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Abstract

The Observability Range Space Extraction (ORSE) algorithm is successfully
applied to identify an initially overparameterized discrete-time state-space model for
a single-link flexible manipulator. Several critical issues related to the experiments
and the implementation of the ORSE algorithm are addressed.

A new model reduction and updating technique is proposed and applied to reduce
the identified models. To quantify the contribution of individual modes to the
responses, a new measure referred to as modal response magnitude (MRM) is
developed and successfully applied to obtain a lower-order model by retaining the
most significant modes. To correct errors caused by the model reduction, either the
reduced input or output matrix is recalculated by a least squares solution.

Based on the updated reduced-order models, a controller named as PDPC is
designed to ensure a good tracking accuracy and robustness to payload changes. The
experimental results show that the PDPC control structure is effective in controlling
rigid body motion to have a zero tracking error and the minimum vibration as well.
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Chapter 1

Introduction

Traditionally, robotic manipulators have been designed and built in a manner that maximizes
stiffness to minimize vibration and allow for good positional accuracy with relatively simple
controllers. High stiffness is achieved by using rigid-links that limit the rapid motion of ma-
nipulators, increase the size of actuators, and boost energy consumption. Compared with
traditional rigid-link manipulators, flexible-link manipulators have advantages such as faster
response, lower energy consumption, smaller actuators, and lower transportation costs. But
the price paid on those advantages is complication of the control problems, which focus pri-
marily on controller design to compensate for flexure effects and to be robust in the presence of
uncertainties such as payload change. The control difficulty is caused by the fact that since a
flexible-link is a distributed system, a large number of flexible modes are required to accurately
model its behavior. Further complications arise because of the nonlinear nature of the system.

The rest of this chapter is organized as follows: Section 1 presents an overview of the
previous studies on flexible manipulators, section 2 discusses the identification methods, section

3 lists the objectives of the thesis research, and section 4 gives the outline of the thesis.

1.1 Overview of the Previous Studies on Flexible Manipulators

The studies on flexible manipulators can be classified into two areas: modeling and control.
Efforts in the modeling area have been made primarily in two different directions. Analytical

modeling tries to develop a mathematical model for a flexible manipulator using physical laws.



The studies in this direction are abound and too numerous to cite here. The report by
Tarn, Bejczy, and Ding [1] serves as an excellent summary of existing works in modeling of
flexible manipulators and contains probably the most comprehensive mathematical modeling
formulation to date. To accurately model a flexible manipulator is difficult as there are many
unknown factors such as damping and nonlinear effects. Another approach is to model a flexible
manipulator by identification techniques. By treating the system under study as a black box,
identification tries to fit input/output data to a chosen model. One of the main advantages in
doing this way is that physical properties of the system components need not to know exactly.
The work done by Tzes and Yurkovich [2] shows effective examples of applying those system
identification methods.

Like modeling, extensive works on controller design for the flexible manipulators have been
done by many researchers [3-10]. Controllers investigated in their works include the Pro-
portional & Derivative (PD) Control, Linear Quadratic Regulator (LQR) control, Model Ref-
erence Adaptive Control (MRAC), Variable Structure Sliding Mode Control (VSSMC), and
Linear Quadratic Gaussian (LQG) control. The results reveal that simpler controllers, like
PD and LQR, have more promise than complicated controllers like VSSMC in the case of
flexible-structure control.

Despite these numerous activities, it has been noted that little effort has been done to
identify flexible-link manipulators using a discrete-time state-space model. Also, few reports
have appeared on using a simple controller such as PID to achieve both a good tracking accuracy
and robustness to changing payloads. These two topics have been identified to be the main

motives for this study.

1.2 Review of Identification Methods

In order to design a high performance active control system, an accurate system model is
a prerequisite. For the case of flexible manipulators, it is difficult to develop an accurate
mathematical model for controller design; therefore, identification of flexible manipulators
has been studied by many researchers. In [11], an AutoRegressive Moving Average (ARMA)

model was used to model a single-link flexible manipulator. The recursive least squares (RLS)



algorithm was chosen as the identification method. On-line frequency domain information
was used for the control of a flexible-link robot with varying payloads in [12]. The study
reported in [13] identified an ARMA model for a two-link flexible manipulator for the purpose
of on-line control. Time domain and frequency domain methods for modeling a single-link
flexible manipulator were compared in [2]. A modal analysis was conducted for a two-link
flexible manipulator in [14]. A state-space model of a flexible arm was first derived by the
RLS estimation of an ARMA model and then a model reduction was conducted using the
balanced realization in [15]. The study conducted in [16] first obtained the transfer functions
of a single-link flexible manipulator using band-pass filters and then identified the parameters
of the transfer functions by nonlinear curve fitting.

Due to the development of the computer industry and the high dimensional nature of the
flexible manipulators, the discrete-time state-space models are more suitable for controller de-
sign and implementation. In past decade, several time domain identification methods for
structural systems have been developed. These methods include the Eigensystem Realiza-
tion Algorithm (ERA) [17], the Observer/Kalman Filter Identification (OKID) [18], Q-Markov
Cover Algorithm [19], and the Observability Range Space Extraction (ORSE) [20]. If a pulse
response is available, ERA can be directly applied to obtain the system parameter matrices.
For general response data, OKID can be used and it consists of three main steps, i.e., compu-
tation of the observer Markov parameters, recovery of the system and observer gain Markov
parameters, and realization of a state-space model. In [20], the concept of system identification
by ORSE was developed by generalizing Q-Markov Cover and ERA. The ORSE algorithm can
obtain a state-space model directly from general input/output data. The OKID and ORSE
methods have been successfully applied in model identification for large flexible space structures
[20-23].

A common feature of identification algorithms such as OKID or ORSE is that the model
must be properly overparameterized in order to capture the dynamics of systems. This need
arises due to the effects of irregularities such as measurement noise and nonlinearities of actual
systems. An overparameterized model contains both system modes and computational modes.
The order of the estimated model must be reduced to eliminate the computational modes and

insignificant system modes. The reduced model must be updated to correct for errors caused



by truncation of some modes. A procedure for model reduction and updating proposed in [20]
employs the balanced realization technique to produce a lower order model. A disadvantage of
the model reduction through the balanced realization is that the model must be asymptotically
stable or the eigenvalues of the transition matrix lie inside the unit circle. As the system under
study involves rigid body motion and lightly damping modes, the identified model is likely to
be unstable. Therefore, the balanced realization technique cannot be directly used. For model
updating, the Least Squares (LS) model updating algorithm modifies iteratively the reduced
model using the gradient information. The LS model updating technique assumes that the
model to be updated is sufficiently accurate. In practice, this assumption is not always valid

especially with a truncated model.

1.3 Objectives of the Thesis Research

1. The first objective of this study is to apply the ORSE algorithm to an electro-mechanical
system that contains rigid modes and flexible modes. Specifically a single-link flexible

manipulator is used as a test-bed for such systems.
2. The second objective of the study is to develop a new model reduction technique.

3. The third objective of the study is to develop a new model updating scheme that is more
efficient than the LS model updating algorithm.

4. The fourth objective of the study is to design a simple controller that has both a good

tracking accuracy and robustness with respect to payload change.

1.4 Outline of Thesis

The following chapters of this thesis are organized as follows. Chapter 2 presents system
identification for a single-link flexible manipulator. This chapter includes the state-space
model for the structural system, the ORSE algorithm, the experimental setup, and the system
identification results for several types of experiments. Chapter 3 develops a new procedure for

model reduction and updating. Several examples are presented. Chapter 4 gives the design



and tuning of the controller as well as real-time implementation of the controller. Chapter 5

concludes this thesis with a summary of the research and recommendations for future work.



Chapter 2

System Identification

The first objective of this thesis research is to model and identify a single-link flexible manipula-
tor. A discrete-time state-space model is used to represent the system. The ORSE identification
algorithm is chosen as a method to identify the discrete-time state-space model.

The rest of this chapter is organized as follows: Section 2 discusses the state-space model
for structural systems. Section 3 presents the ORSE identification algorithm briefly. Section
4 describes the experimental hardware setup. Section 5 presents the identification results for

three types of experiments. Section 6 contains a brief conclusion.

2.1 The State-Space Model of Structural Systems

For a linear time-invariant structural system, its dynamics can be described by the following

continuous state-space equation

z(t) = Acz(t) + Beu(t)
y(t) = Cez(t) + Dou(t)

(2-1)

where € R™"*! is a vector of the state variables, u € R"*1 is an input vector, y € R™*! is
a vector of the system outputs, A, € R**™,B. € R"*",C. € R™*", and D, € R™*" are the
parameter matrices, 7 is the number of inputs, n is the number of the state variables or the
model order, m is the number of outputs. The notation R**J denotes i x j real matrix spaces.

For systems controlled by digital computers, the measurement data is collected at discrete



times. Assume that the interval between two sampling points is At and that the excitation
signal u(t) is generated from a discrete signal by zero-order hold between the two sampling

points. Define :

Al eAbt BA (MeATp g CLC, D2D,,

(22)
z(k) £ z(kAt), u(k) 2 u(kAt), y(k) £ y(kAt).
Then the following is a discrete-time state-space model for structural systems,
z(k + 1) = Az(k) + Bu(k
(k +1) = As(k) + Bu(k) 23)

y(k) = Cz(k) + Du(k)
The above equation is a centralized model for a structural system and describes all the input

and output relationships of the system. The frequency responses of the structural system can

be computed by

G(Jw) =C(e AT - A)"'B+ D (2-4)

where J = y/—1 and the w parameter is the frequency variable.

