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Abstract 

In this thesis I examined two important aspects of clearcut harvesting along small headwater streams and 

their riparian zones. The objectives of the study were: 1) to investigate the impacts of clearcut harvesting 

on the morphological features of headwater systems and the pattern of recovery of those impacts over 

time, and 2) to explore the response of headwater riparian understory vegetation to clearcut harvesting 

over time. 

1) Study results over 30 small headwater streams of northwestern Ontario indicate that forest 

harvesting along headwater systems significantly affects stream morphology and associated 

riparian habitat characteristics. Stream width and number of stream channels were significantly 

higher while stream depth was lower than reference sites up to 3 years after harvesting. Although 

impacts on stream width and stream channels were not observed after 3 years, significant 

difference in stream depth was observed even 23 years after harvesting. Canopy exposure 

remained significantly high up to 15 years after clearcut. However, headwater streams and their 

riparian zones need at least 16-18 years to recover from adjacent clearcut harvesting impacts. 

2) Clearcut harvesting had no significant impact on overall species richness or diversity, but it 

caused compositional changes in vegetation. It induces local elimination of some late-seral 

species, recovery of which was not evident even 23 years after harvesting. Species including Acer 

spicatum, Sorbus americana, Circaea alpina, Mitella nuda, Brachythecium rivulare, Dicranum 

flagellare and Rhodobryum roseum are strongly associated and attain their highest frequency and 

abundance in late-seral stands. 

Results of this study suggest that headwater systems need to be kept under adequate vegetation cover to 

mitigate harvesting impacts and restore the important ecological services they provide in the protection of 

biodiversity and water quality. 
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Chapter 1 

1.1 GENERAL INTRODUCTION 

Riparian areas are important components of the natural landscape. These are transition zones 

between streams and adjacent terrestrial habitats, with ecosystem characteristics and biotic 

communities distinct from both (Lamb and Mallik, 2003; Naiman and Decamps, 1997). These 

are areas of reciprocal influences between aquatic and terrestrial components with varying 

widths depending on the topography (Richardson et al., 2005). The ecological importance of 

riparian areas greatly exceeds their areal extent on the landscape, because these areas support a 

wide range of plant, animal and microbial communities (Clary and Medlin, 1993). The structural 

and functional diversity of the riparian ecosystem is very complex and dynamic, which provides 

a number of important ecological services including control of surface run-off, mitigation of soil 

erosion, stabilization of stream and river banks, prevention of sedimentation, maintenance of 

high water quality and habitat for invertebrate communities (Gould and Walker, 1999; NRC, 

2002; Naiman and Decamps, 1997). 

Small streams, also called headwater streams are often undetectable by aerial photos. They form 

a channel network constituting almost 80% of the total stream length in many drainage networks 

(Sidle et al., 2000), and are typically bordered by hillslopes and zero-order basins (Moore and 

Richardson, 2003). These are normally first-order channels, with catchments of < 100 ha, bank 

full width <3 m and mean annual discharge <57 1/s (Richardson and Danehy, 2007). Small 

streams and their riparian areas provide a characteristic structure to the biological communities 

because of its three distinguishing attributes: small channel dimension, fish abundance and low 
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flow. Small channel size and closed forest canopy in headwater systems create a physical 

template of reduced light inputs, strong local microclimate gradients and high input of organic 

matter (Richardson and Danehy, 2007). Headwater streams process leaf litter into smaller 

fragments carried downstream, a large part of which are used by the downstream organisms as 

their primary source of energy (Dieterich et al., 1997; Heard and Richardson, 1995; Wipfli et al., 

2007). In addition, headwater systems play a very significant role in biodiversity conservation by 

maintaining habitat connectivity (Naiman et al., 1993). 

Riparian ecosystems are readily affected by a variety of natural and anthropogenic disturbances, 

which are temporary changes in average environmental conditions causing a pronounced change 

in an ecosystem. Disturbance is a relatively discrete event in time and space that alters the 

structure of populations, communities, and ecosystems and/or changes resources, substrate 

availability, or the physical environment (White and Pickett, 1985). While natural disturbances 

like fire, flooding, insect defoliation or pathogen activities modify the ecosystem functions, 

anthropogenic disturbances especially forest harvesting and scarification in and around riparian 

area accelerate the severity of these disturbances (Naiman et al., 2000; Lamb et al., 2003). The 

microclimate and floristic composition in clearcuts along riparian areas can be quite different 

from those of the undisturbed areas and extent of tall shrub and tree species recruitment after a 

disturbance becomes a controlling factor in forest regeneration (Pontailler et al., 1997; Ulanova, 

2000). 

Forest management has characteristic influences on the headwater systems. Clearcut harvesting 

may lead to increased summer maximum stream temperature, changes in near-ground 

microclimate, higher UV radiation, enhanced algal production and reduced litter inputs 
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(Richardson, 2008). Forest harvesting increases soil nutrient availability, soil-water retention, 

soil compaction, disturbance in organic horizon and displacement of mineral horizon (Stark, 

1980; Rollerson, 1990; Vitousek et al., 1992). Clearcut harvesting significantly increases water 

yield especially during May to October and reduces evapotranspiration (Hubbart et al., 2007). 

Increases in water yield usually takes place immediately after harvesting (Troendle and King, 

1885; Stednick, 1996) and the amount of increase depends on climatic regime, vegetation type, 

percentage of the catchment area harvested and harvesting patterns, and gradually diminishes 

with regeneration of forest (Bari et al., 1996; Lesch and Scott, 1997). In clearcut areas, buffer 

zones effectively filter the pollutants from water entering the streams through surface runoff. If 

small headwater streams are not protected with a buffer, a substantial portion of the flow volume 

becomes channelized without being filtered (Norris, 1993). 

Jackson et al. (2007) reported 0.5 to 2 m deep logging slash deposition in clearcut streams 

immediately after harvesting, which resulted in increased roughness of the stream and elevated 

fine sediment deposition. Forest harvesting may result in vegetation typically dominated by 

ruderal, and in some instances, exotic species (Halpern et al., 1999). On the other hand, it may 

enhance natural regeneration of tree species which prefer mineral substrates, facilitate recovery 

of shade-tolerant herbs, planted trees and advanced regeneration (Roberts and Dong, 1993; 

Mclnnis and Roberts, 1994). Since plant community recovery is system specific and influenced 

by numerous biotic and abiotic factors post-harvest community composition in different streams 

can exhibit marked difference (Battles et al., 2001; Costa and Magnusson, 2002; Sullivan et al., 

2001; Roberts, 2004). 
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Recovery from harvesting impacts refers to returning to initial composition or to a condition 

where the biophysical conditions are indistinguishable from initial state. The term may be used 

as a process i.e. a gradual diminishing trend of the impacts of disturbance over time, or as an 

endpoint where the impacts are indistinguishable from post-disturbance state. In this thesis 

recovery has been considered as an endpoint to describe biophysical features of clearcut 

headwater systems in relation to reference forests. Recovery from disturbance impacts largely 

depends on the nature of disturbance (e.g., its intensity or duration), characteristics of initial 

community and local environmental conditions. Recovery of vegetation is characterized by its 

resistance i.e., the extent to which it resists change by disturbance (Sutherland, 1974). 

Greenberg et al. (1995) observed an increase in species richness and diversity following post-fire 

salvage logging. In most cases an initial decrease in diversity, especially among forest interior 

species, was followed by a quick recovery within a few decades (Gilliam, 2002; Hannerz and 

Hanell, 1997; Meier et al., 1995; Roberts and Zhu, 2002). However, recovery of some species 

may take a long time in some managed forests due to short cycle stand rotation (30-60 years) and 

high soil disturbance associated with logging (Loya and Jules, 2008). Post-harvest species 

richness and cover of herbaceous plants was found to be lower than primary forests even 87 

years after harvesting (Duffy and Meier, 1992). These authors assumed that 87 years is 

insufficient time to detect recovery as the process is too slow. They also predicted that secondary 

forests will never recover to match primary forests because of different environmental conditions 

during their respective establishment period. 

Forestry operations adjacent to riparian areas can disrupt the ecological services provided by the 

riparian zone and cause deterioration of the aquatic environment (Naiman and Decamps, 1997). 
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Habitat disturbance alters post-disturbance plant communities by providing habitat for exotic and 

ruderal species (Keeley et al., 2003). When existing plant biomass is removed by a disturbance, 

resources become available to invading exotic plants (Bataineh et al., 2006). Ruderal species are 

adapted to environments with high disturbance but low stress, and therefore colonize areas that 

are high in nutrients and other resources after disturbance (D'Antonio and Chambers, 2006). 

Riparian management practices typically involve maintaining an unharvested riparian buffer 

between the stream and the upland. It has been demonstrated that buffers are capable of reducing 

some adverse effects of clearcut harvesting (Karr and Schlosser, 1978; Norris, 1993; Osborne 

and Kovacic, 1993). However, near-ground microclimate at the buffer edge and each subsequent 

location toward the upland remain close to the clearcut state rather than that of the forest interior 

implying that standard buffer widths may not be adequate for preserving microclimate close to 

streams (Brosofske et al., 1997). 

Much of the riparian research has been conducted on larger, higher order (second order and 

above) streams (Spackman and Hughes, 1995; Hughes and Cass, 1997). Very little work has 

been done on small, perennial streams (Goebel et al., 2003; Becker and Pallardy, 2003). The 

properties of unbuffered headwater streams differ markedly from those of the larger streams and 

they received relatively little attention (Moore et al., 2005; Anderson et al., 2007). Services 

provided by the headwater streams in terms of habitat, biota and water quality in natural and 

managed landscapes are not yet sufficiently understood. Vegetation changes following clearcut 

harvesting and forest fire is a major issue in the riparian zones. The basic information on 

vegetation recovery rate after forest harvesting in the riparian areas and its influences on physical 

structure of headwater systems is still lacking. 

5 



In this study, I examined the habitat and biotic differences of headwater systems 3 - 2 3 years 

after clearcut harvesting in northwestern Ontario. More specifically, I studied the physical 

structure of unbuffered post-harvest headwater streams and their riparian zones, floristic 

composition and their differences over time following forest harvesting without riparian buffers. 

In the following two chapters of this thesis I addressed two broad questions: 

1. How does clearcut harvesting affect the morphological features of small headwater 

streams and their riparian zones and do these effects differ in relation to time since 

harvest? This chapter characterizes physical features of small headwater streams and 

their riparian zones 3 - 2 3 years since forest harvesting, which will also be used as 

explanatory variables to illustrate the vegetation recovery pattern dealt in the subsequent 

chapter. 

2. How does the headwater riparian floristic composition differ among streams subject to 

clearcuts 3-23 years previously? This chapter describes the differences in species 

richness, abundance, diversity and evenness of ground vegetation after clearcut 

harvesting and investigates whether any species were restricted to or significantly 

associated with late successional stands. 
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1.2 GENERAL METHODS 

1.2.1 Study area 

The study was conducted in the boreal mixedwood forest located approximately 30 km northeast 

of Thunder Bay, Ontario, Canada (Figure 1.1). Study sites were spread over four watersheds 

(Mackenzie River, Current River, Wolf River and Kaministiquia watershed), all of which drain 

to Lake Superior. The watersheds are part of the Thunder Bay plains eco-region, composed 

primarily of diabase, greywake and shale bedrock formations (Wickware and Rubec, 1989). The 

area is characterized by an undulating terrain with many steep to vertical slopes and extensive 

rock outcrops, exhibiting poor water retention and soil drainage, numerous small streams and 

wetlands but few lakes. The area enjoys a boreal temperate climate. Mean temperature varies 

from -26° to -22° C in January and 21° to 25° C in July and total annual precipitation in the 

watershed varies from 700 - 850 mm (Baldwin et al., 2000). 

All these watersheds are dominated by northern boreal forest. Dominant tree species found on 

medium textured valley soils include white spruce {Picea glauca), balsam fir {Abies balsamea), 

white birch {Betula papyri/era) and trembling aspen {Populus tremuloides). Tamarak (Larix 

laricina), eastern white cedar {Thuja occidentalis) and black spruce {Picea mariana) occupy wet 

soils whereas jack pine {Pinus banksiana) and white birch occupy uplands with rocky-outcrops 

(Rowe, 1972). The understory is dominated by large-leaved aster {Aster macrophyllus), 

bunchberry {Cornus canadensis) and blue bead lily {Clintonia borealis). Based on the local 

ecosite classification guidelines the riparian vegetation along the studied streams can be broadly 

separated into three groups (Harris et al., 1996; Rankin, 2000): Calamagrostis canadensis and 

Carex aquatilis dominated meadow marshes, Alnus incana dominated swamp thickets, and 
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Figure 1.1: Map of the study area, northeast of Thunder Bay, Ontario, Canada, showing study 
site locations of 3 years (•), 7-10 years (A), 11-15 years (s), 16-18 years (O), 19-23 years (+) 
post harvest and unharvest reference (*) sites. 
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occasionally Thuja occidentalis dominated conifer swamps. Forestry is the predominant land use 

in the area, which heavily impacted the upland forests (Perera and Baldwin, 2000). 

1.2.2 Site selection 

All the sites were selected on small streams with bankfull width less than 3 m and catchment 

areas less than 100 ha. Potential small streams of the study area were first located using a GIS 

map (ArcGIS, ArcMap version 9.2, ESRI Inc., Redlands, CA) derived from 20 m resolution 

digital elevation model (OMNR, 2005). Each of these streams was assigned a number and then 

following stratified random sampling method 30 of them were selected for the study. Selected 

streams were then verified in the field through an extensive reconnaissance survey. In case a 

stream could not be found in the field, another stream was selected randomly. Since small 

streams in the boreal forest are often characterized by missing channel features due to sub-

surface flow (Hupp, 1986), the following criteria were considered in the final selection of study 

streams: i) presence of a recognizable stream bed with upward slope on either side, ii) bank full 

width less than 3 m, iii) catchment area less than 100 ha, and iv) connection with a larger stream. 

Sites were selected in both harvested and undisturbed areas. Harvested sites had been clearcut 

between 3 to 23 years previously. Necessary forest harvesting information for the area was 

collected from the Ontario Ministry of Natural Resources (OMNR) local office in Thunder Bay. 

Sites with no adjacent forestry activities for at least 90 years within 80-90 m of the clearcut or 

fire were considered as undisturbed reference sites for comparisons. Sampling was conducted in 

similar site conditions as much as possible for all available post harvest and reference forests to 

minimize variations among sites. Site class, ecosite type, average slope, soil texture, landform, 

relief and drainage conditions were taken into consideration during site selection (Appendix 7). 
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1.2.3 Sampling Design 

Field sampling was conducted across a chronosequence of second-growth clearcuts with ages 

ranging from 3 to 23 years and adjacent undisturbed mature forest originating from large wild 

fires 90-100 years ago, referred to as reference forest. To evaluate the variations in the 

morphology of streams, their riparian habitats and patterns of species re-establishment, I 

considered a total of 30 streams, 24 in post-harvest and 6 in reference forests. Using records from 

OMNR I categorized the harvested sites into five age classes based on time since harvesting: 3 

years (n=4), 7 to 10 years (n=5), 11 to 15 years (n=5), 16 to 18 years (n=5) and 19 to 23 years 

(n=5). The study streams were unmapped small streams without any riparian buffer. However, 

since all the sampled streams were connected to large streams to avoid misidentification, 

approximately 30 m of their downstream end ran through riparian buffer of the larger streams 

(Figure 1.2). 

A 50 m section of each small stream was selected leaving 10 m from the buffer edge at the 

downstream end (Figure 1.2). This 50 m section was divided into ten 5 m segments from which 3 

segments were selected at random to study stream bed morphology. Three 5 m segments were 

selected on each stream within the buffered area. Each stream was studied both in clearcut and 

buffer areas assuming that both parts will be similar in geomorphology and species composition 

by being part of the same stream. But since the buffered portion is relatively protected compared 

to the clearcut portion of the stream and the disturbance is considered to be of an intermediate 

type (Biswas, 2008), any difference between these two parts might be attributed to harvesting. 

