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Abstract

In recent years, multicarrier communication has attracted considerable at-
tention as a promising technology that enables transmission of high data
rates. One of major drawbacks of multicarrier communications is the high
peak-to-average power ratio (PAPR) of transmitted signals. Sequences and
codes can be used as a solution to handle this problem.

This thesis focuses on the correlations and the power characteristics of
special classes of binary sequences with ideal two-level autocorrelation. The
aperiodic autocorrelations of the four classes of sequences with length n =
2™ — 1 are calculated and analyzed via merit factors, peak sidelobe levels
(PSL), and average sidelobe levels (ASL). It is shown that merit factors
of 3-term, 5-term and Welch-Gong sequences asymptotically approach to
3.0. Moreover, new growth rates of PSLs and ASLs of these sequences are
conjectured. The power characteristics are calculated and discussed via peak-
to-mean-envelope-power ratios (PMEPR) of the four classes of sequences
with short length n = 2™ — 1 (5 < m < 8) , where PMEPRs give the upper
bounds of PAPRs. Also, the PMEPRs of orthogonal codes generated by the
sequences are calculated. Compared to the PMEPRs of Walsh code sets, it is
claimed that the orthogonal codes generated by binary sequences can replace

Walsh codes to obtain small PAPRs in multicarrier communications.



Chapter 1

Introduction

1.1 Multicarrier Communications

Multicarrier communications including orthogonal frequency division multi-
plexing (OFDM) and multicarrier code division multiple access (MC-CDMA)
are of interest in many wireless applications. In practice, IEEE 802.11 [1]
and 802.16 [2] are employing OFDM for wireless local area network (LAN)
applications. Also, it has been adopted for digital video broadcastings [3].
MC-CDMA is a scheme of multicarrier systems, which combines the advan-
tages of both OFDM and code division multiplexing access (CDMA) [4].
Since it has high capacity and flexibility, MC-CDMA is promising for next
generation wireless communications. The main benefits of multicarrier com-

munications are the following:

e Multicarrier communications convert a frequency selective channel into
a set of frequency flat subchannels, which allow simple strategies to

combat against fading channels.

e Data symbol constellation size and/or power allocation to each subcar-



rier can be independently adjusted according to the respective signal
to noise (SNR). This leads to a better usage of bandwidth and allows

near-capacity performance.

e Multicarrier communications can be efficiently implemented using sim-

ple and cheap hardwares of the fast discrete Fourier transform.

A major drawback of multicarrier communication schemes is the high peak-
to-average power ratio (PAPR) of the transmitted signals. Since signals of
multicarrier communications consist of a number of independently modulated
subcarriers, they will give high peak-to-average power ratios when added
up coherently. The high PAPR brings disadvantages such as an increased
complexity of the analog-to-digital and digital-to-analog converters and a

reduced efficiency of the power amplifier [5],[6].

1.2 Motivation

Many approaches have been proposed to solve the PAPR problem in mul-
ticarrier systems [7]. Using codes or sequences is one of the techniques for
PAPR reduction. A simple idea introduced in [8] is to select good codes
that minimize or reduce the PAPR for multicarrier transmissions. In [9] and
[10], the results reported are the length 7 or 8 codes with a PAPR around
3 dB. In [11] and [12], m-sequences have been used for OFDM block coding
to provide a low PAPR of the OFDM signals. The results suggest that m-
sequences with length n = 2™ —1, 3 < m < 10, can yield PAPR values in the
range 5-8 dB. However, designing coding schemes with a low PAPR, error-
correcting capability, and simple implementation, is a challenging problem.
Moreover, the search for good codes is still at its initial stage. In this thesis,

we tried to find good codes or sequences for PAPR, reduction in multicarrier
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communications, starting from the known binary sequences with ideal two-
level autocorrelation. For this purpose, we examined aperiodic and power

characteristics of some candidate sequences.

1.3 Original Contributions

In our experiments, we focused on the four classes of binary sequences with
idea two-level autocorrelation, i.e. m-sequences, 3-term, 5-term and Welch-
Gong sequences. The main contributions of this thesis are summarized in

the following.

e We calculated and analyzed aperiodic autocorrelations of four classes of
binary sequences with ideal two-level autocorrelation, i.e., m-sequences,
3-term, 5-term and Welch-Gong (WG) sequences with length n = 2™ —
1,5 < m < 21, via merit factor, peak sidelobe level (PSL), and average
sidelobe level (ASL). For merit factor, we found 3-term, 5-term and
WG sequences have the similar properties with m-sequences, where
the MFs asymptotically approach to 3.0. For peak sidelobe level, it is
conjectured that

PSL = cy/n(lnm)?

where for m-sequences, ¢ = 0.15, and for 3-term, 5-term, and WG

sequences, ¢ = 0.26. For average sidelobe level, it is conjectured that
ASL = c\/n

where for m-sequences, ¢ = 0.33, and for 3-term, 5-term, and WG

sequences, ¢ = 0.31.

o We calculated and analyzed peak-to-mean-envelope-power ratios (PMEPR)

of the four classes of sequences with short lengths n =2m -1, 5 <m <

3



8. The results suggest that most of PMEPRs and PAPRs produced by
the four classes of sequences are below 8 dB. Moreover, the numerical
results show that the distributions of PMEPR, of 3-term sequences with
length 31 and 5-term sequences with length 255 are better than that

of m-sequences.

e We calculated and analyzed PMEPRs of the orthogonal codes gen-
erated by the four classes of sequences with short length n = 2™,
5 < m < 8 The highest value of PMEPRs of the orthogonal codes
is 8.04 dB. The orthogonal code sets provide lower PMEPRs than con-
ventional Walsh code sets . Moreover, the binary sequences generate
the various orthogonal code sets depending on the primitive polyno-
mials, which can be efficiently implemented using linear feedback shift
registers (LFSR). In conclusion, the orthogonal codes can replace Walsh

codes to obtain low PAPR in the multicarrier communications.

1.4 Thesis Outline

Chapter 2 introduces principles of multicarrier communications and basic
concepts for sequences. Chapter 3 introduces special classes of binary se-
quences with ideal two-level autocorrelation, which will be examined in this
thesis. Chapter 4 calculates and presents aperiodic autocorrelations of m-
sequences, 3-term, 5-term and WG sequences with length n = 2™ — 1,
o < m < 21, via merit factor, peak sidelobe level, and average sidelobe
level. Chapter 5 calculates and discusses the PMEPRs of the four classes of
sequences and orthogonal codes generated by the sequences, and compares
them to PMEPRs of Walsh code sets. Chapter 6 concludes the thesis, pro-

vides a summary of the work and proposes potential research work regarding



this issue.



Chapter 2

Preliminaries

2.1 Principles of Multicarrier Communication

The basic idea of multicarrier communications is to divide the transmitted
bitstream into many different substreams and send them over many different
narrowband subchannels [13]. The number of the subcarriers is chosen to
ensure that each subchannel experiences flat fading, where the intersymbol
interference (ISI) on each subchannel is negligible.

Consider a linearly modulated system with data rate R and bandwidth B
. 'The coherence bandwidth for the channel is assumed to be Bs < B , S0 the
signal experiences frequency-selective fading. The basic premise of multicar-
rier modulations is to break this wideband system into NV linearly modulated
subsystems in parallel, each with subchannel bandwidth By = B /N and
data rate Ry ~ R/N. The power spectrum of transmitted signals is shown
in Figure 2.1. For sufficiently large IV , the subchannel bandwidth By < B,
which ensures relatively flat fading on each subchannel. In the time domain,
the symbol time Ty of the modulated signals in each subchannel is approxi-

mate to 1/By. So By < Bg implies that Ty =~ 1/By > 1/Bg =~ T¢, where



i f2 f3 fv-1 fn Frequence

Figure 2.1: The power spectrum of transmitted signals of multicarrier sys-

tems

Tc denotes the delay spread of the channel. Thus, if N is sufficiently large,
the symbol time is much greater than the delay spread. So each subchannel
experiences little ISI degradation.

According to the structure of multicarrier communications, it requires
separate modulators and demodulators on each subchannel, which was too
complex to implement in the early years. However, the development of simple
and cheap implementations of the discrete Fourier transform (DFT) and its
inverse ignited its widespread use. The DFT and its inverse are performed

using the fast Fourier transform (FFT) and inverse fast Fourier transform

(IFFT) techniques.

