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Abstract 

The Observability Range Space Extraction (ORSE) algorithm is successfully 
applied to identify an initially overparameterized discrete-time state-space model for 
a single-link flexible manipulator. Several critical issues related to the experiments 
and the implementation of the ORSE algorithm are addressed. 

A new model reduction and updating technique is proposed and applied to reduce 
the identified models. To quantify the contribution of individual modes to the 
responses, a new measure referred to as modal response magnitude (MRM) is 
developed and successfully applied to obtain a lower-order model by retaining the 
most significant modes. To correct errors caused by the model reduction, either the 
reduced input or output matrix is recalculated by a least squares solution. 

Based on the updated reduced-order models, a controller named as PDPC is 
designed to ensure a good tracking accuracy and robustness to payload changes. The 
experimental results show that the PDPC control structure is effective in controlling 
rigid body motion to have a zero tracking error and the minimum vibration as well. 
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Chapter 1 

Introduction 

Traditionally, robotic manipulators have been designed and built in a manner that maximizes 

stiffness to minimize vibration and allow for good positional accuracy with relatively simple 

controllers. High stiffness is achieved by using rigid-links that limit the rapid motion of ma- 

nipulators, increase the size of actuators, and boost energy consmnption. Compared with 

traditional rigid-link manipulators, flexible-link manipulators have advantages such as faster 

response, lower energy consiunption, smaller actuators, and lower transportation costs. But 

the price paid on those advantages is complication of the control problems, which focus pri- 

marily on controller design to compensate for flexure effects and to be robust in the presence of 

uncertainties such as payload change. The control difficulty is caused by the fact that since a 

flexible-link is a distributed system, a large number of flexible modes are required to accurately 

model its behavior. Further comphcations arise because of the nonlinear nature of the system. 

The rest of this chapter is organized as follows: Section 1 presents an overview of the 

previous studies on flexible manipulators, section 2 discusses the identification methods, section 

3 lists the objectives of the thesis research, and section 4 gives the outline of the thesis. 

1.1 Overview of the Previous Studies on Flexible Manipulators 

The studies on flexible manipulators can be classifled into two areas: modeling and control. 

Efforts in the modeling area have been made primarily in two different directions. Analytical 

modeling tries to develop a mathematical model for a flexible manipulator using physical laws. 



The studies in this direction are abound and too numerous to cite here. The report by 

Tarn, Bejczy, and Ding [1] serves as an excellent summary of existing works in modehng of 

flexible manipulators and contains probably the most comprehensive mathematical modeling 

formulation to date. To accmately model a flexible manipulator is difficult as there are many 

unknown factors such as damping and nonlinear effects. Another approach is to model a flexible 

manipulator by identification techniques. By treating the system under study as a black box, 

identification tries to fit input/output data to a chosen model. One of the main advantages in 

doing this way is that physical properties of the system components need not to know exactly. 

The work done by Tzes and Yurkovich [2] shows effective examples of applying those system 

identification methods. 

Like modeling, extensive works on controller design for the flexible manipulators have been 

done by many researchers [3-10]. Controllers investigated in their works include the Pro- 

portional & Derivative (PD) Control, Linear Quadratic Regulator (LQR) control. Model Ref- 

erence Adaptive Control (MRAC), Variable Structure Sliding Mode Control (VSSMC), and 

Linear Quadratic Gaussian (LQG) control. The results reveal that simpler controllers, like 

PD and LQR, have more promise than complicated controllers like VSSMC in the case of 

flexible-structure control. 

Despite these numerous activities, it has been noted that little effort has been done to 

identify flexible-link manipulators using a discrete-time state-space model. Also, few reports 

have appeared on using a simple controller such as PID to achieve both a good tracking accuracy 

and robustness to changing payloads. These two topics have been identified to be the main 

motives for this study. 

1.2 Review of Identification Methods 

In order to design a high performance active control system, an accurate system model is 

a prerequisite. For the case of flexible manipulators, it is difficult to develop an accurate 

mathematical model for controller design; therefore, identification of flexible manipulators 

has been studied by many researchers. In [11], an AutoRegressive Moving Average (ARMA) 

model was used to model a single-link flexible manipulator. The recursive least squares (RLS) 



algorithm was chosen as the identification method. On-line frequency domain information 

was used for the control of a flexible-link robot with varying payloads in [12]. The study 

reported in [13] identified an ARM A model for a two-link flexible manipulator for the purpose 

of on-line control. Time domain and frequency domain methods for modeling a single-link 

flexible manipulator were compared in [2]. A modal analysis was conducted for a two-link 

flexible manipulator in [14]. A state-space model of a flexible arm was first derived by the 

RLS estimation of an ARMA model and then a model reduction was conducted using the 

balanced realization in [15]. The study conducted in [16] first obtained the transfer functions 

of a single-link flexible manipulator using band-pass filters and then identified the parameters 

of the transfer functions by nonlinear curve fitting. 

Due to the development of the computer industry and the high dimensional nature of the 

flexible manipulators, the discrete-time state-space models are more suitable for controller de- 

sign and implementation. In past decade, several time domain identification methods for 

structural systems have been developed. These methods include the Eigensystem Realiza- 

tion Algorithm (ERA) [17], the Observer/Kalman Filter Identification (OKID) [18], Q-Markov 

Cover Algorithm [19], and the Observability Range Space Extraction (ORSE) [20]. If a pulse 

response is available, ERA can be directly applied to obtain the system parameter matrices. 

For general response data, OKID can be used and it consists of three main steps, i.e., compu- 

tation of the observer Markov parameters, recovery of the system and observer gain Markov 

parameters, and realization of a state-space model. In [20], the concept of system identification 

by ORSE was developed by generalizing Q-Markov Cover and ERA. The ORSE algorithm can 

obtain a state-space model directly from general input/output data. The OKID and ORSE 

methods have been successfully applied in model identification for large flexible space structures 

[20-23]. 

A common feature of identification algorithms such as OKID or ORSE is that the model 

must be properly overparameterized in order to capture the dynamics of systems. This need 

arises due to the effects of irregularities such as measurement noise and nonlinearities of actual 

systems. An overparameterized model contains both system modes and computational modes. 

The order of the estimated model must be reduced to eliminate the computational modes and 

insignificant system modes. The reduced model must be updated to correct for errors caused 



by truncation of some modes. A procedure for model reduction and updating proposed in [20] 

employs the balanced realization technique to produce a lower order model. A disadvantage of 

the model reduction through the balanced realization is that the model must be asymptotically 

stable or the eigenvalues of the transition matrix lie inside the unit circle. As the system under 

study involves rigid body motion and li^tly damping modes, the identified model is likely to 

be unstable. Therefore, the balanced realization technique cannot be directly used. For model 

updating, the Least Squares (LS) model updating algorithm modifies iteratively the reduced 

model using the gradient information. The LS model updating technique assiunes that the 

model to be updated is sufficiently accurate. In practice, this assumption is not always valid 

especially with a truncated model. 

1.3 Objectives of the Thesis Research 

1. The first objective of this study is to apply the ORSE algorithm to an electro-mechanical 

system that contains rigid modes and fiexible modes. Specifically a single-link fiexible 

manipulator is used as a test-bed for such systems. 

2. The second objective of the study is to develop a new model reduction technique. 

3. The third objective of the study is to develop a new model updating scheme that is more 

efficient than the LS model updating algorithm. 

4. The fom*th objective of the study is to design a simple controller that has both a good 

tracking accuracy and robustness with respect to payload change. 

1.4 Outline of Thesis 

The following chapters of this thesis are organized as follows. Chapter 2 presents system 

identification for a single-link fiexible manipulator. This chapter includes the state-space 

model for the structural system, the ORSE algorithm, the experimental setup, and the system 

identification results for several types of experiments. Chapter 3 develops a new procedure for 

model reduction and updating. Several examples are presented. Chapter 4 gives the design 



and tuning of the controller as well as real-time implementation of the controller. Chapter 5 

concludes this thesis with a summary of the research and recommendations for future work. 



Chapter 2 

System Identification 

The first objective of this thesis research is to model and identify a single-link flexible manipula- 

tor. A discrete-time state-space model is used to represent the system. The ORSE identiflcation 

algorithm is chosen as a method to identify the discrete-time state-space model. 

The rest of this chapter is organized as follows: Section 2 discusses the state-space model 

for structural systems. Section 3 presents the ORSE identiflcation algorithm briefly. Section 

4 describes the experimental hardware setup. Section 5 presents the identiflcation results for 

three types of experiments. Section 6 contains a brief conclusion. 

2.1 The State-Space Model of Structural Systems 

For a linear time-invariant structural system, its dynamics can be described by the following 

continuous state-space equation 

I x{t) = Acx{t) ^ Bcu{t) 

I y{t) = Ccx{t) -1- Dcu(t) 

where re € is a vector of the state variables, is an input vector, y € is 

a vector of the system outputs, Ac G RP’^^,Bc G G and Dc G are the 

parameter matrices, r is the number of inputs, n is the number of the state variables or the 

model order, m is the number of outputs. The notation denotes ix j real matrix spaces. 

For systems controlled by digital computers, the measurement data is collected at discrete 



times. Assume that the interval between two sampling points is At and that the excitation 

signal u(t) is generated from a discrete signal by zero-order hold between the two samphng 

points. Define : 

AAgAcAt^ B 6= C = Cc, D = Dc, 

x(k) = x(kAt), u(k) = u{kAt), y{k) — y{kAt). 

Then the following is a discrete-time state-space model for structmal systems, 

(2-2) 

x{k -f-1) = Ax{k) -\- Bu{k) 

y{k) = Cx{k) Du{k) 
(2-3) 

The above equation is a centralized model for a structural system and describes all the input 

and output relationships of the system. The frequency responses of the structural system can 

be computed by 

G(Juj) = - A)-^B + D -1 (2-4) 

where J = \/^ and the uj parameter is the frequency variable. 

It is assumed that the state-space model of equation (2-3) is controllable and observable. 

This is a vahd assumption because any uncontrollable or unobservable part of the state-space 

model is irrelevant to input-output modeling and to active control of the system. Hence, any 

imcontrollable or unobservable part of the system can be ignored in its input-output modeling. 

The controllable and observable state-space model of a system is not unique, and any coordi- 

nate transformation with a nonsingular matrix T will result in another state-space reahzation 

[A = Ti4T“^, B = TB, C = CT~^, D = D of the same system. 

Assume that the output y(k) is contaminated by unknown measurement noise n{k) giving 

the actual measurement y(k) 

y{k) = y{k) + n{k). (2-5) 

Suppose that the following data samples are available from experiments 



y(k) and u{k) for fc = 1,2,K, (2-6) 

where u{k) is an arbitrary input excitation signal, y{k) is output measurement defined in 

equation (2-5), and K is the length of experimental data records. The technique of the 

system identification is to identify the matrices A, B, C, D of a state-space model and 

its dimension n from above input and output data samples u{k) and y{k). 

2.2 System Identification by the ORSE Algorithm 

In this section, the ORSE identification algorithm developed in [20] is briefiy presented to 

provide a background for the following experimental study and the development of a model 

reduction and updating technique in chapter 3. First, the principle for the estimation of the 

system matrices of a state-space model from the base vectors of its Observability Range Space is 

discussed. Then, the extraction of the base vectors from experimental data and the procedure 

of the identification algorithm are presented. 

2.2.1 Observability Range Space and System Matrices Estimation 

Let Og denote the observability matrix of block dimension q of the state-space model in equation 

(2-3), i.e.. 

C 

CA 
(2-7) 

One property of the observability matrix important to the identification technique is its block 

shift structure. Let Oi be the first subblock of Og, Og_i to be the first q — 1 subblocks of Og, 

and Og_i to be the last q — 1 subblocks. Thus, 



and, 

Og_i = 

c 
CA 

CA^ -2 

Oq,_i — 

CA 

CA^ 

CA^ -1 

(2-8) 

Oi = C, 0,-1 = 0,_iA . (2-9) 

When q> Og_i will be full cx)lunm rank and 

A = 0+_,0,_i, C = Oi, (2-10) 

where the superscript + denotes the Moore-Penrose pseudo inverse. 

Let Range(-) denote the range space of a matrix. The Observability Range Space of order 

g of a state-space model in equation (2-3) is defined as the range space of matrix Og, i.e. 

Range(Og). Equation (2-10) becomes very useful if a matrix ’J'g which has the same range 

space as Range(Og) can be obtained from experimental data. Such a matrix ^g can then be 

written as ^g = OqT~ ^ for some nonsingular matrix T and can be considered as an observability 

matrix of model (2-3) in a particular reahzation coordinate. Applying equation (2-10) to the 

matrix ^g gives an estimation of the A and C matrices since the realization coordinate is 

irrelevant to input-output modeling of the system. This is the key for the ORSE identification 

algorithm. 

If the A and C matrices are known or are correctly estimated by applying equation (2-10), 

y(k) becomes a hnear function of the elements of matrices B and D. The following presents 

this hnear function and a linear least squares solution of these elements when y{k), u{k), A, 

and C are given. 