For the study of riparian habitats and their vegetation I established three transects on the clearcut 

area of each stream, perpendicular to the stream running through riparian zone and extending up 
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to the riparian-upland transition zone. These transects were then divided into consecutive 

quadrats of lxl m. Since the width of the riparian zone varies among streams, the number of 

quadrats per transect were not fixed. However, for each transect the minimum number of 

quadrats in the riparian zone was two and the maximum was ten. Within the buffer zone I laid 

three more transects: one in the middle and one 10 m away from the center on either side (Figure 

1.2). A similar sampling protocol was followed for the unharvested reference sites. To avoid 

edge effects, quadrats in the reference sites were at least 50 m away from any clearcut edge to 

avoid edge effects (Murica, 1995). Since aspect was found to influence the microclimate and 

species composition of a site (Burton, 2002; Chen et al., 1995; Matlack, 1993), the sampling 

transects were established on both sides of the streams. 

Figure 1.2: A schematic diagram of the sampling design showing sampling protocol for habitat 
and floristic study at clearcut and buffer areas. 
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1.2.4 Habitat and floristic variables 

Within each study quadrat the following physical and environmental variables were recorded: 

slope, aspect, stream width and depth, riparian width, number of stream channels, depth of 

organic matter, distance of quadrat from stream, percent cover of ruts from harvesting 

equipments, logging slash (> 10 cm diameter), exposed rock, exposed mineral soil, vegetation 

colonization at the edge and center of stream, ground exposure and canopy exposure. Canopy 

exposure was measured using a concave spherical Densiometer (Model A, 5733 SE Cornell Dr., 

Bartlesville) held at breast height (1.37 m). Readings were taken in each cardinal direction and 

averaged to obtain an estimation of canopy exposure above each sampling quadrat. All plants 

encountered in each quadrat were identified to the species level and their percent cover recorded 

by visual estimation. Plants that were difficult to identify with certainty in the field were 

collected and identified in the laboratory by comparing with herbarium specimens. 

1.2.5 Data analysis 

Prior to statistical analysis, explanatory variables measured at each quadrat were averaged to 

produce stream level estimates. Data analyses and statistical protocols are described in the 

respective chapters since these were specific to individual research questions. 
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Chapter 2 

Geomorphic changes and recovery of headwater system 3 to 23 years after 

clearcutting 

2.0 Abstract 

Forest harvesting directly affects headwater systems, causing changes in catchment hydrology and 

riparian habitats. I investigated geomorphological impacts of harvesting on headwater systems and their 

recovery in the boreal mixedwood forests of northwestern Ontario, Canada. I studied 30 headwater 

streams (width <3 m), 24 in clearcut sites harvested 3 to 23 years previously and six in undisturbed, 

mature forests as reference. Each stream had two segments: i) in clearcut 10 m apart from cut edge and ii) 

in riparian buffer of larger stream to which it flows. Using a nested ANOVA model and discriminant 

function analysis, I examined the harvesting impacts on and recovery of stream width, depth, number of 

stream channels, riparian width, ground exposure, canopy exposure, depth of organic matter and 

disturbance index (derived from percent cover of equipment ruts, logging slash, exposed rock, exposed 

mineral soil, plant colonization at the edge and center of stream). I found stream width and number of 

stream channels significantly higher in clearcut sites up to 3 years after clearcutting but recovered within 

10 years. Stream depth decreased significantly following harvesting, which was detectable even 23 years 

after clearcutting. Canopy exposure was the most important factor contributing to harvesting impacts, 

which remained significantly high up to 15 years after clearcutting. However, overall impacts of 

harvesting adjacent to headwater streams and their riparian zones were significant at least until 15 years 

after harvesting. These results demonstrate that headwater systems need to be kept protected by 

vegetation cover following clearcut harvesting. 
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2.1 Introduction 

Numerous headwater streams occupy an extensive area of a landscape at the fringe of any fluvial 

network. These are defined as first-order streams, with catchments of < 100 ha, and bank full 

widths <3 m (Richardson and Danehy, 2007). Headwater streams interact very strongly with 

their surrounding terrestrial areas. They are largely dependent on energy subsidies from the 

surrounding forest in the form of leaf litter and terrestrial invertebrates (Bilby and Bisson, 1992). 

Since these streams are very common, small and often unmapped, they are usually overlooked or 

subject to passive neglect despite their important roles in providing habitat for biota and 

maintenance of water quality. Although they are numerous and occupy almost 60 - 80% of the 

total stream length in a watershed, headwater streams may not be protected by buffer reserves 

(MacDonald and Coe, 2007). In many jurisdictions, only larger streams that appear on the 

topographic maps receive buffer reserve protection (Hupp, 1986). Small streams are often 

underappreciated and consequently controversial regarding the management requirement to 

ensure their conservation as a part of sustainable forestry practice. Kahl (1996) argued that 

smaller streams may need wider buffers than larger streams since the volume of water flowing 

through individual stream is low and consequently highly sensitive to environmental changes. 

However, protecting all headwater streams with buffers may economically be an impractical 

proposition. 

Riparian zones are transitional and semi-terrestrial areas, extending from the edge of water to the 

edges of upland communities, regularly influenced by fresh water (Naiman et al., 2005). 

Riparian ecosystems support a high level of floristic diversity relative to upland forests 

(Decamps and Tabacchi, 1994; Naiman and Decamps, 1997). This greater diversity may be 
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attributed to stream geomorphology, hydrology and frequency and spatial extent of flooding. 

Riparian zones help lateral propagule migration, which varies depending on stream size, flow 

patterns, upland slope, aspect and riparian vegetation (Naiman et al., 2000; Dodds and Oakes, 

2008). Riparian ecosystems provide a wide range of ecological services like: i) organic matter 

input, ii) filtering and buffering of sediment, nutrients and surface runoff, iii) erosion reduction 

and stabilization of stream banks, iv) maintenance of water quality, v) propagule dispersal 

corridors, and vi) contribution of energy to the overall ecosystem energy budget (Gregory et al., 

1991; Malanson, 1993; Triska et al., 1993; Gould and Walker, 1999; Hannon et al., 2002; Allan 

et al., 2003; Melody and Richardson, 2004; Shirley, 2004; Sabo et al., 2005). Headwater streams 

and their riparian areas (collectively constituting the headwater system) differ from larger stream 

systems in a number of ways (e.g. channel dimension, fish abundance and the disturbance regime 

associated with low flows) that shape their characteristic biological communities. Therefore, the 

ecological characteristics of small stream riparian areas are presumably different from those of 

larger streams (Richardson et al., 2005). 

Natural disturbance (mainly fire, insect/pathogen infestation, beaver activity) and anthropogenic 

disturbance (primarily forest harvesting) are common in the boreal forest (Naiman et al., 2000). 

Forest harvesting directly affects small streams and their riparian zones due to movement of 

harvesting equipment and removal of forest canopy, which in turn may cause changes in 

catchment hydrology and sediment dynamics. The consequent direct and indirect adverse effects 

on riparian habitat include soil compaction and weakening (Slaymaker and McPherson, 1977), 

soil erosion, sediment plumes entering riparian zones and streams (Dignan, 1999), increases in 

fine sediment and organic matter inputs (Davies and Nelson, 1993). Harvest activities may also 

result in changes in soil structure and subsurface flow dynamics, increased catchment water yield 
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and higher peak flows in the first few years after harvesting causing decreased stream bank 

stability, changes in stream channel profiles, decreased sediment retention and increased 

sediment transport and lower evapotranspiration losses from harvest areas (Vanderwel, 1994). 

Accumulation of logging slash in streams following harvesting may create habitat for 

amphibians and aquatic invertebrates by controlling channel structure and stability, creating 

pools, storing sediment, and dissipating energy (Bilby and Bisson, 1998; Gomi et al., 2001). 

Post-harvest vegetation recovery, species composition and ecosystem functioning are related to 

rate and extent of physical recovery of the habitat. So far studies investigating the effects of 

forest harvesting on small streams and their riparian areas are mostly confined to the assessment 

of harvesting impacts on stream water quality and invertebrate communities. Physical response 

of unbuffered headwater streams and associated riparian zones after clearcutting have not been 

extensively studied. Gaps in our knowledge of the structure and function of headwater systems, 

impacts of forestry practices on headwater streams and their riparian areas impede our progress 

toward meeting management objectives to protect water quality and conserve biodiversity. 

In the study, I examined the impacts of forest harvesting on the morphological features of 

headwater systems. My main objectives were two-fold: (a) to assess how clearcut harvesting 

alters the physical characteristics of headwater systems, and (b) to examine the patterns of 

riparian habitat recovery over time. I hypothesized that if forest harvesting has an impact on 

headwater systems then recently harvested areas will show the greatest difference from reference 

forest in biophysical factors such as stream size, number of channels, depth of organic matter, 

vegetation cover. Furthermore, if streams recover over time I expect the deviation from reference 

forest to be less as time since harvest increases. 
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2.2 METHODS 

2.2.1 Study area 

The study was conducted in the Mackenzie River, Current River, Wolf River and Kaministiquia 

watersheds, about 30 km northeast of Thunder Bay, Ontario, Canada (48°38/ - 48°50/N, 88045' -

89°23/ W). The study area has low, rolling relief with a bedrock substrate overlain by glacial tills, 

exhibiting poor water retention and soil drainage. Ground slope of the study area ranges from 3° 

to 30°. The area experiences a boreal temperate climate with mean temperature varying from -

26° to -22° C in January and 21° to 25 C in July. Mean annual rainfall ranges between 700 mm 

to 850 mm (Baldwin et al, 2000). 

Vegetation of the area is a range of boreal mixed wood and conifer-dominated stands typical of 

the southern boreal forest (Rowe, 1972). The overstory is dominated by Picea mariana, Picea 

glauca, Abies balsamea and Populus tremuloides. The understory is dominated by Alnus incana, 

Aster macrophylus, Cornus canadensis and Clintonia borealis (Stewart and Mallik, 2006). 

2.2.2 Site selection 

Thirty headwater streams were selected for this study with catchment areas less than 100 ha and 

bank full widths less than 3 m. Study sites were selected based on similar topographic 

conditions, aspect, soil type and vegetation. Methods of site selection have been described in 

details in chapter 1 (1.2.2). 

2.2.3 Study design and explanatory variables 

From a total of 30 streams, 24 were in post-harvest stands originating from clearcuts 3 to 23 

years ago and 6 were in undisturbed mature (90-100 years-old fire originated) forests hereafter 

called reference streams. The post-harvest streams were categorized into five age classes based 
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on time since harvesting: age class 1 (3 years, n=4), age class 2 (7 to 10 years, n=5), age class 3 

(11 to 15 years, n=5), age class 4 (16 to 18 years, n=5) and age class 5 (19 to 23 years, n-5). 

Reference streams in undisturbed forests were indicated as age class 6. 

On each post-harvest stream six 5 m long segments, three at clearcut site and three within 

buffered area at the downstream end of the small stream were selected randomly to study stream 

bed morphology. For the riparian habitat study, six transects, three in the clearcut area and three 

within the buffered area were established perpendicular to the stream. Consecutive quadrats of 

lxl m were surveyed along each of the transects. Study segments and transects at clearcut sites 

were at least 10 m away from the buffer edge to avoid edge effects. A similar sampling protocol 

was followed for the unharvested reference sites (Figure 1.2). The study design has been 

described in detail in chapter 1 (1.2.3). 

Within each study quadrat, the following physical and environmental variables were recorded: 

bank full width of stream (referred to as stream width), stream channel depth (referred to as 

stream depth), riparian width, number of water courses (flowing body of water with distinct 

edges), ground exposure, canopy exposure, depth of organic matter, percent cover of equipment 

ruts (depression in the soil caused by machine traffic), logging slash (> 10 cm diameter), exposed 

rock, exposed mineral soil, plant colonization at the edge and center of stream. Rooted width, i.e. 

the point on the bank where the rooted, non-grass vegetation begins, was measured to determine 

the stream width. For stream depth three measurements were taken at random locations in each 

section using a metre stick. Stream width and depth were measured in a straight section of the 

stream to avoid corners and pools and were recorded to the nearest 0.1 cm. Using the point of the 

most rapid shift from predominantly riparian vegetation to predominantly upland vegetation 
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riparian width was determined and measured to the nearest 0.1 m. At each quadrat ground 

exposure was determined by visual estimation. Canopy exposure was measured using a concave 

hemispherical Densiometer held at breast height (1.37 m). Readings were taken in each cardinal 

direction and averaged to obtain an estimation of canopy exposure above each sampling quadrat. 

Depth of organic matter at each quadrat was measured from small soil pits. Percent cover of 

machine ruts, logging slash, exposed rock, exposed mineral soil, colonized vegetation at the edge 

and center of stream were determined by visual estimation. 

2.2.4 Data analysis 

A quantitative disturbance index (DI) was calculated combining the percent cover of harvesting 

equipment ruts, logging slash, exposed mineral soil, exposed rock, colonized vegetation on 

stream center and stream edge, which was used as a single variable in the subsequent analyses to 

assess habitat disturbance from harvesting. Prior to statistical analysis, the explanatory variables 

measured at each quadrat were averaged to produce stream-level estimates. The data residuals 

were checked for normality (Kolmogrov-Smirnov test) and homogeneity of the variances 

(Levene test) to meet the assumptions of ANOVA. To improve the normality stream width and 

depth data were transformed to logio- It improved the normality of the data compared to 

untransformed data. 

Simple univariate measures were first calculated at the stream scale to allow for comparison 

between reference, clearcut and buffer locations of different ages. To test the impacts of clearcut 

harvesting on the eight response variables, a general linear model was used. Since the design was 

not completely balanced, in the model type III sum of squares was used. In the model, age 

classes (years since harvesting) and disturbance types (clearcut and buffer) were used as fixed 

19 



factors, streams as random factor and stream width (SW), stream depth (SD), riparian width 

(RW), number of water courses (WC), ground exposure (GE), canopy exposure (CE), depth of 

organic matter (DOM) and disturbance index (DI) were used as response variables. The nested 

model used in the analyses was: 

Yijk = u + A; + S(i)j + Dk + ADik + SD(i)jk + £(ijk) 

Where, Yijk is the response variable (SW/SD/RW/WC/GE/CE/DOM/DI) of the kth disturbance 

type in the j t h stream of ith age class, u is the overall sample mean, Aj is the fixed effects of ith age 

class (1=1,2, ...,6), S(i)j is the random effects of j t h stream (j = 1,2, ...,6) nested within age class 

i, Dk is the fixed effects of kth disturbance type (k = 1, 2), ADik is the interaction effects of ith age 

class with kth disturbance type, SD ĵk is the interaction effects of kth disturbance type with j t h 

stream nested within Ith age class, and £(ijk) is the error term. Applying Sometimes Pooling Rule 

the interaction effects of stream (nested within age class) and disturbance type was removed 

from the model when it was insignificant at a=0.25 level. The analysis of variance was followed 

by DUNCAN post-hoc test to identify significant differences between age classes. When 

spanned number of means compared is increased the critical value is decreased in Duncan test, 

but in Tukey's HSD it remains constant at a high level and hence Duncan post hoc test was used. 

Multivariate analysis of variance was conducted using the variables to determine which 

individual variables at the local scale were significantly different between harvested sites of 

different age classes and reference streams and to investigate any interaction effects between age 

classes and disturbance types. Finally, discriminant function analysis (DFA) was performed to 

explore whether the independent variables can be used to distinguish between the age classes and 
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identify the most important independent variables in differentiating the age classes. All analyses 

were performed using SPSS version 16.0 (SPSS, 1999). 

2.3 Results 

General field observations indicate that clearcut harvesting caused physical damage to small 

streams and their riparian areas. In some cases, especially in the recently harvested areas (3 years 

post-harvest), stream edges were hard to locate due to severe ground disturbance. Road 

construction and machine ruts damaged the physical structure of the streams and altered the 

stream flow regime. In clearcut sites large deposition of logging slash observed in disturbed 

stream beds interrupted the stream flow pattern compared to reference streams (Figure 2.1A-C)-

Mean values of habitat parameters measured are shown in Appendix 1. 

2.3.1 Stream width and depth 

There was a significant difference in stream width between age classes (p < 0.001) and 

disturbance types (p = 0.014). Streams in age class 1 were significantly wider than those in all 

other age classes including the reference streams in clearcut sites (p = 0.001). However, for the 

same age class there was no significant difference in stream width between clearcut and buffer 

locations. As a whole, streams were wider in harvested sites compared to those at buffer sites and 

reference sites (mean 87.7, 81.3 and 80.5 cm, respectively). Stream depths were significantly 

different between age classes (p < 0.001) and disturbance types (p = 0.001) (Table 2.1). In 

harvested sites stream depth of age class 1 (14.6 cm) was significantly lower than that of age 

class 4 (24.5 cm) and reference site (28.2 cm). Stream depth in reference sites was significantly 

higher than that of all other age classes except 4 (p = 0.008). Stream depths were higher in older 
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Figure 2.1: Examples of forest harvest impacts on small streams and their riparian areas: (A) slash pile 
and machine rut damaged stream, (B) accumulated slash disrupted stream flow and (C) undisturbed 
stream with intact channel bed. 
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Table 2.1: Results of nested ANOVAs with stream width, stream depth, riparian width, number 
of water courses, ground exposure, canopy exposure, depth of organic matter and disturbance 
index as dependent variables and age class and disturbance type as fixed factors, streams nested 
within age classes as random factor. 

