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Abstract 

In this thesis we are concerned with iterative parallel 

algorithms for solving finite difference equations arising 

from boundary value problems. We propose various new 

methods based on approximate inverses. The Jacobi iterative 

method for the solution of linear equations is highly 

parallel. Its slow convergence rate, however, has initiated 

the study of a variety of acceleration techniques. We 

introduce the “Diagonal-Block” and the "Least Squares" 

techniques for calculating approximate inverses which lead 

naturally to generalized Jacobi methods that are well suited 

to parallel processing. In addition, the calculations 

required to establish the iterative process can be done in 

parallel. A convergence theorem for a one-dimensional model 

problem is given. Gauss-Seidel versions of these methods 

are also considered. These versions converge faster but 

often at the cost of decreased parallelism. 

Preconditioning has been successfully used in 

conjunction with the conjugate gradient method. Many such 

techniques use an approximation M to the matrix A of the 

linear system under consideration and solve a system of the 

form M z = d at each iteration. If, however, an 

approximate inverse is used, the solution z = M*' d 

only involves a matrix-vector multiplication v/hich is well 

suited to parallel computation. We examine the 
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Least-Squares techniques for Diagonal-Block and 

preconditioning the 

the 

conjugate gradient method. 

Numerical results are presented. The proposed Jacobi 

like and Gauss-Seidel like methods are compared with 

parallel Gauss-Seidel methods in a class of parallel 

algorithms proposed by Evans and Barlow (1982). The 

preconditioned conjugate gradient methods are compared with 

the plain conjugate gradient method. In all cases the speed 

of convergence increased substantially, but often at the 

expense of increased computational work. In some cases it 

was necessary to assume the number of processors to be on 

the order of N ( the number of unknowns ) in order to gain 

an advantage from parallel processing. 
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LIST OF ITERATIVE METHODS 

Abbreviation 

PGSl 

PGS2 

JDBl(I) 

JDB2(I) 

GOBI(I) 

GDB2(I) 

JLSQl(I) 

JLSQ2(I) 

GLSQl(I) 

GLSQ2(I) 

CG 

DBCGl(I) 

DBCG2(T) 

LSQCGl(I) 

LSQCG2(I) 

Explanation 

A Parallel Gauss-Seidel Version for 
the one dimensional model problem. 

A Parallel Gauss-Seidel Version for 
the two dimensional model problem. 

Jacobi Diagonal-Block methods for 
the one dimensional model problem. 

Jacobi Diagonal-Block methods for 
the two dimensional model problem. 

Gauss-Seidel Diagonal-Block methods 
for the one dimensional model problem. 

Gauss-Seidel Diagonal-Block methods 
for the two dimensional model problem. 

Jacobi Least-Squares methods for 
the one dimensional model problem. 

Jacobi Least-Squares methods for 
the two dimensional model problem. 

Gauss-Seidel Least-Squares methods 
for the one dimensional model problem. 

Gausss-Seidel Least-Squares methods 

Conjugate Gradient Method 

Diagonal-Block Conjugate Gradient methods 
for the one dimensional model problem. 

Diagonal-Block Conjugate Gradient methods 
for the two dimensional model problem. 

Least-Squares Conjugate Gradient methods 
for the one dimensional model problem. 

Least-Squares Conjugate Gradient methods 
for the two dimensional model problem. 
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I. INTRODUCTION 

In this thesis, we consider linear systems arising in 

connection with the numerical solution of boundary value 

problems. These linear systems are large and sparse. We 

propose several iterative algorithms that are based on 

approximating the inverse of the coefficient matrix of the 

linear system. Our main objective is to investigate the use 

of these approximate inverses for linear stationary methods 

(see chapter 3 ) and preconditioned conjugate gradient 

methods (see chapter 4 ) as a means to enhance the rate of 

convergence. 

The iterative methods in this thesis, however, can be 

extremely costly in a computational sense (especially for 

large linear systems). This suggests the concurrent use of 

many processing elements in order to improve the speed of 

computation and to handle large volumes of data. Massively 

parallel computers, as assumed in this thesis, are not yet 

available, but the development of VLSI circuits has made 

them feasible ( Siegel, 1982, Haynes, 1982 ). Moreover, it 

is an open problem how expensive the interconnection between 

processors will be and what limitations that will pose on 

the speed of computation. The interconnection requirements 

will not be considered in our model of computation. The 

methods under consideration, however, involve mainly 

matrix-vector products which can be computed very 



efficiently on a linear-connected systolic array as 

considered by Kung and Leierson ( see Haynes, et al.l982 ). 

No control of the data items is required once it is input 

into the array. Systolic arrays can be thought of as part 

of a larger computer system replacing certain software 

routines ( Haynes, et al.1982 ). 

In chapter 2 we discuss certain aspects of parallel 

computation and establish a general model of a parallel 

computer which sets the background for comparing our 

iterative processes. In section II.3 we develop two 

parallel versions of the Gauss-Seidel iterative methods, 

PGSl and PGS2, that exploit the sparsity structure of the 

matrices under consideration. These methods serve as a 

basis of comparison for the methods using approximate 

inverses that are developed in the chapters that follow. 

We will use two examples to illustrate our results (see 

appendix A). We consider Young's two dimensional model 

prpblem (Young,1971,pp. 2-4) and its one dimensional analog. 

The one dimensional model problem provides a relatively 

simple test problem for studying our proposed algorithms. 

In chapter 3, we deal with linear stationary methods of 

the form ^ ^ ^ u ^ + Bb to solve the linear 

system Au = b . In sections III.l and III. 2 v/e develop 

some standard convergence results. According to these 

results we attempt in section III.3 to create approximate 

inverses B such that the spectral radius of I-BA is as 
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small as possible. The approximate inverse B is required 

to satisfy a certain sparsity structure and the non-zero 

entries are determined in a way that BA approximates the 

identity. Two different techniques are developed^. the 

Diagonal-Block (DB) and the Least-Squares (LSQ) technique 

(Benson,Frederickson,1981,Benson,1973). The corresponding 

approximate inverses are used in Jacobi like and 

Gauss-Seidel like iterations. In case of the Diagonal-Block 

(DB) approximate inverses, we give a convergence result for 

the Jacobi like methods applied to the one-dimensional model 

problem. All experiments have been carried out on sparse 

matrices. We remark that these techniques for approximating 

the inverse are not necessarily restricted to such matrices. 

The Least-Squares technique, however, is highly expensive if 

the coefficient matrix is dense. 

In chapter 4, we develop a generalized conjugate 

gradient method for solving linear systems and discuss its 

main properties. This method can be used in conjunction 

with an approximation M to the coefficient matrix A. In 

this case a linear system of the form Mz = d must be 

solved at each iteration. Applying the DB or LSQ 

approximate inverses to this method, we can compute the 

vector z by matrix-vector multiplication. 

In chapter 5, we present the results of our numerical 

experiments on the two model problems considered. Two sets 

of algorithms are compared with respect to two measures, the 

speed of convergence and the amount of computational work 



per iteration. The latter varies with the number of 

independent processors that are assumed. The linear 

stationary methods of chapter 3 are compared v/ith the 

Gauss-Seidel methods PGSl and PGS2 of chapter 2 and the 

preconditioned conjugate gradient methods are compared with 

the plain conjugate gradient method. It was found that the 

number of iterations is reduced significantly when 

approximate inverses are used. Moreover, the "better" the 

inverse of the coefficient matrix is approximated, the fewer 

iterations are needed in most cases. If we include the 

second measure of comparison, this result cannot be obtained 

in all cases. We observe that in many cases the linear 

stationary methods using the proposed approximate inverses 

are shown to be advantageous over the parallel Gauss-Seidel 

methods of chapter 2, if an appropriate number of processors 

is assumed. The same result applies to the preconditioned 

conjugate gradient methods and the conjugate gradient 

method. Finally we comment that all parallel algorithms in 

this thesis are simulated on a uniprocessor. 
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II. CONCEPTS OF PARALLEL COMPUTATION 

The advances in parallel computer systems during the 

last decade have brought a new aspect to the classification 

of numerical algorithms: sequential vs. parallel. The 

concept behind parallel computing is that programs are 

designed to have paths of independent calculations in order 

to make use of many processors at a time. For optimal 

efficiency, programs using P processors should run P times 

faster than otherwise identical programs using only one 

processor. However, "experience and theory show that the 

actual speed-up is often much less" (Heller,1978). 

The first section of this chapter is devoted to a 

general discussion of parallel computers. In the second 

section, we develop our model of parallel computation and 

outline some of the problems occurring in this field. In 

the third section, we present several parallel algorithms 

for solving linear systems arising from differential 

equations. 
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II.1 CLASSIFICATION OF PARALLEL COMPUTERS 

Thus far, no single parallel computer systeni can be 

considered as the dominant one. Our interest here is in the 

following two important classes of parallel computers, first 

defined by Flynn, 1966. 

Instructions for each processor in a multi - processor 

system come either from a central control unit or from the 

individual processor. In the first case, the system has 

only one stream of instructions in execution at a given 

time, but each processor may affect many different data. 

This is the single - instruction stream multiple - data 

stream model ( S I M D ). SIMD machines are best suited 

for algorithms requiring the same operation on large arrays 

of independent data. Examples of this type are array 

processors, pipeline processors, associate processors and 

bit - slice processors ( Stone,1973 ). The more general 

multiple - instruction stream multiple - data stream model 

( M I M D ) is configured as multiple independent processing 

elements with no processor having overall control. MIMD 

machines-are capable of executing different instructions 

simultaneously, and each instruction may. operate on a 

different datum. For complex programs, the processors are 

initially allocated to independent (parallel) paths, which 

they execute until completion. Communication among the 

individual processors still takes place in order to share 

information and to otherwise cooperate in the solution of 
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the problem (synchronization may take place). 

The following discussion will emphasize SIMD machines, 

since the iterative methods of the chapters that follow are 

ideally suited for vector processes. Moreover, most of the 

existing machines are of this type. 

The importance of the above characterization of 

parallel computer systems lies in the fact that an algorithm 

designed for an SIMD machine can be used with essentially 

equal efficiency by all systems of that class. For example, 

both an ILLIAC IV and a pipeline computer such as 

CDC STAR 100 are heavily oriented to vector processes, so 

that a good algorithm for one of them will tend to be a good 

one for the other one as well. Nevertheless, to design an 

algorithm that runs at maximum efficiency on a particular 

computer, one may have to take the architecture of that 

computer into account, since SIMD computers differ in 

specific capabilities. However, it is worthwhile to 

investigate algorithms for SIMD computers because the 

principle design of an algorithm is usually not affected by 

the changes required for optimal efficiency. The same can 

be said about algorithms for MIMD computers.(Stone, 1973) 
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II.2 MODEL OF PARALLEL COMPUTATION 

There are various models of parallel computation. The 

theoretical model assumes unlimited parallelism in the sense 

that the number of required processors varies with the size 

of the problem under consideration ( " sufficiently many 

processors ", Heller,1978 ). Our interest is in the 

iterative solution of a linear system of equations with a 

banded (or striped) and large matrix, say of order 10^ to 

10 . Therefore we prefer the practical model that has a 

fixed number of processors, independent of the application. 

Nevertheless, we will also for simplicity refer to the 

theoretical model, which might be justified by the current 

technology that has created the " age of the 

microprocessor " thus making the future construction of 

computer systems with to processors feasible 

( Siegel,1982,see also Haynes,1982 ). 

The precise details of the architectures are 

unimportant for our purposes. \'Then we speak of a SIMD 

machine, we have in mind a computer system consisting of a 

control ’unit, P processing elements ( PE's ) and an 

interconnection network. Each PE consists .of a processor 

with its own private memory for intermediate storage, and 

each PE also has access to a common memory. The PE's are 

connected by a network, and fed instructions by the control 

unit. To simplify discussions we make the strong assumption 

that any processor can obtain any data in one time step. 
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that is to say we will ignore the time required for data 

acquisition and concentrate on the arithmetic time. We 

remark that we can convert this computer model into an MIMD 

model by storing predetermined instructions in the private 

memory of each PE. 

The above assumption that each processor can fetch any 

data item in one time step (cycle) is somewhat ideal. In 

reality, constraints on the computer architecture can create 

complex problems of data manipulation, which may result in a 

significant loss of processing power. The systolic 

architectural concept (see Kung,1982) optimizes the 

data-communication structures among the processors at the 

price of specialization. This concept results in extremely 

high speed and efficient special-purpose systems. The basic 

idea is an overlapping of l/O and computation. Each data 

item is operated on many times and no further control is 

required after the data item is input into the array of 

processors. A simple example is the linearly connected 

array considered by Kung and Leiserson (see Haynes,et 

al1982,p.10).This systolic array can compute a 

matrix-vector product of size N with a banded matrix of 

bandwidth W in 2N+W time units when W/2 processors are 

used. This is fairly close to the 2N time units that are 

required when the above idealized computer model is assumed. 

Since systolic arrays are very specialized systems of 

processors it is desirable that they be part of a larger 

computing system. At this point, however, the integration 
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of these special purpose devices into a larger computing 

system is an open problem. 

In order to evaluate the algorithms and the computer 

systems under consideration, it is necessary to have some 

measure of efficiency. We mentioned earlier that for a 

parallel computer system that can support P simultaneous 

processes, the ideal speed-up is P . This leads tO' the 

following definitions ( Schendel,1981 ). 

Definition 2.1 ; 

For a given problem let T(l) be the running time of the best 

known (fastest) sequential algorithm, and let T(P) be the 

running time of a parallel algorithm using P processors and 

solving the same problem. Then the speed-up ratio is 

defined as 

(2.1) S(P) = T(1)/T(P) . 

The speed-up ratio measures the improvement in execution 

time using parallelism, but it does not take into account 

how well each processor is being used. We may have severe 

unemployment among the processors. Therefore we define 

efficiency as 

(2.2) E(P) = S(P) / P . 

To compare parallel algorithms solving the same problem, we 

define the effectiveness of a parallel algorithm as 

(2.3) F(P) S(P) / ( P * T(P) ) 
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Note that C(P) := P * T(P) measures the cost of the 

algorithm. Also F(P) = S(P)/(P*T(P)) = E(P)/T(P) = E(P) * 

S(P)/T(1) ,i.e. F(P)^1 , can be seen as a measure for the 

speed-up and the efficiency. Therefore we tend to maximize 

the function F(P) in order to achieve a good parallel 

algorithm. It is not difficult to show that S(P)^ P and 

E(P)^ 1 . Although one of our objectives is to obtain 

optimal efficiency, it is not practical to choose the number 

of processors in order to maximize the function E(P) ( 

note that E(l) = 1 ). (Heller,1978) 

The ideal speed-up ratio is linear in P, since the 

processors are used efficiently in that case. Such speed-up 

ratios can be attained in problems that have iterative 

structure, such as systems of linear equations and other 

vector-matrix problems. A number of factors such as 

synchronization, overhead, or input/output (l/O) can cause a 

smaller speed-up ratio. Speed-up ratios of the form k * P / 

log (P) are still acceptable, but algorithms with a speed-up 

ratio of k * log (P) are not suited very well to parallel 

computation. (Stone,1973) 

In the remainder of this section we describe briefly 

some of the problems that occur in parallel computation. 

Parallel computation cannot be considered as a trivial 

extension of serial computation, in the sense that efficient 

serial algorithms cannot necessarily be automatically 

transformed into efficient parallel algorithms. In fact. 
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inefficient serial algorithms may even lead to efficient 

parallel algorithms and vice versa. Batcher (1968), for 

example, has formulated a parallel sorting algorithm that 

stems from an inefficient serial sorting algorithm (see 

Stone,1973). Moreover, memory access and the interprocessor 

communication is crucial for successful exploitation of 

parallelism (Haynes,et al.,1982). 

