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ABSTRACT

Convexity in metric space is the main topic of discussion in this thesis.
To undertake the study we have studied extensively the means introduced by
Doss and included the results concerning means derived by Gahler and
Murphy. We use this definition of a mean to define a new notion of convexity on
a metric space, called B-convexity. B-convexity has been compared with _,other
notions of convexity on a metric space. Finally following a construction given
by Machado, we show that a B;convex metric space, satisfying certain
properties, is essentially a convex subset of a normed space and the space is |

unique.



BASIC NOTATION
The following terminology wi",be used in this thesis. Symbols other than these

will be defined individually.

X any arbitrary nonempty set.
¢ empty set.
AB,.....ccce.... capital letters will usually denote subsets of X.
a,b,c.x.y,....... small letters will usually denote elements of X.
c usual set containment.
v usual set union.
N usual set intersection.
\ usual set difference operation.
e.g. for example.
i.e. that is.
€ belongs to (x € A means x belongs to A).
R set of real numbers.
Q set of rational numbers.
Z set of all integers.
N set of natural numbers .

RN N-dimensional vector space.

Vi



S(x,r) open ball with centre x, and radius r.

S(x,r) closed ball with centre x, and radius .

Vi



TABLE OF CONTENTS

Page
CHAPTER I. INTRODUCTION
1.1, HISIOMCAl FOVIBW......oee s 1
1.2. Basic definitions .. c...covceeeiiieceecnerecen sttt 2
CHAPTER Il. AXIOMATIC CONVEXITY SPACE
P28 W 1110 o (8o (o) o FOURN UV 6
2.2. Definition of axiomatic convexity SPace........c..cccvveveerirereeicesccssreeesceeeecvaee 6
2.3. CONVEX NUIL ...t e e e meane 7
2.4. JoIn hull COMMUEBLIVE....... ittt ceeeeesr s s e s e s e e 8
2.5. DOmMain finite ...ocveeeciveeeeee et - 9
2.6. ReQUIAMIY......oiveiiticteert e e PR 10
2.7 SHAIGHL ...ttt r e s r e e e sae e e e s h e e ne e nr e e saanen 12
2.8. LN SPACES.....ccecereriereeeeetieraeesrtessassassnessassasaeseessasassessessessnansessesansenssesansnssseesnes 12

CHAPTER Ili. METRIC CHARACTERIZATION OF NORMED LINEAR SPACES

S 1. INrOTUCHION. ...t e 14
B.2. MBANS. ....e..cvveereessesesesasesssssese st ssssssssess e ssssss s R ss s EsssER SRR RS 15
3.3. The mean in normed liNEar SPACE.......ccecveierierereceereererececerecieeesereeresneeeeens 20
3.4. Metric space with property GM.........ccceiiemeriinirciiirisesecce e 27
3.5. LINGANZAHON O X....vuroerrvvvsssssreessasssssesssssesssssasssssssssssssssssssssssssessessssssssmsessssssns 31

3.6. NOMMING OF Xttt s st s e s 41

3.7. Isomorphism of generated normed linear spaces..........cceeevereiiiieniiininnen, 43

viii



CHAPTER IV. CONVEXITY IN METRIC SPACES

4.1. Introduction.......... essnnessasannensnenssnassenessanasanessnaesss eanrsraensusasnessnnse JO erreeeeeenns 45
4.2. M-COMVEXIY ....ooueeeiiireecirienriosesisnaeeeesreessseesassssassasassseaseesnsansssessresssssnsesssssssnsesans 45
4.3.Takahashi convexity StrUCIUre.........cocuie e 47
4.4, B-CONVEXILY....cuviiueereiiieticeiierriccsteetre ettt sttt st s st s e s s e an s s ne st sa s 50
4.5. Properties Of SEgMENT........ ettt e e e st 51

4.6. Linearization of B-CONVEX SPACES........cccviireriemereicieeecececceeeeseeeeeesssnnse s nns 54

CHAPTER V. CONCLUSIONS

5.1. Summary and CONCIUSIONS........cccceerrmricmrcncrscrnresseresenesennns erereeesenresaaaaerane 66
BIBLIOGRAPHY. ...ttt srrerrtec e se s stsssnrae e e s st e s eneseesrnssss s ssn e s e se e nnassanns 67

ix



Qhap_t/ erl
introduction
1.1. Historical Review:

Convexity is a broad geometrical concept studied by different
mathematicans since early in the nineteenth century. The scope and
applicability of convexity led different authors to investigate and extend the
notion of convexity in different spaces. Our main topic of discussion will be
convexity in metric space.

Perhaps the earliest notion of convexity in a metric space was given by

Menger [17] in 1928. He defined a betweenness condition: z is between x and

y if d(x,z) +d(z,y ) =d(x,y). Cis convex if‘for every x,y € C,then zeC, for z
between x and y. Busemann [4] defined convexity in the Menger sense as
follows: A set Hin a metric space is convex in the Menger sense if for every
pair of distinct points X, z in H, there exists a point y in H such that

d(x,y) + d(y,z) = d(x,z). In a similar way P.S. Soltan [18] introduced d-convexity

as follows: a set M of a metric space X is called d-convexif d(x,,x,)=

d(xy,Xg9)+d(X5,X5) With x4,x, € X, then x;e M.

In 1969 W. Takahashi [19] introduced another notion of convexity in a

metric space X by an operator W from X x X x [0,1] in to X satisfying
dz,W(x,y;e)) < (1- a)d(z,x)+ ad(z.y), forall x,y,z e X and o€ [0,1].

Further a subset K ¢ X is convex iff W(x,y; a)eKforx,ye Kand0<a<1.



Machado [15] in 1973 introduced conditions under which a convex metric
space (using Takahashi's definition) is isomorphic to a convex subset of some
normed linear space E. Although, Takahashi's convexity structure produced a
reasonably rich notion of convexity for a metric space, however, in general, W
need not be continious and the permutations of the order of repeated convex
combination may not be related. Louis A.Talman [20] addressed those
problem and he complemented Takahashi's notion of convexity by assUming
compactness Qf the metric space or continuity of W. Secondly he extended the
definition of Takahashi to a higher dimension and defined a strong ¢onvex
structure on X. Using this he proved a fundamental property of convex hulls.

In this thesis we will use Doss's [9] definition of mean in a metric space
and the properties of the mean as given by Gahler and Murphy[10]. Some of
the proof presented in this thesis are different from Gahler and Murphy. We
relate the definition of mean to a new definition of convexity . We call it
B-convexity. The results derived by W.Takahashi [19], H.V.Machado [15] and
L.A.Talman [20] regarding convexity structure in their papers can be derived
from B-convexity.

