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ABSTRACT 

Warrington, S.R. 1992. Effects of post-budset fertilization on second- 
crop black spruce container stock. 50 pp. M.Sc.F. Thesis, Lakehead 
University, Major Advisor: Dr. K.M. Brown 

Keywords: "Finisher" fertilizer, black spruce container stock, cold 
hardiness. Extended Greenhouse Culture, bud development, root 
development. 

Second crop black spruce (Picea mariana (Mill.) B.S.P.) container 
stock is often treated with finisher fertilizer after the induction of 
budset. The objective of this experiment was to study the effect of 
three components of a finisher fertilizer (monoammonium phosphate, 
potassium nitrate and potassium sulphate) on bud development, root 
development and the induction of cold hardiness in second-crop black 
spruce container stock. Fifteen fertilizer treatments were applied to 
black spruce seedlings at three private seedling growers in the fall of 
1988. 

The analysis showed no significant difference in bud and root 
development among the fertilizer treatments. However, the fertilizer 
treatments may have had a small effect on the induction of cold 
hardiness. The hardiest seedlings in the experiment were treated with a 
fertilizer high in phosphorus and ammonium. A response surface 
analysis indicated that seedling hardiness may be further improved with 
fertilizer combinations outside of the experimental region in the 
direction of the strongest response. 
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INTRODUCTION 

Double cropping is one of several options to produce black spruce 

(Picea mariana (Mill) B.S.P.) container stock seedlings in greenhouses 

(McClain, pers. comm., 5 June 1991). The double cropping system 

involves growing two crops of seedlings in the same greenhouse in one 

year. The first crop is sown in early February, and is grown for field 

outplanting about four months later. The second crop is sown in late 

May after the first crop has been moved out of the greenhouse. The 

second crop is grown through the summer, stored overwinter and 

outplanted in the spring. 

The second crop is often held in the greenhouse for an extended 

period in the fall (early September to late October) in order to 

develop new buds and condition the crop for overwinter storage. 

Growers refer to this period as the Extended Greenhouse Culture phase 

and they refer to the crop as an extended crop. The application of 

fertilizers is one of the treatments used to condition the crop in the 

Extended Greenhouse phase. The fertilizers applied during the Extended 

Greenhouse phase are commonly called finisher fertilizers because they 

are the last fertilizers to be applied to the greenhouse crop. 

In the black spruce double cropping system, the risk of mortality 

for the second crop is higher than it is for the first crop (Anon. 

1987). In the Thunder Bay area in 1987, overwintered container 

seedling mortality numbered 6.9 million seedlings (Anon. 1987). This 

unacceptable level of seedling loss had a direct cost of $600,000. 

Seedling mortality resulted from desiccation (drying out) because of 

inadequate root systems and inadequate seedling hardiness in second 

crop seedlings (Anon. 1987). The, report by the Ontario Ministry of 

Natural Resources (Anon.- 1987) recommended refinements to the Extended 

Greenhouse Cultural technique. 
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This thesis reports my attempt to study the fertilizer component 

of the Extended Greenhouse Culture phase. The purpose of my study was 

to determine the effects of three nutrients [monoammonium phosphate 

(NH4H2PO4), potassium nitrate (KNO3), and potassium sulphate (K2SO4) ] on 

these response variables of second crop black spruce container stock: 

1) bud development 

2) root development 

3) the induction of cold hardiness 

The experiment consisted of a three-factor, central composite design 

executed at each of three cooperating private growers. 

My major conclusion is that the finisher fertilizer treatments 

studied had no statistically significant effect on either bud or root 

development, and little effect on the induction of cold hardiness, over 

a wide range of levels of the component nutrients. 



LITERATURE REVIEW 

DETAILS OF SECOND CROP CULTURE 

To produce a successful second crop of black spruce container 

stock, growers must achieve three production goals. First, the crop 

must meet the minimum criteria for size specified in the contract 

between the grower and the client. For example. Hills greenhouses had 

to meet the following seedling size standards for their 1988 extended 

black spruce crop: minimum height of 10 cm, oven dry weight of 400 mg 

and shoot/root ratio of 4.5:1. Second, the crop must be conditioned to 

survive overwinter storage. Crops are moved outside for overwinter 

storage only after they have been conditioned to survive temperatures 

below —15°C (Colombo et al. 1984) . Third, the crop must be conditioned 

to survive outplanting and to initiate vigorous growth in the field. 

Colombo and Odium (1984). suggest that growers aim for a minimum of 150 

needle primordia in terminal buds to enhance shoot growth after 

outplanting. 

The second crop cultural regime contains 5 distinct phases: the 

germination phase, the juvenile phase, the exponential height growth 

phase, the induction of budset phase and the extended greenhouse phase. 

Each phase has its own cultural objectives. 

The Germination Phase 

Germination of the second crop of black spruce container stock 

takes place in the greenhouse in late May or early June. During this 

phase the crop germinates and the germinants put down a radicle (Tinus 

and McDonald 1979). The most important variables to germination are 

temperature and the availability of moisture. The seed must be kept 

moist with frequent light watering, the temperature reasonably warm 

(18-21°C) and the humidity of the greenhouse atmosphere should be 60 to 
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80% (Tinus and McDonald 1979; Tinus 1981). Covering the seed with a 

coarse-textured material (e.g. perlite or granite grit) protects the 

seed from drying, inhibits weed growth, prevents the seed from being 

dislodged and does not interfere with germination (Tinus 1981) . 

Although moisture is important, too much moisture may encourage fungal 

infections. Fertilizer is not needed at this stage as the germinant is 

supplied with food and mineral nutrients stored in the seed (Tinus 

1981). 

The Juvenile Phase 

During the juvenile phase the seed coat is shed, therefore light 

becomes important because the seedling must now produce its own 

photosynthate (Tinus 1981) . The high light intensity and long 

daylengths in the month of June are sufficient for the photosynthesis 

requirements of the juvenile seedling. However, high light intensity 

may increase moisture stress which can be fatal at this stage (frequent 

light watering can eliminate this problem) (Tinus and McDonald 1979). 

Light fertilization (50-75 ppm nitrogen) starts in the juvenile stage 

after the stored reserves in the seed have been used. A fertilizer 

called a starter, which is low in nitrogen (N), high in phosphorus (P) 

and moderate in potassium (K) (e.g. 10-52-10), is applied at the 

juvenile stage (Scarratt 1986). High P is used to promote root 

development, which is important at this stage. 

The Exponential Height Growth Phase 

Once seedlings are firmly established, they are capable of 

growing exponentially (the bigger they get the faster they grow) when 

growing conditions are near optimiam (Tinus 1981) . During this growth 

phase, the crop is fertilized, watered, provided with heat and 

sometimes given artificially-long days. The second crop is grown 

through the summer, and so there is usually enough heat and daylight 

for good growth. The optimum temperatures for height growth are 20 to 

25°C in the daytime and 17-19°C in the night. Fans are used to cool 
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the greenhouses when temperatures become too hot (30°C) . A grower 

fertilizer is used to meet seedling demands during the exponential 

growth phase. A grower fertilizer is usually a balanced fertilizer 

(e.g. 20-20-20) or one high in nitrogen (e.g. 34-0-0). Nitrogen is 

important for growth in seedlings; it forms the structure of the 

protoplasm for new cells and it is required to synthesize chlorophyll, 

needed for photosynthesis (Lavender 1984; Kramer and Kozlowski 1960). 

Phosphorus is important for growth as it is part of the chief medium 

used in energy transfer (Adenosine triphosphate) (Morrison 1974). 

Potassium is involved in enzyme activity and a deficiency in K will 

hinder translocation of carbohydrates and nitrogen metabolism (growth 

will be reduced) (Kramer and Kozlowski 1960; Morrison 1974). The 

grower fertilizer is applied at a relatively high concentration (150- 

300 ppm based on N) to meet the demands of the rapidly growing 

seedlings (Scarratt 1986) . 

Under natural conditions, height growth of black spruce ceases 

and buds are set in mid to late July (Day 1987a) . In second crop 

greenhouse culture seedlings rarely reach a minimum height requirement 

by the natural budset time of mid-July and seedlings must be encouraged 

to grow until mid-August (Lavender 1984). Seedlings are kept growing 

by the maintenance of optimum growing temperatures, regular irrigation 

and a high concentration of grower fertilizer. Artificial lighting may 

be used to lengthen photoperiod (to 16 or 18 hours) when the natural 

photoperiod becomes shorter in August (if grower is equipped with 

lights). The longer photoperiod will inhibit budset and thus maintain 

height growth, but it is not necessary if other variables are optimum 

for height growth. 

The Induction of Budset Phase 

Budset can be induced through nutrient stress, moisture stress, 

by shortening the photoperiod and by reducing greenhouse temperature 

(Day 1987a; Glerum 1985; Tinus and McDonald 1979; Macey and Arnott 

1986). Treatments are applied to set buds when the seedlings are 
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approximately one centimetre short of their required height. Seedlings 

will grow to their required height by the time these treatments take 

affect. 

The natural shortening of the photoperiod through the summer is 

what triggers the induction of budset in nature. The quickest way to 

induce budset in the greenhouse is through the use of short 

photoperiod; blackout curtains are used to block light after eight 

hours of daylight (Colombo 1989; Macey and Arnott 1986). 

Nutrient stress involves leaching the soil of nutrients and 

withholding fertilizer. The principle behind nutrient stress is that 

nutrients (especially N) are needed for growth, therefore if nutrients 

are leached from the soil height growth will stop. Moisture stress 

(withholding water) causes bud scales to initiate faster than nutrient 

stress (Macey and Arnott 1986). The formation of bud scales indicates 

the start of the bud set phase. 

The Extended Greenhouse Phase 

The extended greenhouse phase has three cultural objectives: bud 

development, root development and the induction of cold hardiness. The 

cultural regime is tailored to provide for each of these objectives as 

follows: 

Promotion Of Bud Development. 