We mentioned earlier that the problem of communication 

among the processors is crucial to successful exploitation 

of parallelism. Therefore the data in parallel computers 

must be arranged in memory for efficient parallel 

computation. One example is the storage of a matrix in an 

unconventional way known as skewed storage ( see 

Schendel,1981,pp.19-24 ), which allows for fetching rows and 

columns with equal ease. An extension of skewed memory 

Storage is given by Budnik and Kuck,1971, who explore 

variations of the ILLIAC IV architecture which allow for 

fetching rows, columns, diagonals and certain submatrices 

with equal efficiency. 

The architectural feature of the CDC-STAR, however, 

requires- vector operants to be contiguous blocks of memory 

locations in order to simplify memory transfers 

(Heller,1978). Consequently, the above storage technique 

does not apply for the STAR. But the STAR has features that 

allow for transposing matrices very efficiently 

(Stone,1973). 
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Finally we observe that parallel programs may behave 

quite differently numerically than their serial counterpart. 

In the next section we describe an iterative algorithm where 

the parallel version converges more slowly than the serial 

version. However, the convergence rate of the parallel 

algorithm can be improved by simple modifications. 

II.3 PARALLEL LINEAR SYSTEM SOLVERS 

In this section we are concerned with a class of 

parallel methods proposed by Barlow and Evans, 1982 (see 

also Stone,1973). The methods are parallel forms of the 

Gauss-Seidel method. 

For example, consider the two dimensional model problem 

of appendix A , that is the discretized version of 

Laplace's equation on the interior of a square with zero 

boundary conditions. First, we consider the so-called 

natural ordering of the mesh-points, that is the rows of the 

mesh are numbered from bottom to top and the columns are 

numbered from left to right. Denoting the solution at an 

arbitrary mesh-point in the interior of the square by MP 

and the solution at its four neighbours by . N,E,W and S , 

the Jacobi iterative method is 

(2.4) MP(i) = [ N(i-l) + E(i-l) + W(i-l) + S(i-l) ] / 4, 

where MP (i) denotes the value of MP at the i'th 

iteration. From formula (2.4) one sees that all new values 
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at the mesh-points are calculated from the old values at the 

neighbouring mesh-points. Thus, all mesh-points can be 

updated in parallel. The convergence rate of the Jacobi 

method can be improved by using new data as soon as it 

becomes available, but at a cost of reduced parallelism. 

Thus, we get the Gauss-Seidel method ; 

(2.5) MP(i) = [ N(i-l) + E(i-l) + W(i) + S(i) ] / 4 . 

This method converges much faster than the Jacobi method, 

since it makes use of the newer data which are more accurate 

than the older data. In the case where the coefficient 

matrix A has property A C see Young,1971,pp. 41-42 ] 

the Gauss-Seidel method converges twice as fast as the 

Jacobi method. 

One simple parallel implementation of the above method 

is to update the points on one entire row of the mesh at a 

time, starting at the bottom. In this case the iteration 

formula is given by 

(2.6) MP(i) = [ N(i-l) + E(i-l) + W(i-l) + S(i) ] / 4. 

Since only the point S contributes new data in this 

formula, we can expect that this method requires roughly 50% 

more iterations than the Gauss-Seidel method. 

Scanning the mesh-points by diagonals as shown in 
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Fig. (2.8), we obtain a parallel algorithm that has the 

Gauss - Seidel convergence rate (Stone,1973). 

43 2 10 18 26 34 42 

36 44 3 11 19 27 35 

29 37 45 4 12 20 28 

22 30 38 46 5 13 21 

15 23 31 39 47 6 14 

8 16 24 32 40 48 7 

1 9 17 25 33 41 49 

Fig. (2.8) 

The iteration formula for this method is equation (2.5), so 

that the rate of convergence is the same as the serial 

Gauss-Seidel algorithm. In fact, by theorem 3.4 

(Young,1971,p.147) any consistent reordering does not change 

the eigenvalues of the iteration matrix. In particular, the 

matrix A of the linear system corresponding to a 

permutation ^ of the mesh-points is a similarity 

transformation of the matrix A associated with the natural 

ordering : 

A = P A P , 

where the permutation matrix P consists of the columns of 

the identity matrix permuted according to (? . Thus we can 

see that 

^ — I diag A = P (diag A) P , 

where diag A denotes the diagonal matrix associated with 

A . 
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Now, 

^ rw G = I - (diag A ) A 

= P'‘p - p-'p (diag *K f‘ P'^' A P 

== P'* ( I - P (diag A f' P*‘ A ) P 

= P*‘ ( I - (diag A)"* A ) P 

= P"' G P , 

where G and G are the iteration matrices of the Jacobi 

method for the systems Au = b and A u = b respectively. 

Hence G and G have the same eigenvalues and therefore - 

by Young's result ( see above ) - the eigenvalues of the 

Gauss-Seidel iteration matrix are the same for the two 

systems. 

Let T(l) = a * (N**2) be the number of time units 

required for the sequential Gauss-Seidel algorithm, where 

"a" is the number of required iterations. Then the time 

units used by the line-parallel Gauss-Seidel (2.6) and the 

diagonal-parallel Gauss-Seidel method (see (2.5) and 

fig.(2.8) ) are T(N) = 3/2 a N and T(N) = a N respectively, 

so that we have a speed-up of 2/3 N for the line-parallel 

Gauss-Seidel and a speed-up of N for the diagonal-parallel 

Gauss-Seidel method assuming that N processors are 

available. 

The above idea of constructing, parallel Gauss - Seidel 

methods has been generalized by Barlow and Evans (1982). A 

matrix A having property A can be rearranged so that 
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D, H 

A = 

K 

# 

where Dj ,i = 1,2 are diagonal matrices., This means that 

the indices of the equations of the linear system can be 

divided into two disjoint subsets so that the update 

equation corresponding to one subset involves only the 

components corresponding to the other set. Thus all the 

updates within one subset can be done in parallel. 

Applying this idea to a tridiagonal matrix we get the 

following method 

u(j,i+l) = C a(j) * u(j-l,i) 

+ c(j) * u(j+l,i) ] / b(j) , 

for j odd, and 

(2.9) 

u(j,i+l) = C a(j) * u(j“l,i+l) 

t c(j) * u(j+l,i+l) ] / b(j) , 

for j even , 

where i is the iteration index , j is the index for the 

j'th component of the vector u and the vectors a , b and 

c represent the subdiagonal, the diagonal and the 

superdiagonal of the tridiagonal matrix . The above 

updating scheme uses "old" data for updating the "even" 

components and "new" data for updating the "odd" components. 
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Thus, in the mean^over a sequence of iterations, this method 

makes use of one "new" datum for updating one component of 

u . For this method we get the same convergence rate as 

for the sequential Gauss-Seidel method, since this method 

corresponds to a consistent reordering of the matrix A of 

the linear system ( the same argument as above for the 

method using a reordering as shown in Fig (2.8) ). Two 

steps are needed in order to update all components of u at 

each iteration if N/2 processors are available ( Hcl is 

the integer defined by x ^ fjd < x+1 ). Since the 

convergence rate is the same as for the Gauss-Seidel method 

we get a speed-up ratio of N/2 (see equ. (2.1)). In the 

chapters that follov/ we refer to this method as the PGSl 

method. This method will be used in the numerical section 

for the purpose of comparison. 

The same idea applies to the solution of the linear 

system arising from the discretization of Laplace's equation 

in the interior of a square ( second model problem ) . We 

scan the mesh of unknowns by diagonals. Now the updating 

scheme consists of updating every second diagonal starting 

in the lower left corner with "old" data and then updating 

the rest of the mesh-points with "new" data . Note that 

during the second half of an iteration all four neighbours 

have already been updated during the first half of the 

iteration. In the mean (over several iterations) each 

component of u is updated with two "new" (updated) 

neighbours and two "old" neighbours. Thus the convergence 
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rate is again the same as for the sequential Gauss-Seidel 

method, since this method corresponds to a consistent 

reordering of the matrix A of the linear system (the same 

argument as above ). Therefore we can achieve a speed-up of 

( N**2 )/2 which is an improvement over the diagonal 

parallel Gauss-Seidel method (the method based on the 

ordering of Fig.(2.8)). On the other hand, the number of 

required processors to achieve the above speed-up increases 

like 0( N**2 ). We denote this method for future reference 

by PGS2 . The PGS2 method will serve as a basis of 

comparison in chapter 5. 

Parallel versions of the standard successive 

overrelaxation (SOR) method can be constructed in a manner 

similar to the parallel Gauss-Seidel methods. 
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III. LINEAR STATIONARY METHODS 

Our concern in this section is solely with linear stationary 

methods of first degree, which have the form (Young, 1971) 

(3.1) ^ ,k€N, 

where G is an NxN matrix and L some N vector. The 

iterative method (3.1) is used to solve a linear system 

Au = b , where we assume throughout that A is a real 

nonsingular matrix. Thus the solution of the linear system 

exists and is unique, and the solution vector is given 

explicitly by 

(3.2) u = A*^b 

In this chapter, we give some basic definitions and develop 

some standard results which set a background for the work to 

follow. We also propose a generalization of the well-known 
% 

Jacobi method based on the idea of approximate inverses. 

These methods are ideally suited for parallel processing. 

The approximate inverses can also be used in a Gauss-Seidel— 

like implementation of (3.1), where each component is 

updated sequentially with the most recent data available. 

The parallelism is thereby limited to the number of non-zero 

entries per row of the iteration matrix G . In some cases, 

however, techniques of chapter two can be used to increase 

parallelism ( see section III.4 ). 
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III.l GENERAL CONVERGENCE THEOREM 

In this section we determine under what conditions the 

sequence { defined by (3.1) converges for any 

starting vector to the unique solution of the system under 

consideration. The following results are developed in Young 

(1971) in a more general context than that required for our 

purposes. First we give the following 

DEFINITION 3.1 

The spectral radius of a matrix A is defined as 

S( A ) = max { lA 1 : X is an eigenvalue of A }. 

Before we can establish our main result of this section, we 

need 

LEMMA 3.2 [ Young,1971,p.32 ] 

For^ any matrix norm (( - M 

we have 

S( A ) ^ 11 All 

Proof: 

Defining the compatible vector norm by 

Mvll^ = IjBlf , 

where B is the matrix whose first column is v and all 

other elements vanish, we have 

IIA v(f ^ IIA (I llvll , 

for all A and v . For any eigenvalue X of A and an 

associated eigenvector v we have A v = X v , and hence 

/(A vll. = l\l llvll 4 HAII llvll, i.e. |A| ^ IIAII . A 
4 
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We also require 

LEMMA 3.3 [ Young,1971,p. 36 ] 

The following conditions are equivalent 

i) lim vll = 0 , 
90 

n 
for all V €R and any vector norm. 

ii) S( A ) <1 

Proof: 

( ii => i ) 

Suppose S(A) < 1 . By Theorem 3.5 (Young, 1971, p. 

there exists for any given £ > 0 a nonsingular matrix 

such that 

(*) llAll^ S(A) + ^ 

•I T 
where llAll = II M A Mil. and HAIL = S( A A ) . Hence, 

n & X 

C sufficiently small, we have 

tlAU^ < 1. 

Since |l A"I| ^ ||A I|2 it follows that tfA”ll—>0 . Thus 
« ” H 

(**) lim l|A*vl|j^ ^ lim II All MvH = 0, 
n -> oo n -> CO ^ ^ 

where is the vector norm defined as in the proof 

Lemma 3.2 for the case of the matrix norm |1*U = U-l\ . 

(**) implies i) , which completes the first half of 

proof. 

( i => ii ) 

Suppose llAvU—>0 and I\A"U does not converge to zero 

any vector norm ll • U . Now it is impossible 

S(A) < 1 , since by (*) we could find a matrix norm 

that U All < 1 . Thus we can find an eigenvalue A 

33) 

M 

for 

of 

But 

the 

for 

that 

such 

of A 
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with IXI ^ 1 and a vector such that Av = \v holds. 
n « 

Hence llAvU = I XI Ml which does not converge to zero. 

Therefore condition i) implies that nA''l| converges to zero 

for any matrix norm. 

Now suppose S(A) ^ 1 . Then, by Lemma 2.2 

1^ S(A) 6. II All for any matrix norm. Thus we have 

1^ S(A*') ^ I|A"II for all n . Hence ii) is a necessary 

condition for i) which completes the proof. m 

Now we can state our main result of this section. 

GENERAL CONVERGENCE THEOREM 3.4 [ Young,1971,p.77 ] 

The iterative method 

Gu^ t L 

is convergent independent of the starting vector u ^ if and 

only if 

S(G) < 1 . 

Moveover, it converges to the unique solution of the linear 

system Au = b if and only if 

L = (I-G) A** b 

and 

S(G) < 1 

holds. 
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Proof 

If lim u = ^ exists independent of the starting vector 

u then 

"u - lim u = lim ( G u + L ) 
oo GO 

= G ( lim u ) + L 
k—>oo * 

= G <> + L , 

i.e. (*) (I-G)a = L. 

Defining 
= “K- ■“ 

we get 

= G + (I~G) u . Hence 

(**) 

Now, by Lemma 3.3, lim H£.II= 0 for all 
k-> oo 

S(G) < 1 holds. 

from (*)# 

and 

if and only if 

N 

If S(G) < 1 , then det(I-G)=TT (1-A;) + 0 (where the 

are the eigenvalues of G ) and the equation (I-G)u=L 

has a unique solution, say ti. . By Lemma 3.3 we have 

II £',^l(->0 ^ as k —> oo , which completes the first part of the 

proof. 

Since I-G is nonsingular when S(A) < 1 , we get from 

^ -1 
(*) u «= ( I~G ) L = A b . Conversely, if the sequence 

{ converges to z = A*b then .L= ( I-G ) A*b , 

which completes the proof. * 
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Finally, we remark that from Lemma 3.2 and Theorem 3.4 

we can see that f| G || <1 for some matrix norm is sufficient 

for convergence of the iterative method (3.1). 

III.2 RATES OF CONVERGENCE 

It is important to understand something about the rate of 

convergence of different algorithms, since to a certain 

extent the rate of convergence of a method is as important 

as the fact that it converges; if it converges slowly we 

may never be able to see it converge. Therefore, in this 

section, we shall outline certain results which give insight 

into rates of convergence. 

A reasonable algorithm should at least be linearly 

convergent in the sense that if the sequence { ) is 

generated by tUe algorithm and converges to u , then for 

some norm ll*il there is a c ^(0,1) and ® such that 

(3.3) ^ c . 11 e ^(1 , k^k^, 

A 
where e^= u^^- u . This guarantees that eventually the 

error will be decreased by the factor c < 1 on each 

iteration. 

We observe that the method (3.1) is linearly convergent 

if #IGI( < 1 for some norm ( c = HGII , see proof of Theorem 

3.4 ). However, in many cases it appears to be difficult to 

show that II G|| < 1 for some matrix norm. This is, for 
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example, the case with our two model problems. We follow 

Varga (1962) and define the asymptotic rate of convergence 

in terms of the spectral radius. Our interest is in the 

behaviour of the term 

8^,= ( lle^U / l\e.ll)^ 

as oo • 

the proof 

We have seen before that e = G e^ ( (**) in 
k-*\ " 

of Theorem 3.4 ). Thus we can estimate by 

Using the fact 

(3.4) S(A) = lim ( 
eo 

for any complex matrix G and arbitrary norm (see Varga 

1962, p.67. Young, 1971, p.87),we have 

K (3.5) lim (- In UG W )= - In S(G) = R (G). 