Assume that the input vector u{k) can be written as 

Ur(k) u{k) = ui{k), U2{k) (2-11) 



where Uj{k) for j = 1,2, ...,r is a scalar signal at the jf—th input channel. Let hij and dij be 

the ij—th elements of the matrices B and D, respectively. Thus, 

B = [6y] = 

D — [dij] — 

Bi, B2, Br 

Dr 

(2-12) 

D2, 

where Bj and Dj for j = 1,2,..., r are the j—th column vectors of matrices B and D, respectively. 

Then, the state-space model of equation (2-3) can be rewritten as 

x(k -I-1) = Ax(k) -f InUj(k)Bj 
j=i 
m r 

= Ax(k) + Y1Y1 IniUj(k)bij 
i=\ j=\ 

y{k) = Cx{k) + Y, ImUj{k)Dj 
j=i 

m r 
= Cx{k) + ImiUj(k)dij 

i=lj=l 

(2-13) 

where In and Im are identity matrices of dimensions n x n and m x m, and Ini and Imi are the 

i—th column vectors of /„ and 7m, respectively. Define ydij{k) and yi,.^ (k) as 

Xij(^k “j“ 1) — Axij^k^ “I” IniUj(J^ 

Vbij{k) = Cxij{k) (2-14) 

Vdiji^) — Imi'^j{k)’ 

Then, ydij{k) and ybij{k) can be computed from A,C, and Uj{k) from equation (2-14), the 

following hnear relationship between y{k) and the elements of B and D exists. 

y(^) = '^^ydii{k)dij + "^^ybij{k)hij = ^k)e 
t=i 3=1 t=i j=i 

(2-15) 

10 



where matrices ^{k) € and © G f}{rnxr+nxr)xi defined as 

= [ 2/dii (^). • • •, Vdmi (k) ; 2/di, (k),---, (fc); 

y6nW>"->2/ftmlW ; • 2/felrW.--->y6mrW h 

e=[z)f, , Dj, Bf, , BJY 

The linear least squares solution for the elements of the B and D matrices is 

(2-16) 

e = 
K 
^^kfm 
,k=l 

+ r K 

Y^^{kYy{k) 
LA:=1 

2.2.2 Observability Range Space Extraction 

(2-17) 

The following section decribes the method to extract the observability range space and its base 

vector matrix from experimental data. 

Define the following extended measurement vector yq{k) 6 and extended input 

vector Uq{k) £ 

Vq{k) = 

y{k) 

y{k-\-l) 

y{k + q-l) 

, Uq{k) 

u(k) 

u{k + 1) 

u{k + q-l) 

(2-18) 

where the q parameter is the block dimension of these extended vectors. 

Construct two Hankel matrices Y € R^mxd u ^ j^qrxd rising experimental data 

y{k) and u(k) 



Y = 

U = 

yq{l), yq{2), , yq(d) 

y{l) y{2) y{d) 

y{2) ^(3) y(rf+l) 

K<i) y{Q + 1) y(^) 

Uq{l), Uq{2), , Uq(d) 

u{l) u{2) u{d) 

u{2) ii(3) u{d + 1) 

u{q) u{q + 1) u{K) 

(2-19) 

where d = K — q 1 is the coliimn dimension of the Hankel matrices and q is the block row 

dimension. 

For the case when output measurements are free of noise, it can be proved that 

Range [YY^ - YU^(UU^)+(YU^)^] = Range(Og) . (2-20) 

The above equality shows that the system observability range space can be obtained from the 

Hankel matrices Y and U constructed from experimental data. 

In practice, however, output measurements will always be contaminated by the measurement 

noise. As a result, the Range[YY^ - YU^(UU^)+(YU^)^] does not exactly equal to the 

Range(O^). To estimate base vectors of the Range(Og), apply the Singular Value Decomposition 

(SVD) to YY^ - YU^(UU^)+(YU^)^, i.e.. 

YY^ - YU^(UU^)+(YU^)^ 

U^2 
■‘‘Ipl 

■'V’2 

^T 
Uxj}\ Unj)2 

(2-21) 



where C7^i € and U^2 € column unitary matrices, E^i =diag[^i] € 

is a diagonal matrix of singular values for i = 1,2,..., n, E^2 =<iiag[an4-il € 

is a diagonal matrix of singular values ^n+z? for i = 1? 2,..., g'm — n. The n parameter is the 

estimate of the system order determined by the following criterion, 

ai> a, i = 1,2, ...,n 

an+i<d‘ i = 1,2, ...,qm — n 

where ^ is a prespecified threshold for zero. Hence, the base vector matrix can be estimated 

as 

^g = OgT~^ = U^i = 

C 

CA 

CA^ -1 

(2-23) 

2.2.3 The Computation Procedure of the ORSE Identification Algorithm 

Step 1. Form the Hankel matrices from the experimental data as shown in the equation (2-19). 

Step 2. Apply the SVD to the matrix YY^—YU^(UU^)"''(YU^)^, obtain an estimate of the 

system order n by comparing the singular values to a prespecified threshold a. Construct 

the base vector matrix ^g as shown in the equation (2-21) and (2-23). 

Step 3. Partition ^g and define and ^g_i matrices as follow: 

i’l 
) ^9-1 = 

i’o 

L ^9-1 J L ^9-2 J 

tpi € i = 0,..., q — 1. 

^9-1 = 

i’l 

V’2 

L ^9-1 J 

Step 4. Compute the A and C matrices as 



Step 5. Compute the B and D matrices using the equations (2-14) to (2-17). 

2.3 The Experimental Setup 

Figure 2-1. The experimental apparatus setup. 

The experimental apparatus setup for a single-link flexible manipulator is shown in Figure 

2-1. The detailed electrical schematic diagrams can be found in [24]. The single-hnk flexible 

manipulator is modeled as a cantilever beam clamped at the rotational axis of the shaft driven 

by a DC motor. The link moves in a horizontal plane in order to reduce the effect of gravity. 

The beam is constructed from 6061-T6 almninum-magnesium-silicon aUoy. The dimension 

of the beam is 1 m (length) x 51 mm (width) x 3 mm (thickness). The flexibility of this 

manipulator is greater than that of current industrial robots. 

The DC motor, manufactured by Small Electric Motor Ltd., used in this experimental setup 

is a permanent magnet motor with a rated stall torque of 2.938 N-m. The motor cmrent served 

as a system input controlled by the computer through the NI-DAQ( National Instruments- 

Data Acquisition ) board and the related electrical circuits. The magnitude and direction of 



the motor current are separately implemented through the electrical circuits with two voltage 

commands from the two analog output channels (DACO and DACl) of the NI-DAQ board. The 

voltage signal from the channel DACl of the NI-DAQ board is used for the direction control ( 

Ov for clockwise rotation, 5v for counter clockwise rotation viewed from the top of the arm). 

Channel DACO is used for magnitude control that has a range of Ov to lOv and a proportional 

gain of approximate 0.5 A/V to motor current as shown in Figure 2-2 below. 
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Figure 2-2. The characteristics of motor current vs magnitude control signal. 

Clearly, the characteristic between the output of the magnitude control from computer and the 

actual motor current magnitude is linear. 

Four sensors are used to measme the system responses. They are an angular position 

potentiometer, a tachometer and two strain gauges separately located in the middle and base 

of the arm. The locations of the strain gauges are chosen to ensure that the deflection of 

the arm can be sensed. The signals from these four sensors are acquired and processed by a 

personal computer through the NI-DAQ board. Two sampling rates (300 Hz and 500 Hz) were 

used to compare the effect of sampling rate on the accuracy of the identifled models. 

The personal computer used for control is a Pentiiun Pro(r) with 32MB RAM. The NI-DAQ 

board is a National Instruments PCI Series model PCI-MIO-16E-4, which has a resolution of 

12 bit, 16 single-end analog input channels with maximum sampling rate of 500 kS/s, and 2 

2.5 

2 

1.5 

I magnitude control signal (V) 

motor current (A) 



D/A output channels with maximum update rate of 1 MS/s. The application software used 

for data acquisition and system control is LabWindows/CVI. 

The apparatus is, therefore, a system of single input and four outputs, i.e., r = 1 and m = 4. 
r iT 

The direct transmission matrix is zero, i.e., D = 0 0 0 0 because the outputs are not 

directly related to the input. The system identification intends to identify A,B, and C using 

experimental data of u{k) and y(k), for k = 1,2,..., A'. 

2.4 Experimental Results 

Three types of experiments for system identification have been carried out. They are open-loop 

experiments, bounded position experiments ( to be defined in section 2.4.2 ), and closed-loop 

experiments. 

The accuracy of an identified model is evaluated using the root-mean-square of the prediction 

error, i.e.. 

RMSi = 

K 

k=l 
K 

(2-24) 

where yi(k) for k = 1,2,..., K denotes the simulation output. A nondimensionalized measme- 

ment of the model accuracy then is defined as 

^i = 
RMSi 

K 

Y.yi{k)/K 
fc=i 

<5 = t=i 

m 

(2-25) 

where and 64 denote the errors for the angular position, base strain gauge (BSG), 

middle strain gauge(MSG), and angular speed, respectively. The S parameter is an indicator 

of the overall model accuracy . 
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For the purpose of the comparison, the eigenvalues of the state matrix A are evaluated, 

A = 4'A®''^ (2-26) 

where 
Ai 0 

0 A2 

0 0 

0 0 
A = 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 A„1_1 00 00 

0 0 A„1 0 0 0 

0 0 0 Ani+1 0 0 

0 0 0 0 0 

0 0 0 0 0 An 

(2-27) 

T=[4ii $2 4f„, 4I„ 

where Ai4.i = AJ and for z = 1,3,..., ni — 1 are the pairs of complex eigenvalues and 

eigenvectors, respectively, Aj and for 2 = ni 4-1, • ‘^ are real eigenvalues and eigenvectors, 

respectively. As shown in equation (2-27), the eigenvalues and eigenvectors are arranged in 

such a way that the complex pairs are grouped together. 

The natmal frequency and damping ratio corresponding to a pair of complex conjugate 

modes are related to the eigenvalues by 

(2-28) 

where the Ui parameter is the i—th natural frequency, and the parameter is the i—th damping 

ratio. 

The validation of an identified model is done in two ways. They are Data Matching Vali- 

dation (DMV) and Set-point Following Validation (SFV) defined as following: 

1. DMV: Comparison of the simulation outputs and measurements outputs. The input 

data used for the simulation is the same as those used for the model identification but 



twice longer, i.e., only half of the data is used in the identification. 

2. SFV: Comparison of the simulation outputs and measurements outputs under the same 

Proportional + Derivative (PD) controller setting { kp = 0.5, and = 1.4 ) and position 

reference. The schematic diagram of the simulation is shown in Figure 2-3. 

Figure 2-3. The schematic diagram for simulation of identified models (SFV), 

The conventions used in the simulation plots are: 

1. For the DMV and SFV plots, the dotted fine denotes the simulation output and solid line 

denotes the measured output. The subplot (a), (b), (c), and (d) are the position signal, 

base strain gauge signal, middle strain gauge signal, and speed signal, respectively. 

2. For the plots of the frequency responses, the dash-dotted line, the sohd line, the dashed 

fine, and the dotted fine represent the position signal, base strain gauge signal, middle 

strain gauge signal, and speed signal, respectively. 

2.4.1 Open-loop Experiments 

The system setup for open-loop experiments is shown in Figure 2-4. The preset system exciting 

input signal, which is proportional to the motor current, was generated by a computer and sent 

out through two analog output channels (channels DAC 1 and DAC 0) of the NI-DAQ board 

to the system. The equivalent data acquisition point for input u{k) in Figure 2-4 ( same 

as in Figures 2-9 and 2-13) means the input signal (motor current) used in the identification 

is generated from computer’s analog output signals based on the linear characteristics shown 
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in Figure 2-2 to avoid the noise. The response signals from four sensors were simultaneously 

collected through the analog input channels (channels ACH 0, ACH 1, ACH 2, ACH 3). 

equivalent data acquisition 

point for ouput u(k) 

Figure 2-4. The open-loop experimental setup. 

During the open-loop experiments, four types of excitation signals were used. They are : 

1. Square waveform : The magnitude of the motor current is constant, and the direction of 

the motor current is alternated periodically at a frequency of 0.5 Hz. A sample waveform 

is shown in Figme 2-5a. 

2. Periodic random waveform : The magnitude of the motor current is random, and the 

direction of the motor current is alternated periodically at a frequency of 0.5 Hz. A 

sample periodic random waveform is shown in Figure 2-5b. 

3. Varying square waveform : The magnitude of the motor current is constant, and the 

direction of motor cmrent is alternated at a frequencies from 0.6 Hz to 3 Hz. A sample 

varying square waveform is shown in Figure 2-5c. 

4. Random waveform : Both the magnitude and direction of the motor cmrent are random. 

A sample random waveform is shown in Figure 2-5d. 
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Figure 2-5. The exciting signals for the open-loop experiments. 

