A Behavioral Bioassay Examining the Effects of Ethanol on Flagfish Reproduction

by Karen E. Roche

A THESIS

SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULEILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

> Lakehead University Thunder Bay, Ontario July 1983

ProQuest Number: 10611707

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611707

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ABSTRACT

A behavioral bioassay method was developed to examine the effects of ethanol on the reproductive success and behavior of flagfish (Jordanella floridae). Reproductive behavior was divided into eight categories: egg tending; nesting; t-circling; chasing a faded female; spawning; guarding; chasing; and inattentive behavior. The dominant male in each tank was observed for ten minutes daily for five days before and after ethanol exposure. The data was examined to determine the frequency with which each behavior occurred, the percent of the Total Frequency that each behavior represented, the total time spent at each behavior, and the sequential order in which the behaviors occurred.

Total Frequency, the number of times the fish switched from one behavior to another, was reduced when the fish were exposed to concentrations of ethanol ranging from 0.5 to 3.0 g/liter. When behavior was analyzed with respect to the eight behavioral categories, it was found that no single behavior contributed to the decline but rather the number of times a fish engaged in each behavior was reduced. Accompanying this reduction in activity was an increase in inattentive behavior. When sequences of behavior were examined, no significant change occurred even at the higher ethanol concentrations.

Fewer eggs were recovered from adults exposed to 2.0

ii

and 3.0 g/liter. Of the eggs produced, hatchability and a larval survival exceeded 94% and 90%, respectively, at all concentrations tested. It was concluded that the reduction in spawning activities at concentrations of 1.5, 2.0, and 3.0 g/liter ethanol was due to the overall reduction in activity. It appears that the dominant male must maintain a minimal threshold of activity to successfully spawn.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the following people who made this project possible.

I thank Dr. George Ozburn, Dr. Walter Momot, Dr. John Jamieson, Mr. Davy Jones, and Mr. Alasdair Smith for their technical and professional assistance.

My special thanks are extended to Dr. Steve Goldstein for his expertise and valuable suggestions throughout this study.

TABLE OF CONTENTS

Page			
Abstractii			
List of Figuresvi			
List of Tablesviii			
Introductionl			
Materials & Methods3			
I. Chemical Analysis			
II. Behavior Study6			
III. Egg Production Studyll			
IV. Egg Hatchability Study13			
V. Larval Survival Study15			
Results17			
I. Chemical Analysis17			
II. Behavior Study18			
III. Egg Production Study25			
IV. Egg Hatchability Study25			
V. Larval Survival Study25			
Discussion27			
Conclusions			
Appendix A			
Appendix B			
Literature Cited60			

List of Figures

Figure	1.	Schematic Diagram of the Diluter System
Figure	2.	Mean Total Frequency for All Behaviors
Figure	3.	Frequency of Nesting Behavior
Figure	4.	Frequency of Egg Tending Behavior
Figure	5.	Frequency of T-circle Behavior
Figure	6.	Frequency of Spawn Behavior
Figure	7.	Frequency of Chase Faded Female Behavior
Figure	8.	Frequency of Guard Behavior
Figure	9.	Frequency of Chase Behavior
Figure	10.	Percent of Total Frequency for
		Egg Tending Behavior
Figure	11.	Percent of Total Frequency for
		Nesting Behavior
Figure	12.	Percent of Total Frequency for
		T-circle Behavior
Figure	13.	Percent of Total Frequency for

Spawn Behavior

- Figure 14. Percent of Total Frequency for Chase Faded Female Behavior
- Figure 15. Percent of Total Frequency for Guard Behavior
- Figure 16. Percent of Total Frequency for Chase Behavior

- Figure 17. Time Spent at Egg Tending Behavior
- Figure 18. Time Spent at Nesting Behavior
- Figure 19. Time Spent at T-Circling Behavior
- Figure 20. Time Spent at Spawning Behavior
- Figure 21. Time Spent at Chase Faded Female Behavior
- Figure 22. Time Spent at Guard Behavior
- Figure 23. Time Spent at Chase Behavior
- Figure 24. Time Spent at Inattentive Behavior

List of Tables

- Table 1. Linear Trend Analysis on Frequency for Each Behavior
- Table 2. One-way ANOVA on the Percent of Total Frequency
- Table 3. Frequency Data for Sequences of Behavior in the Control Situation
- Table 4. Percent of Total Frequency for Sequences of Behavior in Controls
- Table 5. Percent of Total Frequency for Sequences of Behavior in Ø.5 g/l Ethanol
- Table 6. Percent of Total Frequency for Sequences of Behavior in 1.0 g/l Ethanol
- Table 7. Percent of Total Frequency for Sequences of Behavior in 1.5 g/l Ethanol
- Table 8. Percent of Total Freuency for Sequences of Behavior in 2.0 g/l Ethanol
- Table 9. Percent of Total Frequency for Sequences of Behavior in 3.0 g/l Ethanol
- Table 10. Linear Trend Analysis on Time Spent at Each Behavior
- Table 11. Presence or Absence of Eggs on the Substrates
- Table 12. Percent of Eggs Hatching across Ethanol Concentrations
- Table 13. Percent of Larval Survival across Ethanol Concentrations

viii

Appendix A

A Review of Selected Literature on Fish Behavior

Appendix B

Table 1. Chemical Analysis on the Water Supply

Table 2. Mean Temperature, pH, and Dissolved Oxygen during the 1st Run

Table 3. Mean Temperature, pH, and

Dissolved Oxygen during the 2nd Run

Table 4. Mean Ethanol Concentrations

in the Test Tanks

INTRO DUCTION

In the natural environment, the survival of the organism is frequently related to its behavior; such as the ability to capture prey, to successfully spawn, and to avoid predation. Toxicants which modify patterns of behavior can reduce the chances for individual and specie survival by altering the ability of the fish to perform its normal activities. The organism has a limited capacity to compensate for and to # adjust to stresses such as toxicants (Fry, 1947; Iverson and Gutherie, 1969). Behavioral toxicity studies are directed towards determining the limits of the stresses under which the organism is capable of normal performance.

But, most fish behavioral studies using a toxicant examine a single behavioral parameter such as avoidance, swimming ability, or learning. (A tabular review of selected literature on fish behavioral studies using toxicants is presented in Appendix A.) Since toxicants are known to affect different behavioral responses depending on concentration and time of exposure, and since the effects may not necessarily develop at equal rates (Kalant, <u>et al</u>., 1971), examining a single behavioral parameter may not be representative of the effects of that toxicant. In addition, studies measuring only one behavioral response, such as learning, may be only partially suitable in determining the effects of a toxicant

-1-

since the ecological significance of that behavior may be uncertain (Sprague, 1971).

One area of behavior which is ecologically significant is reproductive behavior since a reduction in spawning success can ultimately lead to a collapse in the fish population. In addition, reproduction is not a single behavior, but rather a composite of several other behaviors: courtship; nesting; parental behavior; and fighting (Tinbergen, 1951). Disruption of any of these subcategories can result in unsuccessful spawning.

The purpose of this study was to examine the sublethal effects of a toxicant on flagfish reproductive behavior and success. Rather than examining a single behavior, this method was designed to examine the components of reproductive behavior. Each behavior was examined to determine if quantitative changes occurred in the time spent at each behavior or in the frequency with which each behavior occurred. In addition, the sequential order in which the behaviors occurred was examined to determine if the behavioral patterns were altered. Hatching success and larval survival were examined to determine if survival of the off-spring was affected by the toxicant.

-2-

MATERIALS & METHODS

This section has been divided into five subsections: I. Chemical Analysis; II. Behavior; III. Egg Production; IV. Egg Hatchability; and Larval Survival.

I. CHEMICAL ANALYSIS

<u>Water</u> <u>Chemistry</u>

Temperature, pH, and dissolved oxygen readings were taken daily using mercury thermometers, a Delta Scientific Dissolved Oxygen Meter, and a Radiometer pH M-64 Meter, respectively. In addition to these parameters, the Thunder Bay Regional Ministry of the Environment analyzed the water supply.

Ethanol Determinations

Ethanol concentration in each tank was determined using a modified Widmark method (Hallett, unpublished) as follows. Samples were collected daily from at least one tank at each concentration throughout the exposure period.

A 10 ml sample was taken from the center of each tank and filtered through a Whatman #1 filter into a 50 ml fläsk. Two 10 ml distilled water samples were also prepared to determine the volume of ammonia sulfate nedded to titrate the potassium dichromate solution. A 0.5 ml subsample of

-3-

the filtered sample was placed into a 250 ml flask containing 10 ml potassium dichromate solution. These flasks were placed in an oven at $60\pm2^{\circ}$ C for 2 hours. Samples were removed and cooled. To provide a sufficient volume to titrate, 100 ml distilled water was added to each sample. Since the addition of water to the potassium dichromate solution generated heat, the samples were cooled again. Samples were then titrated against the ammonium sulfonate as an indicator. When the sample turned clear, the titration was complete.

The reagents were prepared as follows:

Reducing solution: (FAS): 8.866 g ammonium ferrous sulfate was dissolved in distilled water. Then, 200 ml concentrated sulfuric acid was added and the volume was adjusted to 2 liters with distilled water.

Oxidizing solution: 1.7050 g potassium dichromate was dissolved in 100 ml distilled water. Then, 1750 ml 14 N sulfuric acid was added.

All glassware was cleaned in chromic acid solution, rinsed several times with hot water, and finally rinsed with distilled water.

Ethanol concentrations in the tanks were determined using the following calculations:

15 ml FAS = 0.002 g ethanol 1 ml FAS = 0.133 mg ethanol

-4-

mg of ethanol / ml = g of ethanol / liter

[(R) (0.133 mg EtOH / ml FAS)] / 0.5 ml sample

where R ml of FAS needed to titrate the blank minus ml FAS needed to titrate the sample.

II. BEHAVIOR STUDY

TEST FISH

Flagfish were obtained from the United States Environmental Protection Agency (U.S. E.P.A.), Duluth, Minnesota in December 1980. These fish were brought into spawning condition in preparation for egg collection. Eggs were collected during late January and early February 1981. The resulting progeny was used for subsequent experiments.

MATERIALS AND APPARATUS

Flow-through Diluter System

The equal volume diluter system used in this study has been described by DeFoe (1975). Modifications on this system have been described by Murphy (1978). The system consisted of three levels as shown in Figure 1. Level 1 filled with water from a header tank until all seven cells were full. When the seventh cell was full, it flooded into a siphon initiator cell in Level II causing a venturi vacuum which simultaneously released the water from the cells in Level I to the corresponding cells in Level II. As the siphon initiator cell filled, the float switch was triggered initiating the injector system which released ethanol into the Level II cells. The exhaust phase of each ethanol delivery permitted each syringe to refill from the ethanol reservior containing 99% ethanol.

The pneumatic injector system used to deliver the ethanol has been described by Smith, <u>et al</u>. (1977). Five injectors

-6-

Figure 1. Schematic illustrating equal volume diluter

ŧ

siphon

were used, each calibrated to deliver a prescribed volume of ethanol. The remaining cell received dilution water only.

Standpipe siphons delivered the water from Level I to II, and from Level II to III. Mixing occurred at Level II and Level III. Each cell in Level III delivered an equal volume (500 ml) to four test tanks. Diluter filling was controlled by a 5 minute electrical timer providing 90% replacement in each test tank in approximately 12 hours.

Exposure Tanks

Twelve exposure tanks were used in this experiment: six were arranged to the left of the diluter system and six to the right. Each of the six treatment tanks was connected to a different cell on Level III of the diluter system. Each tank contained an inflow pipe, and outflow standpipe, an airstone, and 14 kw immersible heater. Exposure tanks were maintained at approximately 26°C with a constant photoperiod (LD 16:8).

Spawning Substrates

Spawning substrates consisted of a 10 cm X 15 cm inverted "V" shaped stainless steel frame wrapped tightly with green orlon yarn in parallel strands. The yarn was preboiled to remove excess dye.

-7-

Event Recorder

Fish behavior was recorded using a six channel event recorder. Each channel was assigned a behavior. Depressing a button produced a mark on the event recorder tape which indicated that a particular behavior had been initiated; releasing that button indicated the termination of that behavior. The event recorder was adjusted to produce lomm of tape per second. The duration of each behavior was obtained by measuring the interval between button depression and release. This value was converted from millimeters to seconds.

PRO CEDURE

Adult fish were fed previously thawed brine shrimp (<u>Salina artemia</u>) twice daily. All tanks were siphoned after feeding to remove excess food and wastes.

Flagfish were selectively culled in July 1981 to provide two males and three females in each tank. Two spawning substrates were placed at opposite ends of each exposure tank. Fish were allowed 4 days to habituate to their new environment and to establish dominance around the substrate area. All substrates were removed in the morning of the fourth day and the position of the substrate guarded by the dominant male was recorded. Twenty-four hours after removal, the substrate of the dominant male was replaced to its original location in each exposure tank. Food was then introduced into each tank. One-half hour later each tank was siphoned. Ten minutes after

-8-

siphoning the behavior recording was initiated. This time was chosen because most spawning activity takes place immediately after feeding (Foster, <u>et al</u>., 1969)

The behavior of the dominant male in each tank was recorded daily for a 10 minute interval. To obtain baseline behavior data for each dominant fish, every tank was observed for 5 days prior to adding the ethanol. After the behavior was recorded on the fifth day, the substrates were removed. They were replaced 24 hours to coincide with the introduction of ethanol. No behavioral responses were recorded on the day the ethanol was introduced. The following day the routine of feeding, siphoning, and behavior recording was resumed. Behavior was again recorded for 5 consecutive days.

