is

shown as
l(i+))=l(0)+ z V(i),
" n meﬂﬂn) m,n
1OV=14(-1325) - (3.12)
IV=-0325
1M=[-0325 —2590 3250 1265 —3325 0.735] (3.13)

Figure 3.6 shows the computation tree for the LLR update after the first iteration.

IM,=0.325 IV =2590 IM,=3.250  IM=1265  IV=3325 IV=0735

(1) oA 1)
o, + X

m.n

7, (0) (1) (0) (1)
1(0)3 + 2}"{ )m,n l 4 + E’ mn l 3 + 2/" mn

(0)
l 6
n5
b

[0 4 3
! m,n

10 =g =1 1 =¢" =2 1 =g =2 I =q" =2 10 =g =2 10 =¢(" =0
Figure 3.6: LLR update after the first iteration

Once the LLR outputs have been updated the next step is the hard decision. To reiterate, the

decision rules are: if [""">0 then ¢,=0 | and if 1"""<0 then ¢,=1 . Using these decision

rules the reconstructed codeword after one iteration is c=|1 1 1 0 1 0] . Next, an

orthogonality check (or syndrome) verifies the validity decoded codeword. This operation is
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performed below

=[O 0 1} . ‘ (3.14)

s
i
—_ O e
[ R
—— O
O O
S — o
—_ o o
S — oo =~

e L

The syndrome does not result in an all zero vector. Thus, an error exists in the decoded
codeword (¢”) and the iterative decoding procedure must repeated from the check node message update
until the codeword is verified or the predefined number of iterations, ... , has been reached. At this
point an error will be declared. Usually after an error is declared, for the next iteration the magnitudes
of the messages passed along the edges increases. In other words, lq““)l>lq(,f}ml and

lq(,,’,ﬁf )l>qu,’,)' .| . As the magnitudes increase the probability of detecting an error decreases for next

iteration.

3.4 LDPC codes of the IEEE802.16e standard (WIMAX)

When examining the IEEE 802.16e standard, the parity-check matrix is used for both the
encoding and decoding procedures. For the encoding algorithm, using a parity-check matrix rather
than a generator simplifies the structure of the algorithm. This standard can accommodate for various
code rate and block size adjustments (specified in the A. 1). Each LDPC code in the set of LDPC codes
is defined by a parity check matrix, H, of size m by n, where » is the length of the code and m is the
number of parity check bits in the code. The number of systematic (message length) bits is defined by

k =n—m. The H matrix is defined as

n
PO,O PO,] PO,Z PO,H,’*Z PO,n,;—l
P1,0 Pl,l PI,Z 1,n,~2 1,n,~1 H

] = =P

f PZ,O PZ,] PZ,Z PZ,n,,—Z PZ,n,,-—l (315)
n,—1,0 Pm,,—-l,l my—~-1,2 ny-1,,—2 ‘Pmb—l,ub-l

where Py is one set of z by z matrices. The parity-check matrix is expanded from a binary case matrix
H, of size m, by n;, where n=z-n, and m=z-m, , with z an integer defined in A.1. The base

matrix is expanded by replacing each existing 1 in the base matrix with a z by z permutation matrix,
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and each 0 with a zero matrix of z by z dimension. The base matrix size 7, is an integer equaling 24.

For an example of an expansion of the H, matrix see Appendix A.

The permutations used are circular right shifts, and the set of permutation matrices contains the
z by z identity matrix and circular right shifted versions of the identity matrix. Since each permutation
matrix is specified by a single éircular right shift, the binary base matrix information and permutation
replacement information can be combined into a single compact model H,n. The H,,, matrix model is
the same as the binary base matrix H,, with each binary entry (ij) of the base matrix H, replaced to
create the model matrix Hyy. Each 0 in H, is replaced by a negative (e.g. -1) to represent a z by z all-
zero matrix, and each 1 in H, is replaced by a circular shift size p(;, J) =2 0. The model matrix H,, can

expand directly to H.

The H, matrix is portioned into two sections, where Hy, corresponds to the systematic bits and

H; corresponds to the parity-check bits, such that
[—[/;=].(Hbl)mhx](,,l(HbQ)m,,xl\’,,J (316)

Furthermore, Hy, is partitioned into two sections, where h, vector has odd weight, and H", has a dual-
diagonal structure with matrix elements at row i, column Jjequalto 1 fori=j 1 fori=j+ I and 0
elsewhere. The base matrix has hy(0) = 1, hy( m, - 1) = 1, and a third value hy(G), 0 <j < (my - 1)

equivalent to 1. The base matrix structure avoids having multiple weight -1 columns in the expanded

matrix.
w0 )
h,(1) I 1 1 0
}1h2=[hb]H’h2]= : 1 | (3.17)
4 | 0 1 1
hb(””h“"l) l 1

Specifically, the non-zero sub-matrices are circularly right shifted by a particular circular shift
value. Each 1 in H', is assigned a circular shift of 0, resulting in z by z identity matrix when
expanding to H. From equation (3.17), the two located at the top and bottom of A, are assigned equal

shift sizes, and the third 1 in the middle of 4, is given an unpaired shift size.