Nmnerous data for each type of the exciting signals were collected and apphed for identifying 

the system. Based on the identification results, the following observations can be obtained. 

1. As shown in Table 2-1, the data from the square waveform exciting signal gave the best 

identification results, and the data from the random exciting signal gave the worst. 

2. The order of the identified model is estimated from the plot of the singular values of 

the matrix YY^ - YU^(UU^)+(YU^)^. Figme 2-6 is an example plot of the singular 

values. The order of the identified model can be chosen as n = 15 because all the rest 

of the singular values are sufficiently small. There is a problem that the order of the 

identified model estimated by this way may result in an unstable model. If a stable order 

is required, the order has to be re-estimated imtil a stable model can be obtained. Table 

2-1 lists model orders that correspond to the stable models. 
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Figure 2-6. A sample plot of the Singular Values 

Table 2-1. The identification results for the open-loop experiments 
data 
code 

stable system 
orders 

minimum DMV error 

<5, 
O datl 8,11,14,30,33-36 36 0.1598 0.1578 0.3091 0.2397 0.2166 
O dat2 19,21 19 0.0484 0.1476 0.3125 0.1449 0.1634 
O dat3 8,14,18,20,21 18 0.3652 0.1670 0.3214 0.1772 0.2577 
O dat4 8,10,12,14 0.0773 0.2947 0.4943 0.3257 0.2980 
O dat5 12 12 0.1566 0.3128 0.4417 0.7996 0.4254 
O dat6 7,8,10,12,24,27,28,31-35 28 0.3370 0.2608 0.5030 0.3381 0.3597 
O dat7 no stable model 31 0.2505 0.2584 0.3723 0.6522 0.3834 
O dat8 8,10,12-14,16,18-20,26-30 27 0.1683 0.2397 0.5163 0.3431 0.3169 
O dat9 8,12,14,18,20,22,24-29 24 0.3590 0.2139 0.3797 0.3207 0.3183 

O datlO 12 12 0.1155 0.2676 0.5897 0.2554 0.3070 
O datll 8,11,12,15-21,24-26,28,29 26 0.7778 0.2864 0.4596 0.4127 0.4841 
O datl2 8,10-12,16 11 0.5566 0.2021 0.4465 0.3075 0.3782 
O datl3 no stable model 33 0.9137 0.6792 0.5809 0.5006 0.6686 
O datl4 no stable model 31 0.7304 0.7129 0.8099 0.4872 0.6851 
Notes: The detail information about the data code refer to Table A-1 in Appendix A. The critical 
stable model included 

3. For a stable identified model, the result of the DMV is acceptable as shown in Figure 2-7. 

It is seen that the simulated outputs agree well with both the data used in the identification 

( fc = 1 to 3000 or t < 10 seconds ) and the data not used in the identification {k = 3001 

to 6000 or t > 10 seconds). On the other hand, in the case of the SFV as shown in Figure 



2-8, the simulated responses do not agree well with the measured ones, especially for the 

angular position signal. 

Figure 2-7. The DMV results for an identified model (Ao2_19) derived fi*om 
the open-loop experiments. 

(a) (b) 

Figure 2-8. The SFV results for an identified model (Ao2_19) derived from 
the open-loop experimental data. 
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4. The first three structural mcxles of the system were analytically found to be 9 Hz, 25 

Hz, and 48 Hz. For this specific system, experimental results show that the first three 

structural modes of the system can be successfully excited by each type of the exciting 

signals. Table 2-2 records the sample results of the natural frequencies calculated from 

identified models for four types of exciting signals with the same estimated system order. 

Qearly, each identified model can capture the first three structural modes, but there exist 

some computational modes. 

Table 2-2. Sample results of the natural frequency calculations 
model 
notes square 

the type of exciting signal waveform 
periodic random varying square random 

The order of selected 
models for each type of 
exciting signal waveform 
is 27. The unit for 

natural frequencies is 
in Hz. 

46.3594 
25.8423 
23.4900 
20.8455 
19.8929 
16.9240 
15.4588 
10.2807 
8.6456 
7.7545 
5.0598 
2.1794 

46.2436 
36.4244 
29.7634 
23.6888 
23.3733 
20.3450 
17.4293 
14.8306 
10.1949 
8.6636 
6.7934 
0.1338 

47.2968 
24.8077 
22.7656 
21.1291 
17.7503 
16.0718 
10.1449 
8.9644 
8.6183 
8.4795 
6.8815 
1.6436 

57.9282 
52.0578 
44.4208 
31.5864 
26.4798 
21.7281 
18.1470 
16.9150 
12.2895 
11.6205 
9.9277 
4.2165 
0.8210 

One of the problems with the open-loop experiments is that it is difficult to maintain the 

range of the arm rotation. Physically the arm is restricted to rotate within ±80°. When 

the angular position reaches this hmit, the experiment has to be stopped. To cope with this 

problem, the bounded position experiment was devised. 

2.4.2 Bounded Position Experiments 

The system setup for the boimded position experiments is shown in Figure 2-9. The cur- 

rent direction is controlled by comparing the measured angular position signal with the preset 

position boimds. When the angular position reaches the preset position bounds, the current 

direction is changed. The position bounds were chosen as ±3 v (measured from the angular 

position pot), which correspond to ±35° angular positions. The initial motion of the arm starts 

from the 0 v position, and moves towards the ±3 v boimd. 
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Figure 2-9. The schematic diagram for the bounded position experimental setup. 

(a) 

time in (sec) 

Figure 2-10. The typical exciting signals used for the bounded position experiments. 
(a) constant current magnitude, (b) random current magnitude. 

Two types of the current magnitudes were used, namely random and constant. Figure 2-lOa 

gives a typical resultant exciting signal when the current magnitude is a constant of 1.5 A. It 

behaves similarly as the square waveform in the open-loop experiment. Figure 2-10b shows a 

typical resultant exciting signal when the current magnitude varies randomly between 0 A and 
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1.5 A. It has a similar effect as the periodic random waveform in the open-loop experiment. 

The identification results for the bounded position experiment are presented in Table 2-3. 

Figures 2-11 and 2-12 show the validation results for a model identified using the data with a 

constant magnitude of the motor current. The following observations can be drawn: 

1. For the boimded position experiment, a stable model is easier to obtain than the open-loop 

experiment. 

2. The boimded position experiments with a constant magnitude result in a more accurate 

model than those with a random current magnitude. 

Table 2-3. The identification results for the bounded open-loop experiments 
data 
code 

stable system 
orders 

minimum DMV error 

B datl 9,10,11,17 17 0.3363 0.4001 0.7528 0.3192 0.4521 
B dat2 10,12,34 34 0.1603 0.3304 0.5614 0.2277 0.3200 
B dat3 7,8,12,18 18 0.1008 0.3505 0.5534 0.2498 0.3136 
B dat4 10,12,26,27,29 12 0.1402 0.3455 0.6020 0.2585 0.3365 
B dat5 8,10,12,14,15,24,26,27 24 0.1015 0.3288 0.5316 0.2088 0.2924 
B dat6 10,12,14,17,18,20,34,35 34 0.0613 0.3207 0.5342 0.2170 0.2833 
B dat7 10,16 10 0.2664 0.4141 0.7268 0.2571 0.4161 
B dat8 12,29 12 0.1642 0.2118 0.4038 0.1302 0.2275 
B dat9 12,16-19,23,25,27,29,31,33 23 0.0443 0.1488 0.2833 0.0998 0.1440 
B datlO 8,10,12,14,20,24,28 12 0.5359 0.3297 0.6102 0.2677 0.4359 
B datll 8,10,12,16,23-28,32 24 0.0762 0.2132 0.3467 0.1198 0.1890 
B datl2 8,10,12,16,20-23,28-35 32 0.0506 0.1920 0.3349 0.1234 0.1752 
Notes: The detail information about the data code refer to Table A-2 in Appendix A. The critical 
stable model order included. 

3. The DMV results shown in Figure 2-11 show a good agreement between the simulated 

outputs and measured outputs. But the SFV results in Figure 2-12 give an imstable 

closed-loop system for the identified model, which is not true in the real system. So, 

the validation results indicate that the identified model does not correctly refiect the real 

system. 
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Figure 2-11. The DMV results for an identified model (Ab9_23) derived from 
the bounded position experiments. 

Figure 2-12. The SFV results for an identified model (Ab9_23) derived from 
the bounded position experiments. 
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By a careful study of the system, it was noted that the system exhibits some nonlinearity, 

such as Coulomb friction. In order to reduce the influence of the system nonhnearity, the 

closed-loop experiment was devised. 

2.4.3 Closed-loop Experiments 

The system setup for the closed-loop experiments is shown in Figure 2-13. Two types of 

reference signals for the angular position were chosen. They are square waveform and varying 

square waveform. For the closed-loop experiments, the magnitude of the reference signals is 

chosen to be the maximum position desired. The width of the pulse is selected such that the 

angular position has settled at the reference position before the next brnnp is apphed. 

Figure 2-13. The schematic diagram for the closed-loop experimental setup. 

It was noted that the Coulomb friction has a significant effect on the rigid body motion. 

In order to incorporate the Coulomb friction, the approach suggested in [25] is employed in 

the closed-loop experiments. Based on the measmements, it was foimd that to overcome the 

Coulomb friction, an extra effort of about 0.4A motor current is needed; therefore, the 0.8 

V Coulomb friction compensation effort was added to the magnitude of cmrent control signal 

during the data acquisition. Since the ORSE algorithm is based on the assmnption of hnear 
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time-invariant systems, this 0.8 v compensation signal must be subtracted from the control 

signal to have the system input. Consequently, the model identified in this way will not 

include the system dynamics of the Coulomb friction part. 

The proportional gain and derivative gain are = 1.0 and kd ~ 2.8, respectively. Numerous 

data with different payloads are collected for system identification. Some identification results 

from the closed-loop experiments are recorded in Table 2-4. Figures 2-14 and 2-15 show the 

validation results of DMV and SFV for a typical identified model. 

1. As shown in Table 2-4. It is easier to obtain a stable model using the closed-loop 

experiment than using the open-loop experiment. 

Table 2-4. The identification results for the closed-loop experiments 
data 
code 

stable system 
order 

minimum DMV error 

S, 
C datl 7-14,17,18,20,22-36 28 0.1431 0.5099 0.7492 0.2981 0.4251 
C dat2 7-11,21-35 35 0.1061 0.4774 0.6506 0.2957 0.3745 
C dat3 7,16,18-20,22-35 18 0.0735 0.4242 0.6675 0.2136 0.3447 
C dat4 7-9,11,16-18,20-35 24 0.1199 0.4600 0.6441 0.2967 0.3802 
C dat5 7,12-35 22 0.0678 0.4949 0.6489 0.2957 0.3768 
C dat6 7-10,14-18,20,21-26,28-35 29 0.0656 0.5164 0.6237 0.2540 0.3649 
C dat7 10,11,14-16,20-28,32-35 34 0.0862 0.2506 0.3230 0.1858 0.2114 
C dat8 10,14,16,27,29,34,35 29 0.1243 0.2192 0.3244 0.1830 0.2128 
C dat9 7-9,14-18,20,22,28,29,35 22 0.1434 0.4993 0.5770 0.2484 0.3670 
C datlO 7,14-22,24-30,32,34,35 15 0.1455 0.4246 0.5419 0.2453 0.3393 
C datll 7,14-20,24,26-28,30-35 26 0.0584 0.4287 0.5507 0.2533 0.3228 
C datl2 7-10,19-24,27,28,30,32-35 32 0.1064 0.5197 0.6191 0.3303 0.3939 
C datl3 7,8,15-18,22—28,30-35 28 0.0943 0.5236 0.5796 0.3365 0.3834 
C datl4 7,9,15-18,20,22,24-30,32,34 32 0.0663 0.5049 0.6137 0.2545 0.3599 
Notes: The detail information about the data ccxie refer to Table A-3 in Appendix A 

2. Compared with the results in the open-loop experiment, the model accuracy for the 

angular position is much improved. 

3. For the overall model accuracy, the models identified by the closed-loop experiment are 

better in terms of the SFV and slightly worse in terms of the DMV than those from the 

open-loop experiment. 

28 



ni
tu

de
 

4 
(a) (b) 

1.5 

S 1 
« 
S 0.5 
c 

^ -0.5 

-1 

time (sec) 

0 5 10 15 20 
time (sec) 

Figure 2-14. The DMV results for an identified model (Ac2_35) derived 
from the closed-loop experiments. 
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Figure 2-15. The SFV results for an identified model (Ac2_35) derived from 
the closed-loop experiments. 
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A disadvantage of the closed-loop experiment is that the exciting signal type can not be 

directly controlled. A question arises naturally whether the system structural modes can be 

fully excited in the closed-loop experiment. To address this concern, the frequency responses 

of the identified model by the closed-loop experiment were analyzed and a sample results are 

shown in Figure 2-16. 

Figure 2-16. The frequency response of an identified model (Ac3_18) derived 
from the closed-loop experiments. 