2.1.1 Orthogonal frequency division multiplexing (OFDM)
and orthogonal frequency division multiple ac-

cess (OFDMA)

OFDM is a popular scheme for many existing and future wideband digital
communication systems, whether wireless or over wirelines, such as asym-
metric digital subscriber line (ADSL) broadband internet access system [14],
digital video and audio broadcasting systems 3], IEEE 802.11 Wi-Fi systems
[1], IEEE 802.16 WiMAX systems [2], etc.
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The block diagram of an OFDM system is shown in Figure 2.2. From
this figure, it can be seen that the high data rate stream of symbols is passed
through serial to parallel converter resulting in a block of N low rate parallel
data streams. This serial to parallel conversion increases the symbol duration
by a factor of N. Each one of the low rate streams is then loaded onto a
different subcarrier. The baseband transmitted signal implemented by IFFT
for a single OFDM block corresponds to!

s(t) = Z_ bie? ™Aty (1) (2.1)

where b; is the ith data symbol of the OFDM block, p(t) is a pulse shaping
function existing in one OFDM symbol duration, and Af is the frequency
spacing between adjacent subcarriers [13]. To minimize the effects of inter-
symbol interference caused by the multipath nature of the channel, the cyclic
prefix is appended to the beginning of each OFDM symbol.

At the receiver side, the received signal in one OFDM block corresponds

to
N-1
T(t) = Z hibi€j27riAftp(t) + n(t) (22)
1=0

where h; denotes the channel fading coefficients for the ith subchannel which
is assumed to be a flat fading, and n(t) is additive white Gaussian noise. After
the OFDM baseband signal is recovered, the cyclic prefix is removed. A fast
Fourier transform (FFT) is then applied to recover the original transmitted
data in parallel. Finally, the parallel data substreams are aggregated into
the serial data stream and demodulated to recover the original high speed
information data stream.

Compared with single-carrier modulation schemes, OFDM can cope with

severe channel conditions including narrowband interference, attenuation of

n this thesis, j = v/—1.



high frequencies in a long copper wire, and frequency-selective fading due to
multipath environments.

Recently, orthogonal frequency division multiple access (OFDMA), which
is a multi-user version of OFDM, has emerged as one of the prime multiple-
access schemes for broadband wireless network, e.g., IEEE 802.16a/d/e Mo-
bile WIMAX [2], IEEE 802.20 [15], and 3G-LTE [16], etc. The OFDMA
scheme allows multiple access to the same wideband channel, which is di-
vided into narrowband subchannels. Each subchannel can be considered
independently so that multiple users can transmit and receive at the same
time. According to the feedback information about the channel conditions,
the system can adaptively assign the subcarriers to multiple users, and the
modulation and coding schemes on each subcarrier can be adapted to provide

improved coverage and throughput [17].

2.1.2  Multicarrier code division multiple access (MC-

CDMA)

Multicarrier code division multiple access (MC-CDMA) inherits the bene-
fits of both multicarrier communications and code division multiple access
(CDMA) [4]. Hence the scheme is promising for next generation wireless
communications, which have rigid demands on system capacity and flexibil-
ity.

In MC-CDMA, each data symbol is spread over multiple subcarriers with
a user specific code. Each data modulated by a spreading code is transmitted
on different subcarriers. Consequently, all users share the same frequency
band at the same time. Figure 2.3(a) illustrates the MC-CDMA transmitter
of the k-th user. Here, the data symbols b* of kth user is multiplied by

CF = [ck,ck, ck, ..., ck], where ¢f is the spreading code element for the kth

10
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user, and then transmitted on all V orthogonal subcarriers. The N signal
components are summed and converted to passband prior to transmission.
The baseband transmitted signal implemented by IFFT corresponding to the

kth user is

N
s5(t) = Z bEcker?miA Tty (1) (2.3)

i=1

where A f is the frequency spacing between adjacent subcarriers, and p(t) is
a pulse shaping function existing in one MC-CDMA symbol duration.

The receiver reverses the operation of the transmitter as shown in Figure

2.3(b). The received signal can be represented as

r(t) = ) hEbRcEeImAL(1) 4 n(t). (2.4)

i=1 k=1
where h* denotes the channel fading coefficients for the kth user, which is
assumed to be a flat fading, K is the number of users, and n(t) is additive
white Gaussian noise. The first step is to perform the FFT operation to
transform the received signal to the frequency domain. To detect the kth
user data symbol, the N subcarrier components are despread using the kth
user spreading code C* = [cf, %, ..., c%]. As the MC-CDMA received signal
is combined in the frequency domain, the receiver can always employ all the
received signal energy scattered in the frequency domain. That is the main

advantage of the MC-CDMA schemes over other schemes.

12



2.2 Sequences for Communications

2.2.1 Sequences for code division multiple access sys-

tems (CDMA)

In code division multiple access (CDMA) systems, multiple access capability
1s primarily achieved by means of spreading codes or sequences. Orthogonal
codes are assigned to different users in a CDMA system, known as spreading
codes. Moreover, sequences in the CDMA are used for data scrambling,
separation and identification of cells and users.

The binary valued Walsh codes are widely used as spreading codes in
wireless CDMA system. The Walsh codes are perfectly orthogonal codes
and are ideal for synchronous CDMA communications. The IS-95 wireless
communication standard uses orthogonal 64-length Walsh codes as spreading
codes. Also, it employs m-sequence of length (2*> — 1) as scrambling codes,
and de Bruijn sequences of length 2% for the cell identification in the forward
and reverse transmission [18]. The Wideband CDMA (WCDMA) employs
variable length orthogonal Walsh codes as spreading codes and Gold and Z,

sequences as scrambling codes [16].

2.2.2 Sequences for multicarrier communications

The Baker sequences [19] are binary sequences with optimal aperiodic auto-
correlation, where all out-of-phase aperiodic autocorrelation magnitudes are
at most 1. The 11 bit Barker sequences are employed as spreading sequences
of direct sequence spread spectrum physical layer of IEEE 802.11 wireless
local area network (WLAN) standard [1].

Golay complementary sequences [20] are adopted as the sets of synchro-

13



nization codes in the third generation cellular standard [16]. Recently, Go-
lay complementary sequences are considered to be an option for reducing
the high peak-to-mean-envelope-power ratio (PMEPR)of the OFDM systems
[21], [10], [22].

2.3 Basic Concepts for Sequences

In this section, we review the definitions and basic concepts of sequences.

2.3.1 Finite fields and primitive polynomials

Let m be a positive integer. To construct the finite field GF(2™) of order
2™, we choose that f(z) is an irreducible polynomial over GF(p) of degree

m. a is an element that satisfies f(a) = 0. Then
GF(2™) ={ao+ar1a+ -+ an_10" a; € GF(2)}, (2.5)

where « is the primitive element of GF(2™). GF(2™) also can be presented
as GF(2™) = {0,1,0,0?%,...,0*""%}. The polynomials having primitive

elements as a zero is called primitive polynomials.

2.3.2 Periodic sequences

The sequences ag, a1, ... is denoted as a = {a,}. If there exist any integer

n > 0 such that

Qytn = Qu, (26)

then the sequence is said to be periodic, and the smallest integer n is called

a period of the sequence.

14



2.3.3 Trace function

Note that GF(q) is a finite field with q elements. Let n and m be positive
integers, and m be a divisor of n. For € GF(2™), a trace function from
GF(2") to GF(2™), Trr (z) is defined by

om(F-1)

() =z+27 +-- +z : (2.7)

where z is an element of GF'(2"), and the addition is computed modulo 2™.

If m =1 and the context is clear, T () can be simply denoted as Tr(z).

Example 1 [23] Consider a finite field GF(23) generated by a primitive
polynomial f(z) = z% + z + 1. The primitive element « is a root of the

primitive polynomial, i.e., a” =1, o® + a +1 = 0. Then,
Tr(l)=1+1+1=1,
Tr(a)=a+a’+a' =0,
Tr(a?) =Tr(a*) = Tr(a) =0,
Tr(e®) =a®*+af +0a° =1,
Tr(a®) = Tr(a®) = Tr(c®) =1,
Hence, a binary sequence a, = Tr(o*), v =0,1,...,6,isa= (1,0,0,1,0,1,1).

The sequence a is called a binary m-sequence of period 7, and T'r(z) is a trace

representation of a binary m-sequence of period 7.

2.3.4 Cyeclic equivalence and distinctness

Let a = {a,} and b = {b,} be two periodic sequences. Then, they are called

cyclically equivalent if there exists an integer k such that
Gy = byyp forallu >0

denoted by a = L¥(b). Otherwise, they are called cyclically distinct.