The base model matrix is defined for the largest code length supported by the standard (n =

2304) of each code rate. The set of shifts {p(i, j)} in the base model matrix are utilized to determine



the shift sizes for all other code lengths of the same code rate. Each base model matrix has n, = 24
columns, and the expansion factor z; equivalent to n/24 for length n. The standard specifies f as the
index for a given code rate for, /=0, 1,2, ... 18. For example, code length n = 2304 the expansion

factor is assigned z, = 96.

For code rates 1/2, 3/4 A and B, 2/3 B code, and 5/6 code, the shift sizes {p(f i, j)} for a code
size corresponding to expansion factor z are derived from {p(i, j)} by scaling p(, j) proportionally,
p(i, ), p(i, j)<0
P(f.ij)= [p(i,j)Z,-J

Zy

 pli, )>0 (3.18)

where |x| denotes a flooring function. For code rate 2/3 A, the shift sizes {p(f, i, j)} for a code size
corresponding to expansion factor z, are derived from {p(i, j)}, using a modulo function

P(f,i,j)= pli, j), pli, j)=<0

mod (p(i, j),z,), pli, j)>0 (3.19)

By using the parity-check matrix structure from equation 3.1, the LPDC code is flexible in that
it can accommodate various code rates as well as packet sizes. The encoding of a data packet during
transmission generates parity-check bits represented as p = (po, ..., pws) based on an information block
X = (Xo ..., Xpn), and transmits the parity-check bits along with the information block. Due to the
current symbol set to be encoded and transmitted is contained in the transmitted codeword, the
information block is known as systematic (message) bits. The encoder receives the information block s
= (o, ..., $ms) and utilizes matrix H,,, to determine the parity-check bits.. The expanded matrix H is
determined from H,. Since the expanded matrix H contains only binary elements, encoding of a
packet can be performed with vector or matrix operations conducted over the Galois field of 2 elements
GF(2) [11].

The classical method of encoding requires determining a generator matrix G from H such that

GH"=0 . A k-bit information block Sixx can encoded by the code generator matrix Gy, using the
operation x = s G to become an n-bit codeword x,.,, with codeword x = [s pl=[s0 81 . Skt po, p1y .
Pw-1], Where py, .., pa. are the parity-check bits; and s;, ... .., are the systematic bits. Encoding an

LDPC code from G can be quite complex; whereas, LDPC codes using the IEEE 802.16e standard

require very low complexity such that encoding directly from H is possible. The remaining paragraphs
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of this section will discus direct encoding algorithm.

Encoding is the process of determining a parity sequence p associated with a given block of
information sequence s. To encode, the information block s is divided into &, = », — m, groups of z bits.

The grouped s will be denoted by u,

u=[u(0)u(1)..u(k,~1)] (3.20)
where each element of u is a column vector as follows

w(i)=[8eS et Sparya] (3.21)

Utilizing the model matrix Hi,,, the parity sequence p is determined in groups of z. The grouped parity

sequence p will be denoted by v,

v=[v(0)v(1)..v(m,~1)] (3.22)
where each element v is a column vector as follows

v(i)=[p.P.,.. P(i+1)z—1] (3.23)

The encoding process occurs in two steps, (1) initialization, which determined v(0), and (2)
recursion, which determines v(i + 1) from v(i), 0<i<m,—2 . An expression for v(0) can be derived
from summing over the rows to H,,, obtain

ky—1 m,—

Poav(0)=20 2P, ul)) (3.24)

Jj=0 i=0
where x, 0<x<m,—2 | is the row index of h,, where the entry is nonnegative and unpaired, and P;
represents a z by z identity matrix circularly right shifted by size i. Equation is solved for v(0) by
multiplying P;(lx_kb) , and, P;(lx,kb)ZP:—p(x,kh) since p(x, ky) represents a circular shift. Considering

the structure of H'";, the recursion can be derived as follows,

ky—1
v(l)=) P yul )P, v(0), i=0 (3.25)
/=0
k-1
v{it)=v(i)+ 2, P ulj)+P,, v(0), i=1,... m,—2 (3.26)
J=0
where
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P_,=0

- fogt gy

(3.27)

Hence all parity bits not in v(0) are determined by evaluation of equation (3.25) for 0<i<m,—2

The encoding algorithm is completely described by equations (3.25) to (3.27). These equations are
straightforward in terms of standard digital logic architectures. Since the non-zero elements of p(i, j) of
Hyn represent circular shift sizes of a vector, all products of the form Py g 1s implemented by a size-z

barrel shifter.
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4 Min-Sum Based Decoding Algorithms for LDPC codes
4.1 Known LDPC Decoding Algorithms

4.1.1 Min-Sum (MS) Decoding Algorithm

The MS [13] decoding algorithms simplify the check node update (Step 1) in the BP based
algorithm. Rather than a computationally involved hyperbolic tangent function, MS decoding check
node update selects the minimum input value. The modified Step 1) from the check node update from
the BP based algorithm is shown below. All other steps from the LLR-BP algorithm remains intact.
The purpose of the MS decoding algorithm is that simplifies the check node update computation. By

modifying MS several decoding algorithms can be developed.