The behaviors were defined in such a way that the fish so could engage in only one behavior at a time and at any point in time must be engaged in one of the behaviors. The behaviors observed were defined as follows:

Egg tending: the male is occupied with fanning or mouthing the eggs, or cleaning the substrate of debris and food. He is usually oriented 90 degrees to the substrate and is rapidly moving his pectoral fins.

<u>Chasing a faded female</u>: male chases, butts, or bites a female who has lost her coloration signifying her readiness to spawn.

-9-

<u>Nesting</u>: male maintains a position within 8 cm of the substrate but is not actively engaged in another behavior; most often all other fish are located at a distance from the substrate. The fins are not extended.

<u>Spawning</u>: male is actively spawning the female; the male presses the female against the substrate. Both are on the their sides and rapidly undulating their caudal fins.

<u>T-circling</u>: the female has approached the male and orients herself perpendicular to the male. She may maintain this position for several seconds while the male attempts to parallel her side.

<u>Chasing</u>: the male aggressively approaches another fish with fins extended.

<u>Guarding</u>: the male extends all fins and assumes a position between the substrate and another fish.

<u>Inattentive</u>: the male does not assume any of the behaviors described above. For example, all the fish are gathered under the substrate and it is no longer apparent which male is dominant.

At the completion of this experiment, all tanks were scrubbed and disinfected with chlorine. The experiment was replicated 3 days later following the same procedure.

-10-

III. EGG PRODUCTION STUDY

<u>Test</u> Fish

Laboratory raised flagfish were used in this experiment. These fish were obtained as described in the Behavior Study section above.

MATERIALS AND APPARATUS

Exposure Tanks

The apparatus used in this study was the same as that previously described except that only six exposure tanks were used.

Flow-through Diluter System

The diluter system is described in the Behavior Study section above.

Spawning Substrates

The spawning substrates are described in the Behavior Study section above.

PROCEDURE

Fish were fed brine shrimp as described previously twice daily. Again, 1/2 hour after the morning feeding the tanks were siphoned to remove excess food and wastes.

Two males and three females were placed into each tank. One substrate was placed in each tank. Fish were allowed 4 days to establish dominance around the substrate area. All substrates were removed in the morning of the fourth day and

-11-

replaced the following morning to coincide with the introduction of ethanol. Approximately 3 hours after feeding the substrates were removed and checked for the presence or absence of eggs. Eggs were brushed from the substrate by gently rubbing the fingers across the substrate. Clean substrates were returned to their respective tanks.

In addition, the presence or absence or absence of eggs was recorded on the behavior study tanks without removing the substrates. IV. EGG HATCHABILITY STUDY

EGG SOURCE

Eggs collected from the Egg Production Study were used in this experiment.

MATERIALS AND APPARATUS

Exposure Tanks

The apparatus used in this study was the same as that previously described except that only six exposure tanks were used.

Flow-through Diluter System

The diluter system is described in the Behavior Study section above.

Rocker Arm Assembly

The rocker arm assembly has been described by Murphy (1978). Briefly, the rocker arm assembly consisted of a 12.7 mm aluminum rod suspended above the lower bank of tanks. Two 6.4 mm aluminum rods per tank were attached perpendicular to the former rod. These rods each had two points of attachment for the egg cups. The 12.7 mm rod was connected to a five rpm electric motor with cam which continuously raised and lowered the egg cups within the tank to facilitate oxygen and carbon dioxide gas exchange at the egg membrane surface.

Egg Cups

The egg incubating cups were constructed from 120 ml, 5 cm diameter, round, glass jars. The bottoms of the jars and the center of the bakelite caps were removed and replaced with stainless steel screen (No. 40 mesh). The screen was fastened with silicone sealant. A stainless steel hook was fastened to each cap providing a point of attachment to the rocker arm assembly.

PROCEDURE

Eggs collected from the Egg Production Study were placed into egg cups for incubation. No more than 50 eggs were placed into each cup. Egg cups were dipped in 4 ppm malachite green for 3 to 5 minutes immediately after collecting and daily thereafter until all had hatched. This was a preventitive measure to mitigate loss of eggs due to fungal infestation.

Egg@cups were placed on the rocker arm assembly so that eggs were incubated in the same concentration of ethanol from which they were spawned. Eggs were examined daily and any dead eggs were removed. V. LARVAL SURVIVAL STUDY

TEST FISH

Eggs were collected and incubated prior to ethanol introduction. Larvae not older than 2 day post-hatch were used in the Larval Survival Study.

MATERIALS AND APPARATUS

Exposure TanksZ

The exposure tanks are the same as those used in the Egg Hatchability section above.

Flow-through Diluter System

The diluter system is described in the Behavior Study section above.

Larval Baskets

Larval baskets were constructed from winchester acid bottles. The tops and bottoms were removed leaving a 13 cm high container. Stainless steel screen (No. 40 mesh) was attached to the bottom. A 3 cm strip of screen was attached around the top circumference of the container to obtain additional height and water movement. Three 6 cm high glass vials were attached to the base of the basket which raised the basket off the bottom surface of the tank permitting water to pass through the lower screen in the basket. All attachments were adhered with silicone sealant.

-15-

PROCEDURE

Fifty newly hatched larvae were placed in each larval basket. Three baskets were randomly placed in each test tank so that 150 newly hatched larvae were exposed to the ethanol for 6 days. Larvae were fed newly hatched live brine shrimp once daily. Tanks were siphoned daily to remove excess food. Larval survival was recorded at the termination of the experiment.

RESULTS

This section has been divided into five subsections: I. Chemical Analysis Results; II. Behavior Study Results; III. Egg Production Results; IV. Egg Hatchability Results; and V. Larval Survival Results.

I. CHEMICAL ANALYSIS RESULTS

Water Chemistry

The results of the chemical analysis on the water supply is presented in Table 1 in Appendix B. The mean temperature, pH, and dissolved oxygen readings are presented in Tables 2 and 3 in Appendix B, for the first and second run, respectively. There was little fluctuation in any of these parameters and the values obtained are in the ranges of the U.S. E.P.A. recommended values for aquatic bioassays.

Ethanol Determinations

The mean ethanol concentrations for the first and second run are presented in Table 4 in Appendix B. These values are calculated from the mean daily concentration at each ethanol level. There was little fluctuation in the ethanol concentrations measured.

-17-

II. BEHAVIOR STUDY RESULTS

Qualitative Description of Behavior

During the week prior to alcohol addition, the behavior of the dominant male flagfish had two distinct behavioral patterns. One of these patterns involved t-circling, spawning, and chasing a faded female. The other behavior involved tending the eggs and guarding the substrate area. These behaviors varied in frequency and duration depending on the behaviors of the other fish in the tank and the readiness of the female to spawn.

In the first pattern of behavior, generally a female would approach the substrate in a passive manner either dropping slowly from above the substrate or slowly approaching from the opposite end of the tank. When a female approached the substrate in this way, her distinct coloration had faded. If no females approached the substrate to spawn, the male pursued females in the other end of the tank. The male then returned to the substrate and engaged in egg tending, nesting, and guarding. Frequently, following these forays, a faded female did approach the substrate, possibly in response to this activity.

If no other fish approached the spawning area, the male would attempt to parallel the faded female's side resulting in t-circling. The male frequently chased or butted a tt-circling female. This produced one of two responses:

-18-

either the female would flee to the opposite end of the tank; or t-circling resumed and spawning occurred. Subsequent to spawning, the male chased the faded female from the substrate.

If another fish approached the substrate during spawning, the dominant male usually interrupted his courtship to chase the intruder away and, at times, chased the female he was engaged with. In instances where the dominant male continued spawning rather than chasing the intruders, the intruders canabalized the eggs on the substrate.

After the dominant male had spawned and cleared the substrate area of intruders, he resumed the second general pattern of behavior. This pattern involved an alternation of egg tending, nesting, guarding, and chasing.

Effects of Ethanol on the Frequencies of Behaviors

Data were pooled according to ethanol concentration so that four fish comprised the behavioral data at each exposure level. Week 1 represented the control period and Week 2 the ethanol exposure period. In this manner each fish was co compared to its own control. This procedure minimizes individual behavioral differences.

The number of times a fish switched from one behavior to another was represented by the Total Frequency. This parameter measured the activity level of the dominant male fish. The mean Total Frequency for each tank was determined for each level of ethanol used in the study. There

-19-

was a general reduction in Total Frequency after the introduction of ethanol especially at 2.0 and 3.0 g/liter ethanol (Figure 2). A linear trend analysis was performed on the Total Frequency data and was significant at the p<.05 level, F(1,18) = 14.26, indicating that the tendency to engage in reproductive activity decreased as ethanol concentration increased from 1.0 through 3.0 g/liter.

No single behavior contributed to the reduction in Total Frequency, but rather the frequency of each behavior was reduced (see Figures 3 through 9). This reduction became more pronounced at the higher ethanol concentrations, 2.0 and 3.0 g/liter ethanol. There was one exception to this general pattern; at 0.5 g/liter ethanol frequency of chasing increased (Figure 9). The controls remained relatively constant for all behaviors except for a decline in the frequency of spawning, t-circling, and chasing a faded female. Linear trend analyses were conducted on the frequency data for each behavior (Table 1). Except egg tending, all behaviors were significant at the p4.05 level in the linear trend analysis, indicating that the frequency of these behaviors varied inversely with ethanol concentration.

Effects of Ethanol on Percent of Total Frequency

Since the frequency of each behavior had declined across concentrations the data was standardized in the form of percent of Total Frequency to determine whether the pattern and relative

-20-

Figure 2. Mean Total Frequency for all behaviors. (... control period; --- ethanol period)

Figure 3. Frequency of nesting behavior

(... control; ____ ethanol)

Figure 4. Frequency of egg tending behavior (... control; _____ ethanol)

Figure 5. Frequency of t-circle behavior (... control; _____ ethanol)

Figure 6. Frequency of spawn behavior (... control; _____ ethanol)

T-CIRCLE

SPAWN
Figure 7. Frequency of chase faded female behavior (... control; _____ ethanol)

Figure 8. Frequency of guard behavior (... control; _____ ethanol)

Figure 9. Frequency of chase behavior (... control; _____ ethanol)

Table 1. Linear trend analysis on the frequency data for each behavior.

Behavior	F-value			
Ega Tending	1.26 (NS)*			
Chase Faded Female	5.78			
Nesting	16.8Ø			
Spawning	6.61			
T-Circle	4.46			
Chase	10.99			
Guard	13.67			
Inattentive	13.02			
Total Frequency	14.26			

*Not significant at the p<.05 level.

levels of behavior had changed. The data was converted using the following formula:

% Total Frequency =

(frequency of a behavior/Total Frequency) X 100

When the control data was examined for all tanks, it appeared that each behavior in the control situation made a coconsistent contribution to the frequency. For example, guarding contributed between 25 and 35% of the total behavior whereas chasing ranged from about 10 and 20% (Figures 10 through 16).

The percent of Total Frequency after ethanol exposure showed some fluctuations when compared to the control situation. The fish exposed to 0.5 g/liter ethanol and 1.0 g/liter ethanol showed an increased in the percent of Total Frequency for chasing behavior, and a decrease in egg tending and nesting behaviors. Fish exposed to 1.5 g/liter ethanol showed an increase in egg tending and a decrease in guarding and spawning. At 2.0 g/liter ethanol egg tending and nesting increased; t-circling, spawning, and chasing a faded female decreased; and chasing and guarding remained unchanged from the control situation. The behavior of fish exposed to 3.0 g/liter ethanol remained with within the ranges of the control period for egg tending, nesting, guarding, and chasing on Days 1 and 5; but these fish were inattentive for the entire observation on Days 2, 3, and 4. T-circling, chasing a faded female, and spawning were eliminated.

-21-

Figure 10. Percent of Total Frequency for egg tending behavior (... control; _____ ethanol)

Figure 11. Percent of Total Frequency for nesting behavior (... control; _____ ethanol)

Figure 12. Percent of Total Frequency for t-circle behavior (... control; _____ ethanol)

Figure 13. Percent of Total Frequency for spawn behavior (... control; _____ ethanol)

Figure 14. Percent of Total Frequency for chase faded female behavior (... control; _____ ethanol)

Figure 15. Percent of Total Frequency for guard behavior (... control; _____ ethanol)

Figure 16. Percent of Total Frequency for chase behavior (... control; _____ ethanol)

Table 2. One-way ANOVA on the percent of Total Frequency

Behavior	F-value		
Egg Tending	3.37		
Chase Faded Female	Ø.64(NS)*		
Nesting	4.15		
Spawning	1.75(NS)*		
T- circle	Ø.86(NS)*		
Chase	3.93		
Guard	3.14		

*Not significant at the p<.05 level

A one-way ANOVA was performed on the difference scores between Week 1 and Week 2 across concentrations (Table 2). Egg tending, nesting, guarding, and chasing were significant at the p4.05 level, indicating that the relative levels of \Im_{2} these behaviors were affected by ethanol concentration.

Effects of Ethanol on Sequences of Behavior

To examine the frequency with which each sequence of behavior occurred, a two dimensional transitional matrix was computed with the vertical axis representing the "preceding" behavior and the horizontal axis representing the behavior that "followed". Since the frequency data by definition is a shift from one behavior to another, no behavior can be followed by itself. Therefore the diagonal cells remain empty.

The frequency data obtained from all tanks in the control situation were pooled into one matrix and are presented as the upper values in Table 3. The lowerevalues for each block represent the maximum-likelihood estimate if the behaviors were occurring randomly. These values were derived using the method described by Wagner (1970). A Chi square analysis was performed using the estimated matrix as the expected values and the control matrix as the observed values. The resulting Chi square value was very large, $x^2 = 13528$, and was significant, indicating that the behavioral sequences do not occur randomly.