We begin by giving some necessafy definitions in the next section.

1.2. Basic Definitions:

The following definitions will be often referred to in this thesis. They can
be easily found in any standard - text book.

1.2.1. Definition: A linear space ovérthe field R is a non.empty set V of

elements with two operations + and * is called additions and multiplications,



respectively, satisfying the following axioms with respect to the elements of V

and R.

(1) To every pair, xandy € V, there correspond an element x +y, called the
sum of x and vy, in such a way that:

(i) addition is commutative, x+y =y + X;

(il) addition is associative, x+(y +2) + (X +Y) + 2;

(iii) there exist ih V a unique element "O"(called the origin ) such that x + O =x

for every x e V;
(iv) to every vector there corresponds a unique element -x such that

X+ (-x) =0.
(2) Toevery paira e R and x e V, there correspond an element ox x in V,

called the product of a and x in such a way that

(v) multiplication is associative, i.e., ox(B,X)=( a» B)*x;

(vi) there is a 1e R sothat 1sx =x= x+1, for every xe V.

(3) (i) Multiplication is disrtibutive with respect to addition,

o* (X +Yy) = ok X+ ok y;

(i) Multiplication by vectors is distributive with respeCt to scalar addition,
(@a+ B)* x=a*x+ B*x.

The elements of V are called vectors whilst the elements of R are scalars.

1,2.2, Definition : Two linear spaces X and X* over the same field are said to be



isomorphic if there is one-to-one corresponding x«—————Xx* between X and

X" which preserves the operations in the sense that :

X< »X*, y¢ >y* implies x + ye————x* +y* and

axe——— ax*, where o is an arbitrary scalar and x,y, € X and x*,y* e X*.
1.2.3. Definition: Let X be any set. A function d(x,y) on the set X x X is a metric
provided:

(i) d(x,y) is a non negative real number for every pair (x,y) of Xx X;

(i) d(x,y) = d(y,x);

(iii) d(x.y) =0 iff x =y

(iv) d(x,z) < d(x,y) + d(y,z).

The pair (X,d) is called a metric space.
1.2.4. Definition: Let (X,d) be a metric space. Forpe Xand > 0,
S(p, 8)= {x:d(p,x) <8} and S(p, 8) = {x : d(p,x) <8} are the_open and closed

balls centered at x with radius & .
1.2.5. Definition: A metric space (X,d) is isometric to a metric space (Y,e)

iff there exists a one-one and onto function f: X————Y which preserves

the distance, i.e., forall a,b e X, d(a,b) = e(f(a),f(b)).

1.2.6. Definition: Let X be a linear space. A function which is associates with

each x € X, areal number || x || is called a norm on X, provided :

(illx]] 20and || x||=0iff x=0.



MlIx+yll <l xii+1lyl foral xye X
(i) || Ax |} = | A ]| x || where A eR.
A linear space X with a norm is called a normed linear space or simply a

normed space.
1.2.7, Definition: A subset S of a linear space is called a convex set iff for all

abeSand0<A<1 then Ax+(1-A)ye S.

1.2.8. Definition: AsetC is4compact if every infinite subset of C has an
accumulation point in C.

1.2.9. Fact: A bounded infinite set has at least one accumulation point. If the

accumulation point lies in the set, then the set is finitely compact.



Chapter Ii
Axiomatic Convexity Space.

2.1. Introduction:

Convexity is a broad geometric concept which has been studied for a
long time. Usually when we consider convexity we consider convex subsets of
linear spaces. Also convexity has been defined in several ways. In this
chapter, an axiomatic setting for the theory of convexity is providéd, following
the approach of Kay and Womble [14].

2.2. Axiomatic Convexity Space:
2.2.1. Definition : Let X be a set and ¢ be a family of subsets of X. Then

(X,C) is an axiomatic convexity space if
(i) ¢, Xe G;

(i) "Fe G, forFcC.

The sets in G are called G -convex (or convex) sets.

2.2.2. Example: Let G be a group and G consists of all subgroups of G

including ¢ and G. Then (G,Q) is an axiomatic convexity space, since
intersection of subgroups of G is a subgroup of G.

2.2.3. Example: Let (X,Y) be a topological space, where Y is a collection of -
closed subsets of X. Therefore (X,Y) is an axiomatic convexity space."

2.2.4. Example: Let V bea linear space. Let G be the usual collectién of

convex setsin V. Then (V,C) is an axiomatic convexity space.



2.2.5 Example: Let (P,<) be aposet. Let G ={ A: AcP with the property that

- for a,be A, a <x<b implies x e A}. It can be shown that (P,C) is an axiomatic

convexity space.

2.3. The convex hull :

2.3.1. Definition : Let (X,C) be a convexity space. For Ac X, the convex hull

of A is defined as CA=n{C: CeG,AcC}.

2.3.2. Proposition :

The hull operator possesses the following properties:
(i) C(9) =¢;
(i) Ac G(A) foreach Ac X;

(i) A c B implies G(A) c G(B);
- (¥) GIG(A) = G(A);

(v) Ae G iff G(A) =A.

Proof: (i) and (i) are trivial by definition of G(A).
(i) G(A) = {C:Ce G, AcC}. Also, by (i), we have A cB c G(B) =
n{Ce G, BcC}. But G(A)cCforall Ac C. Therefore G(A)c G(B).
(iv) By (i) and (iii), G(A)=C(G(A)).

No\}v suppose a e G(G(A)) = N{C: C e G, C(A) c C} which now implies

aeC forallCe ¢ suchthat C(A) c C. Therefore ae CG(A).



Thus G(A) = G(C(A)),

(v) If Ae G, by Definition 2.3.1., G(A) c A. Thus A =CG(A).

2.3.3. Remarks: It may be noted that the hull operator C is not

necessarily a topological closure operator since G(AUB) = C(A) U G(B) in
general.
2.4. Join hull-commutative (JHC):

For any members a,b € X we denote the convex hull of a and b by
G(a,b), andcallita segment with end points a and b. The convex hull of
finite sets {a,b,c,d,...} will be denoted by Q(a,b_,c,d,...). If a=b itis not
necessary that the open segment be empty.