Initialization: each symbol node » is assigned an a posteriori LLR 1" For every position

(m,n) such that H,, = 1, q(,f)',,‘—‘l(,,o) and i = 0. From this simplification, / ;0) =y, rather than
0_ 2 . . . . : 2
L, =37 Y, inall MS and MS based decoding algorithms described by removing o7 where

o

2 .
> 1s considered as a factor that does not affect the overall performances and thus can be removed
o

at the decoding procedure.

To calculate the magnitude of a particular outgoing message of a check node, the minimum
magnitudes of all the other incoming messages need to be calculated (i.e. minimum of all the
magnitude of the messages, except the message which corresponds to the outgoing message). For the
sign of the outgoing message of a check node, the product of the signs of all other incoming messages
has to be computed. This can be done by first computing the product of the signs of all inputs and then
multiplying every outgoing message with the sign of the associated,incoming message as shown in
equation (4.1).

*  Step 1) Check-node update: For each m, and for each n€N(m ), compute

f";,'f',F( I1 Sig/'l(qff?',,,,))'( min L{’U @1

e N{m)n '@ N(min

27



*  Step 2a) Variable-node update: For each n, compute

(+1)_. Z {1}
(’Zn m ]n m s m'.n (42)

m'EM{nYim

Step 2b) LLR update: for each meM (n)

(41 _f0) )
L=0 e > (4.3)

meMin)

* Step 3) Hard decision of LLR outputs: Quantize ¢=[¢, ¢, .., 6] such that ¢,=0 if

I"Y>0 | and c,=0 if ["<g

* Step 4) Parity check operation: if H & =0 , the orthogonality is verified meaning the
decoder has detected zero errors in the reconstructed codeword. Otherwise the decoding
algorithm must return to Step 1), and i = i + 1. If the algorithm does not halt within [, a

decoder failure is declared. The BLER is increased by one.

4.1.2 Normalized Min-Sum decoding algorithm (NM-MS)

If the check node message output of MS decoding is compared to that of BP for the same inputs,
their signs are identical, but the magnitude of MS decoding is larger than that of BP, which implies the
overestimation of check node outputs in MS decoding [1]. To alleviate the overestimation, normalizing
check node outputs are applied using a normalization factor o (0 <a <1). The values of o were
obtained through Monte Carlo simulations performed in [1]. The modified check node update from

MS decoding is shown below.

* Step 1) Check node update (NM-MS):

r(,r';),’z:o(.( H szgn(%(z),”)).( min ,qn ,,,l) (4.4)

n'eN (mhn n'e€N(m)\n

4.1.3 Offset Min-Sum decoding algorithm (OFF-MS)

In OFF-MS decoding [2], the magnitudes of the check node outputs are reduced by subtracting
it from an offset factor B from the outputs. The modified check node update from MS decoding is

shown below.

* Step 1) Check node update (OFF-MS):
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L _f ; () A ("
rm,n— H ‘wgn((]n’,m) " max min QH',IH "“,8, 0 (45)
n'ENIm)n EN(m)\n

For the OFF-MS decoding algorithm, a check node output is erased (', =0) ifits magnitude

is less than or equal to the offset factor B).

4.1.4 Self Corrected Min-Sum decoding algorithm (SC-MS)

The SC-MS is an alternative method to NM-MS and OFF-MS. The proposed SC-MS [3]
decoding detects unreliable information by the sign fluctuation of the variable node update. Precisely,
any variable node update changing its sign between two consecutive iterations is erased, meaning that
any such fluctuating message is set to zero. For SC-MS, the check node update is the same as classical
MS. However, for the variable node update is modified as shown below, but the LLR update remains

the same as MS decoding.

*  Step 2a') Variable node update (SC-MS):

i+ __ {0) Z ()
Q/r,m —qn,m+ rm',n
m'eMn)im (46)
) . i (i1 . FoiY oy (i+1
if'q, .7 Oandsign(q, " )#S'zgn(q”',m), theng'!™* V=0

",

For the SC-MS variable node procedure, first the new extrinsic LLR for the current iteration

q(n“:n] Vs computed. However, unlike classical MS decoding, this value is stored as an intermediary
value. At this moment it should be noted that the message qff‘),,, still contains the value of the
previous iteration. Next, the signs of qfl'f,,] ' and q(,f_)m that was sent by the variable node, n, to the
check node, m, at the previous iteration are. compared. If the two signs are equal the variable node
message 1s updated by q(,,'f,f )=qu,),,, and this value is sent to the check node, m. Though, if the two
signs differ, the variable node, 7, sends an erasure to the check node, m, meaning that the variable node
message q(,,iv),,, is set to zero. It should be noted that zero messages are considered to have both
negative and positive signs. In other words, whenever the old message q(,f‘),,lzo , the new variable

{i+1)
n,m

node message is updated by ¢’ =g

4.2 Proposed LDPC Decoding Algorithms

In this section, three new decoding algorithms are proposed. Each of these algorithms are an
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improvement of basic Min-Sum decoding. These new algorithms are obtained by combination and/or
modifications of known Min-Sum based algorithms. Advantageously, these proposed decoding

algorithms preserve the simple structure of Min-Sum based decoding algorithms.