15



2.3.5 Decimation of sequences

Let a be a binary sequence of period n. Let 0 < s < n be a positive integer.

If the elements of a sequence b = {b,} are defined by
bu:a'suv U:O,l,"‘,

where the indices are computed modulo n, then b is called an s-decimation
sequence of a, denoted by b = al®). Moreover, if ged(s,n) = 1, then al® is
also a binary sequence of period n. In particular, if the a = {a,} is binary
sequence of period n = 2™—1 generated by a,, = Tr(a*), uw=0,1,---,2™—
2, where « is the primitive element of GF(2™), then the al®) = {agf)} is also

a binary sequence generated by o) = Tr(a*), w=0,1,---,2™~2.

Example 2 In Example 1, al®), a 3-decimation of a, is given by
a® =(1,1,1,0,1,0,0)

We also can check that a'® can be generated by Tr(a®), v =0,1,--- ,6.

2.3.6 Periodic autocorrelation of binary sequences

A periodic autocorrelation function of a binary sequence a = {a,} of period

n, denoted by C,(7), is defined as

3
—

Ca(r) =Y (-1t < 7<n—1 (2.8)

2
Il
=}

where 7 is a phase shift of a, and the indices are computed modulo n. Cy(7)
measures the amount of similarity between the sequence and its phase shift.

For 7 =0, C,(0) = Z”“l(—l)“u+au = n is always the highest value.

u=0
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The sequence a of period n is said to have the ideal two-level autocorre-

lation function, if C,(7) is given by

n  if 7 =0 (modn)

CalT) =
—1 if7 #£ 0 (mod n)

2.3.7 Orthogonal codes

A periodic crosscorrelation function of binary sequences a and b of period n

is defined by

3
i

Cap(T) =) (=12 *Pe 0<7<n—-1

e
Il
(=}

where 7 is a phase shift of the sequence a, and the indices are computed
modulo n. In particular, if 7 = 0,

n—1

Cap(0) = S (~1)*% = (a,b)

u=0
is the inner product of the sequences a and b. Let a; be a binary sequence
of period n, 2 =1,2,..., N, and A = {a;,a,,...,ay} be a set of the binary
sequences of size N. Then a pair of sequences (a;, ax) in the set A is called

mutually orthogonal if and only if
(aj,ax) =0 forall 1 <isk < N.

If any pair of A is mutually orthogonal, then A is called an orthogonal code
set.
A Hadamard matrix H, is a square matrix of dimension n x n with two

kinds of elements +1 and —1 satisfying

H,HY = HI'H, = nlI,, (2.9)
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where HT stands for transpose of H,, and I, is the identity matrix of order
n [24]. If we consider the rows of H, as N sequences a;,a,,...,a,, then
(a;,ax) =0 for all 1 <4 # k < n. Therefore, any pair of rows of the n x n
Hadamard matrix is orthogonal, and each row constitutes an orthogonal code
set of size n.

A method to generate Hadamard matrices with n = 2™ (n > 0) is using

a simple recursive procedure

H, H,
Hgn - s (210)
H, —H,.

with a given H,. Starting from H; = [1], we can generate Hadamard matrices

by the recursive procedure.

1 1 1 1
1 1 1 -1 1 -1
H, = JH, = e
1 -1 1 1 -1 -1
1 -1 -1 1

Then, we can consider all row sequences in this matrix as a code set named
the Walsh code. The Walsh code contains one row of all 1s and the other
rows of equal number of —1s and +1s.

An alternative method to generate Hadamard matrices of size n = 2™
is using binary sequences with two-level autocorrelation. Let a be a binary

sequence of length 2™ — 1 with two-level autocorrelation. Consider the set

00 ... 0|
0 L%(a)

A= |0 L}(a) , (2.11)
0 L¥=%(a) |

18



where L*(a), i =0,1,...,2™ — 2, is the i phase shift of a. Denote that a;, ay
are the rows of set A, then,

(ai,ak) = ) (=1)**% =0 forall 1 <i#k <n.

u=0
Mapping the elements {0,1} onto {+1,—1}, respectively, then the set A
of size 2™ becomes the orthogonal code set A. More details on Hadamard

matrices and their constructions are presented in [24].

Example 3 In Example 1, all the cyclic shifts of a are
L°(a) = {1,0,0,1,0,1,1};

L'(a) ={0,0,1,0,1,1,1};
L*(a) = {0,1,0,1,1,1,0};
L*(a) ={1,0,1,1,1,0,0};
L%a) = {0,1,1,1,0,0,1};
L*(a) ={1,1,1,0,0,1,0};
L%a) = {1,1,0,0,1,0,1};

00000000
1001011
001011
010111
101110

0

—_
o = o O =

o O O o o O ©o
o O
—

,_.
—_
—

o o
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Chapter 3

Binary Sequences With Ideal

Two-level Autocorrelation

The high PAPR of transmitted signals, which is a major disadvantage of
multicarrier communications, can be handled by good sequences or codes. In
this chapter, we introduced the classes of binary sequences examined in our

experiments, which can be used to solve the PAPR problem.

3.1 Development of Binary Pseudorandom Se-
quences

Binary sequences with ideal autocorrelation properties are widely used in
spread spectrum communication systems, ranging, stream cipher cryptosys-
tems, code division multiple access (CDMA) systems, etc. The well-known
classes of binary sequences of period n = 2™ — 1 with two-level autocorrela-
tion include m-sequences [25], Gordon-Mills-Welch (GMW) sequences [26],
generalized GMW sequences [27], Legendre sequences [28], and Hall’s sextic

residue sequences [29], [30]. Recently, several new classes of binary sequences
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have been constructed and discovered. In 1998, Maschietti [31] constructed
hyperoval sequences. Multiple trace term sequences, including 3-term se-
quences, 5-term sequences, and WG sequences are conjectured to be two-level
autocorrelation sequences in [32]. In [33], Dillon and Dobbertin constructed
the Kasami-power function sequences (or By sequences). A complete sum-
mary of classes of all known binary sequences of period n = 2™ — 1 with

two-level autocorrelation is listed in [33].

3.2 Binary m-sequences

A maximal length shift register sequence, also called an m-sequence, ML-
sequence, or pseudoniose sequence, is a binary sequence a = (ag, a1,...,am_s)

of period 2™ — 1 for which
ay =Tr(Ba®) forall0<u<2™ -1 (3.1)

where « is a primitive element of the finite field GF (2™), B is a fixed nonzero
element from the same field. A binary m-sequence of a given period 2™ — 1
Is not unique, since the choice of o and £ is arbitrary.

Alternatively, we can define a binary m-sequence a using a linear re-
currence relation. Let f(z) = 1+ 37" ¢;z* be the primitive polynomial
of degree m over GF'(2). Let (ag, a1,...,asm_3) be a 0/1 sequence of period
2™ —1 whose first m elements take arbitrary values (not all zeros), and whose
subsequent elements satisfy the linear recurrence relation, i.e.,

m—1
Oyim = Zciauﬂ- mod 2 for0<u<2™—1—m. (3.2)
i=0

This also gives an m-sequence. This alternative definition can be physically

implemented using a linear feedback shift register (LFSR) with m stages.
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Output

Figure 3.1: A block diagram of a m-stage LFSR for a binary m-sequence of
period 2™ — 1

@

Figure 3.2: A 3-stage LFSR for Example 4

In this case, the primitive polynomial f(z) = 1+ Y7 ¢z is also called a
characteristic polynomial of sequence a. A block diagram of a LFSR is shown

in Figure 3.1.

Example 4 In Example 1, the sequence a is an m-sequence, and it can be
generated by a 3-stage linear feedback shift register (LFSR) shown in Figure
3.2. The linear recurrence function is a,y3 = a, + Ayt1, 0 < u < 4. The

output sequence with the initial state (ao, a1as) = (1,0, 0) is
10010111001011 . ...

which is identical to a in Example 1.

If the a = {a,} is an m-sequence of period 2™ — 1 generated by a, =
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Tr(a*), w=0,1,---,n— 1, where « is the primitive element of GF(2™),
the number of all different primitive polynomials is
¢(2™ — 1)
m
where ¢(z) is the Euler phi function that denotes the number of integers in the
range from 1 to z that are coprime to z. Considering the cyclical equivalence,
there are total ﬂz’;—_g % (2™ —1) m-sequences of length n = 2™ —1. Similarly,
the numbers of all 3-term, 5-term, and WG sequences are ¢(_27:n-_1) x (2™ —1)

[23].