Studies indicate that bud development is promoted by maintaining 

soil moisture at field capacity, applying fertilizers, maintaining 

temperature at 20°C and maintaining an eight hour photoperiod (Tinus 

and McDonald 1979; Colombo and Odium 1984; Colombo et al. 1982; Colombo 

et al 1989) . Shutting out light with blackout curtains may be 

necessary to shorten the photoperiod. Short photoperiod indirectly 

increases needle initiation by allowing more time for initiation to 

occur. Short photoperiod (eight hours) induces budset quickly compared 

to natural photoperiods (12-14 hours) yielding a longer period for bud 

development in the fall (Colombo and Odium 1984; Colombo et al. 1982) . 
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Pollard and Logan (1977) observed that photoperiods between six and 

fifteen hours did not effect the initiation of leaf primordia in Picea 

species after budset. However, there was a decrease in the rate of 

needle initiation as photoperiod decreased under six hours (Pollard and 

Logan 1977) . 

Like height growth, bud development also needs mineral nutrients 

and growing temperatures to create new cells. Experiments with black 

and white spruce (Pollard and Logan 1977 and 1979) concluded that 

needle initiation was increased 70 to 80% over the temperature range of 

15° C to 25° C. Colombo et al. (1981) found that seedlings stored in 

low outdoor temperatures in the fall produced less than half as many 

needle primordia as seedlings stored in temperature controlled 

greenhouses (temperature maintained at 20°C) . The rate of needle 

initiation in black spruce fed distilled water only (after bud set) was 

60% of the rate in black spruce fed with a standard nutrient regime 

(Pollard and Logan 1979). 

The number and rate of leaf primordia formation is also sensitive 

to the size and age of seedlings at the time of bud set (Macey and 

Arnott 1986; Pollard 1974a) . For example a 10-week old 10—cm seedling 

will produce more primordia than a 16-week old 10-cm seedling (Pollard 

1974a) . 

Promotion Of Root Development. 

Root meristems exhibit two peak periods of growth each year. The 

first begins in late winter and continues until shortly after bud 

break. The second extends from late summer until mid-fall (Lavender 

1984) . Roots and shoots compete for the same limited supply of food. 

When shoots are actively growing roots are inactive. So to promote 

root growth, growers must first shut down shoot growth (Timmer and 

Martin 1982). One way to do this is by depriving seedlings of N 

(nutrient stress) (Timmis 1974). Others have found that root growth is 

enhanced in seedlings fertilized with phosphorus (P) in the fall 

(Waggaman 1969; Brix and van den Driessche 1974) . 
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Seedlings with higher root growth capacity (RGC) have a better 

chance of survival and improved growth after spring outplanting. A fall 

fertilizer application improves the post-winter RGC of conifer 

seedlings (Brix and van den Driessche 1974; Donald and Simpson 1985). 

Promotion of cold hardiness. 

Freezing process. Plant tissue can be damaged by freezing if the 

plant is not hardy enough to withstand one or more of the following: 

low temperature, a fast rate of temperature decline, or a long freezing 

time (Asahina 1978). There are two types of freezing in plant tissue; 

intracellular and extracellular freezing. 

Intracellular freezing occurs when ice crystals form rapidly in 

the protoplasm of the cell (within the cell membrane). Growing ice 

crystals destroy the structure of the protoplasm and probably pierce 

the cell membrane (Levitt 1978; Asahina 1978) . In laboratory 

experiments where intracellular free'zing was induced, plant tissue was 

always killed. This type of freezing occurs rarely if at all in nature 

as natural cooling is usually too slow (Levitt 1978), therefore it will 

not be discussed in detail (Refer to Franks 1981; Asahina 1978; Levitt 

1978; Larcher 1980; Burke et al. 1976 for further details on 

intracellular freezing). 

Extracellular freezing is the formation of ice crystals in the 

spaces between cells and spaces between cell walls and protoplasm 

(outside of the protoplasm). This type of freezing occurs naturally in 

all boreal forest tree and shrub species during winter freezes (Levitt 

1978; Burke et al. 1976). Freezing starts in extracellular spaces and 

as cooling continues water is drawn out from the protoplasm and freezes 

extracellularly (Larcher 1980). Water is withdrawn from the protoplasm 

because the vapour pressure of the extracellular ice is lower than the 

supercooled solution (cooled below the freezing point without freezing) 

in the cell. During the process of extracellular freezing, the 

protoplasm is dehydrated in the same manner as evaporative dehydration 
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or desiccation, and the concentration of dissolved substances in the 

cell increases (Larcher 1980; Levitt 1978; Asahina 1978) . 

The nature of the injury caused by extracellular freezing is not 

fully understood, but several theories exist (Levitt 1978). 

Desiccation of the protoplasm may cause irreversible injury if enough 

water is drawn from the cell by freezing (Asahina 1978) . However, Burke 

et al. (1976) believe that desiccation alone is not the cause of 

freezing injury. They observed that damage occurs in the membrane of 

most frost—damaged cells and that membrane-bound proteins may be 

denaturated by freezing. Further, tearing and disruption likely occur 

as the ice crystals grow and the desiccating protoplasm shrinks (Burke 

et al. 1976). Franks (1981) suggests that the increase in the 

intracellular solute concentration, which accompanies extracellular 

freezing, may have toxic effects on the cell. 

The ability of cells to withstand extracellular freezing depends 

on the amount of cell water that is bound water and on the ability of 

free water to pass easily through the membrane (Larcher 1980). The 

cells of hardy boreal species are able to withstand a remarkable amount 

of shrinking and extracellular freezing (Asahina 1978). Bound water, 

making up about 30% of the total water in hardy tissue, is the only 

water that doesn't freeze at low temperatures (-30 to —40°C) (Burke et 

al. 1976). Bound water is comprised of water molecules bound to 

protoplasmic components to the extent that they are prevented from 

migrating to the ice surface and participating in the crystallization 

process (Larcher 1980; Franks 1981). After the free water has frozen 

extracellularly, the remaining supersaturated protoplasmic solution 

(containing bound water) is able to supercool to an apparently 

unlimited extent (Franks 1981) . When hardy cells are warmed after 

freezing, the contracted cells absorb the water from the melting 

extracellular ice to recover their normal appearance and activity 

(Asahina 1978). 

Stages of cold hardening. Cold hardiness in boreal forest 
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species is the ability to withstand extracellular freezing. Cold 

hardiness is developed in the fall in preparation for freezing winter 

temperatures, then lost in the spring when freezing temperatures are no 

longer a threat. Decreasing daylength and low night temperatures (< 

10°C) induce the conclusion of shoot height growth and the transition 

to the dormant (hardy) state (Larcher 1980). The leaves (or needles) 

are the site of detection of the short-daylength stimulus which 

initiates the prehardening stage of acclimation (Weiser 1970). During 

the prehardening stage, sugars and other protective substances 

accumulate in the protoplasm while the amount of water in the cell 

decreases. Prehardening allows the cell to withstand temperatures just 

below zero (-3 to -5°C) without freezing (Larcher 1980; Levitt 1978). 

In the next stage of hardening, which is induced by the temperature 

regularly falling just below zero, biomembrane structure and enzymes 

are reorganized so that the cell can withstand the removal of water by 

ice formation (Levitt 1978; Larcher 1980). However, Colombo (1989) 

found that cold hardiness increases without cold temperature exposure 

in black spruce container stock. The last stage of hardening, when 

protoplasm achieves maximal frost hardiness, is induced by prolonged 

freezing temperatures below -5°C (Larcher 1980) . Inhibition of bud 

activity increases steadily as the hardening process progresses until 

in November complete shoot dormancy occurs. Once dormant, a shoot can 

not be induced to sprout with warm temperatures until a chilling 

requirement is met (Larcher 1980). A chilling requirement involves 

exposure to low temperature for a certain period of time (usually < 0°C 

for three to eight weeks). 

Root cold hardiness. Root cold hardiness is different from shoot 

\ 
cold hardiness for the following reasons: 1) roots are generally less 

cold hardy than shoots, 2) photoperiod has no effect on root growth, 3) 

root hardiness is controlled by temperature alone, 4) entire root 

hardiness can be lost within 24 hours of exposure to warm temperature 

(deacclimation takes four to six days in shoots), and 5) roots do not 
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have a chilling requirement when they become dormant (Green and 

Fuchigami 1985) . Roots are more susceptible to freezing temperatures 

because they develop frost hardiness later than shoots and they lose 

hardiness quickly when exposed to warm temperatures. 

Effects of fertilizer on cold hardiness. The effect that 

nutrients have upon cold hardiness is ambiguous. N can reduce frost 

hardiness when applied before bud set (Glerum 1985; Duryea 1984; 

Koskela 1970) by prolonging height growth and delaying bud set. 

However, N applied in the fall after bud set can reduce frost damage in 

some cases (Duryea 1984; Anderson and Gessel 1966; Benzian et al. 1974; 

Benzian 1966; Aldhous 1972; Roberts and Miska 1980; Brix and van den 

Driessche 1974). Phosphorus fertilizer applied to Sitka spruce 

seedlings before bud set delayed hardening in the fall (Malcolm and 

Freezaillah 1975). Some studies found that the application of 

phosphorus and potassium (K) fertilizer after bud set improved frost 

hardiness in conifer seedlings (Duryea 1984; Levitt 1956; Aldhous 1972; 

Benzian 1966; Koskela 1970; Roberts and Miska 1980). Timmis (1974) 

believed that the balance of K and N was important to the level of cold 

hardiness attained. Other reports, however, showed that N, P and K 

fertilizers have no effect on frost hardiness when applied after bud 

set (Blake et al. 1979; D'Aoust and Cameron 1981; Christersson 1973; 

Donald and Simpson 1985) and before bud set (van den Driessche 1980) . 