Response variable Sources of variation df F-value p value 
Stream width Age class 

Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

12.252 
2.210 
6.975 
1.486 

O.001 
0.029 
0.014 
0.231 

Stream depth Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

9.225 
2.047 

14.326 
0.781 

<0.001 
0.043 
0.001 
0.573 

Riparian width Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.329 
1.498 
0.007 
0.555 

0.891 
0.164 
0.936 
0.733 

Number of water 
courses 

Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

6.570 
1.000 

15.117 
6.570 

0.001 
0.500 
0.001 
0.001 

Ground exposure Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

5.137 
1.632 
4.406 
0.143 

0.002 
0.119 
0.047 
0.980 

Canopy exposure Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

20.197 
2.762 

89.067 
19.240 

<0.001 
0.008 

<0.001 
<0.001 

Depth of organic 
matter (DOM) 

Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.897 
2.801 
7.317 
1.216 

0.499 
0.007 
0.012 
0.332 

Disturbance Index Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

15.404 
5.164 
2.920 
2.074 

<0.001 
<0.001 
0.100 
0.104 
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Figure 2.2: Boxplots of a) Stream width, b) stream depth, c) riparian width, d) number of water 
courses, e) ground exposure, f) canopy exposure, g) depth of organic matter and h) disturbance 
index at different ages after clearcut harvesting. The shaded and unshaded boxes represent buffer and 
clearcut locations, respectively. Horizontal bars are median and boxes are quartiles (25 - 75). Superscripts 
came from the results of Duncan post hoc tests. 
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age classes except the age class 5. Streams were shallow (19.7 cm) in harvested sites, 

intermediate depth in buffer (24.8 cm) and deepest in reference site (29.6 cm). Distribution of 

stream width and depth data has been illustrated in Figure 2.2a & 2.2b, respectively. 

2.3.2 Riparian width and number of water courses 

There was no significant difference in riparian width between age classes (Table 2.1). Mean 

riparian widths at clearcut, buffer and reference sites were 7.9 m, 7.9 m and 7.7 m, respectively. 

Riparian zones were slightly wider in older age classes, but there was no significant difference 

among the age classes. Number of water courses was significantly different between age classes 

(p = 0.001), disturbance types (p = 0.001) and interaction effects of age classes and disturbance 

types (p = 0.001) (Table 2.1). Streams in age class 1 of clearcut site had the largest number of 

water courses (mean 1.55/stream), which was significantly greater than all other age classes. 

Distribution of riparian width and number of water courses data has been illustrated in Figure 

2.2c & 2.2d, respectively. 

2.3.3 Ground exposure and canopy exposure 

Ground exposure was significantly different between age classes (p = 0.002) and between 

disturbance types (p = 0.047) (Table 2.1). Ground exposures at harvested sites of age class 1 and 

2 were significantly low (3.68% and 2.57%, respectively) compared to the reference site 

(20.90%). It was wider in older age classes, except in age class 5 (Appendix 1). Mean ground 

exposure at harvested, buffer and reference sites were 9.8%, 16.1% and 25.5%, respectively. A 

highly significant difference (p < 0.001) was found in the canopy exposure between age classes 

as well as between disturbance types (p < 0.001) and interaction effects of age classes and 
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disturbance types (p < 0.001) (Table 2.1). Though no significant difference was observed 

between age classes in buffered sites, canopy exposure in clearcut sites was significantly higher 

(p < 0.001) than that of reference sites up to 15 years after harvesting. It was very high (89.0%) 

in harvested sites up to 10 years since forest harvesting i.e. in age classes 1 and 2 (90.3% and 

87.7%, respectively) (Appendix 1). Canopy exposure was lower in older age classes. Mean 

canopy exposure was 54.7% in harvested sites, 18.3% in buffered sites and 7.4% in reference 

sites. Distribution of ground and canopy exposure data has been illustrated in Figure 2.2e & 2.2f, 

respectively. 

2.3.4 Depth of organic matter 

Depth of organic matter was significantly lower in clearcut sites compared to buffer sites (p = 

0.012) (Table 2.10), but there was no significant difference between the age classes either in 

clearcut sites or in buffer sites. Mean depth of organic matter was lower (15.3 cm) in age class 1 

of clearcut sites than in the cut location of the reference sites (17.9 cm). Mean depth of organic 

matter in clearcut, buffer and reference sites were 16.5, 18.4 and 19.4 cm, respectively. 

Distribution of organic matter depth data has been illustrated in Figure 2.2g. 

2.3.5 Disturbance index 

Disturbance index of the reference sites was significantly lower than those of all other age 

classes (p < 0.001) (Table 2.1). Though disturbance indices were significantly higher for all the 

age classes in the harvested sites compared to reference sites (p = 0.004), there was no significant 

difference (p = 0.150) between age classes in buffered sites. Disturbance index for age class 1 of 

harvested site was 38.43, while it was 21.72 for the cut location of reference site (Appendix 1). 
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The mean value for clearcut sites was calculated as 33.46, while these values were 31.50 and 

21.75 for buffered sites and reference sites, respectively. The distribution of disturbance index 

data has been illustrated in Figure 2.2h. 

2.3.6 Multivariate analysis 

The results of MANOVA (Table 2.2) indicate that headwater stream/riparian characteristics are 

influenced by both harvesting age and disturbance types. 

Table 2.2: MANOVA results for stream width, stream depth, riparian width, number of water 
courses, ground exposure, canopy exposure, depth of organic matter and disturbance index 
showing significant differences among the group centroids. 
Effects Wilks' Lambda Hypothesis df Error df F Sig. 
Intercept 
Age class 
Stream(Age class) 
Disturbance 
Age class * Disturbance 

0.001 
0.004 
0.000 
0.134 
0.034 

8 
40 

192 
8 

40 

17 
77 

145 
17 
77 

1.453E3 
4.978 
1.908 

13.696a 

2.250 

< 0.001 
< 0.001 
< 0.001 
< 0.001 

0.001 
A is exact statistic. 
Design: Intercept + Age class + Stream(Age class) + Disturbance + Age class * Disturbance 

2.3.7 Discriminant function analysis 

From the tests of equality of group means it is evident that Wilks' lambda values for stream 

width, stream depth, number of water courses, ground exposure, canopy exposure and 

disturbance index were low, indicating that these variables played a significant role in 

discriminating between the age classes. However, riparian width and depth of organic matter 

were not significant. Smaller Wilks' lambda value of canopy exposure indicates that the mean 

values of canopy exposure are most different for the age classes and contribute the most to the 

discriminant function (Table 2.3). 
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Table 2.3: The amount of variance accounted for in the dependent variable by the independent 
variables. Wilks' lambda values, ratios of the within-groups sum of squares to the total sum of 
squares, indicate group differences. 
Variables 
Log stream width 
Log stream depth 
Riparian width 
No. of water courses 
Ground exposure 
Canopy exposure 
Depth of organic matter 
Disturbance index 

Wilks' Lambda 
0.524 
0.537 
0.931 
0.384 
0.672 
0.249 
0.840 
0.623 

F 
3.963 
3.757 
0.324 
6.987 
2.134 

13.190 
0.832 
2.642 

dfl df2 
48 
48 
48 
48 
48 
48 
48 
48 

Sig-
< 0.001 

0.001 
0.976 

< 0.001 
0.035 

< 0.001 
0.610 
0.010 

In the analysis the first three discriminant functions accounted for 86.1% of the total variation 

among all sites. Function 1 accounted for 60.0% of the total variance explained by the model, 

while Function 2 and 3 accounted for 15.3% and 10.7%, respectively (Table 2.4). 

Table 2.4: The ratio of the between-groups sum of squares to the within-groups sum of squares showing 
the spread of the group centroids in the dimension of the multivariate space. 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 
1 
2 
3 

Eigenvalue 
4.605a 

1.174a 

0.824a 

% of Variance 
60.0 
15.3 
10.7 

60.0 
75.3 
86.1 

0.906 
0.735 
0.672 

a. First 8 canonical discriminant functions were used in the analysis. 

The discriminant function model as a whole (8 axes) significantly separated the groups (Wilks' X 

= 0.018, p < 0.001). After removing the first three axes the model no longer separated the groups 

(A, = 0.406, p < 0.3) (Appendix 1). So only the first three axes were interpreted. 

The standardized Canonical Discriminant Function Coefficients were used to assess each 

independent variable's contribution to the discriminant function, which indicates the relative 

importance of independent variables in predicting the dependent variables. Canopy exposure, 
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stream depth and width, ground exposure and number of water courses appeared to have the 

highest relative contribution to the overall discrimination (Table 2.5). Canopy exposure 

contributed strongly to group separation along canonical variable 1, stream depth and stream 

width contributed to group separation along the canonical variable 2. Ground exposure and 

number of water courses contribute to group separation along the canonical variable 3. 

Table 2.5: Standardized canonical discriminant function coefficients indicating 
the relative contribution of the variables to the overall discrimination. 
Response variables 

Log stream width 
Log stream depth 
No. of water courses 
DOM 
Canopy exposure 
Ground exposure 
Riparian width 
Disturbance index 

1 
0.339 
-0.290 
0.316 
0.033 
0.819 
0.051 
-0.219 
0.159 

Function 

2 
-0.744 
0.811 
0.124 
-0.231 
0.664 
0.591 
-0.057 
-0.061 

3 
0.180 
0.456 
0.617 
0.138 
-0.011 
0.700 
0.120 
-0.034 

The ordination plots (Figure 2.3 & 2.4) show the locations of study streams in the inference 

space formed by function 1 versus 2 and function 1 versus 3. It contains each of the cases and 

locates them around the centroid for each group. Discriminant function worked almost equally 

well for each group of the dependent variables except for age classes 4 and 3 of clearcut sites and 

age class 5 of buffer sites. It correctly classified 63.3% of original grouped cases. Along axis one 

clearcut sites of age class 1, 2 and 3 (group 1, 3 and 5, respectively) differed the most and all 

other age classes including the buffered sites differed the least. Along axis two (Figure 2.3) 

clearcut sites of age class 2 (group 3) and buffered site of age class 1 (group 2) differed the most. 

Along axis 3 (Figure 2.4) clearcut sites of age class 2 (group 3), 5 (group 9) and buffered sites of 

age class 5 (group 10) differed the most from other sites. From the above results it can be 
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inferred that though different variables recover from harvesting impacts at different spatial 

scales, overall recovery takes at least 18 years since harvesting. 

# 1 (Age class 1 Cut) 
Q 2 (Age class 1 Buffer) 
A 3 (Age class 2 Cut) 
A 4 (Age ctass 2 Buffer) 
• 5 (Age class 3 Cut) 
<J>6 (Age class 3 Buffer) 
• 7 (Age class 4 Cut) 
Y 8 (Age class 4 Buffer) 
f 9 (Age class 5 Cut) 
0 10 (Age class 5 Buffer) 
• i l l (Ref. Cut location) 
a 12 (Ref. Buffer location) 
• Croup Centroid 

Function 1 

Figure 2.3: Ordination plot of the study streams in discriminant function space. The 

interspersion of the centroids of age classes 1, 2 and 3 of clearcut site from other group centroids 

along Function 1 indicate significant impacts of clearcutting up to 15 years since harvesting. 

Approximately 80% (canonical correlation = 0.906) of variation on function 1 was among groups 

while approximately 50% (canonical correlation = 0.735) on function 2 was among groups. 
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Figure 2.4: Ordination plot of the study streams in discriminant function space, Function 1 

versus Function 3. Canopy exposure along Function 1 separated age classes 1 (3 years) and 2 (7-

10 years) of clearcut sites from other age classes. Approximately 80% (canonical correlation = 

0.906) of variation on function 1 was among groups while approximately 45% (canonical 

correlation = 0.672) on function 2 was among groups. 
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2.4 Discussion 

In this study impacts of clearcutting on headwater systems and the differences among different 

ages of cut was explored. I found significant differences in the variables I examined such as 

stream width, stream depth, number of water courses, canopy exposure, ground exposure and 

disturbance index between clearcut sites of different ages since harvesting and reference sites. 

Stream channels in recently harvested areas were wider but shallower compared to undisturbed 

forested streams. Streams in older cut areas were narrower and deeper. However, age class 2 was 

an exception with streams narrower than the older age classes. The reasons may be lower logging 

slash accumulation (3.96% compared to an average of 7.93% in the older and reference streams) 

in these channel beds. 

Studies documenting the effects of harvesting on riparian zones have often found differences 

between harvested and unharvested streams when harvesting right to the stream edge (Newbold 

et al., 1980). In a riparian study in North America, Sweeney et al. (2004) showed that forested 

stream channels in piedmont region were wider and had lower average water velocity and higher 

bed roughness than adjacent deforested channels. A similar process has been described by 

Hession et al. (2003) in urban watersheds of the region. My findings contradict their findings. 

Sweeney et al. (2004) noticed bank encroachment by herbaceous plants as the reason for stream 

channel narrowing. But I found herbaceous vegetation on stream banks overhanging from the 

banks creating indented stream edges. In my study streams recently harvested areas had higher 

levels of in-stream logging slash (10.59% in age class 1) than older age classes, helping trap fine 

sediment on the channel beds. Moreover, following slash and sediment deposition some 

vegetation colonized within the stream channel. These processes, in combination with stream 
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bank damage by harvesting equipment, might result in increased width and decreased depth of 

streams. 

Forest harvesting can affect stream bed characteristics either directly by removal of vegetation 

which in turn increases water yield due to loss of evapotranspiration (Vanderwel, 1994), and 

loading of slash into the stream (Jackson et al, 2007) or indirectly via logging related slash 

transport and accumulation on the channel bed causing multiple channels or changing its path. In 

this study multiple water courses were observed in the clearcut sites of age classes 1; a mean of 

1.55 channels per stream was significantly higher than all other age classes including reference 

sites (mean 1.03). The reason behind this may be the higher logging slash accumulation 

(10.59%) in the stream beds of recently clearcut sites. The number of water courses decreased 

with time since disturbance. However, multiple channels were also observed in age classes 3 and 

4 (mean 1.16 and 1.04, respectively) but not significantly different from reference sites. Logging 

slash accumulations in these two age classes were 8.70% and 7.92%, respectively, which was 

7.55% in reference sites. Several authors have suggested changes in channel routing as a 

potential driver of changes to peak flows. Cheng et al. (1975) stated that increased channel 

roughness due to slash loading within the stream could have contributed to the increase in time to 

peak. Conversely, Jones and Grant (1996) and Thomas and Megahan (1998) suggested that 

smoothing of the channel by road-related slash flows could have contributed to peak flow 

magnitude by decreasing travel time in the channel. However, no studies examined these 

influences quantitatively. 
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Worldwide studies show that water yield usually increases immediately after timber harvest 

(Stednick, 1996). Bosch and Hewlett (1982) stated that a reduction in canopy cover increases 

water yield and following afforestation it decreases with increasing canopy cover. Hubbart et al. 

(2007) reported an increase of water yield by 36% after clearcut harvesting, however, the relative 

amount of increase depends on climate and forest types and tends to diminish as forests 

regenerate (Bari et al., 1996). Hassan et al. (2005) stated that headwater streams may store 

sediment depending on stream morphology and timber harvesting pattern. Jackson and Sturm 

(2002) reported slash-filled streams following harvesting. Jackson and Sturm (2002) and 

Haggerty et al. (2004) reported that high slash loads may have various effects, like slowing flow, 

retaining and storing fine sediment, redirecting flow to create bank erosion and blocking 

insolation. They also mentioned that sediment detained within logging slash dams will be 

temporary, so post-harvest pulses of fine sediment as slash dams deteriorate are likely. Jackson et 

al. (2001) identified the introduction of large amounts of harvest slash to the channel as the 

dominant effect of clearcutting adjacent to small headwater streams. They reported that, two 

years after harvest, the total amount of buried and covered channel length in the clearcut streams 

decreased from 94% immediately after harvest in 1999 to 79% in 2001. The deposition of 

sediment in channels alters channel gradient (Hogan et al., 1998) and a large accumulation of 

sediment may force a lateral shift in unconfmed channels, diverting the flow and causing bank 

erosion. All these observations are in agreement with my findings of shallow, wider stream 

channels with higher number of water courses immediately after harvesting. 