It is assumed that the state-space model of equation (2-3) is controllable and observable.
This is a valid assumption because any uncontrollable or unobservable part of the state-space
model is irrelevant to input-output modeling and to active control of the system. Hence, any
uncontrollable or unobservable part of the system can be ignored in its input-output modeling.
The controllable and observable state-space model of a system is not unique, and any coordi-
nate transformation with a nonsingular matrix 7" will result in another state-space realization
[ A=TAT-', B=TB, C=CT™Y, D=D ]of the same system.

Assume that the output y(k) is contaminated by unknown measurement noise n(k) giving

the actual measurement (k)

(k) = y(k) + n(k). (2-5)

Suppose that the following data samples are available from experiments



g(k) and u(k) for k=1,2,..., K, (2-6)

where u(k) is an arbitrary input excitation signal, §(k) is output measurement defined in
equation (2-5), and K is the length of experimental data records. —The technique of the
system identification is to identify the matrices [ A B, C, D ] of a state-space model and

its dimension n from above input and output data samples u(k) and §(k).

2.2 System Identification by the ORSE Algorithm

In this section, the ORSE identification algorithm developed in [20] is briefly presented to
provide a background for the following experimental study and the development of a model
reduction and updating technique in chapter 3. First, the principle for the estimation of the
system matrices of a state-space model from the base vectors of its Observability Range Space is
discussed. Then, the extraction of the base vectors from experimental data and the procedure

of the identification algorithm are presented.

2.2.1 Observability Range Space and System Matrices Estimation

Let O, denote the observability matrix of block dimension q of the state-space model in equation

(2-3), ie.,

- -

C

CA
0,=| € RIm*n, (2-7)

CAr!

One property of the observability matrix important to the identification technique is its block
shift structure. Let O be the first subblock of O4, O4_1 to be the first g — 1 subblocks of Oy,
and (_)q_l to be the last ¢ — 1 subblocks. Thus,



(¢ ] [ cA ]
CA _ cA?
Og-1=| . J Og1=| | ) (2-8)
CAT2 CA91
and,

When g > n, O4_; will be full column rank and

A=0} 0, ,, C =0y, (2-10)

where the superscript + denotes the Moore-Penrose pseudo inverse.

Let Range(-) denote the range space of a matrix. The Observability Range Space of order
g of a state-space model in equation (2-3) is defined as the range space of matrix Oy, i.e.
Range(0,). Equation (2-10) becomes very useful if a matrix ¥, which has the same range
space as Range(Oyg) can be obtained from experimental data. Such a matrix ¥, can then be
written as ¥, = O,T~! for some nonsingular matrix T and can be considered as an observability
matrix of model (2-3) in a particular realization coordinate. Applying equation (2-10) to the
matrix ¥, gives an estimation of the A and C matrices since the realization coordinate is
irrelevant to input-output modeling of the system. This is the key for the ORSE identification
algorithm.

If the A and C matrices are known or are correctly estimated by applying equation (2-10),
y(k) becomes a linear function of the elements of matrices B and D. The following presents
this linear function and a linear least squares solution of these elements when y(k), u(k), A4,
and C are given.

Assume that the input vector u(k) can be written as

T
k) = [ wk), wk), , wk)]| (211)



where u;(k) for j = 1,2,...,r is a scalar signal at the j—th input channel. Let b;; and d;; be
the ij—th elements of the matrices B and D, respectively. Thus,

B = [bj] = [ Bi, Bs, B, ]’
(2-12)

D=[dij]=[D1, Dy, D’r]’

where B; and D; for j = 1,2, ..., are the j—th column vectors of matrices B and D, respectively.

Then, the state-space model of equation (2-3) can be rewritten as

o(k+1) = Az(k) + 3" Inuj(k)B;

j=1
r

= Az(k) + ZE nit; (k)bij

3&)

(2-13)

y(k) = Cz(k) + Z Imu;(k)D;

i=1
= (k) + 5 3 Tnaus (K)ds
t=1j=
where I, and I, are identity matrices of dimensions n X n and m x m, and I,; and In,; are the

i—th column vectors of I, and I, respectively. Define yq,;(k) and ys,; (k) as

zij(k + 1) = Azij(k) + Iniu;(k)
U,; (k) = Czy(k) (2-14)
Yay; (k) = Imiu; (k).

Then, yq,;(k) and ys,;(k) can be computed from A,C, and u;(k) from equation (2-14), the

following linear relationship between y(k) and the elements of B and D exists,

y(k) = Z Zydu (k)di; + Z Zyb,,(k)bu = &(k)© (2-15)

i=1 j= =1 j=1
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where matrices ®(k) € Rm*(mxr+nxr) and @ ¢ RMxm4nxn)x1 are defined as

O(k) = [ Ya,, (k) - Ydpmy (K) 5 Yay, (k) - s Yy (K);
ybu(k):""ybml(k) 3 5 ybxr(k)7"'aybmr(k) ]v
T
@=[D'{, , DT, BT, B,’:’"]

The linear least squares solution for the elements of the B and D matrices is

+

_ K K
6= ) _okTek)| |> ok)T y(k)} .

k=1

2.2.2 Observability Range Space Extraction

(2-16)

(2-17)

The following section decribes the method to extract the observability range space and its base

vector matrix from experimental data.

Define the following extended measurement vector f,(k) € R¥™*!, and extended input

vector ug(k) € RI™*1

(k) ' [ u(k)
Gu(k) = f/(k+ 1) (k) = g(k+ 1)
| G(k+q—1) | | uw(k+g—1) |

where the g parameter is the block dimension of these extended vectors.

(2-18)

Construct two Hankel matrices Y € RI™*¢ and U € R *? using the experimental data

§(k) and u(k)



Y=[gq(1), ¥(2), @q(d)]

5 92 id) |
_| 5@ 96 §(d+1)

| 9(9) G(g+1) y(K)

(2-19)

U=[uq(1), u(2), uq(d)]

[ u(l) u(2) ud) |
_ u(2) u(3) u(d +1)

| u(g) u(g+1) u(K)

where d = K — q + 1 is the column dimension of the Hankel matrices and ¢q is the block row
dimension.

For the case when output measurements are free of noise, it can be proved that

Range [YY7T — YUT(UUT)*(YUT)T] = Range(O,) . (2-20)

The above equality shows that the system observability range space can be obtained from the
Hankel matrices Y and U constructed from experimental data.

In practice, however, output measurements will always be contaminated by the measurement
noise. As a result, the Range[YYT — YUT(UUT)*(YUT)T] does not exactly equal to the
Range(Q,). To estimate base vectors of the Range(O,), apply the Singular Value Decomposition
(SVD) to YYT — YUT(UUT)+(YUT)T, ie.,

YYT - yUuT(uu?)H(yuh)T
Sy1 0 [ ) ]T (2-21)

= [ (7¢1 [71/;2 ] 0 i¢2



where Uy; € RI™*™ and Uyy € R¥™*(4™-") are column unitary matrices, Ty =diag[z;) € R™<"
is a diagonal matrix of singular values &;, for ¢ = 1,2, ...,n, Lyy =diagan:] € R(@m—n)x(gm—n)
is a diagonal matrix of singular values .44, for ¢ = 1,2,...,gm — n. The n parameter is the
estimate of the system order determined by the following criterion,

,>0, 1=1,2,..,n (2-22)

Onti<o 1=12,...,gqmn—n

where 7 is a prespecified threshold for zero. Hence, the base vector matrix ¥, can be estimated

as

U=0,T'1=Up= | € RI™x", (2-23)

CA1 |

2.2.3 The Computation Procedure of the ORSE Identification Algorithm

Step 1. Form the Hankel matrices from the experimental data as shown in the equation (2-19).

Step 2. Apply the SVD to the matrix YYT —YUT(UUT)+(YUT)T, obtain an estimate of the
system order n by comparing the singular values to a prespecified threshold &. Construct

the base vector matrix ¥, as shown in the equation (2-21) and (2-23).

Step 3. Partition ¥, and define ¥,_; and ¥,_; matrices as follow:

[ %Yo ] [ Yo ] [ ¥ ]
\I’q = ¢_l 3 ‘I’q—l = I¢jl y —\i’—q—l = ’(/}.2 ’
B 1/’q—l J | 1pq—2 J B 1/’q—l J

¥; € RM™ §=0,....q— L.

Step 4. Compute the A and C matrices as



Step 5. Compute the B and D matrices using the equations (2-14) to (2-17).

2.3 The Experimental Setup

motor current motor current

control circuit

(electrical interface board)

-

sensor signal

l PC main frame ampiifier
e essessmsesasseemeegegsismememeegs | nsmd >
middie strain | base strain position
gauge signal | gauge signal signal
wiring
| signal terminals
3 y

servo motort--

..........................................................................................................

Figure 2-1. The experimental apparatus setup.

The experimental apparatus setup for a single-link flexible manipulator is shown in Figure
2-1. The detailed electrical schematic diagrams can be found in [24]. The single-link flexible
manipulator is modeled as a cantilever beam clamped at the rotational axis of the shaft driven
by a DC motor. The link moves in a horizontal plane in order to reduce the effect of gravity.

The beam is constructed from 6061-T6 aluminum-magnesium-silicon alloy. The dimension
of the beam is 1 m (length) x 51 mm (width) x 3 mm (thickness). The flexibility of this
manipulator is greater than that of current industrial robots.