Various authors have discussed the possible roles of K and N in 

the development of cold hardiness even though experiments have not been 

conclusive in supporting their theories. Nitrogen is necessary for 

protein synthesis leading to the augmentation of the protoplasm and 

membranes during hardening (Timmis 1974) . Potassiiam increases cold 

hardiness indirectly by increasing drought resistance, thus avoiding 

winter drying when the soil is frozen (Lavender 1984; Brix and van den 

Driessche 1974) . Potassiiam is believed to increase cell permeability 

to water and increase soluble carbohydrate content in the cell (Brix 

and van den Driessche 1974). 
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The rate of fertilizer application affects cold hardiness in 

containerized black spruce seedlings (Colombo and Smith 1987) . Colombo 

and Smith (1987) found freezing damage increased with fertilizer 

applied at a rate of up to 3 times the normal rate. Bud development 

and frost hardiness development were best at 9 times the normal 

fertilizer rate because high salt levels stressed seedlings into 

setting bud early (Colombo and Smith 1987). 

Measures of cold hardiness. Shoot moisture content and dry 

matter content have been used to indicate the state of hardiness in 

seedlings. Colombo (1989) reported that shoot moisture content 

declined as frost hardiness increased in black spruce containerized 

seedlings. Under a short-day treatment, the dry matter content 

increased (moisture content decreased) in conifer seedlings as did the 

frost hardiness (Rosvall-Ahnebrink, 1977). Frost resistant plants have 

less water content than do tender plants, retain water better than do 

tender plants, and they contain a high proportion of bound water 

relative to free water (Roberts and Miska 1980). Seasonal decline in 

shoot moisture content can be attributed to an increase in shoot dry 

matter due to cell wall thickening, xylem cell wall lignification, and 

the augmentation of proteins and sugars in the protoplasm (Colombo 

1989). 

The cold hardiness of seedlings can also be measured by rating 

seedling tissues damage after exposure to freezing temperatures (Glerum 

1985) . This method is called "the growth and browning test" or "the 

whole tree seedling assessment method" and has been used in various 

studies (Timmis 1977; Blake et al. 1979). The method involves rating 

tissue damage on a number scale (e.g. 1 to 10). Damage is observed as 

, \ 
tissue colour: healthy tissue is fresh green and injured tissue changes 

colour over time (Glerum 1985). 

There are other methods of measuring cold hardiness, but they are 

not discussed because they were not used in my experiment. Glerum 

(1985) discusses several different methods of evaluating cold 
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hardiness. 

Finisher Fertilizers 

When fertilizing resxomes after bud set, it may be with one of the 

so-called "finisher" fertilizers. Plant Products 8-20-30 is one 

example of a finisher fertilizer. This particular fertilizer is 

intended to harden off conifer seedlings in the fall. It is low in 

nitrogen to reduce the potential for top growth; it is high in 

phosphorus to encourage root growth; and it is high in potassium to 

increase resistance to frost (Day 1987b). 
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METHODS AND MATERIALS 

The objective of the experiment was to determine what levels of 

three combined nutrients (NH4H2PO4, KNO3 and K2SO4), applied after 

budset, produced seedlings with the most needle primerdia, the largest 

roots (by dry weight) and the greatest cold hardiness. Three 

hypotheses were derived from the literature review: 

1) Bud development in black spruce seedlings should be enhanced 

by a fertilizer with a higher concentration of N. 

2) Root development should be increased by a fertilizer with a 

high proportion of P applied at a low concentration. 

3) Cold hardiness should be increased by a fertilizer balanced in 

N and K applied at a high concentration. 

EXPERIMENTAL DESIGN 

Finisher fertilizer treatments were applied to second crop black 

spruce container stock in a central composite experimental design 

(Khuri and Cornell 1987). The experiment was replicated in 3 complete 

blocks with 1 block at each of 3 cooperating private growers in the 

vicinity of Thunder Bay. The cooperators were: Hills Greenhouses Ltd., 

Hodwitz Enterprises Ltd. and Creekside Nursery Ltd. 

All 3 cooperating nurseries seeded their 1988 summer crops in 

Japanese paperpots in late May to early June of 1988 (Table 1). 

Treatments were applied to stop height growth and induce budset when 

the stock was approximately one centimetre short of the target height 

(Table 1). Contracts typically specify black spruce seedlings be a 

minimum of 10 cm tall. The growers' cultural regimes are compared in 

the results section. 

A complete set of fertilizer treatments was applied at each of 
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the 3 cooperating growers as soon as 100 percent budset was achieved 

(Table 1). The time of 100 percent budset was determined by Ontario 

Ministry of Natural Resources personnel who monitored the crops. The 

experimental units were entire trays of 350 Japanese paperpot 

seedlings. 

Table 1. Important dates in growers' schedules (1988). 

Grower Crop seeded Induction of bud set 100% bud set 

Hills May 25 August 25-31 September 15-20 
Hodwitz May 29-31 August 25-31 September 15-20 
Creekside June 1—6 August 25—31 September 15—20 

The central composite experimental design consisted of a 2^ 

factorial array of treatments, plus 6 "star points" and a centre point 

(8 + 6 + 1 = 15 treatment combinations) (See Appendix 1 for additional 

details). Each star point was replicated twice and the centre point 

was replicated 3 times (Draper 1982). Replication of some of the 

treatments allowed experimental error to be estimated. Altogether, 23 

experimental units were needed at each grower. One tray of paperpot 

seedlings represented one experimental unit (300 to 350 seedlings per 

tray), therefore 23 trays were set aside in a greenhouse at each of the 

cooperating nurseries. 

The 15 treatment combinations are listed in Table 2. In addition 

to the 3 primary nutrients [monoammonium phosphate (NH4H2PO4), potassiiam 

nitrate (KNO3) , and potassium sulphate (K2SO4) ] an equal amount of 

chelated trace elements (5.175 g/100 1 water) was added to each 

treatment. 

For each treatment, a concentrated nutrient solution was created by 

mixing the nutrient amounts from Table 2, plus 5.175 g of chelated 

trace elements, with 10 1 of water. Each concentrated solution was 

then diluted to 1 part concentrate and 9 parts water, before it was 

applied to the experimental unit. The final dilution allowed the 

treatments to be applied at the rates shown in Table 2. 
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Table 2. Fertilizer treatment combinations. 

Treatment 
numbe r* 

Nutrient concentration 

KNO, 
Nominal 
formulation 

Applic. 
rate 

g/100 1 water 
23.25 
6.81 
6.81 

39.69 
39.69 
6.81 
6.81 

39.69 
39.69 
23.25 
23.25 
0.00 

46.50 
23.25 
23.25 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

24.30 
7.11 
7.11 
7.11 
7.11 
41.49 
41.49 
41.49 
41.49 
0.00 

48.60 
24.30 
24.30 
24.30 
24.30 

22.28 
6.52 

38.03 
6.52 

38.03 
6.52 

38.03 
6.52 

38.03 
22.28 
22.28 
22.28 
22.28 
0.00 

44.55 

N-P-K 
8-20-30 
7-17-26 
3-8-42 
11-8-13 
7-5-43 
10- 43-11 
7- 28-26 
11- 28-24 
8- 21-31 
6-0-45 
9- 30-23 
6-29-23 
10- 15-34 
12- 28-21 
6-15-36 

ppm N 
62 
18 
18 
64 
64 
60 
60 

106 
106 
32 
91 
30 
94 
62 
62 

^Treatment number 1 is the centre point of the design; treatments 2 to 
9 are the 2^ factorial experiment; treatments 10 to 15 are the star 
points of the design. 

EXECUTION OF EXPERIMENT 

The experiment was executed in 2 stages; 

Stage One 

The objective of the first stage was to determine the effect of the 

finisher fertilizer treatments on the growth and development of 

seedling terminal buds and seedling root systems. The finisher 

fertilizer treatments were applied 4 times at each grower between the 

date when 100 percent bud set was achieved and the cessation of bud 

growth (Table 3). Fertilizer treatments were applied by hand watering 

whenever the crops required water. 

Sample seedlings were taken from each experimental unit to 

determine the state of bud and root development after the last 

fertilizer application. Terminal buds (from 15 seedlings per 

experimental unit) were fixed immediately in a mixture of formalin, 

acetic acid and alcohol (FAA). These buds were dissected and measured 

for bud diameter and number of needle primordia in February and March, 

1989. 

The number of needle primordia were estimated using a technique 
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described by Pollard (1974a). The technique involved counting the 

number of primordia in one spiral from the apex to the base of the bud 

and then multiplying by the number of spirals. Root dry weight and 

shoot/root ratio were used as measures of root development. Root and 

shoot fresh and oven dry weights were measured for 20 seedlings per 

experimental unit from November 7-12, 1988. The fresh and oven dry 

weight of the shoot were needed to determine the dry matter content of 

the shoot, which will be discussed in stage two. 

Table 3. The dates on which fertilizer treatments were applied (1988). 

Date of treatment application 

Grower 1st 2nd 3rd 4th 

Hills Sept. 27 Oct. 3 Oct. 12 Oct. 19 
Hodwitz Sept. 27 Oct. 4 Oct. 12 Oct. 19 
Creekside Sept. 27 Oct. 3 Oct. 12 Oct. 21 

Stage Two 

Following the final fertilizer application, the growers continued 

to reduce greenhouse temperatures to further induce cold hardiness. 

The second stage of the experiment covered this period of temperature 

reduction (October 24 to November 14, 1988) . The objective of this 

phase of the study was to determine whether finisher fertilizer 

treatments affected the induction of cold hardiness in black spruce 

seedlings. 

Freezing Seedlings. Seedling cold hardiness was determined by a 

whole seedling assessment method. A temperature-controlled freezer 

(Constant Temperature Control, Ltd.) located at the Lakehead University 

greenhouse, which can be set to any freezing temperature down to -80°C, 

was used to freeze sample seedlings. In addition, the freezer 

temperature can be raised or lowered at specified rates. The 

temperature inside the freezer was monitored by three temperature 

probes: two air temperature probes and one soil temperature probe. 