The importance of riparian shade in controlling stream temperature is well documented (Beschta 

1997; Johnson, 2004). Increase in stream temperature after harvesting is mainly due to increased 

solar radiation following canopy removal (Kiffney et al., 2003). In a study on the influence of 
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multiple spatial scales, Sponseller et al. (2001) showed that 93% of variation in stream 

temperature could be explained by forest cover. In my study I found canopy exposure most 

strongly associated with variation in riparian habitat, contributing highest (82%) to the canonical 

variable 1 in discriminant function analysis. Canopy exposure was very high in age classes 1 and 

2. It was much lower in age class 3, though still significantly higher than reference sites 

(Appendix 1). Streamside shade recovery can be attributed entirely to low-lying understory 

species, as evidenced by the increase in understory/deciduous cover of 26% in 2003 to 39% and 

37% in 2004 and 2005, respectively (Gravelle and Link, 2007). In my study I found very low 

ground exposure up to 10 years since harvesting and then it gradually increased with an 

exception in age class 5 (Appendix 1). In age class 5 sites richness and abundance of moss was 

comparatively high (described in next chapter), resulting in lower ground exposure. Understory 

vegetation appears to be higher after harvesting, as the removal of the forest overstory canopy 

allows more incoming solar energy to reach the forest floor. Moola and Vasseur (2004) reported 

a three-fold increase in ground vegetation cover in 6-year old clearcuts compared to late 

successional stands. Following harvesting increased light stimulated streamside vegetation 

(Jackson et al., 2007), resulting in lower ground exposure, which is in line with my findings of 

higher canopy and lower ground exposure in the early stage of headwater system recovery. 
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2.5 Conclusion 

Timber harvest practices adjacent to headwater streams and their riparian zone have major 

impacts on stream bed structure. Spatial scales of recovery varied widely among the habitat 

parameters. Impacts of clearcut on stream width and number of water courses were significant 

only up to 3 years since harvesting. Whereas, after 23 years harvesting impacts on stream depths 

and disturbance indices were still significant. Significant impact on canopy exposure was 

pronounced up to 15 years since harvesting. However, overall recovery from impacts of 

clearcutting adjacent to small headwater streams and their riparian zones takes at least 18 years 

after harvesting. Indeed in the recovery process geographical locations of the streams are also 

important inferential factors. The study result implies that headwater streams need adequate 

protection from anthropogenic disturbances, especially from clearcut harvesting. Leaving 

headwater streams unattended may mean not meeting the objectives of sustainable forest 

management. 
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Chapter 3 

Recovery of riparian vegetation along headwater streams after 
clearcut harvesting 

3.0 Abstract 

The study of the recovery of understory plant communities after clearcut harvesting has received much 

attention. However, most of these studies have ignored the recovery of riparian understory vegetation 

especially along headwater streams despite its critical role in the protection of stream water quality and 

biota. I studied 30 headwater streams, 24 in clearcut sites and 6 in reference sites of 90-100 year-old 

undisturbed forest. Each stream was studied at two locations: i) within clearcut areas and ii) within buffer 

zone of a larger stream where it flows. I quantified species richness, abundance, diversity and evenness of 

riparian understory vegetation at different stages of recovery ranging from 3 to 23 years since harvesting 

and at reference sites. Using nested model and Non-metric Multidimensional Scaling (NMS) I examined 

the effect of clearcut age on the plant composition. I found that clearcut harvesting had no immediate 

impact on overall species richness or diversity, but it caused compositional changes in the subsequent 

vegetation, dominated by ruderal invading species. Some late-seral species were locally eliminated and 

showed no evidence of recovery over 23 years after harvesting. Species like Acer spicatum, Sorbus 

americana, Circaea alpina, Mitella nuda, Brachythecium rivulare, Dicranum flagellare and Rhodobryum 

roseum attained their highest frequency and abundance in older age-classes. These results indicate that for 

the conservation of rich riparian biodiversity clearcutting along headwater systems should be replaced by 

selective/partial harvesting. 
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3.1 Introduction 

The effects of forest harvesting on headwater systems (consisting of headwater streams and their 

riparian areas) have not been extensively studied although headwater streams compose almost 

80% of total stream length in many drainage networks and drain a high proportion of the 

catchment area (Naiman et al., 2005). Management needs of these streams are still neglected 

partly because of insufficient understanding of the benefits they provide in terms of biotic 

nabitat, ecosystem services and water quality. Since headwater streams hold a small volume of 

water they are highly sensitive to environmental changes, and may need more attention than 

larger streams. 

Being transitional between streams and adjacent terrestrial habitats, riparian zones possess biotic 

communities distinct from both (Lamb and Mallik, 2003; Naiman and Decamps, 1997) and are 

generally considered to be biodiversity hotspots (Naiman et al., 2005). Their high biodiversity 

may be due to the juxtaposition of aquatic and terrestrial habitats (Sabo et al., 2005) and 

occurrence of biota associated with the edge environment (Naiman and Decamps, 1997). 

Riparian areas provide unique floristic communities that are more herbaceous than upland 

habitats, but also provide cover from many shrub species (Pabst and Spies, 1998). 

Riparian ecosystems are constantly affected by a variety of natural and anthropogenic 

disturbances. Clearcut harvesting is the most important anthropogenic disturbance that adds to 

the severity of natural disturbances and can modify ecosystem functions (Naiman et al., 2000; 

Lamb et al., 2003). Forest harvesting results in a significant difference in plant communities 

compared to uncut forests causing loss of a portion of old-growth flora immediately after logging 
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(Loya and Jules, 2008). It may result in vegetation typically dominated by ruderal species and in 

some instances, exotic species (Halpern et al., 1999). On the other hand, it may enhance natural 

regeneration of tree species which prefer mineral substrates, facilitate recovery of shade tolerant 

herbs, planted trees and advanced regeneration (Roberts and Dong, 1993; Mclnnis and Roberts, 

1994). 

Recovery of plant communities after forest harvesting differ markedly since community recovery 

is system specific and influenced by numerous biotic and abiotic factors (Battles et al., 2001; 

Costa and Magnusson, 2002; Sullivan et al., 2001; Roberts, 2004). Greenberg et al. (1995) 

reported an increase in species richness and diversity following post-fire salvage logging. Duffy 

and Meier (1992) reported a lower post-harvest species richness and cover of herbaceous plants 

compared to primary forests even 87 years after harvesting. In most cases an initial decrease in 

diversity, particularly interior forest species, was followed by a quick recovery within a few 

decades (Gilliam, 2002; Hannerz and Hanell, 1997; Meier et al., 1995; Roberts and Zhu, 2002). 

However, recovery of some species may take a long time in managed forests (Loya and Jules, 

2008). 

Lamb (2002) stated that harvesting disturbance in adjacent uplands does not strongly affect the 

riparian vegetation along buffer-protected streams. Perhaps hydrology is the primary factor that 

determines the distribution and abundance of riparian species (Bendix, 1994; Naiman and 

Decamps, 1997). Biswas (2008) stated that disturbance intensity (clearcut and clearcut plus 

scarification as extreme and buffers as moderate disturbance) significantly affects the riparian 

plant colonization. He reported that both species diversity and functional diversity reach their 

peak under moderate intensity of disturbance. Since the hydrology of unbuffered headwater 
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streams may be quite different from buffered larger streams and is highly sensitive to adjacent 

harvesting disturbance, response of riparian understory plant communities along headwater 

streams might also be different from those of larger streams. 

Understory vegetation plays a critical role in boreal ecosystems, influencing nutrient cycling, 

overstory succession, and long-term stand productivity (Zackrisson et al., 1995; Wardle et al., 

2004; Kolari et al., 2006). For sustainable management of boreal forests, understanding factors 

that affect diversity, abundance and composition of understory vegetation is very important. 

Although vegetation changes following clearcut harvesting is a major issue in the riparian zones, 

basic information on the effects of clearcut harvesting on the vegetation of headwater systems 

and the rate of their recovery after harvesting are still inadequetly documented. 

In this study I explored the alpha diversity and composition of understory riparian vegetation 

along 24 boreal headwater streams at different stages after clearcut harvesting and compared that 

of 6 undisturbed mature forests. I. hypothesized that if forest harvesting alters riparian understory 

vegetation then differences in floristic composition will be greatest between recently harvested 

sites and reference forests. I hypothesized that with increasing time since harvest, differences in 

floristic composition compared to reference forest would be less. Also, the ruderal species 

dominating recently harvested sites will gradually be replaced by old-growth species. 
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3.2 METHODS 

3.2.1 Study area 

The study was conducted in the boreal mixedwood forests spread over four watersheds, 

Mackenzie River, Current River, Wolf River and Kaministiquia watersheds located between 

48°38/- 48°50/N latitude and S S ^ 7 - 89°23/ W longitude (Figure 1.1). The area is characterized 

by low relief with underlying bedrock composed of primarily Precambrian granite and gneiss. 

Overstory vegetation is dominated by black spruce (Picea mariana), balsam fir {Abies 

balsamed), jack pine (Pinus banksiana), white birch {Betula papyrifera) and trembling aspen 

{Populus tremuloides). The understory is dominated by speckled alder {Alnus incana), large-

leaved aster {Aster macrophyllus), bunchberry {Cornus canadensis) and blue bead lily {Clintonia 

borealis). (Details in chapter 1). 

3.2.2 Site selection 

Twenty four headwater streams were selected in clearcut sites of age 3 to 23 years since 

harvesting. Six more undisturbed streams with no adjacent forestry activities within 80-90 m 

were used as reference sites. During site selection physical conditions of the sites such as 

elevation, slope, aspect, soil type as well as vegetation of the sites were taken into consideration 

to reduce among site variation (Refer to chapter 1 for detailed site selection methods). 

3.2.3 Sampling Design 

To evaluate the patterns of species re-establishment, a total of 30 streams were sampled covering 

24 post-clearcut stands and 6 undisturbed stands. Sites were categorized into five age classes 

based on time since harvesting: 3 years (n=4), 7 to 10 years (n=5), 11 to 15 years (n=5), 16 to 18 

years (n=5) and 19 to 23 years (n=5). 
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Six transects were established on each stream, three in the clearcut area and three in the buffer 

area, for the study of vegetation and habitat parameters. Transects laid perpendicular to the 

stream extended up to the transition zone through the riparian zone and were divided into 

consecutive quadrats of lxl m for detailed study. A similar protocol was followed for the 

reference sites (Figure 1.2). In the study, a total of 1211 quadrats were sampled on 180 transects. 

To avoid edge effects, quadrats in the reference sites were at least 50 m away from edge of the 

stand (See chapter 1 for detailed sampling design). 

3.2.4 Field sampling 

Plants encountered in each quadrat were identified to the species level and their percent cover 

was recorded by visual estimation. For each study quadrat the following physical and 

environmental variables were also recorded: slope, aspect, stream width and depth, depth of 

organic matter, distance of quadrat from stream, riparian width, percent cover of logging slash, 

exposed rock and exposed mineral soil, and canopy exposure. These parameters were used as 

explanatory variables in the analysis. (Details in chapter 1). 

3.2.5 Data analysis 

Simple univariate measures were first calculated at the stream scale to determine the level of 

alpha-diversity and to allow for comparison between reference and clearcut sites of different 

ages since clearcut. Three diversity indices: species richness (5), Shannon-Wiener index of 

diversity (H'), and evenness (E), as well as percent total cover (abundance) were calculated. To 

test the impacts of clearcut harvesting on species richness, diversity, evenness and abundance, a 

nested model of ANOVA with type III sum of squares was used. In the model, age classes (time 
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since harvesting) and disturbance types (clearcut and buffer) were used as fixed factors, streams 

as random factor and species richness, diversity, evenness and abundance were used as response 

variables. The model used in the analyses was: 

Yijk - u + Aj + S(i)j + Dk + ADik + SD(i)jk + E(ijk) 

Where, Yjjk is the response variable (species richness/diversity/evenness/abundance) at kth 

disturbance type in the j stream of il age class, u is the overall sample mean, A, is the fixed 

effects of i' age class (I = 1, 2, ...,6), S(i)j is the random effects of j t h stream (j = 1, 2, ...,6) nested 

within age class i, Dk is the fixed effects of kth disturbance type (k = 1, 2), ADjk is the interaction 

effects of il age class with kth disturbance type, SD(j)jk is the interaction effects of kth disturbance 

type with j 1 stream nested within ith age class, and £(yk) is the error term. Applying Sometimes 

Pooling Rule the interaction effects of stream (nested within age class) and disturbance type was 

removed from the model when it was insignificant at oc=0.25 level. The analysis of variances was 

then followed by DUNCAN post-hoc test to identify significant differences between age classes 

and disturbance types. SPSS version 16.0 (SPSS, 1999) was used for the analyses. 

The overall structure and trends in the data were explored using Non-Metric Multidimensional 

Scaling (NMS), a non-parametric ordination method well suited to community data that avoids 

many of the assumptions about the underlying structure of the data made by traditional 

ordination methods (Clarke, 1993), using the autopilot option with a slow and thorough analysis 

and the default settings. Despite the difficulties in detecting discontinuities and failing to find the 

best solution because of intervening local minima, NMS was used since it tends to linearize the 

relation between environmental distance and ecological distance relieving the "zero-truncation 

problem" that plagues all ordinations of heterogeneous data sets. The hypothesis of no significant 
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floristic differences between the age classes was tested using Multiple Response Permutation 

Procedure (MRPP) (Zimmerman et al, 1985), which is a non-parametric analogue of 

Discriminant Function Analysis (DFA) that supports a multivariate test of the null hypothesis of 

no significant difference between a priori groups of samples. An Indicator Species Analysis 

(INSPAN) was used to classify the species into different harvest age classes according to their 

occurrence and abundance based on a comparison of the mean relative frequency and cover of a 

species in a pre-defined group to the same values calculated for all groups. For each individual 

species the strength of its association with a specified age group was tested with Monte Carlo 

permutations of 1000 runs where samples are randomly reassigned to groups and the indicator 

values are recalculated. Mean percent cover for all understory species were used as the response 

variable. Species found in less than 5% quadrats were removed from the analysis. A total of 135 

species was used in the analysis. All multivariate tests were carried out using the PC-ORD 

program version 4 (McCune and Mefford, 1999). 
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3.3 Results 

Highly diverse vegetation was observed in the riparian zones of small headwater streams in 

northwestern Ontario. A total of 259 species from 146 genera and 71 families were recorded 

(Appendix 4). The maximum number of species (25) was recorded from the family Cyperaceae, 

followed by Rosaceae (21) and Compositae (20). The number of species was highest for herbs 

(85) followed by mosses, shrubs and grasses with 55, 46 and 44 species, respectively. Alnus 

incana, Acer spicatum, Rubus idaeus, Corylus cornuta and Cornus stolonifera were the most 

abundant shrub species in the area. Among the herbs Aster macrophyllus, Clintonia borealis, 

Thalictrum dasycarpum, Galium asprellum and Mertensia paniculata were the most abundant. 

Calamagrostis canadensis and Carex intumescens were the most dominant grass species. 

Athyrium felix-femina was dominant among the ferns. Eurhynchium pulchellum was the most 

abundant moss in the study area. Carex crinita was fairly common in the area although it is 

considered locally rare in the Thunder Bay District (Thunder Bay Naturalists, 1998). Rubus 

idaeus and Aster macrophyllus, two upland species, were found to be dominant in the clearcut 

sites immediately after harvesting. 

3.3.1 Species richness 

There was no significant difference in overall species richness between age classes (Table 3.1). 

However, in buffer sites overall species richness in age class 5 (16.1 species/m ) was 

significantly higher than that of age class 4 (12.4). There was no significant difference in species 

richness between clearcut and buffer sites of the same age class or reference sites. Mean overall 

species richness in clearcut sites varied from 14.0 to 15.8 species per m as compared to 14.3 

species per m2 at cut locations of reference sites (Appendix 3). No gradual shift in overall species 
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richness was observed over time since harvesting either in clearcut site or in buffer sites (Figure 

3.1). 