Since the behavior was not random, another set of matrices

-22-

Table 3. Frequency data for sequences of behavior in the control situation (upper values) and the maximum-likelihood estimates if the behaviors were occurring randomly (lower values). * denotes sequences that occur most frequently

inatten.	guarding	chasing	t-circle	spawn	nesting	chase faded female	egg tending	
2 1.57	1247 1334.05	61 505.40	28	38.07	1670 862.09	50 119.11		egg tending
.29	61 242.84	29 92.00	418 36.57	35	81 156.93	\mathbf{X}	20 109.49	chase faded female
1 2.06	2015 1750.19	189 663.05	101 263.56	38 49.95	$\left \right\rangle$	147 156.27	1183 789.14	nesting
.09	4 77.30	3 29.28	177 11.64	\mathbf{X}	10 49.95	16 6.90	0 34•35	sp a wn si
.47	351 401.19	65 151.99	$\left \right\rangle$	83 11.45	181 259.25	324 35.82	36 180.89	t-circle
0 1.21	1156 1028.49	$\left \right\rangle$	115 154.88	23 29.35	625 664.63	47 91.83	468 463.74	chasing
4 3.31		* 2160 1064.19	252 423.02	34 80.17	1241 1815.26	75 250.81	1137 1266.57	guarding
\square	3 3.28	0 1.24	.49	• 09	2 2.12	.29	2 1.48	inatten.

was developed so that the fish at each concentration acted as their own controls. The raw frequencies for each week were summed according to concentration. This frequency was then divided by the Total Frequency of the summary matrix and multiplied by 100 to obtain the percent of Total Frequency for each block. The data is presented in the form of percent of Total Frequency so that comparisons can be made across concentrations (Tables 4 through 9). The upper values in these matrices were the values obtained during the ethanol exposure period; the lower values were the control period data.

In the control situation 10 of the possible 56 sequences represented over 80% of the Total Frequency. These 10 sequences are noted with an asterik. When the sequences were examined across concentrations, all of the 10 sequences which represented most of the total acitivity are retained after ethanol exposure, even at the highest concentration. A one-way ANOVA was performed on the differencesscores between the control period and the ethanol exposure period for these 10 sequences. The ethanol exposure did not significantly change the behavioral patterns; F(5,54) = 1.33, which was not significant at the p<.05 level.

-23-

Table 4. Percent of Total Frequency for sequences of behavior in controls during the ethanol exposure period (upper values) and during the control period (lower values). * denotes sequences used in the ANOVA analysis

Table 5. Percent of Total Frequency for sequences of behavior in 0.5 g/liter ethanol during the ethanol exposure period (upper values) and during the control period (lower values). * denotes sequences used in the ANOVA analysis

			follows							
		egg tending	chase faded female	nesting	spawn	t-circle	chasing	guarding	inatten.	
	egg tending	\mathbf{X}	0 .2	8.7 6.6	00	.2 .1	3.0 2.9	7.3* 9.7	00	
	chase faded femalo	.? .?	\times	.) 0	•1: 0	2.3 2.3	.4 .2	.0	0	
	nesting	11.3 8.8	.2 .5	$\mathbf{\mathbf{X}}$	0 0	1.1 1.2	4.7 2.7	8.0 6.6	0 0	
cedes	spawn	0 0	.2 .3	.2 .2	\mathbf{X}	.4 .4	.1 .1	.3	00	
pre	t-circle	.1 0	.8 2.8	.8 .7	.5 1.2	\succ	.) .8	1.1 2.7	0 0	
	chasing	.6 .5	.1 .2	1.4 .8	0	.2 .7	\times	15.5 ° 12.4	000	
	guarding	6.8 9.9	.3 .3	14.2 10.7	.1 0	1.0 3.5	9.4 7.7	\times	00	
	inatten.	0 0	0 0	0 0	0 0	0 0	0	0 0	\times	

		egg tending	chase faded female	nesting	spawn	t-circle	chasing	guarding	Inatten.
	egg tending	\times	.2 .2	9.6 10.8	0 0	.3	4.6 4.9	4.3 9.9	0
	chase faded female	.5 .8	\boxtimes	.4 .7	0	1.3 1.8	.3 0	.) .1	0
	nesting	8.5 12.1	:5	\mathbf{X}	0	1.2 .9	6.1 2.8	5.6 7.4	00
edea	spawn	00	.1 .3	0 .1	\mathbf{X}	.2 .2	0 0	0 0	0
prec	t-circle	0 .2	2.1 2.5	.6 .5	.4 .7	$\mathbf{ imes}$.9 .1	.4 •5	00
	chasing	1.8 .5	.2 .1	1.5 .5	0	.4 .1	\mathbf{X}	18.4 [*] 11.5	0
	guarding	8.0 12.0	.3 .2	9.6 10.4	00	1.1 1.1	10.3 5.3	\mathbf{X}	0
	inatten.	0	0	0	00	0	0	0 .1	\mathbf{X}

follows

Table 6. Percent of Total Frequency for sequences of behavior in 1.0 g/liter ethanol during the ethanol exposure period (upper values) and during the control period (lower values). * denotes sequences used in the ANOVA analysis

Table 7. Percent of Total Frequency for sequences of behavior in 1.5 g/liter ethanol during the ethanol exposure period (upper values) and during the control period (lower-values). * denotes sequences used in the ANOVA analysis

		follows								
		egg tending	chase faded female	nesting	s pawn	t-circle	chasing	guarding	inatten.	
	egg tending	\times	.1 .1	8.9 9.5	0 0	.1 .4	4.4 2.4	4.2* 7.6	0 0	
	chase faded female	.6 .)	\times	.5.6	.1 0	2.5 1.6	.6 .3	.4 .4	0 0	
	nesting	7.7 10.5	.) .2	\times	.1 0	2.1 1.2	2:2	5.1 8.7	.3 0	
sepe	spawn	0	.2 0	.) .2	\times	1.0 .4	.1 0	0 0	.) 0	
prec	t-circle	. ; . ;	3.2 2.4	.9 .3	1.5 .7	\times	1.5 .6	.6 1.1	0	
	chasing	1.4	• 5	1.1 1.1	00	.8 .1	\times	15.7° 13.2	0 0	
	guarding	6.4 * 8.8	.2 .8	10.0 * 13.0	0 0	1.8 1.7	7.8 6.7	\mathbf{X}	.1 0	
	inatten.	0 0	0	.3 0	0 0	0 0	.2 0	.1 0	\times	

		egg tending	chase faded female	nesting	a pawn	t-circle	chasing	guarding	inatten.
	egg tending	\mathbf{X}	0 .2	11.6 4.6	0 0	.2 .1	8.0 4.3	4.0 5.3	.1 0
	chase faded female	.2 .2	\times	.2 1.2	.1 .1	1.4 1.8	.4 .3	.1 .2	0 0
	nesting	8.8 8.9	.1 .6	\times	0 .1	· .7 1.2	5.5 5.4	5.3 7.8	.2 0
edes	spawn	00	.2 .3	0 .5	\times	.2 .4	0 .2	0 .2	00
prec	t-circle	.? .1	2.0 1.9	.4 .3	1:5	$\mathbf{\mathbf{X}}$	1.1 .6	.2 1.2	00
	chasing	.9 .2	.1 .2	.2 2.0	0 0	.9 .1	\times	18.4 17.0	00
	guarding	12.7° 5.2	.1 .5	8.9° 14.6	0 0	.7 1.8	5.4* 8.6	X	.1 .1
	inatten.	000	0 0	.1 C	.1 0	.1 0	00	:1 .1	\mathbf{X}

follows

Table 8. Percent of Total Frequency for sequences of behavior in 2.0 g/liter ethanol during the ethanol exposure period (upper values) and during the control period (lower values). * denotes sequences used in the ANOVA analysis

Table 9. Percent of Total Frequency for sequences of behavior in 3.0 g/liter ethanol during the ethanol exposure period (upper values) and during the control period (lower.values). * denotes sequences used in the ANOVA analysis

					foll	.0W5			
		e <i>kk</i> tending	chase faded female	nesting	rtward s	t-circle	chasing	guarding	inatt.
	egg tending	\boxtimes	0 .2	12.6 5.6	0 0	.4 .4	5.2 * 1.8	6.8 * 8.0	0 0
	chase faded female	.3 .4	\mathbf{X}	.5.	0 •5	.8 3.0	.2 .4	.9 .9	0 0
	nesting	15.8 8.1	.1 .3	\times	.1 0	5 .5	5.4 * 3.3	4.0 * 8.1	.5 0
cedes	spawn	0 0	.) .?	.1 .2	\ge	.1 1.0	.1 .4	.4 .4	0 0
pre	t-circle	.1 .4	1.4 4.0	.2 .1	.4 1.5	\ge	.8 1.4	.7 1.9	0 0
	chasing	.8 .4	.u	1.7 1.6	0 0	.8 1.1	\times	13.5 11.9	0
	guarding	8.1 6.8	0 2.4	10.8 10.4	0 0	1.0 3.2	5.1 8.3	\times	.2 0
	inatten.	0 0	0 0	.2 0	0	.1 0	0	.4 0	\times

		egg tending	chase faded female	nesting	s pawn	t-circle	chasing	guarding	inatten.
	egg tending	\mathbf{X}	0 .1	10.7 9.3	0	0 .2	2.3	4.6 5.9	0
	chase faded ferale	0 .1	\mathbf{X}	0 1.4	.2 .2	0 3.0	.4	0 .9	0 0
	nesting	13.8 11.2	0 1.3	\mathbf{X}	0 .3	• 0 1.5	3.8 3.1	9.2 7.5	3.8 0
edes	spawn	0 0	0 .1	0 .1	\mathbf{X}	0 .9	0 .1	0 .5	0
prec	t-circle	0 .2	0 3.7	0 1.6	0 1.2	\mathbf{X}	0 1.0	0 1.5	0 0
	chasing	0 .4	0 .1	2.3 .6	0 .1	.4 .4	\mathbf{X}	10.8 10.9	.8 0
	guarding	3.8 6.2	0 .8	16.2 11.7	0 0	0 3.3	6.9 5.2	\mathbf{X}	3.1 0
	inatten.	0 0	0 0	2.3	0 0	0 0	1.5	3.8 0	\mathbf{X}

follows

Effects of Ethanol on Time Spent at Each Behavior

The mean time spent at each behavior per observation period was also calculated for each ethanol concentration (Figures 17 through 24). Egg tending, guarding, spawning, tecircling, and chasing a faded female all decreased in mean time as ethanol concentration increased. Nesting time increased during the second week in the control tanks and in concentration tions of 0.5 and 1.0 g/liter ethanol, and decreased in the remainder of the ethanol concentrations. Chasing time increased at 0.5 g/liter, and decreased at 1.5, 2.0, and 3.0 g/liter ethanol. Mean time spent at inattentive behavior increased as the ethanol concentration increased.

Linear trend analysis was performed on this data and is presented in Table 10. All behavior times except egg tending and t-circling were significant at the p<.05 level, indicating that time spent at these behaviors decreased as ethanol concentration increased. Figure 17. Time spent at egg tending behavior (... control; _____ ethanol)

Figure 18. Time spent at nesting behavior (... control; _____ ethanol)

Figure 19. Time spent at t-circle behavior (... control; ____ ethanol)

Figure 20. Time spent at spawn behavior (... control; ____ ethanol)

•

Figure 21. Time spent at chase faded female behavior (... control; _____ ethanol)

Figure 22. Time spent at guard behavior (... control; _____ ethanol)

Figure 23. Time spent at chase behavior (... control; _____ ethanol)

Figure 24. Time spent at inattentive behavior (... control; ____ ethanol)

Table 10. Linear trend analysis on time spent at each behavior.

Behavior F-value

Egg Tending	3.76(NS)*
Chase Faded Female	4.89
Nesting	23.80
Spawning	4.97
T-circle	1.20(NS)*
Chase	9.34
Guard	25.47
Inattentive	53.79

*Not significant at the p<.05 level.

III. EGG PRODUCTION RESULTS

A Chi square test performed on this data $(x^2=22.22)$, df=5) indicated that egg production was reduced at the highest ethanol concentration, 3.0 g/liter ethanol (Table 11).

IV. EGG HATCHABILITY RESULTS

The percent of eggs hatching after incubation in ethanol concentrations ranging from control through 3.0 g/liter is presented in Table 12. Percent survival for all concentrations exceeded 94%. The results indicated that ethanol did not induce high embryo mortality at any of the concentrations tested.

V. LARVAL SURVIVAL RESULTS

The percent of larval survival across ethanol concentrations ranging from control through 3.0 g/liter is presented on Table 13. Percent survival for all concentrations exceeded 90%. These results indicated that ethanol was not lethal to the larvae at the concentrations tested.

-25-

Table 11. Presence or absence of eggs on the substrates during the ethanol exposure period

Ethanol Concentration (g/liter) Control Ø.5 1.Ø 1.5 2.Ø 3.Ø Eggs 1Ø 12 12 12 11 4 No Eggs 3 1 1 1 2 9

Table 12. Percent of eggs hatching across ethanol concentrations.