Prom the frequency responses, two conclusions can be drawn. First, there are only three 

significant structmal modes present in the responses, and the peaks representing the structiural 

modes coincide with the analytical prediction. Second, the structural modes have stronger 

presence in the responses of the strain gauges than in the angular position and speed. 

2.5 Conclusions 

Base on the experimental results, the following conclusions can be drawn: 

1. Although the ORSE algorithm is very effective in identifying linear systems, noises and 

nonlinearity could significantly reduce the accuracy of the identified model. 
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2. The system under study contains nonlinearity that cannot be neglected. As the ORSE 

algorithm identifies a linear model, the identified model is a linear approximation of the 

real system. 

3. To obtain the best identification result, the data need to be preprocessed as following: 

(1) The biases presented in the output signals must be removed. In addition, the 

strain gauge signals have to be forced to zero mean. 

(2) The initial outputs should be set to zero, i.e. 2/(1) = [ 0 0 0 0 j 
(3) The output signals were passed through a low-pass filter to reduce the noise 

level. A second-order Butterworth low-pass filter with a cutojBF frequency of 50 

Hz was used. The selection of 50 Hz as the cutoflF frequency was based on the 

fact that the highest structural mode excited by the motor rotation is the third 

vibratory mode whose natural frequency is about 48 Hz. 

(4) All the output signals were scaled to ensure that their maximum magnitudes 

equal the maximmn magnitude of the input. After the matrix C was obtained, 

an unscale operation was used to have a properly scaled matrix C. 

4. The identified models obtained from the data with 300 Hz samphng rate give better 

accmacy than those from 500 Hz sampling rate. 

Tables 2-5 and 2-6 record some additional information of the special and typical identified 

models that would be used in the following chapters. 

Table 2-5. The special models for evaluations 
model code Data used for identification order stability 
Ac3 22c C dat3 without removal of Coulomb friction compensation 22 stable 
Acll 18c C datl 1 without removal of Coulomb fiiction compensation 18 stable 
Ac3 21u C dat3 with removal of Coulomb friction compensation 21 unstable 
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Tal jle 2-6. The list of the typical identi led stable models 
model code data used for identification order experiment 

Aol 36 first 1500 samples of O datl 36 Open-loop 
Ao2 19 first 3000 samples of O dat2 19 Open-loop 
Ao5 12 first 1500 samples of O dat3 12 Open-loop 
Ao6 28 first 3000 samples of O dat4 28 Open-loop 
Ao9 24 first 1500 samples of O dat5 24 Open-loop 
AolO 12 first 1500 samples of O dat6 12 Open-loop 
Aol4 31 first 1500 samples of O dat? 31 Open-loop 
Acl 28 first 4800 samples of C datl 28 Closed-loop 
Ac2 35 first 6000 samples of C dat2 35 Closed-loop 
Ac3 18 first 6000 samples of C dat3 18 Closed-loop 
Ac4 24 first 6000 samples of C dat4 24 Closed-loop 
Ac5 22 first 4800 samples of C dat5 22 Closed-loop 
Ac6 29 first 6000 samples of C dat6 29 Closed-loop 
Ac7 34 first 6000 samples of C dat7 34 Closed-loop 
Ac8 29 first 6000 samples of C dat8 29 Closed-loop 
Ac9 22 first 6000 samples of C dat9 22 Closed-loop 
AclO 15 first 4800 samples of C datlO 15 Closed-loop 
Acll 26 first 6000 samples of C datll 26 Closed-loop 
Acl2 32 first 4800 samples of C datl 2 32 Closed-loop 
Acl3 28 first 6000 samples of C datl 3 28 Closed-loop 
Acl4 32 first 6000 samples of C datl4 32 Closed-loop 
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Chapter 3 

Model Reduction and Updating 

A feature of the ORSE algorithm is that the model must be properly overparameterized in 

order to capture the dynamics of systems. This need arises due to the eflFects of irregularities 

such as measurement noise and system nonlinearity. An overparameterized model contains 

both structural or system modes and computational modes. The order of the estimated model 

must be reduced to eliminate the computational modes and insignificant system modes to ease 

the controller implementation. The reduced model must be updated to correct errors caused 

by truncation of some modes. 

The procedure proposed in [20] employs the balanced realization (BR) technique to reduce 

a model. The BR technique transfer the model into an internally balanced form such that the 

controllability and observabihty of each mode is indicated by its corresponding diagonal element 

of the joint Gramain matrix or Hankel singular value [26]. The modes with smaller Hankel 

singular values are considered less important and eliminated to produce a reduced-order model. 

There are two major problems with the model reduction through the BR technique. First, the 

BR technique requires that the model must be asymptotically stable or the eigenvalues of the 

transition matrix lie inside the imit circle. Second, determining a threshold for insignificant 

Hankel singular values is more or less a subjective judgement. For model updating, the Least 

Squares (LS) model updating algorithm employed in [20] modifies iteratively the reduced model 

using the gradient information. The LS model updating technique assmnes that the model to 

be updated is sufficiently accurate. In practice, this assmnption is not always valid especially 

with a tnmcated model. Moreover, the LS model updating algorithm needs to find the pseudo- 
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inverse of a large size matrix which is very ill-conditioned. 

As the system imder study involves rigid body motion and lightly damping modes, the 

identified model is likely to be imstable. Thus, the procedure for model reduction and updating 

proposed in [20] cannot be apphed. As a result, this study proposes to conduct the model 

reduction in the modal coordinates. After an eigendecomposition is conducted on the oversized 

transition matrix, the importance of individual modes is determined and less significant modes 

are eliminated. In the presence of the unstable modes , the suggested approaches in [27] 

can be employed to correct or force the unstable modes into stable modes. To quantify the 

contribution of individual modes, a new index, referred to as the Modal Response Magnitude 

(MRM), is proposed. For the system under study, the experimental results show that MRM 

index is more reliable than the previously proposed indices such as the Mode Singular Value 

(MSV) in [18]. 

The low efficiency of the updating algorithm proposed in [20] is due to simultaneously 

modifying aU the elements of the system matrices using the gradient information. For such a 

large dimension optimization problem, the solution is likely to converge to a local minimum. 

Expressing the transition, input, and output matrices in the modal coordinates, the new method 

developed in this study recalculates either the input matrix or output matrix while keeping the 

other two imchanged. The calculation is done by solving a non-iterative LS problem. 

This chapter is organized as follow: Section 1 introduces a new procedure of model reduction 

and updating. Section 2 presents the sample results by using this new procedure. Section 3 

srunmarizes the main conclusions. 

3.1 A New Procedure for Model Reduction and Updating 

This section presents the development of a new procedure to reduce the order of an overpara- 

meterized identified model and correct errors caused by model truncation. The key feature of 

this proposed procedme is that the model reduction and updating are conducted in the modal 

coordinates. An eigendecomposition is conducted on the identified transition matrix 

A = (3-1) 
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where 

V’ni —1 V’m V^ni+1 

is the eigenvector matrix and 

A = diag Ai A2 Am—1 'ni+1 
xn 

is the eigenvalue matrix. In this study, represents the i x j complex matrix space. It 

is assumed that there are ni/2 pairs of complex eigenvalues and eigenvectors, i.e., Ai+i = A^, 

for i = 1,3, • • • ,ni — 1 where the superscript * denotes complex conjugate. The 

remaining n — ni eigenvalues and eigenvectors are real. Defining a set of new states in the 

modal coordinates as 

r)[k) = (3-2) 

then the state-space model becomes 

Tj{k + 1) = Ar]{k) + Bu{k) (3-3) 

y{k) = Cr]{k), 

where 

B = ^-^B = 

C = = 

^1 ^2 ^ni —1 ^nl ^ni+1 

Cl C2 ^1 — 1 ^1 ^iH-1 ^ 
^ 0mxn 

It is noted that complex quantities appear as pairs, i.e., bi-\-i = b* and Cj+i = c* for i = 

1, 3, • • •, ni — 1. As the state variables in the modal coordinates are decoupled, elimination of 

those computational and insignificant modes has least impact to the remaining state variables. 

An important question is how to distinguish the system modes from the computational 

modes. It is reasonable to assert that the computational modes contribute little to the system 

responses. To characterize the contribution of individual modes to the output responses, a 

quantitative measure is needed. Two indices are introduced in [18] to quantify the contribution 

of individual modes to a pulse response. Specifically the Mode Singular Value (MSV) is defined 
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as 

(3-4) MSVi = ^|ci|(l-f|Ai|-H|A?|-!-•••-I-|Af-*|)|Si 

A mode with a large magnitude of the MSV is considered to have a significant contribution to 

the pulse response. The computational modes and insignificant structural modes are expected 

to have small MSVs. The MSV may be misleading, because it only considers the contributions 

of individual modes to a pulse input. For example, the pulse response of a mode with heavy 

damping dies quickly even if the mode is one of the significant system modes. When the 

system is persistently excited, the contribution of the heavily damped system mode may not 

be neglected. To overcome this shortcoming of the MSV, an alternative measure is proposed 

in this study. The system responses are a sum of the modal responses, i.e., 

ni —1 n 

yrhi^) + 
t=l,3 t=ni+l 

where yr)^{k) € is the modal response of the z-th mode. For the i-th complex mode, 

yr)i{k) is evaluated by 

rfi(k + 1) 

77;(fc + l) _ 

VriiW 

Xi 0 

0 A* 

Ci cj ] 

ni{k) 

_ V‘i(k) _ 
-I- u{k) 

2 = 1,3, • • •, ni — 1. 

For the i-th real mode, yTj^ (k) is evaluated by 

(3-6) 

T}i(k -1-1) = XiT)i{k) + biu{k) 

V^i(k) = CiTjiik), i = ni -I-1, • • •.- 

(3-7) 

The maximmn contribution of the 2-th mode to the total response can be evaluated by a Modal 

Response Magnitude (MRM) defined as 

K 

MRMi = max(^|y;,.(fc)|/A:), 2 = 1,3, • • • ,ni - l,ni + 1,• ••,-- (3-8) 
k=l 
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The MRM computes the maximum means of the absolute modal responses to the actual input. 

As the modes with small MRMs can be considered to be insignificant for a given input, they 

are ehminated to produce a lower-order model that stiU preserves the basic properties of the 

system. The MRMs are more meaningful than the Hankel singular values produced by the 

BR technique as each MRM is related to its modal response. With the MRMs, knowledge of 

the system dynamics from an analytical model or modal testing can be easily incorporated in 

decision making. 

The reduced-order model has a triplet 

Ar = diag Ai 

Br = h\ 62 

Cr — C\ C2 

where n' denotes the order of the reduced model and nj denotes the number of complex modes 

that have been retained. The reduced model is expected to be less accurate than the original 

model. This problem can be corrected by recalculating the reduced matrices B or C. Since the 

elements in the triplet of the reduced model are complex, this wiU complicate the computation 

work. In order to avoid this problem, the triplet is obtained in real values by the following way. 

First, a simulated output y{k) is generated using the actual input u{k) and the reduced-order 

model, Ar, B^, and Cr- It should be noted that the generated y{k) is in real values. Applying 

the ORSE algorithm to the actual input u{k) and the simulated output y{k) results in a new 

set of triplet Ar, Br, and Cr in real values. Now the reduced-order model is given as 

Zr{k-\-\) = ArZr{k) -f BrU(fe) (3-10) 

y(k) = CrZr{k) 

n' ] e c"' -^2 ^ni-1 ^ni ^ 

bn'-l K', ^n' ] ^ ^ 

(a-9) 

'xl 

<^'-1 ^[ + 1 Cn' 

where Zr € 
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The Br matrix can be recalculated by solving the following LS problem. 

K 

k=l (3-11) 

subject to: Ar and Cr given in (3-10). 

The matrix Br is of the form 

Br = 

jri 

Jr2 

bf I 
L n' J 

en n'xl (3-12) 

where is the z—th elements of updated matrix B^. for z = 1,2, • • •, n'. For the single input 

case, i.e., u(k) is a scalar, the response is computed by 

Zr(k + l) = PLrZr(k) +2^In'ibnU{k) (3-13) 
i=l 

y{k) = CrZr{k) 

where In>i is the column vector of unity matrix In' ^ for z = 1,2, • • • n'. Denoting the 

response to In>iu(k) as ybr.(^)i then 

(^ + 1) = ^rZbr. (k) + In'iU{k) (3-14) 

VbrS^) = C^fe,,(/c). 

By the superposition 

where 

n' 

y(^) = ^ybrS^)K = </>(^)Br, 
i=l 

(j){k) = ybn ybr2 

The Least Squares solution for the updated B^ is 

B.. = 

(3-15) 

(3-16) 

(3-17) 
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where $ G and Y G are of the forms 

0(1) 
0(2) 

m 

and Y = 

^(1) 

m) 

y{k) 

(3-18) 

respectively. 

Similarly, the updated can be computed by solving the following LS problem. 

K 

i ^ 
fc=i 

(3-19) 

The Cr matrix is given by 

where 

subject to: Ar and given by (3-10) 

= yz+ 

Z = Zr(l) Zr{2) Zr{K) 

(3-20) 

(3-21) 

In this study, the entire model reduction and updating scheme is implemented in Matlab 

Program. 