In life-form based analysis, there was no significant difference in species richness between age 

classes (p = 0.283), but species richness in clearcut sites was significantly higher (p = 0.001) than 

that in buffer sites (Table 3.1). In clearcut sites richness of tree species was significantly higher 

in age class 4 than age class 1 and reference site (p = 0.051). There was a gradual increase in the 

richness of tree species towards older age classes. However, in buffer sites there was no 

significant difference between age classes. There was no significant difference in richness of 

shrubs either in between age classes or between clearcut and buffer sites. For herbs there was no 

significant difference in their richness among age classes (p = 0.081) and disturbance types (p = 

0.816) (Table 3.1). But, in clearcut sites the richness of herbs was significantly lower in age class 

5 than age classes 6, 1 and 2 (Figure 3.1). In clearcut sites mean richness of herbs was 3.3 for age 

class 5, which were 5.6, 5. 1 and 5.2 for age classes 1, 2 and 6, respectively. Richness of herbs 

was lower in older age classes (Appendix 3). However, in buffer sites there was no significant 

difference in the richness of herbs among age classes. Though there was no significant difference 

in the richness of fern between age classes, in the clearcut sites it was significantly lower in age 

class 1 and 2 compared to age classes 3 and 6 (Figure 3.1). Richness of grass was significantly 

different between clearcut sites and buffer sites (p < 0.001). In clearcut sites richness of grasses 

differed significantly between age classes. It reached the peak in age class 2 and then gradually 

decreased (Figure 3.1). In clearcut sites richness of moss was lowest (1.4) in age class 2 and 

highest (2.5) in age class 5. In buffer sites moss richness was significantly higher in age class 5 

(4.5) compared to other age classes (2.7, 2.1, 2. 3, 2.0 and 3.0 in age classes 1, 2, 3, 4 and 6, 

46 



respectively) (Appendix 3). Distribution of species richness data has been illustrated in Figure 

3.1. 

Table 3.1: Results of nested ANOVAs with species richness as dependent variable and age class 
and disturbance type as fixed factors, streams nested within age classes as random factor. 

Life form Sources of variation df F- value p value 
All species Age class 

Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

0.470 
3.250 
2.854 
1.752 

0.795 
0.003 
0.104 
0.161 

Tree Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.336 
1.336 

13.948 
1.836 

0.283 
0.242 
0.001 
0.144 

Shrub Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.259 
3.606 
0.057 
1.082 

0.931 
0.001 
0.813 
0.395 

Herb Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

2.257 
2.110 
0.055 
0.728 

Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

0.081 
0.037 
0.816 
0.609 

Fern 5 
24 

1 
5 

24 

0.919 
2.435 
1.762 
2.193 

Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

0.485 
0.017 
0.197 
0.089 

Grass 5 
24 

1 
5 

24 

2.283 
1.975 

35.861 
5.154 

0.078 
0.051 

O.001 
0.002 

Moss Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

3.859 
2.380 

15.357 
3.359 

0.010 
0.019 
0.001 
0.019 
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Figure 3.1: Species richness of sites differing in time since harvesting disturbance. The shaded boxes 
represent buffer locations while unshaded boxes represent clearcut locations. Horizontal bars are median 
and boxes are quartiles (25 -75) . Superscripts came from the results of Duncan post hoc tests. 
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3.3.2 Species abundance 

There was a significant difference in overall species abundance between clearcut and buffer sites 

(p = 0.049), but between the age classes it was not significant (p = 0.172) (Table 3.2). In clearcut 

sites species abundance was lowest in age class 1 (232.0) and highest in age class 3 (277.1). 

However, in buffer sites overall species abundance was significantly different between the age 

classes. In buffer sites overall abundance was highest in age class 5 (275.6) and lowest in age 

class 1 (186.8) (Appendix 3). Species abundance data has been illustrated in Figure 3.2. 

There was significant difference in the abundance of tree species between clearcut and buffer 

sites (p = 0.017). In clearcut sites age class 4 had the highest abundance (24. 7) and lowest in the 

reference sites (3.9). In buffer sites abundance of tree species gradually increased up to age class 

3 and then started decreasing. Age class 3 had the highest abundance (9.4) and age class 1 had 

the lowest (1.5). Abundance of shrub almost gradually increased towards older age classes, but 

there was no significant difference between age classes. In both cut and buffer sites abundance of 

herb was highest (76.9 and 77.8, respectively) in age class 2 and then gradually decreased 

towards older age classes (Appendix 3). Abundance of fern was significantly lower in age 

classes 1 and 2 in clearcut sites, however, in buffer sites there was no significant difference 

between age classes. Abundance of grasses was significantly different between age classes (p = 

0.012) and clearcut and buffer sites (p < 0.001) (Table 3.2). In clearcut sites mean grass 

abundance was highest (79.3) in age class 2 which gradually decreased over time and lowest 

(14.2) in reference sites (Appendix 3). Abundance of mosses were significantly different 

between disturbance types (p = 0.001). Abundance of moss gradually increased towards older 

age classes both in clearcut and buffer sites (Appendix 3). 
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Table 3.2: Results of nested ANOVAs with species abundance as dependent variable and age 
class and disturbance type as fixed factors, streams nested within age classes as random factor. 

Life form Sources of variation df F- value p value 
All species Age class 

Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.703 
2.564 
4.297 
1.641 

0.172 
0.012 
0.049 
0.187 

Tree Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.451 
1.300 
6.520 
2.573 

0.242 
0.263 
0.017 
0.053 

Shrub Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

1.446 
0.909 
0.064 
0.716 

0.244 
0.591 
0.802 
0.618 

Herb Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

1.845 
2.377 
0.885 
1.488 

0.142 
0.019 
0.356 
0.231 

Fern Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.606 
2.620 
1.295 
2.551 

0.197 
0.011 
0.266 
0.055 

Grass Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

3.755 
1.542 

37.302 
6.483 

0.012 
0.148 

<0.001 
0.001 

Moss Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.968 
3.208 

13.921 
1.477 

0.120 
0.003 
0.001 
0.234 
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Figure 3.2: Species abundance of sites differing in time since harvesting disturbance. The shaded boxes 
represent buffer locations while unshaded boxes represent clearcut locations. Horizontal bars are median 
and boxes are quartiles (25 - 75). Superscripts came from the results of Duncan post hoc tests. 
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3.3.3 Species diversity 

There was no significant difference in overall species diversity between age classes (p = 0.530), 

but it was significantly different between disturbance types (p = 0.019) (Table 3.3). In clearcut 

sites age class 1 had the highest overall species diversity (2.5) and lowest in reference sites (2.3). 

Species diversity gradually decreased towards the older age classes. In buffer sites age class 5 

had significantly higher diversity (2.5) than that of age class 4 (2.2) (Appendix 3). 

In the study area diversity of tree species was very low compared to other life forms (Appendix 

3). There was no significant difference in the diversity of trees or shrubs among age classes 

either in clearcut sites or in buffer sites. In clearcut sites diversity of shrubs varied from 0.8 in 

reference sites to 1.1 in age class 3. However, diversity of herbs differed significantly between 

age classes (p = 0.047). In clearcut sites diversity of herbs was highest in age class 1 (1.5), which 

gradually decreased towards the older age classes and was lowest in age class 5 (1.0). There was 

no significant difference in the diversity of ferns between age classes (p = 0.630) and disturbance 

types (p = 0.345). In clearcut sites diversity of ferns was highest in age class 3 and lowest in age 

class 2. Diversity of grasses was significantly different between clearcut and buffer sites (p < 

0.001). However, it was not significant between age classes (p = 0.145). In clearcut sites, 

diversity of grasses was significantly higher in age classes 1 and 2 than that of the reference sites. 

In clearcut sites diversity of grasses decreased gradually towards the older age classes, whereas 

in buffer there was a gradual increase in grass diversity towards the older age classes. Diversity 

of mosses was significantly different between age classes (p = 0.019) as well as between clearcut 

and buffer sites (p = 0.002). In buffer sites moss diversity was significantly higher in age class 5 

than all other age classes. Figure 3.3 illustrates the distribution of species diversity data. 
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Table 3.3: Results of nested ANOVAs with species diversity as dependent variable and age class 
and disturbance type as fixed factors, streams nested within age classes as random factor. 

Life form Sources of variation df F- value p value 
All species Age class 

Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.847 
3.153 
6.362 
2.728 

0.530 
0.003 
0.019 
0.043 

Tree Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.820 
1.420 
3.014 
2.530 

0.547 
0.198 
0.095 
0.056 

Shrub Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

0.364 
2.741 
1.531 
0.852 

0.868 
0.008 
0.228 
0.527 

Herb Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

2.674 
1.682 
0.008 
0.565 

0.047 
0.105 
0.931 
0.726 

Fern Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

0.698 
1.918 
0.929 
2.157 

0.630 
0.059 
0.345 
0.093 

Grass Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.827 
2.641 

36.162 
5.061 

0.145 
0.010 

O.001 
0.003 

Moss Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

3.361 
2.301 

11.429 
3.130 

0.019 
0.023 
0.002 
0.026 
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Figure 3.3: Species diversity of sites differing in time since harvesting disturbance. The shaded boxes 
represent buffer locations while unshaded boxes represent clearcut locations. Horizontal bars are median 
and boxes are quartiles (25 - 75). Superscripts came from the results of Duncan post hoc tests. 
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3.3.4 Evenness of species 

Overall evenness of species or any of the life forms was not significantly different between the 

age classes. It was also not significantly different between disturbance types except for grasses 

(Table 3.4). However, species evenness of age class 5 was significantly lower than that of age 

class 4 in buffer sites. Herbs were comparatively evenly distributed in reference sites than other 

age classes. Evenness of grasses was significantly different between clearcut sites and buffer 

sites (p < 0.001). In clearcut sites evenness of grasses was significantly higher in age class 1 than 

age class 6. But, in buffer sites evenness of grasses was highest in age class 5 and lowest in age 

class 1 (Appendix 3). In clearcut sites age class 2 had significantly lower evenness of mosses 

than age classes 3 and 5. In buffer sites evenness of mosses was significantly lower in age class 4 

than age class 5 (Appendix 3). Distribution of species evenness data has been illustrated in 

Figure 3.4. 
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Table 3.4: Results of nested ANOVAs with species evenness as dependent variable and age 
class and disturbance type as fixed factors, streams nested within age classes as random factor. 

Life form Sources of variation df F- value p value 
All species Age class 

Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

0.681 
2.791 
0.780 
1.405 

0.642 
0.007 
0.386 
0.258 

Tree Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

0.836 
1.420 
2.869 
2.570 

0.537 
0.198 
0.103 
0.053 

Shrub Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

1.125 
2.484 
2.339 
0.459 

0.374 
0.015 
0.139 
0.803 

Herb Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

2.269 
1.033 
0.119 
0.786 

0.080 
0.469 
0.733 
0.570 

Fern Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

0.879 
1.900 
0.974 
1.846 

0.510 
0.061 
0.333 
0.142 

Grass Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 

1 
5 

24 

1.344 
2.817 

17.809 
3.379 

0.280 
0.007 

<0.001 
0.019 

Moss Age class 
Stream(Age class) 
Disturbance type 
Age class x Disturbance type 
Error 

5 
24 
1 
5 

24 

1.323 
2.253 
2.444 
2.735 

0.288 
0.026 
0.131 
0.043 
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Figure 3.4: Species evenness of sites differing in time since harvesting disturbance. The shaded boxes 
represent buffer locations while unshaded boxes represent clearcut locations. Horizontal bars are median 
and boxes are quartiles (25 - 75). Superscripts came from the results of Duncan post hoc tests. 
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3.3.5 NMS ordination, MRPP and Indicator Species Analysis 

The Non-metric Multidimensional Scaling (NMS) of species composition within streams 

identified a 2-dimensional optimum solution (Figure 3.5). The final stress was 18.273, which is 

fairly low. Since the correlations (r ) between ordination distances in the final solution and 

distances in the original n-dimensional space are 0.561 and 0.236 for the first and second axes, 

respectively the solution is very strong. These two axes together give a cumulative r2 of 0.797, 

accounting for most of the variance structuring the data set. In the ordination space Axis 1 is 

strongly negatively correlated with canopy exposure and positively correlated with ground 

exposure. Axis 2 is positively correlated with distance from stream and negatively correlated 

with exposed rock cover. Species with high scores on NMS axis 1 appear in the right quadrant of 

the ordination (Figure 3.6). These are mostly shade tolerant species e.g., Acer spicatum, Circaea 

alpina, Osmunda claytoniana, Viola nephrophylla, etc. Species with low scores on NMS axis 1 

(Figure 3.6) appear in the left quadrant of the ordination. These plants attained their maximum 

abundance in exposed sites following clearcut harvesting, i.e. Epilobium angustifolium, 

Calamagrostis canadensis, Elymus repens, Equisetum pretense, Carex lasiocarpum, Fragaria 

vesca, Aster ciliolatus, etc. Plants with low scores on NMS axis 2 are mostly typical of disturbed 

sites like Cinna latifolia, Oryzopsis asperifolia, Fragaria vesca, etc. Polytrichum commune 

grows well on exposed rocks. Plants preferring moist upland sites appeared towards the high 

score end of NMS axis 2 (Figure 3.6). 
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Figure 3.5: NMS ordination of average species composition within age classes and disturbance types. 
Younger sites are structured towards high canopy exposure and older sites along with buffered and 
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Figure 3.6: NMS species ordination using the mean percent cover of 135 species within 30 
streams. Species scores are shown for the first two axes of the ordination. Axis 1 explains 56.1% 
and Axis 2 explains 23.6% variation of the species data. Species are represented by codes that 
are the first three letters of the generic name followed by first three letters of the species name. 
Species within the dashed and compact ovals are mostly shade intolerant ruderal and shade 
tolerant old-growth species, respectively. 

The MRPP showed significant differences in floristic compositions between sites of different age 

classes since harvesting (p < 0.001) and low within-group homogeneity (A = 0.089). This 

indicates overall differences in riparian community composition at different stages of recovery 
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from harvesting disturbances; however there is also a great deal of variation within age classes. 

The distance values indicate that age class 5 in clearcut sites is most different from other age 

classes (Table 3.5). 

Table 3.5: Results of MRPP testing the null hypothesis of no significant differences in floristic 
composition between age classes and disturbance types. 

Age classes Average distance MRPP statistics 
1 (Cut) 
2 (Cut) 
3(Cut) 
4 (Cut) 
5 (Cut) 
1 (Buffer) 
2 (Buffer) 
3 (Buffer) 
4 (Buffer) 
5 (Buffer) 
Ref. (Cut location) 
Ref. (Buffer location) 

0.55372091 
0.59745064 
0.59587736 
0.68197275 
0.49387498 
0.51341548 
0.55037705 
0.62808828 
0.71122472 
0.55747233 
0.61957014 
0.60051063 

Observed delta = 0.59451201 

Expected delta = 0.65225391 

T = -7.0901302 

A = 0.08852671 

p = 0. 00000005 

Indicator Species Analysis results showed that out of 135 species in the analysis (Appendix 5), 

23 were significantly associated with any particular age class. Eighteen species showed almost a 

complete lack of association with any particular age class. Most of the species associated with 

the young clearcut sites were ruderal invading species, shade intolerant in nature. Species with 

special affinity for buffered sites were mostly mosses. Commonly known as mid-seral species 

Lycopodium dendroideum and late-seral species Maianthemum canadense were found associated 

with age class 1 in the buffer sites. Acer spicatum was the only species significantly associated 

with the reference age at clearcut location (Table 3.6). Sorbus americana, Circaea alpina, 

Mitella nuda, Brachythecium rivulare, Dicranum flagellare and Rhodobryum roseum attained 

their highest frequency and abundance in reference forest. 
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Table 3.6: Affinity of species for a particular age class and disturbance type as revealed by the 
Indicator Species Analysis. For each species the significance of the association was tested in a 
Monte Carlo permutation test (999 permutations). 