The DC motor, manufactured by Small Electric Motor Ltd., used in this experimental setup
is a permanent magnet motor with a rated stall torque of 2.938 N-m. The motor current served
as a system input controlled by the computer through the NI-DAQ( National Instruments-

Data Acquisition ) board and the related electrical circuits. The magnitude and direction of

14



the motor current are separately implemented through the electrical circuits with two voltage
commands from the two analog output channels (DAC0 and DAC1) of the NI-DAQ board. The
voltage signal from the channel DAC1 of the NI-DAQ board is used for the direction control (
Ov for clockwise rotation, 5v for counter clockwise rotation viewed from the top of the arm).
Channel DACO is used for magnitude control that has a range of Ov to 10v and a proportional

gain of approximate 0.5 A/V to motor current as shown in Figure 2-2 below.

s
(4]
T
1

£-N
T
1

w
(6]
T
I

L (——————

} magnitude control signal (V)
|

_ ——d 4
L | i
I motor current (A)

6 8 10 12
time in (sec)

magnitude in (A or V)

= N
- N O oW
T

o
(4]
1

(=}

(=]
N
E-N

Figure 2-2. The characteristics of motor current vs magnitude control signal.

Clearly, the characteristic between the output of the magnitude control from computer and the
actual motor current magnitude is linear.

Four sensors are used to measure the system responses. They are an angular position
potentiometer, a tachometer and two strain gauges separately located in the middle and base
of the arm. The locations of the strain gauges are chosen to ensure that the deflection of
the arm can be sensed. The signals from these four sensors are acquired and processed by a
personal computer through the NI-DAQ board. Two sampling rates (300 Hz and 500 Hz) were
used to compare the effect of sampling rate on the accuracy of the identified models.

The personal computer used for control is a Pentium Pro(r) with 32MB RAM. The NI-DAQ
board is a National Instruments PCI Series model PCI-MIO-16E-4, which has a resolution of

12 bit, 16 single-end analog input channels with maximum sampling rate of 500 kS/s, and 2



D/A output channels with maximum update rate of 1 MS/s. The application software used
for data acquisition and system control is LabWindows/CVL.
The apparatus is, therefore, a system of single input and four outputs, i.e., 7 =1 and m = 4.

_ T
The direct transmission matrix is zero, i.e., D = [ 0 00O ] because the outputs are not
directly related to the input. The system identification intends to identify A, B, and C using
experimental data of u(k) and §(k), for k = 1,2, ..., K.

2.4 Experimental Results

Three types of experiments for system identification have been carried out. They are open-loop
experiments, bounded position experiments ( to be defined in section 2.4.2 ), and closed-loop

experiments.

The accuracy of an identified model is evaluated using the root-mean-square of the prediction

error, i.e.,

K
PZCR §i(k))>

RMS; =
K

(2-24)

where §;(k) for k = 1,2,..., K denotes the simulation output. A nondimensionalized measure-

ment of the model accuracy then is defined as

RMS;

(2-25)

where 61,892,683 and 84 denote the errors for the angular position, base strain gauge (BSG),
middle strain gauge(MSG), and angular speed, respectively. The § parameter is an indicator

of the overall model accuracy .
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For the purpose of the comparison, the eigenvalues of the state matrix A are evaluated,

A=TAy! (2-26)
where _ .
M O 0 0O 0 0 0 0
0 A 0 0 0 0 0 0
0 0 0 0 0 0 0
A 0 0 0 Ay,-1 0 0 0 0
0 0 0 0 My O 0 0
(2-27)
0 0 0 0 0 Ay 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 i
T=[¥ ¥  Wuoy Y Y V]

where Aj;1 = A} and ¥;4y = ¥} for i = 1,3,...,n; — 1 are the pairs of complex eigenvalues and
eigenvectors, respectively, A; and ¥; for ¢ = n; + 1, ---,n are real eigenvalues and eigenvectors,
respectively. As shown in equation (2-27), the eigenvalues and eigenvectors are arranged in
such a way that the complex pairs are grouped together.

The natural frequency and damping ratio corresponding to a pair of complex conjugate

modes are related to the eigenvalues by

A = el-wisit+Jwivi-c2)At (2-28)

where the w; parameter is the :—th natural frequency, and the ¢; parameter is the ¢—th damping
ratio.

The validation of an identified model is done in two ways. They are Data Matching Vali-
dation (DMV) and Set-point Following Validation (SFV) defined as following:

1. DMV: Comparison of the simulation outputs and measurements outputs. The input

data used for the simulation is the same as those used for the model identification but



twice longer, i.e., only half of the data is used in the identification.

2. SFV: Comparison of the simulation outputs and measurements outputs under the same
Proportional + Derivative (PD) controller setting ( kp = 0.5, and kg = 1.4 ) and position

reference. The schematic diagram of the simulation is shown in Figure 2-3.

position

reference + + x(k+1) = Ax(k) + Bu(k) outputs
= —{w ?
m n_ A- Y(k) = C(k)

speed signal

kd |e

position signal

Figure 2-3. The schematic diagram for simulation of identified models (SFV).

The conventions used in the simulation plots are:

1. For the DMV and SFV plots, the dotted line denotes the simulation output and solid line
denotes the measured output. The subplot (a), (b), (c), and (d) are the position signal,
base strain gauge signal, middle strain gauge signal, and speed signal, respectively.

2. For the plots of the frequency responses, the dash-dotted line, the solid line, the dashed
line, and the dotted line represent the position signal, base strain gauge signal, middle

strain gauge signal, and speed signal, respectively.

2.4.1 Open-loop Experiments

The system setup for open-loop experiments is shown in Figure 2-4. The preset system exciting
input signal, which is proportional to the motor current, was generated by a computer and sent
out through two analog output channels (channels DAC 1 and DAC 0) of the NI-DAQ board
to the system. The equivalent data acquisition point for input u(k) in Figure 2-4 ( same
as in Figures 2-9 and 2-13) means the input signal (motor current) used in the identification

is generated from computer’s analog output signals based on the linear characteristics shown

18



in Figure 2-2 to avoid the noise. The response signals from four sensors were simultaneously

collected through the analog input channels (channels ACH 0, ACH 1, ACH 2, ACH 3).

equivalent data acquisition

T ] point for input u(k)

[ . E

.| preset exciting DA | | motor current | ¢ | flexible-link
| ; . A AN

. | signal sequence _i_'> control circuit manipulator -
! NI-DAQ i

i r’ board | .

: | sensor amplifier

| data file < o <

: AD [ 4 circuit

| Lo

| Computer Pentium Il ' data acquisition

~ point for ouput u(k)

Figure 2-4. The open-loop experimental setup.

During the open-loop experiments, four types of excitation signals were used. They are :

1. Square waveform : The magnitude of the motor current is constant, and the direction of
the motor current is alternated periodically at a frequency of 0.5 Hz. A sample waveform

is shown in Figure 2-5a.

2. Periodic random waveform : The magnitude of the motor current is random, and the
direction of the motor current is alternated periodically at a frequency of 0.5 Hz. A

sample periodic random waveform is shown in Figure 2-5b.

3. Varying square waveform : The magnitude of the motor current is constant, and the
direction of motor current is alternated at a frequencies from 0.6 Hz to 3 Hz. A sample

varying square waveform is shown in Figure 2-5c.

4. Random waveform : Both the magnitude and direction of the motor current are random.

A sample random waveform is shown in Figure 2-5d.
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Figure 2-5. The exciting signals for the open-loop experiments.

Numerous data for each type of the exciting signals were collected and applied for identifying

the system. Based on the identification results, the following observations can be obtained.

1. As shown in Table 2-1, the data from the square waveform exciting signal gave the best

identification results, and the data from the random exciting signal gave the worst.

2. The order of the identified model is estimated from the plot of the singular values of
the matrix YY7 — YUT(UUT)+(YUT)T. Figure 2-6 is an example plot of the singular
values. The order of the identified model can be chosen as n = 15 because all the rest
of the singular values are sufficiently small. There is a problem that the order of the
identified model estimated by this way may result in an unstable model. If a stable order
is required, the order has to be re-estimated until a stable model can be obtained. Table

2-1 lists model orders that correspond to the stable models.
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Figure 2-6. A sample plot of the Singular Values

Table 2-1. The identification results for the open-loop experiments

data stable system minimum DMV error

code orders n, S, S, S, S, S
O _datl 8,11,14,30,33~36 36 0.1598 | 0.1578 | 0.3091 | 0.2397 | 0.2166
O _dat2 19,21 19 0.0484 | 0.1476 | 0.3125 | 0.1449 | 0.1634
O dat3 8,14,18,20,21 18 0.3652 | 0.1670 | 0.3214 | 0.1772 | 0.2577
O _dat4 8,10,12,14 8 0.0773 | 0.2947 | 0.4943 | 0.3257 | 0.2980
O _dat5 12 12 0.1566 | 0.3128 | 0.4417 | 0.7996 | 0.4254
O _dat6 | 7.8,10,12,24,27,28,31~35 28 [ 0.3370 [ 0.2608 | 0.5030 [ 0.3381 | 0.3597
O _dat7 no stable model 31 0.2505 | 0.2584 | 0.3723 | 0.6522 | 0.3834

O_dat8 | 8,10,12~14,16,18~20,26~30 | 27 0.1683 | 0.2397 | 0.5163 | 0.3431 | 0.3169
O_dat9 8,12,14,18,20,22,24~29 24 0.3590 [ 0.2139 | 0.3797 | 0.3207 | 0.3183

O_dat10 12 12 0.1155 | 0.2676 | 0.5897 [ 0.2554 | 0.3070
O_datll | 8,11,12,15~21,24~26,2829 26 0.7778 | 0.2864 | 0.4596 | 0.4127 | 0.4841
O _datl2 8,10~12,16 11 0.5566 | 0.2021 | 0.4465 | 0.3075 | 0.3782
O_dat13 no stable model 33 0.9137 | 0.6792 | 0.5809 { 0.5006 | 0.6686
O_datl4 no stable model 31 0.7304 | 0.7129 | 0.8099 | 0.4872 | 0.6851

Notes: The detail information about the data code refer to Table A-1 in Appendix A. The critical
stable model included

3. For a stable identified model, the result of the DMV is acceptable as shown in Figure 2-7.
It is seen that the simulated outputs agree well with both the data used in the identification
(k=1 to 3000 or t < 10 seconds ) and the data not used in the identification ( k = 3001
to 6000 or ¢t > 10 seconds). On the other hand, in the case of the SF'V as shown in Figure



2-8, the simulated responses do not agree well with the measured ones, especially for the

angular position signal.
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Figure 2-7. The DMV results for an identified model (Ao2_19) derived from
the open-loop experiments.
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Figure 2-8. The SFV results for an identified model (Ao2_19) derived from
the open-loop experimental data.
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4. The first three structural modes of the system were analytically found to be 9 Hz, 25
Hz, and 48 Hz. For this specific system, experimental results show that the first three
structural modes of the system can be successfully excited by each type of the exciting
signals. Table 2-2 records the sample results of the natural frequencies calculated from
identified models for four types of exciting signals with the same estimated system order.
Clearly, each identified model can capture the first three structural modes, but there exist

some computational modes.