Conc.	Percent	Number of	Number of
(g/liter)	Survival	Eggs Incubated	Dead Eggs
Control	98.5	136	2
Ø.5	94.5	200	11
1.0	94.2	121	7
1.5	98.1	155	3
2.0	96.1	127*	5
3.Ø	100	200**	Ø

*95 eggs collected from Control tanks and incubated in 2.0 g/l **100 eggs collected from Control tanks and incubated

in 3.0 g/l

Table 13. Percent of larval survival across ethanol concentrations

		Number	Number
Conc.	Percent	Larvae	Dead
(g/liter)	Survival	Exposed	Larvae
Control	98.7	15Ø	2
Ø.5	90.7	15Ø	14
1.0	100	15Ø	Ø
1.5	99.3	15Ø	1
2.0	97.3	15Ø	4
3.0	96.Ø	150	6
			See. S

DISCUSSION

When the behavior during the control period was examined, each behavioral category contributed a relatively constant percent of the Total Frequency. It would seem that the behavior was consistent, although some variation among the males did occur. Slater (1981) discussed reasons for individual behavioral variations. He stated that "it may benefit animals to adopt different strategies depending on what others are doing." This phenomena was most pronounced when the subordinate male intruded into the substrate territory of the dominant male. A guard behavior was frequently sufficient to deter a passive intruder from the area, whereas a chase was necessary if the intruding male was more aggressive.

When the fish were exposed to concentrations of ethanol ranging from 0.5 to 3.0 g/liter ethanol for 5 days there was a decrease in the Total Frequency of behaviors which became more pronounced at the higher concentrations of ethanol. When the observed behaviors were divided into eight discrete categories no single behavioral category contributed to the reduction but rather the frequency of each category was reduced. Accompanying this reduction in activity was an ince increase in time spent at inattentive behavior which increased as ethanol concentration increased. Although the activity of the dominant male was reduced, there were no

-27-

obvious signs of motor impairment in these fish.

When the Total Frequency was examined the only behavior without significant change was egg tending. The fish seem to maintain this behavior regardless of the ethanol. The time spent at egg tending was also not significantly different than the controls.

Time spent at t-circling did not differ from the control situation but the frequency of t-circling was reduced. Therefore, the dominant male spent more time at each bout of tcircling. The proportion of successful spawnings, as indicated in the sequences of t-circling to spawning, was the same as would be expected in the control situation, although it appeared that fewer eggs were produced at the higher ethanol concentrations. Since the subordinate fish canabalize the eggs on the substrate, egg counts would reflect the ability of the dominant male to guard the substrate and chase intruders, rather than the number of eggs produced. Since the frequency and the time spent at guarding and chasing behaviors were reduced after the ethanol exposure, subordinate fish were more likely to canabalize the eggs.

Peeke, <u>et al</u>. (1973) noticed a similar pattern when examining aggressive behavior in convict cichlids. These authors found with increasing concentrations of ethanol (0.7, 1.8, and 3.3 g/liter ethanol) there was a progressive decrease in the number of attacks against intruders.

-28-

When the percent of Total Frequency was calculated for sequences of behavior, it was found that these sequences did not occur randomly. Of the 56 possible sequences, 10 cumulatively contributed over 80% of the Total Frequency. If these sequences of behavior were drastically altered after ethanol exposure, it would seem likely to reduce the communication between the male and the females, causing an interruption or elimination of spawning. But, when examined across all ethanol concentrations tested, these 10 sequences were retained despite the reduction in Total Frequency. Therefore, the ethanol had not appreciably altered the pattern of behavior except to reduce the amount of activity.

This reduction in activity was accompanied by a reduction in spawning behavior. The reduction in spawning behavior found at the higher concentrations of ethanol (1.5, 2.0, and 3.0 g/liter) was not due to a lack of egg viability at these concentrations. It would seem likely that if the eggs were not surviving, the adults would no longer tend to the developing eggs or continue to spawn (Van Iersel, 1970). But, the egg hatehability study showed that the segs were viable since over 94% hatched in all concentrations of ethanol tested. The ethanol, therefore, was affecting the behavior of the adults in such a way as to reduce reproductive behaviors regardless of egg viability. This effect can not be attributed to any one behavioral category, nor to the critical sequences

-29-

of reproductive behavior, since these were not affected by the ethanol treatments. Rather, a reduction in total activity appears to be the controlling factor, a quantitative not qualitative effect. It appears that the dominant male must maintain a minimal amount of the activity to successfully spawn.

CONCLUSIONS

The methodology used in this study is representative of a type of behavioral design which could be performed to determine sublethal effects of toxicants on aquatic organisms. The method lends itself to chemicals that are known to affect the central nervous system and therefore, behavior. Rather than examining a single behavioral parameter, this method examines the components of flagfish reproductive behavior: egg tending; nesting; t-circling; chasing a faded female; spawning; guarding; and chasing. As demonstrated, the data can be examined for changes in Total Frequency, time spent at each behavior, and sequences of behavior. Behavioral alteration tions attributed to the toxicant can be examined with respect to effects which may develop at differentrates depending on concentration and time of exposure. and therefore assist in determining safe levels of toxicants discharged into the aquatic system.

In this study sublethal ethanol concentrations did not affect survival of the eggs or larvae at any of the concentrations tested, yet parental behavior was altered in such a way that the fish at the highest concentration were no longer spawning. Although the ecological significance of some behavioral alterations may be ambiguous the impact of this result is certainly not. Since recruitment is inherent to the contin-

-31-

uation of a species, this behavioral alteration would eventually result in a collapse of the fish population.

APPENDIX A.

A Review of Selected Literature on Fish Behavior
Authors	Ishio, 1965	Granett, Morang, and Hatch, 1978	McGreer and Vigers, 1980	McGreer and Vigers, 1980	Sprague, 1964
Effects	copper and ammonia were attractive, most fish attracted to alkaline water, average range was pH 7.65 to 9.38	repelled by flume, decreased time spent in flume, entry into flume could interfere with spawning migrations.	significant relationship between water quality and fish distribution, controls showed definite preference for surface	inconsistent results	responses were vague; only showed definite avoidance at lethal concns.
<u>Me thods</u>	gradient tank, measured frequency of avoidance	olfactometer	field study, vertical cages with 6 one meter com- partments suspended in	<pre>water field study, vertical cages with 6 one meter com- partments suspended in water</pre>	steep gradient trough
Behavior <u>Measured</u>	avoi dance	avoi dance	vertical distribution vs. distance from effluent	vertical distribution	a voi dan ce
Toxi cant	pH copper ammonia	Dimilin-GI and carrier concns.	sulfite mill effluent	sulfite mill effluent	bleached kraft mill effluent
Species	Moroco <u>stelnda</u> chneri <u>Cyprinus</u> <u>carpio</u> <u>carassius</u> <u>auratus</u> <u>Acheilognathus</u> <u>limbata</u> <u>Tribolodon</u> hakonensis	<u>Salmo</u> <u>salar</u>	<u>Oncorhynchus</u> keta	<u>Gasterosteus</u> aculeatus	<u>Salmo</u> <u>salar</u>

-33- -

· Authors	Jones, 1951	Jones, 1951	Jones, 1951	Sprague, 1964	Sprague, 1968b	Sprague, 1964	Sprague, 1964 ate	Sprague, 1964	
Effects	showed no capacity for recog- nizing and avoiding any concn.	avoided all concns. which pro- duced loss of equilibrium in less than four minutes	avoided high concn., but at greater dilutions, recognition declines rapidly	two metals together some potentiation	as concns. of zinc increased, time spent in zinc solution decreased	avoided zinc	did not avoid almost lethal concns., swam frantically but apparently could not discrimin.	avoided concns. which would be lethal in 10 days, also avoide concn. which would be rapidly lethal but preferred inter- mediate concn.	
Methods	avoidance tube; after time inter- val, flow reversed	avoidance tube; after time inter- val, flow reversed	avoidance tube; after time inter- val, flow reversed	sharp gradient trough	sharp gradient trough	sharp gradient trough	sharp gradient trough	sharp gradient trough م	
measured	avoidance	avoidance	avoidance	avoidance	avoidance	avoidance	avoidance	avoidance	
Toxicant	phenol	para- cresol	ortho- cresol	copper- zinc	zinc sulfate	zinc sulfate	phenol	chlorine	
Species	<u>Phoxinus</u> phoxinus	<u>Phoxinus</u> phoxinus	<u>Phoxinus</u> phoxinus	<u>Salmo</u> <u>salar</u>	<u>Salmo</u> <u>Bairdneri</u>	<u>Salmo</u> <u>gairdneri</u>	<u>Salmo</u> <u>gairdneri</u>	<u>Salmo</u> gairdneri	

-34-

Authors	Kleerekoper, Waxman, and Matis, 1973	Fava and Tsai, 1976				
<u>Bffects</u>	fish avoid copper containing compartments both in frequency of entries and time spent; when copper is associated with a slight rise in temperature, fish are attracted to it	did not avoid, total time spent was more sensitive	did not avoid, time spent was more sensitive	avoided	avoided	avoided
Methods	photoconductive cells in circular tank divided into compartments	fish avoidance trough, measured time spent and number of avoid- ances				
<u>Behavior</u> <u>Measured</u>	avoidance, time spent in compartment and number of entries	avoidance	avoi dan ce	avoidance	avoidance	avoidance
Toxicant	copper and temperature	unchlorinated sewage effluent	ammonia- nitrogen	chlorinated sewage effluent	ch lor amines.	free chlorine
Species	<u>Carassius</u> <u>auratus</u>	<u>Rhinichthys</u> atratulus	<u>Rhini chthys</u> at rat ulus	<u>Rhinichthys</u> at ratulus	Rhini chthys at ratulus	<u>Rhinichthys</u> atratulus

-35-

Species	Toxicant	Behavior Measured	Methods	Effects	Authors
<u>Menidia</u> <u>menidia</u> <u>Morone</u> americana	chlorine, temperature, salinity, and pH	avoidance	trough divided into quadrants	avoided chlorine; salinity was most important variable	Meldrim and Fava, 1977
Lagodon rhomboides	chlorine	avoidance	automated infra- red lights, rec- tangular tanks	most time spent in uncontam- inated area	Cripe, 1979
<u>Carassius</u> auratus	mercury	avoidance	automatic system, records position and rate of moye- ment	moves out of contaminated area twice as fast as it enters it	Scherer and Nowak, 1973
<u>Lepomis</u> <u>gibbosus</u>	ethanethiol	avoidance	trough divided into six com- partments, gates between compart- ments raised and toxicant intro- duced	attraction	Summerfelt and Lewis, 1967
<u>Lepomis</u> <u>gibbosus</u>	A-ch loro- ace tophenone	avoi dan ce	trough divided into six com- partments, gates between compart- ments raised and toxicant intro- duced	avoidance	Summerfelt and Lewis, 1967
Cyprinodon variegatus	DDT	avoidance	Y-maze apparatus	avoided concn. near the 24 hour LC50; fish did not sense an increase in concn.	Hansen, 1969
<u>Cyprinodon</u> <u>yariegatus</u>	Endrin	avoidance	Y-maze apparatus	avoided concn. near the 24 hour LC50; fish did not sense and increase in concn.	Hansen, 1969
<u>Cyprinodon</u> variegatus	Durshan	avoidance	Y-maze apparatus	avoided concn. near the 24 hour LC50; fish did not sense and increase in concn.	Hansen, 1969

-36-

IOLS	19.47	1947	1947	1947	1947	1947	1948	1948	1948	1948
Auth	Jones,	Jones,	Jones,	Jones,	Jones,	Jones,	Jones,	Jones,	Jones,	Jones,
Effects	avoidance	avoidance	avoidance	avoidance	no detection	avoided high concn., at low concn. fish swim into toxicant and become stupified, interferes with fish's ability to detect other substances	avoidance followed by persis- tant swimming into toxicant and eventually prefer the lead solution	avoidance at all concns.	avoided water more acid than pH 5.6 and more alkaline than pH 11.4; indifferent or positive reaction to pH 5.8 to 11.2	attraction to low concn., avoidance of high concn.
Methods	avoidance tube	avoidance tube	avoidance tube	avoidance tube	avoidance tube	avoidance tube	avoidance tube, reverse flow after time interval	avoidance tube	avoidance tube	avoidance tube
Behavior measured	avoidance	avoidance	avoidance	avoidance	avoi dance	avoidance	avoidance	avoidance	avoidance	avoidance
Toxicant	ethyl alcohol	chloroform	formalin	zinc sulfate	mercuric chloride	copper sulfate	lead nitrate	lead nitrate	Hq	ammonia
Species	<u>Pygosteus</u> pungitius	<u>Pygosteus</u> pungitius	<u>Pygosteus</u> pungitius	<u>Pygosteus</u> pungitius	Pygosteus pungitius	<u>Pygosteus</u> pungitius	<u>Gasterosteus</u> aculeatus	<u>Phoxinus</u> phoxinus	Gasteroseus aculeatus	<u>Gas te roseus</u> aculeatus

Authors	Hansen, 1969	Hansen, 1969	Hansen, 1969	Jones, 1947	Jones, 1947	Jones, 1947	Dinnel, Stober, and DiJulio, 1979
Effects	avoided concn. near the 24 hr. LC50; fish did not sense an increase in concn.	did not avoid	did not avoid	swim into low oxygen water with no hesitation; remaining in it causes distress and random movement; when random movement takes fish to well- oxygenated water, the fish stops swimming and duickly recovers	results similar to above study but reaction time slower	fish will usually not swim into low oxygenated water, turns away or swims backwards, may make repeated attempts each time retreating	avoided 96 hr LC50 concn. but was attracted to concns. shown to produce sublethal damage
Methods	Y-maze apparatus	Y-maze apparatus	Y-maze apparatus	avoidance tube	avoidance tube	avoidance tube	avoidance tank, steep gradient
<u>Behavior</u> Measured	avoidance	avoidance	avoidance	avoidance	avoidance	avoidance	avoidance
Toxicant	2,4-D	malathion	Sevin	low oxygen, 13 ⁰ C	low oxygen, 13° C	low oxyger, 130 C	chlorinated effluent
Species	<u>Cyprinodon</u> <u>variegatus</u>	<u>Cyprinodon</u> variegatus	Cyprinodon variegatus	Gasterosteus aculeatus	Gasterosteus aculeatus	<u>Gas te ros te us</u> <u>aculeat us</u>	Cymatogaster aggregata