Age class 

1 

Clearcut site 
Species 
Populus tremuloides 
Prunus virginiana 
Prunus pensylvanica 

p value 
0.0056 
0.0072 
0.0474 

Buffer site 
Species 
Maianthemum canadense 
Climacium dendroides 
Lycopodium dendroideum 

p value 
0.0040 
0.0256 
0.0480 

2 Epilobium angustifolium 0.0008 Plagiomnium spp. 0.0180 
Calamagrostis canadensis 0.0034 
Car ex lasiocarpum 0.0044 
Rubus idaeus 0.0262 
Brachyelytrum erectum 0.0462 

3 Equisetum pretense 0.0128 
4 Abies balsamea 0.0116 
5 Dicranum polysetum 0.0072 

Dicranum scoparium 0.0228 
Viola macloskeyi 0.0272 
Rubus pubescens 0.0346 
Sphagnum angustifolium 0.0504 

Reference Acer spicatum 0.0500 Eurhynchium pulchellum 0.0038 
Fissidens spp. 0.0126 
Brachythecium rivulare 0.0260 

3.3.6 Differences in species composition among age classes 

The study revealed that after clearcut harvesting (up to 10 years) total number of species was 

higher in the cut over areas. At the age of 23 years after harvesting total number of species was 

equal to that of the reference sites at cut location. In buffer sites the number of species in 

different age classes was slightly lower than the reference site of buffer location, except in age 

class 5, which was slightly higher. With these differences in species number a remarkable 

difference was also observed in the species composition between harvested sites and reference 

sites. Some species like Betula papyrifera, Amelanchier spp., Diervilla lonicera, Salixpetiolaris, 

Vaccinium angustifolium, Cirsium muticum, Epilobium angustifolium, Hieracium aurantiacum, 
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Carex crinita, C. houghtoniana and Calamagrostis canadensis were found to invade the cut area 

whereas several old-growth species like Actaea rubra, Atrichum spp., Dicranum montanum, 

Gentiana rubricaulis, Distichium capillaceum and Myurella julacea locally disappeared after 

clearcut harvesting. Sixty five new species were recruited and 36 had disappeared from age class 

1 of clearcut site as compared to the reference sites of cut location. Towards the older age classes 

both the number of new species recruitment and disappearance was reduced (Figure 3.7 & 

Appendix 4). 
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Figure 3.7: Number of species recruited and disappeared at different clearcut ages as compared 
to the reference sites (Figures a and b indicate clearcut and buffer sites, respectively). 

A substantial difference was also observed in the composition of life forms between cut and 

reference sites. In clearcut sites mean total cover of grass was very high up to 10 years after 

harvesting and then gradually decreased towards the older age classes. An opposite trend was 

observed for moss and fern cover. Herb cover was very high up to 3 years and then gradually 

declined towards the older age classes. Differences in the composition of life forms among age 
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classes have been illustrated in Appendix 6a and 6b. A shift in species dominance was also 

observed between the age classes. Rubus idaeus was the most dominant species in age class 1 

and 2 of clear cut sites, while Alnus incana was the dominant species in the subsequent age 

classes. Alnus incana was also most dominant in all the five age classes in buffered sites. Acer 

spicatum was the most dominant species in the reference sites of both cut and buffer locations. 

3.4 Discussion 

I found that clearcut harvesting along headwater streams had no significant effect on overall 

diversity indices (species richness, abundance, diversity or evenness) of riparian vegetation. 

Overall species richness and diversity were slightly higher immediately after harvesting in age 

class 1 compared to other age classes and the reference sites. This result may be due to a short-

term increase in both indices due to the survival of generalist species, tolerant of disturbance 

along with the addition of a remarkable number of invading species to the community. Crawford 

et al. (2001) also observed a higher species richness after moderate to high severity disturbance 

due to exotic species and native ruderal species. A similar conclusion was drawn by Roberts and 

Zhu (2002). Although clearcut harvesting had no significant impact on overall species richness 

and diversity, has caused local elimination of some late-seral species like Actaea rubra, 

Atrichum spp., Dicranum montanum, Gentiana rubricaulis, Distichium capillaceum, Myurella 

julacea, etc. The absence of these species from all later harvest age classes may be evidence of a 

lack of recovery over 23 years after harvesting. In a study Moola and Vasseur (2004) found no 

immediate impact of clearcutting on overall alpha richness or diversity. But, richness and 

diversity of residual plants declined after canopy removal, which showed no evidence of 

recovery over 54 years of secondary succession. Immediately after clearcut harvesting some 
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species disappeared but recovered within 10 years and some others took 23 years to re-establish. 

Some ruderal species invaded the area after harvesting and was found surviving even until 23 

years after harvesting while some others disappeared at different stages of habitat recovery, 

which might lead to a compositional change in the riparian vegetation following harvesting. 

These results are quite consistent with the findings of Peterken (1996) and Battles et al. (2001). 

Their results show that although overall species richness and diversity recovers rapidly during 

secondary succession, many of the typical residual species are eliminated from the plant 

communities of secondary forests. Loya and Jules (2008) concluded that forest harvesting results 

in a significant difference in plant communities compared to old-growth forests causing loss of a 

portion of old-growth flora immediately after logging. Moola and Vasseur (2004) also stated that 

clearcut harvesting results in compositional differences between secondary and late-seral stands, 

which persist for many decades after clearcutting. As stated by McLachlan and Bazely (2001) 

even if significant number of residual species is lost after clearcutting, diversity indices will not 

change if the plants eliminated are replaced by an equal or greater number of new invading 

species. 

Species composition differences of different age classes may suggest vegetation recovery. MRPP 

results showed age class 5 of clearcut sites most different from other age classes. This may be 

attributed to the disappearance of some of the initially invaded ruderal species due to decreased 

canopy exposure at this stage and failure of some late-seral species to re-establish. Immediately 

after harvesting herb and grass cover was very high that decreased gradually over time. Most of 

these species are shade intolerant. On the other hand shade tolerant fern and moss cover was low 

initially, which increased gradually over time. Invading species are predominantly intolerant to 

shade and rapid reduction in light availability results in their elimination (Klinka et al., 1985). 
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Again, relatively open canopy of immature stands favor the persistence of invading ruderal 

species with an intermediate tolerance to shade (De Grandpre et al., 2000). Schoonmaker and 

McKee (1988) found richness of shrubs and herbs at their peak two to five years after harvesting. 

Following clearcut harvesting a shift in the species dominance was also observed. Acer spicatum 

was the most dominant species in the reference site of both cut and buffer locations. But, in age 

classes one and two Rubus idaeus became the dominant species, which is an early successional 

species. Ten years after disturbance Rubus idaeus was replaced by Alnus incana, which 

developed extensive thickets and maintained its dominance untill 23 years. In buffered sites 

Alnus incana was also the most dominant species from age class 1 through age class 5. Alnus 

incana is a clonal species spread by layering and maintains dominance by stem-base re-sprouting 

(Bell, 1991) and thus once established maintains dominance for a long time (Huenneke, 1987). 

Through the Indicator Species Analysis Populus tremuloides, Prunus virginiana and P. 

pensyhanica were found to be associated with very young (up to 3 years) clearcut sites and 

Epilobium angustifolium, Calamagrostis canadensis, Carex lasiocarpum, Rubus idaeus and 

Brachyeltrum erectum were indicators of moderately young ( 7 - 1 0 years) clearcut sites, all of 

which are shade intolerant early successional species. Shade tolerant Acer spicatum is the only 

species that showed its affinity to undisturbed reference sites at comparable clearcut location. 
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3.5 Conclusions 

This study suggested that immediately after clearcut harvesting riparian vegetation becomes 

dominated by shade-intolerant ruderal species. Though some of these invaders disappear over 

time, others persist for a long period of time. No evidence of recovery of some typical riparian 

species was found over a period of 23 years. Although clearcut harvesting along small headwater 

stream does not affect the overall diversity indices of the riparian vegetation significantly, it 

alters the composition of the vegetation. Following harvesting disturbance a shift in species 

dominance may cause long-term effects on the future structure of the riparian vegetation, which 

in turn may cause significant changes in the ecological services they provide. Therefore, it is 

important to bring these headwater streams and associated riparian vegetations under necessary 

management actions for the maintenance of important ecological services they provide. In this 

case selective/partial harvesting or cultivating fast growing cover crops along headwater systems 

immediately after clearcutting may be the potential management options. 
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Chapter 4 

GENERAL DISCUSSION 

Most riparian research focuses on the consequences of forest harvesting on stream temperature, 

aquatic communities and regeneration of commercially valuable, shade-tolerant canopy species and on 

the effectiveness of buffers in preventing these consequences (Schuler and Gillespie, 2000). 

Relatively less attention has been given to unbuffered headwater streams, the properties of which 

differ markedly from those of the larger streams (Anderson et al., 2007). In this study I 

investigated the impacts of clearcutting on geomorphology and understory vegetation of 

headwater systems in the boreal forests of northwestern Ontario with main focuses on: 1) 

biophysical response of headwater systems to clearcutting and 2) differences in riparian 

understory vegetation over time after clearcut harvesting. 

I found that clearcutting along headwater stream significantly influenced the biophysical features 

of the headwater system and their overall recovery appeared to take at least 16-18 years after 

harvesting. Clearcutting does not affect the overall diversity indices significantly, but resulted in 

changes in floristic compositions. Several residual species appeared to be locally eliminated and 

had not recovered within 23 years after harvesting. 

Streams were significantly wider in clearcut sites up to 3 years after clearcutting but after 10 

years there was no significant difference between subsequent age classes and reference streams. 

There was no significant difference in stream width between clearcut and buffer sites of the same 

age class. In clearcut sites stream depth was significantly less in harvested sites, which was 

detectable even 23 years after clearcutting. Both in clearcut and buffer sites stream depth 
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increased almost gradually towards the older age classes, with an exception of age class five. In 

age class 5 the riparian zone was the widest compared to other age classes and slash 

accumulation was also highest, which may have resulted in lower stream depth. Immediately 

after clearcutting (up to 3 years after harvesting) the number of stream channels was significantly 

greater in clearcut sites than in other age classes. These results support the first hypothesis that 

recently harvested areas will show the greatest difference from reference forest in biophysical 

factors. Immediately after clearcut water yield increases significantly due to loss of 

evapotranspiration (Bosch and Hewlett, 1982; Stednick, 1996; Sun et al., 2005; Hubbart et al, 

2007). Moreover, clearcut harvesting may increase slash loads in stream channels resulting in 

slowing stream flow, retaining and storing fine sediments and redirecting flow to create bank 

erosion (Jackson et al., 2001; Jackson and Sturm, 2002; Haggerty et al., 2004; Hassan et al., 

2005). Therefore, immediately after harvesting stream depth may decrease and consequently 

stream width will increase to hold and discharge an increased volume of water. Over time water 

yield decreases with increasing canopy cover (Bosch and Hewlett, 1982; Bari et al., 1996) and 

accumulated harvest slash and sediments detained within slash deteriorate (Jackson et al., 2001; 

Jackson and Sturm, 2002; Haggerty et al., 2004). As a result stream depth is expected to increase 

gradually. My findings are consistent with these observations. However, Sweeney et al. (2004) 

and Hession et al. (2003) demonstrated an opposite result that forested stream channels are wider 

than deforested stream channels. They argued that stream bank encroachment by grasses narrows 

down the stream channels. But, my observations suggest that water yield, bank erosion and 

sediment and slash accumulation in the streambed have more influence on stream structure than 

bank encroachment by herbaceous plants. 
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Immediately after harvesting multiple water channels were observed in clearcut sites, which was 

significantly higher in age class 1 compared to other age classes and reference sites. Sediment 

deposition in channels alters channel gradient (Hogan et al., 1998) and a large accumulation of 

sediment may force a lateral shift in unconfmed channels, diverting the flow and resulting in the 

formation of multiple channels (Jackson et al., 2007). Among multiple channels, the channels 

towards the upward slope acts as cross drainage, which hold sediments eroded from up slope and 

gradually silted up. Consequently, in course of time one channel perpetuates and side channels 

disappear. 

Canopy exposure was significantly higher up to 15 years after harvest compared to reference and 

older cut sites (18 years after harvesting). An opposite trend was observed in case of ground 

exposure, which was very low up to 10 years following clearcutting and then increased with an 

exception of age class 5. Increased light availability following clearcutting stimulates understory 

vegetation, resulting in lower ground exposure (Jackson et al., 2007). In age class 5 high 

abundance of moss resulted in lower ground exposure. 

I found no significant effect of harvesting age on overall species richness, abundance, diversity 

or evenness of riparian understory vegetation. However, there was significant difference in 

species abundance and species diversity between clearcut and buffer sites. Overall species 

diversity of clearcut sites was higher than that of buffer sites in all the age classes except age 

class 5. This result contradicts with the findings of Biswas and Mallik (2009). They reported a 

higher species diversity and functional diversity of riparian understory vegetation in buffer sites 

compared to 3 to 6 year-old clearcut and reference sites. In my study I found a large number of 

invading ruderal species added to the community along with the survival of disturbance-tolerant 
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generalist species in clearcut sites of younger ages (3-10 years after clearcut), which resulted in 

higher species diversity in clearcut sites than in buffer sites. Moreover, riparian vegetation is 

highly resilient to changes in microclimate that occur following removal of the adjacent forest 

canopy (Brosofske et al., 1997). Riparian species frequently have mechanisms to survive 

flooding due to their tolerance for anoxic rooting zones (Blom and Voesenek, 1996). These 

species also have dispersal and establishment strategies such as the ability to rapidly colonize 

bare sediments and aggressive clonal growth that allow rapid recovery from disturbance (Naiman 

and Decamps, 1997). All these might result in higher species richness at clearcut sites of early 

stage compared to the buffer sites. 

Although clearcut harvesting had no significant impact on overall species richness and diversity, 

it may have caused local elimination of some residual species such as Actaea rubra, Atrichum 

spp., Dicranum montanum, Gentiana rubricaulis, Distichium capillaceum and Myurella julacea. 

These species showed no evidence of recovery since 23 years after harvesting. On the other hand 

though some invading species disappeared at different stages of habitat recovery, some remained 

even until 23 years after harvesting resulting a compositional change over time. These results are 

consistent with that of Loya and Jules (2008) who reported that forest harvesting results in a 

significant difference in plant communities compared to old-growth forests due to loss of a 

portion of old-growth flora immediately after logging. As stated by McLachlan and Bazely 

(2001) even if significant numbers of residual species are lost after clearcutting, diversity indices 

will not change if the plants eliminated are replaced by an equal or greater number of new 

invading species. 
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Generalist species had a complete lack of association with any particular age classes or 

disturbance types. These species were found throughout all age classes and disturbance types 

with relatively little changes in their abundance following clearcut harvesting. A similar 

conclusion was also made by Moola and Vasseur (2004). Ruderal species, which are shade 

intolerant early successional species, were found to be indicator of younger (3-10 years) clearcut 

sites. Moola and Vasseur (2004) also found that ruderal invading species originating from wind 

dispersed seeds or spores were associated or restricted to the young clearcut sites. Shade tolerant 

Acer spicatum is the only species showed its affinity to undisturbed reference sites of clearcut 

location. 

The study result implies that anthropogenic disturbance, especially clearcut harvesting along 

headwater system significantly alter the biophysical conditions of the system. Leaving the 

headwater system unattended, protection of water quality and aquatic environment and 

conservation of biodiversity may not be possible, which is the prime objective of sustainable 

forest management. Therefore, it is important to bring these headwater streams and associated 

riparian vegetations under necessary management actions for the maintenance of important 

ecological services they provide. Potential management options may be selective/partial 

harvesting along headwater systems instead of clearcutting or cultivation of suitable fast growing 

cover crops immediately after clearcut harvesting. 
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FUTURE RESEARCH DIRECTIONS 

Much research is still needed to fill the gaps in the basic understanding of the riparian ecology of 

headwater system which are much more sensitive than larger streams. Some of the important 

issues that need to be addressed are: 

1) Since habitat heterogeneity is an important factor to the biophysical response to 

disturbance, study of habitat and vegetation recovery based on different streams for 

different age classes might result some noises. To eliminate that and to provide better 

insights to harvesting impacts on headwater system and their recovery patterns pre- and 

post-harvest study along same stream is needed. 

2) In this study canopy exposure was found to play a vital role in the recovery of headwater 

system. After clearcut harvesting taking the advantages of high canopy exposure invading 

species replaces shade tolerant old-growth species. Therefore, after harvesting it is 

important to bring these highly sensitive zones under close vegetation cover as soon as 

possible. Protection of all headwater systems through treed buffer is not economically 

feasible. Therefore, researches might be directed to test whether these zones can 

effectively be protected by raising some suitable cover crops along headwater systems 

immediately after clearcut harvesting instead of treed buffer. 

3) Findings of this study suggest that clearcutting brings compositional changes in the 

headwater riparian understory vegetations and locally eliminate some old-growth species. 