2.4.1. Definition: The join of x and A in a convexity space (X,C) is the set
defined by xJA = U{C(x,a) : ae A} where xe X, AcX. Foriwo sets A, BcX,

their join will be AJB = U{C(a,b): (a,b) € (A x B)}.
2.4.2 lemma: Lét (X,C) be an axiomatic convexity space. For any

-

ax e X, xJG(A) c G (xUA).
Proof : Suppose y € xJG(A). Then yeG(x,a) forsome ae C(A). Now C(A) c

G (xUA). So C(x,a)c G (xUA). Hence xJG(A) £ G (xUA).
The reverse inclusion does not always hold.
2.4.3. Example: Let X be the 3-dimensional euclidean space (R3) andlet C

be the collection of one and two dimensional convex subsets (in the usual



sense) including ¢ and X. Let A be a two dimensional subset of X and x, be

a point not on the plane generated by A. Then xJ G(A) is a convex cone (in

the usual sense with vertex x) whilst C(xUA) is X(=R3) which is the smallest

member of ¢ containing x and A.
2.4.4. Dgfinition: (X,C) is said to be join hull-commutative (JHC) iff U{C(x,b) : b

e C(A)} =G (U {C(x.a) : aeA}) = C(xUA) foreach Ac X and forevery x eX.
2.5. Domain Finite (DF)

2.5.1. Definition: (X,G) is said to be domain finite (DF) iff for each A c X, G(A) =

U{C(F) : Fc Aand F is finite}.

2.5.2 lemma: If (X,Q) is domain finite and join hull commutative, then a

subset A of X is convex iff C(a,b)c A forall abe A.

Proof: Itis easy to see that if A is convex then by definition C(a,b) c C(A) = A,
V a,b e A. Conversely, it is sufficient to show that G(A)cA. We prove this part
by induction. Take |F| =1 i.e. F = {x}, then by assumption, G(x) =CG(x,x) e A.
Hence C(F) cA. Now, suppose the above relation is true for | F| <n-1 and

F cA. We shall prove that the relation is true when|F|=n. Let te G(F) then

te G(Xy.Xp...X,). By join-hull commutativity there exists b € G(x,,x,....x,,) such

~ that te G(x{,b) = A. Hence G(F)c A for any finite set F c A. Again by

~
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definition of domain finiteness, G(A) = U {C(F) : F <A, Fis finite } = A.

253 Llemma: If (X,Q) isa Convexity space which is domain finite and join hull
commutative, then G(AUB) = G(A) J G(B) = C(B) J G(A).

Proof: By definition, G(A) J G(B) =u (G(a,b) :ae G(A),be G(B)). Let

ae G(A) and be G(B), then a,b e G(A) U G(B)<G(AUB). Therefore G(a,b)
cG(AUB) . So, U(C(a,b)) = G (AUB). Hence G(A)JG(B) = G(AUB) Again by
definition of domain finiteness for x e C(AUB), we have

xe Glay, .. ,a,) where a,, a,,....,a, € AUB. If a,, a,....,a, belongsto
either A or B, then x e G(A) J G(B). Consequently G(AUB)=G(A)JG(B). Next

we consider ay, a,,....,a,€ A,anda_ ;,a .,@, € B, then by definition of the

m+2'""

join hull commutative property we have C(a,,a,....8,,85,1---8n)= 84 J a,J

aj...... Ja,J G, 8y G (ay, a....,.a,) I C(a, ,q.---8,) = G(A) UC(B).
2.5.4. lemma: Let (X,C) be a DF and JHC convexity space. If Aand B are

convex subsets of X, then for eaéh xe G(AUB) ,there exists ae A and be B

such that x e G(a,b).

Proof: Follows directly from the lemma 2.5.3.
2.6. Reqularity (RE

2.6.1. Definiion: (X,G) is regular (REG) iff each segment in ( X, G) satisfies the
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following properties:
(i) non-discrete : V x,ye X, x=#y,then C(x,y)\{x,y} #o.

(i) decomposable: V z e G (x)y). C(x,z) NnG(x,y) ={z} and GC(x,z)uC(zy) =
G(x.y)-

(iii) extendable: V x#y Ju,ve x suchthat G(xy) c G(x,v) \ {v} and

Cxy) <C(u,y) \ {u}.

2.6.2. Lemma; If (X,G) is REG then () G(xX)=x, Vxe X; (i) If ae G(b,c)
and be G(a,c),axc, bxc then a=b; (i) Forany abce X,a=b=c,if
aeG(bc),thenbe G(ac) and ce G(ab).

Proof: (i) Since x e C(x,x) implies G(x,x) # 6.

Also by definition of the non discrete property, we have G(x.y)\{xy}# ¢ for
x#y. Since x € C(xy) , then we have G(x.x) A G(x.y) = {x} and

Cx.x) LU Gxy) = G(xy). So G(x,x)= G(xy). Therefore G(x,x) = {x}.

(i) Let aeG(b.c). Therefore G(b,c) = G(b.a) L Glac) and {a} = G(b,a)n
G(a,c). Again be G(ac). Therefore {b}=G(a,b) N G(b,c), and

{b} = G(a,b) N {C(b,a) L G(a,c)} =C(a,b) N {G(a,b) U Cla,c)}= Q(a,b)U'
{C(a,b) nC(a,c)} = Glab) u{a} = Q(?.b)

Similarly, we can show that {a} = G(a,b). Hence a=b.
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(iii) On the contrary let us suppose b e C(a,c). Then G(b,c) c C(a,c).
Also sihce ae Q(b,c') then C(a,c) c G(b,c) and C(b,c) = G(a,c). By (i) we
have a =b which is contradictory to the hypothesis. Therefore be C(a,c).

Similarly we can show that ce¢ C(a,b).
2.6.‘3.Remark§: The segments in a regular space can be given a natural linear
~ ordering, because the decomposability relation essentially yields a betweeness

relation.

2.7. Straignt (STR):
2.7.1. Definition : An axiomatic space (X,G) is said to be straight iff the union of

two segment having more than one point in common is a segment.

2.7.2. Theorem: Let (X,C) be a straight regular space. For a,be X,a#b,

then (a,b) the line determined by a and b, is uniquely determined.

Proof:  Omitted [22] .