Seedlings were tested by grower as the freezer was only large enough to 
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accommodate the sample seedlings from a single grower at one time. 

Seedlings from each experimental unit were subjected to four 

different freezing temperatures: -10°C, —20°C, —30°C and —40°C. At each 

grower, each of the 23 experimental units was sampled to obtain four 

sets of six seedlings. Each set of six seedlings was placed upright in 

a small paper bag, and the bag was labelled with the treatment 

combination and replicate. There were 92 (4 x 23) such bags in all. 

The bags were placed in the test freezer at an initial temperature of 

+5°C. 

The temperature inside the freezer was lowered at a rate of 5°C per 

hour until —10°C was reached. Air temperature was held at -10°C until 

the soil temperature inside the paper pots was -10°C (+ or - one 

degree) . When both the air and soil temperature were -10°C, 1 paper bag 

of six seedlings from each experimental unit was taken out of the 

freezer. The temperature inside of the freezer was then lowered at a 

rate of 5°C per hour to -20°C. The temperature was held at —20°C for 

two hours at which time another bag of six seedlings from each 

experimental unit was removed from the freezer. This procedure was 

repeated for -30°C and -40°C. 

As each group of frozen seedlings was removed from the test 

freezer, it was placed in a separate plastic bag and labelled so the 

seedlings in the bag could be identified as to grower, experimental 

unit, and test temperature. The frozen seedlings in plastic bags were 

refrigerated at +5°C so they would thaw slowly. At the same time, a 

fifth set of six seedlings, was taken from each experimental unit, 

placed in a labelled plastic bag and refrigerated at +5°C. This control 

sample was not exposed to freezing temperatures. 

The freezing procedure above was performed three times for each of 
V 

the three growers over a period of three weeks. This allowed the 

seedlings to be tested at different periods of their acclimation. 

Test dates are reported in Table 4. 
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Table 4. Dates of freezing tests on finisher fertilizer treated 
seedlings. 

Date 

October 24-25, 1988 
October 25-28, 1988 
October 29-30, 1988 

November 1-3, 1988 
November 4-6, 1988 
November 7-8, 1988 

November 9-11, 1988 
November 11—13, 1988 
November 13-15, 1988 

Test number Grower 

1 
1 
1 

Hills 
Hodwitz 
Creekside 

2 
2 
2 

Hills 
Hodwitz 
Creekside 

3 
3 
3 

Hills 
Hodwitz 
Creekside 

Assessment of Freezing Damage. Upon completion of the freezer test 

at Lakehead University, the test seedlings were taken to the Thunder 

Bay Forest Nursery where they were held in cold storage at —4°C for two 

months. This was sufficient to satisfy their chilling requirement 

(Nienstaedt 1967) . After cold storage, the seedlings were thawed 

slowly in the refrigerator at the Lakehead University greenhouse. 

During the period of January 17 to February 10, 1988, each group of 6 

test seedlings was planted in a labelled pot containing a 2:1, 

peat:vermiculite mixture. The pots were placed' in a greenhouse at 

Lakehead University, where the temperature was maintained at about 

20°C; The seedlings were grown for three to four weeks and then 

assessed for freezing damage. 

Freezing damage assessment was conducted between February 19 and 

March 24, 1988. Four seedling tissues were inspected for damage: 

needles, buds, roots and stem. Each tissue was rated on a scale of 1 to 

5 as indicated in Table 5. 

An average damage code was calculated for each tissue, within each 

group of six seedlings. Then, a preliminary analysis was done to 

detect any correlation between the damage codes of different tissues. 

I discovered from the analysis (Pearson's correlation) that the damage 

codes of the four seedling tissues were highly correlated (r > 0.93). 
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Therefore, the damage codes for the four tissues were averaged to give 

a damage code for the whole seedling. Thus, each experimental unit had 

a whole-seedling damage code for each freezing-test temperature. 

Table 5. Freezing damage assessment codes. 

Damage 
Tissue code Diagnostic characteristic 

Needles 1 
2 
3 
4 
5 

- healthy and green 
- 1/4 of needles dead or brown 
- 1/2 of needles dead 
- 3/4 of needles dead 
- all of needles dead 

Buds 

Roots 

Stem 

1 - all or most buds have flushed 
2 - 3/4 of the buds have flushed 
3 - 1/2 of the buds have flushed 
4 - 1/4 of the buds have flushed 
5 - no buds have flushed .. 

1 - roots healthy (many long white roots) 
2 - white roots shorter and less vigorous 
3 - some dead roots and few new white roots 
4 — few roots alive (some white root tips) 
5 — all roots dead (dark brown) 

1 - whole stem alive (green under bark) 
2 - top 1/4 of stem dead 
3 - top 1/2 of stem dead 
4 - top 3/4 or bottom 1/4 of stem dead 
5 - whole stem dead (brown under bark) 

I decided to use the temperature at which a damage code of 4 

occurred as the cold hardiness response variable. This temperature was 

determined by graphing the whole seedling damage codes, for an 

experimental unit, over freezing temperature and interpolating between 

the 2 observed values on either side of code 4. The temperature at 

which code 4 seedling damage occurred was called the critical 

temperature. Figure 1 illustrates how the critical temperature was 

calculated. 

In a few cases, the test seedlings were so tender that code 4 

damage occurred above -10°C. This was the case in the earliest of the 

three frost hardiness tests, therefore the data from this test was not 

analyzed. In a few other cases, the test seedlings were so hardy that 

code 4 damage was not observed even at the lowest test temperature of 
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Damage 
code 

Figure 1. Determining critical temperature using the whole tree 
assessment method. 

-40°C, so critical temperature was estimated by extrapolation. 

Dry Weight Percent. Each time the experimental units were sampled 

to test for cold hardiness, 10 additional seedlings were taken to 

measure seedling fresh and dry weights. The fresh and dry weights of 

roots and shoots were measured for seedlings on the following dates: 

test 1 - November 7-12, 1988 
test 2 - November 13-18, 1988 
test 3 — November 18—23, 1988 

The fresh and dry weights of the shoots were used to calculate the 

dry weight percent of the shoots as follows: 

DWP = (SDW/SFW)*100 
where, 

DWP = shoot dry weight percent 
SDW = shoot dry weight 
SFW = shoot fresh weight 
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RESULTS 

PRELIMINARY ANALYSIS 

Initially, 10 morphological and physiological variables were 

considered for analysis (Table 6). 

Table 6. List of morphological and physiological variables considered 
for analysis. 

Variable type/Symbol Variable name 

Morphological 

NP 
BD 
S/R 
RDW 
DWPl 
DWP2 
DWP3 

number of needle primerdia 
bud diameter 
shoot/root ratio 
root dry weight 
dry weight percent on the 1st test date 
dry weight percent on the 2nd test date 
dry weight percent on the 3rd test date 

Physiological 

CTl 
CT2 
CT3 

critical temperature for 1st test date 
critical temperature for 2nd test date 
critical temperature for 3rd test date 

The CTl could not be calculated for most treatments because most 

of the seedlings in that test group were killed by the first test 

temperature, -10°C. Consequently, CTl was dropped from the analysis. 

A correlation analysis was carried out on the remaining nine 

response variables. The NP and BD were found to be so highly correlated 

(r=0.95), that NP was dr.opped from further analysis. On the other 

hand, the correlation analysis revealed that each of the last seven 

variables was essentially independent of all other variables (Table 7). 



23 

Table 7. The correlation matrix of the nine response variables. 

NOPRIM 

NOPRIM 1.00 
BD 0.95 
S/R -0.26 
RDW -0.13 
DWl -0.31 
DW2 -0.21 
DW3 -0.37 
CT2 0.28 
CT3 0.15 

BD S/R RDW 

1.00 
-0.20 1.00 
-0.06 -0.29 1.00 
-0.21 0.22 0.22 
-0.14 0.38 0.22 
-0.30 0.27 0.20 
0.25 -0.10 0.01 
0.07 -0.05 -0.26 

DWl DW2 DW3 

1.00 
0.13 1.00 
0.35 0.29 1.00 

-0.08 -0.24 -0.23 
-0.15 -0.19 -0.31 

CT2 

1.00 
-0.33 

CT3 

1.00 

ANALYSIS OF VARIANCE 

The eight independent response variables (BD, S/R, RDW, DWPl, 

DWP2, DWP3, CT2, and CT3) were analyzed separately under a one-way, 

univariate analysis of variance (Appendix 2). The analyses revealed no 

statistically significant differences between any of the 15 fertilizer 

treatments for seven of the eight response variables. The analysis of 

CT3 showed a significant effect due to fertilizer treatments. 

A multiple range test (Tukey's procedure) of the CT3 treatment 

means revealed a significant difference between only two of the 

treatments. The treatment with the most monoammonium phosphate 

(NH4H2PO4) , and the mean level of potassium nitrate (KNO3) and potassium 

sulphate (K^SO,) produced seedlings significantly more frost hardy than 

the seedlings treated with the most KNO3, SRci the mean level of NH4H2PO4 

and K2SO4. The N-P-K formulation for these two treatments is presented 

in Table 8. 

Table 8. The two significantly different CT3 treatment means. 

Nutrient concentration 
Treatment   Nominal Applic. CT3 \ 
number NH4H2PO4 KNO3 K2SO4 formulation rate 

 g/100 1 water   N-P—K pprt' N °C 

11 48.60 23.25 22.28 9-30-23 91 -37.0 
13 24.30 46.50 22.2 10-15-34 94 -25.6 



24 

A second ANOVA was done on the CT3 measurements using only the 2^ 

factorial part of the design (Appendix 3) . The analysis revealed that 

the interaction between nutrients NH^HjPO^ and KNO3 produced the most 

significant affect. This interaction is illustrated in Figure 2. 

RESPONSE SURFACE ANALYSIS 

A response surface analysis was conducted to further explore the 

effects of the three study nutrients on CT3. The data were adjusted 

prior to the analysis to remove the effect of grower. To make this 

adjustment, the overall mean CT3 was computed for each grower and 

subtracted from the CT3 values for that same grower. The adjustment 

created a new variable referred to as CT3' . 