The quantity . R (G) is called the asymptotic rate of 

convergence. We remark that R^(G) is an asymptotic value 

and does not necessarily reflect the initial behaviour of a 

particular iterative process. However, in order to obtain a 

high convergence rate of the iteratve process (3.1) , one of 

our objectives should be the creation of a matrix G such 

that S(G) is as small as possible. At the same time one 

must decide if the increased amount of work involved in 

reducing S(G) is justified. 
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III.3 GENERALIZED JACOBI METHODS 

For our purpose v/e need the iteration (3.1) in a slightly 

modified form which is more appropriate for the context of 

this section: 

(3.6) u^^, = (I - BA) u^ + Bb , 

where B is an NxN matrix. In fact, Theorem 2.6 in Young 

(1971, p.68) shows that iteration (3.1) and iteration 

(3.6) are equivalent (if B is nonsingular). The matrix 

B is serving as an approximate inverse to A . The 

concept of an approximate inverse is fundamental to all the 

iterative procedures considered in this thesis. The 

"better" the approximate inverse B , the faster we expect 

the method (3.6) to converge to the unique solution 

u*= A*b . In fact, if B = A"* , equation (3.6) shows 

that ^ ^ • 

111.3.1 JACOBI METHOD 

The well-known Jacobi Method uses a diagonal approximate 

inverse B , which satisfies the following conditions 

(3.7) (BA).. =1 , i = 1,..,N , 

where B is a diagonal matrix. The Jacobi Method is highly 

parallel but it shows a slow convergence rate. In the 

remainder of this section we define better sparse 

approximate inverses and give a convergence proof for the 

one dimensional model problem. 
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III.3.2 JACOBI DIAGONAL-BLOCK METHODS 

In case of a one dimensional problem these methods use a 

p-diagonal ( p6N, odd , p4 2N-l ) approximate inverse B 

that satisfies the following condition 

(Benson,Frederickson,1981) 

(3.8) ( BA )•• = li - jM(p-l)/2 , 

where we assumed that B is a banded matrix with bandwidth 

(p-D/2 . 

The non-zero elements of the i'th row 

approximate inverse B are - according to (3.8) 

as the solution of the following linear system; 

(3.9) 

a. 
I-K. ,-k, 

a. . a 
II 

r0 
# 

0 

1 

0 

• 

0 

of the 

- defined 

where x is some vector and 

and 

k 1 

(p-D/2 

i-1 

(P“2)/2 

if i > (p-l)/2 

if i 4 (p-l)/2 

if i < N-(p-l)/2 

if i >/ N-(p-l)/2 
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and the "1" on the right-hand side of (3.9) is in position 

k,+l . 

A method of the form (3.6) using an approximate inverse 

B defined by (3.8) is referred to as Jacobi 

Diagonal-Block Method ( JDBl(p) ) in the chapters that 

follow. 

Now we show that the method (3.6) with an approximate 

inverse defined by (3.8) converges if applied to our one 

dimensional model problem. 

Consider a linear system with the tridiagonal matrix 

-2 1 

1-2 1 

(3.10) A = 

The systems of the form (3.9) now become 

(3.11) 
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with appropriate modifications near the start and the end of 

the band of A . Here x is a vector of unknov/ns and the 

position of the "1” on the right-hand side is dependent on 

the row of the approximate inverse B to be determined (see 

formula (3.9)). 

Defining the sequence { r } by 

r, = 1/2 

(3.12) 

= ( 2 - = m / (m +1) 

the 

of 

first and the last component of the solution vector 

(3.11) are given by 

2 + r )■' 
''l 

if k, > 0 

( - 2 + r ) 

^ ^ ^x, ■ 2 + 

, if k, = 0 

, if k > 0 
X 

f 

where k, and 

L = k, + k^ + 1 

( r - 2 ) 
^ I 

kj are the same as in 

This can be simplified to 

if ^4,= 

(3.9) 

0 

and 

(3.13) 

( k1 ) / (k,+ kg^+2 ) 



Thus we have 

10. .0 c(l) 

0 1 0 

0 

(3.14) BA = 

0 

-.5 

-.5 

d(N-s) 

0 

c(s+1) 

-.5 

-.5 

0 

0 

d(N)0 ..01 

where s = (p-l)/2 , c(j) = “j/(s+j+l), j = l,..,s+l, and 

d(i) = [ i - ( N+1 ) ] / [ s - ( i - ( N+2 ) ], i = N-s,..,N 

The following theorem is an extension of theorem 2.1 of 

Young ( 1971,p. 107 ) for the special case of our one 

dimensional model problem. 



32 

CONVERGENCE THEOREM 3.5 

Consider a linear system with the matrix A given in 

(3.10) and the iterative method (3.6) . Let the 

approximate inverse B be defined by condition (3.8) . 

Then the Jacobi Diagonal-Block Method converge s. 

Proof 

If S(I-BA) ^1, there exists an eigenvalue yu of I-BA such 

that \^\>y 1 . Now det [( I-BA ) “ I ]= 0 . Denoting the 

associated eigenvector of jx by v we have 

[( I-BA ) -^I ] V = 0 . Thus { I-yk/T*( I-BA )} v = 0 and we 

have a nontrivial solution v;^ 0 of a homogeneous linear 

system. Therefore det C I-I-BA )] = 0 . For our one 

dimensional model problem we see from (3.14) that the 

nonzero elements of the matrix ^ ( I-BA ) are less than 

one in absolute value ( since 1 ). Hence the 

M = I-ya(I-BA) matrix is weakly diagonal dominant ( see 

Young,1971, p. 107 ). 

Reordering the rows and columns of M , we can get a 

matrix M of the form 

M 

M 

I 

M. 

*2—♦ 
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where each block M* is irreducible and weakly diagonally 

dominant. Hence by Theorem 2-5.3 (Young, 1971, p 40) 

det M = det M 4- 0 ^nd we have a contradiction. 

The Diagonal-Block Methods for two dimensional boundary 

value problems use a striped approximate inverse that has 

p ( p = 5 + pp*6 , pp =0,1,.. ) stripes of non-zero 

entries. For an (N**x ) matrix A and assuming that 

pp < (N-l)/2 , the approximate inverse B with p 

stripes of non-zero entries is defined by the following 

conditions 

( B * A ).. = 1 
11 

( B * A ) . = 0 i < N - ]< + 1 , k=l, 2, . . , pp+1 

( B * A ). . = 0 
i.i-K 

(3.15) 

i > k , k=l,2,..,pp+1 

( B * A ). . = 0 i < N - ( N+k ) + 1 , k=0,l,..,pp 

( B * A ). . = 0 
•,I4W-K 

i < N - ( N-k ) + 1 , k=0,l,..,pp 

(B*A). . =0 i>N-k, k=0, 1, . . , pp 
I, 

(B*A)-. =0 i>N + k, k=0,l,..,pp 

where the indices of the non-zero values of B are the ones 

used for the conditions (3.15) . 
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As in the one dimensional case, the non-zero elements 

of each row of the approximate inverses B are - according 

to (3.15) “ defined as the solution of a small linear 

system. For the two dimensional model problem with p = 5 

( pp = 0 ), for instance, a typical system is : 

(3.16) 

>40100 

0- 4100 

11-411 

001- 40 

0010-4 

X = 

I 

In the chapters that follow we refer to methods of the form 

(3.6) that use an approximate inverse B defined by 

(3.15) with p stripes of non-zero values as the Jacobi 

Diagonal-Block ( JDB2(p) ) Methods. 

III.3.3 JACOBI LEAST-SQUARES METHODS 

The approximate inverses B for the Jacobi Least-Squares 

( JLSQ(p) ) Method that are defined in this section have 

the same sparsity pattern as the approximate inverses for 

the corresponding Jacobi Diagonal-Block Methods. The 

non-zero entries of B , however, are (determined in a 

different way. Each row of B is defined as the solution 

of an overdetermined system of linear equations. Suppose 

that the non-zero entries of the i'th row of B are in the 

columns ij , i-j , . . , i^ and the indices of the columns of A 

( the matrix of the linear system to be solved ) that have 
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at least one non-zero element in either one of the rows 

i, » i^ » • • » is ji » ja ' • • ' • then the overdetermined 

system for the i*th row of B is given by 

II* • 

a? • • • • • 

a- . 
‘4il 

0 

• 

0 

1 

0 

0 . 

where x is a vector of unknowns and the "1" on the 

right-hand side is in the position of the rovj that contains 

the diagonal element a** of A . 

Solving the above systems for each i in the 

least-squares .sense and applying the resulting approximate 

inverse to the update formula (3.6) we get the JLSQl(p) 

and JLSQ2(p) method ( p is the number of stripes with 

non-zero enties ) for the one dimensional and two 

dimensional model problem respectively. We remark that 

these methods minimize the Frobenius norm of the iteration 

matrix ^ - BAl|p over the set of matrices . B with a given 

sparsity pattern . The calculations for each row of B are 

uncoupled and hence can be performed in parallel. 
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III.4 GENERALIZED GAUSS-SEIDEL METHODS 

As mentioned earlier, each approximate inverse defined above 

can also be used in a Gauss-Seidel like implementation of 

(3.1) or (3.6) . In this case each component is updated 

sequentially so that the most recent data is always used. 

This increases the speed of convergence, but at a cost of 

decreased parallelism. However, if the number of processors 

is not greater than the maximum number of non-zeros of a row 

of the iteration matrix I-BA , then a Gauss-Seidel like 

method involves the same amount of work per iteration as the 

corresponding Jacobi like method. We use this type of 

parallel Gauss-Seidel method for solving the two dimensional 

model problem and denote these methods by GDB2(p) and 

GLSQ2(p) for the diagonal-block and the least-squares 

versions respectively. In the one dimensional case we use 

this type of method only in conjunction with the 

least-squares approximate inverses resulting in the 

GLSQl(p) methods, but it can also be defined for 

diagonal-block approximate inverses. 

In the tridiagonal case we can increase the number of 

operations that may be executed simultaneously, when 

diagonal-block approximate inverses are used. From (3.14) 

we conclude that it is possible to divide the set of row 

indices of the iteration matrix I-BA into two disjoint 

subsets, such that the update formula for the components 
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corresponding to the one subset only involves components 

corresponding to the other subset and vice versa. Thus we 

can apply the technique of chapter two to obtain a parallel 

Gauss-Seidel version that has more independent calculations 

than the above version. In particular, if the approximate 

inverse B has p stripes of non-zero entries, the subsets 

of indices are the following : 

L = [ 1,..,z,2z+l,..,3z,4z+l,... } n { 1,.«,N ) 

H = { z+1,..,2z,3z+l,..,4z,5z+l,... }A( 1,..,N } , 

where z = (p-l)/2+l and N is the size of the linear 

system under consideration. These methods are referred to 

as the Gauss-Seidel Diagonal-Block ( GDBl(p) ) Methods. 

They are as parallel as the Gauss-Seidel method of 

chapter 2, that is, they can benefit from as many parallel 

processors as . the number of unknowns. We remark that this 

is a very special case. The extension of these ideas to 

more general cases could be a topic for future 

investigation. 
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IV. GENERALIZED CONJUGATE GRADIENT METHODS 

In this chapter we are concerned with generalized 

conjugate gradient methods that minimize the error 

functional over subspaces of increasing dimension 

(Chandra,1978). Solving the linear system Ax = b with an 

NxN symmetric and positive definite matrix is equivalent 

to minimizing the functional 

(4.1) E(x) = ( A ( x^-x ) , x^-x ) , 

where x^ is the solution of the linear system under 

consideration and ( ' / • ) denotes the usual vector 

inner-product (this notation will be used throughout this 

chapter).These methods generate for each iterate x a 

direction p^^ of local descent in the sense that there is 

an <x. such that E( x^ + a.Pj^) < E( Xj^ ) for 

0.6 (0, . The next iterate is of the form 

x^^^ ~ PK parameter a is chosen as the 

minimum of the error functional E along the direction 

Pi^ . The directions and the parameter are chosen in such a 

way that the sequence of gradients { grad(E(Xj^)) 

converges to zero. The idea behind this approach is that if 

II grad(E(x^)) 1| is small then usually x is near a zero 

of grad E while the fact that { E(x,^) ) is decreasing 

indicates that this zero of grad E is probably a minimizer 

of E . In fact, the directions are pairwise M-orthogonal 

for some symmetric positive definite matrix M and the x 
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obtained actually minimizes the error functional on the 

affine subspace + span(p^^,p^ ,..,p^ ) ,where is the 

starting vector (see Chandra,1978).Thus we get the important 

property that, theoretically, the solution of a linear 

system with an NxN positive definite matrix is obtained 

in at most N steps. 

The conjugate gradient method (proposed by Hesteness 

and Stiefel in 1952 as a direct method for solving linear 

systems) did not, in practice, perform as well as it was 

expected to from its theoretical properties. The solution 

procedure was often seriously perturbed by accumulating 

round-off errors (even for small systems). However, 

extensive numerical tests v/ith the CG-method used as an 

iterative method has shown it to be an efficient method for 

solving large sparse systems (Chandra,1978,Concus,et 

al.,1976). 

Before we discuss the generalized conjugate gradient 

methods in the form mentioned above, we proceed as follows. 

The CG algorithm can be generalized using a matrix 

splitting, A = M - N . At each iteration, then, a system 

with coefficient matrix M must be solved. For rapid 

convergence, the matrix M should, .in some sense, 

approximate A, that is, the matrix BA , where B = M** , 

should approximate the identity. Now, solving the linear 
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system Ax = b is equivalent to solving 

(4.2) M X = N X + b 

where N = M - A. 

Using this approach, the CG algorithm can be stated as a 

higher order method of the form 

(4.3) X. + + 

where and ^ are real ' parameters and the 

vector z is defined by 

(4.4) M - b - ^ } 

where M *= B . The question of choosing an appropriate 

matrix splitting is equivalent to the question of choosing 

an appropriate matrix for scaling (preconditioning). Thus, 

the matrix B serves for preconditioning the linear system 

to be solved ; 

(4.5) B A X = B b . 

Many iterative methods can be described by (4.3) . 

The Richardson second order method and the Chebyshev 

semi-iterative method are examples of such a method ( see 

Young,1971,pp. 361-367 ). Our interest here is in the 

following generalized conjugate gradient algorithm using the 

above preconditioning technique. This algorithm is also of 

the form (4.3) . 
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Algorithm 1 [ Concus, et al.,1976 3 

Let be a given vector. Let M be an arbitrary" nxn 

positive definite and symmetric matrix. 

1. ) Solve M Zj, = b - A x^ 

and set OJf = 1 

2. ) Compute #Mz^ )/( z^ /^z^ ) , 

For k = 1,2,... 

3. ) Compute 

4.) Compute 

,M )/( z^. ,A z^ ) , 

- (' - 
( z ^ ,M z ) 

-- )'■ ( ) 

X. = X + 6J. ( 0^1^ z ^ + x^ 
KH( k-i ' k K K 

It can be shown ( see Concus,et al.,1976 ), that the 

calculated vectors i are M-orthogonal if we assume 

that M is positive definite and M and N are symmetric. 

The CG algorithm ( M - I in the above algorithm) does 

not require an estimation of the extreme eigenvalues while 

the Richardson and Chebyshev methods, for example, do. 

Thus, in cases where nothing is known about the eigenvalues 

of the coefficient matrix, the CG method should be used. 

Also, the CG method behaves optimally for a wider class of 

matrices , than competing methods such as SOR. (see 

Concus,et al.,1976 and Chandra,1978) 
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To be more efficient in terms of storage, the following 

equivalent form of algorithm 1 can be used (see 

Chandra,1978). 

Algorithm 2 [ Chandra, 1978 ] 

Let be an initial approximation to the solution of 

(4.5) or (4.2) . Let M be a given nxn positive 

definite and symmetric matrix. Compute the residual 

then solve 

M z = r 
o o 

for Zgand set p^= ^ “ 0,1,2,... iteratively 

compute steps (1) through (6) 

r b - A X o 

(1) aj^ = ( )/( p,^ # A p,< ) 

(2) 

(3) r r K A p^ 

(4) Solve M z^^,= r^^, for z^^, 

(5) 

(6) P = + b w p 
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In the numerical chapter we use algorithm 2 in a 

slightly different form in conjunction with the approximate 

inverses defined in chapter 3 . Instead of solving a 

linear system at each iteration we compute the vectors d(^ 

by multiplying the residuals with the approximate inverse 

B . When DB approximate inverses are used, these methods 

are referred to as DBCG1(T ) and DBCG2(I) for the one and 

two dimensional model problems respectively ( I is the 

number of non-zero stripes in the approximate inverse ). In 

the case of LSQ approximate inverses, these methods are 

referred to as LSQCG1( I) and LSQCG2(1) . We remark that 

B*** need not be positive definite and symmetric in the 

actual implementation. This assumption was made to ensure 

the finite termination property. 