4.2.1 Normalized and Self-Corrected Min-Sum Decoding Algorithm (NM-
SC-MS)
This algorithm combines self-corrected and normalized Min-Sum based decoding algorithms.

Thus, both the check and variable node messages updates require modification from the original Min-

Sum decoding algorithm. The changes are shown as follows.

* Step 1') Check node message update for NM-SC-MS decoding:

) . (4 :
rm,n_a.\'.< H Slg”(qn’,m))‘( min

neN{min '€ N{min

q‘;?,,,!) 4.7)

*  Step 2a) Variable node message update for NM-SC-MS decoding:

i+ __ (0} e
qn,m —-QI),I?1+ Z Im',n
m'eM(n)'\m (48)
oo A o {i+1; . {7 {(+1) __
lf([ i() and ‘wg”(.qn,m )i‘svlgn(Qn,m)l then(]/ - O

n,om 1, 01

Compared to normalized Min-Sum decoding, an erasure operation is performed at the variable
node message update due to the self-correcting process. As a result, in NM-SC-MS decoding a
normalization factor o, greater than the o employed in the normalized MS decoding is used to avoid too

much reduction of the messages in the decoding process.

4.2.2 Offset and Self-Corrected Min-Sum Decoding Algorithm (OFF-SC-MS)

This algorithm is a combination of offset and self-corrected Min-Sum based decoding
algorithms. Compared to NM-SC-MS, a subtracting offset factor B, from each check node output of
MS decoding rather than normalizing it. Again, to avoid too much reduction of messages during
decoding, the offset factor B, should be less than B in the offset MS decoding. The following changes
are shown (with respect the MS decoding).

* Step 1') Check node message update for OFF-SC-MS decoding:
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K. SR U RS / . i)
/ moa H Slg}l ( qn "o ) -max min l(]n m ’— B‘\“ 0 (49)
' EN{min )

n'€N (mjin

* Step 2a') Variable node message update for OFF-SC-MS decoding:

i+ (o) Z i
qn,m -—CJn,m+ 7 m’n
m'e€Mn\m (4 10)

g'f'q(,f,)l,,i Oand sign( 1(,:;7”) #sign( qfl',)m), then qf”r N

/ 1,

4.2.3 Variable node Offset Min-Sum Decoding (V-OFF-MS)

This decoding method is a variation of the offset MS decoding, where an offset factor is
subtracted from each variable node output. F urthermore, if the magnitude of a variable node output is
less than the offset, it goes through another decision process before being erased. The idea behind
another decision process is adopted from the erasure process of SC-MS decoding. Although, slight
modifications are made to the variable node process there is no need for any additional memory, by
keeping the sign of a variable node output over each edge. Precisely, if the magnitude of a variable
node output over an edge is less than the offset factor, the algorithm checks whether the sign is
identical to the sign of the variable node input over the same edge. If the output is different, the output
is erased. By making an erasure over an edge, both conditions of small magnitudes and different signs

must be met, which is expected to generate fewer erasures than the SC-MS decoding algorithm.

The decoding structure of the V-OFF-MS based decoding is simpler than SC based decoding
algorithms, since this method requires no additional memory to store the messages in the previous
iteration. The following shows the check node and variable node processes updates for the V-OFF-MS

algorithm.

* Step 1) Check node message update for OFF-SC-MS decoding:

A= T Sz'gn(q,‘f/’,n,))'( min P"U “.11)

a'eN{mlin n'e Nim)in

*  Step 2a) Variable node message update for OFF-SC-MS decoding:
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q mp ™ qu o + / m', n
m'eEMiniim
q yen =3sign ( CImzp )

[f i(zlmp}> IB\"’ fh@n qmugz Iq 1/1'1[{1_6\:’ (4 12)
elseif sign ("' )# Oand G, 7sign(r,)

m,ont m,n

), theng,, =0

{i+1}

- qn . m = (].ygn. []mug

4.3 Comparison of known decoding versus proposed decoding

algorithms

Table 4.1: Advantages of proposed decoding algorithms

Proposed decoding algorithm Advantages
Normalized and Self Corrected Min-Sum (NM-SC- - Self-correcting process will result in lower block
MS) error rate than NM-MS.
- Faster converge than NM-MS
Offset and Self Corrected Min-Sum (OFF-SC-MS) - Expected to converge faster than NM-SC-MS since

simpler operations (i.e. check node outputs are reduced
by subtraction rather than multiplication).

- Lower block error rate and faster converge than OFF-
MS

Variable node Offset Min-Sum (V-OFF-MS) - Check magnitudes and signs over variable node
edges without the addition of memory.

- Has a simpler decoding structure than SC decoding
algorithms.

4.4 Parameters Employed for the LDPC Decoding Algorithms

To make the simulations appear practical, irregular LDPC codes are applied to the IEEE802.16e

standard. The simulation parameters are listed below.

*  Coderates R=1/2, 2/3, 3/4. Codeword lengths N= 1152, 1728, and 2304.
*  BPSK modulation over AWGN channel.