-38+72-

Species	Toxicant	Behavior measured	Methods	Effects	Authors
Coregonus clupeaformis	mercury	avoidance- preference; food see king behavior	avoidance preference trough, fish treated 1 to 2 weeks with mercury then tested for food preference	mercury interfered with fish detection of food; no change in activity	Kamchen and Hara, 1980
<u>Ictalurus</u> nebulosus Ictalurus natalis	cysteine hydro- chloride	searching patterns in relation to time and space	large open field tank	fish need no current to locate source	Bardach, Todd, and Crickmer, 1967
<u>Ictalurus</u> natalis	alkyl benzene sulfonate	food seeking and general activity	exposed fish offered food, observation	exposed fish did not detect food; increased activity	Bardach, Fujiya, and Holl, 1965
Cymatogaster aggregata	chlorine	feeding behavior	observation in tanks	fish developed "turned in" eyes, unsuccessful in attempts to pick up food pellet	Thatcher, 1979
Cyprinodon variegatus	kepone	feeding behavior	observation	cessation of feeding	Hansen, <u>et al</u> ., 1977
<u>Salvelinus</u> fontinalis	TOO	cold- block tempera- ture of propeller tail reflex	exposed fish tested at different temperatures	DDT altered cold block temperature	Anderson and Peterson, 1969
<u>Gambusia</u> affinis	DDT	salinity preference	fish exposed to DDT for 24 hours, then tested in a salinity gradient	fish at higher DDT concns. selected higher salinities than controls	Hansen, 1972
<u>eambusta</u> affinis	malathion	salinity preference	fish exposed to n malathion for 24 o hours and then tested in a salin- ity gradient	to difference between control and exposed fish	Hansen, 1972
			- ご 中 ひ ろ -		

Authors	Symons, 1973	Foster, Scheier, and Cairns, 1966	Elson and Kerswill, 1966	Lowe, 1964	Rand, 1977
Effects	feeding discontinued, digestion slowed or pre- vented, reguritation, mucous	approach food with same intensity as controls but spit food out rather than eat it; length of time to finally eat food was related to concn.	feeding habits changed after spraying so that salmon ate surviving biota	at sublethal concn. did not interfere with feeding	total number of entries decreased, angles of orienta- tion changed, average duration of pathways not significantly different
Methods	observation	observation	field study, stomach analysis	tank study using natural seawater	used flowing water with food odor and water flow alone at two different rates in a mult- iple choice situation, before and after short term treat- ment with a sub- acute concn.
<u>Behavior</u> Measured	feeding desire	feeding behavior	feeding behavior	feeding behavior	locomotor orientation to a food odor
Toxicant	fentrothion	ABS	DDT	toxaphene	parathion
Species	<u>Salmo</u> salar	<u>Jordanel la</u> <u>floridae</u>	<u>Salmo</u> <u>salar</u>	Leiostomus xanthurus	<u>Carassius</u> auratus

-40-

Authors	Bloom, Perlmutter, and Seeley, 1978	Sparks, Cairns, and Heath, 1972	Mount and Stephan, 1969	Brungs, 1969	McLeay and Brown, 1974	Symons, 1973
Effects	controls selected selected pheromone-containing water; treated fish did not respond to pheromone-containing water	fish with ripe eggs only spawned once in 77 days in zinc solution; eggs from other fish died within 3 days at this same concn.	prevented spawning	frequently demonstrated typical spawning behavior but eggs were rarely laid; less spawnings at all concns.	may be inhibited by the dark color or the toxicity of the effluent	treated fish showed a large decline in numbers defending territories after return to stream than did controls; exposed fish tock longer to regain their territories
Methods	T-maze: control water from one arm; pheromone- containing water from the other	observation	observation	observation; counted number of spawnings	measured growth and biochemical changes	fish exposed during dark periods, then replaced in the stream; observation
Behavior <u>Measured</u>	pheromonal perception in females	spawning	spawning	spawning	territorial behavior and social hierarchy	ability to hold territory
Toxicant	zinc	zinc	copper	zinc	bleached kraft pulpmill effluent	fenitrothion
Species	Branchydanio rerio	Lepomis macrochirus	<u>Pimphales</u> promelas	<u>Pimphales</u> promelas	<u>Oncorhynchus</u> kisutch	Salmo SalAr

-41-

	,		•	1977	1977
S	and 1967	0	lt la	<u>al</u> .,	<u>a</u> 1.,
Author	ide rs igue,	1970	, tg,	1, et	1, et
4	Saur Spra	Tsaf	1974 III 1974	Besch	Besch
Effects	increased downstream returns	fish did not migrate through effluent discharge	Brown trout showed strongest attraction to discharge waters; spawning is not interrupted by plume, but some fish may spend considerable time in plume interrupting migration schedules	schooling present with just phenol but disappears when DDT is added	schooling present in all tests
Methods	counting fences, tagging	stream sampling using nets	mark and recapture study using heat sensitive tags	laboratory observation	laboratory observation
Behavior Measured	premature downstream returns;	migration	migration	schooling	schooling
Toxicant	copper- zinc	chlorinated sewage effluent	temperature	DDT and phenol	gasoline
Species	<u>Salmo</u> salar	<u>Moxostoma</u> macrolepidotum <u>Catostomus</u> <u>commersoni</u> <u>Alosa</u> pseudoharengus	Cyprinus carpio Salmo Bairdheri Oncorhynchus kisuuch Oncorhynchus tshawytscha Salmo trutta Salvelinus fontinalis Salvelinus namaycush	<u>Cyprinus</u> carpio	<u>Cyprinus</u> carpio

Authors	Sullívan, <u>et al</u> ., 1978	Kania and O'Hara, 1974	Sylvester, 1972	Goodyear, 1972	Hedtke and Norris, 1980	Tagatz , 1976
Effects	prey exposed to toxicant showed increased vulner- ability	greater numbers of exposed prey than unexposed prey eaten	elevated temperature decreased survival time	more prey consumed after 20 days in exposed group than in controls	prey more sensitive to toxi- cant, consumption rates increased as prey density increased and as toxicant increased	number of deaths due to predation were higher in treated tanks than controls
Methods	circular observa- tion tanks, total number of prey eaten, prey exposed	square tanks, total number of exposed prey eaten compared to total number of prey	mean survival time of prey after brief exposure to elevat- ed temperature	deepwater chamber with small shallow refuge for prey	artificial streams, both predator and prey exposed to toxicant, various prey densities used	grass shrimp were exposed to mirex, then pinfish were introduced as the predator
Behavior measured	predator- prey interactions	predator- prey interactions	predator- prey avoidance	consumption of prey	consumption of prey	predator/ prey interaction
Toxicant	cadmi um	mercury	temperature	irradiation	ammonia chloride	mirex
Species	Micropterus <u>salmoides</u> <u>Pimphales</u> <u>promelas</u>	Micropterus <u>salmoides</u> Gambusia affinis	<u>Oncorhynchus</u> <u>kisutch</u> Oncorgynchus <u>nerka</u>	<u>Gambusia</u> affinis Micropterus salmoides	Salvelinus fontinalis Oncorhynchus tshawytscha	<u>Lagodon</u> <u>rhomboides</u>

-43-

Authors	Peterson, 1974	Webb and Brett, 1973	Rand, 1977	Post and Leasure, 1974	Shultz, Davis, and Dumont, 1978	Waiwood and Beamish, 1978	Kleerekoper, et al., 1972
Effects	critical velocity lowered after exposure as a function of concn. and length of rest period prior to exercize	swimming performance unaffect- ed at the concn. used	overall decline in activity, larger angles for some fish	brook trout and rainbow trout showed a reduced ability to perform	avoided unidirectional flow, dose dependent behavior: rapid swimming, loss of equili- brium, resting on side, erratic swimming	pH and hardness can modify critical swimming speed	all increased in the polluted area
Methods	tube within a tube, electrified grid	tunnel respiro- meter increasing velocity steps, terminating at fatigue	circular tank divided into compartments, photocell counts	water tunnel	observation	recirculating water tunnel	photocell responses trig- gered by presence of the fish
Behavior Measured	swimming velocity	swimming performance	total number of entries, average dura- tion of entries and orientation angles	swimming ability	swimming ability and unidirection- avoidance	swimming speed	amount of time spent in toxi- cant, average size of turns
Toxi cant	fentrothion	sodium pentachloro- phenate	parathion	malathion	coal- conversion gasifier condensate	copper, pH and hardness	copper
Species	Salvelinus fontinalis	Oncorhynchus nerka	Carrassius auratus	Salmo gairdneri Salvelinus fontinalis Oncorhynchus kitsutch	Pimphales promelas	<u>Salmo</u> <u>gairdneri</u>	<u>Carrassius</u> <u>auratus</u>

-44-

Authors	Herbert and Shurben, 1963	Herbert and Shurben, 1963	Jones, 1951	Jones, 1951	Jones, 1951	Wildish, <u>et al</u> ., 1971	Mount', 1962
Effects	did not affect the toxicity	did not affect the toxicity	loss of equilibrium, wild movements, followed by feeble attempts at swimming	even momentary contacts dur- avoidance produced some stress on the fish	entry into toxicant caused wild rushes up and down, loss of equilibrium, followed by recovery, resulting in eventual loss of coordination	loss of balance, rapid and gulping respiratory movements, whole body spasms	jerky movements, increased sensitivity to external stimuli, fish swim around and around, frequently backwards, convulsions, loss of equilibrium
Methods	fish held in paddlewheel apparatus for two days at 85% maximum velocity	fish held in paddlewheel apparatus for two days at 85% maxfmum velocity	observation	observation during avoidance study	observation during avoidance study	static test, observation	chronic exposure study, observation
Behavior <u>Measured</u>	swimming ability	swimming ability	swimming ability	swimming ability	swimming ability	swimming behavior	swimming ability
Toxicant	zinc	armonia	phenol	para- cresol	ortho- cresol	organo- phosphorus insecticides	endrin
Species	<u>Salmo</u> gairdneri	<u>Salmo</u> gairdneri	<u>Phoxinus</u> phoxinus	<u>Phoxinus</u> phoxinus	<u>Phoxinus</u> phoxinus	<u>Salmo</u> <u>salar</u>	<u>Pimphales</u> notatus

Methods Effects Authors	<pre>ility respirometer tube, when acclimated to 15C fish Brett, 1964 flow increased in exhibited only a 4% reduction steps in swimming speed at 10°C and 20°C</pre>	respirometer tube effluent concn. reduced swimming Howard, 1975 velocity increased speed, but after 18 hr. exposure in steps no further reduction appeared	ility observation some fish swam stiffly, fins ^S ymons, 1973 extended, convulsive flexing developed	<pre>ility eggs hatched in hyperactive movements, uncon- Weiss and toxicant, trolled and uncoordinated, Weiss, 1976 observation often upside down</pre>	paddle-wheel swimming endurance reduced, MacLeod and and swimming no effect on swimming speed Smith, 1966 n- chamber	ility observation some body tremors, erratic Coleman and swimming, open mouth, extended Gearley, 1974 fins, expanded branchiostegals	photocell immediate onset of decreased Besch et al., performance followed by normal 1977 behavior	photocell lag time before decreased Besch et al., counts performance 1977	observation erratic swimming, convulsions, Verma, Bansal,
Behavior <u>Measured</u>	swimming ability res flo ste	swimming res performance vel in	swimming ability ob⊴	swimming ability egg tox obs	swimming pad endurance, and swi maximum swim- cha ming speed	swimming ability obs	swimming pho performance cou	swimming pho performance cou	swimming ob
Toxicant	temperature	Bleached kraft pulp- mill effluent	fenitrothion	malathion	pulpwood fiber	silver	pheno1	DDT	Chlordane
Species	<u>oncorhynchus</u> nerka	<u>On corhynchus</u> <u>kisut ch</u>	<u>Salmo</u> <u>salar</u>	Cyprinodon variegatus	Pimphales promelas	Micropterus salmoides	<u>Carassius</u> <u>auratus</u>	<u>Carassius</u> auratus	Saccobranchus

•

-46-

Authors	- Dodson and Mayfield, 1979	- Dodson and - Young, 1977	ises Lindahl and ate Schwanbom, 1971	itsh Lindahl, Olofsson, Schwanbon, 1977	ma- Schneider, <u>et al</u> ., at 1974 to	brium Schneider, <u>et al</u> ., ish, 1977 le	n Neil, 1957 e st
Effects	elevated frequencies of no response and decreased swimming speed	temperature more important than photoperioù in produc ing greatest frequency of upstream movements	sublethal poisoning decrea ability of fish to compens for the torque	decreased time to rotate f	50% LE is related to accli tion level and is highest highest acclimation; fish losing equilibrium settle bottom of tanks	exercized fish lose equili more readity than rested f smaller fish most vulnerab	reduced ability to maintai swimming; exposed fish wer reluctant to swim when fir placed into tanks
Methods	water current simulated with background, optomotor tank, observation	water current simulated with background, optomotor tank, observation	water enters tube and rotates around longitudinal axis	rotary-flow apparatus to test fitness of fish	held for time period at specific current velocity	held for time period at specific current velocity	used rotating circular chamber with inner core, velocity in- creased in steps
Behavior <u>Measured</u>	frequency of positive rheotaxis, negative rheotaxis, and no- response; Swimming speed	frequency of positive rheotaxis	reduced ability of the fish to maintain up- right position	rheotaxis	loss of equilibrium (LE)	loss of equilibrium (LE)	swiwning ability
Toxicant	diquat and simazine	temperature and light	methyl- mercuric hydroxide	polluted water high in mercury	temperature	temperature	cy an i de
Species	<u>Salmo</u> gairdneri	Notropis cornutus	Leuciscus rutilus	<u>Gaddus</u> morrhua	<u>Carassius</u> auratus	<u>Salmo</u> gairdneri	<u>Salvelinus</u> fontinalis