3.2 Results of Model Reduction and Updating 

Prior knowledge from the analysis of the system dynamics and previous study is a good guide 

to determine a minimum order of the reduced model. The previous study [16] has shown that 

the excitation generated by the motor rotation can induce up to the third vibratory mode of 

the arm. The first three vibratory modes ( about 8Hz, 24Hz, and 48Hz for Og payload ) can be 

represented by 3 pair complex modes, i.e., 6 modes in the state-space model. The rigid motion 

of the arm may be represented by two or three modes depending on the extent of modelling. 

Finally the analog filter used in measuring the tachometer signal can be represented by two 

modes; therefore the system has a minimum order of 10 or 11 approximately. 
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Three methods are used to obtain a reduced-order model. The first method is referred 

to as the MRM method by which a reduced-order model is obtained according to the MRM 

ranking. The second method is referred to as the MRMC method by which the rigid modes 

are determined by the MRM ranking, and the fiexible modes are considered to be the complex 

modes whose natural frequencies are close to the three known vibratory modes with strong 

MRM ranking. The third method is named as the MSV method by which the significant 

modes are selected by the MSV ranking. 

The first example of model reduction and updating is an identified model derived from the 

closed-loop experiment using the varying square waveform as the position reference signal and 

carrying Og payload. Its original order is 18. Figures 3-1 and 3-2 show the results of the DMV 

and SFV of the initial identified model. According to the MSV ranking shown in Table 3-la, 

the reduced 11-th order model should retain modes of [1/2, 3/4, 5/6, 7/8, 9/10, 17]. 

Table 3-la. The MRM and MSV ranking for the 1st example 
Model Ac3 18 (Og payload) 

mode 
number 

frequency 
(Hz) 

damping 
ratio 

MRM 
ranking 

MSV 
ranking 

1/2 54.9260 0.0188 10 
3/4 49.6205 0.0105 
5/6 46.0456 0.0270 
7/8 22.8148 0.0420 

9/10 9.0228 0.0290 
11/12 5.5770 0.1440 
13/14 1.5207 0.2712 10 
15/16 0.7677 0.3547 

17 real 
18 real 

Table 3-lb. The model (Ac3 18) reduction and updating results for the 1st example 
modes 

information 
procedure 

stage 
validation 

method <5, 
prediction error 

keep all modes as is. Initial DMV 0.0470 0.4328 0.6800 0.2307 
SFV 0.0596 0.5636 0.6538 0.3048 

0.3476 
0.3955 

7/8,9/10,11/12,15/16,17,18 MRM DMV 0.0470 0.4625 0.7178 0.2570 0.3711 
1/2,3/4,5/6,7/8,9/10,17 MSV DMV 0.3367 0.6875 0.9436 0.9960 0.7409 
5/6,7/8, 9/10,15/16,17,18 MRMC DMV 0.0470 0.5000 0.7322 0.2738 0.3882 
updated from MRMC 
(Ac3r_10) 

Update 1 DMV 0.0458 0.4456 0.6892 0.2298 
SFV 0.0537 0.5542 0.6747 0.2910 

0.3526 
0.3934 

further reduced from 
MRMC (Ac3r_8) 

Update2 DMV 0.0458 0.4551 0.6904 0.2307 
SFV 0.0537 0.5520 0.6767 0.2906 

0.3555 
0.3933 
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(a) (b) 

Figure 3-1. The DMV results of the initial identified model (Ac3_18) used for 
the first example. 

(a) 

0.4 

(b) 
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Figure 3-2. The SFV results of the initial identified model (Ac3_18) used for 
the first example. 



Comparing with the errors of the initial identified model in Table 3-lb, the errors of the 

reduced-order model are increased. The DMV results of this reduced-order model in Figure 

3-3 appear a significant deviation from the actual signals, especially the position signal and 

speed signal. This is because the modes 15/16, and 18 were considered as less important by 

the MSVs. It was noted that these three modes are related to the rigid motion with heavy 

damping, in a pulse response, these modes die quickly and thus they have small MSVs. 

time (sec) 

(b) 

lime (sec) 

Figure 3-3. The DMV results of the reduced-model obtained from the model (Ac3_18) by 
retaining modes [1/2,3/4,5/6,7/8,9/10,17] according to the MSV ranking. 

On the other hand, according to the MRM ranking in Table 3-la, the reduced 10-th order 

model can be obtained by keeping the modes of [7/8, 9/10, 11/12, 15/16, 17, 18]. Table 

3-lb shows a slight increase in the prediction errors for this reduced-order model, and its DMV 

results are shown in Figme 3-4. Clearly, the result of the MRM method is better than that of 

the MSV method. Figure 3-5 shows the DMV results of the reduced-order model determined 

by keeping the modes of [5/6, 7/8, 9/10, 15/16, 17, 18], which were selected according to the 

MRMC method. Like the reduced-order model determined by the MRM ranking, the errors 

of this reduced model are also sli^tly increased compared with the errors of the initial model. 
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(a) (b) 

Figure 3-4. The DMV results of the reduced-model obtained from the model (Ac3_18) by 
retaining modes [7/8,9/10,11/12,15/16,17,18] according to the MRM ranking. 

time (sec) 

(b) 

time (sec) 

Figure 3-5. The DMV result of the reduced-model obtained from the model (Ac3_18) by 
retaining modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method. 
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(a) (b) 

Figure 3-6. The DMV results of the updated reduced-model (Ac3r_10) by retaining 
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method. 

(a) (b) 
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Figure 3-7. The SFV results of the updated reduced-model (Ac3r_10) by retaining the 
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method. 
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Figures 3-6 and 3-7 show the DMV and SFV results of the updated model conducted from 

the reduced-order model determined by the MRMC method according to the proposed updating 

algorithm in the previous section. As shown in Table 3-1, the errors of the updated model are 

almost the same as those of the initial identified model. The frequency response plot of the 

updated model in Figure 3-8 shows clearly the first three flexible modes. 

Figure 3-8. The frequency responses of the updated reduced-model (Ac3r_10) by retaining 
modes [5/6,7/8,9/10,15/16,17,18] according to the MRMC method. 

According to the MRMs, the third flexible mode, about 48Hz, is not important. The 

reduced-order model is further reduced to order 8 by eliminating the third flexible mode. The 

errors of this further reduced-order model are given in Table 3-lb, and its DMV and SFV results 

are shown in Figures 3-9 and 3-10. From the results, it can be seen that the third fiexible mode 

indeed is less important. 
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(a) (b) 

Figure 3-9. The DMV results of the updated reduced-model (Ac3rl_8) by retaining 
the modes [7/8,9/10,15/16,17,18] according to the MRMC method. 

(a) (b) 
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Figure 3-10. The SFV results of the updated reduced-model (Ac3rl_8) by retaining 
the modes [7/8, 9/10,15/16,17, 18] according to the MRMC method. 
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As the second example, an identified model derived from the closed-loop experiments on 

the system with a payload of 300g was used. The DMV and SFV results for each stage are 

shown in Figures 3-11 to 3-17, and the quantitative errors and ranking of the MSV and MRM 

are recorded in Tables 3-2a and 3-2b, respectively. The results are similar to the first example. 

Table 3-2a. The MRM and MSV ranking for the 2nd example 
Model Acl 1 26 (300g payload) 

mode 
number 

frequency 
(Hz) 

damping 
ratio 

MRM 
Ranking 

MSV 
ranking 

1/2 58.09 0.01 10 10 
3/4 52.31 0.01 
5/6 47.53 0.01 
7/8 41.32 0.01 11 

9/10 35.45 0.02 13 11 
11/12 22.15 0.08 
13/14 18.69 0.03 14 14 
15/16 10.92 0.08 
17/18 7.64 0.04 12 13 
19/20 4.01 0.2 12 
21/22 1.17 0.45 
23/24 0.60 0.49 

25 real 
26 real 

Table 3-2b. The model (Acl 1 26) reduction and updating results for the 2nd example 
modes 

information 
procedure 

stage 
validation 

method 
prediction error 

keep all modes as is Initial DMV 0.0467 0.4268 0.5487 0.2674 
SFV 0.0721 0.4707 0.5321 0.2513 

0.3224 
0.3316 

11/12,19/20,21/22,23/24,25,26 MRM DMV 0.0467 0.4312 0.5678 0.2788 0.3311 
5/6,11/12,15/16,21/22,23/24,25 MSV DMV 0.3046 0.4820 0.5703 0.4250 0.4455 
5/6,11/12,15/16, 23/24, 25, 26 MRMC DMV 0.0546 1.5642 1.2014 0.3464 0.7917 
from MRM (Acl lr_10) Update 1 DMV 0.0414 0.4209 0.5291 0.2551 

SFV 0.0749 0.4619 0.5222 0.2330 
0.3116 
0.3230 

from MRMC (Acllrl lO) Update2 DMV 0.0430 0.4899 0.6115 0.2710 
SFV 0.0745 0.5069 0.5959 0.2590 

0.3539 
0.3591 
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Figure 3-11. The DMV results of the initial identified model (Acl 1_26) used for 
the second example. 

(a) (b) 

time (sec) time (sec) 

Figure 3-12. The SFV results of the initial identified model (Acl 1_26) used for 
the second example. 

48 



(a) (b) 

time (sec) time (sec) 

Figure 3-13. The DMV results of the reduced-model obtained from the model (Acl 1_26) by 
retaining modes [11/12,19/20,21/22,23/24,25,26] according to the MRM raxing. 

time (sec) time (sec) 

Figure 3-14. The DMV results of the reduced-model obtained from the model (Acl 1_26) by 
retaining modes [5/6,11/12,15/16,21/22,23/24,25] according to the MSV rahking. 
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(a) (b) 

time (sec) time (sec) 

Figure 3-15. The DMV results of the reduced-model of the model (Acl 1_26) by retaining 
modes [5/6,11/12,15/16,23/24,25,26] according to the MRMC method. 

(a) (b) 

Figure 3-16. The DMV results of the updated reduced-model (Acl IrlO) by retaining 
modes [11/12,19/20,21/22,23/24,25,26] according to the MRM ranking. 
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6 
(a) (b) 

time (sec) time (sec) 

Figure 3-17. The SFV results of the updated reduced-model (Acl IrlO) by retaining 
modes [11/12,19/20,21/22,23/24,25,26] according to the MRM ranking. 

The new procedure of model reduction and updating proposed in this study gives users 

a freedom to force an unstable identified model to be stable. This is done by moving the 

eigenvalue of an unstable mode into the unit circle. Afterward, the same procedure is applied 

to this forced stable model. 

In the third example, the initial identified model has an unstable mode Xn = 1.0000235. 

Before model reduction and updating for this unstable model, the unstable mode was forced to 

be AI7 = 0.9999. Then, the proposed procedure was applied. Figures 18 to 27 show the DMV 

and SFV results for eadi stage. The errors and ranking of the MRM and MSV are recorded 

in the Tables 3-3a and 3-3b, respectively. 
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Table 3-3a. The MRM and MSV ranking for the 3rd example 
■ Vlodel Acl 1 21u (300g payload unstable) 

mode 
number 

frequency 
(Hz) 

damping 
ratio 

MRM 
ranking 

MSV 
ranking 

1/2 58.71 0.001 
3/4 51.12 0.001 8 
5/6 47.54 0.001 11 
7/8 40.77 0.01 10 
9/10 22.97 0.04 
11/12 11.84 0.11 
13/14 8.39 0.02 
15/16 3.19 0.18 11 
17/18 0.63 0.58 
19/20 0.92 0.10 11 

21 real 

Table 3-3b: The model (Ac3 21u) reduction and updating results for the 3rd example 
modes 

information 
procedur 

e 
stage 

validation 
method 

prediction error 

keep all modes as is. Unstable DMV 0.2536 0.4872 0.7043 0.2524 0.4244 
force unstable mode 
>L17 = 1.0003 to Xn = 0.9999 

stablizing DMV 0.2553 0.4857 0.7041 0.2519 
SFV 0.1210 0.6666 0.6734 0.3778 

0.4243 
0.4597 

9/10,11/12,13/14,15/16,17/18,21 MRM DMV 0.2555 0.5019 0.7301 0.2566 0.4360 
1/2, 3/4, 5/6, 9/10, 13/14, 21 MSV DMV 0.3501 0.8147 0.9933 0.9730 0.7827 
5/6,9/10,11/12,15/16,17/18,21 MRMC DMV 0.2554 0.5043 0.7767 0.2572 0.4484 
from MRMC (Ac3m_l 1) Updated DMV 0.0975 0.4623 0.7010 0.2527 

SFV 0.0777 0.5987 0.6819 0.3439 
0.3784 
0.4256 

time (sec) 
(c) 

O 
S 0 
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Figure 3-18. The DMV results of the initially unstable model (Ac3_21u) used for 
the third example. 
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Figure 3-19. The DMV results of the forced stable model from the model (Ac3_21u). 
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Figure 3-20. The SFV results of the forced stable model from the model (Ac3_21u). 
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2 
(a) (b) 

Figure 3-21. The DMV results of the reduced model obtained from the forced stable model by 
retaining modes [9/10,11/12,13/14,15/16,17/18,21] according the MRM ranking. 

time (sec) 

(b) 

Figure 3-22. The DMV results of the reduced model obtained from the forced stable model by 
retaining modes [1/2,3/4,5/6,9/10,13/14,21] according to the MSV ranking. 
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(a) (b) 
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Figure 3-23. The DMV results of the reduced-model obtained from the forced stable model by 
retaining modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method. 