In order to see that algorithm 1 and algorithm 2 

are equivalent in the sense that for the same starting 

vector they create in the absence of round-off. error the 

same sequence ^ ^ rewrite equation (2) of the 

second algorithm : 

^ k-l'' ’'X ■ ""“-I ) 5 

and hence 

Comparing (4.6) with step (4) in the first algorithm , 
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we get the following condition for the parameters 

(4.7) 

a K " 

1 + ( a ^kii . 

But, condition (4.7) holds for the parameters 

and as defined in the above algorithms, 

be seen as follows : 

a , b 

This can 

For k = 0 both equations in (4.7) hold, since ~ P® ' 

b^ = 0 and CU| = 1 . 
Now, 

1 ( PK ^ (M-N) p^ ) 

M z„ ) 

( z ^ ,M z ^ ) 

_ (z^ ,(M-N) ) + b^.,(P,<., - (M-N) p^., ) - 2bjz^ ,N z ) 

( z ^ ,M z ^ ) 
# 

because the vectors { z |^ } are M-orthogonal and each 
K 

vector p 4, is a linear combination of { z • } 
^ I I 

Thus 

1 

a 
K 

1 1 1 

oC k 

+ 2 b 
I 

where we used (see Concus,et al.,1976) 

( z ^ ,N z^„ ) = ( z ^ Wk 

and 

( z ,N z • ) = 0 for j < k-1 . 
Px o 
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Supposing 

we get 
“h-,- 

K-l 

= A _ _AK . 
I c^„., k-1 / = a; 

-.1 
k-« V 

Thus we have proved the first condition of (4.7) by 

induction. From this result we get 

a ^ 
1 + — = 1 + 

^ k-i 

CJ k-i\ 

•^k ®‘k-i 

= 1 , X - b,.. 

= 1 + 

' '^w-l 

 J^k-J  

--- )"' (Ju / 

-1 
= I 1 - (<XH b^.,)/( 0‘k-, «K ’ ^ , 

which proves that the second condition in (4.7) also holds 

for the parameters defined in algorithms 1 and 2 . 

The speed with which the generalized conjugate gradient 

algorithm converges depends strongly on the choice of the 

preconditioning matrix M (or B ). For r^pid convergence 
-I 

one seeks a splitting so that M N = I-BA has small or 

nearly equal eigenvalues or that it has small rank (see 

Chandra,1978,th.4.1 and th.3.5). Also we require that M 

retain any desirable features of A such as sparsity and 

that the system of equations with coefficient matrix M be 
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easily solvable. However, when approximating the inverse of 

A it is desirable that the approximate inverse B be 

almost as sparse as A . 

Several suggestions in the past few years have been 

made concerning the choice of M for matrices A which 

arise from discrete approximation to boundary value 

problems. Stone (1968), for example, determined the matrix 

M by altering the coefficient matrix A in such a way 

that the LU-decomposition of the perturbed matrix is sparse 

in nature. An incomplete LU~decomposition of A is used 

for the family of Incomplete Cholesky Conjugate Gradient 

(ICCG) methods (Meijerink, van der Vorst,1977). During the 

calculation certain elements are neglected in the L and 

U matrices in order to keep the preconditioning matrix M 

sparse. These methods are not ideally suited for vector 

computers because of the forward - backward substitutions 

involved. 

Dubois, Greenbaum and Rodrigue (1977) replaced the 

incomplete factorization with an incomplete inverse using a 

truncated Neumann series. Thus they avoid solving a linear 

system -of the form M z = d at each iteration. The 

matrix - vector multiplications required gan be computed 

efficiently on a parallel computer. The idea of 

approximating the inverse of A was further developed by 

Johnson and Paul (1980,1981). In 1980 they introduced a new 

class of methods called incomplete inverse conjugate 

gradient Jacobi (IICGJ) methods, while in 1981 they 



suggested a parameterized form of the incomplete inverse and 

showed how to select the parameters in order to optimize the 

convergence of the algorithm. For our test series 

numerical chapter we use the diagonal - block 

defined in the previous chapter. 

Finally we remark that the choice M = I , N 

leads to the basic unmodified CG algorithm. 

in the 

inverses 

= I - A 
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V. NUMERICAL EXPERIMENTS 

We carried out numerical experiments to demonstrate and 

compare the efficiency of the methods presented in the 

previous chapters. For the purpose of comparison v/e used 

the one and two dimensional model problems of appendix A . 

Each iterative process was started with the same initial 

guess x^= (1,...,1) 

For each test problem the exact solution of the linear 

system is the zero vector, so that the absolute error of the 

current iterate can be easily computed. We stopped the 

iterations when this error was reduced below a specified 

value. 

The methods using an approximate inverse allow us to 

reduce the number of iterations necessary to achieve a 

specified accuracy, but often at the expense of increasing 

the work involved in each iteration ( see tables 5.1-5.3 ). 

Therefore we used two measures, the number of iterations and 

the number of multiplications (including divisions), to 

compare the methods. We ignored the number of additions 

(including subtractions), since a rough estimate of the work 

per iteration is sufficient for our purposes. 
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We also ignored in our work measures the calculations 

required to establish the iterative process. This greatly 

simplifies our estimates and is a reasonable approach when 

the linear system must be solved for many right hand sides. 

We remark, however, that the small linear systems involved 

in the calculation of each row of the approximate inverse 

B can be solved in parallel. For our model problems the 

diagonal block systems are easy to solve and, except for the 

ones at the edges, are all alike ( see (3.16) ). Also, 

these systems can be solved independently of one another. 

Thus, if the cost for computing B is ignored, the set-up 

work consists solely of forming the matrix G = I - B A , 

when methods of the form (3.6) are used. This can also be 

avoided by rewriting the update formula in the form 

u^ + B( -Au,^ + b ) . But this would increase the 

amount of work per iteration for the situations we consider. 

However, we note that there exist approximate inverses 

where it is more advantageous to use the above iteration 

formula instead of using the iteration matrix G . 

A parallel machine as described in chapter 2 with P 

independent processors can calculate P multiplications 

simultaneously with no overhead for data transfer or any 

other data manipulation. This leads us to define a parallel 

time unit T(P) as the time required for P independent 

multiplications. An almost iinmediate observation concerning 

each of the Jacobi like methods is that they can benefit 

from as many parallel processors as the number of many 
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multiplications involved in computing Gu . The methods of 

chapter 2, PGSl and PGS2, and the Gauss-Seidel like methods 

for our dimensional model problem consist of two sequential 

update passes per iteration. However, a small number of 

processors (less than N, the number of unknowns) can be 

equally exploited by the Gauss-Seidel like and the Jacobi 

like methods using the same approximate inverse in the one 

dimensional case (see table 5.1). The Gauss-Seidel like 

methods that we are using for the two dimensional model 

problem are calculating each component of Gu sequentially, 

so that the parallelism of these methods is limited to the 

number of nonzeros in a row of the iteration matrix. 

In the one dimensional case we find that there are 

about 2N multiplications necessary for computing the 

matrix-vector product Gx , where G = I-BA , if the 

Diagonal-Block ( DB ) approximate inverses are used ( N ) . 

Thus, assuming that N is an upper bound for the number of 

independent processors, the work necessary for one iteration 

of the parallel Gauss-Seidel method PGSl ( see chapter 2 ) 

is the same as the work involved for one iteration of the 

JDBl(I) or the GDBl(I) methods ( see chapter 3 ). If 

more than 2N parallel processors are available, the work 

needed for the Jacobi like iterations is only half of the 

work needed for the Gauss-Seidel like iterations (see 

table 5. 5.1). 
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Compared to the DB-technique, the Least-Squares ( LSQ ) 

technique creates more nonzeros in the iteration matrix G . 

The number of multiplications per iteration of the 

JLSQl(I) ( I = 3,5,7,...) methods is (I+2)*N . The 

numerical experiments showed that the JLSQl(I) methods 

converged about as fast as the corresponding JDBl(I) 

methods, so we conclude that it does not pay to use the 

iteration matrix I-BA with a least-squares approximate 

inverse for our one dimensional model problem. The same 

conclusion applies to our two dimensional model problem. 

There the costs C(I) for the JDB2(I) ( I = 5,11,17,..) 

methods are C(I) = (S + { (I+l)/6 - 1 ] 4) N multiplications 

per iteration (see table 5.2), while the costs per iteration 

for the JLSQ2(I) methods are C(I) + I . However, as 

mentioned above, there are cases where the iteration formula 

u^ + B( “Au + b ) is less costly than the formula 

involving I-BA . 

The conjugate gradient method ( CG ) needs 5N +2 

multiplications per iteration plus a matrix-vector product 

involving the matrix A of the linear system to be solved. 

The preconditioned conjugate gradient methods 

( DBCG(I) or LSQCG(I), I = 5,11,17...) need one additional 

matrix-vector product involving the approximate inverse B 

(see tables 5.1 and 5.3). To initiate the iterative process 

the CG method requires one matrix-vector product Au in 

order to calculate the first residual as well as a vector 

inner-product. The overhead for the DBCG(I) or LSQCG(I) 
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methods consists of the computation of the approximate 

inverse B plus the two matrix-vector products Au and 

Bu plus one vector inner-product. As above, we choose to 

neglect this overhead. 

The CG and the preconditioned conjugate gradient 

methods are less parallel than the above Jacobi like 

methods. Only step (2) and step (3) in algorithm 2 of 

chapter 4 can be computed in parallel, so that we have five 

sequential steps that have to be computed for each 

iteration. Also, the two divisions in step (1) and (5) 

require two full time units no matter how many parallel 

processors are available. We may therefore have severe 

unemployment among the processors. The parallelism of these 

methods is limited to the calculation of the matrix-vector 

products, the vector inner-products and the scalar-vector 

products (see tables 5.4-5.6 ). 

In tables 5.1 - 5.3 we summarize the operation counts 

for the methods under consideration. In our tables we do 

not include the operation counts for the methods using the 

least-squares technique. The number of multiplications per 

iteration for linear stationary methods using this technique 

is obtained by simply adding the factor ItN to the number 

of multiplications necessary for one iteration of the 

corresponding method using a DB approximate inverse with 

I stripes of non-zero entries. For the preconditioned 

conjugate gradient methods the cost for a matrix-vector 

product involving a LSQ-approximate inverse is the same as 
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if a DB-approximate inverse were used, so that the total 

cost per iteration does not change either. Furthermore, 

since N is large we ignored edges effects in the operation 

counts. Also, for simplicity the size of the linear system 

N in each column of any table is always assumed to be a 

multiple of the number P of independent processors. Thus 

each given fraction of N is an integer value. The tables 

5.4 -5.6 exemplify the different degrees of parallelism 

(as discussed above) of the methods under consideration. 

The functions T(P),S(P),E(P) and F(P) are the parallel time 

unit, the speed-up ratio, the efficiency and the 

effectiveness as defined in chapter 2 . 

In order to graph computational work versus convergence 

rate, we have selected the methods PGSl and PGS2 as the 

basis of comparison for the linear stationary methods of the 

form (3.6) . All these methods are shown in terms of 

equivalent iterations of PGSl or PGS2 respectively. For 

example, the JDB2(5) method in two dimensions, which 

requires 8 time units per iteration using N processors, 

is allowed 1/2 iteration per computational work unit, 

since one iteration of PGS2 requires just 4 time units 

in that case. The CG method serves as a basis of 

comparison for the preconditioned conjugate gradient 

methods. 



54 

In tables 5.7-5.11 we give the number of iterations to reduce 

the error by a specified factor for the methods under consideration for 

various numbers of unknowns. The JDB1(3) and the JDB2(5) methods 

reduce the number of iterations compared to the PGSl and PGS2 methods 

respectively roughly by a factor of 1/2. The methods JDB1(5) and 

JDB2(11] further reduce the iteration number roughly by the same factor. 

However, table 5.11 indicates that as the number of stripes in the 

approximate inverses increases the advantage gained by including still 

more stripes diminishes. The method JDB2(35) , for example, reduces 

the number of iterations compared to the JDB2(29) method only by a 

factor of 0.98 . 

The convergence rates of the JLSQ2(I) methods are somewhat worse 

than the convergence rates of the JDB2(I) methods. In the one 

dimensional case, however, the JLSQl(I) methods converge significantly 

slower than the corresponding JDBl(I) methods. In particular, the 

JLSQl(3) method converges only as fast as the parallel Gauss-Seidel 

version PGSl. This is still an improvement by a factor of 2 over 

the convergence rate of the standard Jacobi method in the cases under 

consideration [The Jacobi method takes 5260,20832 and 46729 

iterations for 100, 200 and 300 unknowns respectively to reduce 

the maximum norm of the error to less than .1). 

Figures 5.12 and 5.13 show the computational work in terms of 

equivalent iterations of the PGSl and PGS2 methods respectively 
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versus the error of the Jacobi like methods with various DB approximate 

inverses. We observe that the JDB2(17) method does not give an improve- 

ment over the JDB2(11) method. 

Tables 5.7 and 5.9 indicate that the Gauss-Seidel like methods, 

GOBI(I) and GDB2(I) , improve the convergence, rate of the corresponding 

JDBl(I) and JDB2(I) methods by a factor of 2. The parallelism of the 

GDB2(I) methods is limited to the number of non-zeros per row in the 

iteration matrix I-BA. Thus we have to assume a small number of processors 

in order to gain an advantage over the JDB2(I) methods. In figure 5.14 

we compare the GDB2(I) and JDB2(I) methods assuming 16 independent 

processors. The methods GDB2(11) and GDB2(17) are more efficient than 

the corresponding methods JDB2CH) and JDB2(17) in this case. 

Tables 5.8 and 5.10 show the rate of convergence of the conjugate 

gradient and the preconditioned conjugate gradient methods. It was found 

that preconditioning improves the rate of convergence. This is shown for 

the DBCG2(I) ( 1=5,11,17 ) methods in figure 5.15. Similar results have 

been obtained for the LSQCG2(I) methods. The improvement is smaller 

than the increase in the computational work unless the number of processors 

is assumed to be on the order of N (the number of unknowns]. This is 

shown in figures 5.16-5.18. 

In conclusion approximate inversion techniques provide an effective 

means for developing parallel algorithms for the iterative solution of 



large sparse linear systems arising in connection with the numerical 

solution of boundary value problems. In particular the diagonal-block 

extensions of the Jacobi method performed very well in a parallel 

environment. The Gauss-Seidel methods in the one dimensional case 

usually produced an additional improvement. The same result could be 

accomplished in the two dimensional case when the number of processors 

was assumed to be small. Finally, in special cases, our approximate 

inversion techniques proved effective for preconditioning the conjugat 

gradient method. 
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WORK REQUIREMENTS IN ONE DIMENSION 

T(l) T(15) T(N) T(2N) T(7N) 

PGSl 
JDBI(I) 
GDBl(I) 

2N 
2N 
2N 

2/15 N 
2/15 N 
2/15 N 

CG 8N + 2 8/15 N + 2 10 8 
DBCG1(3) IIN + 2 11/15 N + 2 13 10 
DBCG1(5) 13N + 2 13/15 N + 2 15 11 
DBCG1(7) 15N +2 N + 2 17 12 

7 
8 
8 
8 

Table 5.1 : Work requirements for the methods solving 
the one dimensional model problem. T(l) 
is the number of multiplications per 
iteration. T(P) is the number of time 
units per iteration using P processors. 
N is the order of the linear system. 
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WORK REQUIREMENTS IN TWO DIMENSIONS 

T(l) T(16) T(N) T(16N) 

PGS2 
JDB2(5) 
JDB2(11) 
JDB2(17) 

4N 
8N 
12N 
16N 

1/4 N 
1/2 N 
3/4 N 

N 

4 
8 
12 
16 

GDB2(5) 
GDB2(11) 
GDB2(17) 

8N 
12N 
16N 

N 
N 
N 

N 
N 
N 

N 
N 
N 

Table 5.2 requirements in the two dimensional 
^ ) for linear stationary 

Work 
case ( N = n 
methods. T(P) 
per iteration 

is number 
using P 

of time units 
processors. 