So, to ensure conservation of rich riparian biodiversity, it is important to investigate the 

duration over which such compositional changes persist. And it is also important to 

investigate the influence of such changes on subsequent ecosystem functioning. 
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Appendix 1: Mean values (± standard deviations) of some habitat parameters of the sampling sites 

Age class & 
location 

Stream 
Width 
(cm) 

Stream 
Depth 
(cm) 

Riparian 
width (m) 

Ground 
exposure 
(%) 

Canopy 
exposure 
(%) 

DOM 
(cm) 

Disturbance 
Index 

l C u t 
1 Buffer 
2 Cut 
2 Buffer 
3 Cut 
3 Buffer 
4 Cut 
4 Buffer 
5 Cut 
5 Buffer 
Ref. CL 
Ref. BL 

107.3 1 22.5 
93.1±11.9 
74 .919 .4 
71 .9116.5 
88.2 114.6 
87.6 110.0 
82 .5111.9 
80 .716 .4 
85.5 110.0 
73 .1112 .1 
80 .616 .7 
80 .418 .1 

14 .614.5 
21 .118 .1 
20.7 + 7.0 
26.7 + 7.2 
19.417.2 
25 .917 .6 
24 .518 .3 
30.8 1 7.8 
19.314.9 
19.4 + 7.2 
28 .218 .4 
31 .015 .8 

7 .011.9 
8 .815.3 
6 .911.6 
7 .313 .0 
7 .912.4 
8 .012.8 
8.5 + 2.7 
7.3 + 2.2 
9 .012.4 
7 .912.2 
7 .913 .3 
7 .513.2 

3.7 + 5.0 
12.5117.9 
2.6 + 4.3 
8 .819.9 
13.7122.5 
23.1119.7 
21 .6124 .1 
27.0123.4 
7 .5111.4 
9.2 110.9 
20.9 + 21.5 
30.0124.9 

90.3 + 11.5 
13 .117.6 
87.7 116.0 
15.7 + 5.1 
41 .4135.4 
21.1120.2 
28 .3132.6 
15.1 + 15.7 
25.7111.2 
26.5 115 .1 
7 .615 .6 
7.2 + 4.8 

15 .315.2 
21.2 16.6 
16 .915.4 
18.9 17.2 
17 .614.3 
16 .015 .1 
17 .114.5 
17 .715 .5 
15.5 14 .1 
18.3 + 5.6 
17 .915 .1 
20 .916 .9 

38.43 + 2.91 
30.73 1 5.84 
33 .1713.45 
35 .9119 .24 
35.73 13.02 
30 .6814.69 
30.31 + 6.62 
31 .0819 .86 
30.69 1 9.68 
28.93 16.20 
21.72 + 7.13 
21.80 1 9.89 

Note: CL = clearcut location (supposed to be clearcut in case of harvesting); BL = buffer location (closed to large 
stream and supposed to be left as buffer in case of harvesting); DOM = Depth of organic matter. 

Appendix 2: The proportion of the total variance in the discriminant scores not explained by 
differences among the groups and their level of significance. 
Test of Function(s) Wilks' lambda Chi-square df Sig. 
1 through 8 
2 through 8 
3 through 8 
4 through 8 
5 through 8 
6 through 8 
7 through 8 
8 

.018 

.102 

.223 

.406 

.635 

.829 

.950 

.992 

196.137 
111.674 
73.617 
44.168 
22.251 

9.211 
2.511 

.413 

88 
70 
54 
40 
28 
18 
10 
4 

.000 

.001 

.039 

.300 

.770 

.955 

.991 

.981 
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Appendix 3: Mean species richness, abundance, diversity and evenness at quadrat level for different 

age classes and disturbance types. 

t Diversity Age class 
^ indices 1 2 3 
j § Cut Buffer Cut Buffer Cut 
£ Richness 15.76 13.77 14.92 14.07 15.27 
'g Abundance 232.03 186.78 269.54 261.46 277.09 
_§• Diversity 2.52 2.22 2.42 2.36 2.42 
< Evenness 0.17 0.17 0.17 0.18 0.17 

Richness 0.34 0.06 0.41 0.18 0.45 
<u Abundance 7.61 1.44 6.38 4.78 10.53 
K= Diversity 0.00 0.00 0.02 0.02 0.03 

Evenness 0.00 0.00 ' 0.01 0.01 0.02 
Richness 3.44 3.92 3.12 3.66 3.92 

•§ Abundance 70.71 84.79 75.15 96.04 106.26 
£ Diversity 1.00 0.99 0.92 1.04 1.10 

Evenness 0.27 0.25 0.27 0.27 0.28 
Richness 5.60 4.69 5.07 5.29 4.08 

-o Abundance 75.82 46.24 76.94 77.76 50.74 
x Diversity 1.48 1.30 1.33 1.43 1.14 

Evenness 0.27 0.29 0.25 0.27 0.27 
Richness 0.73 1.22 0.57 1.26 1.64 

c Abundance 7.96 18.46 6.52 29.08 36.72 
£ Diversity 0.12 0.23 0.10 0.28 0.37 

Evenness 0.05 0.09 0.04 0.12 0.13 
Richness 3.68 1.21 4.35 1.56 3.05 

$ Abundance 50.90 10.87 79.28 18.08 41.91 
<5 Diversity 1.02 0.27 1.13 0.37 0.82 

Evenness 0.25 0.10 0.24 0.14 0.20 
Richness 1.97 2.68 1.39 2.12 2.12 

K Abundance 19.03 24.98 25.28 35.73 30.93 
^ Diversity 0.57 0.71 0.36 0.64 0.63 

Evenness 0.18 0.18 0.12 0.21 0.21 

?s and disturbance types 
_ _ _ 4 5 Reference 
Buffer Cut Buffer Cut Buffer Cut Buffer 
13.63 13.97 12.35 14.15 16.10 14.32 13.96 

248.75 260.39 218.89 256.77 275.59 252.69 255.12 
2.24 2.32 2.15 2.35 2.49 2.26 2.25 
0.17 0.18 0.18 0.17 0.16 0.17 0.17 
0.29 0.73 0.25 0.55 0.20 0.20 0.30 
9.42 24.65 5.09 15.03 4.01 3.93 8.61 
0.03 0.10 0.00 0.06 0.01 0.01 0.04 
0.01 0.05 0.00 0.03 0.01 0.00 0.02 
3.63 3.32 3.17 3.94 3.23 3.36 3.26 

95.49 84.16 84.25 101.02 89.38 99.15 96.68 
0.97 0.94 0.82 1.10 0.78 0.84 0.82 
0.26 0.27 0.23 0.28 0.28 0.23 0.22 
4.26 3.98 3.83 3.26 3.95 5.20 4.77 

53.04 53.40 49.90 44.35 52.93 59.51 56.69 
1.17 1.13 1.09 0.95 1.11 1.47 1.37 
0.25 0.27 0.27 0.26 0.26 0.29 0.29 
1.24 1.18 1.25 1.17 1.57 1.50 1.24 

31.43 26.25 24.09 27.42 38.28 38.83 26.29 
0.24 0.27 0.25 0.19 0.38 0.36 0.25 
0.09 0.11 0.10 0.09 0.14 0.15 0.12 
1.92 2.50 1.80 2.70 2.62 1.62 1.37 

20.41 36.95 20.14 34.50 30.83 14.16 15.70 
0.56 0.71 0.48 0.77 0.77 0.42 0.31 
0.20 0.22 0.17 0.22 0.24 0.16 0.12 
2.28 2.26 2.04 2.54 4.54 2.44 3.02 

38.97 34.98 35.41 34.43 60.16 37.11 51.15 
0.64 0.64 0.52 0.74 1.24 0.63 0.84 
0.19 0.19 0.14 0.21 0.26 0.16 0.21 
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Appendix 4: Complete list of species observed in the study area along with their status in 
different age classes following clearcut harvesting. 

Family Species Status of species in different age classes 
RC 1C 2C 3C 4C 5C RB IB 2B 3B 4B 5B 

Pinaceae 
Betulaceae 
Oleaceae 
Pinaceae 
Pinaceae 
Pinaceae 
Pinaceae 
Salicaceae 
Salicaceae 
Aceraceae 
Betulaceae 
Betulaceae 
Rosaceae 
Rosaceae 
Ericaceae 
Ericaceae 
Cornaceae 
Betulaceae 
Caprifoliaceae 
Ericaceae 
Ericaceae 
Ericaceae 
Caprifoliaceae 
Caprifoliaceae 
Caprifoliaceae 
Caprifoliaceae 
Caprifoliaceae 
Caprifoliaceae 
Rosaceae 
Rosaceae 
Rosaceae 
Rosaceae 
Rhamnaceae 
Rhamnaceae 
Grossulariaceae 
Grossulariaceae 
Grossulariaceae 
Grossulariaceae 
Grossulariaceae 
Rosaceae 
Rosaceae 
Rosaceae 

Abies balsamea 
Betula papyrifera 
Fraxinus nigra 
Larix laricina 
Picea glauca 
Picea mariana 
Pinus banksiana 
Populus balsamifera 
Populus tremuloides 
Acer spicatum 
Alnus incana 
Alnus viridis 
Amelanchier stolonifera 
Amelanchier spp. 
Arctostaphylos uva-ursi 
Chamaedaphne calyculata 
Cornus stolonifera 
Cory 1 us cornuta 
Diervilla lonicera 
Gaultheria hispidula 
Kalmia spp. 
Ledum groenlandicum 
Linnaea borealis 
Lonicera canadensis 
Lonicera hirsuta 
Lonicera involucrata 
Lonicera villosa 
Lonicera spp. 
Physocarpus opulifotius 
Potentilla fruticosa 
Prunus pensylvanica 
Prunus virginiana 
Rhamnus alnifolia 
Rhamnus spp. 
Ribes glandulosum 
Ribes hirtellum 
Ribes lacustre 
Ribes oxyacanthoides 
Ribes triste 
Rosa acicularis 
Rubus acaulis 
Rubus chamaemorus 

P 
A 
P 
A 
A 
P 
A 
A 
P 
P 
P 
P 
P 
A 
P 
P 
P 
P 
A 
A 
A 
P 
A 
A 
P 
A 
P 
A 
A 
P 
P 
A 
P 
A 
P 
P 
A 
A 
A 
P 
P 
A 

P 
A 
D 
A 
A 
P 
R 
A 
P 
P 
P 
P 
P 
R 
D 
D 
P 
P 
R 
A 
A 
D 
A 
A 
P 
A 
D 
A 
R 
D 
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D 
A 
P 
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A 
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R 
P 
P 
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Family Sepecies RC 1C 2C 3C 4C 5C RB IB 2B 3B 4B 5B 
Gentianaceae 
Geraniaceae 
Rosaceae 
Orchidaceae 
Compositae 
Compositae 
Balsaminaceae 
Iridaceae 
Compositae 
Compositae 
Compositae 
Orchidaceae 
Labiatae 
Liliaceae 
Scrophulariaceae 
Scrophulariaceae 
Labiatae 
Menyanthaceae 
Boraginaceae 
Saxifragaceae 
Pyrolaceae 
°yrolaceae 
Compositae 
Orchidaceae 
Polygonaceae 
Rosaceae 
Rosaceae 
Rosaceae 
Rosaceae 
Pyrolaceae 
Apiaceae 
Labiatae 
Umbelliferae 
Compositae 
Compositae 
Compositae 
Liliaceae 
Compositae 
Ranunculaceae 
Clusiaceae 
Primulaceae 
Liliaceae 
Typhaceae 
Violaceae 
Violaceae 
Violaceae 

Gentiana rubricaulis 
Geranium bicknellii 
Geum rivale 
Goodyera repens 
Hieracium aurantiacum 
Hieracium caespitosum 
Impatiens capensis 
Iris versicolor 
Lactuca biennis 
Lactuca virosa 
Lactuca spp. 
Listera cordata 
Lycopus uniflorus 
Maianthemum canadense 
Melampyrum lineare 
Melampyrum pratense 
Mentha arvensis 
Menyanthes trifoliata 
Mertensia paniculata 
Mite Ha nuda 
Moneses uniflora 
Orthilia secunda 
Petasites frig id us 
Platanthera hyperborea 
Polygonum cilinode 
Potentilla gracilis 
Potentilla norvegica 
Potentilla palustris 
Potentilla spp. 
Pyrola elliptica 
Sanicula marilandica 
Scutellaria galericulata 
Slum suave 
Solidago canadensis 
Solidago graminifolia 
Solidago uliginosa 
Streptopus roseus 
Taraxacum officianale 
Thalictrum dasycarpum 
Triadenum fraseri 
Trie n talis bo real is 
Trillium cernuum 
Typha latifolia 
Viola adunca 
Viola blanda 
Viola cucullata 
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Family Sepecies RC 1C 2C 3C 4C 5C RB IB 2B 3B 4B 5B 
Cyperaceae 
Cyperaceae 
Cyperaceae 
Cyperaceae 
Cyperaceae 
luncaceae 
Juncaceae 
Juncaceae 
Gramineae 
Gramineae 
Poaceae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Poaceae 
Gramineae 
Gramineae 
Gramineae 
Gramineae 
Polytrichaceae 
Aulacomniaceae 
Brachytheciaceae 
Brachytheciaceae 
Brachytheciaceae 
Brachytheciaceae 
Bryaceae 
Bryaceae 
Amblystegiaceae 
Hypnaceae 
Hypnaceae 
Ditrichaceae 
Climaceaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Dicranaceae 
Ditrichaceae 

Carex stipata 
Carex trisperma 
Carex spp. 
Scirpus cyperinus 
Scirpus hudsonianus 
Juncus brevicaudatus 
Juncus effuses 
Juncus filiform is 
Agropyron repens 
Agrostis scabra 
Brachyelytrum erectum 
Bromus ciliatus 
Calamagrostis canadensis 
Cinna latifolia 
Elymus trachycaulus 
Elymus repens 
Glyceria borealis 
Glyceria canadensis 
Oryzopsis asperifolia 
Phalaris arundinacea 
Poa compressa 
Poa spp. 
Schizachne purpurascens 
Graminoide spp. 
Atrichum spp. 
Aulacomnium palustre 
Brachythecium reflexum 
Brachythecium rivulare 
Brachythecium turgidum 
Brachythecium spp. 
Bryum pseudotriquetrum 
Bryum spp. 
Calliergon giganteum 
Callicladium haldanianum 
Callicladium spp. 
Ceratodon purpureus 
Climacium dendroides 
Dicranum flagellare 
Dicranum fuscescens 
Dicranum montanum 
Dicranum ontariense 
Dicranum polysetum 
Dicranum scoparium 
Dicranum undulatum 
Dicranum spp. 
Distichium capillaceum 

A 
A 
P 
A 
A 
A 
A 
A 
A 
A 
P 
P 
A 
P 
P 
P 
P 
P 
P 
A 
A 
A 
A 
P 
P 
P 
P 
P 
P 
A 
P 
A 
A 
A 
P 
A 
P 
P 
P 
P 
A 
P 
P 
A 
P 
P 

R 
R 
P 
R 
A 
A 
A 
A 
A 
R 
D 
P 
R 
P 
P 
P 
P 
P 
P 
A 
R 
R 
A 
P 
D 
P 
P 
P 
P 
A 
P 
R 
R 
A 
D 
R 
P 
D 
P 
D 
A 
P 
D 
A 
P 
D 

R 
A 
P 
R 
R 
A 
A 
A 
A 
R 
P 
P 
R 
P 
P 
P 
P 
P 
P 
R 
A 
A 
R 
P 
D 
P 
D 
P 
D 
A 
P 
A 
R 
A 
P 
R 
P 
P 
P 
D 
A 
P 
D 
A 
D 
D 

A 
A 
P 
R 
R 
R 
R 
R 
A 
A 
P 
P 
R 
D 
P 
P 
P 
P 
P 
R 
A 
R 
R 
P 
D 
P 
P 
P 
P 
A 
P 
A 
A 
A 
P 
A 
P 
P 
P 
D 
A 
P 
D 
R 
D 
D 

A 
A 
P 
A 
A 
A 
A 
A 
A 
R 
P 
P 
R 
P 
P 
P 
P 
D 
D 
R 
A 
A 
R 
P 
D 
P 
P 
P 
P 
A 
P 
A 
A 
A 
P 
R 
P 
P 
P 
D 
R 
D 
P 
R 
P 
D 