* 0= 0.8 for NM-MS and $ = 0.15 OFF-MS.

as = 0.92 for NM-SC-MS and s = 0.08 for OFF-SC-MS.
*  [B,=0.15 and for V-OFF-MS.
*  Maximum Iteration number 1,,.. <500.
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5 Simulations and Discussions

In this section several simulations are shown to compare the performances of known and
proposed LDPC decoding algorithms. For this study, known and proposed algorithms will be
compared by decoding structure. Moreover, SC-MS will be compared with OFF-MS-SC and NM-MS-
SC, and NM-MS and OFF-MS will be compared with V-OFF-MS.

5.1 Convergence of block error rate

For all simulations shown in this chapter all plot legends are organized as follows: the known
decoding algorithms are the three listed in the top of each graph legend, and the proposed algorithms
are three listed at the bottom of each graph legend. Also, each proposed decoding algorithm is

asterisked.
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Figure 5.1: Convergences of block error rate (BLER) at R=1/2, N= 2304 and E,/N, at
1.5 dB
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Block Error Rate vs. Maximum lferations, 2.2dB
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Figure 5.10: Convergences of block error rate (BLER) at R= 3/4, N= 2304 and Ey/N, at
3.1dB

Figures 5.1 and 5.2 showed the convergences of the BLER of the MS based decoding
algorithms at a medium (1.5 dB) and high (1.9 dB) Ey/N,, respectively. For this simulation R is equal
to 1/2 and N= 2304. Figure 5.1 showed that SC based Min-Sum decoding algorithms improved as I,
increased. For the SC based Min-Sum decoding algorithms both NM-SC-MS and OFF-SC-MS
converged faster than SC-MS between 50 < /. < 150. For the case on non-SC based MS decoding
algorithms V-OFF-MS converged the fastest. In Figure 5.2, SC based MS decoding algorithms
improved as L., increased. OFF-SC-MS decoding converged faster than than SC-MS. However, SC-
MS converged faster than NM-SC-MS decoding. For non-SC based Min-Sum decoding V-OFF-MS

converged the fastest.

Figure 5.3 and 5.4 showed the convergences of the BLER of the MS based decoding algorithms
at a medium (1.7 dB) and high (2.0 dB) Ey/N,, respectively. For this simulation R is equal to 1/2 and
N=1728. In Figure 5.3, SC-MS decoding converged the fastest. However, V-OFF-MS converged
faster than both the OFF-SC-MS and NM-SC-MS decoding algorithms. Although, both OFF-SC-MS
and NM-SC-MS converged faster than the OFF-MS and NM-MS decoding algorithms. In Figure 5.4,
SC-MS converged the fastest. NM-SC-MS converged faster than V-OFF-MS decoding. Although, V-
OFF-MS converged faster than OFF-SC-MS decoding. All proposed decoding algorithms converged
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faster than both OFF-MS and NM-MS decoding.

Figures 5.5 and 5.6 showed the convergences of the BLER of the MS based decoding
algorithms at a medium (1.9 dB) and high (2.2 dB) Ey/N,, respectively. The code rate, R, is equal to 1/2
and block length, N, is equal to 1152. A medium size block length from the IEEE802.16e standard is
considered for this case. Figure 5.5 showed that SC-based decoding improved as I, increased. This
is particularly true for SC-MS which had the steepest slope. For SC based Min-Sum decoding both
OFF-SC-MS and NM-SC-MS converged faster than SC-MS decoding. Between 50 < I, < 100, V-
OFF-MS converged faster than SC-MS decoding. For non-SC based MS decoding algorithms V-OFF-
MS converged the fastest. Figure 5.6 showed that SC-MS converged faster than both OFF-SC-MS and
NM-SC-MS decoding. Though, for non-SC based Min-Sum decoding V-OFF-MS converged the

fastest.

Figures 5.7 and 5.8 showed the convergences of the BLER of the MS based decoding
algorithms at a medium (2,2 dB) and high (2.5 dB) Ey/N,, respectively. The code rate, R, is equal to 2/3
and block length, N, is equal to 2304. Figure 5.7 showed that SC based Min-Sum decoding converged
the fastest. NM-SC-MS converged faster than SC-MS decoding. However, SC-MS converged faster
than OFF-SC-MS. For non-SC based Min-Sum decoding algorithms V-OFF-MS converged the fastest.

The algorithmic performances in Figure 5.8 exhibited the exact same trend from Figure 5.7.

Figures 5.9 and 5.10 showed the convergences of the BLER of the MS based decoding
algorithms at a medium (2.9 dB) and high (3.1 dB) E,/N,, respectively. The code rate, R, is equal to 3/4
and block length, N, is equal to 2304. From Figure 5.9, the SC based MS decoding algorithms
converged the fastest. SC-MS converged fastest at /.. = 500. For non-SC based MS decoding NM-
MS converged the fastest. In Figure 5.10, the exact same trend can be observed for SC based Min-Sum
decoding algorithms from Figure 5.9. Though, for non-SC based Min-Sum decoding V-OFF-MS

converged the fastest.
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5.2 Average Iteration Numbers
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Figure 5.11: Average iteration numbers for various Lyat R= 1/2, N= 23 04, and Ey/N,
at 1.5 dB