T(l) T(N) T(2N) T(5N) T(llN) T(17N) 

CG 
DBCG2(5) 
DBCG2(11) 
DBCG2(17) 

.10N + 2 
15N + 2 
21N + 2 
27N + 2 

12 
17 
23 
29 

9 
12 
15 
18 

7 
8 

10 
11 

7 
8 
8 
8 

Table 5.3 : Work requirements in the two dimensional 
case ( N = n^ ) for the preconditioned 
conjugate gradient methods. T(P) is the 
number of time steps per iteration 
using P processors. 
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MEASURES OF PARALLELISM 

S(15) S(N) S(2N) T(7N) 

PGSl 
JDBl(I) 
GOBI(I) 

15 
15 
15 

N 
N 
N 

N 
N 
N 

N 
2 N 

N 

CG 
DBCGK3) 
DBCGK5) 
DBCGK7) 

15 
15 
15 
15 

.8 N 

.846 N 

.886 N 

.882 N 

N 
1.1 N 

1.18 N 
1.25 N 

1.142 N 
1.375 N 
1.625 N 
1.875 N 

Table 5.4 : Estimates of the speed-up ratios in the 
one dimensional case (see chapter 2 for 
definition of S(P) ). 

E(15) E(N) E(2N) E( 7N) 

PGSl 
JDBl(I) 
GDBl(I) 

.5 
1 
.5 

.1428 

.2856 

.1428 

CG 
DBCGl(3) 
DBCGl(5) 
DBCGl(7) 

.8 

.845 

.866 

.882 

.5 

.55 

.59 

.625 

.1632 

.1964 

.2321 

.2678 

Table 5.5 ; Estimates of efficiency in the one 
dimensional case (see chapter 2 
for definition of E(P) ). 

F(15) F(N) F(2N) F(7N) 

PGSl 
JDBl(T) 
GDBl(I) 

7.5/N 
7.5/N 
7.5/N 

.25 
1 
.25 

.0714 

.285 

.0714 

CG 
DBCGl(3) 

DBCGl(5) 
DBCGl(7) 

1.875/N 
1.366/N 

1.153/N 
1/N 

08 
.065 
0577 
.05208 

.0625 
.055 

.0537 
.0521 

0233 
.0245 
0290 
.0334 

Table 5.6 Estimates of effectiveness in the one 
dimensional case (see chapter 2 for 
definition of F(P) ). 
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CONVERGENCE RATE IN ONE DIMENSION 
FOR LINEAR STATIONARY METHODS 

Number of Iterations 

Size N 100 200 300 

PGSl 2630 10416 23365 

JDB1C3) 
JDB1C5) 
JDB1C7) 

1315 
585 
329 

5207 
2314 
1302 

11678 
5190 
2920 

GDB1(3} 
GDBl (5] 
GOBI(7] 

658 
293 
165 

2604 
1158 
652 

5840 
2596 
1460 

JLSQl(3) 
JLSQ1C5] 
JLSQl (7) 

2629 
1314 
788 

10413 
5206 
,3124 

23354 
11677 
7006 

GLSQl C3) 

GLSQ1C5) 
GLSQl(7) 

1578 
752 
438 

6249 
2976 
1736 

14013 
6673 
3892 

Table 5,7 : Number of iterations to reduce the maximum norm of the 
error to at least .1 for the one dimensional model problem 
is given. The size N denotes the number of unknowns. 
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CONVERGENCE RATE IN ONE DIMENSION 
FOR THE CONJUGATE GRADIENT METHODS 

Number of Iterations 

Size N 100 200 300 

CG 50 100 150 

DBCG1(3) 
DBCG1C5) 
DBCG1(7) 

44 
35 
33 

75 
55 
62 

105 
89 
82 

LSQCGl(3) 
LSQCGl (5) 
LSQCGlC7) 

34 
33 
40 

65 
58 
59 

96 
83 
82 

Table 5.8 : Number of iterations to reduce the maximum norm of the 
error to at least .01 for the one dimensional model 
problem is given. The size N denotes the number of 
unknowns. 
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CONVERGENCE RATE IN TWO DIMENSIONS 
FOR LINEAR STATIONARY METHODS 

Number of Iterations 

Size N = n 225 400 625 

PGS2 479 833 1282 

JDB2(5} 
JDB2(I1) 
JDB2(17) 

187 
99 
76 

323 
171 
132 

496 
263 
203 

GDB2 (5) 
GDB2 (11) 
GDB2C17) 

95 
51 
39 

163 
87 
67 

249 
133 
102 

JLSQ2C5) 
JLS02(11) 
JLSQ2(17) 

262 
150 
124 

453 
260 
216 

696 
401 
332 

GLSQ2(5) 
GLSQ2(11) 
GLSQ2(17) 

143 
80 
66 

247 
138 
114 

378 
212 
175 

Table 5.9 : Number of iterations to reduce the maximum norm of the 
- error to at least #0001 for the two dimensional model 

problem is given. The size N denotes the number of 
grid points. 
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CONVERGENCE RATE IN TWO DIMENSIONS 
FOR THE CONJUGATE GRADIENT METHODS 

Number of Iterations 

Size N = n 225 400 625 

CG 23 30 39 

DBCG2(51 
DBCG2(1I) 
DBCG2(17) 

17 
15 
16 

25 
19 
20 

28 
22 
24 

LSQCG2(5) 
LSQCG2(11) 
LSQCG2(17) 

18 
15 
16 

21 
20 
21 

23 
24 
24 

Table 5.10 : Number of iterations to reduce the maximum norm of the 
error, to at least .00001 for the two dimensional model 
problem is given. The size N denotes the number of 
grid points. 
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COMPARISON OF DB APPROXIMATE 
INVERSES IN TWO DIMENSIONS 

Number of Iterations 

1 
Size N = n 225 400 625 

JDB2C5) 
JDB2(11) 
JDB2(17) 
JDB2(23) 
JDB2(29) 
JDB2(35) 

187 323 496 
99 171 263 
76 132 203 
69 118 182 
66 113 173 
65 111 170 

Table 5.11 : Number of iterations to reduce the maximum norm of the 
error to at least .0001 for the two dimensional model 
problem is given. The size N denotes the number of 
grid points. 
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APPENDIX A 

MODEL PROBLEMS 

Throughout, this thesis we use the following two 

examples to illustrate our results. The first model problem 

is the one-dimensional analog of Young's model problem ( see 

Young,1971 ). This is a simple example of large sparse 

systems and it is used for testing and comparing the methods 

proposed in this thesis. It arises from the application of 

a simple finite difference approximation to the following 

one-dimensional boundary value problem: 

(A.l) u”(x) = 0 , u(a) = u(b) = 0 , 

a ^ X ^ b , 

where u : [a,b] -—R is a twice continously differentiable 

real valued function and udenotes the second derivative 

of u . The unique analytic solution to this problem is 

u(x) = 0 for all x€ Ca,b] . We seek a numerical solution 

to the function that satisfies (A.l) at equally spaced 

points in Ca,b] . We first subdivide the interval [a,b] 

into Ntl intervals of equal lengh, say h , and then 

replace the second derivative by central differences 

(A. 2) u'‘( X ) ^ [ u;,j - 2 u,- + Uj^^ ]/ h , 

1 — 1,..,N f 

where X| = a + i*h, i=l,..,N and x^ = a , ^ 

u* denotes the approximation of u( x» ) . 
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Thus using (A.l) and (A.2) we get 

“1 I* 

(A.3) 

-2 1 

1-2 1 

1-2 1 

1 -2 

u, 

u 

0 

0 

The matrix of the above linear system is nonsingular, 

so that the unique solution of the approximate equations 

(A. 3) is the zero-vector. We call this the 

one-dimensional model problem. 

In two dimensions we choose Young's model problem 

( Young,1971,pp. 2-3 ). We seek an approximation to the 

function u(x,y) defined on the unit square which satisfies 

Laplace's equation 

(A.4) ^ ^ ^ ) = 0 , 0 < x,y < 1 , 

and 

(A.5) u ( X,y ) = 0 

on the boundary of square, where Uj^^^ =^u / cl x^ and 

u yy = 5^u / S y^ . The solution to this problem is the 

zero-function, but we will use it to illustrate our 
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numerical techniques. We superimpose a mesh of horizontal 

and vertical lines over the square with a uniform spacing 

h = (N+1) * ,for some integer N , and seek to determine 

approximate values of u(x,y) at the mesh-points. For each 

mesh-point we replace the differential operator by the usual 

five-point star difference operator ; 

(A.6) [ + U.J., -4 U;. + + Uu,.i ]/ h*- 

= 'Yj > + 

where i,j = 1,..,N , x* = i*h , y. - j*h and U;- denotes 

the approximation to u{ i*h,j*h ) . Using (A.4) - (A.6) 

we get the following sparse linear system of equations 

r 

(A.7) 

-4 1 

1-4 1 

L 
where u 

O 

1-4 0 

0 -4 
O 

1 

o 

1-4 1 

1 -4 

J 

/N 
u 

0 

0 

0 
L J 

is an N -vector, and every N‘th element of 



the subdiagonal and superdiagonal is a zero and the other 

two diagonals are N matrix elements apart from the main 

77 

diagonal. The matrix of the system (A.7) is nonsingular, 

so that the solution is the zero-vector. 
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APPENDIX B 

FORTRAN SUBROUTINES FOR DATA ORGANIZATION 

For our test series we used a data structure that 
« 

allows for experiments with any striped matrix. Each matrix 

has its non-zero entries stored in an N by NBND array, 

where N is the size of the matrix and NBND is the number 

of stripes with non-zero entries. The column indices of the 

non-zero entries are stored in an N by NBND integer array. 

Corresponding elements of these two arrays are in the same 

position. When we refer to an approximate inverse B , each 

i'th row of these arrays contains non-zeros in its first c. 

locations, where C| is the number of non-zeros in the i'th 

row of B . The data is organized somewhat differently for 

the coefficient matrix A of the linear system to be 

solved, since we need to fetch columns of A when computing 

the approximate inverse. Therefore each diagonal of A 

containing non-zero elements is stored in one column as are 

the corresponding indices. 

In this appendix we list the FORTRAN subroutines that 

create the data structure described above and also the 

subroutines that operate on this structure. The subroutine 

INPUT2 initializes an array that indicates which diagonals 

of the coefficient matrix under consideration contain 

non-zero elements. The subroutine INPUTS finds the 

corresponding array for the approximate inverse according to 



the definitions in chapter 3. These arrays are used by the 

subroutines BSTRUCT and ASTRUCT . These subroutines 

initialize the index-arrays for the approximate inverse and 

the coefficient matrix respectively. The subroutines INIT 

and INIT2D initialize the coefficient matrices of the one- 

and two-dimensional model problem respectively. The 

subroutines MATVEC , ZEILVEC and AX2MAT perform a 

matrix-vector and restricted matrix-vector multiplications 

respectivly. The subroutine ZEILVEC multiplies a 

specified row of a matrix times a vector. This subroutine 

is used for the Gauss-Seidel like methods (see appendix F). 

The subroutine AX2MAT performs a restricted matrix-vector 

multiplication in the sense that only the components between 

certain bounds are computed. 
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SUBROUTINE INPUT2( NBNDA,INFOA,ND ) 
THIS SUBROUTINE INITIALIZES AN ARRAY 
THAT CONTAINS THE INFORMATION ABOUT 
THE POSITIONS OF THE DIAGONALS OF THE 
WITH NON-ZERO ENTRIES OF THE COEFFICIENT 
MATRIX. IT HANDLES BOTH THE ONE AND 
THE TWO DIMENSIONAL CASE. 
DESCRIPTION OF PARAMETERS. 
NBNDA 

ND 

INFOA 

11 

: NUMBER OF NON-ZERO DIAGONALS OF A. 
ODD INTEGER VALUE. 

: NUMBER OF GRID POINTS PER ROW IN THE 
TWO-DIMENSIONAL CASE. 

: INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS 
ON OUTPUT THE DISTANCES OF THE DIAGONALS 
OF A FROM ONE ANOTHER. 

INTEGER NBNDA,ND 
DIMENSION INFOA(NBNDA-1) 
DO 5 I = 1,NBNDA-1 
INFOA(I) = 1 
CONTINUE 
IF ( NBNDA .EQ. 3 ) GOTO 11 
INFOA(2) = ND - 2 
INFOA(4) = ND - 2 
CONTINUE 
RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE INPUTS( N,ND,NBNDB,NBNDA,INFOB ) 
THIS SUBROUTINE INITIALIZES AN ARRAY 
THAT CONTAINS THE INFORMATION ABOUT 
THE POSITIONS OF THE DIAGONALS WITH NON-ZERO 
ENTRIES IN THE APPROXIMATE INVERSE B . 
IT HANDLES BOTH, THE ONE AND 
THE TWO DIMENSIONAL CASE. 
DESCRIPTION OF PARAMETERS. 
NBNDB 

NBNDA 

ND 

INFOB 

10 

11 

; NUMBER OF NON-ZERO DIAGONALS OF B . 
ODD INTEGER VALUE. 

: NUMBER OF NON-ZERO DIAGONALS OF THE 
COEFFICIENT MATRIX. ODD INTEGER VALUE. 

: NUMBER OF GRID POINTS PER ROW IN THE 
TWO-DIMENSIONAL CASE. 

: INTEGER ARRAY OF SIZE (NBNDB-1). CONTAINS 
ON OUTPUT THE DISTANCES OF THE DIAGONALS OF 
B FROM ONE ANOTHER. 

INTEGER N,ND,NBNDB,NBNDA 
DIMENSION INFOB(2,NBNDB-1) 
IF ( NBNDA .EQ. 5 ) GOTO 11 
DO 10 I = 1,NBNDB - 1 
INFOB(1,1) = 1 
CONTINUE 
GOTO 22 
CONTINUE 
IHILF = ( NBNDB + 1 )/6 
JPOINT = 1 

230 CONTINUE 
DO 200 I = 1,IHILF 
INFOB{1,JPOINT) = 1 
JPOINT = JPOINT + 1 

200 CONTINUE 
INFOB( 1,JPOINT ) = ND - 2 * IHILF 
JPOINT = JPOINT + 1 
JH = 2 * IHILF - 2 
IF ( JH .EQ. 0 ) GOTO 220 
DO 210 I = 1,JH 
INFOBd, JPOINT) = 1 
JPOINT = JPOINT + 1 

210 CONTINUE 
220 -IF ( JPOINT .NE. NBNDB ) GOTO 230 
22 CONTINUE 

RETURN 
END 



82 

C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE BSTRUCT ( N,NBND,INFO,NRAND,IRAND,INDEXB ) 
THIS SUBROUTINE INITIALIZES THE INDEX MATRIX OF THE APPROXIMATE 
INVERSE B . 
DESCRIPTION OF PARAMETERS. 
N 

NBND 
INFO 

I RAND 

NRAND 

INDEXB 

5 
10 

SIZE OF THE APPROXIMATE INVERSE ( EQUALS NUMBER THE 
OF UNKNOWNS ). 
NUMBER OF DIAGONALS OF B CONTAINING NON-ZEROS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE (2,NBND-1). 
ON ENTRY, THE ABSOLUTE VALUES OF THE FISRT ROW ARE 
THE DISTANCES OF THE DIAGONALS OF B WITH NON-ZEROS FROM 
ONE ANOTHER. A NEGATIVE VALUE IN THE FIRST ROW INDICATES 
THAT CERTAIN VALUES IN THE DIAGONAL CORRESPONDING TO 
THAT VALUE ARE ZEROS. THE CORRESPONDING VALUE IN THE 
SECOND ROW OF INFO CONTAINS A POINTER TO THE 
ARRAY NRAND WHERE THE ZERO POSITIONS OF THAT 
PARTICULAR DIAGONAL ARE GIVEN. 
NUMBER OF DIAGONALS WITH NON-ZERO ENTRIES WHERE 
CERTAIN ELEMENTS ARE ZERO. 
TWO DIMENSIONAL ARRAY OF SIZE N,IRAND . 
CONTAINS INFORMATION ABOUT CERTAIN ZERO VALUES 
OF THE STORED DIAGONALS OF B (SEE PARAMETER INFO). 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB . 
CONTAINS ON OUTPUT THE INDEX MATRIX OF THE 
APPROXIMATE INVERSE. 