A 
A 
D 
A 
A 
A 
A 
A 
A 
R 
D 
P 
R 
P 
P 
P 
D 
D 
D 
A 
A 
A 
A 
P 
D 
P 
P 
P 
P 
R 
P 
A 
A 
A 
P 
A 
D 
P 
P 
D 
R 
P 
P 
A 
P 
D 

A 
A 
P 
A 
A 
A 
A 
A 
A 
A 
P 
P 
A 
P 
A 
P 
A 
P 
P 
A 
A 
A 
A 
P 
P 
P 
P 
P 
P 
A 
P 
A 
P 
A 
P 
A 
P 
P 
P 
A 
P 
P 
A 
P 
P 
P 

A 
R 
P 
A 
A 
A 
A 
A 
R 
A 
D 
P 
R 
D 
R 
P 
A 
D 
D 
A 
A 
A 
A 
P 
D 
P 
P 
P 
D 
A 
D 
A 
D 
R 
D 
A 
P 
D 
D 
A 
D 
P 
A 
D 
P 
D 

A 
A 
P 
A 
A 
A 
A 
A 
A 
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D 
P 
R 
D 
R 
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A 
P 
P 
R 
A 
A 
A 
P 
D 
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A 
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A 
D 
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D 
P 
R 
D 
P 
D 

A 
R 
P 
R 
A 
A 
A 
A 
A 
R 
D 
P 
R 
P 
A 
P 
A 
P 
P 
A 
A 
R 
A 
P 
D 
P 
D 
P 
D 
A 
P 
A 
D 
A 
P 
A 
P 
P 
P 
A 
D 
P 
R 
D 
D 
D 

A 
R 
D 
A 
A 
A 
A 
A 
A 
A 
D 
P 
R 
P 
A 
P 
R 
D 
P 
A 
A 
A 
A 
P 
D 
P 
P 
P 
P 
A 
D 
A 
D 
A 
P 
A 
P 
P 
P 
A 
P 
P 
A 
D 
P 
D 

R 
R 
P 
A 
A 
A 
A 
A 
A 
R 
P 
P 
R 
P 
R 
P 
R 
D 
P 
A 
R 
R 
A 
P 
D 
P 
P 
P 
P 
A 
P 
A 
D 
A 
P 
A 
P 
P 
P 
A 
D 
P 
R 
P 
P 
D 
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Family Sepecies RC 1C 2C 3C 4C 5C RB IB 2B 3B 4B 5B 
Amblystegiaceae 
Amblystegiaceae 
Brachytheciaceae 
Fissidentaceae 
Helodiaceae 
Hylocomiaceae 
Hypnaceae 
Pterigynandraceae 
Mniaceae 
Dicranaceae 
Bartramiaceae 
Mniaceae 
Hylocomiaceae 
Polytrichaceae 
Polytrichaceae 
Polytrichaceae 
Polytrichaceae 
Hypnaceae 
Hypnaceae 
Mniaceae 
Mniaceae 
Mniaceae 
Bryaceae 
Hylocomiaceae 
Amblystegiaceae 
Sphagnaceae 
Sphagnaceae 
Sphagnaceae 
Sphagnaceae 
Sphagnaceae 
Thuidiaceae 
Lepidoziaceae 
Vitaceae 

Drepanocladus fluitans 
Drepanocladus uncinatus 
Eurhynchium pulchellum 
Fissidens spp. 
Helodium blandowii 
Hylocomium splendens 
Hypnum revolutum 
Myurellajulacea 
Mnium spp. 
Onchophorus wahlenbergii 
Philonotis fontana 
Plagiomnium spp. 
Pleurozium schreberi 
Polytrichum commune 
Polytrichum juniperinum 
Polytrichum strictum 
Polytrichum spp. 
Ptilium crista-castrensis 
Pylaisiella polyantha 
Rhizomnium pseudopunctatum 
Rhizomnium puncatunm 
Rhizomnium spp. 
Rhodobryum roseum 
Rhytidiadelphus triquestrus 
Scorpidium scorpioides 
Sphagnum angustifolium 
Sphagnum capillifolium 
Sphagnum girgensohnii 
Sphagnum warnstorfii 
Sphagnum spp. 
Thuidium delicatulum 
Lepidozia spp. 
Parthenocissus quinquefolia 

A 
P 
P 
P 
P 
A 
P 
P 
P 
A 
A 
P 
P 
P 
A 
P 
P 
P 
P 
P 
P 
A 
P 
P 
A 
A 
A 
A 
A 
P 
P 
A 
A 

R 
P 
P 
P 
P 
A 
D 
D 
P 
A 
A 
P 
P 
P 
R 
D 
P 
D 
D 
P 
P 
A 
P 
P 
R 
A 
A 
R 
A 
P 
P 
A 
A 

A 
P 
P 
P 
D 
A 
D 
D 
P 
A 
A 
P 
P 
P 
R 
P 
D 
D 
D 
D 
P 
A 
D 
P 
A 
R 
R 
A 
R 
P 
P 
A 
A 

A 
P 
P 
P 
P 
A 
P 
D 
P 
R 
R 
P 
P 
P 
A 
D 
P 
D 
P 
P 
P 
A 
P 
P 
A 
A 
A 
A 
A 
P 
P 
A 
A 

A 
P 
P 
P 
D 
A 
P 
D 
P 
A 
R 
P 
P 
D 
A 
P 
P 
D 
D 
P 
P 
A 
P 
P 
A 
A 
A 
A 
A 
P 
P 
A 
A 

A 
P 
P 
P 
P 
R 
D 
D 
P 
R 
R 
P 
P 
P 
A 
D 
D 
P 
P 
P 
P 
A 
P 
P 
A 
R 
R 
R 
R 
P 
P 
A 
A 

A 
P 
P 
P 
P 
A 
P 
P 
P 
P 
A 
P 
P 
A 
A 
P 
A 
P 
P 
P 
P 
A 
P 
P 
A 
A 
A 
A 
A 
P 
P 
P 
P 

A 
P 
P 
P 
D 
A 
P 
D 
P 
D 
A 
P 
P 
A 
A 
D 
R 
D 
D 
P 
P 
R 
P 
P 
R 
A 
A 
R 
A 
P 
P 
D 
D 

A 
P 
P 
P 
D 
A 
P 
D 
D 
D 
A 
P 
P 
A 
A 
D 
A 
P 
D 
P 
P 
A 
P 
P 
A 
A 
A 
R 
A 
D 
P 
D 
D 

A 
P 
P 
P 
D 
A 
P 
D 
P 
D 
A 
P 
P 
A 
A 
P 
A 
P 
P 
P 
P 
A 
P 
P 
R 
A 
A 
A 
A 
P 
P 
D 
D 

A 
P 
P 
P 
D 
A 
P 
D 
P 
D 
R 
P 
P 
R 
A 
P 
R 
P 
D 
P 
P 
A 
P 
P 
A 
A 
A 
A 
A 
P 
P 
D 
P 

A 
P 
P 
P 
P 
R 
P 
D 
P 
P 
A 
P 
P 
R 
A 
D 
R 
P 
P 
P 
P 
A 
P 
P 
R 
R 
R 
A 
R 
P 
P 
D 
D 

Total number of species recorded 131 160 161 157 147 132 137 130 125 137 123 145 
Total number of species recruited - 65 62 49 40 41 - 39 29 31 21 39 
Total number of species disappeared - 36 32 23 24 40 - 46 41 31 35 31 
Note: RC= reference site at cut location; RB= reference site at buffer location; 1C-5C and 1B-5B = age classes 1-5 at cut and 
buffer, respectively; A= absent; P= present; D = disappeared and R = recruited. Recruitment or disappearance of a species was 
determined for cut and buffer sites based on the absence or presence of that species at reference sites of cut and buffer 
locations, respectively. 
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Appendix 5: List of species and their codes used in NMS ordination space. 

Code 
Abibal 
Acespi 
Actrub 
Agrsca 
AJninc 
Alnvir 
Amespp 
Amesto 
Aranud 
Astcil 
Astmac 
Astnem 
Astumb 
Athfel 
Aulpal 
Betpap 
Braere 
Braref 
Brariv 
Bratur 
Brocil 
Brypse 
Calcan 
Calspp 
Caraen 
Caraqu 
Carcan 
Carcra 
Carcri 
Cardef 
Cardis 
Carfla 
Cargra 
Carhou 
Carint 
Carintu 
Carlas 
Carlax 
Carspp 
Cinlat 
Ciralp 
Cirmut 
Clibor 
Cliden 
Coptri 

Species 
Abies balsamea 
Acer spicatum 
Actaea rubra 
Agrostis scabra 
Alnus incana 
Alnus viridis 
Amelanchier spp. 
Amelanchier stolonifera 
Aralia nudicaulis 
Aster ciliolatus 
Aster macrophyllus 
Aster nemoralis 
Aster umbellatus 
A thyrium felix-fem ina 
A ulacomnium palustre 
Betula papyrifera 
Brachyelytrum erectum 
Brachythecium reflexum 
Brachythecium rivulare 
Brachythecium turgidum 
Bromus ciliatus 
Bryum pseudotriquetrum 
Calamagrostis canadensis 
Callicladium spp. 
Carex aenea 
Carex aquatilis 
Carex canescens 
Carex crawfordii 
Carex crinita 
Carex deflexa 
Carex disperma 
Carex flava 
Carex gracillima 
Carex houghtoniana 
Carex interior 
Carex intumescens 
Carex lasiocarpum 
Carex laxiflora 
Carex spp. 
Cinna latifolia 
Circaea alp ina 
Cirsium muticum 
Clintonia borealis 
Climacium dendroides 
Coptis trifolia 

Code 
Corcan 
Corcor 
Corsto 
Dicfla 
Dicfus 
Dicpol 
Dicsco 
Dicspp 
Dielon 
Dreunc 
Drycar 
Elyrep 
Elytra 
Epiang 
Equpre 
Equsyl 
Eurpul 
Fisspp 
Franig 
Fraves 
Fravir 
Galasp 
Galtri 
Galtrifl 
Geuriv 
Glybor 
Glycan 
Graspp 
Gymdry 
Hyprev 
Lacbie 
Ledgro 
Lonvil 
Lycann 
Lycden 
Lycluc 
Lycuni 
Maican 
Matstr 
Menarv 
Merpan 
Mitnud 
Mnispp 
Oryasp 
Osmcla 

Species 
Cornus canadensis 
Corylus cornuta 
Cornus stolonifera 
Dicranum flagellare 
Dicranum fuscescens 
Dicranum polysetum 
Dicranum scoparium 
Dicranum spp. 
Diervilla lonicera 
Drepanocladus uncinatus 
Dryopteris carthusiana 
Elymus repens 
Elymus trachycaulus 
Epilobium angustifolium 
Equisetum pretense 
Equisetum sylvaticum 
Eurhynchium pulchellum 
Fissidens spp. 
Fraxinus nigra 
Fragaria vesca 
Fragaria virginiana 
Galium asprellum 
Galium trifidum 
Galium triflorum 
Geum rivale 
Glyceria borealis 
Glyceria canadensis 
Graminoide spp. 
Gymnocarpium dryopteris 
Hypnum revolutum 
Lactuca biennis 
Ledum groenlandicum 
Lonicera villosa 
Lycopodium annotinum 
Lycopodium dendroideum 
Lycopodium lucidulum 
Lycopus uniflorus 
Maianthemum canadense 
Matteuccia struthiopteris 
Mentha arvensis 
Mertensia paniculata 
Mitella nuda 
Mnium spp. 
Oryzopsis asperifolia 
Osmunda claytoniana 

Code 
Petfri 
Phecon 
Picmar 
Plaspp 
Plesch 
Polcom 
Polspp 
Polstr 
Poptre 
Prupen 
Pruvir 
Pticri 
Pylpol 
Rhaaln 
Rhipse 
Rhipun 
Rhoros 
Rhytri 
Ribgla 
Ribhir 
Rosaci 
Rubaca 
Rubida 
Rubpub 
Salpet 
Salspp 
Sorame 
Sordec 
Sphang 
Sphspp 
Strros 
Thadas 
Thudel 
Tribor 
Tricer 
Vacang 
Vibedu 
Vioadu 
Viobla 
Viocuc 
Viomac 
Vionep 
Viopub 
Vioren 
Viosep 

Species 
Petas ites frigidus 
Phegopteris connectilis 
Picea mariana 
Plagiomnium spp. 
Pleurozium schreberi 
Polytrichum commune 
Polytrichum spp. 
Polytrichum strictum 
Populus tremuloides 
Prunus pensylvanica 
Prunus virginiana 
Ptilium crista-castrensis 
Pylaisiella polyantha 
Rhamnus alnifolia 

Rhizomnium pseudopunctatum 
Rhizomnium puncatunm 
Rhodobryum roseum 
Rhytidiadelphus triquestrus 
Ribes glandulosum 
Ribes hirtellum 
Rosa acicularis 
Rubus acaulis 
Rubus idaeus 
Rubus pubescens 
Salix petiolaris 
Salix spp. 
Sorbus americana 
Sorbus decora 
Sphagnum angustifolium 
Sphagnum spp. 
Streptopus roseus 
Thalictrum dasycarpum 
Thuidium delicatulum 
Trientalis borealis 
Trillium cernuum 
Vaccinium angustifolium 
Viburnum edule 
Viola adunca 
Viola blanda 
Viola cucullata 
Viola macloskeyi 
Viola nephrophylla 
Viola pubescens 
Viola renifolia 
Viola septentrionalis 
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endisj Sas Changes in mean total cover of different life forms over time following harvesting 

sturbance at clearcut sites. 
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Note: T = tree; S = shrub; H = herb; F = fern; G = grass; M = moss. 
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AppendiK 6b: Changes in mean total cover of different life forms over t ime following harvesting 

disturbance at buffer sites. 
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Appendix 7: UTM co-ordinates and geo-ecological characteristics of the study site. 

Stream UTM X UTM Y Site Ecosite Av. Soil Landform Relief Drainage 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

352208 
349765 
350186 
350697 
347246 
346609 
342680 
355255 
347555 
354150 
354110 
364799 
345769 
345561 
354734 
356139 
355776 
357182 
337132 
366277 
369210 
369136 
325222 
331767 
362546 
362086 
362099 
349676 
362854 
363282 

5397648 
5398785 
5399366 
5396102 
5398424 
5397496 
5393816 
5396068 
5399930 
5394189 
5394628 
5386722 
5397367 
5399443 
5388638 
5390643 
5390264 
5390223 
5392304 
5407109 
5409466 
5409015 
5411671 
5410824 
5388719 
5387320 
5388152 
5397593 
5389839 
5388444 

Class 
2 
2 
2 
1 
2 
2 
2 
2 
3 
1 
2 
2 
2 
2 
2 
1 
1 
2 
2 
2 
3 
3 
2 
1 
3 
2 
3 
1 
1 
3 

NW21M 
NW19D 
NW16 
NW21M 
NW19M 
NW19M 
NW19M 
NW19D 
NW19D 
NW19D 
NW22D 
NW19D 
NW21M 
NW20S 
NW21D 
NW22D 
NW22D 
NW19M 
NW31M 
NW20M 
NW19D 
NW19D 
NW22M 
NW12 
NW19M 
NW19D 
NW19M 
NW22D 
NW22D 
NW19M 

Slope 
1.1 
5.5 
2.6 
4 

3.5 
4.6 
2.7 
2.4 
1.7 
3.2 
2.6 
1.3 
4.7 
2.8 
2.6 
1.8 
1.8 
5.2 
3.2 
3.1 
2.1 
2.1 
2.5 
2 
4 

4.3 
7.9 
2.1 
2.2 
7.9 

texture 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
MS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 
FS 

MG 
GE 
RR 
MG 
RP 
RP 
RP 
MG 
MG 
MG 
MG 
RN 
RP 
MG 
RN 
MG 
MG 
MG 
RP 
RP 
RP 
RP 
RN 
RR 
RN 
RN 
RN 
RR 
RN 
RN 

moderate 
low 
low 

moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 

low 
low 
low 

moderate 
moderate 

high 
high 
high 
low 
high 
high 

dry 
mixed 

dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 

mixed 
mixed 
mixed 

dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 

Note: Site class: 1= better, 2= good, 3=poor; Landform: MG=Ground moraine, GE= Esker, RR=Bedrock ridge, RP=Bedrock 
plain, RN=Bedrock knob; Soil texture: FS=Fine sand, MS=Medium sand. 
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