Axerage lteration Murnber vs_ Maxirnura teration Mumber, 18468

w
5
T

Average lteration Number

._*__
s OFF_MS
: ; : : : e MW MS
1220 e D U SOOI SRR ——— OFF_SC_MS || *
1 ; : : ' e NM_SC_MS | 4
: : —E—\_OFF_MS

12 1 I 1 i I  S— " ma— *

50 100 150 200 250 300 350 400 450

Maxirnum lteration NMumber

I'igure 5.12: Average iteration numbers for various L..at R= 1/2, N= 2304, and E,/N,
at 1.8 dB

40
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Axerage lteration Mumber vs. Maximum lteration Mumber, 1948
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Average Heration Mumber vs. Maximurn lteration Number, 2. 2dB
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Figures 5.11- 5.20 shows the average iteration numbers. For this calculation, both corrected and
erroneous blocks are considered for determining the mean. Equation 5.1 shows how to calculate the

average iteration number

7

> 1)

= (5.1)
AZN:WT_ where 121 >1

From equation 5.1 7 denotes the total number of blocks transmitted, and 7, indicates the iteration

number where the error was resolved.

This information gives an idea how well each algorithm may fare on a fixed point simulation,
using low level computer, based off this software model. Similar to figures 5.11 — 5.20, the average

iteration numbers will be taken at the medium and high E,/N, values, respectively.

Figures 5.11 and 5.12 showed the average iteration number for R is 1/2 and N= 2304. For
Figure 5.11, between 50 < 7, < 250, SC-MS decoding required the greatest number of iterations. For
SC based MS decoding algorithms both OFF-SC-MS and NM-SC-MS had the two lowest average
iteration numbers. For non-SC MS based decoding algorithms V-OFF-MS had the lowest number of
average iterations. In Figure 5.12, both OFF-MS and NM-MS decoding required the lowest average
number of iterations. NM-SC-MS, OFF-SC-MS, and V-OFF-MS decoding required, on average,

required lower number of iterations than SC-MS decoding.

Figures 5.13 and 5.14 showed the average iteration number for R is 1/2 and N= 1728, In Figure
5.13, V-OFF-MS decoding had the lowest average number of iterations for any SC and non-SC Min-
Sum based decoding algorithm. SC-MS did have a lower number of iterations, on average, than the
NM-SC-MS and OFF-SC-MS decoding algorithms. In Figure 5.14, NM-MS required less number of
average 1terations than both the NM-SC-MS and OFF-SC-MS decoding algorithms. V-OFF-MS had

the second highest average number of iterations, only less than the SC-MS decoding algorithm.

Figures 5.15 and 5.16 showed the average iteration number for R is 1/2 and N=1152. In Figure
5.15, once L = 250, both OFF-SC-MS and NM-SC-MS decoding algorithms had the lowest average
number of iterations. However, OFF-MS had a lower number of average 1lerations than the V-OFF-MS
decoding algorithm. V-OFF-MS had a lower number of iterations than both the NM-MS and SC-MS
decoding algorithms. In Figure 5.16, SC-MS decoding required the greatest average number of
iterations. V-OFF-MS decoding had a lower number of average iterations than OFF-SC-MS, but
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higher than NM-SC-MS decoding. However, NM-MS and OFF-MS required, on average, the lowest

number of iterations.

Figures 5.17 and 5.18 showed the average iteration number for R is 2/3 and N=2304. InF igure
5.17, at L= 500, SC based Min-Sum decoding algorithms had the lowest average iteration numbers.
OFF-SC-MS and NM-SC-MS had lower iteration numbers than MS-SC decoding. For non-SC based
MS decoding algorithms V-OFF-MS had a higher average number of iteration number than NM-MS.
In Figure 5.18, NM-MS decoding required the least number of average iterations. The NM-SC-MS and
OFF-SC-MS decoding algorithms had the second and third lowest average iteration numbers,
respectively.  However, V-OFF-MS decoding required the highest average number of iterations.

Though, on average, 1.6 iterations more than NM-MS decoding between 50 < I,.,. < 500.

Figures 5.19 and 5.20 showed the average iteration number for R is 3/4 and N= 2304. In
Figure 5.19, NM-MS decoding required the lowest average iteration number. After that, SC-MS and
OFF-SC-MS decoding algorithms had the second and third lowest average 1teration numbers,
respectively. In terms of the V-OFF-MS decoding performance, it had a lower average iteration
number compared to both the OFF-MS and SC-MS decoding algorithms. In Figure 5.20, the NM-MS,
OFF-SC-MS, NM-SC-MS, and SC-MS decoding algorithms had the same rank from Figure 5.19. The
differences between Figure 5.20 and Figure 5.19 is OFF-MS required a lower average number than V-

OFF-MS decoding.
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5.3 Block Error Rate Performance
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Figure 5.21: Block error rate performance at R= 1/2, N= 2304, and L= 50
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This section discusses block error rate (BLER) versus Ey/N, (dB). Each simulation case
consists of a range of 10 distinct E4/N, values for each MS based decoding algorithm. The E,/N, range
were chosen specifically to obtain a BLER approaching 107 by the 10" value, occurring at J,... = 500.
The BLER is determined by: the number of erroneous divided by umber of blocks transmitted. For
these simulations, the BLER vs E,/N, plots are obtained for /.. = 50 and 500.