INTEGER N,NBND,NRAND 
DIMENSION INDEXB(N,NBND), INFO(2,50),IRAND(N,NRAND) 
IHELP = ( NBND - 1 ) / 2 
DO 10 I = 1,NBND 
DO 5 J = 1,N 
INDEXBCJ,I) = 0 
CONTINUE 
CONTINUE 
DO 20 
ISUMl 
ISUM2 
IZl = 
IZ2 = 
DO 30 
INF - 
-IF ( 
ISUMl 

1,N J = 
= 0 
= 0 
0 
0 
K = 1,IHELP 
INFO( 1,K ) 
INF .EQ. 0 ) 

= ISUMl + ABS( 
GOTO 11 
INF ) 

30 

11 

42 

IF ( ISUMl .GT. ( J-1 ) ) GOTO 11 
IZl = K 
CONTINUE 
GOTO 42 
CONTINUE 
ISUMl = ISUMl - ABS( INF ) 
CONTINUE 
DO 40 K = 1,IHELP 
INF = INFO( 1,K+IHELP ) 
IF ( INF .EQ. 0 ) GOTO 22 
ISUM2 =.ISUM2 + ABS( INF ) 
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IF ( ISUM2 .GT. ( N-J ) ) GOTO 22 
IZ2 = K 

40 CONTINUE 
22 CONTINUE 

ICOUNT = 0 
IF ( IZl .EQ. 0 ) GOTO 50 
DO 50 I = 1,IZ1 
ICOUNT = ICOUNT + 1 
IK = IZl +1-1 
INF = INFO( l/I ) 
IF ( INF .LT. 0 ) GOTO 33 

55 CONTINUE 
INDEXB( J,ICOUNT ) = J - ISUMl 
ISUMl = ISUMl - ABS( INFO(l,IK) ) 
GOTO 44 

33 CONTINUE 
INF = INFO( 2,1 ) 
IR = IRAND( J,INF ) 
IF ( IR .EQ. 1 ) GOTO 55 
ICOUNT = ICOUNT - 1 

44 CONTINUE 
50 CONTINUE 

ICOUNT = ICOUNT + 1 
INDEXB( J,ICOUNT ) = J 
IF ( IZ2 .EQ. 0 ) GOTO 60 
ISUM2 = 0 
DO 60 I = 1,IZ2 
ICOUNT = ICOUNT + 1 
INF = INFO( 1,1+IHELP ) 
ISUM2 = ISUM2 + ABS( INF ) 
IF ( INF .LT. 0 ) GOTO 66 

88 CONTINUE 
INDEXB(. J, ICOUNT ) = J + ISUM2 
GOTO 77 

66 CONTINUE 
INF = INFO( 2,1+IHELP ) 
IR = IRAND( J,INF ) 
IF ( IR .EQ. 1 ) GOTO 88 
ICOUNT = ICOUNT - 1 

77 CONTINUE 
60 CONTINUE 
20 CONTINUE 

RETURN 
END 
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SUBROUTINE ASTRUCT ( N,NBND,INFO,INDEXA ) 
THIS SUBROUTINE INITIALIZES THE INDEX MATRIX OF THE 
COEFFICIENT MATRIX A . 
DESCRIPTION OF PARAMETERS. 
N : NUMBER OF UNKNOWNS , SIZE OF INDEXA. 
NBND ; NUMBER OF DIAGONALS OF A CONTAINING NON-ZEROS 
INFO : ONE DIMENSIONAL INTEGER ARRAY OF SIZE (NBND-1). 

ON ENTRY, IT CONTAINS 
THE DISTANCES OF THE NON-ZERO DIAGONALS OF A 
FROM ONE ANOTHER. 

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA 
CONTAINS ON OUTPUT THE INDEX-MATRIX OF THE 
COEFFICIENT MATRIX A . 

INTEGER N,NBND 
DIMENSION INDEXA(N,NBND), INFO(NBND-l) 
IHELP = ( NBND - 1 )/2 
DO 10 1=1,NBND 
DO 5 J=1,N 
INDEXA(J,I) = 0 

5 CONTINUE 
10 CONTINUE 

DO 20 I = 1,N 
INDEXAd, IHELP+1) = I 
ISUM = 0 
DO 30 J = 1,IHELP 
IK = IHELP + 1 - J 
INF = INFO(J) 
IF ( INF .EQ. 0 ) GOTO 11 
ISUM = .ISUM + INF 
IF ( (I-ISUM) .LE. 

30 
11 

40 
22 
20 

INDEXA( I,IK 
CONTINUE 
CONTINUE 
ISUM = 0 
DO 40 J = 
IK = IHELP 
INF = INFO 
IF ( INF 
TSUM = ISUM 

) 
0 

ISUM 
) GOTO 11 

IHELP 
1 + J 
IHELP 

.EQ. 0 
+ INF 

+ 

) 
J ) 
GOTO 

IF ( ISUM 
INDEXA( I, IK 
CONTINUE 
CONTINUE 
CONTINUE 
RETURN 
END 

GT. 
) = 

(N-I) ) 
I + ISUM 

22 

GOTO 22 
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SUBROUTINE COLFETCH ( N,NBND,INFO,J,A,COL,ICOL ) 
THIS SUBROUTINE FETCHES THE J'TH COLUMN OF THE ARRAY 
STORING THE COEFFICIENT MATRIX AND ALSO THE J'TH COLUMN 
OF THE CORRESPONDING INDEX-MATRIX. REMARK, THE INDEX-MATRIX 
IS NOT NEEDED AS INPUT PARAMETER. 
DESCRIPTION OF PARAMETERS. 
N 
NBND 
INFO 

J 
COL 

I COL 

NUMBER OF UNKNOWNS . 
NUMBER OF DIAGONALS OF A CONTAINING NON-ZEROS. 
ONE DIMENSIONAL INTEGER ARRAY OF SIZE (NBND-l). 
ON ENTRY, IT CONTAINS 
THE DISTANCES OF THE 'NON-ZERO' DIAGONALS OF A 
FROM ONE ANOTHER. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA . 
CONTAINS ON OUTPUT THE 'NON-ZERO' DIAGONALS OF THE 
COEFFICIENT MATRIX A . 
INTEGER VALUE. DETERMINES THE COLUMN TO BE FETCHED. 
REAL ARRAY OF SIZE NBND. CONTAINS ON OUPUT THE 
J'TH COLUMN OF A . 
INTEGER ARRAY OF SIZE NBND. CONTAINS ON OUTPUT THE 
THE COLUMN INDICES OF THE ELEMENTS IN THE ARRAY COL. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBND,J 
DIMENSION INFO(NBND-1),COL(NBND),ICOL(NBND),A(N,NBND) 
IHELP = (NBND-l)/2 
DO 10 I = 1,NBND 
COL(I) =0.0 
ICOL(I) = 0 

10 CONTINUE 
COL(lHELP+l) = A(J,IHELP+1) 
ICOL(IHELP+1) = J 
ISUM = 0 
DO 20 .1 = 1,IHELP 
IK = IHELP +1-1 
INF = INFO(I) 
IF ( INF .EQ. 0 ) GOTO 11 
ISUM = ISUM + INF 
IF ( ISUM .GT. (N-J) ) GOTO 11 
COL( IK ) = A( J+ISUM,IK ) 
ICOL( IK ) = ISUM + J 

20 CONTINUE 
11 CONTINUE 

-ISUM = 0 
DO 30 I = 1,IHELP 
IK = IHELP +1+1 
INF = INFO( IHELP+I ) 
IF ( INF .EQ. 0 ) GOTO 22 
ISUM = ISUM + INF 
IF ( (J-ISUM) .LE. 0 ) GOTO 22 
COL( IK ) = A( J-ISUM,IK ) 
ICOL( IK ) = J - ISUM 

30 CONTINUE 
22 CONTINUE 

RETURN 
END 
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SUBROUTINE INIT( ND,A,RH,XK ) 
C THIS SUBROUTINE INITIALIZES THE TRIDIAGONAL MATRIX A AND 
C THE RIGHT-HAND SIDE RH OF THE LINEAR SYSTEM TO BE SOLVED. 
C IT ALSO INITIALIZES THE STARTING VECTOR XK FOR THE ITERATION. 
C ND IS THE NUMBER OF SUBINTERVALS AFTER DISCRETIZATION. 

INTEGER ND 
DIMENSION A(ND-1,3),RH(ND-l),XK(ND-1) 
DO 10 I = 1,ND-1 
A(I,1) = 1. 
A(I,2) = - 2. 
A(I,3) = 1. 
RH(I) = 0.0 
XK(I) = 1.0 

10 CONTINUE 
A(l,l) = 0.0 
A(ND-1,3) = 0.0 
RETURN 
END 



87 

SUBROUTINE INIT2D ( ND,UNY,A,RH,XK,N ) 
C THIS SUBROUTINE INITIALIZES THE FIVE-DIAGONAL MATRIX A AND THE 
C RIGHT-HAND SIDE RH OF THE LINEAR SYSTEM RESULTING FROM THE DISCRE- 
C TIZATION OF LAPLACE'S EQUATION ON A NxN SQUARE WITH THE FOLLOWING 
C BOUNDARY CONDITIONS ; 
C U(X,0) = 0 
C U(X,L2) = 0 
C U(0,Y) = 0 
C U(L1,Y) = UNY. 
C IT INITIALIZES ALSO THE STARTING VECTOR XK FOR THE ITERATION. 
C ND IS THE NUMBER OF SUBINTERVALS ALONG THE X-AXIS. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER ND,N 

C REAL L1,L2,UNY 
DIMENSION A(N,5),RH(N),XK(N) 
N1 = ND - 1 
DO 10 I = 1,N 
RH(I) = 0.0 
XK(I) = 1.0 
DO 20 J = 1,5 
A( I,J) = 0.0 

20 CONTINUE 
10 CONTINUE 

DO 30 I = 1,N-1 
IF ( MOD(I,Nl) .EQ. 0 ) GOTO 11 
A(I,4) = 1. 
A(I+1,2) =1. 
GOTO 22 

11 CONTINUE 
RH(I) = - UNY 

22 CONTINUE 
A(I,3) = -4. 

30 CONTINUE 
A(N,3) = -4. 
RH(N) = - UNY 
DO 40 I = 1,N-N1 
IK = I + N1 
A(IK,1) = 1. 
-A U » 5 ) = 1. 

40 CONTINUE 
RETURN 
END 
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SUBROUTINE MATVEC( N,NBND,RM,INDEXM,X ) 
THIS SUBROUTINE PERFORMS A MATRIX-VECTOR MULTIPLICATION 
FOR SPARSE MATRICES STORED IN THE FOLLOWING WAY : 
THE NON-ZEROS OF THE I'TH ROW ARE STORED 
IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES 
OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS 
OF THE I'TH ROW OF INDEXM. 
DESCRIPTION OF PARAMETERS. 
N 
NBND 
RM 

INDEXM 

X 

11 
20 

10 

30 

NUMBER OF COLUMNS. 
MAXIMUM NUMBER OF NON-ZEROS PER ROW. 
TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND). 
CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF 
MATRIX INVOLVED (SEE ABOVE). 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND. 
CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE. 

: REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR 
OPERAND AND ON OUTPUT THE RESULT. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBND 
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N) 
REAL SCRATCH(4900),SUM 
REAL *8 SCRATCH!2500),SUM 
DO 10 I = 1,N 
SUM = 0.0 
DO 20 J = 1,NBND 
INF = INDEXM(I,J) 
IF ( INF .EQ. 0 ) GOTO 11 
SUM = SUM + RM(I,J) * X(INF) 
CONTINUE 
CONTINUE 
SCRATCH!I) = SUM 
CONTINUE 
DO 30 I = 1,N 
X(I) = SCRATCH!!) 
CONTINUE 
RETURN 
END 
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SUBROUTINE ZEILVEC(I,N,NBND,RM,INDEXM,X ) 
C THIS SUBROUTINE PERFORMS THE MULTIPLICATION OF A VECTOR AND THE 
C I'TH ROW OF A SPARSE MATRIX STORED IN THE FOLLOWING WAY : 
C THE NON-ZEROS OF THE I'TH ROW ARE STORED 
C IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES 
C OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS 
C OF THE I'TH ROW OF INDEXM. 
C DESCRIPTION OF PARAMETERS. 
C I : INTEGER VALUE. DETERMINES THE ROW TO BE SELECTED. 
C N : NUMBER OF COLUMNS. 
C NBND : MAXIMUM NUMBER OF NON-ZEROS PER ROW. 
C RM : TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND). 
C CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF 
C MATRIX INVOLVED (SEE ABOVE). 
C INDEXM: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND. 
C CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE. 
C X : REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR 
C OPERAND AND ON OUTPUT THE RESULT. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBND,I 
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N) 

C REAL SUM 
REAL *8 SUM 
SUM 
DO 
INF 
IF 
SUM 

11 
20 

= 0.0 
20 J = 1,NBND 
= INDEXM(I,J) 
( INF .EQ. 0 ) GOTO 11 
= SUM + RM(I,J) * X(INF) 

CONTINUE 
CONTINUE 
X(I) = .SUM 
RETURN 
END 
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SUBROUTINE AX2MAT(KI,DIM,N,NBND,RM,INDEXM,X ) 
C THIS SUBROUTINE PERFORMS A RESTRICTED MULTIPLICATION OF A VECTOR 
C AND A SPARSE MATRIX STORED IN THE FOLLOV7ING WAY : 
C THE NON-ZEROS OF THE I’TH ROW ARE STORED 
C IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES 
C OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS 
C OF THE I'TH ROW OF INDEXM. THE MULTIPLICATION IS RESTRICTED IN 
C THE SENSE THAT ONLY THE COMPONENTS BETWEEN CERTAIN BOUNDS ARE 
C COMPUTED. 
C DESCRIPTION OF PARAMETERS. 
C KI : INTEGER VALUE. USED FOR CALCULATING THE BOUNDS FOR THE 
C MULTIPLICATION. 
C DIM : INTEGER VALUE. USED FOR CALCULATING THE BOUNDS FOR THE 
C MULTIPLICATION. 
C N ; NUMBER OF COLUMNS. 
C NBND : MAXIMUM NUMBER OF NON-ZEROS PER ROW. 
C RM : TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND). 
C CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF 
C MATRIX INVOLVED (SEE ABOVE). 
C INDEXM: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND. 
C CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE. 
C X : REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR 
C OPERAND AND ON OUTPUT THE RESULT. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBND,KI,DIM 
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N) 

C REAL SCRATCH(4900),SUM 
REAL *8 SCRATCH(2500),SUM 
JL = KI - DIM - 2 
JU = KI + DIM + 2 
ILOWER = MAX0( 1,JL) 
lUPPER = MIN0( N,JU ) 
DO 10 I = ILOWER,lUPPER 
SUM = 0.0 
DO 20 J = 1,NBND 
INF = INDEXM(I,J) 
IF ( INF .EQ. 0 ) GOTO 11 
SUM = SUM + RM(I,J) * X(INF) 
CONTINUE 
"CONTINUE 
SCRATCH(I) = SUM 
CONTINUE 
DO 30 I = ILOWER,lUPPER 
X(I) = SCRATCH(I) 
CONTINUE 
RETURN 
END 

11 
20 

10 

30 
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APPENDIX C 

FORTRAN SUBROUTINES FOR FINDING THE DB AND LSQ 

APPROXIMATE INVERSES 

In this appendix, we list FORTRAN subroutines for 

finding Diagonal Block and Least-Squares approximate 

inverses in the one and two-dimensional cases (see chapter 

3). The subroutine APPRINV handles the one-dimensional 

case and the subroutine AINV2 handles the two-dimensional 

case. The arguments are explained in the programs. 
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SUBROUTINE APPRINV (N,NBNDA,NBNDB,A,INDEXA,INDEXB,INFOA,IFLAG,B; 
THIS SUBROUTINE FINDS A BANDED DIAGONAL OR LEAST-SQUARES APPROXIMATE 
INVERSE B OF BANDWIDTH NBNDB . 
DESCRIPTION OF PARAMETERS. 
N 
NBNDA 
NBNDB 
A 

NUMBER OF GRID POINTS. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A 
MATRIX IN THE CORRESPONDING LOCATIONS. 