Figure 3-24. The DMV results of the updated reduced-model (Ac3ru_l 1) by retaining 
modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method. 
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Figure 3-25. The SFV results of the updated reduced-model (Ac3ru_l 1) by retaining 
modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method. 

Figure 3-26. The frequency response of the updated reduced-model (Ac3ru_l 1) by retaining 
modes [5/6,9/10,11/12,15/16,17/18,21] according to the MRMC method. 
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The results for another two examples of model reduction and updating by applying the 

proposed procedure are recorded in the Tables 3-4a and 3-5a for their MRM and MSV rankings, 

and Tables 3-4b and 3-5b for the prediction errors. 

Table 3-4a. The MRM and MSV ranking for an identified model 
 derived from the open-loop experiments  

Model Ao2 19 (300g payload) 
mode 

number 
frequency 

(Hz) 
damping 

ratio 
MRM 

ranking 
MSV 

Ranking 
1/2 46.14 0.01 11 
3/4 23.19 0.04 8 
5/6 18.54 0.07 
7/8 14.99 0.08 
9/10 9.84 0.05 
11/12 8.06 0.18 
13/14 7.48 0.01 10 10 
15/16 1.98 0.22 11 

17 Real 
18 Real 
19 Real 

Table 3-5a. The MRM and MSV ranking for the identified model 
 derived from the closed-loop experiments  

Model Acl 118c (Og payload without removal of 
the Columb friction compensation) 

mode 
number 

frequency 
(Hz) 

damping 
ratio 

MRM 
ranking 

MSV 
ranking 

1/2 41.76 0.02 10 
3/4 23.17 0.04 
5/6 19.87 0.03 
7/8 10.46 0.04 
9/10 8.00 0.03 
11/12 5.32 0.08 
13/14 0.96 0.08 10 
15/16 0.67 0.22 

17 Real 
18 Real 
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Table 3-4b. The model (Ao2 19) reduction and updating results 
modes 

information 
procedure 

stage 
validation 

method 
prediction error 

As is Initial DMV 0.0587 0.1833 0.3403 0.2503 
SFV 0.2109 0.7690 0.9343 0.6319 

0.1969 
0.6365 

5/6,7/8,9/10,11/12,17,18,19 MRM DMV 0.0605 0.2721 0.4949 0.2900 0.2794 
1/2,3/4,5/6,9/10,11/12,17,18 MSV DMV 0.4019 0.4409 0.4315 0.9071 0.5454 
1/2,3/4,5/6,11/12,17,18,19 MRMC DMV 0.0609 0.3602 0.5458 0.2805 0.3118 
From MRMC method 
Final model—Ao2r 11 

Updated DMV 0.0279 0.1681 0.4120 0.1732 
SFV 0.1768 0.7189 0.8163 0.6023 

0.1953 
0.5786 

Table 3-5b. The model (Acl 1 18c) reduction and updating results 
modes 

information 
procedure 

stage 
validation 

method 
prediction error 

As is Initial DMV 0.1711 0.4151 0.5814 0.3356 
SFV 0.2111 0.6647 0.6959 0.5242 

0.3758 
0.5240 

3/4,5/6,7/8,11/12,15/16,17,18 MRM DMV 0.1708 0.4184 0.6262 0.3331 0.3871 
3/4,5/6,7/8,11/12,9/10,17,18 MSV DMV 0.1755 0.5295 0.7275 0.3630 0.4488 
l/2,3/4,7/8,11/12,15/16,17,8 MRMC DMV 0.1707 0.4840 0.6227 0.3661 0.4109 
From MRMC method 
Final model—Acllr 12c. 

Updatel DMV 0.1547 0.4082 0.5324 0.2538 
SFV 0.2365 0.6829 0.7403 0.5275 

0.3373 
0.5468 

3.3 Conclusions 

1. The Modal Response Magnitude (MRM) is more reliable in quantifying the contribution 

of individual modes than the Mode Singular Value (MSV) for the system containing both 

rigid modes and flexible modes. 

2. The proposed model updating scheme is very effective in improving the accuracy of a 

reduced-order model if this reduced-order model preserves the main modal information. 

In some cases, an updated model can even achieve a better accuracy than its initial model. 

3. The proposed procedure of model reduction and updating can be applied to either stable 

model or imstable model. The experimental study has shown that the flnal updated 

model from a stable model usually has a better accuracy than that from an imstable 

model. 
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4. An advantage of the MRMC method is that the reduced-order model is guaranteed to 

preserve both the information of the rigid modes and flexible modes. 

Table 3-6 lists the typical results of the model reduction and updating. 

able 3-6. The typical results of the updated reduced-order models 
updated 

model code 
Original 

model 
Order & 
method validation <5. 

prediction error 

Ao2r 11 Ao2_19 
Og payload 

11 
MRMC 

DMV 0.0279 0.1681 0.4120 0.1732 
SFV 0.1768 0.7189 0.8163 0.6023 

0.1953 
0.5786 

Ao2r 7 Ao2_19 
Og payload 

7 
MRMC 

DMV 0.0283 0.1984 0.4518 0.2089 
SFV 0.1773 0.7167 0.7994 0.6031 

0.2218 
0.5741 

AolOr 9 Aol0r_12 
Og payload 

9 
MRMC 

DMV 0.1040 0.3710 0.6299 0.2907 
SFV 0.2159 0.7845 0.9028 0.7332 

0.3489 
0.6591 

Ac3r 10 Ac3_18 
Og payload 

10 
MRMC 

DMV 0.0458 0.4456 0.6892 0.2298 
SFV 0.0537 0.5542 0.6747 0.2910 

0.3526 
0.3934 

Ac3r 8 Ac3_18 
Og payload 

8 
MRMC 

DMV 0.0458 0.4551 0.6904 0.2307 
SFV 0.0537 0.5520 0.6767 0.2906 

0.3555 
0.3933 

Ac5r 10 Ac5_22 
200g payload 

10 
MRMC 

DMV 0.0711 
SFV 0.0761 

0.4918 0.5790 0.3344 
0.6452 0.6408 0.3237 

0.3691 
0.4214 

Ac6r 9 Ac6_29 
200g payload 

9 
MRMC 

DMV 0.0450 0.5242 0.5998 0.2712 
SFV 0.0346 0.5391 0.5909 0.2594 

0.3601 
0.3560 

Acllr 10 Acll_26 
300g payload 

10 
MRM 

DMV 0.0414 0.4209 0.5291 0.2551 
SFV 0.0749 0.4619 0.5222 0.2330 

0.3116 
0.3230 

Acllr 8 Acll 26 8 
MRMC 

DMV 0.0556 0.4952 0.6141 0.2731 
SFV 0.0746 0.5073 0.5963 0.2578 

0.3595 
0.3590 

Acl4r 10 Acl4_32 
400g payload 

10 
MRMC 

DMV 0.0484 0.4933 0.5689 0.2513 
SFV 0.0437 0.5114 0.5710 0.2474 

0.3405 
0.3434 

Ac3r 10c Ac3_22c 
Og payload 

10 
MRM 

DMV 0.2477 0.3707 0.6495 0.2308 
SFV 0.2297 0.7231 0.7557 0.5795 

0.3747 
0.5720 

Acllr 8c Acllr_12c 
300g payload 

8 
MRMC 

DMV 0.0889 0.4380 0.5445 0.2584 
SFV 0.2235 0.7002 0.7245 0.5039 

0.3325 
0.5380 
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Chapter 4 

Controller Design and 

Implementation 

The last objective of this research is to design and implement an optimum controller that is 

robust when the manipulator carries different payloads. To this end, the first task is to select 

a proper model for the controller design. Section 1 reports how a nominal model is chosen 

from the models obtained in Chapter 2 and 3. Section 2 addresses controller design and 

considerations of controller robustness. Section 3 presents real-time implementation of the 

optimized controller and test results for the controller robustness. Finally section 4 gives the 

conclusions. 

4.1 Selection of a Nominal Model for Controller Design 

Three types of the updated reduced-order models were obtained in Chapter 2 and 3. They 

are: 

Type I ; the models derived from the data of the open-loop experiments. 

Type II : the models derived from the data of the closed-loop experiments with the removal 

of the Coulomb friction compensation. 

Type III : the models derived from the data of the closed-loop experiments without the re- 

moval of the Coulomb friction compensation. 
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To find a suitable model, the following model evaluation was conducted. Four models used 

in the evaluation are listed in Table 4-1. The first model is a type I model with an order of nine. 

The second and third models belong to type II and their orders are eight and ten, respectively. 

The fomth model is a type III model and its order is ten. Each model was used in a computer 

simulation of a closed-loop system with a Proportional (P) and Integral (I) controller shown in 

Figure 4-1. 

Table 4-1: The optimization results of the model evaluation 
mode 

notation jYpe 
search setting optimization results 

Err Tr(sec) Ki 
Ao2r_9 
Bo2r_9 
Co2r 9 
Ac3r_8 
Bc3r_8 
Cc3r 8 
Ac3r_10 
Bc3r_10 
Cc3r 10 
Ac3r_10c 
Bc3r_10c 
Cc3r 10c 

n 

Kp0 = 
KI0 = 
Kplb = 
Kpub 
KIlb = 
Klub 

3e-l; 
le-2; 

= 5e-3; 
= 2e+0; 
= 5e-6; 
= 2e-l; 

II 

III 

1.8663 9.8870e-4 0.47 

0.4034 3.5015e-6 0.82 

0.4034 4.5764e-3 0.81 

1.3753 3.1172e-4 0.44 

Notes: designation 
KpO and KiO — search starting point. 
Err - steady-state error. Tr — rising time. 

1.1915 

0.3998 

0.3995 

1.2536 

5.00e-6 

1.78e-2 

1.78e-2 

5.29e-2 

set-point 

position signai 

outputs 

Figure 4-1. The closed-loop system used in the model evaluation 

An optimum PI controller was designed for each model using the minimum integral of 
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time-multiplied absolute-error (ITAE) criterion in [28], i.e., 

Ks 

min J = AtV((fc)|fl-(4-1) 

Kpib < Kp < Kpub 

Kiib ^ Ki < Kjub 

where Kp and Kj are the proportional gain and integral gain, respectively, R is the position 

reference, yi(k) is the simulated angular position, t{k) is the time at the fcth sample moment, 

Ks is the number of the samples. At is the sampling time interval, and the sampling rate is 

300 Hz. The lower and upper boimds for Kp are Kpib and Kpub, respectively. Similarly, the 

lower and upper bounds for Ki are Kub and Kjub, respectively. Kpib and Kpb are given small 

values close to zero. Kpub and Kj^b are determined by the controller saturation and closed-loop 

stability, respectively. The optimization results are listed in Table 4-1. It is seen that the type 

II models give the best results in terms of the minimum ITAE and steady state error. 

The optimimi PI controllers were implemented in real-time by a C code program. Figures 

4-2 to 4-5 compare the simulated (dotted line) and implemented (solid line) results for arm 

commanded to 3v set-point. 

Figure 4-2: The comparison between the simulated and implemented results for the model 
Ao2r_9 with the optimal PI gain setting given in Table 4-1. 
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Figure 4-3: The comparison between the simulated and implemented results for the model 
Ac3r_8 with the optimal PI gain setting given in Table 4-1. 

Figure 4-4: The comparison between the simulated and implemented results for the model 
Ac3r_10 with the optimal PI gain setting given in Table 4-1. 
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Figure 4-5: The comparison between the simulated and implemented results for the model 
AcSr lOc with the optimal PI gain setting given in Table 4-1. 

It can be seen that the controllers based on the type II models perform better than those based 

on the type I or III models; therefore, a set of type II model were selected as the nominal 

models in the following controller design. The realizations of the selected models are shown in 

Appendix B. 

It is also noted that the optimum PI controller, i.e., Kp and Kj for both the second and 

third models are almost identical. Their simulated and implemented results are also similar. 

The third model has a higher order by including the third vibratory mode. The fact that the 

two models behave similarly indicates that the third vibratory mode has negligible presence in 

the responses and the model order can be reduced to eight. 

4.2 PDPC Controller Design 

The control goals are as follows: 
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1. Minimum tracking error in the angular position measured from the arm hub to a step 

reference input. 

2. Minimum vibration of the arm. 

3. Minimum performance deterioration when the payload changes or good robustness. 

4. Sufficient stability margins. 

The final controller structure chosen is shown in Figure 4-6. 