3.3 Three-term and Five-term Sequences

Three-term and five-term sequences are two classes of sequences with two-
level autocorrelation, which are represented by multiple trace terms.
The construction of 3-term sequences is given in [23]. For odd m > 5,

and m = 2l + 1, with period n = 2™ — 1, the binary sequence
ay = Tr(a") + Tr(a®™) + Tr(a®*),u =0,1,...,2™ -2 (3.3)
has two-level autocorrelation, where « is a primitive element of GF(2™) and
=241, =242+ 1. (3.4)

According to the construction, the 3-term sequences are considered as the

sum of three distinct binary m-sequences, i.e.,

a=ag+a® +al®

where ap = {a, = Tr(a*)}, uw = 0,1,...,2™ — 2}, therefore it can be im-
plemented by three LFSRs, where each LFSR generates a(()‘“), 1=0,1,and 2

(set go = 1), and the feedback configuration of agh) is defined by the minimal
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LFSRI1
C\ Output
LFSR2 e o
f/

LFSR3

Figure 3.3: LFSR implementation of 3-term sequences

polynomials of &%, i = 0,1,and 2. The minimal polynomial m(z) can be

calculated by
m(z) = (¢ — o%)(z — o®%)(z — aQQQi) (- a2m5—1q1)

where my is the smallest positive integer such that ¢, = 2™¢; (mod 2™ — 1).

The block diagram of LFSR of 3-term sequences is shown in Figure 3.3.

Example 5 Let m =5 and [ = 2. Let fo(z) = 2° + 2% + 1 and o be a root
of fo(x). Then ¢y =1+4+2% =5, g = 1+ 2+ 22 = 7 mod 31. Therefore, we

have
a=Tr(z+2°+2° =Tr(z) + Tr(z®) + Tr(z") = ag + a) + ag)

The minimal polynomials of &® and a” are fi(z) = z° + 2* + 2 + 2 + 1 and
fo(z) = 2° + 2* + 23 + 22 + 1, respectively. The LFSR implementation of a

1s shown in Figure 3.4.

ap=Tr(a*) | 1000010101110110001111100110100
al’) = Tr(a®) | 1110110011100001101010010001011
al’) =Tr(a™) | 1111101110001010110100001100100

a=ag+ay +al” | 1001001000011101010001111011011
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LFSR1 0 0 0 0 1 |

F BN

-
LFSR2 4® ' Output
0 )
— 1 0 1 1 1 7@ -
——®

LFSR3 a®

— 1 1 1 1 1 0

Figure 3.4: LFSR implementation of 3-term sequences of period 31

The definition of 5-term sequences is given in [23]. Let m # 0 mod 3, o
be a primitive element of GF'(2™), and t(z) = z + 2% + 2% 4 2B 4+ 2%, ¢ €
GF(2™), where the ¢;’s are given by Table 3.1. Let a = {a,} whose elements
are given by

a, =Tr(t(a*)), u=0,1,...,2™ -2 (3.5)

Then, a is called five-term sequence, which is a class of sequences with two-

level autocorrelation. Five-term sequences can be implemented as the sum

of five LFSRs, i.e.,

(g1)

a=ag+a, (a2)

+al (g3)

+ay

where each a(() D = {ay, = Tr(a™)}, ¢ = 0,1,2,3, and 4 (set g = 1) is
generated by LE'SR with the minimal polynomial f,e(z), which is illustrated
in Figure 3.5.
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Table 3.1: Power exponents of 5-term sequences
q, = 2l + 1

go = 22[«1 + 2l~1 +1

m=3l—-1
gy = 221 _9l-1 4
q4:221_1+21—1
g =2"141
S a o g =2""2 4211

g3 = 22l—2 _ 2[—1 +1

qs = 22[—1 + 2[—1 +1

Example 6 A 5-term sequence of period 127 For m = 7 and [ = 3,
let f(z) =2" + 2 +1, and let a be a root of f(z) in GF(27). Then

G =224+1=5 g=2"+2"+1=21,

g3=2"-22+1=13, and gy = 2° — 22 + 1 = 29. (mod 127)

(21) (13)

a=Tr(z+2°+2” + 2% +2%) = ag +a)” + al +all®¥ + 2

The minimal polynomials f,a (z) of LFSRs which generate a(()Qi) ,1=0,1,...,4

Jor(2) = (z = 0®)(z = o)z ~ &®)(z - a®)(z = &®)(z — o®)(z — o)

=z +28+ 22+ 41

forr(2) = (z = &*)(z = a*®)(z — a™)(z — ™) (z — ™) (z — *")(z — &™)

=z’ 428+ 23+ x4+ 1

fara(2) = (z = &¥*)(z = &®)(z — &™)(x - a")(z — &™) (z — 0**)(z — ™)
=z'+2%+ 25+ 22+ 1
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LFSR3 f Output

LFSR4

LFSRS

Figure 3.5: LFSR implementation of 5-term sequences

fon(2) = (2 — ™) (z — 0®)(z — a™)(z — &!®)(z ~ 0®)(z ~ 0®)(z — o)
=z +z*+1

The LFSR implementation of the 5-term sequence a is shown in Figure 3.6.

3.4 Welch-Gong Sequences

The construction of Welch-Gong sequences is given in [32]. Let m # 0 mod 3,
« be a primitive element of GF'(2™), the trace representation of Welch-Gong

transformation sequences or WG sequence a = {a,}, is given by

Ay = ZTT(CE“) (3.6)

uel
where I = I; | J I for m = 3] — 1, where
L={2"427 42 400 <u <21 - 3) (3.7)
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LFSR1 ag

F olofo | oo o] 1
®
LFSR2 2®
0 | 1 0| ol o 0| 1
e —
)
LFSR3 (21) Output
1 01 1 111 |1 1B @
R Vo
N
LFSR4 209
— 0 |0 |1 0] 111 |1
S
]
LFSR5 (29)
ag

Figure 3.6: LFSR implementation of 5-term sequence of period 127

L={2"+3+2u/0 <u<2'—2) (3.8)

and where I = {1}|J I3|J I4 for m = 3] — 2, where
L={2""+2+u0<u<2"! -3} (3.9)

L={2" 427 4240 <u< 21— 3) (3.10)

Example 7 A WG sequence of period 127 For m = 7 and | — 3, let
fz) = 2"+ 241, and let o be a root of f(z) in GF(27). Then the WG

sequences are

©)

a=Tr(z+z°+1" +2° 4+ 2%) = ay + al (19) | _(29)

+ aéﬂ +ag +ag
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The minimal polynomials are

for(z) = (2 = &®)(z — &®)(z — &™) (z — o®)(z ~ &*®*)(z — &™) (z — o)
=z +2% 4241
for(2) = (z = a)(z ~ &*)(z — 0®)(z - 6*)(z — 0'*)(z ~ &) (z — a")
=z7+x6+w5+x4+$3+x2+1
fars(z) = (z = &) (z — &®)(z — "®)(z ~ ®)(z — &®)(z — &'P)(z — ™)
=z +2% +S ¥+ 22+ 41
foon() = (z = 0®)(z ~ &™)(z — &) (& — &) (z - 0®)( — o®)(z ~ @)

=z’ +z*+1
The LFSR implementation of the WG sequence a is shown in Figure 3.7.
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LFSR1 ag
0 0 0 0 0
©®
LFSR2 a®
0 0 0 0!l 0 0
{
e
N
LFSR3 NG)
— 1 1 1 1 1 1 0 Cb
Lt J
=g
LFSR4 2019
—= 0 1 1 0 1 1
e N
@
J
LFSR5 (29)
0 0|01 0] 0| o0 g

-®

Figure 3.7: LESR implementation of WG sequence of period 127
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Chapter 4

Aperiodic Autocorrelation

Properties of Binary Sequences

In order to search for good codes or sequences to solve the high PAPR, prob-
lem in multicarrier communications, we need to examine the aperiodic and
the power characteristics of candidate sequences. Since aperiodic autocorre-
lation properties of binary sequences have intimate connection with PAPRs,

we calculated and discussed them over the special classes of sequences.

4.1 Aperiodic Autocorrelation of Binary Se-

quences

4.1.1 Definition of aperiodic autocorrelations

The aperiodic autocorrelation of a at shift 7 is defined as

pa() = ) (—1)mrte (4.1)
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where a = {ag, a1, ,a,-1} is a binary sequences of length n. It has been
of interest in the study of sequence design to find binary sequences whose
aperiodic autocorrelations are, in some suitable sense, collectively small.

In 1953 Barker [19] proposed a strict condition for an ideal sequence.