INDEXB: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 

INFOA : INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS ON ENTRY THE 
DISTANCES OF THE 'NON-ZERO' DIAGONALS. 

B : TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON 
OUTPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 
IN THE LOCATIONS GIVEN BY THE ARRAY INDEXB . 

IFLAG : INTEGER VALUE. IF’ IFLAG=1 A DIAGONAL-BLOCK APPROXIMATE 
INVERSE IS FOUND, A LEAST SQUARES APPROXIMATE INVERSE 
IF IFLAG=0. 

INTEGER N,NBNDA,NBNDB,IFLAG 
DIMENSION A(N,NBNDA),B(N,NBNDB),INDEXA(N,NBNDA),INDEXB(N,NBNDB) , 

1 INFOA(NBNDA-1) 
REAL MAT(4900,52),RHl(4900),COL(51),X(51) 
INTEGER ICOL(51),IVEC(4900),IX(51) 
DO 10 I = 1,N 
DO 20 J = 1,NBNDB 
B(I,J) = 0.0 

20 CONTINUE 
10 CONTINUE 

DO 30 J = 1,N 
' IZ = 1 
DO 35 I = 1,N 
IVEC(I) = 0 
RHl(I) =0.0 
DO 36 II = 1,NBNDB 
MAT(T, II) = 0.0 

36 CONTINUE 
35 CONTINUE 
C FIND DIMENSIONS OF THE OVERDETERMINED SYSTEM AND 
C THE COLUMNS OF A THAT ARE INVOLVED. 

DO 40 K = 1,NBNDB 
INFB = INDEXB(J,K) 
IF ( INFB .EQ. 0 ) GOTO 11 
ICOUNT = K 
DO 50 KK = 1,NBNDA 
INFA = INDEXA( INFB,KK ) 
DO 60 II = 1,N 
IF ( INFA .EQ. IVEC( II ) ) GOTO 22 
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60 CONTINUE 
IVEC( IZ ) = INFA 
IZ = IZ + 1 

22 CONTINUE 
50 CONTINUE 
40 CONTINUE 
11 CONTINUE 

IDIM = IZ - 1 
IF ( IFLAG .EQ. 0 ) GOTO 55 

C FIND COLUMNS OF A FOR QUADRATIC DIAGONAL-BLOCK SYSTEM. 
C SORT OF IVEC. 

DO 110 I = 1,IDIM-1 
IZ = IVEC(I) 
IZl = I 
DO 120 II = I+1,IDIM 
IF ( IZ .LE. IVEC(II) ) GOTO 120 
IZ = IVEC(II) 
IZl = II 

120 CONTINUE 
IVEC(IZl) = IVEC(I) 
IVEC(I) = IZ 

110 CONTINUE 
C FIND INDEX OF DIAGONAL. 

DO 130 I = 1,N 
IF ( IVEC(I) .EQ. J ) IDIAG = I 

130 CONTINUE 
JHELP = ( NBNDB - 1 )/2 + 1 
DO 140 I = 1,NBNDB 
IX(I) = 0 

140 CONTINUE 
IX(JHELP) = J 
1 = 0 
JC = ICOUNT - 1 

66 IF ( JC .EQ. 0 ) GOTO 77 
1 = 1 + 1 
ID = IDIAG - I 
IF ( ID .LE. 0 ) GOTO 88 
IX( JHELP-I ) = IVEC( ID ) 
JC = JC - 1 
IF ( JC .EQ. 0 ) GOTO 77 

88 CONTINUE 
ID = IDIAG + I 
-IF ( ID .GT. IDIM ) GOTO 99 
IX( JHELP+I ) = IVEC( ID ) 
JC = JC - 1 

99 CONTINUE 
GOTO 66 

77 CONTINUE 
JKZ = 1 
DO 150 I = 1,NBNDB 
IF ( IX(I) .EQ. 0. ) GOTO 150 
IVEC(JKZ) = IX(I) 
JKZ = JKZ + 1 

150 CONTINUE 
IDIM = ICOUNT 



55 CONTINUE 
C FIND DIAGONAL BLOCK SYSTEM. 

DO 70 I = 1,IDIM 
IV == IVEC(I) 
CALL COLFETCH( N,NBNDA,INFOA,IV,A,COL,ICOL ) 
DO 80 II = l,ICOUNT 
INFB = INDEXB(J,II) 
DO 90 IJ = 1,NBNDA 
IK = NBNDA + 1 - IJ 
INFA = ICOL(IK) 
IF ( INFA .EQ. INFB ) GOTO 33 

90 CONTINUE 
GOTO 44 

33 CONTINUE 
MAT( I,II ) = COL( IK ) 

44 CONTINUE 
80 CONTINUE 

IF ( IV .EQ. J ) RHl(I) = 1.0 
70 CONTINUE 
C SOLVE DIAGONAL BLOCK SYSTEM 

IF ( IFLAG .EQ. 1 ) GOTO 111 
CALL HOUSE( MAT,RHl,IDIM,ICOUNT,X,JFLAG,4900,51 ) 
GOTO 222 

111 CONTINUE 
DO 160 I = l,ICOUNT 
MAT(I,ICOUNT+l) = RHl(I) 

160 CONTINUE 
CALL GAUSS( MAT,X,ICOUNT,ICOUNT+1,4900,51) 

222 CONTINUE 
DO 100 I = l^ICOUNT 
B(J,I) = X(I) 

100 CONTINUE 
30 CONTINUE 

RETURN 
END 
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SUBROUTINE AINV2 ( N,NBNDA,NBNDB,A,INDEXA,INDEXB,INFOA,IFLAG, 
1 B,ND ) 

THIS SUBROUTINE FINDS A DIAGONAL-BLOCK OR A LEAST-SQUARES APPROXIMATE 
INVERSE IN THE TWO DIMENSIONAL CASE. 
DESCRIPTION OF PARAMETERS. 
N 
ND 
NBNDA 
NBNDB 
A 

INDEXA; 

INDEXB: 

INFO A 

B 

I FLAG 

NUMBER OF GRID POINTS. 
NUMBER OF GRID POINT IN A ROV7 ( ND*ND = N ) . 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A 
MATRIX IN THE CORRESPONDING LOCATIONS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 
INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS ON ENTRY THE 
DISTANCES OF THE 'NON-ZERO' DIAGONALS. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON 
OUTPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 
IN THE LOCATIONS GIVEN BY THE ARRAY INDEXB . 
INTEGER VALUE. IF IFLAG=1 A DIAGONAL-BLOCK APPROXIMATE 
INVERSE IS FOUND, A LEAST SQUARES APPROXIMATE INVERSE 
IF IFLAG=0. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBNDA,NBNDB,IFLAG,ND 
DIMENSION A(N,NBNDA),B(N,NBNDB),INDEXA(N,NBNDA) , 

1 INDEXB(N,NBNDB),INFOA(NBNDA-1) 
C REAL MAT(4900,52),RH1(4900),COL(51),X(51) 

REAL *8 MAT(2500,52),RHl(2500),COL(51),X(51) 
INTEGER ICOL(51),IVEC(4900),IX(51) 
DO 10 I = 1,N 

. DO 20 J = 1,NBNDB 
B(I,J) = 0.0 

20 CONTINUE 
10 CONTINUE 

DO 30 J = 1,N 
IZ = 1 
DO 35 I = 1,N 
IVEC(I) = 0 
RHl(I) = 0.0 
DO 36 II = 1,NBNDB 
MAT(I,II) =0.0 

36 CONTINUE 
35 CONTINUE 
C FIND DIMENSIONS OF THE OVERDETERMINED SYSTEM AND 
C THE COLUMNS OF A THAT ARE INVOLVED. 

DO 40 K = 1,NBNDB 
INFB = INDEXB(J,K) 
IF ( INFB .EQ. 0 ) GOTO 11 
ICOUNT = K 
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IFFOl = 1 
DO 1000 KK = 1,NBNDA 
IF ( INDEXA(INFB,KK) .NE. 0 ) GOTO 1111 
IFFOl = IFFOl + 1 

1000 CONTINUE 
1111 CONTINUE 

IFF02 = NBNDA 
DO 2000 KK = 1,NBNDA 
KKK = NBNDA + 1 - KK 
IF ( INDEXA(INFB,KKK) .NE. 0 ) GOTO 2222 
IFF02 = IFF02 - 1 

2000 CONTINUE 
2222 CONTINUE 

DO 50 KK = IFFOl.IFF02 
INFA = INDEXA( INFB.KK ) 
DO 60 II = l.N 
IF ( INFA .EQ. IVEC( II ) ) GOTO 22 
IF ( A(INFB.KK) .EQ. 0 ) GOTO 22 

60 CONTINUE 
IVEC( IZ ) = INFA 
IZ = IZ + 1 

22 CONTINUE 
50 CONTINUE 
40 CONTINUE 
11 CONTINUE 

IDIM = IZ - 1 
IF ( IFLAG .EQ. 0 ) GOTO 55 

C FIND COLUMNS OF A FOR THE QUADRARIC DIAGONAL-BLOCK SYSTEM. 
JZ = ( NBNDB +1 )/6 

C WRITE(5,*) JZ 
C THE NUMBER OF NON-ZERO STRIPES OF THE APPROXIMATE INVERSE 
C PLUS 1 IS REQUIRED TO BE DIVISIBLE BY 6. 

IPOINT.= 1 
DO 110 I = 1,JZ 
II = JZ + 1 - I 
ISl = J -( ND - 1 )- II + 1 
IF ( ISl .LE. 0 ) GOTO 115 
IVEC( IPOINT ) = ISl 
IPOINT = IPOINT + 1 

115 CONTINUE 
110 CONTINUE 

IF ( JZ .EQ. 1 ) GOTO 120 
-DO 125 I = l.JZ-1 
ISl =J-(ND-1)+I 
IF ( ISl .LE. 0 ) GOTO 130 
IVEC( IPOINT ) = ISl 
IPOINT = IPOINT + 1 

130 CONTINUE 
125 CONTINUE 
120 CONTINUE 

DO 135 I = 1,JZ 
II = JZ + 1 - I 
ISl = J - II 
IF ( ISl .LE. 0 ) GOTO 140 
IVEC( IPOINT ) = ISl 



IPOINT = IPOINT + 1 
140 CONTINUE 
135 CONTINUE 

IVEC( IPOINT ) = J 
IPOINT = IPOINT + 1 
DO 145 I = 1,JZ 
ISl = J + I 
IF ( ISl .GT. N ) GOTO 150 
IVEC( IPOINT ) = ISl 
IPOINT = IPOINT + 1 

150 CONTINUE 
145 CONTINUE 

DO 152 I = 1,JZ 
II = JZ + 1 - I 
ISl =J+(ND-1)-II+1 
IF ( ISl .GT. N ) GOTO 153 
IVEC( IPOINT ) = ISl 
IPOINT = IPOINT + 1 

153 CONTINUE 
152 CONTINUE 

IF ( JZ .EQ. 1 ) GOTO 154 
DO 155 I = 1,JZ-1 
ISl =J+(ND-1)+I 
IF ( ISl .GT. N ) GOTO 156 
IVEC( IPOINT ) = ISl 
IPOINT = IPOINT + 1 

156 CONTINUE 
155 CONTINUE 
154 CONTINUE 

IDIM = ICOUNT 
55 CONTINUE 
C FIND DIAGONAL BLOCK SYSTEM. 

DO 70 .1 = 1,IDIM 
IV = IVEC(I) 
CALL COLFETCH( N,NBNDA,INFOA,IV,A,COL,ICOL ) 
DO 80 II = 1,ICOUNT 
INFB = INDEXB(J,II) 
DO 90 IJ = l^NBNDA 
IK = NBNDA + 1 - IJ 
INFA = ICOL(IK) 
IF ( INFA .EQ. INFB ) GOTO 33 

90 CONTINUE 
•GOTO 44 

33 CONTINUE 
MAT( I,II ) = COL( IK ) 

44 CONTINUE 
80 CONTINUE 

IF ( IV .EQ. J ) RHl(I) =1.0 
70 CONTINUE 
C SOLVE DIAGONAL BLOCK SYSTEM 

IF ( IFLAG .EQ. 1 ) GOTO 111 
C CALL HOUSE( MAT,RHl,IDIM,ICOUNT,X,JFLAG,4900,51 

CALL HOUSE( MAT,RHl,IDIM,ICOUNT,X,JFLAG,2500,51 
GOTO 222 

111 CONTINUE 

) 
) 



DO 160 I = l,ICOUNT 
MAT(I,ICOUNT+l) = RHl(I) 

160 CONTINUE 
C CALL GAUSS( MAT,X,ICOUNT,ICOUNT+1,4900,51) 

CALL GAUSS( MAT,X,ICOUNT,ICOUNT+1,2500,51) 
222 CONTINUE 

DO 100 I = 1,ICOUNT 
B(J,I) = X(I) 

100 CONTINUE 
30 CONTINUE 

RETURN 
END 
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APPENDIX D 

FORTRAN SUBROUTINES FOR THE PARALLEL 

GAUSS-SEIDEL VERSIONS PGSl AND PGS2 

SIMULATED ON A UNIPROCESSOR 

This appendix contains FORTRAN subroutines for 

performing the parallel Gauss-Seidel methods of chapter 2 

that serve as a basis for comparison with the algorithms 

using approximate inverses. The subroutine PGAUSS 

performs the PGSl method and the subroutine PGAUS2 

performs the PGS2 method. The subroutines UPDATE and 

UPDAT2 are used in PGAUSS and PGAUS2 respectively. 
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SUBROUTINE PGAUSS( N,EPS,X,ERR,ICOUNT,XPL,YPL,IPO,IWO,COMP ) 
C THIS SUBROUTINE COMPUTES ITERATIVELY AN APPROXIMATE SOLUTION 
C OF THE LINEAR SYSTEM IN THE ONE DIMENSIONAL CASE. 
C A PARALLEL GAUSS-SEIDEL METHOD IS PERFORMED. 
C DESCRIPTION OF PARAMETER. 
C N ; NUMBER OF UNKNOWNS. 
C EPS : ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 
C IS LESS THAN EPS . 
C X : REAL ARRAY OF SIZE N . ITERATION VECTOR. 
C ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO 
C THE SOLUTION ON OUTPUT. 
C ICOUNT: INTEGER VALUE. ITERATION COUNTER. 
C THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
C PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT 
C FOR PLOTTING THE ERROR. 
C XPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 
C VALUES OF X-AXIS IN COLUMN ONE. 
C YPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 
C VALUES OF Y-AXIS IN COLUMN ONE 
C IPO : INTEGER VALUE. NUMBER OF PLOT-POINTS. 
C IWO : INTEGER VALUE. USED FOR SCALING PURPOSES. 
C COMP : REAL VALUE. USED FOR SCALING PURPOSES. 

INTEGER N,ICOUNT,IPO 
REAL EPS,ERR,NORM,NORME,COMP 
DIMENSION X(N),XPL(610,4),YPL(610,4) 
ICOUNT = 0 
IPO = 1 
ERR = NORM(X,N) 

C ERR = NORME(X,N) 
CALL INITPLOT(N,ERR,XPL,YPL,IPO,1,COMP) 
IFLA = MOD(N,2) 
CONTINUE 

FIRST UPDATE SWEEP ; 'ODD' COMPONENTS 
K = INT( N/2 ) 
IF ( IFLA .EQ. 0 ) K = K - 1 
DO 11 I = 0,K 
II = 2 * I + 1 
CALL UPDATE( II,X,N ) 
CONTINUE 

END OF FIRST UPDATE SWEEP. 
SECOND UPDATE SWEEP : 'EVEN' COMPONENTS. 