Table 2-2. Sample results of the natural frequency calculations
model the type of exciting signal waveform
notes square | periodic random { varying square | random
46.3594 46.2436 47.2968 57.9282
25.8423 36.4244 24.8077 52.0578
The order of selected 23.4900 29.7634 22.7656 44.4208
20.8455 23.6888 21.1291 31.5864
models for each type of
L 19.8929 23.3733 17.7503 26.4798
exciting signal waveform
. . 16.9240 20.3450 16.0718 21.7281
is 27. The unit for
natural frequencies is 15.4588 17.4293 10.1449 18.1470
in Hz 10.2807 14.8306 8.9644 | 169150
’ 8.6456 10.1949 8.6183 12.2895
7.7545 8.6636 8.4795 11.6205
5.0598 6.7934 6.8815 9.9277
2.1794 0.1338 1.6436 4.2165
0.8210

One of the problems with the open-loop experiments is that it is difficult to maintain the
range of the arm rotation. Physically the arm is restricted to rotate within £80°. When
the angular position reaches this limit, the experiment has to be stopped. To cope with this

problem, the bounded position experiment was devised.

2.4.2 Bounded Position Experiments

The system setup for the bounded position experiments is shown in Figure 2-9. The cur-
rent direction is controlled by comparing the measured angular position signal with the preset
position bounds. When the angular position reaches the preset position bounds, the current
direction is changed. The position bounds were chosen as +3 v (measured from the angular
position pot), which correspond to £35° angular positions. The initial motion of the arm starts

from the 0 v position, and moves towards the +3 v bound.
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Figure 2-9. The schematic diagram for the bounded position experimental setup.
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Figure 2-10. The typical exciting signals used for the bounded position experiments.
(a) constant current magnitude. (b) random current magnitude.

Two types of the current magnitudes were used, namely random and constant. Figure 2-10a
gives a typical resultant exciting signal when the current magnitude is a constant of 1.5 A. It
behaves similarly as the square waveform in the open-loop experiment. Figure 2-10b shows a

typical resultant exciting signal when the current magnitude varies randomly between 0 A and
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1.5 A. It has a similar effect as the periodic random waveform in the open-loop experiment.
The identification results for the bounded position experiment are presented in Table 2-3.
Figures 2-11 and 2-12 show the validation results for a model identified using the data with a

constant magnitude of the motor current. The following observations can be drawn:

1. For the bounded position experiment, a stable model is easier to obtain than the open-loop

experiment.

2. The bounded position experiments with a constant magnitude result in a more accurate

model than those with a random current magnitude.

Table 2-3. The identification results for the bounded open-loop experiments

data stable system minimum DMV error

code orders n, d, S, o, S, S
B datl 9,10,11,17 17 0.3363 | 0.4001 | 0.7528 | 0.3192 | 0.4521
B_dat2 10,12,34 34 0.1603 | 0.3304 | 0.5614 | 0.2277 | 0.3200
B dat3 7,8,12,18 18 0.1008 | 0.3505 | 0.5534 | 0.2498 | 0.3136
B dat4 10,12,26,27,29 12 0.1402 | 0.3455 | 0.6020 | 0.2585 | 0.3365
B dat5 | 8,10,12,14,15,24,26,27 24 0.1015 | 0.3288 | 0.5316 | 0.2088 | 0.2924
B_dat6 10,12,14,17,18,20,34,35 34 0.0613 | 0.3207 | 0.5342 | 0.2170 | 0.2833
B_dat7 10,16 10 0.2664 | 0.4141 | 0.7268 | 0.2571 ] 0.4161
B_dat8 12,29 12 0.1642 | 0.2118 | 0.4038 | 0.1302 | 0.2275
B dat9 12,16~19,23,25,27,29,31,33 23 0.0443 | 0.1488 | 0.2833 | 0.0998 | 0.1440
B datl0 | 8,10,12,14,20,24,28 12 0.5359 | 0.3297 | 0.6102 | 0.2677 | 0.4359
B datll | 8,10,12,16,23~28,32 24 0.0762 | 0.2132 | 0.3467 | 0.1198 | 0.1890
B datl2 | 8,10,12,16,20~23,28~35 32 0.0506 | 0.1920 | 0.3349 | 0.1234 | 0.1752
Notes: The detail information about the data code refer to Table A-2 in Appendix A. The critical
stable model order included.

3. The DMV results shown in Figure 2-11 show a good agreement between the simulated
outputs and measured outputs. But the SFV results in Figure 2-12 give an unstable
closed-loop system for the identified model, which is not true in the real system. So,
the validation results indicate that the identified model does not correctly reflect the real

system.
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Figure 2-11. The DMV results for an identified model (Ab9_23) derived from
the bounded position experiments.
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Figure 2-12. The SFV results for an identified model (Ab9_23) derived from
the bounded position experiments.
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By a careful study of the system, it was noted that the system exhibits some nonlinearity,
such as Coulomb friction. In order to reduce the influence of the system nonlinearity, the

closed-loop experiment was devised.

2.4.3 Closed-loop Experiments

The system setup for the closed-loop experiments is shown in Figure 2-13. Two types of
reference signals for the angular position were chosen. They are square waveform and varying
square waveform. For the closed-loop experiments, the magnitude of the reference signals is
chosen to be the maximum position desired. The width of the pulse is selected such that the

angular position has settled at the reference position before the next bump is applied.

! . equivalent data acquisition

. Coulomb friction . X .
! compensation ! p:omt for input u(k)
| DA | | [ motorcument |4 [ fiexible-link
i i control circuit manipulator >
: NI-DAQ |
: board | .
| sensor amplifier
AD C A circuit

Computer Pentium Il : (ljata acquisition
| point for ouput u(k)

Figure 2-13. The schematic diagram for the closed-loop experimental setup.

It was noted that the Coulomb friction has a significant effect on the rigid body motion.
In order to incorporate the Coulomb friction, the approach suggested in [25] is employed in
the closed-loop experiments. Based on the measurements, it was found that to overcome the
Coulomb friction, an extra effort of about 0.4A motor current is needed; therefore, the 0.8
v Coulomb friction compensation effort was added to the magnitude of current control signal

during the data acquisition. Since the ORSE algorithm is based on the assumption of linear
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time-invariant systems, this 0.8 v compensation signal must be subtracted from the control
signal to have the system input. Consequently, the model identified in this way will not
include the system dynamics of the Coulomb friction part.

The proportional gain and derivative gain are k, = 1.0 and kq = 2.8, respectively. Numerous
data with different payloads are collected for system identification. Some identification results
from the closed-loop experiments are recorded in Table 2-4. Figures 2-14 and 2-15 show the
validation results of DMV and SFV for a typical identified model.

1. As shown in Table 2-4. It is easier to obtain a stable model using the closed-loop

experiment than using the open-loop experiment.

Table 2-4. The identification results for the closed-loop experiments

data stable system minimum DMV error

code order n, S, d, S, S8, S
C datl 7~14,17,18,20,22~36 28 0.1431 | 0.5099 | 0.7492 | 0.2981 | 0.4251
C dat2 7~11,21~35 35 0.1061 | 0.4774 | 0.6506 | 0.2957 | 0.3745
C dat3 7,16,18~20,22~35 18 0.0735 | 0.4242 | 0.6675 | 0.2136 | 0.3447
C dat4 7~9,11,16~18,20~35 24 0.1199 | 0.4600 | 0.6441 | 0.2967 | 0.3802
C dat5 7,12~35 22 0.0678 | 0.4949 | 0.6489 | 0.2957 | 0.3768
C dat6 7~10,14~18,20,21~26,28~35 29 0.0656 | 0.5164 | 0.6237 | 0.2540 | 0.3649
C dat7 10,11,14~16,20~28,32~35 34 0.0862 | 0.2506 | 0.3230 | 0.1858 | 0.2114
C dat8 10,14,16,27,29,34,35 29 0.1243 | 0.2192 | 0.3244 | 0.1830 | 0.2128
C dat9 7~9,14~18,20,22,28, 29 35 22 0.1434 | 0.4993 | 0.5770 | 0.2484 | 0.3670
C datl0 | 7,14~22,24~30,32,34,35 15 0.1455 | 0.4246 | 0.5419 | 0.2453 | 0.3393
C datll | 7,14~20,24,26~28,30~35 26 0.0584 | 0.4287 | 0.5507 | 0.2533 | 0.3228
C_datl2 | 7~10,19~24,27,28,30,32~35 32 0.1064 | 0.5197 | 0.6191 | 0.3303 | 0.3939
C datl3 | 7,8,15~18,22~~28,30~35 28 0.0943 | 0.5236 | 0.5796 | 0.3365 | 0.3834
C datl4 | 7,9,15~18,20,22,24~30,32,34 32 0.0663 | 0.5049 | 0.6137 | 0.2545 | 0.3599
Notes: The detail information about the data code refer to Table A-3 in Appendix A

2. Compared with the results in the open-loop experiment, the model accuracy for the

angular position is much improved.