Later, Subsequent authors relaxed Barker’s condition to
lpa(T)] <1 for 0 <7 <m, (4.2)

and binary sequences satisfying (4.2) became known as Barker sequences. We
only can find 9 Barker sequences with lengths 2,3,4,5,7,11,13 respectively.
Furthermore, it has been conjectured that no other Barker sequence with
lengths n > 13 is possible [34].

In 1961, Golay introduced Golay complementary sequences [20]. Let a
and b be binary sequences of length n. Let p,(7) and pu(7) be the aperiodic
correlations of these sequences. The sequences constitute a complementary
pair if, for all 7 # 0,

palT) + pu(1) = 0. (4.3)
Each member of a complementary pair is called a Golay complementary

sequence.

4.1.2 Measures of good aperiodic autocorrelation

The Barker condition in (4.2) is still too strict to find good sequences. There-
fore, in 1972, Golay [35] gave an alternative measure of small aperiodic au-

tocorrelation — the merit factor F(a), i.e.,

’)’L2

Fla) = —————forn > 1. (4.4)

2 ZT:% 'pa‘Q
where n is the length of sequence a. In 1989 Jensen and Hgholdt (36] used the
method introduced in [37] to show that for any m-sequence, lim,, ., F° (a) =

3.
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Another measure of small aperiodic autocorrelations is the peak sidelobe
level (PSL), i.e.,
M(a) = max |pa(7)|. (4.5)

1<r<n~—1
The PSL of m-sequences a of length n has been discussed in the literatures
(38], [39] and [40]. In 1980, McEliece [41] showed that \/m + 1 In(en) is an
upper bound for M(a), where e is the base of the Natural Logarithms. In
1984, Sarwate improved this bound [42]. Lef a be an m-sequences of length
n. Then M(A) <1+ %\/Tmln(%). In [43], it is proposed that if F(a) is
bounded, then v/n < cM(a), for all sufficiently large n, where ¢ is a constant.
That means the PSL of m-sequences grows like \/n. Jebwab and Yoshida
tested the growth rate of PSL of m-sequences against the bounding function
vnlnn, and found that the mean value of the PSL of m-sequences of length
n = 2™ — 1 seems to have an upper bound c¢v/nlnn, where ¢ is a constant
[43].
Furthermore, we are also interested in the average sidelobe level (ASL),

A@) = =3 oalr)] (46

These three measures of aperiodic autocorrelations (MF, PSL and ASL)
mnvolved in this thesis give the upper bounds of PAPRs in multicarrier com-

munications which will be discussed in Chapter 5.
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Table 4.1: The values of m.
the family of sequences m

m-sequences 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
3-term sequences 9,7,9,11,13,15,17,19,21

o-term sequences 7,8,10,11,13,14,16,17,19,20

WG sequences 7,8,10,11,13,14,16,17,19,20

4.2 Aperiodic Autocorrelations for Binary Se-
quences with Ideal Two-level Autocorre-
lations

We calculated the merit factors, PSLs and ASLs of m-sequences, 3-term,
o-term and WG sequences. To the best of our knowledge, MF, PSL and
ASL of these classes of binary sequences except m-sequences have never been
studied. In our experiments, we considered all possible primitive polynomials
of the sequences via decimations, and for each cyclically distinct sequence we
involved all possible phase shifts. In other words, the numerical experiments
have been accomplished for all possible m-sequences, 3-term, 5-term and
WG sequences of a given length n = 2™ — 1, for 5 < m < 21, where m is an
integer. Table 5.1 gives the values of m taken in our experiments. The basic
primitive polynomials generating sequences and the trace exponents of each

basic 3-term, 5-term and WG sequence are listed in Appendix B.

4.2.1 Merit factors

Figures 4.1, 4.2 and 4.3 show the merit factors of 3-term, 5-term, and WG

sequences, respectively.
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Figure 4.3: Min/mean/max values of merit factor of WG sequences

In Section 4.1.2, it is known that lim, . F'(a) = 3 for m-sequences of
length n. From the figures, the merit factors over 3-term, 5-term, and WG
sequences have similar results. Thus, we can establish the following conjec-

ture.

Conjecture 1 For 3-term, 5-term, and WG sequences of length n, the

merit factors lim, .., F(a) = 3.

4.2.2 Peak sidelobe levels

Figure 4.4 presents the maximum PSLs of the four classes of binary sequences.
From this figure, it is obvious that when the sequence length n goes to in-
finity, the PSLs of the four classes of sequences approach to infinity, i.e.,
limy, 0o M(a) = oco. Figures 4.5, 4.6, 4.7 and 4.8 show the normalized peak

sidelobe levels of m-sequences, 3-term, 5-term, and WG sequences of length
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n=2"—-15<m < 21l. What we tried to do is to find out the growth
rates of the PSLs of the four classes of sequences. Jebwab and Yoshida in
[43] gave the lower bound of PSLs of m-sequences (v/n), and in [41] McEliece
gave the upper bound of PSL of m-sequences (v/n -+ 11n(en)). Therefore, we
test their growth against some parameters between v/n and v/n =+ 1ln(en).
From the figures, the PSLs of the four classes of sequences grow almost like
vn(lnm)?, ie., lim,_ o #‘2@)2 — ¢, where c is a constant. The values of ¢
are slightly different for each class of sequences . For m-sequences, ¢ < 0.2,
while for 3-term, 5-term, and WG sequences, 0.2 < ¢ < 0.3. That hints m-

sequences has better performance of PSL than the other 3 classes of binary

sequences.
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Conjecture 2 In terms of PSL, for m-sequences of length n = 2™ — 1

lim,, 00 —\/—7%5:’—%)2 — 0.15, and for 3-term, 5-term, and WG sequences of length

n=2"—1 lim, . 7}5% — 0.26.

3

4.2.3 Average sidelobe levels
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Figure 4.9: Max values of ASL of the four classes of binary sequences

Figure 4.9 presents the maximum ASLs of the four classes of binary se-
quences. Similarly, the ASLs approach to infinity when n goes to infinity.
Figures 4.10, 4.11, 4.12 and 4.13 display the normalized average sidelobe lev-
els of the four classes of binary sequences over the length n = 2™ — 1, respec-
tively. By the definitions of ASL and PSL, A(a) = £ 3" |p.(7)| < M(a) =
maxi<,<n—1 |Pa(T)|- Therefore, we tried smaller normalize factors than the
ones of PSLs to find out the growth rates of the ASLs of the four classes
of sequences. We found that the approximate growth rates of ASLs of the

. . A .
sequences are \/n, i.e., limy,_ % — ¢. For m-sequences, ¢ ~ 0.33, while
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for 3-term, 5-term, and WG sequences, 0.3 < ¢ < 0.32. Thus, m-sequences

perform the worst property of ASL in these four classes of sequences.

Conjecture 3 For m-sequences of length n = 2™ — 1, lim,,_,, A\;%) —
0.33, and for 3-term, 5-term, and WG sequences of length n = 2™ — 1,

limy, co 282 — 0.31.
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Chapter 5

Power Characteristics of

Binary Sequences

5.1 Peak Power Control of Multicarrier Com-

munications

Nonlinear Region

Linear Region

| |
f i \7
Avg Peak o

Figure 5.1: A typical power amplifier response
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Figure 5.1 shows a typical power amplifier response. Operating in the
linear region of this response is generally required to avoid signal distortion.
Furthermore, it would be desirable to have the average and peak value be
as close together as possible in order for the power amplifier to operate at
maximum efficiency, which is measured by the peak-to-average power ratio
(PAPR). A high PAPR forces the transmit power amplifier to have a, large
backofl in order to ensure linear amplification of signal, and requires high
resolution for the receiver A/D converter. In multicarrier communication
systems, if the number of subcarriers N is large enough, the maximum PAPR
will approach to N. So the high PAPR is an important penalty that must
be paid by multicarrier communication systems for large V.

A multicarrier signal is the sum of many independent signals modulated
onto subchannels of equal bandwidth. Denote that N is the number of sub-
carriers, and a = {a,}, u=0,...,N — 1 is a collection of N data symbols.
Let f. be the carrier frequency and Af be the bandwidth of each subcarrier.
The transmitted signal on the interval ¢ = [0, Aif) is represented by the real

part of
Sa(t) =) a,el?mfetunf)t (5.1)

The instantaneous power of the transmit signal is (%(Sa(t))> 2, where R(+)
denotes the real part of the variable, while |S,(¢)]? is called the envelope
power. Denoting f = {Lf, we have the following definition for the peak-to-
average power ratio of S,(t)

N-1 2
1 ) .
— ) J2m(f+u)t
PAPR(a) = ST trer%élj() SR( E_O ae ) (5.2)
It is straightforward that
1
PAPR(a) < PMEPR(a) = ST ' max |a (8) ]2, (5.3)
u=0 u !
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where
N-—

pa(t) = ) ayel®™, (5.4)

=0

oy

[~

and PMEPR stands for the peak-to-mean-envelope-power ratio [44].