2.8. Line Spaces: The idea of line space was first introduced by Cantwell [5] in
1974. Laterin 1978, Cantwell & Kay [6] proved that straight line spaces of
dimension three or higher were isomorphic to an open convex subset of a real
vector space. The approach used by Cantwell and Kay was classical and
descriptive geometry and self contained. However, in 1976, Doignon [7] had
also essentially obtained the same result that line spaces of dimension three or
greater or of dimension two and desarguesian are linearly open convex

subsets of a real affine space using a different technique than Cantwell and
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Kay. But the result of Doignon [7] depends on a 1938 theorem of Spencer. In
1981 Whitfield and Yong [22] used Doignon's result to prove the following
linearization theorem:

2.8.1. Theorem: If (X,G) be convexity space of dimension 2 and desarguesian
or of dimension >2, then (X,C) is isomorphic to a linearly open convex subset

of a real affine space iff (X,C) is DF, CMP, JHC, REG, and STR.
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Chapter llI

Metric Characterization of Normed Linear Sgage_ :

3.1. Introduction: In this chapter a metric characterization of an arbitrary

normed linear space is given by following the work of Gahler and Murphy [10].

In section 2, the fundamental notion of a mean Bp(a,b) as given by Doss
[8] is considered. Frechet [9] called Bp(a,b) a generalized mean (T), and

indicated that Bp(a,b) may be thought of as the points that divide the segment
joining a and b in the ratio p : (1-p). That this holds is shown in Lemma 3.2.10.

In section 3, B p(a,b) is shown to be a singleton for every pe R and

for every a,bin an arbitary normed linear space.

Gahler and Murphy in their paperas C ). Inthat case also means are
singletons. The property GM holds in every normed linear space.

In section 5, it is shown that a metric space with property GM will
generate a linear structure iff it has a certain property A which means
associativity of addition.

In section 6, assuming the same conditions for X, we show there
exists a norm on X such that the corresponding metric is equal to the given

metricon X. The resulting normed linear space is unique up to an isometric
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isomorphism.

3.2. Means:

3.2.1 Definition: Let (X,d) be a metric space. Forany a,b e X and any real p,

the set Bp(a,b) is defined as follows:

p e X, d(p,x) < (1 -p) d(a,x) + pd(b,x), Vx € X, p € [0,1].

By =
, pe X, d(p,x) 2 (1 -p)d(ax)+pd(bx), Vxe X, pe [0,1].

Frechet [9] calls an element of Bp(a,b) a generalized mean. As seen below

(Lemma 3.2) the elements of Bp(a,b) divide the segment from a to b inthe

ratio p: (1 - p). We shall refer to the elements of Bp(a,b) as means. If ABc X,

we define Bp(A,B) = Bp(a,b) :ae A, be B} The set Bp(a,b) may'be

empty, a singleton or have more than one element as the following examples

will illustrate.
3.2.2. Example: For a discrete metric space X ={a,b,c,d}, Bp(a,b) = ¢ for

p=0,1.

3.2.3. Example: Let X ={a,b,c,d} be a discrete metric space with metric d

except d(a,b) =2. Then Bp(a,b) ={c,d}.

When the set B,(a,b) consists of one element p then we will write

pl
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Bpfa,b) = p instead of Bp(a,b) ={p}. The following lemmas list several

properties of means.

3.2.4. Lemma: B,(a,b)=a, B;(a,b)=b forany abe X.

Proof: Clearly a e By(a,b), follows from the definition . Next if

p e By(ab), then d(p,x) <d(a,x) forall x e X. So, 0<d(p.a) <d(a,a)=0 for
x=a. Thisimplies p=a.

Again b e B4(a,b) since d(b,x) <d(b,x), forall xe X. Next if

p €B,(a,b) then d(p,x) <d(b,x) forall xe X and 0 <d(p,b) <d(b,b) =0 for
x=b. Thisimplies p=b.
3.2.5. Lemma: Foranyrealpandany ae X, Bp (a,a) =a.
Proof. From definition we have
pe x,d(p,x)<d(a,x) forall xe X, pe [0,1].

BF@@:
pe x,d(p,x)=d(a,x) forall xe X,pe [0,1].

In each case the inequality implies p = a.

3.2.6.Lemma: Foranyp=0, abe X and ce By(a,b) then b e By,(ac),
and conversely.

Proof: For p € (0,1), we have, d(c,x) < (1 -p)d(a,x) + pd(b,x) for all x if and

only if d(b,x) = (1 -p)d(a,x) + p'd(b,x).
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3.2.7. lemma; Foranyp<0,andany abe X, ce Bp(a,b) implies

are Bp,(p_1)(c,b) and conversely.

Proof: p<0 implies 0<p(p-1)'<1. Now ce By (a.b) implies

d(c,x) 2 (1 - p) d(a,x) + pd(b,x) forall x, if and only if

d(a,x) < p(p-1)"" d(b,x) - (p-1)"'d(c,x) = (1 -p(p-1)"") d(c.,x) + p(p-1) d(b.x)
implies ae Bp/(p-1) (c,b).

3.2.8. Llemma. Forany abe X,pe R, Bp(a,b) = B1_p(b,a).

Proof: Follows immediately from the definition of mean.

3.2.9.Corollary : Byj,(a,b) = By,(b,a).

3.2.10 Lemma: If an element peBp(a,b) then d(a,p) =|p| d(a,b) and

db,p) = |1 - p| d(a,b) , forany a,b e X and forany p € R.

Proof; Case (i). p e [0,1]. By definition, d(p,x) < (1 - p) d(a,x) + pd(b,x),

forall xe X. So d(p.a) < (1 -p) d(a,a) + pd(a,b) = pd(a,b). In a similar way ,
d(b,p) < (1 - p) d(ab). Now, d(ab) <d(a,p) +d(p.b) < pd(ab) + (1 - p) d(a,b) =
d(a,b). Thus d(a,p) + d(p,b) = d(a,b), d(a,p) = pd(a,b) an.d d(b,p) = (1-p) d(a,b).

Case (ii). Let pe (1,0), then by Lemma 3.2.4. and using case (i)
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p=B1/p@b), d@ab) =p~'d(ap),ie. d(ap) =pd(ab) and db,p)=(1-p")
d(a,p) = (p-1)p™

d(a,p) = (p-1)p"'pd(a,b) = (p - 1) d(a,b). Thusd(b,p) =1 - p| d(a,b).

Case (iii). pe (-=,0). By Lemma3.25. ae By 1) (P.b) for pe By(ab). By

case (i) d(a,p) = p(p-1) d(p,b) and d(b,a) = (1 -p(p-1)"") d(p,b) = - (p-1)"'d(p,b).
Therefore, d(p,b) = (1 - p) d(a,b)

Also, d(a,p) = p(1-p)!(p-1) d(a,b) = -p d(a,b).

3.2.11. Lemma: Forp, p', p* € [0,1] (p, p', p* € [0,1] with p+ p'p* - pp* & [0,1])

and a,be X,

a,b).