Figure 4-6. The PDF controller stmcture used in the controller optimization. 

A proportional controller is used for the error signal of the angular position. The controller 

gain is denoted as Kp. A negative feedback of the angular speed serves as a derivative control 

of the angular position with a gain of Ka- In addition, a negative feedback of the middle 

strain gauge signal is used for suppressing the vibration of the flexible arm, and its controller 

gain is denoted as Kgg. The use of the middle strain gauge signal rather than the base strain 

gauge signal is based on the fact that the base strain gauge is more sensitive to the gear hitting 

(caused by backlash) than the middle strain gauge. The controller is named as PDF controller, 

and its block diagram is shown in Figure 4-7. 
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Figure 4-7. The schematic block diagram for the PDF controller. 

For such a structure, the open-loop transfer function from the position error to the position 

signal can be found as follow: 

si = 
’ E(s) 1 + K,gG3(s) + KiGi(s) 

where <^1(5), ^3(5), and 6^4(5) are the transfer fimctions of the plant. 

One of the main considerations is how to tune the controller such that its performance 

is insensitive to payload change. To imderstand the influence of the payload change on the 

system, a trial PDF controller with Kp = 0.5, Ka = 3.3, and Kag = 0.07 is apphed to the Og 

payload model, 200g payload model, and 400g payload model, respectively. Figure 4-8 shows 

the comparison of the frequency responses computed from equation (4-2) for the three models 

with the same controller setting. 
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Figure 4-8. The frequency responses of the open-loop system defined by equation (4-2) 
for the models with the same PDF controller and different payloads. 

It is seen that with an increase of the payload, the gain and phase margin are reduced; however, 

the phase margin is more sensitive to the payload change than the gain margin. It is also noted 

that the bandwidth of the system is reduced with an increase of the payload. Apparently, if 

the controller is tuned using a model with a particrdar payload, it may not perform well when 

it is applied to another model with a different payload. A technique that times a controller for 

different operating points was proposed in reference [29]. This technique was employed in this 

study. In addition, to have a sufficient stabihty, the gain margin and phase margin constraints 

are imposed [30]; therefore, the timing optimization problem can be defined as following 

3 3 

min J = + 
Kp, Kd , Ksg 

GMi > lOdB, PMi > 55° for i = 1,2,3 
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where the subscripts i — 1,2,3 denote the Og, 200g, and 400g payload models, respectively. 

WE and Wgg are the weighting factors for user to choose according to the design emphasis. In 

the performance index of equation (4-3), Ei is the ITAE value of the normahzed position error 

defined as 
Ks 

Ei(Kp, Ki, K,g) = A< ^ - yi{k)\/R , for i = 1,2,3. (4-4) 
k=l 

Yi is the ITAE value of the normalized strain gauge signals defined as 

Ks 

Yi{Kj,,Kg,Kgg) = At'^t{k){ 
|y2(fc)| 

-I- |j'3(fc)l 

fc=l max(|^2(fc)|) max(|^3(fc)|) 
■) , for i = 1,2,3. (4-5) 

GMi and PMi are the gain margin and phase margin of the open-loop transfer fimction defined 

by equation (4-2). 

The optimization used here must meet multiple objectives to guarantee the good tracking 

performance as well as the minimmn vibration, and the imposed gain and phase margin con- 

straints will provide the robustness of the system stability due to the imcertainties such as 

payload change. In this study, the minimization of the performance index in equation (4-3) was 

done using the Matlab function “ CONSTR ” in Optimization Toolbox [31 32]. 

Table 4-2. The optimization results of the gain settings for PDF controller 
Initial point 

[Kp, Kd, Ksg] 
weight 

We Wsg 
performance 

lEi ZYi 

Optimum gain settings 
Kp Kd Ksg 

ro.3, 1.0, 0.11 0.5 0.5 5.810 1.239 2.407 0.594 4.266 0.254 
[0.594, 4.266, 0.254] 0.5 0.5 5.810 1.239 2.407 0.594 4.266 0.254 

[0.8, 4.0, 0.5] 0.5 0.5 5.810 1.239 2.407 0.594 4.266 0.254 
Search conditions: Lower bound = [0.005,0.05,0.005], Upper bound = [1.0,15, 2]; 
Gain margin constraints, GMi > lOdB, phase margin constraints, PMi > 55°. 

As shown in Table 4-2, with WE = Wsg = 0.5, the optimization result of the gain setting 

converges to the same point {Kp = 0.5935, Kd = 4.2664, Kgg = 0.2538) for the different initial 

search points. This indicates that this set of the gain setting is the global optimization, and it 

will be applied to the real-time implementation in the next section. 
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4.3 PDPC Controller Implementation 

As shown in chapter 2, the Coulomb friction compensation must be included in order to have a 

zero tracking error. The controller designed in the previous section is based on the linear model, 

and the Coulomb friction was not considered. The Coulomb friction must be compensated in 

the implementation of the controller. As observed in the closed-loop experiments, the Coulomb 

friction compensation added in the control effort is very effective for the rigid body to track the 

different set-points with the minimum error. But a disadvantage of doing this is to cause the 

small vibration by gear hitting after the angular position reaches its set-point. To overcome this 

problem, the Coulomb friction compensation is modified to be a conditional Coulomb friction 

compensation, i.e., after the set-point is reached, the compensation is removed. The final 

control structure implemented on the apparatus is named as PDPC controller as illustrated in 

Figure 4-9. 

Figure 4-9: The PDPC controller stmcture. 
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The control law is given as follows: 

u{k) = Ue{k) + Uc 

where u{k) is the system input, Ue(k) is the control effort given by 

Ue{k) = Kp[R - j/i(fc)] -K4X yi(k) - K,g x ysik), 

(4-6) 

(4-7) 

and Uc{k) is the conditional Coulomb friction compensation defined as 

Uc = 1 
\ 

0.7 V for Ue > 0, if |72 — yi(fc)| > 0.05 or |^4(A:)| > 0.05 

—0.7 V for Ue < 0, if |7? — yi(/:)| > 0.05 or \yA{k)\ > 0.05 

0.0 V otherwise. 

(4-8) 

Figure 4-10 shows the base and middle strain gauges signals for the unconditional Coulomb 

friction compensation and the conditional Coulomb friction compensation. 

Figure 4-10: The comparison of the strain gauge signals between the conditional Coulomb 
friction compensation and unconditional Coulomb friction compensation. 
(a) and (b) conditional; (c) and (d) unconditional. 
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It can be seen that with the conditional Coulomb friction compensation, the vibration of the 

arm can be suppressed well. 

It is worth emphasising that the conditional Coulomb friction compensation of the PDPC 

controller is the key point to achieve both the zero tracking error for the different set-points 

and minimum vibration after the set-point is reached. 

The final PDPC controller is implemented in C language imder the environment of Lab- 

Windows/C VI. The samples of the control results for the varying set-points as well as different 

payloads are illustrated in Figures 4-11. 

Figure 4-11. The comparison of the control results for different payloads and set-points. 

Clearly, the results show that the controller is quite robust for the payload change, and also 

has a satisfactory tracking for the different set-points. 



6 

Figure 4-12. The strain gauge signals when the arm carried 400g payload and was 
commanded to follow a 5v square-waveform with a period of 20 seconds. 

Figure 4-12 shows the suppression of the vibration for the worst case, in which the manipulator 

carried the 400g payload and commanded to a set-point of 5v square-waveform with 20 seconds 

period. 

4.4 Preliminary Study of ILQR Control 

Design techniques of control systems in state-space have been well developed. A state-space 

model is more suitable for controller design and implementation using state-space techniques. 

Linear Quadratic Regulator (LQR) technique is one of the most important results of mod- 

ern control. It gives an optimal state feedback control gain K by minimizing the following 

performance index: 

1 ^ 
J = - ^ \3F{k)Qx{k) -}- u^(k)Ru(k)] (4-9) 

^ k=0 

where Q and R are symmetric weighting matrices and nonnegative definite, which is most easily 

accomplished by picking the Q and R to be diagonal with aU elements positive or zero. To im- 
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plement LQR control, a system observer is often needed as in most cases not all system states 

can be measured. In addition, to guarantee the zero steady-state error for the system with 

disturbance, an integral control must be added into control structure. The final control struc- 

ture shown in Figme 4-13, named Integral Control plus LQR (ILQR) controller, is employed 

for controlling the flexible-link manipulator. 

Figure 4-13. The control structure diagram of the ILQR controller. 

In Figure 4-13, Kc is state feedback control gain, L is observer gain, Kp is steady-state 

plant gain from Rf to y\ with the state feedback loop closed, Kj is integral gain, XQ is observed 

states, and Ar, Br, and Cr are the updated reduced-order state-space realization where Cri is 

the first row vector of Cr, i.e., Cri = [1 0 0 0] Cr. The reason to use the position signal only 

instead of using all measured signals is based on the fact that the system is observable with Ar 

and Cri. The model used in controller design was identified from the closed-loop experiments 

with 300g payload, and the model order is 8. The determination of the gains Kc, L, Kp, and 

Ki are explained below: 

1. A proper selection of Q and R is critical in designing the state feedback control gain Kc 

by the LQR technique. Through computer simulation, it was noted that the first state 

corresponds to the position, the second and third states correspond to the strain gauge 

signals. Therefore, it is natural to put more weighting on the first three states as they 

are the control objectives, especially the first state. Another consideration is to keep the 

control effort u below 5A due to the system hmit. By trial-and-error the values of the 
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diagonal elements of Q and the value of R were varied to ensme a satisfactory system 

performance with the LQR controller. Eventually the state feedback control gain Kc 

was foimd to be 

Kc=[o. 4229 -0.1630 -0.4117 0.4010 0.0061 -0.1487 -0.0164 -0.1240 

with 

Q = diag 2 0.4 0.4 0.1 0.04 0.04 0.04 0.04 and R = 10 

2. The observer gain L was designed according to state-space dual property, i.e., L equals 

the transpose of the state feedback gain found by LQR algorithm using and as 

system transition matrix and input matrix, respectively. The corresponding Q and R 

are selected to ensure observer responses at least 2 time faster than the state responses 

of full states feedback controlled plant. The final observer gain L was found to be 

= [o, 8392 0.0688 -0.6061 0.1406 -0.0663 0.1148 0.0981 -0.0099 ] 

with 

Q = diag 11111111 and R — 1. 

3. After Kc and L were foimd, Kp was determined by applying a Iv step input os Rf and 

recording the steady-state value of yi with = 1, A/ = 0, and d = 0 in Figure 4-14, 

hence. 

Kp^ Rf 
yi(oo) 

1 

^i(oo) 
0.7746. 

4. Finally, Kj = 0.0015 was determined by trial-and-error for a satisfactory system perfor- 

mance with respect to a disturbance d shown in Figure 4-14 as it simulates the Coulomb 

friction. 
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Figure 4-14. The schematic diagram of the computer simulation. 

With the above gain settings, the simulations with set-points of 3v and 5v were first conducted 

according to the system schematic diagram in Figure 4-14. Then, the ILQR controller was 

implemented in real-time by a C code program. The comparisons of the system performances 

between the simulation and the implementation are shown in Figures 4-15 to 4-18. 

(a) (b) 

time (sec) time (sec) 

Figure 4-15. Comparison of system responses between the simulation and the implementation 
for the manipulator carrying 300g payload commanded to 3v position set-point. 
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Figure 4-16. Comparison of control efforts between the simulation and the implementation 
corresponding to the system responses in Figure 4-15. 

(a) 

time (sec) 

(b) 

Figure 4-17. Comparison of system responses between the simulation and the implementation 
for the manipulator carrying 300g payload commanded to 5v position set-point. 
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Figure 4-18. Comparison of control efforts between the simulation and the implementation 
corresponding to the system responses in Figure 4-17. 

Following are the observations and analysis from the experimental results: 

1. As shown in Figure 4-15, with the same ILQR controller, the real system and identified 

system model behave similarly in the case of 3v set-point. The performance is acceptable 

in term of the tracking accmacy and vibration. It is due to the Coulomb friction ( the 

main disturbance in system ) can be approximately modeled as a constant distm'bance as 

the arm position did not overshoot and the speed did not change its direction. In such 

a case, the ILQR controller indeed has a capability of handling a constant disturbance. 

2. For the case of 5v set-point, the implementation results differ from the simulation results. 

It is noted that an oscillation or limit cycle phenomenon existed. It can be seen that 

the position was overshot and speed reversed its direction. This fact indicated that the 

Coulomb friction was no longer a constant distmbance but varied its direction according 

to the speed. Although the integral control action eventually brought the arm close to the 

set-point, all signals oscillated continuously. This clearly shows that the ILQR controller 

is incapable of handling a varying disturbance. 



4.5 Conclusions 

Based on the study, the following conclusions can be drawn: 

1. The models derived from the data of the closed-loop experiments with the removal of the 

Coulomb friction compensation are closer to the real system than the other models. 

2. Under the assumption of the stable system, the use of the abundant gain and phase 

margins are an effective way to achieve a good robustness of the system stability. 