3. For the overall model accuracy, the models identified by the closed-loop experiment are
better in terms of the SFV and slightly worse in terms of the DMV than those from the

open-loop experiment.
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Figure 2-14. The DMV results for an identified model (Ac2_35) derived
from the closed-loop experiments.
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Figure 2-15. The SFV results for an identified model (Ac2_35) derived from
the closed-loop experiments.
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A disadvantage of the closed-loop experiment is that the exciting signal type can not be
directly controlled. A question arises naturally whether the system structural modes can be
fully excited in the closed-loop experiment. To address this concern, the frequency responses
of the identified model by the closed-loop experiment were analyzed and a sample results are

shown in Figure 2-16.
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Figure 2-16. The frequency response of an identified model (Ac3_18) derived
from the closed-loop experiments.

From the frequency responses, two conclusions can be drawn. First, there are only three
significant structural modes present in the responses, and the peaks representing the structural
modes coincide with the analytical prediction. Second, the structural modes have stronger
presence in the responses of the strain gauges than in the angular position and speed.

2.5 Conclusions

Base on the experimental results, the following conclusions can be drawn:

1. Although the ORSE algorithm is very effective in identifying linear systems, noises and
nonlinearity could significantly reduce the accuracy of the identified model.
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2. The system under study contains nonlinearity that cannot be neglected. As the ORSE

algorithm identifies a linear model, the identified model is a linear approximation of the

real system.

3. To obtain the best identification result, the data need to be preprocessed as following:

(1) The biases presented in the output signals must be removed. In addition, the
strain gauge signals have to be forced to zero mean.

(2) The initial outputs should be set to zero, i.e. y(1) = [ 0000 ]T

(3) The output signals were passed through a low-pass filter to reduce the noise
level. A second-order Butterworth low-pass filter with a cutoff frequency of 50
Hz was used. The selection of 50 Hz as the cutoff frequency was based on the
fact that the highest structural mode excited by the motor rotation is the third
vibratory mode whose natural frequency is about 48 Hz.

(4) All the output signals were scaled to ensure that their maximum magnitudes
equal the maximum magnitude of the input. After the matrix C was obtained,

an unscale operation was used to have a properly scaled matrix C.

4. The identified models obtained from the data with 300 Hz sampling rate give better

accuracy than those from 500 Hz sampling rate.

Tables 2-5 and 2-6 record some additional information of the special and typical identified
models that would be used in the following chapters.

Table 2-5. The special models for evaluations
model code Data used for identification order | stability
Ac3 22c C_dat3 without removal of Coulomb friction compensation 22 stable
Acll 18c [ C datll without removal of Coulomb friction compensation 18 stable
Ac3 21u C dat3 with removal of Coulomb friction compensation 21 unstable
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Table 2-6. The list of the typical identified stable models

model code data used for identification order experiment
Aol 36 first 1500 samples of O_dat1 36 Open-loop
Ao2 19 first 3000 samples of O_dat2 19 Open-loop
Ao5_12 first 1500 samples of O_dat3 12 Open-loop
Ao6 28 first 3000 samples of O dat4 28 Open-loop
Ao9 24 first 1500 samples of O_dat5 24 Open-loop
Aol0 12 first 1500 samples of O dat6 12 Open-loop
Aol4 31 first 1500 samples of O_dat7 31 Open-loop
Acl 28 first 4800 samples of C_datl 28 Closed-loop
Ac2 35 first 6000 samples of C_dat2 35 Closed-loop
Ac3 18 first 6000 samples of C_dat3 18 Closed-loop
Ac4 24 first 6000 samples of C dat4 24 Closed-loop
Ac5 22 first 4800 samples of C_dat5 22 Closed-loop
Ac6 29 first 6000 samples of C_dat6 29 Closed-loop
Ac7 34 first 6000 samples of C dat7 34 Closed-loop
Ac8 29 first 6000 samples of C_dat8 29 Closed-loop
Ac9 22 first 6000 samples of C_dat9 22 Closed-loop
Acl0 15 first 4800 samples of C_dat10 15 Closed-loop
Acll 26 first 6000 samples of C datl1 26 Closed-loop
Acl2 32 first 4800 samples of C_dat12 32 Closed-loop
Acl3 28 first 6000 samples of C_dat13 28 Closed-loop
Acl4 32 first 6000 samples of C_dat14 32 Closed-loop
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Chapter 3

Model Reduction and Updating

A feature of the ORSE algorithm is that the model must be properly overparameterized in
order to capture the dynamics of systems. This need arises due to the effects of irregularities
such as measurement noise and system nonlinearity. An overparameterized model contains
both structural or system modes and computational modes. The order of the estimated model
must be reduced to eliminate the computational modes and insignificant system modes to ease
the controller implementation. The reduced model must be updated to correct errors caused
by truncation of some modes.

The procedure proposed in [20] employs the balanced realization (BR) technique to reduce
a model. The BR technique transfer the model into an internally balanced form such that the
controllability and observability of each mode is indicated by its corresponding diagonal element
of the joint Gramain matrix or Hankel singular value [26]. The modes with smaller Hankel
singular values are considered less important and eliminated to produce a reduced-order model.
There are two major problems with the model reduction through the BR technique. First, the
BR technique requires that the model must be asymptotically stable or the eigenvalues of the
transition matrix lie inside the unit circle. Second, determining a threshold for insignificant
Hankel singular values is more or less a subjective judgement. For model updating, the Least
Squares (LS) model updating algorithm employed in [20] modifies iteratively the reduced model
using the gradient information. The LS model updating technique assumes that the model to
be updated is sufficiently accurate. In practice, this assumption is not always valid especially

with a truncated model. Moreover, the LS model updating algorithm needs to find the pseudo-
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inverse of a large size matrix which is very ill-conditioned.

As the system under study involves rigid body motion and lightly damping modes, the
identified model is likely to be unstable. Thus, the procedure for model reduction and updating
proposed in [20] cannot be applied. As a result, this study proposes to conduct the model
reduction in the modal coordinates. After an eigendecomposition is conducted on the oversized
transition matrix, the importance of individual modes is determined and less significant modes
are eliminated. In the presence of the unstable modes , the suggested approaches in [27]
can be employed to correct or force the unstable modes into stable modes. To quantify the
contribution of individual modes, a new index, referred to as the Modal Response Magnitude
(MRM), is proposed. For the system under study, the experimental results show that MRM
index is more reliable than the previously proposed indices such as the Mode Singular Value
(MSV) in [18].

The low efficiency of the updating algorithm proposed in [20] is due to simultaneously
modifying all the elements of the system matrices using the gradient information. For such a
large dimension optimization problem, the solution is likely to converge to a local minimum.
Expressing the transition, input, and output matrices in the modal coordinates, the new method
developed in this study recalculates either the input matrix or output matrix while keeping the
other two unchanged. The calculation is done by solving a non-iterative LS problem.

This chapter is organized as follow: Section 1 introduces a new procedure of model reduction
and updating. Section 2 presents the sample results by using this new procedure. Section 3

summarizes the main conclusions.

3.1 A New Procedure for Model Reduction and Updating

This section presents the development of a new procedure to reduce the order of an overpara-
meterized identified model and correct errors caused by model truncation. The key feature of
this proposed procedure is that the model reduction and updating are conducted in the modal

coordinates. An eigendecomposition is conducted on the identified transition matrix

A=TAP! (3-1)



where

U=[yy ¥»  Yus Yn Vs Y | ECT

is the eigenvector matrix and
A=diag[ A do Amot A Ams A | €CTT

is the eigenvalue matrix. In this study, C**J represents the i x j complex matrix space. It
is assumed that there are n;/2 pairs of complex eigenvalues and eigenvectors, i.e., Aj+1 = Aj,
Yi41 = ¥ for i = 1,3,---,m; — 1 where the superscript * denotes complex conjugate. The
remaining n — n; eigenvalues and eigenvectors are real. Defining a set of new states in the

modal coordinates as

(k) = ¥ 2(k) (3-2)

then the state-space model becomes

nk+1) = An(k)+ Bu(k) (3-3)

g(k) = Cn(k),
where

. . - . 1T
b1 be brn;-1 bn1 b1 bn] e omx1

~ ~ ~

A A ~ ~ ~ mX
C = OV =& & én-1 &n1 Cny cn]GC "

B = vlB= [

|

It is noted that complex quantities appear as pairs, i.e., i)i+1 = I;; and &4 = ¢ for i =
1,3,---,n1 — 1. As the state variables in the modal coordinates are decoupled, elimination of
those computational and insignificant modes has least impact to the remaining state variables.
An important question is how to distinguish the system modes from the computational
modes. It is reasonable to assert that the computational modes contribute little to the system
responses. To characterize the contribution of individual modes to the output responses, a
quantitative measure is needed. Two indices are introduced in [18] to quantify the contribution

of individual modes to a pulse response. Specifically the Mode Singular Value (MSV) is defined
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as

MSV; = /Il (L Xl + 2]+ + X2, (3-4)