Legend 
 KNO3 = 39.69 g/100 1 

--KNO3 = 6.61 g/100 1 

-26 

Critical 
temperature emp' 

-32 

-30 

-28 

-34 

7.11 41.49 

NH^H^PO^ (g/100 1) 

Figure 2. Interaction effect of NH^HjPO^ and KNO3 to the critical 
temperature response on the third test date. 
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The regression equation below resulted from fitting a second- 

order regression model to the adjusted response data (Appendix 4). The 

fitted model is; 

CT3' = 0.1798 - 0.9966 MP + 1.6068 PN + 0.5354 PS - 1.2266 (MP)^ 
+ 2.1505 (PN)^ - 1.1850 (PS)^ + 1.7415 MP*PN +1.5424 MP*PS 
+ 0.5144 PN*PS 

where 
CT3' = adjusted critical temperature response on third test date 

MP = coded variable for monoammonium phosphate 
PN = coded variable for potassium nitrate 
PS = coded variable for Potassium sulphate 

The fitted model provided a compact summary of the CT3' response 

surface, and facilitated the exploration of that surface. Only 3 of 

the independent variables in the model were statistically significant: 

PN, (PN)^ and MP*PN (Appendix 4). And these 3 model variables involve 

only 2 of the controlled factors: PN and MP. Since PS appears to have 

no statistically significant effect on CT3', the response surface over 

the PN-MP factor space was analyzed while holding the level of PS at 0 

g/100 1 (Figure 3). Figure three indicates that the critical 

temperature becomes lower as the NH^H^PO^ increases and the KNO3 

decreases. 

A canonical analysis (Appendix 4) was performed on the CT3' 

response surface. The goal of this analysis was to find the levels of 

PN and MP (within the experimental region) that produce the minimum 

critical temperature. The coordinates of the point at which minimum 

critical temperature is predicted are: 

NH^jH^PO^ = 40.97 g/100 1 
KNOj = 19.30 g/100 1 

K2SO4 = 0 g/100 1 

In conventional N-P-K formulation, this fertilizer is approximately 12— 

38—14 at 77.5 ppm based on N. 

The minimum CT3 on the response surface is -38.81°C, 7.67 degrees 

less than the mean CT3 of -31.14°C and 13.21 degrees less than the 

highest CT3 of -25.6°C. The highest CT3 resulted from the fertilizer 

treatment with the formulation of 10-15-34 at 94 ppm based on N. 
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7.1 15.7 -24.3 32.9 41.5 

SK,H2?04 (g/100 

Figure 3. Estimated critical temperature response <°C), when K2SO4 = 0 
g/100 1. 

COMPARISON OF GROWERS 

Although there were not many differences between fertilizer 

treatments, there were big differences between growers. My experiment 

was not designed to test statistically for differences between growers, 

but rough comparisons can be made by simply looking at the numbers. 

Table 9 shows the average number of needle primordia from 

experimental seedlings for each grower prior to the first fertilizer 

application (September 27, 1988) and after the last fertilizer 

application (October 21, 1988) . At Hodwitz and Creekside over half the 

needle primordia had formed in the terminal buds before the fertilizer 

treatments were applied. 
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Table 9. Number of needle primordia before and after the fertilizer 
applications. 

Grower Pre-fertilizer Post-fertilizer 

average number of needle primordia 

Hills 44.0 
Hodwitz 62.6 
Creekside 68.3 

102.2 
87.3 
134.0 

Table 10 compares the morphological and physiological 

characteristics of the seedlings used in the experiment from the three 

growers. 

Table 10. A comparison of the morphological and physiological 
attributes of the seedlings in the experiment by grower 
(October 23-28, 1988) . 

Grower 

Attribute Hills Hodwitz Creekside 

mean sd mean sd mean sd 

needle prim. (No.) 
shoot/root(dry wt) 
root dry wt. (mg) 
DWP3 (%) 
CT3 (°C) 

102.2 6.5 
5.6 0.7 

93.3 12.0 
36.7 1.9 

-33.8 6.8 

87.3 5.9 
4.9 0.7 

86.8 13.1 
36.7 1.9 

-30.0 5.6 

134.0 9.6 
4.7 0.5 

82.6 8.2 
33.9 1.5 

-29.6 4.7 

The morphological and physiological characteristics of the 

growers' black spruce extended crops for 1988 are reported in Table 11 

The information in this table was collected by the Ontario Ministry of 

Natural Resources (OMNR) Thunder Bay regional office. The OMNR data 

for RCD, height, shoot/root and total dry weight were not collected on 

the same date for all growers. The date on which each measurement was 

taken is listed beside the measurement in Table 11. Note that some of 

the measurements for the seedlings at Hodwitz were taken over a month 

earlier (Sept. 6) than those for the other two nurseries (Oct. 11 and 

18). I assume that the height, RCD and dry weight of the Hodwitz 

seedlings would have increased and the shoot/root ratio decreased over 

the months of September and October. The difference in dates makes 



28 

Table 11. A comparison of the 1988 black spruce extended crop from 
the three private seedling growers that cooperated in the 
experiment. 

Grower 

Morphological 
and Physiological 
Attributes 

Hills Hodwitz 

Date 

Creekside 

Value Date Value Date Value 

Height (cm) 
RCD^ (mm) 
Total dry wt.(mg) 
shoot/root(dry wt) 
needle primordia 
Index of Injury(%) 
Survival‘s (%) 

II 

Root growth's (days) 

Oct.18 15.3 
Oct.18 1.6 
Oct.18 504.7 
Oct.18 5.6 
Oct. 17 92.0 
Oct.17 0.0 
Jan.6/89 70.0 
Feb.7/89 56.0 
Jan.6/89 11.0 
Feb.7/89 6.0 

Sept.6 16.9 
Sept.6 1.2 
Sept.6 393.7 
Sept.6 7.9 
Oct.17 105.0 
Oct.17 0.0 
Jan.6/89 83.0 
Feb.7/89 52.0 
Jan.6/89 9.0 

Oct.11 14.6 
Oct.11 1.6 
Oct.11 542.0 
Oct.11 4.0 
Oct.17 122.0 
Oct.17 2.6 
Jan.6/89 96.0 
Feb.7/89 93.0 
Jan.6/89 7.0 
Feb.6/89 6.0 

Source: Ontario Ministry of Natural Resources, Thunder Bay Region. 
“ Root Collar Diameter 
^ Seedlings that were healthy after they were taken from overwinter 
storage and grown in a greenhouse for 28 days, (source: McClain and 
Elliot 1989) 
The number of days for seedlings to attain a considerable number of 

white root tips after being taken from overwinter storage and planted 
in a greenhouse.(source: McClain and Elliot 1989) 

comparison between growers more difficult. 

The information for the Hills crop was for the crop of seedlings 

that was in the same greenhouse as my experimental seedlings. The 

shoot/root ratio and niamber of primordia for the Hills crop were 

similar to the experimental seedlings (comparing Tables 10 and 11) . 

The OMNR did not have data for the Hodwitz crop grown in the same 

greenhouse as my experimental seedlings, so the data in Table 11 under 

Hodwitz is for an extended crop grown in a different greenhouse at the 

Hodwitz nursery. The experimental seedlings at Creekside Nursery were 

moved from the greenhouse they were grown in to an empty greenhouse 

before the experiment was started. Therefore, the data in Table 11 

under Creekside represents all three greenhouses that contained 

extended black spruce crops at the Creekside nursery. 

Table 12 compares the cultural regimes used by the growers to grow 

their 1988 extended black spruce crops (as reconstructed in November, 

1991) . Ron Vilim, of Hills Greenhouses, had the most accurate records 
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of the three growers for the 1988 regime. Dan Hodwitz (of Hodwitz 

Enterprises) and Dennis Travesinutto Jr. (of Creekside Nursery) 

provided information from memory as they had no written records of the 

1988 crop. Other information was obtained from the OMNR, Thunder Bay 

regional office. The information for Table 12 was collected in 

November of 1991. 
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Table 12. The cultural techniques used by the growers to grow their 
1988 black spruce "extended" crop. 

3entiination 
late 

Growing 
temperature (°C) 
- daytime 
- nighttime 

Artificial 
Light 

Start of 
fertilization 

Fertilizer and 
Rate (N-P-K) 
- Starter 

— Grower 

-Finisher 

Techniques used 
to stop height 
growth 

When above 
technicjues 
where applied 

100% bud 
initiation 

Seedlings moved 
outside 

June 1 

27 
20 

Aug. 12 -26 
(18 hour day) 

June 12 

20-8-20 
@ 125-150 ppm 

20-20-20 
@ 150-200 ppm 

34-0-0 
@ 150—200 ppm 

20-8-20 
0 200 ppm 

20-8-20 
@ 100 ppm 
12-0-44 

0 100 ppm 

- shut off 
artificial 
lighting 

- leach 
nutrients 
from soil 

- stop heating 
- stop 

fertilizing 

- last week of 
August 

- Sept. 15-20 

Oct.12 

none 

June 18 
(estimate) 

10-52-10 
0 50-70 ppm 

20-20-20 
0 100-150 ppm 

10-52-10 
0 100 ppm 

- leach 
nutrients 
from soil 

- stop heating 
- stop 

fertilizing 

- last week of 
August 

- Sept. 15-20 

Nov.15 

June 11-16 
(estimate) 

22 
19 

none 

June 23 
(estimate) 

10-52-10 
0 75 ppm 

20-8-20 
0 150 ppm 

8-20-30 
0 100 ppm 

- stop heating 
- soil was not 

leached 
- fertilizer 
application 
was continued 

- last week of 
August 

- Sept. 15-20 

Oct. 15 

Growers 
ultural 
Techniques Hills Hodwitz Creekside 

June 6 

26 
21 
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DISCUSSION 

BUD AND ROOT DEVELOPMENT 

The fertilizer treatments studied in this experiment seemed to 

have had little, if any effect on bud development, root dry weight or 

dry weight percent, and only a slight effect on frost hardiness. 