Authors	Hansen, <u>et al</u> .,1977	Larson and Schlesinger, 1977	Mount, 1962	Prather, 1975	Engineering- Science, Inc., 1964
Effects	uncoordinated swimming	changes in behavior occurred in the following sequence: increases in rates of swimming, opercular activity, and cough- ing; reduced swimming activity near the surface; rapid swimming with thrashing; lethargic swim- ming, frequent collisions with the tank walls and other fish; bobbing with dorsal surface of head exposed at water surface; resting on tank bottom with some erratic swimming; turning over	little effect on swimming ability against current	fed fish had increased sensi- tivity to toxicant	toxaphene increased the heat sensitivity of the fish
Me thods	observation	observation during subléthal exposure	paddle- wheel, rounded corners on tank	fed fish vs unfed fish exposed to toxicant; activity detected by photocells	66 hour exposure to toxaphene, then temper- ature progressively increased
Behavior Measured	ovrimming ability	swimming ability	swimming ability	total activity	total movement
Toxicant	kepone	total residual chlorine	endrin	TNT manufact- urer's waste	temper- ature and toxaphene
Species	Cyprinodon variegatus	<u>salmoides</u>	Pimphales notatus	Lepomis macrochirus	<u>carassius</u> auratus

-48-

Species	Toxicant	Behavior <u>Measured</u>	Methods	Effects	Authors
Lepomis macrochirus	zinc	abnormal movement pa tterns	light beam inter- ruption, photocells	abnormal movement detected	Cairns, Sparks, and Waller, 1973
<u>Lepomis</u> <u>macrochirus</u>	zinc	abnormal movement patterns	light beam inter- ruption, photocells	abnormal movement prior to death	Waller and Cairns, 1972
Micropterus salmoides	mercury	abnormal moyement patterns	photoelectric sensors	increased activity with toxicant	Morgan, 1979
Micropterus salmoides Lepomis macrochirus	cadmi um	abnormal movement patterns	observation	exhibited erratic, uncoor- dinated swimming, muscle spasms, and convulsions; loss of equilibrium, periods of quiescence and paralysis	Cearley and Coleman, 1974
Gambusia affinis	chlorpro- mazine	surfacing and sinking	fish placed in horizontal galss tubes, observation	surfacing increases with increasing concn.	Avivi and Chari-Britron, 1970
<u>Carassius</u> <u>auratus</u>	zinc	surfacing activity	photoce11 counts	surfacing occurred at the 96 hour LC50	Cairns, Sparks, and Waller, 1970
<u>lepomis</u> macrochirus	methyl parathion, Akton, Dyrene, phosalone	excitability to outside disturbances	observation.	the magnitude of excitability in decreasing order as listed under "Toxicant"	McCann and Jasper, 1972
<u>Lepomis</u> macrochirus	Dy lox, Neguvon, deme ton	excitability to outside disturbances	observation	no different than controls	McCann and Jasper, 1972
<u>Salmo</u> salar	DCT	abnormal behavior	observation, field study with cages suspended in water	beaching resulting from extreme convulsive activity, swimming to surface	Kerswill and Edwards, 1967

-49-

Authors	Dandy, 1972	Grande, 1964	Warner, Peterson and Borgman, 1966	Bengtsson, et al., 1979	Andrews, Van Vallin, and Stebbings, 1966	Symons, 1973	Shirer, Cairns, and Waller, 1968
Effects	activity increased at high concn. initially, fish swam to surface, coughing. Later movements spasmotic, loss of equilibrium	tendency to swim near surface, sluggish movements, would lie on their sides for several hours before death	increased general movement after 96 hour exposure	sluggish movements, absence of shoaling behavior, and abnormal vertical postures	general nervousness, hyper- sensitivity to light or move- ment followed by rapid, erratic swimming frequently at surface, later became listless, display- ing progressive loss of equili- brium followed by death	no different than controls	increased movement toward surface of tank, altered light-dark movement patterns in some fish
Methods	activity measured by probe	live boxes placed in river below mill discharge, observation	Conditioned avoidance response apparatus (CARA)	observation in tanks	observation in pools	observation	light beam photocell counts
Behavior Measured	activity	activity	to tal movement	activity	activity	upstream and downstream movement	abnormal movement patterns
Toxicant	Chlorine	sulfite pulp and paper mill effluent	toxaphene	chlorinated parafins	heptachlor	fenitrothion	zinc
Species	<u>Salvelinus</u> <u>fontinalis</u>	<u>Salmo</u> trutta	<u>Carrassius</u> <u>auratus</u>	<u>Alburnus</u> alburnus	<u>Lepomis</u> macrochirus	<u>Salmo</u> salar	<u>Carassius</u> <u>auratus</u>

Authors	Post and Schroeder, 1971	Engineering- Science, Inc., 1964
Effects	fish became irritable and moved sluggishly when the jar was tapped; muscular spasms and convulsions, loss of equilibrium	Marked differen:ce in activity
Methods	static test in jars, observation	fish acclimated to to 12°C and 25°C then subjected to progressively elevated temper- atures, CARA
Behavior measured	abnormal behavior	spontaneous activity and total movement
Toxicant	carbary1; malathion	temper- ature
Species	Salvelinus fontinalis Salmo gairdneri Salmo clarki Oncorhynchus kisutch	<u>Carassius</u> auratus

Effects	exposed fish learned response Warner, Peterso significantly faster than and Borgman, 19 controls	all fish responded to light only, memory was not impaired Warner, Peterso and Borgman, 19	exposed fish learned reverse Warner, Peterso significantly faster and Borgman, 19	all fish showed increased Warner, Peterso response then reached a and Borgman, 19 plateau	more than half of the exposed Anderson and fish could not be conditioned Prins, 1970 at all	fish could be trained after Jackson, Anders exposure; fish rose to the and Gardner, 19 surface in response to the light but prior to the shock	learning capabilities altered Hatfield and if dose is sufficient, but all Johansen, 1972 alterations are not permanent	lead interfered with perform- Weir, et al., ance of memory LaPorte and
Methods	used conditioned avoidence response apparatus, light followed by shock	light only used one week after light-shock training	light-shock reversed on previously taught fish	exposed to light stimulus only	Light-Shock, response propellerlike movement of the tail	light-shock, response avoidance	shuttlebox conditioning apparatus	fish taught to escape in response to light,then
Behavior <u>Measured</u>	learned avoidance	ability to retain a learned response	ability to unlearn a response	habituation to light only stimulus	conditioned learning	conditioned learning	learning ability and learning improvement on second conditioning	ability of fish to recall prior training
Toxicant	toxaphene	toxaphene	t oxaphene	t oxaphene	DDT	DDT	Sumithion Abate DDT methoxychlor	lead
Species	<u>Carrassius</u> auratus	Carassius auratus	<u>Carassius</u> <u>auratus</u>	Carrassius auratus	<u>Salvelinus</u> fontinalis	<u>Salvelinus</u> <u>fontinalis</u>	<u>Salar</u> Salar	<u>Carassius</u> auratus

-52-

xi cant
visual conditione avoidance, light-shoc
learning
learning
ability to retain a learned discrimin- ation when temperature is reduced
shuttlebox learning

-53-17-

rol	1970	1970	1970	1970	1970
Authors	Hatfield,	Hatfield,	Hatfield,	Hatfield,	Hatfield,
Effects	no effect on learning	inhibited learning	retarded learning	ability to retrain less than controls	after recovery, fish learned as rapidly as controls
Methods	light-shock; treated fish tested after 24 hour exposure	light-shock; treated fish tested after 24 hour exposure	light-shock; treated fish tested after 24 hour exposure	fish trained, treated, then retrained	fish exposed to toxicant, allowed to recover for 7 days, then trained
Behavior Measured	shuttlebox learning	shuttlebox learning	shuttlebox learning	retrained shuttlebox learning	retrained shuttlebox learning
Toxicant	methoxychlor	Sumi thi on	Abate	DDT	S u mi thion and Abate
Species	<u>Salmo</u> <u>salar</u>	<u>Salmo</u> salar	<u>Salmo</u> <u>salar</u>	Salmo salar	<u>Salmo</u> <u>salar</u>

-54--88--

Authors	Hughes, 1975	Carlson and Drummond, 1978	Foster, Cairns, and Kaestler, 1969	Schaumberg, Howard, and Walden, 1967	Schaumberg, Howard, and Walden, 1967	Gruber, <u>et al</u> . 1978	MacLeod and Smith, 1966	Sparks, et al., 1972
Effects	cough frequency related to particle size, wood pulp coal dust zinc sulfate	increased coughing as effluent concn. increased	increased gasping, reduced chasing	cough frequency related to DDT concn. and exposure time	cough frequency related to effluent concn. and exposure time	increased coughing at high concn.	swimming close to sur- face, increased gasping, cleaning reflexes related to concn. of fiber	mean cough frequency increased, coughing peaked 2-3 hours after introducing toxicant
Methods	closed respirometer, electromyograms, pressure manometers	electrode chamber, impulses recorded on strip chart	viewing ports, event strip recorder	tube inserted into buccal cavity to measure pressure	tube inserted intc buccal cavity to measure pressure	electrodes in tank, recorded coughing on strip chart and simultaneously filmed fish and chart	observation	pressure changes in buccal and cpercular cavity, cannulas
Behavior <u>Measured</u>	coughing frequency, amplitude of cough	cough response	duration and sequences of behavior	cough frequency	cough frequency _.	coughing	gill clesuing reflexes	coughing
Toxicant	coal dust, wood pulp, zinc sulfate	treated complex effluents	alkyl benzene sulfonate	DDT	Kraft pulp- mill effluent	sodium hypo- chlorite	pulp- wood fiber	zinc
Species	<u>Salmo</u> <u>salar</u>	Lepomis macrochirus	<u>Jordane 11a</u> <u>floridae</u>	On corhynchus kisutch	<u>Oncorhynchus</u> <u>kisutch</u>	<u>Lepomis</u> macrochirus	Pimphales promelas	<u>Lepomis</u> <u>macrochirus</u>

APPENDIX B.

Table 1. Water Chemistry Analysis. (All values in mg/l unless otherwise indicated.)

D۵	PAMETER	
T 13		•

CONCENTRATION

Hardness as CaCO3	47
Alkalinity	33
Iron as Fe	Ø.10
Chloride as Cl	3.8
pH (pH units)	7.Ø
Turbidity (turbidity units)	Ø.1Ø
Conductivity (umhos/cm)	124
Sulfate	10
Ammonia nitrogen	Ø.Ø2
Kjeldahl nitrogen	Ø.Ø6
Nitrates	Ø.25
Nitrites	0.001
Total phosphorus	Ø.ØØ2
Copper	Ø.Ø5Ø
Nickel	Ø.ØØ6
Lead	Ø.ØØ1
Zinc	0.009

Table 2. Mean Temperature, pH, and Dissolved Oxygen during the 1st run (±standard deviation).

Nominal EtOH conc	Temperature	рН	- DO
(g/liter)	(°C)	(pH units)	(mg/liter)
0.0	28.1±9.7	7.2±Ø.2	7.5
0.0	27.9±Ø.8	7.1±Ø.1	7.4
0.0	27.9±1.1	7.1 <u>+</u> Ø.9	- **
0.0	27.5±Ø.8	7.5 <u>+</u> Ø.3	7.3±Ø.7
0.5	28.1 <u>+</u> Ø.7	7.2 <u>+</u> Ø.2	7.4
0.5	28.Ø <u>+</u> Ø.7	7.2 <u>+</u> Ø.1	7.4
0.5	27.9 <u>+</u> 1.Ø	7.1 <u>+</u> Ø.9	- **
0.5	27.7±Ø.8	7.5±Ø.3	7.4±0.7
1.0	28.رØ.7	7.1±Ø.3	7.3
1.0	27.9 <u>+</u> Ø.7	7.2±Ø.1	7.2
1.0	28.1±Ø.8	6.9±Ø.7	- **
1.0	27.6 <u>+</u> Ø.6	7.4±0.3	7.1 <u>+</u> 1.0
1.5	28.2±Ø.7	7.1±Ø.2	7.6
1.5	28.1±Ø.7	7.2±Ø.1	7.4
1.5	28.2±Ø.7	7.1±Ø.8	- **
1.5	27.6±Ø.8	7.4±Ø.3	7.4 <u>+</u> Ø.7
2.0	28.2 <u>+</u> Ø.7	7.1±Ø.3	7.6
2.0	28.1 <u>+</u> Ø.8	7.1 <u>+</u> Ø.2	7.1
2.0	28.1 <u>+</u> 1.4	7.رØ.7	- **
2.0	27.7 _± Ø.8	7.4 <u>+</u> Ø.3	7.5 _± Ø.8
3.0	28.3±0.6	7.1 ±Ø.2	7.7
3.0	28.رØ.7	7.1±Ø.2	7.5
3.0	28.1±Ø.6	7.1±0.2	- **
3.0	27.8±Ø.7	7.4±Ø.3	7.4 <u>+</u> 0.6

**No data collected

Table 3. Test tank water chemistry results during the 2nd run (±standard deviation).