A mode with a large magnitude of the MSV is considered to have a significant contribution to
the pulse response. The computational modes and insignificant structural modes are expected
to have small MSVs. The MSV may be misleading, because it only considers the contributions
of individual modes to a pulse input. For example, the pulse response of a mode with heavy
damping dies quickly even if the mode is one of the significant system modes. When the
system is persistently excited, the contribution of the heavily damped system mode may not
be neglected. To overcome this shortcoming of the MSV, an alternative measure is proposed

in this study. The system responses are a sum of the modal responses, i.e.,

ni—1 n
9(k) = E Gn, (k) + Z Gn, (k) (3-5)
=1,3 i=ni1+1

where gy, (k) € R™*! is the modal response of the i-th mode. For the i-th complex mode,

i, (k) is evaluated by

(k+1 A O (k b;
m(k+1) | _ n;(k) I L (3.6)
n;(k+1) 0 X n; (k) b;
(k
gni(k) = [& ¢ ] (k) , 1=1,8,---,m; — 1.
n; (k)

For the i-th real mode, g, (k) is evaluated by

mk+1) = Amy(k) +biuk) (37)

g"),'(k) = 6T'Irlz(k)’ Z‘=n1+1a""’-

The maximum contribution of the i-th mode to the total response can be evaluated by a Modal

Response Magnitude (MRM) defined as

K
MRM" = ma,x(z Igm(k)l/K)’ 1= 1,39 TNy — lvnl + 1»' T (3'8)
k=1
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The MRM computes the maximum means of the absolute modal responses to the actual input.
As the modes with small MRMs can be considered to be insignificant for a given input, they
are eliminated to produce a lower-order model that still preserves the basic properties of the
system. The MRMs are more meaningful than the Hankel singular values produced by the
BR technique as each MRM is related to its modal response. With the MRMs, knowledge of
the system dynamics from an analytical model or modal testing can be easily incorporated in
decision making,.

The reduced-order model has a triplet

A, = diag [ A1 A ’\ni—l Any /\nll+1 An! ] € C’"'xnl (3_9)
. .. . . . . T /

B, = [ b1 be bpi—1 b"i bn'1+1 b ] eCcrx!

Cr = [ 61 62 é’n',—l 6,nll én;+1 an’ ] [= Can

where n' denotes the order of the reduced model and n} denotes the number of complex modes
that have been retained. The reduced model is expected to be less accurate than the original
model. This problem can be corrected by recalculating the reduced matrices B or C. Since the
elements in the triplet of the reduced model are complex, this will complicate the computation
work. In order to avoid this problem, the triplet is obtained in real values by the following way.
First, a simulated output §(k) is generated using the actual input u(k) and the reduced-order
model, A,, B, and C,. It should be noted that the generated 7(k) is in real values. Applying
the ORSE algorithm to the actual input u(k) and the simulated output §(k) results in a new
set of triplet A, B,, and C, in real values. Now the reduced-order model is given as

z(k+1) = Apz.(k)+ Bru(k) (3-10)

g(k) = Crz(k)

1
where z, € R™ 1,

37



The B, matrix can be recalculated by solving the following LS problem.

K
I%ml; 15(k) — 5(k)l, (3-11)

subject to: A, and C, given in (3-10).

The matrix B, is of the form

o
1
R 5,-2 n'x1
B, = . ER (3-12)
b, |
where b,, is the i—th elements of updated matrix B, for i = 1,2,---,n'. For the single input

case, i.e., u(k) is a scalar, the response is computed by

!

z(k+1) = Apz(k) + nZIn:J),.iu(k) (3-13)

=1

g(k) = Crzr(k)

!

where I,/; is the column vector of unity matrix I,,» € RV for i =1, 2,---n'. Denoting the

response to I,;u(k) as i, (k), then

2, (k+1) = Arz,, (k) + Twsu(k) (3-14)

Gor (k) = Caz,, (k).

By the superposition

(k) =Y 9s,, (k)br, = ¢(k)Bs, (3-15)
i=1
where
$(k) = [ Uory  Ubry Ger,, ] : (3-16)

The Least Squares solution for the updated B, is

B, =Y, (3-17)
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where ® € RE*"' and Y € RE*! are of the forms

[ (1) | [ 3(1) |
o ¢(g) v ﬂ@ |
| $(k) | | (k) |

respectively.

Similarly, the updated C, can be computed by solving the following LS problem.

Cr

K
min Y _ [|5(k) — §(k)l
k=1

subject to: A, and B, given by (3-10)

The C, matrix is given by

Q!
S5
I
=
N
<+

where

Z= [ zZ(1) Z.(2) Z:(K) ]

(3-18)

(3-19)

(3-20)

(3-21)

In this study, the entire model reduction and updating scheme is implemented in Matlab

Program.

3.2 Results of Model Reduction and Updating

Prior knowledge from the analysis of the system dynamics and previous study is a good guide

to determine a minimum order of the reduced model. The previous study [16] has shown that

the excitation generated by the motor rotation can induce up to the third vibratory mode of

the arm. The first three vibratory modes ( about 8Hz, 24Hz, and 48Hz for Og payload ) can be

represented by 3 pair complex modes, i.e., 6 modes in the state-space model. The rigid motion

of the arm may be represented by two or three modes depending on the extent of modelling,

Finally the analog filter used in measuring the tachometer signal can be represented by two

modes; therefore the system has a minimum order of 10 or 11 approximately.
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Three methods are used to obtain a reduced-order model. The first method is referred
to as the MRM method by which a reduced-order model is obtained according to the MRM
ranking. The second method is referred to as the MRMC method by which the rigid modes
are determined by the MRM ranking, and the flexible modes are considered to be the complex
modes whose natural frequencies are close to the three known vibratory modes with strong
MRM ranking. The third method is named as the MSV method by which the significant
modes are selected by the MSV ranking,

The first example of model reduction and updating is an identified model derived from the
closed-loop experiment using the varying square waveform as the position reference signal and
carrying Og payload. Its original order is 18. Figures 3-1 and 3-2 show the results of the DMV
and SFV of the initial identified model. According to the MSV ranking shown in Table 3-1a,
the reduced 11-th order model should retain modes of [1/2, 3/4, 5/6, 7/8, 9/10, 17].

Table 3-1a. The MRM and MSV ranking for the 1st example
Model Ac3 18 (Og payload)
mode frequency damping MRM MSV
number (Hz) ratio ranking ranking
1/2 54.9260 0.0188 10 5
3/4 49.6205 0.0105 9 4
5/6 46.0456 0.0270 7 3
7/8 22.8148 0.0420 5 6
9/10 9.0228 0.0290 6 2
11/12 5.5770 0.1440 4 8
13/14 1.5207 0.2712 8 10
15/16 0.7677 0.3547 3 9
17 e real 2 1
18 ——ee real 1 7
Table 3-1b. The model (Ac3 18) reduction and updating results for the 1st example
) modeg procedure | validation prediction error
information stage method 3, 3, S, 3, 5y
keep all modes as is. Initial DMV 0.0470 | 0.4328 | 0.6800 | 0.2307 | 0.3476
SFV 0.0596 | 0.5636 | 0.6538 | 0.3048 | 0.3955
7/8,9/10,11/12,15/16,17,18 MRM DMV 0.0470 | 0.4625 | 0.7178 | 0.2570 | 0.3711
1/2,3/4,5/6,7/8,9/10,17 MSV DMV 0.3367 | 0.6875 | 0.9436 | 0.9960 | 0.7409
5/6,7/8, 9/10,15/16,17,18 MRMC DMV 0.0470 | 0.5000 | 0.7322 | 0.2738 | 0.3882
updated from MRMC Updatel DMV 0.0458 | 0.4456 | 0.6892 | 0.2298 | 0.3526
(Ac3r _10) SFV 0.0537 | 0.5542 | 0.6747 | 0.2910 { 0.3934
further reduced from Update2 DMV 0.0458 | 0.4551 | 0.6904 | 0.2307 | 0.3555
MRMC (Ac3r_8) SFV 0.0537 | 0.5520 | 0.6767 | 0.2906 | 0.3933
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Figure 3-1. The DMV results of the initial identified model (Ac3_18) used for
the first example.
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Figure 3-2. The SFV results of the initial identified model (Ac3_18) used for
the first example.



Comparing with the errors of the initial identified model in Table 3-1b, the errors of the
reduced-order model are increased. The DMV results of this reduced-order model in Figure
3-3 appear a significant deviation from the actual signals, especially the position signal and
speed signal. This is because the modes 15/16, and 18 were considered as less important by
the MSVs. It was noted that these three modes are related to the rigid motion with heavy
damping, in a pulse response, these modes die quickly and thus they have small MSVs.
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Figure 3-3. The DMV results of the reduced-model obtained from the model (Ac3_18) by
retaining modes [1/2,3/4,5/6,7/8,9/10,17] according to the MSV ranking.

On the other hand, according to the MRM ranking in Table 3-1a, the reduced 10-th order
model can be obtained by keeping the modes of [7/8, 9/10, 11/12, 15/16, 17, 18].  Table
3-1b shows a slight increase in the prediction errors for this reduced-order model, and its DMV
results are shown in Figure 3-4. Clearly, the result of the MRM method is better than that of
the MSV method. Figure 3-5 shows the DMV results of the reduced-order model determined
by keeping the modes of [5/6, 7/8, 9/10, 15/16, 17, 18], which were selected according to the
MRMC method. Like the reduced-order model determined by the MRM ranking, the errors

of this reduced model are also slightly increased compared with the errors of the initial model.
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Figure 3-4. The DMV results of the reduced-model obtained from the model (Ac3_18) by
retaining modes [7/8,9/10,11/12,15/16,17,18] according to the MRM ranking.
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Figure 3-5. The DMV result of the reduced-model obtained from the model (Ac3_18) by
retaining modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method.

43



magnitude (v)
o
(4

magnitude (v)

(o] 5 10 15
time (sec)
(©)
[0} 5 10 15
time (sec)

20

magnitude (v)

(o] 10 15
time (sec)
5
0.4
0.2
(o]
0.2
0.4
(o] 5 10 15
time (sec)

(b)

Figure 3-6. The DMV results of the updated reduced-model (Ac3r_10) by retaining
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method.
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Figure 3-7. The SFV results of the updated reduced-model (Ac3r_10) by retaining the
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method.