Scarratt (1986) found that the growth (height, diameter, dry weight and 

root area index) of jack pine container stock was not affected by the 

type of commercial fertilizer used. He found no evidence that special 

starter, grower or finisher fertilizers were needed under optimum 

growing conditions. In Scarratt's (1986) experiment, all the 

fertilizers had N, P, and K in different proportions, starters were 

applied at rates of at least 50 ppm N, growers were applied at rates of 

at least 100 ppm N and finishers were applied at rates of at least 25 

ppm N. Seedlings need only a certain amount of N, P and K for growth 

and development under optimum conditions and all the fertilizer 

treatments in my experiment and in Scarratt's experiment seemed to 

satisfy the seedlings needs. 

Colombo and Odium (1984) suggested that bud development in black 

spruce containerized seedlings could be maximized by maintaining 

temperature at 20 to 30°C, maintaining soil moisture at field capacity 

and applying a complete fertilizer in the fall. In my experiment, soil 

was kept moist and fertilizers were applied, however the greenhouse 

temperature was not maintained at 20 to 30”C. The greenhouse heaters 
\ 

at all three growers were used to maintain the growing temperatures 

during the height growth phase. The heaters were then shut off during 

the last week of August so that natural night temperatures (5 to 10°C) 

would help induce budset (see Table 12). After budset, the heaters 

were not turned back on; buds developed under natural fall 
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temperatures. According to records from Hills Greenhouses, the 

temperatures ranged from 10 to 30°C during the day and -3 to +10°C at 

night from September 15 to October 12, 1988 (temperatures below zero 

did not occur until October). Under these low temperatures the 

metabolism of the seedling slows and so does bud development (Colombo 

et al. 1981). Slower bud development requires less nutrients and all 

the fertilizer treatments seemed to have been sufficient in providing 

these nutrients. 

The lack of bud-development response to my fertilizer treatments 

may also be due to the fact that my treatments were applied too late in 

the bud-development cycle. Unless blackout curtains are used, 100 

percent bud initiation takes 2 to 3 weeks (Colombo 1989). During bud 

initiation, fertilizer should be withheld to minimize the risk of 

additional shoot growth. As a result, by the time 100 percent budset 

is achieved some terminal buds have already developed many needle 

primordia, and the opportunity for finisher fertilizers to effect bud 

development has passed. Needle initiation is highest at the beginning 

of bud development and gradually diminishes until initiation stops 

several weeks later (Pollard 1974). Table 9 showed that bud 

development was well along by the time fertilizer treatments were 

applied. The fertilizer treatments were not applied until a week after 

100 percent budset occurred because the crops did not require watering 

until then. Water evaporates slower from soil and seedlings as 

temperatures decrease, thus watering is needed less frequently in the 

fall months. 

Fertilizers high in P (e.g. 10-52-10) are used in the fall to 

increase root growth of container grown seedlings (Brix and van den 

Driessche 1974). My study failed to show a root growth response to P. 

Instead, I found that the fertilizer treatments without P had the same 

effect on fall root growth as did the treatments high in P. The role 

of P in root growth is not well documented. The main role of P in 

plants seems to be as a component of phosphate groups which are found 

in Adenosine Triphosphate (ATP) the chief medium for energy transfer 
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(Kramer and Koslowski 1960). 

Tiinmis (1974) found that depriving Douglas-fir seedlings of N 

fertilizer stimulated root growth. Gagnon et al. (1988) observed no 

difference in root dry weight of black spruce seedlings fertilized with 

3 levels of N fertilizer. The various levels of N in my experiment 

also had no effect on root dry weight. 

My study did not contain an examination of field growth and 

survival. Other studies have shown, however, that fall fertilization 

of container grown seedlings may improve stock performance after spring 

outplanting. For example, stock that was fertilized in the fall has 

shown better spring shoot and root growth than unfertilized controls 

(Timmer and Munson 1989, Brix and van den Driessche 1974, Benzain 1966, 

Donald and Simpson 1985). Further, rapid root extension after 

outplanting has been shown to improve the survival of outplanted 

container stock (Brix and van den Driessche 1974, McCreary and Duryea 

1987). During bud break and shoot expansion in the spring respiration 

may exceed photosynthesis, demonstrating that nutrients and organic 

reserves must be mobilized from last—year's shoot to provide energy 

material (Krueger 1967). Fertilizing in the fall provides stored 

nutrients that may be used by the seedling when buds break in the 

spring. 

COLD HARDINESS 

My analysis of the critical temperature data suggested a 

relatively weak cold hardiness response to nutrients NH4H2PO4 and KNOj 

and no response to nutrient K2SO4. The most favourable (ie., minimum) 

critical temperature response (-38.81°C) was predicted to occur at a 

formulation of 

NH4H2PO4 = 40.97 g/100 1 
KNO3 = 19.30 g/100 1 
K2SO4 = 0 g/100 1 

which is approximately a 12-38-14 fertilizer applied at 77.5 ppm based 

on N. The fertilizer formulation that produced the least favourable 
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temperature response (-25.6°C) was 

NH4H2PO4 = 24.30 g/100 1 
KNO3 = 46.50 g/100 1 
K2SO4 = 22.20 g/100 1 

which is approximately 10-15-34 applied at 94 ppm N. 

Howell and Dennis (1980) stated that an optimum range of each 

nutrient exists for each species and if the concentration of the 

essential nutrients (N,P and K) lies outside this range, hardiness will 

be adversely affected. The contour map of the critical temperature 

response surface for the nutrients NH^HjPO^ and KNO3 (Figure 3) 

indicates that the optimum range of these two nutrients lies to the 

"south-east" of this map. In the direction of the optimum range the 

amount of KNO3 is slowly decreasing and the amount of NH4H2PO4 is 

increasing rapidly. 

The source of the N fertilizer may be a factor in the results of 

the frost hardiness test. In my study, nitrogen came from two sources: 

ammonium (NH4) and nitrate (NO3) . The seedlings with the lowest 

critical temperature were fertilized with a large amount of NH4 from 

monoammonium phosphate and a smaller amount of NO3 from potassium 

nitrate. Various studies have indicated that N in the form of NH4 is 

taken-up more readily by conifer seedlings than N in the form of NO3 

(McFee and Stone 1968, Swan 1960, Christersson 1972, van den Driessche 

1971) . A system diagram (Figure 4) helps to explain why seedlings 

treated with more NH4 than NO3 were more frost hardy than seedlings 

treated with more NO3 than NH4 in my experiment. 

Figure 4. A system diagram showing how the uptake of N effects cold 
hardiness. 
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Seedlings fertilized with more NH4 may have taken-up more N, although I 

did not verify this. Nitrogen is necessary for protein synthesis and 

protein is needed for the changes in the cell membrane and protoplasm 

(Timmis 1974). The cell membrane and protoplasm change during 

hardening so the cell can withstand extracellular freezing. 

Contrary to most studies, Radwan et al. (1971) found that urea 

and a NO3 fertilizer produced better growth and survival in Douglas-fir 

seedlings than an NH4 fertilizer. The most favourable N source often 

changes with plant age, pH, the concentration of other nutrients and 

the carbohydrate contents of the plant (Christersson 1972). 

Timmis (1974) believed that frost hardiness was related to a K/N 

balance. He found that one half the regular dose of K (75 ppm K) and a 

regular dose of N (50 ppm N) applied through the growing season 

produced hardier Douglas-fir seedlings than did the regular levels of N 

and K (50 ppm N and 150 ppm K). My results suggested the same effect. 

The increasing cold hardiness on the response surface corresponded to a 

decreasing K/N ratio. Along the steepest critical temperature 

gradient on the response surface, the amount of NH4H2PO4 increases 

rapidly, the amount of KNO3 decreases slowly and the amount of K2SO4 

decreases rapidly. Timmis (1974) recommends a K/N ratio of 

approximately 0.6 for Douglas-fir seedlings. The K/N ratio that 

produced the hardiest bl'ack spruce seedlings in my experiment was 1.2. 

The fertilizer commonly used as a finisher fertilizer (8-20-30 at 60 

ppm N) has a K/N ratio of 3.75. 

Some studies indicate that P fertilizer should be applied after 

bud set to increase root growth or potential root growth (Brix and van 

den Driessche 1974, Waggaman 1969). My study indicated that root dry 

weight was unaffected by the amount of post-budset P. However, the 

results of the frost hardiness test indicate that a finisher fertilizer 

with a large amount of P (102 ppm P) may improve frost hardiness. I 

cannot say whether the improved frost hardiness was due to 1) the 

increase in P, 2) the easier uptake of NH4 compared to NO3, or 3) the 

decreasing K/N ratio. 
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Colombo and, his coworkers (Colombo 1989, Colombo et al. 1981) 

have found a strong correlation between bud development and frost 

hardiness in black spruce. Those seedlings that were slowest to 

initiate buds were also the last to develop high levels of frost 

hardiness (Colombo and Smith 1984). Colombo (1989) also found that the 

dry matter content of black spruce seedling shoots was correlated with 

frost hardiness. Cold hardiness in seedlings starts to develop only 

after height growth stops and buds are initiated. When height growth 

stops mineral nutrients and photosynthate become available to develop 

roots, buds, cold hardiness and increase dry matter content. 

COMPARISON OF GROWERS 

My study suggested that finisher fertilizer treatments were not 

as important to bud development as other uncontrolled factors. 

Differences in the number of needle primordia were found, but the 

biggest differences were found between growers and not between 

fertilizer treatments within growers (Tables 9, 10 and 11). 

Presumably, differences between growers were due to differences in 

growing regimes used by the growers. Colombo and Smith (1987) noted 

that black spruce seedlings with the greatest stem diameters also had 

the greatest numbers of needle primordia. Therefore, cultural regimes 

aimed at increasing seedling stem diameter may have the carryover 

effect of improving bud development. 