Bp* (Bp(a,b), pr(a,b)) c Bp+pvp*_pp*(

Proof: Case (i). Consider first p,p'.p* € [0,1].

Let p* e By(By(ab) By(ab)) then pe Bp*(p.p)) for some p e By(a,b) and
p'e Bp-(a,b). Therefore d(p*,x) < (1-p*)d(p,x) + p*(p',x) forall xe X
< (1-p*)(1 - p) d(@x) + pd(b,x)) + p*((1-p) d(@x) + p'd(b,x))

=(1-(p + p'p" - pp")) d(a,x) + (p + p'p* - pp™) d(b,X)

Asp +p'p* - pp" € [0,1], therefore p* €Bj, , 5y - pp* (D).
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Case(ii). If p,p',p* 2 [0,1]and p + p'p* - pp* ¢ [0,1] then for p* e Bp*(Bp(a,b),
Bpy(a,b)), d(p*.x)2(1-(p+p'p”-pp*)) d(ax) + (p+p'p*-pp*) dfa,b)

Therefore p* e Bp +pp* - pp*(a,b).

3.2.12. Theorem: Ifthe means are singleton on the metric space (X,d), ihen

Bp*(Bp(a,b), Bp-(a,b)) =B a,b), forany x,y e X and p,p*,p'e [0,1].

p+pp*-pp*l

_Proof; Follows from lemma 3.2.11.
.2.13. Corollary: 'Bp*(Bo(b,a), Bp-(b,a_) = Bp-p*(b,a).

3.2.14. lemma: Foranyabe X andanyrealp', p*>1andp=0,
Bp*(Bo(a,b), pr(a,b)) = Bp +p'p* - pp*(a,b).

Proof: We need to show Bp*(a, pr(a,b)) = Bp-p*(a,b)

Let pe By+(a,By(ab)),so pe By+(aq) forsome qe By(ab)
Then it follows that for all x € X ,d(p,x) = (1 - p*) d(a,x) + p*d(q,x) = (1 - p*) d(a,x)
+p*{(1-p") d(a.x) + p'd(b,x) } = (1-p*p’) d(a,x) + p'p*d(b,x).

Asp'p* >1, pe prp*(a,b).

3.2.15. Theorem: If the means are singletons on the metric space (X,d),then

for every pair x,y € Xwith x#y thenpe [0,1}—— Bp(x,y) is a continuous
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injection of [0,1] into X.

Proof: Let a, e [0,1] and suppose without loss of generality o > . By

theorem 3.2.12. , d(B g(xy), Ba(x.y)) = d(B( g—py/(1-p) (( Bg(x.y), By (xy))
BB(X,Y))= (o-B)/(1-B) d(Bj(x.y), y) = (e-B)(1-B) T (1-B) d(x,y) = (a-B) d(x.y).

3.2.16. Remarks: The above argument proves that the map Bg(x,y) —ad(x,y)

gives an isometry of the subspace {B(x,y) : « € [0,1] } of X - onto a closed

interval [0, d(x,y) ]. Inparticular {B,(x,y): e € [0,1] } is homeomorphic with [0,1]

if x=y andisasingletonif x=y.

3.3. The mean Bp(a,b) in a normed linear space:

Frechet [9] asked if Doss' [8] mean would give a metric characterization
of aigebraic betweenness in normed iinear spaces. Gahier and iMurphy [10]
answered Frechet's question in the affirmative.  Their proof of this will be the
main topic of discussion in this sec':t'ion.

1 mma: If d is atranslation invariant metric in a linear metric space X

then Bp(a +cb+c)= Bp(a,b) +c,forany pe R and ab,ce X

F’rbof: Let pe Bp(a +¢, b +c), then forevery xe X, d(p-c,x) = d(p,x +C) <

(1-p)d(a+c,x+¢c) +pd(b +c,x+c)=(1-p)d(a, x)+pd(b,x). Thereforep-ce
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B.p(a,b) thatis, pe Bp(a, b) + c. Thus Bp(a +c,b+c)c Bp(a, b) +c.

Againlet g+ € Bp(a, b) + ¢, thenforany xe X ,d(g+c, x) = d(g,x-¢)
<(1-p)d(a x-c)+pd(b, x-c)=(1-p)d(@+c,x)+pdb +c, x). Thereforeq +c
€ Bp(a +C,b +c). Hence Bp(a +c,b+c)c Bp(a, b) + c.

3.3.2. Corollary : For any normed linear space X, Bp(a +C,b+c)= Bp(a, b) +c.

In the remainder of the section X will be considered as a normed linear

space (n.l.s.).
3.3.3. Lemma: Ifpe [0,1], thenforany abe X,pe Bp(a,b), where p=(1-p)a
+ pb.

Proof: Let v (x) denote the norm for each x € X, then forany xe X,

d(p,x)=v(P-x)=v((1-p)a+pb-x) =v((1-p)(@-x)+pb-x) <(1-p)v(a-

x) + pv(b-x) =(1-p)d(@-x) +pd(, x). Thus p e Bp(a,0).
The above lemma fails in a linear metric space .
3.3.4. Example: Consider X =42, be the set of pairs of realnumbers, with the

metric defined by:

d((X1,y1)’ (Xg,yz)) = l X1-X2| 1/2.;. | Yi- Yo |1/2 )

Let a=(1,0) and b =(0,1). By definition Bp(a,b) = N{S(x, r(x)): x e X}, where
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r(x) = (1 - p) d(a, x) + pd(b,x), p € [0,1]. But Bp(a,b) = ¢.

3.3.5. Llemma: Forany pe Rand abe X, the set Bp(a,_b) i s unaltered when
the norm v is replaced by pv, where p > 0.
Proof: The proofis immediate from the definition of Bp(a,b) and d(p, x) =

v (p-X).

3.3.6. Lemma: Foranype [0,1]and forany abe X, Bp(a,b) = p, where

p=(1 -p)a+pb.

Proof: If the dimension of X< 1, the above relation clearly holds. Assume that
the dimension of X is at least two. Suppose thereisa pe Bp(a,b) such that p
# oa + pb, where 6=1-p. By Corollary 3.3.2. we may assume, without loss of
generality that ca + pb = 0. We know by Lemma 3.3.5., the set Bp(a,b) is un-

altered if we replace v by pv ,when p >0. So we assume v (b-a) =1 =d (a,b).

Let X' be a two dimensional subspace of X containing a,b,p and co-
ordinatized such that a = (-p,0) , b= (0, 0) and p = (0, a) where a >0.