Figures 5.21 and 5.22 showed the case for R= 1/2 and N= 2304. In Figure 5.21, OFF-MS and
OFF-SC-MS had the two best BLERs. The performance of the NM-M-SC and V-OFF-MS decoding
algorithms are identical, and are better than the SC-MS and NM-MS decoding algorithms. In Figure
5.22, the SC based MS decoding algorithms performed better than the non-SC based MS decoding
algorithms. For SC based MS decoding NM-SC-MS had a better BLER than both the SC-MS and
OFF-SC-MS. SC-MS had a lower BLER than OFF-SC-MS decoding. For non-SC based MS decoding
V-OFF-MS had the best BLER.

Figures 5.23 and 5.24 showed the case for R= 1/2 and N= 1728. In Figure 5.23, the SC
decoding algorithms performed the best. All SC based Min-Sum decoding algorithms showed identical
results at 2.1 dB. Of the non-SC based MS algorithms, V-OFF-MS had the best performance. In

Figure 5.24, the exact same trend occurred from Figure 5.23.

Figures 5.25 and 5.26 showed the case for R= 1/2 and N= 1152. In Figure 5.25, SC based MS
decoding algorithms performed better than the non-SC based MS decoding algorithms. From this
Figure, SC-MS decoding had best performance. For non-SC based MS decoding V-OFF-MS and OFF-
MS had identical results. Both methods performed better than NM-MS decoding. In Figure 5.26, the
same trend for SC based MS decoding algorithms were intact from Figure 5.25. However, for non-SC

Min-Sum based decoding V-OFF-MS had the best performance.

Figures 5.27 and 5.28 showed the case for R=2/3 and N= 2304. In Figure 5.27, the SC based
Min-Sum decoding algorithms performed better than the non-SC Min-Sum based decoding algorithms.
From this Figure, NM-SC-MS decoding had the best performance. SC-MS outperformed OFF-SC-MS
decoding. In terms of non-SC based Min-Sum decoding algorithms NM-MS outperformed V-OFF-
MS. In turn, V-OFF-MS decoding performed better than OFF-MS decoding. In Figure 5.28, the SC
based Min-Sum decoding algorithms performed better than the non-SC based Min-Sum decoding
algorithms. In this Figure, both SC-MS and NM-SC-MS showed identical and had the best decoding
results. For non-SC based Min-Sum decoding V-OFF-MS had the best performance.
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Figures 5.29 and 5.30 showed the case for R= 2/3 and N=2304. In Figure 5.29, the SC Min-
Sum based decoding algorithms performed better than non-SC based Min-Sum decoding algorithms.
Both OFF-SC-MS and NM-SC-MS had better results than SC-MS. For non-SC Min-Sum based
decoding algorithms NM-MS had the best result. Although, V-OFF-MS outperformed OFF-MS. In
Figure 5.30, the SC Min-Sum based decoding algorithms performed better than non-SC Min-Sum
based decoding algorithms. Moreover, both SC-MS and NM-SC-MS showed identical and the best
results.  For non-SC Min-Sum based decoding V-OFF-MS performed better than both NM-MS and
OFF-MS.
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6 Conclusions and Future Work

6.1 Conclusions

This thesis presented three new Min-Sum based decoding algorithms for LDPC coding. The
performances of known and newly proposed Min-Sum based decoding algorithms were analyzed
closely through intensive simulations for irregular LDPC codes outlined in the IEEE§02.16e standard.
The studied decoding algorithms were compared on the criteria of convergence characteristics, average

iteration numbers, and block error rates.

For various code rates, R, and block-lengths, N, simulations have shown that all three proposed
decoding algorithms performed competitively compared to the known decoding algorithms. V-OFF-
MS did not require any additional storage (memory) the cost of hardware is reduced as a result of a
simpler decoding structure. However, V-OFF-MS decoding had a higher average iteration number
compared to the SC based Min-Sum decoding algorithms, but the reduced complexity of the decoding
algorithm allows for faster computations, reducing latency. Compared to other non-SC based Min-Sum
decoding algorithms V-OFF-MS consistently showed faster convergence and a lower block error rate
than both NM-MS and OFF-MS. For practical implementation V-OFF-MS decoding algorithm is

recommended, as reflected in the simulation results

For the proposed SC-based Min-Sum decoding algorithms, both NM-SC-MS and OFF-SC-MS
consistently outperformed SC-MS for average iteration numbers. Throughout the study, regardless of
EyYN,, NM-SC-MS and OFF-SC-MS always had lower average 1teration numbers than SC-MS
decoding. From this study it can be concluded if any SC Min-Sum based algorithms were to be
implemented, decoding using NM-SC-MS and OFF-SC-MS algorithms would be preferred over SC-
MS.

6.2 Future Work

Up to this point an in-depth floating point simulation was studied. The proposed theory in this
thesis extends beyond this floating point simulation. The next step is to implement a fixed point

simulation.