The seedlings at Creekside nursery had 15 to 20% more needle 

primordia in their terminal buds than the seedlings from the other two 

nurseries. Table 12 showed that the biggest difference in Creekside's 

growing regime (compared to the other two nurseries) was that 

fertilizers were still applied through the induction of budset. Budset 

at Creekside was induced by natural fall photoperiod and temperature. 

A study of 3 methods of inducing budset showed that each method 

affected bud development differently (Macey and Arnott 1986) . Induction 

of bud set using moisture stress or nutrient stress resulted in 
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seedlings with fewer needle primordia than seedlings induced to set bud 

using a shortened photoperiod (Macey and Arnott 1986). Nutrient stress 

was used to induce budset at Hills and Hodwitz, and seedlings at these 

nurseries had fewer needle primordia than seedlings at Creekside where 

nutrient stress was not used. 

In January and February of 1989, Creekside nursery had a higher 

percent of healthy seedlings in overwinter storage than the other 

nurseries (Table 11). Ninety-three percent of the seedlings were 

healthy at Creekside in February, while only 56% and 52% were healthy 

at Hills and Hodwitz, respectively. The cold hardiness of the 

seedlings at all three nurseries was similar in late October (Table 10 

and 11), therefore changes to the health of the crops must have 

occurred between November and January. 

Table 12 showed that the seedlings at Creekside did not germinate 

until a week after seedlings at the other nurseries. Therefore, 

Creekside did not start fertilizing until one week after the others. 

Even with this late start the seedlings at Creekside went into 

overwinter storage relatively the same size (height, RCD and dry 

weight) as seedlings from the other growers. 
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CONCLUSIONS 

The finisher fertilizer treatments had only a slight effect on 

frost hardiness. There was a trend toward better frost hardiness as 

more nitrogen was supplied in the form of ammonium (NH^) . The 

increasing frost hardiness also coincided with a decreasing 

potassium/nitrogen (K/N) ratio. A map of the response surface for the 

nutrients NH^HjPO, and KNO3 showed that the critical temperature was 

decreasing toward the south-east of the experimental region (Figure 3). 

Toward the south-east of the experimental region the level of NH4H2PO4 

is rapidly increasing and the level of KNO3 is slowly decreasing. 

Further experiments of the nutrient levels in the area south-east of my 

experimental region (in Figure 3) will show whether frost hardiness can 

be improved further. 

The finisher fertilizer treatments caused no significant 

differences in the bud and root development of second-crop black spruce 

container stock. However, there were differences in bud development 

between the growers. Bud development was greater in seedlings from 

Creekside nursery than seedlings from the other two nurseries. This 

difference was probably due to the different techniques used to induce 

budset. Hills and Hodwitz used nutrient stress to induce budset while 

Creekside continued fertilizing seedlings during budset. 
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APPENDIX 1 

CENTRAL COMPOSITE EXPERIMENTAL DESIGNS 

A general discussion of the central composite design can be found 

in many general texts on experimental design (e.g., Anderson and 

MacLean 1974, Khuri and Cornell 1987). The layout for a 2—factor design 

is illustrated in Figure Al.l. My design is analogous but in 3 

dimensions instead of 2. 

The central composite design has 3 parts: a 2-levelled factorial 

(2’‘), an extra point at the centre of the entire design and 2k star 

points (where k = the number of controlled factors). There are 2 star 

points on the axis of each design factor at a scaled distance from the 

centre point (Khuri and Cornell 1987). 

Figure Al.l Central composite design with two factors (xl and x2) 

( 0~star point) . 
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Central composite designs differ in 

a. the number of controlled factors (I had 3) 
b. the number of replications at centre-point <I used 3) 
c. the number of replications at factorial-points (1) 
d. the number of replications at star-points (2) 
e. the scaled distance that the star points lie from the centre 

point (I used 1.414 units relative to the factorial spacing) 

These choices resulted in a design that was both rotatable and 

orthogonal. The motives behind my choices are technical, but interested 

readers will find a full discussion of this aspect of the subject in 

Draper (1982) and in Khuri and Cornell (1987). The central composite 

design was used to allow the response surface to be described by a 

second-order regression model. 
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APPENDIX 2 

ONE-WAY UNIVARIATE ANALYSIS OF VARIANCE 

Table A2.1 shows the results of the one-way univariate analysis 

of variance for 8 response variables. 

Table A2.1. Results of univariate analysis of variance for 8 response 
variables. 

Response 
variable 

Source 
of variation df MS Pr (F) 

BD 

SR 

RDW 

DWl 

DW2 

DW3 

CT2 

CT3 

treatment 
error 

treatment 
error 

treatment 
error 

treatment 
error 

treatment 
error 

treatment 
error 

treatment 
error 

treatment 
error 

14 
24 

14 
24 

14 
24 

14 
24 

14 
24 

14 
24 

14 
24 

14 
24 

0.0009 
0.0016 

0.3711 
0.3637 

0.0002 
0.0001 

2 .2866 
3.4079 

8.2304 
5.2802 

2.7211 
5.0052 

20.1667 
29.6793 

59.0310 
17.9516 

0.58 

1.02 

1.16 

0.67 

1.56 

0.54 

0.68 

3.29 

0.85 

0.47 

0.36 

0.78 

0.16 

0.88 

0.77 

0.005 ** 
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APPENDIX 3 

FACTORIAL ANALYSIS OF VARIANCE OF VARIABLE CT3 

The analysis of variance of CT3, the critical temperature 

response from the third test date, for the factorial part of the design 

is presented in Table A3.1. Pure error was measured on the replicated 

star- and centre-points. Otherwise, only the factorial part of the 

composite design is included in this analysis. 

Table A3.1. Results of the analysis of variance for-the critical 
temperature on the third test date. 

Source of Variation df MS Pr (F) 

Grower 
restriction error 

17.36 <1 

MP 
PN 
MP by PN 
PS 
MP by PS 
PN by PS 
MP by PN by PS 
Grower-by-treatment 
interaction 

1 
1 
1 
1 
1 
1 
1 

14 

2.67 
52.57 
72.79 
2.16 
57.09 
6.35 
0.22 

34.86 

<1 
2.93 
4.06 

<1 
3.18 

<1 
<1 

1.94 

0.10 
0.055 * 

0.087 

0.079 

Total 23 

Pure error 
(from centre- and 
star-points) 

24 17.95 
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APPENDIX 4 

RESPONSE SURFACE ANALYSIS OF VARIABLE CT3' 

The Fitted. Response Surface 

For purposes of the response surface analysis, the 15 treatment 

combinations in Table 2 were coded as in Table A4.1. 

Table A4.1. Codes used in the analysis for the 15 treatment 
combinations. 

Treatment 
number 

Controlled factors 

KNO, K,SO. MP 

Coded Variables 

PN PS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

24.30 
7.11 
7, 
7 , 
7 . 

11 
11 
11 

41.49 
41.49 
41.49 
41.49 
0.00 

48.60 
24.30 
24.30 
24.30 
24.30 

23.25 
6.81 
6.81 

39.69 
39.69 
6.81 
6.81 

39.69 
39.69 
23.25 
23.25 
0.00 

46.50 
23.25 
23.25 

22.28 
6.52 

38.03 
6.52 

38.03 
6.52 

38.03 
6.52 

38.03 
22.28 
22.28 
22.28 
22.28 
0.00 

44.55 

0 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1. 

1. 
0 
0 
0 
0 

41 
41 

0 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
0 
0 

-1.41 
41 

0 
-1 
1 

-1 
1 

-1 
1 

-1 
1 
0 
0 
0 
0 

-1.41 
1.41 

A second-order regression model was fitted to the response data 

for variable CT3', the adjusted critical temperature response for the 

latest cold hardiness test date. The adjustment removed the effect of 

grower. 

Table A4.2 reports the coefficients for the full second-order 

model and some associated statistics. The fitted model had a multiple 

R^ of 0.302. 
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Table A4.2. Regression coefficients and associated statistics for the 
second-order analysis of variable CT3'. 

Variable Coefficient Standard error t-value^ 

Intercept 
MP 
PN 
PS 
MP^ 
PN^ 
PS^ 
MP*PN 
MP*PS 
PN*PS 

0.1798 
-0.9966 
1.6068 
0.5354 

-1.2266 
1505 
185 
7415 
5424 

2 
-1 
1 
1 

1.4991 
0.7419 
0.7419 
0.7419 
0.9033 
0.9033 
0.9033 
1.0439 
1.0439 

0.5144 1.0439 

0.1200 
-1.3433 
2.1695 
0.7218 

-1.358 
2.3808 

-1.3119 
1.6683 
1.4775 
0.4927 

The critical value for t (0.05.59 df) is 1.67. 

Canonical Analysis of the Response Surface 

Using the second-order model a point was located on a region of the 

response surface that was flat: the slope of the response surface was 

zero when taken in all directions from this point. This point was 

called the stationary point (x^) . The coordinates of x^ were; -0.6, - 

0.1, -0.2. A new set of axes (W^, W^, W3) was then created using Xo as 

the origin. The original axes (MP, PN, PS) used the centre point as an 

origin. The axes define the response surface and are called the 

principle axes: 

Wi = 0.751MP - 0.116PN - 0.650PS +0.316 
W2 = -0.609MP + 0.258PN - 0.750PS - 0.480 
W3 = 0.255MP + 0.959PN + 0.123PS + 0.280 

A canonical form of the predicted response equation was then 
developed: 

CT3' = 0.505 - 2.029Wi^ - 0.647W2^ + 2.415W3^ 

The coefficients in the equation for CT3' were not all negative or 

all positive, therefore the stationary point (XQ) was not a minimum or 

a maximum point on the response surface. The stationary point was at a 

minimax point on the response surface, meaning that the response 

increases when moving away from x^ along the W3 axis and the response 

decreases when moving away from x,, along the Wi and Wj axes. The 

magnitude of the individual coefficients showed how quickly the surface 
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height changed along the axes, moving away from (Khuri and 

Cornell 1987) . 