Therefore, d(a, 0) = pd(a, b) = p, d(b,0) =cd(a, b) = o and d(p,0) = o, where v

(0,1)=1. Now p eBy(a,b) implies d(p,0) < (1 - p) d(a, 0) + pd(b, 0) = opd(a, b)



23
+ opd(a, b) =20p. So a<2cp. Eitherp <1/2 orc<1/2 so po <1/2, and

a< 1. Forany xy e X, the connecting segment {(1 - €)x+ €y : € belongs to

[0,1]} is denoted by < x, y >. Now 0 e Bp(a,b) andpe Bp(a,b) so, by lemma
3211, <0, p>¢c Bp(a_,b). Let (o, ') be any point of < (5,0), (c,a) >.

Therefore d((0, 0), (o, ') = d{(0, -a'), (5,0)) = d(p',b). Further, since p'e Bp(a,b)
and, by lemma 3.2.10, d((0,0), (o,o)) = od(a,b) = 6. Thus any point of < (5,0),

(o,loc) > has norm o. Therefore it follows that sy=(c,0) has norm 2 c.

Let q=(0,0) and S denote the line through b and s,. S, is the line
through q and the point s'; of <0,s,> such thatv (s,) = 6. The point
intersection of S4 and Sis s*; = (0,0,). Now v (q) = o, also v(s'y) = o, by

construction. We claim all points of <q,s'y>\ {q,s;} have norm less thanc. To

see this let us assume that there is one point on <q,s',>\{q,s';} which has
norm 2 o. Now any point r=(p,, p,) of [0, =) (<q,8'>\{q,s';}) can be written as

(py:P,) = 1(p'y,p'p) Where p isa suitable positive number and (p';.p',) is é

point on <q,s';>\{q,s’).

Let us assume v (p';,p',) = o, therefore v (p,,p,) =v i (p'y,p'p) = Ho.
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For some suitable &,  (p'y,p'y) =(1-1)(0,0) +A(0,0,) =(Ac, (1-A)o+Ao,).
p'y=2Ao, | p'y=(1-A)o+ro =(1 -p’10'1)<5 +p',0'1<51=(6-p'1)+p'1c'1cs1
=0-p'y(1-0,6™") =0 p'4((c-0,)0™"). Now p,=np'; and p,= pp'y= p{o-p's(c-0;)c™")
implies po= p,+up'y (6-6,)0™'=p,+p,(0-6,)c™". Therefore v (p,,p,) = p,+
p1(o-o'1)0‘1. qu if we apply the definition pe Bp(a,b) with x= (0,1) and then
using the translation invariance of d , we get, d((0,-a),(c,1)) < (1-p)d((-p,0),(c,1))
+ pd((0,0),(c,1) , i.e., d((0,0),(0,1+a)) < od((-p,),(0,1+0a))+pd({0,0),(0,1+ @)).
Then,v (0,1+a)<od((-p+p,a-a),(c+p,1+0-a1)) +pd((c-0,0-0t) ,(0-6,1 +a-x))
=0d((0,0),(1,1))+ 6d((0,0),(0,1)) = ov (1.,1) +p. Therefore, (0'-01)6'16 +(1+a) <
0(()‘-0'1)6-1+0'+p vielding a <0 which is impossible. Thus any points of
<q,s,>\{q,s,} must have norm less than o.

Again let s,=(c,1+a) and s', be points of <0,s,> suchthatv (s',)=oc.
S, is the line containing q and s', and s*,=(0,0,) is the intersection of S, and S.
An argument analogous to that above shows , by using x=(c,1+a+p) and

p = (0,-o) that the points of <q, s',>\{q,s',} can never have norm 6. Now s, has

norm (0-02)0'10 +1+0. Now using the defining relation pe Bp(a,b), x=(c,1)
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(0-0,) 0" o+1+a < 0(0-0,)0 " +p+o implies a < 6,-0,. By repeated application of
this procedure we obtain {s} , {s'j} and {s*} , where s;= (c,&i) and =€, +p+a ,

i>1, s'jis the point of <0, s; > with norm ¢, and s*=(c,0) is the intersection of S

(line through q and s;' ) and' S. By application of the defining relation

pe Bp(a,b), as above , with co-ordinates x=(c,§+p) we can show that all points
on <q,s'>\{q,s;} have norm < ¢. Another application of the defining inequality
for pe Bp(a,b) with x=(o, &-ct) shows that 62 o, ;+0. Choose j such that qj>26 .
Since -b, g both have norm ¢, the norm of sj must be greater than o, which is a
contradiction. Thus p= ca+pb and Bp(a.b) = p.

8.37. Lemma: B,(ab)=p, for pe(1,)and forall a,beX, where

p=(1-p)a+pb.
Proof: Here p=(1-p)a+pb implies b=(1-p™")a +p 'p. Hence for any xeX,

by lemma 3.3.3., we have, d(b,x) < (1-p7') d(a,x) +p™'(p,x), so, d(p.,x) = (1-p)

d(a,x)+pd(b,x). Therefore pe Bp(a,b).

Nextletpandp'e Bp(a,b) , then by lemma3.2.4,
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be Bp_.1 (a,p) "By, (@.p"). Since p~le[0,1], by lemma 3.3.3. and 3.3.6.,
b=(1-p")a +p~'b . Therefore p=p". Hence By(a.b)=p . where p=(1-p)a+pb.
3.3.8. Lemma: ‘Bp(a,b)=p for pe(-a, 0) and forany a,b X, where

p= (1-p)a +pb.
Proof: Here p=(1-p)a+pb for-a. < p <0. Then a=(1-(p-1)"'p )p +(p-1)"'pb. Now
0 <r=p(1-p)l<i. Therefore , d(a,x) =v (a-x) =v {(1-r)p+rb-x)}

=v {(1-r)(p-x)+r(b-x)} < (1-r)v (p-x) +v r(b-x). So, d(p,x) = (1-p)d(a,x) +pd(b,x),

proving pe By (a,b). ' To prove uniqueness let us consider
p,p'e Bp(a,b). Then it follows by lemma 3.2.7., ae B(p/(p-1)) (p,b)N

B(p/(p_ﬂ) (p',b). Hence by lemma 3.3.3.and 3.3.6.,a=(1-r)p+rb = (1-r)p’

+rb, which implies p=p'. Thus Bp(a,b) = p, where p = (1-p)a +pb.