Nominal EtOH conc	Temperature	рН	DO
(g/liter)	(∘C)	(pH units)	(mg/liter)
0.0	27.7 <u>+</u> 0.7	7.4 _± Ø.1	7.3 <u>+</u> Ø.1
-0.0	27.7±Ø.7	7.3±0.0	7.3±0.4
0.0	27.2±Ø.7	7.5±Ø.1	7.5 <u>+</u> Ø.3
0.0	27.2 ± 0.7	7.5 <u>+</u> 0.0	7.7 <u>+</u> Ø.4
0.5	27.7±0.7	7.5±0.1	7.4±Ø.3
0.5	27.6±Ø.7	7.5±0.0	7.5 <u>+</u> Ø.4
0.5	27.1 ± 0.7	7.6±0.1	7.4 <u>+</u> Ø.3
0.5	27.3±0.6	7.5±0.0	7.7±Ø.4
1.0	27.7±Ø.7	7.3±0.0	7.3±Ø.3
1.0	27.7±Ø.7	7.3±0.1	7.3 ± 0.3
1.0	27.4±Ø.6	7.3±0.1	7.2 <u>+</u> Ø.3
1.0	27.3±0.8	7.5 <u>+</u> 0.0	7.7 <u>+</u> Ø.4
1.5	27.8±Ø.7	7.3±0.0	7.3 <u>+</u> Ø.3
1.5	27.8±Ø.7	7.3±0.1	7.4±Ø.4
1.5	27.3±Ø.3	7.4±0.0	7.4±Ø.3
1.5	27.2±Ø.7	7.4±0.0	7.7 ± 0.4
2.0	27.8±Ø.7	7.3±0.0	7.4 ± 0.3
2.0	27.9±0.7	7.3 <u>+</u> Ø.Ø	7.4 _± Ø.4
2.0	27.3±0.6	7.5±Ø.1	7.5 _± Ø.4
2.0	27.3±0.7	7.4±0.1	7.6 <u>+</u> Ø.6
3.0	27.8±Ø.7	7.3±0.0	7.3±Ø.3
3.0	27.7±0.7	7.4±Ø.1	7.5±0.4
3.0	27.3±0.7	7.4±Ø.2	7.3±Ø.4
3.0	27.4±Ø.7	7.4±Ø.Ø	7.6 <u>+</u> Ø.4

Table 4. Mean ethanol concentration (±standard deviation).

	lst RUN	2nd RUN
Control	$\varnothing \cdot artheta \pm$ ($artheta \cdot artheta$)	Ø.ر(Ø.Ø)
Tanks l	Ø.4±(Ø.Ø)	Ø.5±(Ø.1)
Tanks 2	1.ر(Ø.Ø)	1.ر(Ø.1)
Tanks 3	1.4±(Ø.Ø)	1.5 <u>+</u> (Ø.1)
Tanks 4	$2.0 \pm (0.1)$	2.1±(Ø.1)
Tanks 5	3.ر(Ø.5)	2.9±(Ø.1)

LITERATURE CITED

- Anderson, J.M. and M.R. Peterson. 1969. DDT: sublethal effects on brook trout nervous system. Science 164, 440-441.
- Anderson, J.M. and H.B. Prins, 1970. Effect of sublethal DDT on a simple reflex in brook trout. J. Fish. Res. Board Can. 27, 331-334.
- Andrews, A.K., C.C. VanVallin, and B.E. Stebbings. 1966. Some effects of heptachlor on bluegills (Lepomis macrochirus). Trans. Am. Fish. Soc. 95, 297-309.
- Avivi, A. and Aviva Chari-Bitron. 1970. Estimation of low chloropromazine concentrations by surfacing and sinking reaction of minnows (<u>Gambusia</u> <u>affinis</u>). Psychopharm. 18, 407-411.
- Bardach, J.E., M. Fujiya, and A. Holl. 1965. Detergents: Effects on the chemical senses of the fish Ictalurus natalis (le Sueur). Science 148(3677), 1605-1607.
- Bardach, J.E., J.H. Todd, and R. Crickmer. 1967. Orientation by taste in fish of the genus <u>Ictalurus</u>. Science 155 (3767), 1276-1278.
- Bengtsson, B.E., O. Svanberg, E. Linden, G. Lunde, and E.B. Ofstad. 1979. Structure related uptake of chlorinated parafins in bleaks (Alburnus alburnus L.) Ambio 8 (2), 121-122.
- Besch, W.K., A. Kemball, K. Meyer-Waarden, and B. Scharf. 1977. A Biological monitoring system employing rheotaxis of fish. In: Biological Monitoring of Water and Effluent Quality. Spec. Tech. Publ. 607. ASTM, Phila., PA. pp. 56-74.
- Bloom, H.D., A. Perlmutter, and R.J. Seeley. 1978. Effect of a sublethal concentrations of zinc on an aggregating pheromone system in the zebrafish, <u>Brachydanio rerio (Hamilton-Buchanan).</u> Environ. Pollut. 17(2), 127-131.
- Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can. 21, 1183-1226.
- Brungs, W.A. 1969. Chronic toxicity of zinc to the fathead minnow (Pimphales promelas, Rafinesque). Trans. Am. Fish. Soc. 98, 272-279.
- Cairns, J., Jr., R.E. Sparks, and W.T. Waller, 1973. The relationship between biological monitoring and water quality standards for chronic exposure. In: <u>Bioassay Techniques and Environmental</u> <u>Chemistry. G.E. Glass, ed. Ann Arbor Science</u>

Publ., Inc., Michigan. pp. 383-402.

- Carlson, R.W. and R.A. Drummond. 1978. Fish cough response-a method for evaluating quality of treated complex effluents. Water Res. 12(1), 1-6.
- Cearley, J.E. and R.L. Coleman. 1974. Cadmium toxicity and bioconcentration in largemouth bass and bluegill. Bull. Environ. Contam. and Toxicol. 11(2), 146-151.
- Colby, P.J., G.R. Spangler, D.A. Hurley, and A.M. McCombie. 1972. Effects of eutrophication on salmonid communities in oligotrophic lakes. J. Fish. Res. Board Can. 29, 975-983.
- Coleman, R.L. and J.E. Cearley. 1974. Silver toxicity and accumulation in largemouth bass and bluegill. Bull. Environ. Contam. and Toxicol. 12(1), 53-61.
- Cripe, C.R. 1979. An automated device (AGARS) for studying avoidance of pollutant gradients by aquatic organisms. J. Fish. Res. Board Can. 36, 11-16.
- Dandy, J.W.T. 1972. Activity response to chlorine in the brook trout, Salvelinus fontinalis (Mitchell). Can. J. Zool. 50(4), 405-410.
- DeFoe, D.L. 1975. Multichannel toxicant injection system for flow-through bioassay. J. Fish. Res. Board Can. 32, 544-546.
- Dinnel, P.A., Q.J. Stober, and D.H. DiJulio. 1979. Behavioral responses of shiner perch to chlorinated primary sewage effluent. Bull. Environ. Contam. Toxicol. 22(4), 708-714.
- Dodson, J.J. and C.I. Mayfield. 1979. Modifications of the rheotropic response of rainbow trout (<u>Salmo</u> <u>gairdneri</u>) by sublethal doses of the aquatic herbicides diquat and simazine. Environ. Pollut. 18, 147-157.
- Dodson, J.J. and J.C. Young. 1977. Temperature and photoperiod regulation of rheotropic behavior in prespawning common shiners, (Notropis cornutus). J. Fish. Res. Board Can. 34, 341-346.
- Elson, P.F. and C.J. Kerswell. 1966. Impact on salmon of spraying insecticide over forests. Adv. in Water Pollut. Res. 1, 55-74.
- Engineering-Science, Inc. 1964. Toxicant-induced behavior and histological pathology. Engineering-Science, Inc., Arcadia, CA.

- Fava, J.A. and C. Tsai. 1976. Immediate behavioral reactions of the blacknose dace, <u>Rhynichthys</u> <u>atratulus</u>, to domestic sewage and its toxic <u>constituents</u>. Trans. Am. Fish. Soc. 105(3), 430-441.
- Foster, N.R., J. Cairns, Jr., and R.L. Kaestler. 1969. The flagfish, Jordanella floridae, as a laboratory animal for behavioral bloassay studies. Proc. Acad. Nat. Sci. Phila. 121(5), 129-152.
- Foster, N.R., A. Scheier, and J. Cairns, Jr. 1966. Effects of ABS on feeding behavior of flagfish, Jordanella floridae. Trans. Am. Fish. Soc. 95, 109-110.
- Fromm, P.O. 1980. A review of some physiological and toxicological responses of freshwater fish to acid stress. Environ. Biol. Fish. 5(1), 79-93.
- Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. of Toronto Studies, Biological Ser., No. 55, Publ. Ontario Fish. Res. Lab., No. 68. 62p.
- Goodyear, C.P. 1972. A simple technique for detecting effects of toxicants or other stresses on a predatorprey interaction. Trans. Am. Fish. Soc. 101,367-370.
- Grande, M. 1964. Water pollution studies in the River Otra, Norway. Effect of pulp and paper mill wastes on fish. Int. J. of Air and Water Pollut. 8, 77-88.
- Granett, J., S. Morang, and R. Hatch. 1978. Reduced movement of precocious male Atlantic salmon parr into sublethal Dimilin-Gl and carrier concentrations. Bull. Environ. Contam. and Toxicol. 19(4), 462-464.
- Gruber, D., J. Cairns, Jr., K.L. Dickson, and A.C. Hendricks. 1978. A cinematographic investigation into fish's bioelectric breathing signal. J. Fish. Biol. 14(5), 429-436.
- Gruber, D., J. Cairns, Jr., K.L. Dickson, A.C. Hendricks, and W.R. Miller, III. 1979. Initial testing of a recent biological monitoring concept. J. Water Pollut. Control Fed. 2744-2751.
- Hallett, R.A. Unpublished. Blood alcohol determination. St. Joseph's Hospital, Thunder Bay, Ontario.
- Hansen, D.J. 1969. Avoidance of pesticides by untrained sheepshead minnows. Trans. Am. Fish. Soc. 98, 426-429.
- Hansen, D.J. 1972. DDT and malathion: effect on salinity selection by mosquitofish. Trans. Am. Fish. Soc. 101(2), 346-350.

- Hansen, D.J., D.R. Nimmo, S.C. Schimmel, G.E. Walsh, and A.J. Wilson, Jr.1977. Effects of Kepone on estuarine organisms. In: <u>Recent Advances in</u> <u>Fish Toxicology: Symposium Papers. U.S.</u> <u>E.P.A. Office of Research and Development,</u> Ecological Research series, EPA 600/3-77-085. July 1977. pp.20-30.
- Hatfield, C.T. 1970. Effects of four insectides on the ability of Atlantic salmon (Salmo salar) to learn and retain a simple conditioned response. Master of Science Thesis, Queen's Univ., Kingston, Ontario.
- Hatfield, C.T. and P.H. Johansen. 1972. Effects of four insecticides on the ability of Atlantic salmon parr (Salmo salar) to learn and retain a simple conditioned reflex. J. Fish. Res. Board Can. 29, 315-321.
- Hedtke, J.L. and L.A. Norris. 1980. Effect of ammonium chloride on predatory consumption rates of brook trout (Salvelinus fontinalis) and juvenile chinook salmon (Oncorhynchus tshawytscha) in laboratory streams. Bull. Env. Contam. and Toxicol. 24, 81-89.
- Herbert, D.W.M. and D.S. Shurben. 1963. A preliminary study of the effect of physical activity on the resistence of rainbow trout (<u>Salmo gairdneri</u> Richardson) to two poisons. Ann. Appl. Bio. 52, 321-326.
- Howard, T.E. 1975. Swimming performance of juvenile coho salmon (Oncorhynchus kisutch) exposed to bleached kraft pulpmill effluent. J. Fish. Res. Board Can. 32, 789-793.
- Huckabee, J.W. and N.A. Griffith. 1974. Toxicity of mercury and selenium to the eggs of carp (Cyprinus carpio). Trans. Am. Fish. Soc. 103, 822-824.
- Hughes, G.M. 1975. Coughing in rainbow trout (Salmo gairdneri) and the influence of pollutants. Revue Suisse Zool. 82(1), 47-64.
- Ishio, S. 1965. Behavior of fish exposed to toxic substances. In: Advances in Water Pollution Research. Proc. 2nd Internat. Conf. held in Tokyo 1964, Pergammon Press, Oxford. Vol.1, pp. 19-33.
- Iverson, S.L. and J.E. Gutherie. 1969. The ecological significance of stress. The Manitoba Entomologist 3, 23-33.

Jackson, D.A., J.M. Anderson, and D.R. Gardner. 1970.

Further investigations of the effect of DDT on learning in fish. Can. J. Zool. 48, 577-580.