5.2 Peak Power Control and Aperiodic Au-
tocorrelation

The intimate connection between the PAPR of multicarrier signals and the
measures of their aperiodic autocorrelations, i.e., MF, PSL, and ASL, is de-
scribed in the following. In our experiments, assume that a = {av}, u =
0,...,m —1is a binary {£1} sequence of length n, transmitted by multi-
carrier communication systems, and the number of subcarriers N equals to
the sequence length n. Therefore, we have Zz;é lau|> = n for the binary

sequence a.

Theorem 1 [45]

PMEPR(a) < Lucolouf? + 2 > lplr)] =1+ 24(a) (5.5)
- n n ' '
where A(a) = 1 571 |p,(7)| is the ASL.
Theorem 2 [44]
PMEPR(a) < 1 + 2(—”7-53 _max_|p(r)| =1+ 2(—”71__%31,(51) (5.6)

where max,—;

:::::
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Theorem 3 [44]

2 _ —
PMEPR(a) < “—0'0““] 2(n 1 1/ (n 1

'The above equations hint that it might be beneficial to expect a low PMEPR
from sequences with small aperiodic autocorrelations. That is an important
motivation of our researching on aperiodic autocorrelation properties of bi-

nary sequences in Chapter 4.

5.3 PMEPR of Binary Sequences with Ideal
Two-level Autocorrelation

A block coding scheme has previously been proposed in [11] and [12] using m-
sequences to reduce the PAPR for OFDM systems. The results suggest that
m-sequences with length n = 2™ — 1,3 <m < 10, can yield PAPR values in
the range 5-8 dB. But the results only included the m-sequences generated
by special primitive polynomials. In this thesis, we try to investigate power
characteristics of all m-sequences by all possible primitive polynomials and all
possible phase shifts. Furthermore, we examined the PMEPRs of the other
classes of binary sequences with two-level autocorrelation, which have never
been studied. We obtained all possible sequences with different primitive
polynomials by applying all possible decimations to a basic sequence with
the basic primitive polynomial. The basic primitive polynomials are listed in
Appendix A, and the trace exponents of each basic 3-term, 5-term and WG
sequence are listed in Appendix B.

The numerical results of PMEPRs of the four classes of binary sequences
are presented in the following. We calculated the PMEPRs of all m-Sequences,

3-term, 5-term and WG sequences with short, lengthn =2"—-15<m <8,
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Table 5.1: The values of m
The classes of binary sequences m

m-sequences 5,6,7,8
3-term sequences 5,7
d-term sequences 7,8
WG sequences 7,8
9 T T T
8
H
184(99%) : ' 2284(99%) + 4030(98.8%)
) i
A o 1
P 180(97%) : 348(92%) 2012(88%) 3072(75%)
4 !
o
w H
=5
o 134(72%) 184(49%) 572(25%) 224(0.05%)
40(21.5%) 22(6%). 4{0.2%) *
abo i
2 i Il I i
4 5 6 7 8 9
m

Figure 5.2: PMEPRs (dB) of m-sequences

where m is an integer. Table 5.1 gives the values of m taken in our experi-
ments.

Figures 5.2, 5.3, 5.4 and 5.5 show the PMEPRs of the four classes of binary
sequences. Each class of sequences contains all possible binary sequences
considering cyclic shifts and different primitive polynomials. The numbers
below the lines PMEPRs=4, 5, 6, 7, 8 dB, present the numbers of sequences
of length 2™ — 1 with PMEPRs <4, 5, 6, 7, 8 dB, respectively. We also

displayed the percentages corresponding to the numbers.
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PMEPRSs (dB)

PMEPRSs (dB)

T T
8
7
2260(99%)
174(93%) - : 1888(83%)
i
5 + :
138(20%) ' : 690(30%)
:
4 ]
36(19%) 34(1.5%)
Bl
2 1 i 1
4 5 6 8
m

9 T T T T T T T
8 N
3
, i
7 : : |
2274(99%) 4052(99%)
6 .
1938(85%) 3148(77%)
5 . .
582(25%) 264(0.6%)
4 :
4(0.2%) ;
3t
2 1 1 1 . H | 1
4 5 6 8
m

Figure 5.4: PMEPRs (dB) of 5-term sequences
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Figure 5.5: PMEPRs (dB) of WG sequences

Table 5.2 compares the maximum values of PMEPRs of the four classes of
sequences. For 5 <m < 8, only two WG sequences produce PMEPRs bigger
than 8 dB. For m = 5, 3-term sequences have smaller maximum PMEPR
than m-sequences, for m = 7 and 8, on the other hand, m-sequences show
the smallest maximum PMEPRs of all the sequences.

Tables 5.3, 5.4, 5.5, and 5.6 show that the maximum values of each class
of sequences of length n = 2™ — 1 meet the maximum upper bounds of
PMEPRs chosen by the corresponding merit factors, PSLs and ASLs.

We presented the distributions of PMEPR of the four classes of sequences
with length n = 2™ — 1, m = 5,7,8, in Figures 5.6, 5.7, and 5.8. The
cumulative distribution of PMEPR is defined by
N(PMEPRZ 1)

Niotal
where N (PMEPR< z) is the number of sequences with PMEPR< z and

p(z) = PIPMEPR < z] = (5.8)

Niota] 18 the total number of sequences.
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Table 5.2: The maximum values of PMEPR (dB) of the four classes of se-

quences with length n = 2™ — 1

m m-sequences

3-term sequences

S-term sequences

WG sequences

5 7.37 6.70 - -
6 684 - - _
7 7.10 7.81 7.59 7.42
8 776 - 7.81 8.01

Table 5.3: Comparing the maximum values of m-sequences with the upper

bounds determined by MF, PSL, and ASL

m  m-sequences ASL PSL  Merit Factor
5 737 7.66 12.65 8.22

6 6.84 8.68 14.25 942

7 7.10 9.30 15.65 10.85

8 17.76 10.45 16.70 11.86

From Figure 5.6, 3-term sequences of length 31 produce better PMEPR
performance than m-sequences. Both the minimum and maximum values of
PMEPRs of 3-term sequences are smaller than those of m-sequences. Espe-
cially, if PMEPR< 6 dB, there are always more 3-term sequences of length

31 than m-sequences.

Table 5.4: Comparing the maximum values of 3-term sequences with the

upper bounds determined by MF, PSL, and ASL
ASL PSL  Merit Factor

7.85 13.09 8.73
994 17.04 10.80

m  3-term sequences
5 6.70
7 781
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Table 5.5: Comparing the maximum values of 5-term sequences with the

upper bounds determined by MF, PSL, and ASL
ASL PSL  Merit Factor

9.81 16.20 10.82
10.89 18.37 12.01

m  5-term sequences
7 7.59
g8 781

Table 5.6: Comparing the maximum values of WG sequences with the upper

bounds determined by MF, PSL, and ASL
ASL  PSL  Merit Factor

981 984 10.77
10.89 11.01 12.00

m WG sequences
7T 742
8 8.01
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Table 5.7: The number of sequences with length 31 = 2° — 1 classified by

their PMEPR value
PMEPRs m-sequences 3-term 5-term WG Total

sequences sequences sequences

<4 40 36 - - 76
<5 134 138 - - 272
<6 180 174 - - 354
<7 184 186 - - 370
<8 186 186 - - 372

Table 5.8: The number of sequences with length 63 = 2% — 1 classified by

their PMEPR, value
PMEPRs m-sequences 3-term 5-term WG Total

sequences sequences sequences

<4 22 - - - 22

<5 184 - - - 184
<6 348 - - - 348
<7 378 - - - 378
<8 378 - - - 378

From Figure 5.7, the distributions of PMEPRs of the four classes se-
quences with length 127 are very similar. For PMEPR< 5.5 dB, 3-term
sequences produce the largest number of sequences in the four classes of se-
quences. For PMEPR> 5.5 dB, however, there are more m-sequences than
any other classes of sequences.