This fixed point simulation will consist of eliminating all float pointing variables from the C++
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code, replacing them with integer variables. Furthermore, the C++ code must be optimized. Then the

C++ code is ready to be implemented on a microcontroller or low level microprocessor that is not

capable of floating point unit (FPU) operations.
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Appendix A. LDPC Parity Check Matrices for Various Code

Rates and Block Sizes

Parity Check Matrices

Rate 1/2:

Rate 2/3A:
3 0
-1 =1
-1 -1
-1 -1
20 ~1
-1 -1
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-1 6

Rate 3/4A:
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Code Rate and Block Size Adjustment

Table A.1: Code rate and block size adjustment

n (bits) | n (bytes) | zfactor k bytes B
R=1/2 R=2/3 R=3/4 R=5/6
576 72 24 36 48 54 60
672 84 28 42 56 63 70
768 96 32 48 64 72 80
864 108 36 54 72 81 90
960 120 40 60 80 90 10
1056 132 44 66 88 99 110
1152 144 48 72 96 108 120
1248 156 52 78 104 117 130
1344 168 56 84 112 126 140
1440 180 60 90 120 135 150
1536 192 64 96 128 144 160
1632 204 68 102 136 153 170
1728 216 72 108 144 162 180
1824 228 76 114 152 171 190
1920 240 80 120 160 180 200
2016 252 84 126 168 189 210
2112 264 88 132 176 198 220
2208 276 92 138 184 207 230
2304 288 96 144 192 216 240 ]

Example expanding an element of a parity check matrix into expanded

binary elements

If n= 576 — z=1n/24 = 24. From section 3.4, each element of the parity check is expanded by a
z factor. Employing this factor is necessary to insert binary elements into the parity check matrix. This
section will show an example on how to expand a non-zero element, a zero element, and negative
element.

Expanding a non-zero element: 7. As shown below (A.1) the binary expansion is an identity matrix
circularly right shifted by 7. The expanded binary matrix is of z by z dimensions.
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(A.3)

As shown below (A.3) the binary expansion is an all zero matrix of
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Appendix B. C++ source code of decoding algorithms

/# Calenlate the minsum decoding pi and min terms without exclusion.
struct functor_r_ms_pi

{
double min0, minl; # The lowest and second-lowest minima, respectively
int pi; # The product term, without exclusion.
inline void callback(double &q)
{
double qv = g;
if{qv<0)
pi = -pi; 7 This effectively does the sign function.
qv = fabs(qv);
if (min0 >= qv) i Update both minima.
minl = min0;
min0 = qv;
}
else if (minl > qv) # Update the second-lowest minimun.
minl = qv;
}
1

// Updates the R matrix with minsum decoding. Performs exclusion,
template <DecodeMethod::Enum msMethod, bool sc>
struct functor r ms_update

{
int pir0;
double min0, minl;
inline void callback(double &r, double &q)
{
int pir = pir0d;  / The pi term to use.
const double qv = q; #The O term to uge.
# Perform exclusion on the pi term.
it {(qv <0)
pir = -pir;
/7 Perform exclusion on the min term.
const double qvmin = (fabs(qv) == min0) ? min1 : min0;
7 Offset min sum calealation for e2(1) (m.n)
T = pir;
it (msMethod == DecodeMethod::offims)
r *= max((double)0.0, gvmin - (sc ? betasc : beta));
else
r *= qvmin;
if (msMethod == DecodeMethod::nms)
r *= sc ? alphasc : alpha;
}
8

/7 Calculates the sigma term without exclusion. for use in updating gn and In
¢ during decoding.
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struct functor_sigmar

{
double rsigma;
intine void callback(double &r)
{ .
rsigma +=r;
}
I8

7 Update gn during decoding. Performs exclusion.

template <DecodeMethod::Enum method, bool sc>

struct functor_updateq

{
/ The value of gn for all elements in this column at iteration 0
double q0;
double rsigma;

inline void callback(double &q, double &r)

{
# Performs exclusion and sets Q.
const double gnew = q0 + rsigma - r;
if (method == DecodeMethod::v_off ms)
{
const bool gsgn = qnew < 0;
double gmag = fabs(qnew);
it (gmag > betav)
gmag -= betav;
if (gsgn) qmag = -qmag;
q = qmag,
H
else
{
if (1= 0 && (r<0) {=gsgn)
q=0;
}
}
else
{
if (s¢)
{
if(q =0 && ((q>=0) !=(gnew >=0)))
q=0;
else
q = qnew;
}
}
}
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Appendix C. Simulation time

Table C.1 shows a histogram showing the computation time of a single iteration for each studied
decoding algorithm. The computation times from Table C.1 occurs at code rate R = 1/2 and
blocklength N= 2304. The computation time of a single iteration is variant of available computation
power. The simulations for this study were performed on an intel T6400 core 2 duo processor.
Furthermore, the C++ code was multithreaded with two threads, using 100% CPU of processor.

Table C.1: Single iteration duration for studied decoding algorithms

LDPC Decoding Algorithm | Time for single iteration (us)
SC-MS 183
OFF-MS 179
NM-MS 200
OFF-SC-MS 157
NM-SC-MS 180
V-OFF-MS 181
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