- Jones, J.R.E. 1947. The reactions of Pygosteus pungitus L. to toxic solutions. J. Exp. Biol. 24, 110-122.
- Jones, J.R.E. 1948. A further study of the reactions of fish to toxic solutions. J. Exp. Biol. 25, 22-34.
- Jones, J.R.E. 1951. The reactions of the minnow Phoxinus phoxinus L. to solutions of phenol, ortho-cresol, and para-cresol. J. Exp. Biol. 28, 261-270.
- Kamchem, R. and T.J. Hara. 1980. Behavioral reactions of whitefish (Coregonus clupeaformis) to food extract: an application to sublethal toxicity bioassays. Proceedings of the 6th Annual Aquatic Toxicity Workshop. Canadian Tech. Rep. of Fisheries and Aquatic Sciences. 975, 182-191.
- Kalant, H., A.E. LeBlanc, and R.J. Gibbons. 1971. Tolerance to, and dependence on, some non-opiate psychotropic drugs. Pharm. Rev. 23(3), 135-191.
- Kania, H.J. and J. O'Hara. 1974. Behavioral alterations in a simple predator-prey system due to sublethal exposure to mercury. Trans. Am. Fish. Soc. 103, 134-136.
- Kerswill, C.J. and H.E. Edwards. 1967. Fish losses after forest sprayings with insecticides in New Brunswick, 1952-1962, as shown by caged specimens and other observations. J. Fish. Res. Board Can. 24, 709-729.
- Kleerekoper, H., J.B. Waxman, and J.Matis. 1973. Interaction of temperature and copper ions as orienting stimuli in the locomotor behavior of the goldfish (Carassius auratus) J. Fish. Res. Board Can. 30(6), 725-728.
- Kleerekoper, H., G.F. Westlake, J. Matis, and P.J. Gensler. 1972. Orientation of goldfish (<u>Carassuiu</u> <u>auratus</u>) in response to a shallow gradient of a sublethal concentration of copper in an open field. J. Fish. Res. Board Can. 29(1), 45-54.
- LaPorte, R.E. and E.E. Talbott. 1977. Effects of low levels of lead exposure on cognitive function - A review. Archives of Environ. Health. 33(5), 236-239.
- Larson, G.L., and D.A. Schlesinger. 1977. Effects of short term exposures to total residual chlorine on the survival and behavior of largemouth bass (Micropterus salmoides). In: Recent Advances
in Fish Toxicology: Symposium Papers. U.S. EPA Office of Research and Development. Ecological Research Series EPA 600/3-77-085. July 1977. pp.55-77.

- Levy, G. and S.P. Gucinski. 1964. Studies on biologic membrane permeation kinetics and acute toxicity of drugs by means of goldfish. J. Pharmacol. Exp. Ther. 146, 80-86.
- Lindahl, P.E., S. Olofsson, and E. Schwanbon. 1977. Rotary-flow technique for testing fitness of fish. In: Biological Monitoring of Water and Effluent Quality, Spec. Tech. Public. 607, ASTM, Phila., PA.
- Lindahl, P.E. and E. Schwanbon. 1971. A method for detection and quantitative estimation of sublethal poisoning in living fish. Oikos 22, 210-214.
- Lowe, J.I. 1964. Chronic exposure of spot, <u>Leiostomus</u> <u>xanthus</u>, sublethal concentrations of toxaphene in <u>seawater</u>. Trans. Am. Fish. Soc. 93, 396-399.
- MacLeod, J.C. and L.L. Smith, Jr. 1966. Effect of pulpwood fiber on oxygen consumption and swimming endurance of the fathead minnow, <u>Pimphales</u> promelas. Trans. Am. Soc. 95, 71-84.
- McCann, J.A. and R.L. Jasper. 1972. Vertebral damage to bluegills exposed to acutely toxic levels of pesticides. Trans. Am. Fish. Soc. 101, 317-322.
- McGreer, E.R. and G.A. Vigers. 1980. The use of in situ preference/avoidance studies with fish in monitoring sulfite mill effluent. Proc. of the 6th Annual Aquatic Toxicity Workshop. Canadian Tech. Report of Fisheries and Aquatic Sciences 975, 152-161.
- McLeay, D.J. and D.A. Brown. 1974. Growth stimulation and biochemical changes in juvenile coho salmon (Oncorhynchus kisutch) exposed to bleached kraft pulpmill effluent for 200 days. J. Fish. Res. Board Can. 31, 1043-1049.
- Meldrim, J.W. and J.A. Fava. 1977. Behavioral avoidance responses of esturarine fishes to chlorine. Chesapeake Science 18(1), 154-157.
- Morgan, W.S.G. 1979. Biomonitoring with fish: an aid to industrial effluent and water quality control. Prog. Water Technol. 9, 703-711.
- Mount, D.I. 1962. Chronic effects of endrin on bluntnose minnows and guppies. U.S. Fish and Wildlife Serv. Report 58. 38pp.

- Mount, D.I. 1968. Chronic toxicity of copper to fathead minnows (Pimphales promelas, Rafinesque). Water Res. 2, 215-223.
- Mount, D.I. and C.E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (Pimphales promelas) in softwater. J. Fish. Res. Board Can. 26, 2449-2457.
- Murphy, J. 1978. Effects of depressed pH on reproduction, growth, and survival of flagfish, Jordanella floridae (Goode and Bean). Master of Science Thesis, Lakehead University, Thunder Bay, Ontario.
- Neil, J.H. 1957. Some effects of potassium cyanide on speckled trout (Salvelinus fontinalis). Proc. 4th Ontario Industrial Waste Conf., Ontario Water Research Commission, pp. 74-96.
- Offutt, G.C. and R.R. Gritzke. 1978. Ethanol's influence on the stimulus level required to evoke an orienting response in goldfish. Pavlov. J. Biol. Sci. 13(2), 113-120.
- Peeke, H.V.S., G.E. Ellman, and M.J. Herz. 1973. Dose dependent alcohol effects on the aggressive behavior of the convict cichlid (<u>Cichlasoma nigrofasciatum</u>). Behav. Biol. 8, 115-122.
- Peterson, R.H. 1974. Influence of fenitrothion on swimming velocity of brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 31, 1757-1762.
- Post, G. and R.A. Leasure. 1974. Sublethal effect of malathion to three salmonid species. Bull. Environ. Contam. and Toxicol. 12(3), 312-319.
- Post, G. and T.R. Schroeder. 1971. The toxicity of four insecticides to four salmonid species. Bull. Environ. Contamin. and Toxicol. 6(2), 144-155.
- Prather, I.D. 1975. The importance of bluegill feeding behavior within an automated biological monitoring system for industrial wastes. Master of Science Thesis, VPI and State Univ., Blacksburg, VA.
- Rand, G.M. 1977. Effect of exposure to subacute concentration of parathion on the general locomotor behavior of goldfish. Bull. Environ. Contam. and Toxicol. 18(2), 259-266.
- Raynes, A.E. and R.S. Ryback. 1969. Effect of alcohol and congeners on aggressive response in <u>Betta</u> <u>splendens</u>. Quart. J. Stud. Alc. Suppl. 5, 130-135.

Raynes, A.E., R. Ryback, and D. Ingle. 1968. The effect of alcohol on aggression in <u>Betta</u> splendens. Communications in Behav. Biol., Part A, 2, 141-146.

- Romberg, G.P., S.A. Spigarelli, W. Prepejchal, and M.M. Thommes. 1974. Migratory behavior of fish tagged at nuclear power plant discharges into Lake Michigan. 17th Conf. on Great Lakes Research, Hamiliton, Ontario, Canada, August 12-13, 1974.
- Ryback, R.S. 1969. Effect of ethanol, bourbon, and various ethanol levels on Y-maze learning in the goldfish. Psychopharm. 14, 305-314.
- Ryback, R.S. 1970. The use of fish, especially goldfish in alcohol research. Quart. J. Stud. Alc. 31(1), 162-166.
- Ryback, R.S., B. Percarpio, and J. Vitale. 1969. Equilibration and metabolism of ethanol in the goldfish. Nature (London) 222, 1068-1070.
- Saunders, R.L. and J.B. Sprague. 1967. Effects of copperzinc mining pollution on a spawning migration of Atlantic salmon (<u>Salmo salar</u>). Water Res. 1, 419-432.
- Schaumburg, F.D., T.E. Howard, and C.C. Walden. 1967. A method to evaluate the effects of water pollutants on fish respiration. Water Res. 1, 731-737.
- Scherer, E. and S.H. Nowak. 1973. Apparatus for recording avoidance movements of fish. J. Fish. Res. Board Can. 30, 1594-1596.
- Schneider, M.J., L.D. Becker, D.H. Fickeisen, T.O. Thatcher, E.G. Wolf, and E.L. Hunt. 1974. <u>The</u> <u>aquatic physiology of thermal and chemical</u> <u>discharges. Battelle Pacific Northwest Labora-</u> tories, Richland, WA.
- Shirer, H.W., J. Cairns, Jr., and W.T. Waller. 1968. A
 simple apparatus for measuring activity patterns of
 fishes. Water Res. Bull. 4(3), 27-45.
- Shultz, T.W., S. Davis, and J.N. Dumont. 1978. Toxicity of Coal Conversion gasifier condensate to the fathead minnow. Bull. Environ. Contamin. Toxicol. 19(2), 237-243.
- Slater, P.J.B. 1981. Individual differences in Animal Behavior. In: Perspectives in Ethology, Vol.4. P.P.G. Bateson and P.H. Klopfer, eds. Plenum Press, NY.

- Smith, A.D., J.R. Butler, and G.W. Ozburn. 1977. A pneumatic dosing apparatus for flow-through bioassays. Water Res. 11, 347-349.
- Sparks, R.E., J. Cairns, Jr., and A.G. Heath. 1972. The use of bluegill breathing rates to detect zinc. Water Res. 6, 895-911.
- Sparks, R.E., J. Cairns, Jr., R.A. McNab, and G. Suter, II. 1972. Monitoring zinc concentrations in water using the respiratory response of bluegills (Lepomis macrochirus Raf.). Hydrobiol. 40(3), 361-369.
- Sprague, J.B. 1964. Avoidance of copper-zinc solutions by young salmon in the laboratory. J. Water Pollut. Control Fed. 36(8), 990-1004.
- Sprague, J.B. 1968a. Avoidance reactions of salmonid fish to representative pollutants. Water Res. 2, 23-24.
- Sprague, J.B. 1968b. Avoidance reactions of rainbow trout to zinc-sulfate solutions. Water Res. 2, 367-372.
- Sprague, J.B. 1971. Measurement of pollutant toxicity to fish III. Water Res. 5, 245-266.
- Stascheit, M. 1979. Temperature dependence of memory in fish. Zeit. Tierpsychol. 51(2), 140-152.
- Sullivan, J.F., G.J. Atchison, D.J. Kolar, and A.W. McIntosh. 1978. Changes in predator-prey behavior of fathead minnows (Pimphales promelas) and largemouth bass (Micropterus salmoides) caused by cadmium. J. Fish. Res. Board Can. 35, 446-451.
- Summerfelt, R.C. and W.M. Lewis. 1967. Repulsion of green sunfish by certain chemicals. J. Water Pollut. Control Fed. 39(12), 2030-2038.
- Sylvester, J.R. 1972. Effect of thermal stress on predator avoidance in sockeye salmon. J. Fish. Res. Board Can. 29, 601-603.
- Symons, P.E.K. 1973. Behavior of young Atlantic salmon (Salmo salar) exposed to or force-fed fenitrothion, an organophosphate insecticide. J. Fish. Res. Board Can. 30, 651-655.
- Tagatz, M.E. 1976. Effect of mirex on predator-prey interaction in an experimental estuarine ecosystem. Trans. Am. Fish. Soc. 105(4), 546-549.
- Thatcher. T.O. 1979. Morphological defect in shiner perch resulting from chronic exposure to chlorinated sea water. Bull. Environ. Contam. and Toxicol. 21(4-5), 433-438.

Tinbergen, . 1951. The Study of Instinct, Clarendon Press, Oxford, pp. 1-228.

- Tsai, C. 1970. Changes in fish populations and migration in relation to increased sewage pollution in Little Patuxent River, Maryland. Chesapeake Science 11(1), 34-41.
- VanIersel, J.J. 1970. An analysis of the parental behavior of the male three-spined stickleback (Gasterosteus aculeatus L.). Behav. Suppl. 3 159 pp.
- Verma, S.R., S.K. Bansal, and R.C. Dalela. 1978. Toxicity of selected organic pesticides to a freshwater teleost fish, Saccobranchus fossilis and its application in controlling water pollution. Arch. Environ. Contam. and Toxicol. 7(3), 317-323.
- Wagner, S.S. 1970. The maximum likelihood estimate for contingency tables with zero diagonal. J. Amer. Stat. Assoc. 65, 1362-1383.
- Waiwood, K.G. and F.W.H. Beamish. 1978. Effects of copper, pH, and hardness on the critical swimming performance of rainbow trout, (Salmo gairderni Richardson). Water Res. 12, 611-619.
- Waller, W.T. and J. Cairns, Jr. 1972. The use of fish movement patterns to monitor zinc in water. Water Res. 6, 257-269.
- Warner, R.E., K.K. Peterson, and L. Borgman. 1966. Behavioral pathology in fish: a quantitative study of sublethal pesticide toxication. J. Appl. Ecol. Suppl. 3, 223-247.
- Webb, P.W. and J.R. Brett. 1973. Effects of sublethal concentrations of sodium pentachlorophenate on growth rate, food conversion efficiency and swimming performance in underyearling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 30. 499-507.
- Weir, P.A. and C.H. Hine. 1970. Effects of various metals on behavior of conditioned goldfish. Arch. Environ. Health 20, 45-51.
- Weiss, P. and J.S. Weiss. 1976. Abnormal locomotion associated with skeletal malformations in the sheepshead minnow, Cyprinodon variegatus, exposed to malathion. Environ. Res. 12(2), 196-200.

Wildish, D.J., W.G. Carson, T. Cunningham, and N.J. Lister. 1971. Toxicological effects of some organophosphate insecticides to Atlantic salmon. Fish. Res. Bd. Can. MS Report 1157, 22pp.