From Figure 5.8, it is clear that 5-term sequences produce the most se-

quences with PMEPR< z for any z in the four classes of sequences of length

255.
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Table 5.9: The number of sequences with length 127 = 27 — 1 classified by
their PMEPR value

PMEPRs m-sequences 3-term 5-term WG Total
sequences sequences sequences

<4 4 34 4 7 49

<9H 572 690 582 576 2420

<6 2012 1888 1938 1886 7724

<7 2284 2260 2274 2254 9072

<8 2286 2286 2286 2286 9144

Table 5.10: The number of sequences with length 255 = 28 — 1 classified by
their PMEPR, value

PMEPRs m-sequences 3-term 5-term WG Total
sequences Ssequences Sequences

<4 0 - 0 0 0

<5 224 - 264 236 724

<6 3072 - 3148 2812 9032

<7 4030 - 4052 3996 12078

<8 4080 - 4080 4078 12238
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In Tables 5.7, 5.8, 5.9, 5.10, we classified the four classes of sequences by
their PMEPRS, to show the total numbers of sequences of a given length and
a given upper bound of PMEPR. Combining the four classes of sequences,
we have a large number of sequences with low PMEPRs of a given length.

In conclusion, the numerical results suggest that when 5 <m < §, most of
PMEPRs and PAPRs produced by these four classes of binary sequences are
below 8 dB. The distributions of PMEPR of the three classes of multiple trace
term sequences, 1.e., 3-term, 5-term, and WG sequences, are very similar with
that of m-sequences, even better than m-sequences in some cases. Especially,
3-term sequences of length 31 and 5-term sequences of length 255 produce
more sequences with low PMEPRs than the other classes of sequences with
the same length, respectively. For PMEPR< 5.5 dB, 3-term sequences of
length 127 also produce the largest number of sequences in the four classes
of sequences. Besides, we are able to generate a large number of sequences
with low PMEPR by considering 3-term, 5-term and WG sequences as well
as m-sequences. Moreover, the number of sequences with low PMEPRs can
be increased by evaluating the PMEPRSs of the other classes of sequences

with two-level autocorrelation [33].

5.4 PMEPR of Orthogonal Codes

Orthogonal codes have been used as spreading codes in CDMA system. In
particular, the orthogonal spreading codes are required to have low PMEPRs
for MC-CDMA.

In Section 2.3.7, we described the method constructing orthogonal codes
using binary sequences with two-level autocorrelation. In this section, the

numerical results of PMEPR of orthogonal codes generated by the four classes
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Figure 5.9: PMEPRs (dB) of OC,,

of binary sequences are presented. From Section 2.3.7, for a cyclically distinct
sequence of length n = 2™ | we can generate an orthogonal code set with
size 2™ by considering all its phase shifts. Therefore, for a given length,

——(2::1) orthogonal code sets, which equal to the number of

we can generate ¢
all different primitive polynomials of order m. We calculated the PMEPRs
of orthogonal codes generated by all m-sequences, 3-term, 5-term and WG
sequences with short length n = 2™, 5 < m < 8, where m is an integer,
denoted by OC,,, OC;, OCs and OCyy, respectively. The calculations
show us the PMEPR properties of all codes in the set OC,, which is a union
of 9% orthogonal code sets, and in which not every pair of codes is
orthogonal. Then we compared the PMEPRs of the code sets to that of
Walsh code sets of length 2™, 5 < m < 8. The first codes co of orthogonal
code sets and Walsh code sets are all 1’s sequences which are discarded in

our analysis of PMEPRs, since they produce a trivial value PAPR(cy) = 2™.
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Figure 5.11: PMEPRs (dB) of OCs
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Figure 5.12: PMEPRs (dB) of OCwq

Table 5.11: The maximum values of PMEPR (dB) of orthogonal codes gen-

erated by the 4 classes sequences with length n = 2™

m

OC,, OCs 0Cs OCwa

5
6
7
8

6.95 7.25 - -
6.85 - - -
732 804 7.87 7.70
796 - 795 7.88

60



-

(=4
W
T

=3
@
T

o
=
Y

=
a
o 0.6F
a
w
g
s 0.5
c
k]
8 04f
5 :
o Tl — 0C
. m
03 - . . C)C3 ~

<
)
T

o
oS
T

(=
N
+

Figure 5.13: Distribution of PMEPRs (dB) of orthogonal codes generated by
binary sequences with length 32 = 2°

Figures 5.9, 5.10, 5.11 and 5.12 show the PMEPRs of orthogonal codes
generated by the four classes of binary sequences. The numbers below the
lines PMEPRs=4, 5, 6, 7, 8 dB, present the numbers of orthogonal codes of
given length n = 2™ with PMEPRs <4, 5, 6, 7, 8 dB, respectively. We also
displayed the percentages corresponding to the numbers.

Table 5.11 compares the maximum values of PMEPR of orthogonal codes
generated by the four classes of sequences with length n = 2™. For 5 <
m < 8, only one OC; for m = 7 produces PMEPR bigger than 8 dB. For
o< m <7, 0C,, shows the Jowest maximum PMEPR of all sequences. For
m = 8, on the other hand, the OCwg shows the lower PMEPR than any
other classes of sequences.

We presented the distributions of PMEPR of orthogonal codes generated

by the four classes of sequences with length n = 2™, m = 5,7,8, in Figures
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9.13; 5.14, and 5.15. The cumulative distribution of PMEPR, of orthogonal
codes is defined by (5.8).

From Figure 5.13, OC; of length 32 produces better PMEPR performance
than OC,,. For PMEPR< 6.5 dB, we always have more orthogonal codes of
length 32 from OCj than from 0GC,,.

From Figure 5.14, the distributions of PMEPRs of the orthogonal codes
with length 127 are very similar. For PMEPR< 5.5 dB, OCj; produces the
largest number of orthogonal codes. For PMEPR> 5.5 dB, however, there
are more orthogonal codes from OC,, than from OC3, OCs and OCwaq-

From Figure 5.15, for 4.5 dB <PMEPR< 5.5 dB, the distributions of
PMEPRs of OC,, and OCs are almost same, better than OCwg- For
PMEPR> 5.5 dB, on the other hand, OCs produces the most orthogonal
codes of low PMEPRs in the codes generated by the four classes of sequences
with length 255.

Figures 5.16, 5.17, 5.18, and 5.19 show the maximum PMEPRs of in-
dividual orthogonal code sets generated by binary sequences, compared to
maximum PMEPRs of Walsh code sets. In the figures, note that each point
shows the maximum PMEPR of an orthogonal code set produced by a dec-
imation factor to a sequence. First, all the maximum PMEPRs of Walsh
code sets with size 2™, 5 < m < 8 are bigger than 15 dB, while the maxi-
mum PMEPRs of the orthogonal code sets generated by the four classes of
sequences are below 9 dB. Second, considering the orthogonal codes gener-
ated by a class of sequences of given length, the maximum PMEPRs of each
code sets are similar. In other words, the variation of maximum PMEPRs
Is so small that we may choose any orthogonal code set corresponding to a
decimation factor for low PMEPR. Moreover, there is only one Walsh code

set of size 2™, while there are ¢—(2:L;1) code sets of size 2™ for a given class of
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Table 5.12: The number of code sets with maximum PMEPRs<7dB of length

n=2m

m  0C, OC; 0Cs OCyq Total

5 6 3 - - 9
6 6 - - - 6
7 15 ) 9 4 33
8 3 - 7 0 10

Table 5.13: The number of code sets with maximum PMEPRs<8dB of length

n=2m

m 0OC,, 0OC; OCs OCywg Total
o 6 6 - - 12

6 6 - - - 6

7 18 17 18 18 71

8 16 - 16 16 48

binary sequences with length n = 2™ — 1.

In Tables 5.12 and 5.13, we counted the number of orthogonal code sets
generated by the four classes of sequences of length n = 2™ where PMEPRs
of all codes are less than 7 and 8 dB . Combining the orthogonal code sets
from different classes of sequences, we can obtain a large number of orthogo-
nal code sets of low PMEPR. The codes in each code set can be implemented
by using LE'SRs without considering the nonzero initial state.