Figures 3-6 and 3-7 show the DMV and SFV results of the updated model conducted from
the reduced-order model determined by the MRMC method according to the proposed updating
algorithm in the previous section. As shown in Table 3-1, the errors of the updated model are
almost the same as those of the initial identified model. The frequency response plot of the

updated model in Figure 3-8 shows clearly the first three flexible modes.
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Figure 3-8. The frequency responses of the updated reduced-model (Ac3r_10) by retaining
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method.

According to the MRMs, the third flexible mode, about 48Hz, is not important. The
reduced-order model is further reduced to order 8 by eliminating the third flexible mode. The
errors of this further reduced-order model are given in Table 3-1b, and its DMV and SFV results
are shown in Figures 3-9 and 3-10. From the results, it can be seen that the third flexible mode

indeed is less important.

45



2
g
€
<)
o
E
(o} 5 10 15
time (sec)
©)
1.5
1
o
3 os
5
g 0
0.5
-1
(o] 5 10 15
time (sec)

20

magnitude (v)

(b)

magnitude (v)

ﬁme( (ﬁec)

5 10 15 20
time (sec)

Figure 3-9. The DMYV results of the updated reduced-model (Ac3rl_8) by retaining
the modes [7/8,9/10,15/16,17,18] according to the MRMC method.
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Figure 3-10. The SFV results of the updated reduced-model (Ac3rl_8) by retaining
the modes [7/8, 9/10,15/16,17, 18] according to the MRMC method.
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As the second example, an identified model derived from the closed-loop experiments on
the system with a payload of 300g was used. The DMV and SFV results for each stage are
shown in Figures 3-11 to 3-17, and the quantitative errors and ranking of the MSV and MRM

are recorded in Tables 3-2a and 3-2b, respectively. The results are similar to the first example.

Table 3-2a. The MRM and MSV ranking for the 2nd example
Model Acl1 26 (300g payload)
mode frequency damping MRM MSV
number (Hz) ratio Ranking ranking
1/2 58.09 0.01 10 10
3/4 52.31 0.01 9 9
5/6 47.53 0.01 8 6
7/8 41.32 0.01 11 7
9/10 35.45 0.02 13 11
11/12 22.15 0.08 4 2
13/14 18.69 0.03 14 14
15/16 10.92 0.08 7 5
17/18 7.64 0.04 12 13
19/20 4.01 0.2 6 12
21/22 1.17 0.45 2 4
23/24 0.60 0.49 1 3
25 o real 3 1
26 o real 5 8

Table 3-2b. The model (Acl1 26) reduction and updating results for the 2nd example

modes procedure | validation prediction error
information stage method 5, 5, 5, 5, 5

keep all modes as is Initial DMV 0.0467 | 0.4268 | 0.5487 | 0.2674 | 0.3224

SFV 0.0721 | 0.4707 | 0.5321 | 0.2513 | 0.3316
11/12,19/20,21/22,23/24,25,26 MRM DMV 0.0467 | 0.4312 | 0.5678 | 0.2788 | 0.3311
5/6,11/12,15/16,21/22,23/24,25 MSV DMV 0.3046 | 0.4820 | 0.5703 | 0.4250 | 0.4455
5/6,11/12,15/16, 23/24, 25, 26 MRMC DMV 0.0546 | 1.5642 | 1.2014 | 0.3464 | 0.7917
from MRM (Acllr_10) Updatel DMV 0.0414 | 0.4209 | 0.5291 [ 0.2551 | 0.3116

SFV 0.0749 | 0.4619 | 0.5222 | 0.2330 | 0.3230
from MRMC (Acl1rl_10) Update2 DMV 0.0430 | 0.4899 | 0.6115 | 0.2710 { 0.3539

SFV 0.0745 | 0.5069 | 0.5959 | 0.2590 | 0.3591
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retaining modes [11/12,19/20,21/22,23/24,25,26] according to the MRM ranking.
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retaining modes [5/6,11/12,15/16,21/22,23/24,25] according to the MSV ranking.
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Figure 3-15. The DMV results of the reduced-model of the model (Ac11_26) by retaining
modes [5/6,11/12,15/16,23/24,25,26] according to the MRMC method.
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Figure 3-16. The DMV results of the updated reduced-model (Ac11r_10) by retaining
modes [11/12,19/20,21/22,23/24,25,26] according to the MRM ranking.
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Figure 3-17. The SFV results of the updated reduced-model (Acl1r_10) by retaining
modes [11/12,19/20,21/22,23/24,25,26] according to the MRM ranking.

The new procedure of model reduction and updating proposed in this study gives users
a freedom to force an unstable identified model to be stable. This is done by moving the
eigenvalue of an unstable mode into the unit circle. Afterward, the same procedure is applied
to this forced stable model.

In the third example, the initial identified model has an unstable mode A\;7 = 1.0000235.
Before model reduction and updating for this unstable model, the unstable mode was forced to
be A\;7 = 0.9999. Then, the proposed procedure was applied. Figures 18 to 27 show the DMV
and SF'V results for each stage. The errors and ranking of the MRM and MSV are recorded
in the Tables 3-3a and 3-3b, respectively.
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Table 3-3a. The MRM and MSV ranking for the 3rd example

Model Acl1 21u (300g payload unstable)

mode frequency damping MRM MSV
number (Hz) ratio ranking ranking
1/2 58.71 0.001 7 2
3/4 51.12 0.001 8 3
5/6 47.54 0.001 11 4
7/8 40.77 0.01 10 9
9/10 22.97 0.04 4 5
11/12 11.84 0.11 3 8
13/14 8.39 0.02 6 6
15/16 3.19 0.18 5 11
17/18 0.63 0.58 1 7
19/20 0.92 0.10 9 11
21 — real 2 1
Table 3-3b: The model (Ac3 21u) reduction and updating results for the 3rd example
modes procedur | validation prediction error
information st:ge method 5, 5, 5, 5
keep all modes as is. Unstable DMV 0.2536 | 0.4872 [ 0.7043 | 0.2524 | 0.4244
force unstable mode stablizing DMV 0.2553 ] 0.4857 | 0.7041 ] 0.2519 | 0.4243
A17 =1.0003 to A17 = 0.9999 SFV 0.1210 | 0.6666 | 0.6734 | 0.3778 | 0.4597
9/10,11/12,13/14,15/16,17/18,21 MRM DMV 0.2555 [ 0.5019 [ 0.7301 | 0.2566 | 0.4360
1/2, 3/4, 5/6, 9/10, 13/14, 21 MSV DMV 0.3501 | 0.8147 | 0.9933 | 0.9730 | 0.7827
5/6,9/10,11/12,15/16,17/18,21 MRMC DMV 0.2554 | 0.5043 | 0.7767 | 0.2572 | 0.4484
from MRMC (Ac3ru_11) Updated DMV 0.0975 | 0.4623 | 0.7010 | 0.2527 | 0.3784
SFV 0.0777 | 0.5987 | 0.6819 | 0.3439 | 0.4256
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Figure 3-18. The DMV results of the initially unstable model (Ac3_21u) used for
the third example.
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Figure 3-19. The DMV results of the forced stable model from the model (Ac3_21u).
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Figure 3-20. The SFV results of the forced stable model from the model (Ac3_21u).
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Figure 3-21. The DMV results of the reduced model obtained from the forced stable model by
retaining modes [9/10,11/12,13/14,15/16,17/18,21] according the MRM ranking.
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Figure 3-22. The DMV results of the reduced model obtained from the forced stable model by
retaining modes [1/2,3/4,5/6,9/10,13/14,21] according to the MSV ranking.
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The DMV results of the reduced-model obtained from the forced stable model by
retaining modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method.
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Figure 3-24. The DMV results of the updated reduced-model (Ac3ru_11) by retaining

modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method.
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Figure 3-25. The SFV results of the updated reduced-model (Ac3ru_11) by retaining
modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method.
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Figure 3-26. The frequency response of the updated reduced-model (Ac3ru_11) by retaining
modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method.
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The results for another two examples of model reduction and updating by applying the
proposed procedure are recorded in the Tables 3-4a and 3-5a for their MRM and MSV rankings,

and Tables 3-4b and 3-5b for the prediction errors.