The results of this section can be summarized in the following :

3.3.9. Theorem: In a nomred linear space X, Bp(a,b) =p , for any real pe R and

for any a,b e X, where p= (1-p)a+pb.
Proof: The proof of the theorem follows from the lemmas 3.3.3.,3.3.5.,3.3.7.,

and 3.3.8.
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3.4, Metric Space wit h  Property GM,

in the rest of the section X is considered to be a metric space with
'property GM , which was introdl;ced by Gahler and Murphy as a sufficient
condition for means to be singletons.

Property GM:

(1) B,p(a.b) aﬁd B,(a,b) are singletons.

(2) The subset U{B,(a,b): pe[0,1] } is complete , for all a,be X.

3.4.1. Lemma: B_,(a,b) is singleton, for all a,b e X.

Proof: Since Bp(a,b)=B1_p(b,a) ,by lemma 3.2.6.,

B_,(b,a)= B,(b,,a) is a singleton.

3.4.2. Lemma: If p is a dyadic rational of the form m/2" such that pe[0,1]

Proof: By lemma 3.2.9., we have B, (a, B,,,(a,b))c B,,,(a,b). By property

GM(1), B, »(a,B4»(a,b)) is a singleton. Therefore B, 4(a,b) is nonempty. Again
by lemma 3.2.9., B, ,(Bg(a,b),B,,(a,b))<B,,(a,b), and B 4,(a,b)

=B,,,3 (a,b) is nonempty. Similarly, B,,( By»(a,b), B;(a,b)) c By,(a,b), by
lemma 3.2.9. and B,,(a,b)=B;,2(a,b) is nonempty. Continuing in the same

manner we can show that B ,n (a,b) is nonempty.
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3.4.3. Lemma: Forany pecRanda,beX, B p(a,b) is closed.

Proof: Let {pj} be a sequence which converges to p such that pje Bp(a,b).
Therefore, for every xe X, d(x,pj) < (1-p)d(a,x)+pd(x,b). As- Pj—>P then
d(x,p) < (1-p)d(a,x)+pd(x,b) and pe Bp(a,b).

3.4.4. Lemma: If p is a non dyadic rational such that pe[0,1] , then Bp(a,b) is
nonempty.

Proof: When p is not a dyadic rational, there exists a monotone decreasing |

sequence of dyadic rationals {p;}, i € N, convergingto p and by lemma3.4.2.,

there is pe Bpi(a,b). Now by lemma 3.2.8., we get d(pi,pj)= lpi-pjl d(a,b) for any

i,j. Sothe sequence {p;} is a Cauchy sequence and must converge to

pe B,(a,b) and, consequently, Bp(a,b) is nonempty.

ol

3.4.5. Lemma: For pe[0,1] and a,be X, Bp(a,b) is a singleton.
Proof: If p=1/2 then Bp(a,b) is a singleton, by GM(1). If p=1/2 , we consider

p<i/2. Leta'eB,(a,b), b'eB1_p(a,b) and p'eB,»(a,b). By lemma3.2.9., we get

pl

B12(a'\b") € B(p4(1-p)2 - pr2)(@b) =Byp(a,b) =p. So p'=By5(a',b)=B5(b"a) ,
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then by lemma 3.4.1., 2'=B_,(p',b’). Hence Bp(a,b) must be singleton. The

case p >1/2 follows by symmetry.

3.4.6. Lemma: For any natural number m, B,m(a,b) # ¢.

Proof: By Lemma 3.2.14., Bz(Bo(a,b), B,(a,b)) cB,(a,b) and by GM(1),

B,(a,B,(a,b)) is a singleton . Therefore B,2 (a,b) # ¢. Similarly by lemma

3.2.14 ., B,(By(a,b),B,(a,b)) cBg(a,b) and B,3(a,b) # ¢. In a similar way it can

be shown that B,m (a,b) # ¢.
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3.4.7. Llemma: Ifpe [0,1], Bp(a,b) is a singleton ,for every a,b € X.

Proof: It suffices to consider the case p € (1,%0), since Bp(a, b) = B1_p(a,b).
‘Let m be a natural number such that p < 2™. Then by lemma 3.4.6.,p e

B,m(a,b) . Letp'=(p-1)/(2™-1), then by lemma 3.4.5., pr(b, p) = p' and

Byp(@.p’) = b' are singletons. Thus since b & B,,,m (a,p).forany x e X,
d(b',x) < (1-p™Md(a,x) + p 'd(p' x)

< (1-p™) d(ax)+ p™((1-p')d(b,x) + p'd(p.x))

<(1-p™) d(ax) + (1-p)p '{(1-2™)d(a,x) + 2™Md(p,x)} + p'p 'd(p.x)

= (1-p™)d(@x)+(1-p)p"! (1-2™)d(a,x)+(1-p")p"'2™d(p,x)+p'p ' d(p.X)

= d@x){(p-1)p '+ (1-p") p1(2™-1)27™} + d(p,x){(1-p)p 2™ + p'p™}

= (1-2"™M) d(a,x) + 2™Md(p,x).

Hence b' € B,m (a,p), and since B,m(a,p) is a singleton, therefore b = b'.
Thus be B, ,p(a,p') which implies p' e Bp(a,b). Therefore the set Bp(a,b)
is honempty.

To show that Bp(a,b) is a singleton, let r = B, ,(a,b) and q € B, ,(a,b)

1-p
= Bp(b,a) and p* e Bb(a,b). Thus for ahy x € X, d(q,x) =2 pd(a,x) + (1-p)d(b,x)

and d(p*,x) > (1 - p) d(a,x) + pd(b,x). Therefore d(q,x) + d(p*,x) = d(a,x) + d(b,x).
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Since r € B,,5(a,b), therefore for any x € X, d(r,x) < (1/2) d(a, x) + (1/2) d(b,x)

< (1/2){d(q,x) + d(p*,x)}. Therefore r e B,,,(q.,p*), s0 p* € B,y(q,r) whichiis a

singleton.

3.4.8. Theorem: Let X be a metric space with property GM. Then, for any real p

and a,b e X, B,(a,b) is a singleton.

Y
Proof: The proof of this theorem follows from the aboverlemmas.
inearization X; In this section using, a construction given by Frechet
[9)], a linear structure is defined on a metric spaée X which satisfies property GM
and some conditions given below

First scalar multiplication is defined. In order to do this choose a fixed

point in X which will be the origin and designated as "O". Forany a e R and
any x € X, there exist one and only one point aa € X defined by aa = B,(O,a).

Secondly addition of a,b € X is defined as the uniquely determined
point 2m, , where m_, = B,,(a,b) and is denoted a +b.