3. The Coulomb friction compensation must be incorporated in order to have a zero 

tracking error. The compensation should be conditional to avoid the vibration caused 

by the gear hitting. 

4. Although the system performances with the ILQR controller are not as good as those 

with the PDPC controller, the ILQR controller has its own advantages such as it needs 

only one position sensor and the feedback signal has a higher signal-to-noise ratio. 
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Chapter 5 

Summary and Future Work 

• The contributions of the study: 

1. The study has addressed several important issues such as the methods to excite the 

system, types of exciting signals, and model validation in the system identification. 

The experimental results show that the noises and nonlinearity could significantly 

reduce the accuracy of the identified model by the ORSE algorithm. To reduce the 

nonlinear influence for the system under study, the closed-loop experiment with the 

Coulomb friction compensation should be used for data acquisitions. The study 

has also successfully implemented several data preprocessing operations in order to 

effectively apply the ORSE algorithm to the system imder study. 

2. A new model reduction procedure has been developed. This new procedme can 

be applied to either stable or unstable models. It also allows to incorporate any 

prior model information in decision making. A new index referred to as modal 

response magnitude (MRM) has been proposed to quantify the contribution of indi- 

vidual modes. The experimental study has shown that the MRM is more reliable 

in quantifying the contribution of individual modes than the mode singular value 

(MSV) for the system containing both rigid modes and flexible modes. A new model 

updating scheme has been proposed. The experimental study has indicated that if a 

reduced-order model preserves the main modal information, the proposed updating 

scheme can effectively improve the accuracy of the reduced-order model. 
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3. The experimental results show that the use of the abundant gain and phase margins 

is an effective way to achieve a good robustness of the system stabihty. In order to 

have a zero tracking error, the Coulomb friction compensation must be incorporated. 

Moreover, the compensation should be conditional to avoid the vibration caused by 

the gear hitting after the arm reaches its set-point. 

• The study can be furthered in the following areas: 

1. An adaptive control in the form of gain scheduling should be tried to obtain the 

best performance for each payload if an effective method can be found to detect the 

payload on-line fast and accuracy enough. 

2. An effective control strategy to reduce the gear hitting deserves a further investiga- 

tion. 

3. Analytical proof of the MRM index is needed. 
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Appendix 

A: The Data Tables 

Table A-1. The data list for the open-loop experiments 
data code datafile length sampling rate current waveform max, magnitude 
O datl So sml 3000 300 Hz square Iv 
O dat2 So sm2L 6000 300 Hz square 2v 
O dat3 So shl 5000 500 Hz square Iv 
O dat4 So sh2 5000 500 Hz square 2v 
O dat5 So prml 3000 300 Hz periodic random Iv 
O dat6 So__pmi2L 6000 300 Hz periodic random 2v 
O dat7 
O datS 

So prhl 
So_prh2 

5000 500 Hz periodic random 
5000 500 Hz periodic random 

Iv 
2v 

O dat9 So pbml 3000 300 Hz varying square Iv 
O datlO So pbm2 3000 300 Hz varying square 2v 
O datll So pbhl 5000 500 Hz varying square Iv 
O datl2 So pbh2 5000 500 Hz varying square 2v 
O datl3 So rm2 3000 300 Hz random 2v 
O datl4 So rh2 5000 500 Hz random 2v 

able A-2. The data list for the bounded open-loop experiments 
data code datafile length sampling rate current magnitude max, magnitude 
B datl Sb rm2 12000 300 Hz random 2v 
B dat2 Sb rm3 12000 300 Hz random 3v 
B dat3 Sb rm4 12000 300 Hz random 4v 
B dat4 Sb rh2 12000 500 Hz random 2v 
B dat5 Sb rh3 12000 500 Hz random 3v 
B dat6 Sb rh4 12000 500 Hz random 4v 
B dat7 Sb sml 12000 300 Hz constant Iv 
B datS Sb sm2 12000 300 Hz constant 2v 
B dat9 Sb sm3 12000 300 Hz constant 3v 
B datlO Sb shl 12000 500 Hz constant Iv 
B datll Sb sh2 12000 500 Hz constant 2v 
B datl2 Sb sh3 12000 500 Hz constant 3v 
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Table A-3. The data list for the closed-loop experiments 
data code datafile gain setting load length ref. & Coulomb compensation 
C datl SrlO pdl p=l d=2,8 9600 R=2v/8s, c=0.8v 
C dat2 SrlO pd2 p=l d=2.8 12000 R=3v/10s, c=0.9v 
C dat3 SrlO vc2 P=1 d=2.8 12000 R=3v/2.5-5s, c=0.7v 
C dat4 SrlO vcl p=l d=2.8 12000 R=2v/2-4s, c=0.9v 
C dat5 Srll pdl p=l d=2.8 mg. 9600 R=2v/8s, c=0.9v 
C dat6 Srll pd2 p=l d=2,8 200g 12000 R=3v/10s, c=0.9v 
C dat7 Srl2 pd p=0,8 d=2,8 300g 12000 R=3v/10s, c=1.0v 
C dat8 Srl2 pdl p=0,6 d=2.8 300^. 12000 R=2v/10s, c=1.0v 
C dat9 Srl2 pd2 p=l d=2.8 300g. 12000 R=4v/10s, c=1.0v 
C datlO Srl2 pd3 p=l d=2.8 300g 9600 R=3v/8s, c=0.8v 
C datll Srl2 pd4 p=l d=2,8 300g 12000 R=3v/10s, c=0.8v 
C datl2 Srl2 pd5 p=l d=2,8 300g 9600 R=2v/8s, c=0,8v 
C datl3 Srl3 pdl p=l d=2.8 400g 12000 R=2v/10s, c=0.9v 
C datl4 Srl3 pd2 p=l d=2.8 400g 12000 R=3v/10s, c=0.9v 

Table A-4. The data list of the real-time control 
data code datafile purpose Controller & setting 
R datl rc pil Ac3r 10 evaluation PI with optimal gains 
R dat2 rc pi2 Ac3r 8 evaluation PI with optimal gains 
R dat3 rc pi5 Ao2r 9 evaluation PI with optimal gains 
R dat4 rc pi7 Ac3r 10c evaluation PI with optimal gains 
R dat5 rc pdpVs 400g/5v vibration control efifect PDPC with optimal gains 
R dat6 rc pdpLO Og/lv controller performance PDPC with optimal gains 
R dat7 rc pdpLl 200g/3v controller performance PDPC with optimal gains 
R dat8 rc pdpL3 400g/5v controller performance PDPC with optimal gains 
R dat9 rc ilqrl 300g/3v controller performance ILQR control 
R datlO rc ilqr2 300g/5v controller performance ILQR control 
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B: The Discrete-time State-space Realizations for the Selected Nominal Models 

1. The nominal model with Og payload 

A = 

B = 

1.0003 0.0049 0.0041 0.0018 0.0030 -0.0008 -0.0014 -0.0017 0.0026 -0 

-0.0010 0.9942 0.0138 0.0231 0.0265 0.0117 -0.0327 -0.0115 0.0073 -0 

-0.0001 -0.0058 0.9915 0.0116 -0.0144 0.0390 -0.0263 0.0090 -0.0318 0 

0.0000 0.0014 0.0056 0.9695 0.1777 -0.0027 -0.0349 0.0146 -0.0213 0 

0.0000 -0.0004 0.0004 -0.1644 0.9819 -0.0919 0.0314 0.0015 -0.0169 0 

0.0000 -0.0002 -0.0026 -0.0101 0.0651 0.9957 0.0704 -0.0105 0.0410 0 

0.0000 -0.0014 -0.0051 0.0353 -0.0075 -0.0221 0.8452 0.4478 0.0187 -0 

0.0000 -0.0003 -0.0014 -0.0019 0.0034 0.0128 -0.4361 0.8809 0.0883 -0 

0.0000 -0.0009 -0.0033 0.0229 0.0035 -0.0030 -0.0940 -0.1141 0.5608 -0 

0.0000 0.0000 0.0002 0.0017 0.0002 0.0081 0.0469 0.0063 0.7968 0 

0.0067 0.0616 0.1334 -0.1289 -0.1902 -0.1357 0.2688 0.2048 0.3271 -0.7559 

c = 

0.3219 -0.0742 0.0103 0.0290 0.0066 -0.0632 -0.0168 -0.0146 -0.0068 0 

-0.0221 -0.0536 0.2458 -0.0269 0.1161 -0.1902 0.3498 -0.2938 0.2144 -0 

0.0031 0.0214 -0.0504 0.0756 -0.0842 0.0084 0.0691 -0.0724 -0.0382 -0. 

0.0023 0.0233 0.0013 -0.0112 -0.0111 -0.0169 0.0218 0.0118 0.0001 0. 

.0034 

.0247 

.0106 

.0582 

.0063 

.0073 

.1600 

.0346 

.7785 

.6768 

iT 

.0159 

.2824 

.0081 

.0072 
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2. The nominal model with 200g payload 

A = 

B = 

C = 

1.0002 0.0035 -0.0022 0.0086 

-0.0007 

0.0000 

-0.0001 

0.9957 

0.0015 

-0.0034 

0.0035 0.0337 

0.9979 0.0338 

-0.0070 0.9924 

-0.0001 -0.0034 0.0048 0.0069 

0.0000 -0.0008 -0.0008 -0.0185 

0.0000 

0.0000 

0.0000 

-0.0012 

0.0002 

-0.0006 

0.0022 

-0.0002 

-0.0080 

0.0012 

0.0012 -0.0037 

0.0074 0.0002 -0.0042 0.0033 -0.0132 

0.0455 -0.0056 -0.0385 0.0287 -0.0693 

-0.0004 0.0453 0.0182 -0.0276 -0.0024 

-0.0555 0.0680 -0.0034 0.0037 -0.0076 

0.9761 0.0574 0.0768 -0.0310 0.0950 

-0.0391 0.9908 -0.0062 0.0316 -0.1538 

-0.0281 -0.0179 0.8164 -0.4358 -0.0851 

0.0026 -0.0014 0.4752 0.8728 0.0331 

-0.0117 -0.0031 -0.0448 0.0284 0.9273 

-0.0015 0.0153 -0.1342 0.0651 -0.1310 0.2089 0.1045 -0.5222 0.1266 

0.3592 -0.1167 0.0179 0.0239 -0.0343 -0.2054 0.0006 0.0672 0.6455 

-0.0202 -0.0698 -0.2385 0.1775 0.2325 -0.0251 0.5379 -0.0655 -0.3755 

0.0064 0.0367 0.0631 -0.0489 -0.0930 -0.0616 0.1214 0.0439 -0.2822 

0.0023 0.0191 -0.0077 0.0074 -0.0357 0.0225 0.0581 -0.0163 -0.0675 
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3. The nominal model with 400g payload 

A 

B 

C 

1.0003 

-0.0006 

0.0035 

0.9993 

0.0001 0.0026 

-0.0052 

-0.0075 

0.9973 

0.0000 

0.0000 

0.0000 

0.0005 

0.0002 

0.0003 

0.0002 

0.0000 

0.0137 

0.0477 

0.0471 

0.0029 0.0037 -0.0023 

-0.0023 

-0.0010 

-0.0014 

-0.0010 

-0.0001 

0.0252 0.0230 

0.0000 -0.0010 0.0008 0.9798 

0.0000 -0.0006 0.0024 0.0368 

0.0440 

0.0077 

0.0225 

0.0079 

0.0028 

-0.0309 

-0.0912 

0.9793 

0.1221 

-0.0083 

0.0261 

-0.0061 

-0.0205 

-0.1815 

0.8842 

-0.3277 

-0.0786 

-0.0174 

0.0146 

-0.0006 

-0.0369 

0.0055 

0.0234 

-0.0065 

-0.0220 

-0.0663 

0.3663 0.0641 

0.9219 0.0448 

-0.0035 -0.0629 

-0.0930 

-0.0434 

0.0004 -0.0034 -0.0023 

0.9541 

-0.1625 

0.0003 

-0.0049 

-0.0291 

0.0350 

-0.0001 

0.0049 

0.1494 

0.0201 

0.2042 

0.9599 

-0.0056 

-0.0077 -0.0553 -0.0518 0.0413 -0.3077 0.0349 -0.4077 -0.1403 -0.2311 

0.3692 -0.1354 -0.0295 0.0198 -0.0396 0.0236 0.0044 0.0388 0.0390 

-0.0333 -0.0889 -0.1454 0.2234 0.1885 -0.3314 -0.1951 -0.0330 -0.0900 

0.0097 0.0400 0.0290 -0.1357 -0.0980 -0.0930 0.0140 0.2532 -0.0927 

0.0026 0.0161 -0.0124 -0.0107 -0.0266 -0.0219 -0.0136 -0.0414 0.0037 

-0.0029 

-0.0277 

0.0424 

-0.1252 

-0.0071 

0.0353 

-0.0043 

-0.0359 

0.0243 

0.9987 

■0.0119 j 

1.2194 

-1.8546 

1.2120 

-0.0763 
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