Table 3-4a. The MRM and MSV ranking for an identified model
derived from the open-loop experiments

Model Ao2 19 (300g payload)

mode frequency damping MRM MSV
number (Hz) ratio ranking Ranking
1/2 46.14 0.01 11 7
3/4 23.19 0.04 8 4
5/6 18.54 0.07 5 5
7/8 14.99 0.08 7 9
9/10 9.84 0.05 6 3
11/12 8.06 0.18 2 6
13/14 7.48 0.01 10 10
15/16 1.98 0.22 9 11
17 - Real 1 1
18 - Real 3 2
19 - Real 4 8

Table 3-5a. The MRM and MSV ranking for the identified model
derived from the closed-loop experiments

Model Acl1_18c (0g payload without removal of

the Columb friction compensation)

mode frequency damping MRM MSV
number (Hz) ratio ranking ranking
172 41.76 0.02 10 9
3/4 23.17 0.04 5 3
5/6 19.87 0.03 4 2
7/8 10.46 0.04 7 7
9/10 8.00 0.03 8 5
11/12 5.32 0.08 3 4
13/14 0.96 0.08 9 10
15/16 0.67 0.22 6 8
17 - Real 2 1
18 — Real 1 6
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Table 3-4b. The model (Ao2 19) reduction and updating results

modes procedure | validation prediction error

inf¢ ti stage method =

. g s | & | 6 | 6 | &
Asis Initial DMV 0.0587 | 0.1833 | 0.3403 | 0.2503 | 0.1969
SFV 0.2109 { 0.7690 | 0.9343 | 0.6319 | 0.6365
5/6,7/8,9/10,11/12,17,18,19 MRM DMV 0.0605 | 0.2721 | 0.4949 [ 0.2900 | 0.2794
1/2,3/4,5/6,9/10,11/12,17,18 MSV DMV 0.4019 | 0.4409 | 0.4315 | 0.9071 | 0.5454
1/2,3/4,5/6,11/12,17,18,19 MRMC DMV 0.0609 | 0.3602 | 0.5458 | 0.2805 | 0.3118
From MRMC method Updated DMV 0.0279 | 0.1681 | 0.4120 | 0.1732 | 0.1953
Final model---Ao2r_11 SFV 0.1768 | 0.7189 | 0.8163 | 0.6023 | 0.5786

Table 3-5b. The model (Ac11 18c) reduction and updating results
modes procedure | validation prediction error

information stage method S, S, 38, S, S
Asis Initial DMV 0.1711 | 0.4151 | 0.5814 | 0.3356 | 0.3758
SFV 0.2111 | 0.6647 | 0.6959 | 0.5242 [ 0.5240
3/4,5/6,7/8,11/12,15/16,17,18 MRM DMV 0.1708 | 0.4184 | 0.6262 | 0.3331 | 0.3871
3/4,5/6,7/8,11/12,9/10,17,18 MSV DMV 0.1755 ] 0.5295 | 0.7275 [ 0.3630 | 0.4488
1/2,3/4,7/8,11/12,15/16,17,8 MRMC DMV 0.1707 | 0.4840 | 0.6227 [ 0.3661 | 0.4109
From MRMC method Updatel DMV 0.1547 | 0.4082 } 0.5324 | 0.2538 | 0.3373
Final model---Acllr_12c. SFV 0.2365 | 0.6829 | 0.7403 [ 0.5275 | 0.5468

3.3 Conclusions

1. The Modal Response Magnitude (MRM) is more reliable in quantifying the contribution

of individual modes than the Mode Singular Value (MSV) for the system containing both

rigid modes and flexible modes.

2. The proposed model updating scheme is very effective in improving the accuracy of a

reduced-order model if this reduced-order model preserves the main modal information.

In some cases, an updated model can even achieve a better accuracy than its initial model.

3. The proposed procedure of model reduction and updating can be applied to either stable

model or unstable model.

The experimental study has shown that the final updated

model from a stable model usually has a better accuracy than that from an unstable

model.
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4. An advantage of the MRMC method is that ‘the reduced-order model is guaranteed to

preserve both the information of the rigid modes and flexible modes.

Table 3-6 lists the typical results of the model reduction and updating.

Table 3-6. The typical results of the updated reduced-order models

updated Original Order & prediction error

model code model method | validation S, S, S, S, S
Ao2r_11 Ao2_19 11 DMV 0.0279 | 0.1681 | 0.4120 | 0.1732 | 0.1953
0Og payload MRMC SFV 0.1768 | 0.7189 | 0.8163 | 0.6023 | 0.5786
Ao2r_7 Ao2_19 7 DMV 0.0283 | 0.1984 | 0.4518 | 0.2089 | 0.2218
0Og payload MRMC SFV 0.1773 | 0.7167 | 0.7994 | 0.6031 | 0.5741
Aol0r_9 Aol0r_12 9 DMV 0.1040 | 0.3710 | 0.6299 [ 0.2907 | 0.3489
0g payload MRMC SFV 0.2159 | 0.7845 | 0.9028 | 0.7332 | 0.6591
Ac3r_10 Ac3_18 10 DMV 0.0458 | 0.4456 | 0.6892 | 0.2298 | 0.3526
0Og payload MRMC SFV 0.0537 | 0.5542 | 0.6747 | 0.2910 | 0.3934
Ac3r_8 Ac3_18 8 DMV 0.0458 | 0.4551 | 0.6904 | 0.2307 | 0.3555
Og payload MRMC SFV 0.0537 ] 0.5520 | 0.6767 | 0.2906 | 0.3933
Ac5r_10 Ac5 22 10 DMV 0.0711 | 0.4918 | 0.5790 | 0.3344 | 0.3691
200g payload | MRMC SFV 0.0761 | 0.6452 | 0.6408 | 0.3237 | 0.4214
Ac6r_9 Ac6_29 9 DMV 0.0450 | 0.5242 | 0.5998 | 0.2712 | 0.3601
200g payload | MRMC SFV 0.0346 | 0.5391 | 0.5909 | 0.2594 | 0.3560
Acllir 10 | Acll_26 10 DMV 0.0414 | 0.4209 | 0.5291 | 0.2551 | 0.3116
300g payload | MRM SFV 0.0749 | 0.4619 | 0.5222 | 0.2330 | 0.3230
Acllr_8 Acll_26 8 DMV 0.0556 | 0.4952 | 0.6141 | 0.2731 | 0.3595
MRMC SFV 0.0746 | 0.5073 | 0.5963 | 0.2578 | 0.3590
Acl4r_ 10 | Acl4_32 10 DMV 0.0484 | 0.4933 | 0.5689 | 0.2513 | 0.3405
400g payload | MRMC SFV 0.0437 | 0.5114 | 0.5710 | 0.2474 | 0.3434
Ac3r_10c | Ac3_22¢ 10 DMV 0.2477 | 0.3707 | 0.6495 | 0.2308 | 0.3747
0g payload MRM SFV 0.2297 | 0.7231 ] 0.7557 | 0.5795 | 0.5720
Acllr_8 | Acllr_l12c 8 DMV 0.0889 | 0.4380 | 0.5445 | 0.2584 | 0.3325
300g payload | MRMC SFV 0.2235 | 0.7002 | 0.7245 | 0.5039 | 0.5380
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Chapter 4

Controller Design and

Implementation

The last objective of this research is to design and implement an optimum controller that is
robust when the manipulator carries different payloads. To this end, the first task is to select
a proper model for the controller design. Section 1 reports how a nominal model is chosen
from the models obtained in Chapter 2 and 3. Section 2 addresses controller design and
considerations of controller robustness. Section 3 presents real-time implementation of the
optimized controller and test results for the controller robustness. Finally section 4 gives the

conclusions.

4.1 Selection of a Nominal Model for Controller Design

Three types of the updated reduced-order models were obtained in Chapter 2 and 3. They

are:
Type I : the models derived from the data of the open-loop experiments.

Type II : the models derived from the data of the closed-loop experiments with the removal

of the Coulomb friction compensation.

Type III : the models derived from the data of the closed-loop experiments without the re-

moval of the Coulomb friction compensation.
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To find a suitable model , the following model evaluation was conducted. Four models used

in the evaluation are listed in Table 4-1. The first model is a type I model with an order of nine.

The second and third models belong to type II and their orders are eight and ten, respectively.

The fourth model is a type III model and its order is ten. Each model was used in a computer

simulation of a closed-loop system with a Proportional (P) and Integral (I) controller shown in

Figure 4-1.
Table 4-1: The optimization results of the model evaluation
model search setting optimization results
notation | type J Err Tr(sec) Kp Ki
Ao2r 9
Bo2r 9 I KpO = 3e-1; 1.8663 9.8870e-4 0.47 1.1915 5.00e-6
Co2r 9 KIO = le-2;
Ac3r_8 Kplb = 5e-3;
Bc3r_8 I Kpub = 2¢+0; 0.4034 3.5015e-6 0.82 0.3998 1.78e-2
Cc3r 8 KIIb = 5e-6;
Ac3r_10 KIub = 2e-1;
Bc3r_10 I 0.4034 4.5764¢-3 0.81 0.3995 1.78e-2
Cc3r 10
Ac3r_10c
Be3r_10c I 1.3753 | 3.1172¢-4 0.44 1.2536 5.29¢-2
Cc3r_10c
Notes: designation
KpO and K10 -- search starting point.
Eirr — steady-state error. Tr -- rising time.
outputs
Pl controller Model >
position signal

Figure 4-1. The closed-loop system used in the model evaluation

An optimum PI controller was designed for each model using the minimum integral of
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time-multiplied absolute-error (ITAE) criterion in [28], i.e.,

K,
i I = A3 URIR = (k) (4-1)

Kppy < Kp<Kpw

Ky < Ki<Krw

where Kp and K| are the proportional gain and integral gain, respectively, R is the position
reference, §1(k) is the simulated angular position, ¢(k) is the time at the kth sample moment,
K, is the number of the samples, At is the sampling time interval, and the sampling rate is
300 Hz. The lower and upper bounds for Kp are Kpyp and Kpyp, respectively. Similarly, the
lower and upper bounds for K; are Ky, and Ky, respectively. Kpp, and Kjp are given small
values close to zero. Kpy;, and Ky, are determined by the controller saturation and closed-loop
stability, respectively. The optimization results are listed in Table 4-1. It is seen that the type
IT models give the best results in terms of the minimum ITAE and steady state error.

The optimum PI controllers were implemented in real-time by a C code program. Figures
4-2 to 4-5 compare the simulated (dotted line) and implemented (solid line) results for arm

commanded to 3v set-point.
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Figure 4-2: The comparison between the simulated and implemented results for the model
Ao2r_9 with the optimal PI gain setting given in Table 4-1.
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Figure 4-3: The comparison between the simulated and implemented results for the model
Ac3r_8 with the optimal PI gain setting given in Table 4-1.
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Figure 4-4: The comparison between the simulated and implemented results for the model
Ac3r_10 with the optimal PI gain setting given in Table 4-1.
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