In order to show that X together with these operations is a I_ihea’r space,

a sequence of lemmas will be proved.

3.5.1.lemma: aO=0andlia=a,forall ce R andforall ae X.

Proof: By lemma 3.2.5., O = B,(0,0) =O. Also by lemma 3.2.4.,1a = B,(O, a)

=a.
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352 Llemma: If ae X and a#0e R,then aa=o0 impliesa=_0.

Proof: O = aa = B,(O, a). By lemma 3.2.10., d(O,aa) = ad(O,a) implies

d(0,0) = ad(0O,a), i.e., ad(0,a) =0 . But a0 implies d(O,a) =0. Therefore

a=0.

3.5.3. Lemma: Forevery ae X, there exists be X suchthat a+b=0.
Proof; If b = B_4(0O,a) then, for all x e X, d(b,x) 2 2d(O,x) - d(a,x). Thus,

d(O, x) < (1/2)[d(a,x) + d(b,x)] and O e B,(a,b). Therefore a+b=0.
3.5.4. Lemma: If a+b=0,then b=B,(0,a).

Proof: If a+b=0,then 2B, ,(a,b) = O. Therefore B;5(a,b) = O. Thus

3.5.5.Remarks: From the above lemmas it follows that for every ae X there
exists a unique additive inverse b (= -a) such thatb =-a = B,(0,a) and
a+b=0.

3.5.6. Lemma: Forall ae X, d(O,a) =d(0,-a).

Proof: By remarks 3.5.5. , B.40,a) =-a. Therefore by lemma 3.2.10., we get
d(O,a) = |-1|d(0,a) =d(O,a).

3.5.7.Llemma: Forallxe X,a=z0, a{(1/a)b} =b.

Proof: By definition (1/a)b = B,,,(O,b). Therefore by lemma 3.2.6., we get
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b = By(O,a'b) = af(1/c)b}.

3.5.8. Lemma: Forall oe Randfor all ae X, (-0)a = a(-a) = -(0a).

Proof: For a =0 or 1, the result is immediate.

For a>1, let pe ‘Ba(O,-a), therefore forall xe X, d(p,x) = (1-c) d(O,x)+
ad(-a,x). But -ae B_{(0,a), so, d(-a,x) 22d(O,x) - d(O,-a). Thus, d(p,x) = (1 - o)
d(O,x) + o[2d(O,x) - d(O,-a)] = (1+)d(O,x)-ad(O,a). Therefore p € B_,(0,a)
and a(-a) = (-or)a.

Next we prove (-a)a =-(aa). Letq, € B.o(O,a) and q, e B,(O,a),
therefore for all x € X, d(q;,x) = (1 + «) d(O,x) - ad(a,x) and d(qg,,x) = (1-c)
d(O,x) + ad(a,x). Therefore d(q,,x) + d(q,,x) = 2d(O,x), which implies

d(O,x) < (1/2){d(q4,x) + d(q,,x) }. Therefore O =B,,, (B_,(0,a), B,(0,a) ) which

implies (-ca + aa=0. Thus (-aa) = -(0a), by lemma 3.5.4.

f0<o<1, then (/o) > 1 and (1/a) {-(ca)} = -{(1/ox)(c)} = -a, by
above. Thus af(1/0){ - (ca)}] = a(-a) implies - (aa) = a(-a), by lemma 3.5.7.
Again, (1/-a){(-®)a} =a . Therefore (1/c){(-o)a} =-a which implies a{(1/ct)(-ct)a} =
o(-a). Hence (-0)a = -(c).

Finallylet a<0,putB=-o >0. Then ca={-(-a)}a=(-B) a=-(Ba) =
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-((-a)a) implies -(aa) = (-)a. Again af-o) = {-(-a)}(-a) = (-B)(-a) = -{B(-a)} =
-{-(Ba)} = Pa = (-v)a.
3.5.9. Lemma: Forevery a,feRand ae X, a(fa) = (af)a.

Proof: The case for a=0orB=0and a=1or B =1 are immediate . To

complete the proof four cases are considered.

Assume O <o, B <1 . Bylemma3.2.11., Ba(O,Bﬁ(O,a)) c BaB(O,a).

Now each of the sets Ba(O,BB(O,a) ) and BaB(O-a) are singletons. Therefore
Ba(0.Bp(0,2)) = Byp(O,a); consequently ofBa) = (oB)a.

Assumec1, B>1. Then by lemma 3.2.14.,B4,(0,B3(0,3)) < Byp(0.2)
and again by the same argument a(Ba)= (af)a.

Assume O<a<1, B>1 or 0<B<1, a>1. Itis sufficient to consider
0 <a<1, B> 1. Thentwo subcases may arise af> 1 oraf < 1. Inthe first
case, op> 1,81 <1, o1 < 1. By lemma 3.5.7., (1/B)( (1/c) [ aB 1) = (1/B)( (o]
aB)a) = (1/B)(Ba) =a. Now multiplying both sides by B.thenby e, (op)a=
o(pa).

Now consider of < 1, (1/0)((1/B){[eB])a) = (17c)((B~'ap) a)

= (1/a)(xa) = a, by lemma 3.5.7. Now multiplying both sides by «a, then by B,
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we obtain (dB)a = B(ca).

Assume a<0 B<0or a>0 B<0. Itsufficesto prove one of these

cases, because the other case can be proved in a similar way.
Let «<0,B<0,i.e.,-o>0and-ap < 0. Therefore [-af]a = [(-ap}a = (-a) (Ba)
implies -[af]a = -a(Ba) by lemma 3.5.8., and (af)a = a(Ba).

3.5.10.Llemma: a+b=b+a,forall abe X.

Proof. a + b=2B,,, (a,b) =2B,,(b,a)=b +a.

3.5.11.lemma: a+ O=a, forall ae X.

Proof: m,,=B,,(a,0)B;,(0,a). Bylemma3.2.6.,a=B,(0, m, ) =2m, =

a+0.
The main results of the lemmas in this section thus far can be

summarized as follows :

3.5.12. Summary : Let X be a metric space with property GM. Given O € X,
two operations addition and scalar multiplication over R have been defined on
X which satisfy the following:

(1) Addition is commutative. .

(2) a+0=0,forall ae X
(3) Toevery "a" there exists a "b"(=-a) suchthata + b =0.

(4)1a=a.

(5) Multiplication by scalars is associative, i.e., o(Ba) = (af)a.
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We will have a linear structure in X provided the associative property of
addition and the two distributive properties hold. In the 