In conclusion, the above results suggest that for 5 < m < 8, most of
PMEPRs and PAPRs produced by orthogonal codes generated by the four
classes of binary sequences are below 8 dB. For PMEPR< 6.5 dB, there are
more orthogonal codes from OCj of length 32 than from OC,,, for PMEPR<
5.5 dB, OCj of length 128 produces the largest number of orthogonal codes
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with low PMEPRs, and for PMEPR> 5.5, OCs with length 255 produces
the most orthogonal codes with low PMEPR. Compared to Walsh codes, the
orthogonal code sets generated by the four classes of sequences have lower
maximum PMEPRs. Moreover, the orthogonal code sets can be implemented
efficiently by a simple LFSR structure, where the feedback configuration of
LFSR has little influence on maximum PMEPR. Therefore, the orthogonal
code sets generated by the four classes of binary sequences can replace Walsh

codes to obtain low PAPR in multicarrier communications.
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Chapter 6

Conclusions and Future Works

This thesis has investigated the autocorrelation and the power characteristics
of special classes of binary sequences with ideal two-level autocorrelation, i.e.,
m-sequences, 3-term, 5-term, and Welch-Gong sequences, for the potential
applications to multicarrier communications.

The aperiodic autocorrelations of the classes of sequences with length
n = 2" —1(5 < m < 21) have been calculated and analyzed via merit
factors, peak sidelobe levels (PSL), and average sidelobe levels (ASL). It is
conjectured that the MFs of 3-term, 5-term and WG sequences asymptoti-
cally approach to 3. Following the previous research on the growth rates of
PSLs and ASLs of binary sequences, we conjectured the new normalization
factors of PSLs and ASLs of the four classes of sequences.

Then, we calculated and discussed the peak-to-mean-envelope-power ra-
tios (PMEPRs) produced by the four classes of sequences with short length
n=2m—1(5<m < 8). The results suggest that most of PMEPRs and PA-
PRs produced by the four classes of sequences are below 8 dB. The distribu-
tions of PMEPR of the three classes of multiple-trace term sequences are very

similar. Especially, 3-term sequences of length 31 and 5-term sequences of
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length 255 produce more sequences with lower PMEPR than any other class
of sequences. We also calculated the PMEPRs of orthogonal codes generated
by the four classes of sequences with short length n = 2™ (5 <m < 8). Com-
pared to the PMEPRs of Walsh code sets, the orthogonal code sets provide
lower PMEPR, where most of PMEPRs are less than 8 dB. Moreover, the bi-
nary sequences can generate various code sets according to distinct primitive
polynomials with a negligible variation of maximum PMEPRs. That mean
the code sets generated by binary sequences can be implemented efficiently by
simple LF'SR structures. Consequently, the orthogonal code sets can replace
Walsh codes to obtain small PAPR in multicarrier communications.

In the future, more numerical results for large sequence lengths n = 2™ —1
(m > 22) may confirm our conjecture on MFs and the growth rates of PSLs
and ASLs. Also, in an effort to search for good codes to reduce PAPR
of multicarrier communication systems, more new classes of sequences with

_ideal two-level autocorrelation should be studied as the future work.
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Appendix A

Basic Primitive Polynomials

In Table A.1, we listed the basic primitive polynomials which have been
used in our experiments over GF'(2) of every degree up to 21 [23]. In the
second column of Table A.1, we represent a primitive polynomial f(z) =
L™+ dp 1™+ -+ diz 4 dp as a vector (do,dy, ..., dm_y). For example,

for m = 5, the primitive polynomial is f(z) = 2% + 2° + 1.
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Table A.1: Basic primitive polynomials over GF(2) of degree m: 5 < m < 21
m  (do,di,...,dm_1)

10010

110000

1100000

10111000

100010000

10 1001000000

11 10100000000

12 110010100000

13 1101100000000

14 11010100000000

15 110000000000000

16 1011010000000000

17 10010000000000000

18 111001000000000000

19 1110010000000000000

20 10010000000000000000

21 101000000000000000000

O 0 N o o
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Appendix B

Trace Representations of
3-term, 5-term and WG

Sequences

In Tables B.1 and B.2, we listed the trace exponents of 3-term and 5-trem

sequences.
In Tables B.3, B.4 and B.5, we listed the trance exponents of WG se-

quences.
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Table B.1: Trace representations of 3-term sequences of length n = 2™ — 1

5<m<21

’

Trace exponents

mid Q1 a2
5 |1 5) 7
711 9 13
91 17 25
1111 33 49
1311 65 97
1511 129 193
1711 257 385
1911 513 769
211 1025 1537
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Table B.2: Trace representations of 5-term sequences of length n = 2™ — 1,

7<m <20

Trace exponents

mi{go @ p) qs3 g4
711 5 21 13 29

811 9 37 29 39

1001 9 73 o7 121
11y 1 17 137 121 143
1311 17 273 241 497
1411 33 529 497 543
1611 33 1057 993 2017
1711 65 2081 2017 2111
1911 65 4161 4033 8129
20| 1 129 8257 8129 8319
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Table B.3: Trace representations of WG sequences of length n = 2™ — 1,
7T<m<16

m

The number of terms

The trace eXponents

7 5 1,3,7,9,29
8 5 19, 39, 13, 21, 29
10 13 1, 5 11, 3, 13, 7, 15, 69, 89, 35, 105, 71, 121
11 13 69, 139, 35, 141, 71, 143, 25, 41, 57, 73, 89, 105, 121
1,9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31,
13 29 265, 305, 133, 337, 267, 369, 67, 401, 269, 433, 135,
465, 271, 497
265, 531, 133, 533, 267, 535, 67, 537, 269, 539, 135,
14 29 541, 271, 543, 49, 81, 113, 145, 177, 209, 241, 273,
305, 337, 369, 401, 433, 465, 497
1,17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47,
3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61,
y . 31, 63, 1041, 1121, 521, 1185, 1043, 1249, 261,

1313, 1045, 1377, 523, 1441, 1047, 1505, 131, 1569,
1049, 1633, 525, 1697, 1051, 1761, 263, 1825, 1053,

1889, 527, 1953, 1055, 2017
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Table B.4: Trace representations of WG sequences of length n = 2™ — 1,
17<m <19

m

The number of terms

The trace exponents

17

61

1041, 2083, 521, 2085, 1043, 2087, 261, 2089, 1045,
2091, 523, 2093, 1047, 2095, 131, 2097, 1049, 2099,
525, 2101, 1051, 2103, 263, 2105, 1053, 2107, 527,
2109, 1055, 2111, 97, 161, 225, 289, 353, 417, 481,
945, 609, 673, 737, 801, 865, 929, 993, 1057, 1121,
1185,1249,1313,1377,1441,1505,1569,1633,1697,
1761, 1825, 1889, 1953, 2017

19

125

1, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79,
o, 81, 41, 83, 21, 85, 43, 87, 11, 89, 45, 91, 23, 93,
47, 95, 3, 97, 49, 99, 25, 101, 51, 103, 13, 105, 53,
107, 27, 109,55, 111, 7, 113, 57, 115, 29, 117, 59,
119, 15, 121, 61, 123, 31, 125, 63, 127, 4129, 8129

4289, 2065 4417, 4131, 4545, 1033, 4673, 4133,
4801, 2067, 4929, 4135, 5057, 517, 5185, 4137,
9313, 2069, 5441, 4139, 5569, 1035, 5697, 4141, 5825,
2071, 5953, 4143, 6081, 259, 6209, 6721, 4149,

4145, 6337, 2073, 6465, 4147, 6593, 1037, 6849, 2075,

6977, 4151, 7105, 519, 7233, 4153, 7361, 2077, 7489,

41595, 7617, 1039, 7745, 4157, 7873, 2079, 8001, 4159,

82




Table B.5: Trace representations of WG sequences of length n = 2™ — 1,
m = 20

m

The number of terms

The trace exponents

20

125

4129, 8259, 2065, 8261, 4131, 8263, 1033, 8265, 8283,
4133, 8267, 2067, 8269, 4135, 8271, 517, 8273, 4137,
8275, 2069, 8277, 4139, 8279, 1035, 8281, 4141, 2071
8289, 4143, 259, 8289, 4145, 8291, 2073, 8293, 4147,
8295, 1037, 8297, 4149, 8299, 2075, 8301, 4151, 8303
019, 8305, 4153, 8307, 2077, 8309, 4155, 8311, 1039,
8313, 4157, 8315, 2079, 8317, 4159, 8319, 193, 321, 449,
277, 705, 833, 961, 1089, 1217, 1345, 1473, 1601, 1729,
1857, 1985, 2113, 2241, 2369, 2497, 2625, 2753, 2881,
3009, 3137, 3265, 3393, 3521, 3649, 3777, 3905, 4033,
4161, 4289, 4417, 4545, 4673, 4801, 4929, 5057, 5185,
0313, 5441, 5569, 5697, 5825, 5953, 6081, 6209, 6337,
6465, 6593, 6721, 6849, 6977, 7105, 7233, 7361, 7489,
7617, 7745, 7873, 8001, 8129, 8287,

i

)

83