I wanted to find the minimum critical temperature on the response 

surface. To do this, I moved along the Wj axis which has the largest 

negative coefficient (-2.029), in the direction of decreasing critical 

temperature (Figure 3), stopping at the edge of the experimental 

region. The predicted minimum value of —38.8°C was interpolated. 

Further experiments outside of my experimental region in the direction 

of the Wi axis are needed to discover whether the critical temperature 

decreases further. The canonical analysis of a response surface is 

explained in detail by Khuri and Cornell (1987). 



Tr 

1 
1 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
10 
11 
11 
12 
12 
13 
13 
14 
14 
15 
15 

51 

APPENDIX 5 

LIST OF DATA USED IN THE ANALYSIS 

CODES USED FOR DATA IN TABLE A5.1 

Tr — treatment number 
Gr - grower niimber 
MP — monoammonium phosph-ate 
PN - potassium nitrate 
PS - potassium sulphate 
Rep - replicate number 
NP - number of primordia 
BD - bud diameter 
S/R - shoot/root ratio 
RDW - root dry weight 
DWPl - dry weight percent on 1st test date 
DWP2 - dry weight percent on 2nd test date 
DWP3 — dry weight percent on 3rd test date 
CT2 — critical temperature for 2nd test date 
CT3 - critical temperature for 3rd test date 

Table A5.1. List Of Data 

Gr MP PN PS REP NP BD S/R RDW DWPl DWP2 DWP3 CT2 CT3 

10 0 
10 0 
10 0 
1 -1 -1 
1 -1 -1 
1-1 1 
1-1 1 
11-1 
11-1 
111 
111 
1 -1.4 0 
1 -1.4 0 
1 1.4 0 
1 1.4 0 
1 0 -1.4 
1 0 -1.4 
1 0 1.4 
1 0 1.4 
10 0 
10 0 
10 0 
10 0 

0 1 99 
0 2 106 
0 3 101 

-1 1 100 
1 1 87 

-1 1 108 
1 1 112 

-1 1 109 
1 1 100 

-1 1 110 
1 1 99 
0 1 99 
0 2 101 
0 1 96 
0 2 108 
0 1 93 
0 2 107 
0 1 110 
0 2 108 

-1.4 1 104 
-1.4 2 102 
1.4 1 100 
1.4 2 91 

0.98 5.5 
1.02 5.6 
1.01 4.4 
1.01 4.9 
0.93 5.8 
•1.05 5.8 
1.06 4.3 
1.01 4.5 
1.01 6.0 
1.04 5.7 
1.01 7.6 
1.03 5.3 
1.01 5.3 
0.98 6.0 
1.00 5.1 
1.01 5.8 
1.04 5.9 
1.04 6.5 
1.08 5.0 
1.05 5.4 
1.04 5.9 
1.00 6.0 
0.95 6.6 

0.080 30.9 
0.088 36.5 
0.102 36.2 
0.081 33.3 
0.087 30.5 
0.103 36.6 
0.115 33.8 
0.088 35.6 
0.101 33.4 
0.100 32.9 
0.072 37.6 
0.105 39.9 
0.101 32.8 
0.101 39.2 
0.117 38.3 
0.092 39.1 
0.074 36.9 
0.088 32.5 
0.091 36.4 
0.088 35.2 
0.101 36.3 
0.096 34.4 
0.085 33.9 

37.9 33.9 
37.7 36.2 
37.6 38.6 
35.7 37.3 
41.0 34.5 
36.6 35.1 
37.5 37.9 
39.1 35.1 
35.0 33.9 
42.9 35.0 
35.3 36.2 
38.8 35.8 
37.6 37.8 
39.8 34.6 
39.4 39.1 
39.8 37.7 
41.5 36.9 
37.9 38.4 
37.2 37.3 
38.2 41.3 
39.3 36.2 
46.1 36.0 
41.7 38.9 

-30.5 -31.7 
-36.3 -27.8 
-29.1 -28.0 
-30.7 -29.7 
-32.4 -36.7 
-27.5 -28.0 
-23.1 -32.0 
-31.8 -39.4 
-19.2 -38.4 
-30.0 -26.0 
-22.5 -22.6 
-29.2 -34.8 
-31.2 -43.9 
-28.4 -49.8 
-27.5 -37.9 
-28.4 -32.9 
-29.6 -33.8 
-21.1 -27.5 
-10.6 -27.1 
-29.7 -43.5 
-29.7 -38.9 
-30.0 -27.3 
-30.5 -39.3 
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Table A5.1 (continued) 

Gr MP PN PS REP NP BD S/R RDW DWPl DWP2 DWP3 CT2 CT3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

0 
0 
0 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1. 
-1. 
1. 
1. 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

-1 
-1 
1 
1 
-1 
-1 
1 
1 
0 
0 
0 
0 

-1.4 
-1.4 
1. 
1. 
0 
0 
0 
0 

0 
0 
0 

-1 
1 
-1 
1 
-1 
1 
-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

-1. 
-1. 
1. 
1. 

1 
2 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

90 
85 
97 
97 
82 
79 
97 
85 
90 
87 
88 
90 
76 
83 
86 
84 
86 
93 
89 
79 
94 
80 
91 

0.95 
0.95 
1.02 
0.98 
0.91 
0.87 
1.00 
0.90 
0.94 
0.93 
0.93 
0.95 
0.83 
0.92 
0.91 
0.88 
0.92 
0.93 
0.92 
0.87 
0.96 
0.83 
0.94 

6.2 
3.9 

4.7 

0.067 
0.100 
0.113 
0.081 
0.069 
0.099 
0.105 
0.082 
0.099 
0.087 
0.076 
0.082 
0.098 
0.082 
0.100 
0.096 
0.073 
0.068 
0.082 
0.071 
0.084 
0.084 
0.098 

34.4 
34.0 
36.6 
34.4 
34.9 
32.5 
35. 
33. 
32.8 
36.7 
33.3 
35.0 
35.7 
33.4 
34.1 
32.8 
33.0 
36.8 
35. 
34 , 

35. 
36. 

37.3 
34.3 
35.8 
35.7 

. 6 

.2 
, 6 
.2 
.5 
, 6 
,2 

35.8 

34. 
34. 
36. 
36. 
36. 
35. 
37 . 

35.8 
36.5 
36.2 
35.4 
37.9 
36.7 
36.6 
35.1 
34.3 
36.8 
35.3 
36.1 

38.8 
35.0 
36.8 
32.9 
34 
35 
37 
38 . 

36. 
35. 
33. 
36.8 
34.9 
30.5 
36.4 
32.7 
36.8 
36.8 
32.4 
36.9 
34.9 
39.3 
34.3 

-31.0 
-34.0 
-31.7 
-27.9 
-19.3 
-18.7 
-30.1 
-33.5 
-31. 
-30 , 

-30. 
-30. 
-13. 
-28 . 

-20.4 
-29.8 
-28.8 
-31.9 

. 4 

.5 

. 1 

. 6 

. 4 

.2 

-30, 
-32 . 

-10 , 

-30 , 

-34.1 
-32.8 
-31.4 

-32.0 - 

24 
20 
24 
30 
38 
29.8 
33.7 
31.7 
29.2 
21.8 
34.6 
30.3 
30.7 
28.9 
17.1 
24.7 
34.1 
32.0 
37.0 
38.7 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

0 
0 
0 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1. 
-1. 
1. 
1. 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
0 
0 
0 
0 

-1. 
-1, 
1, 
1. 
0 
0 
0 
0 

0 
0 
0 

-1 
1 

-1 
1 

-1 
1 
-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
-1. 
-1. 
1. 
1. 

1 
2 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

140 
126 
148 
136 
137 
148 
120 
135 
115 
125 
143 
143 
131 
132 
122 
121 
130 
136 
139 
130 
142 
130 
151 

.1.15 
09 
15 
13 
12 
15 
08 
11 
10 
05 
10 
15 
10 
10 
09 
10 

4.3 
4.5 

1.10 
, 07 
, 12 
, 11 
, 11 

4.4 
4.2 

1.10 
1.23 

0.092 
0.087 
0.082 
0.095 
0.093 
0.091 
0.79 
0.068 
0.82 
0.080 
0.080 
0.083 
0.077 
0.079 
0.075 
0.066 
0.089 
0.097 
0.072 
0.081 
0.079 
0.088 
0.085 

31.0 
31.7 
34.9 
33.5 
31.9 
33.9 
32.1 
32.8 
34.8 
34.5 
31.2 
33.9 
34.0 
33.1 
31.0 
35.9 
33.6 
32.9 
31.0 
35.4 
32.9 
33.3 

34.4 
31.6 
31.8 
34.2 
37.9 
35. 
35. 
38 , 

35. 
35.9 
34.5 
35.5 
34.7 

34.7 

34.6 
34.4 
33.8 
35.6 
37.0 
37.6 
34.0 
35.7 
35.5 
34.7 

32, 
34. 
31. 
31. 
34, 
36. 
34. 
34.4 
34, 
34, 
31.0 
33.7 
35, 
34, 
32, 
35.0 
34.4 
35, 
33. 
32, 
35.8 
35.2 
31.9 - 

21.2 
29.7 
19.8 

■19.9 
2 9.4 
24.0 
22.3 
25.1 
2 4.8 
33.3 
24.0 
2 6.2 
25.4 
16.6 
26.9 
28.4 
20.3 
27.0 
28.6 
29.0 
20.6 
26.2 
19.3 

-2 9.7 
-27.9 
-18.5 
-28.5 
-35.9 
-35.0 
-29.9 
-26 
-28 
-28 
-19 
-34 
-2 9 
-36 
-33.2 
-32.3 
-24.3 
-28.7 
-28.6 
-36.5 
-2 9.2 
-30.9 
-28.0 