”K = INT( N/2 ) 
DO 12 I = 1,K 
II = 2 * I 
CALL UPDATE( II,X,N ) 

! CONTINUE 
END OF SECOND UPDATE SWEEP. 

ERR = NORM( X,N ) 
C ERR = NORME(X,N) 

IF ( IPO .GT. 610 ) GOTO 333 
IF ( MOD(ICOUNT,IWO) .NE. 0 ) GOTO 333 
CALL INITPLOT(N,ERR,XPL,YPL,IPO,1,COMP) 

333 CONTINUE 
ICOUNT = ICOUNT + 1 
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C IF ( MODdCOUNT, 50) . EQ. 0 ) WRITE (6,*) ICOUNT 
IF ( ERR .LE. EPS ) GOTO 99 
IF ( ICOUNT .GE. 10000 ) GOTO 99 
GOTO 1 

99 CONTINUE 
RETURN 
END 

SUBROUTINE UPDATE( I,X,N ) 
C UPDATE FORMULA FOR THE GAUSS-SEIDEL METHOD IN ONE DIMENSION. 
C USED IN SUBROUTINE PGAUSS. 
C DESCRIPTION OF PARAMETERS. 
C N : INTEGER VALUE 
C I ; INTEGER VALUE. REFERS TO THE COMPONENT 
C OF THE ARRAY X TO BE UPDATED. 
C X : REAL ARRAY OF SIZE N. CONTAINS ITERATION VECTOR. 
C ON OUTPUT, THE I'TH COMPONENT IS UPDATED.. 

INTEGER I,N 
DIMENSION X(N) 
IF ( I .EQ. 1 ) GOTO 1 
IF ( I .EQ. N ) GOTO 2 
X(I) = ( X( I-l ) -I- X( I+l ) ) / 2 
GOTO 3 

1 CONTINUE 
X(l) = X(2)/2 
GOTO 3 

2 CONTINUE 
X(N) = X(N-l)/2 

3 CONTINUE 
RETURN 
END 
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SUBROUTINE PGAUS2(N,DIM,EPS,X,ERR,ICOUNT,XPL,YPL,IPO,IWORK,COMP 
THIS SUBROUTINE COMPUTES ITERATIVELY AN APPROXIMATE SOLUTION 
OF THE LINEAR SYSTEM IN THE TWO DIMENSIONAL CASE. 
A PARALLEL GAUSS-SEIDEL METHOD IS PERFORMED. 
DESCRIPTION OF PARAMETERS. 
DIM : NUMBER OF GRID POINTS ( NUMBER OF UNKNOWNS ). 
N : NUMBER OF GRID POINTS PER ROW. 
EPS : ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 

IS LESS THAN EPS . 
X ; REAL ARRAY OF SIZE N . ITERATION VECTOR. 
ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO 

THE SOLUTION ON OUTPUT. 
ICOUNT; INTEGER VALUE. ITERATION COUNTER. 
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT 
FOR PLOTTING THE ERROR FUNCTION. 
XPL ; TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF X-iAXIS IN COLUMN ONE. 
YPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF Y-AXIS IN COLUMN ONE 
IPO : INTEGER VALUE. NUMBER OF PLOT-POINTS. 
IWORK ; INTEGER VALUE. USED FOR SCALING PURPOSES. 
COMP : REAL VALUE. USED FOR SCALING PURPOSES. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N, ICOUNT, DIM, IPO, IV70RK 
REAL EPS,ERR,NORM,NORME,COMP 
DIMENSION X(DIM),XPL(610,4),YPL(610,4) 
DIMENSION X(DIM) 
REAL *8 EPS,ERR,NORM,NORME 
REAL XPL(610,4),YPL(610,4),COMP 
ICOUNT = 0 . 
ERR = NORM(X,DIM) 

C ERR = NORITE (X, DIM) 
IPO = 1 

. CALL INITPLOT(DIM,ERR,XPL,YPL,IPO,1,COMP) 
IFLA = MOD(N,2) 

1 CONTINUE 
C FIRST UPDATE SWEEP : THE 'ODD' DIAGONALS. 
C N IS EXPECTED TO BE GREATER THAN 2. 
C BELOW MAIN DIAGONAL. 

0 ) K = K-1 

) 

K = lNT(N/2) 
IF ( IFLA .EQ. 
DO 11 I = 0,K 
II = 2 * I + 1 
WRITE(6,*) II 
CALL UPDAT2( II,X,N,DIM 
JK = II 
DO 12 J = 1,N-1 
JK = JK + N - 1 
JJ = J * N 
IF ( JK .LE. JJ ) GOTO 13 
WRITE(6,*) JK 
CALL UPDAT2( JK,X,N,DIM ) 
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12 CONTINUE 
13 CONTINUE 
11 CONTINUE 
C ABOVE MAIN DIAGONAL. 

IF ( IFLA .EQ. 0 ) K = K + 1 
DO 14 I = 0,K-1 
II = 2 * I + 1 
KK = DIM - II + 1 

C WRITE(6,*) KK 
CALL UPDAT2( KK,X,N,DIM ) 
JK = KK 
DO 15 J = 1,N-1 
JK = JK - (N-1) 
JJ = (N-J) * N 
IF ( JK .GT. JJ ) GOTO 16 

C WRITE(6,*) JK 
CALL UPDAT2( JK,X,N,DIM ) 

15 CONTINUE 
16 CONTINUE 
14 CONTINUE 
C SECOND UPDATE SWEEP ; 'EVEN' DIAGONALS. 
C BELOW THE MAIN DIAGONAL. 

DO 17 I = 1,K 
II = 2 * I 

C WRITE(6,*) II 
CALL UPDAT2{ II,X,N,DIM ) 
JK = II 
DO 18 J = 1,N-1 
JK = JK + N - 1 
JJ = J * N 
IF ( JK .LE. JJ ) GOTO 19 

C WRITE(6,*) JK 
CALL UPDAT2C JK,X,N,DIM ) 

18 CONTINUE 
19 CONTINUE 
17 CONTINUE 
C ABOVE THE MAIN DIAGONAL. 

IF ( IFLA .EQ. 0 ) K = K - 1 
DO 110 I = 1,K 
II = 2 * I ” 1 
KK = DIM - II 

C WRITE(6,*) KK 
CALL UPDAT2C KK,X,N,DIM ) 
JK = KK 
DO 111 J = 1,N-1 
JK = JK - ( N - 1 ) 
JJ = { N - J ) * N 
IF ( JK .GT. JJ ) GOTO 112 

C WRITE(6,*) JK 
CALL UPDAT2C JK,X,N,DIM ) 

111 CONTINUE 
112 CONTINUE 
110 CONTINUE 

ICOUNT = ICOUNT + 1 
C IF ( MOD(ICOUNT,50) .EQ. 0 ) WRITE(6,*) ICOUNT 
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ERR = NORM( X,DIM ) 
C ERR = NORME(X,DIM) 

IF (MOD(ICOUNT,IWORK).NE.0) GOTO 1000 
1000 CALL INITPLOT(DIM,ERR,XPL,YPL,IPO,1,COMP) 

IF ( ERR .LT. EPS ) GOTO 99 
IF ( ICOUNT .GE. 6000 ) GOTO 99 
GOTO 1 

99 CONTINUE 
RETURN 
END 

C 
C 
C 
C 
C 
C 
c 
c 
c 

SUBROUTINE UPDAT2( I,X,N,DIM ) 
UPDATE FORMULA FOR THE GAUSS-SEIDEL METHOD IN TWO DIMENSIONS. 
USED IN SUBROUTINE PGAUS2. 
DESCRIPTION OF PARAMETERS. 
N 
DIM 
I 

INTEGER VALUE. 
INTEGER VALUE. 
INTEGER VALUE. 
OF THE ARRAY X 

: ARRAY OF SIZE 
ON OUTPUT, THE 

IMPLICIT REAL *8 
INTEGER I,N,DIM 
DIMENSION X(DIM) 
IF ( I .EQ. 1 ) 

I .EQ. DIM 
(I .NE. 1) 

NUMBER OF GRID POINTS. 
NUMBER OF GRID POINTS PER ROW. 
REFERS TO THE COMPONENT 
TO BE UPDATED. 
N . CONTAINS ITERATION VECTOR. 
I'TH COMPONENT IS UPDATED. 
(A-H,0-Z) 

( 
( 

(I 
= ( 
5 

IF 
IF 
IF ( 
X(I) 
GOTO 
CONTINUE 
X(l) = ( 
GOTO 5 
CONTINUE 
•XCDIM) = 
GOTO 5 
CONTINUE 
X(I) = ( 
GOTO 5 
CONTINUE 
X(I) - ( 
CONTINUE 
RETURN 
END 

GOTO 1 
) GOTO 2 
AND. (I .LE. N) ) GOTO 3 

.NE. DIM) .AND. (I .GE. DIM-N ) ) GOTO 4 
X(I-N) + X(I-l) + X(I+1) + X(I+N) ) / 4 

X(I + 1) 4- X(I+N) ) / 4 

( X(DIM-N) + X(DIM-l) ) / 4 

X(I-l) + X(I+1) + X(I+N) ) / 4 

X(I-N) + X(I-l) 4- X(I4-1) ) / 4 



APPENDIX E 

A FORTRAN SUBROUTINE FOR JACOBI LIKE 

METHODS USING APPROXIMATE INVERSES 

SIMULATED ON A UNIPROCESSOR 

This appendix contains the FORTRAN subroutine DBLOCK 

for performing the Jacobi like iterations defined in 

chapter 3. These methods use a Diagonal-Block or a 

Least-Squares approximate inverse. Depending on the input 

parameters the subroutine DBLOCK performs the JDBl(I) , 

JLSQl(I) , JDB2(I) or the JLSQ2(I) iterations. 
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SUBROUTINE DBLOCK(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB/EPS, 
1 ERR,XK,JCOUNT,XPLOT,YPLOT,IP,JPOINT,IWOR,COMP) 

THIS SUBROUTINE PERFORMS THE ITERATION: X(k+1) = X(k)+B(-A X(k)+RH ) 
TO SOLVE THE LINEAR SYSTEM A X = RH. 
ALL COMPONENTS ARE UPDATED WITH THE COMPONENTS OF X(k) (JACOBI LIKE). 
DESCRIPTION OF PARAMETERS. 
N 
NBNDA 
NBNDB 
A 

RH 

NUMBER OF UNKNOWNS. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A. 

B 

INDEXA; 

INDEXB: 

EPS 

NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND 
SIDE OF THE LINEAR SYSTEM. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON 
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN THE 
MATRIX A IN THE CORRESPONDING LOCATIONS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 
IS LESS THAN EPS . 

XK : REAL ARRAY OF SIZE N . ITERATION VECTOR. 
ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO 

THE SOLUTION ON OUTPUT. 
JCOUNT: INTEGER VALUE. ITERATION COUNTER. 
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT 
FOR PLOTTING THE ERROR FUNCTION. 
XPLOT 

YPLOT 

JPOINT 

IP 
IWOR 
COMP 

(N,4). CONTAINS 

(N,4). CONTAINS 

TWO DIMENSIONAL ARRAY OF SIZE 
VALUES OF X-AXIS IN COLUMN ONE 
TWO DIMENSIONAL ARRAY OF SIZE 
VALUES OF Y-AXIS IN COLUMN ONE 
INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT 
TO BE INITIALIZED WITH THE PLOT-POINTS.. 
INTEGER VALUE. NUMBER OF PLOT-POINTS. 
INTEGER VALUE. USED FOR SCALING PURPOSES. 
REAL VALUE. USED FOR SCALING PURPOSES. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N, NBNDA, NBNDB, JCOUNT, IP, JPOINT, IVJOR 
DIMENSION INDEXA (N, NBNDA) , INDEXB (N, NBNDB)-, A (N, NBNDA) ,B(N,NBNDB) , 
RH(N), XK(N) 
REAL YPLOT(610,4),XPLOT(610,4) 
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP 
REAL COMP 
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500) 
JCOUNT = 0 
IP = I 
ERR = NORM( XK,N ) 
ERR = NORME(XK,N) 
CALL INITPLOT(N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP) 
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C FIND RESIDUAL B*(-A*XK + RH) 
88 DO 10 J = I,N 

SCRAT(J) = XK(J) 
10 CONTINUE 

CALL MATVEC( N,NBNDA,A,INDEXA,XK ) 
DO 20 I = 1,N 
XK(I) = - XK(I) + RH(I) 

20 CONTINUE 
CALL MATVEC( N,NBNDB,B,INDEXB,XK ) 

C UPDATE ITERATION VECTOR. 
DO 30 I = 1,N 
XK(I) = SCRAT(I) + XK(I) 
SCRAT(I) = XK(I) - SCRAT(I) 

30 CONTINUE 
C FIND ERROR. 
C ERR = NORM( SCRAT,N ) 

ERR = NORM( XK,N ) 
C ERR = NORME(XK,N) 

JCOUNT = JCOUNT + 1 
IF(MOD(JCOUNT,IWOR).EQ.O) CALL INITPLOT(N,ERR,XPLOT,YPLOT, 

1 IP,JPOINT,COMP) 
C IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(6,*) JCOUNT 

IF ( ERR .LE. EPS ) GOTO 99 
IF ( JCOUNT .GE. 6000 ) GOTO 99 

C WRITE(6,*) JCOUNT 
GOTO 88 

99 CONTINUE 
RETURN 
END 
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APPENDIX F 

FORTRAN SUBROUTINES FOR GAUSS-SEIDEL LIKE 

METHODS USING APPROXIMATE INVERSES 

SIMULATED ON A UNIPROCESSOR 

This appendix contains FORTRAN subroutines for 

performing the Gauss-Seidel like iterations defined in 

chapter 3. These subroutines use a Diagonal-Block or a 

Least-Squares approximate inverse. The subroutine GGSl 

performs the GDBl(I) or the GLSQl(I) iterations for the 

one dimensional case. The subroutine GGS performs the 

GDB2(I) and GLSQ2(I) iterations for the two dimensional 

case. 
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SUBROUTINE GGSl(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS, 
1 ERR,XK,JCOUNT,XPLOT,YPLOT,IP,JPOINT,IWOR,COMP ) 

THIS SUBROUTINE PERFORMS THE ITERATION:X(k+I)=X(k)+B(- A X(k) + RH) 
TO SOLVE THE LINEAR SYSTEM A X = RH. 
THERE ARE TWO UPDATE SWEEPS PER ITERATION. THE SET OF COMPONENTS IS 
DIVIDED INTO TWO DISJOINT SUBSETS. THE COMPONENTS WITHIN ONE SUBSET 
CAN BE UPDATED IN PARALLEL. 
DESCRIPTION OF PARAMETERS. 
N 
NBNDA 
NBNDB 
A 

RH 

B 

INDEXA: 

INDEXB 

EPS : 

XK 
ERR : 

JCOUNT; 

NUMBER OF GRID POINTS. 
NUMBER OF 'NON-ZERO’ DIAGONALS OF THE COEFFICIENT MATRIX A. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND 
SIDE OF THE LINEAR SYSTEM. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON 
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A 
MATRIX IN THE CORRESPONDING LOCATIONS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 
IS LESS THAN EPS . 
REAL ARRAY OF SIZE N . ITERATION VECTOR. 
REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO 
THE SOLUTION ON OUTPUT. 
INTEGER VALUE. ITERATION COUNTER. 

THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
PROCESS. THE ARE USED IN SUBROUTINE INITPLOT 
FOR PLOTTING THEY ERROR FUNCTION. 
XPLOT : TV;0 DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF X-AXIS IN COLUMN JPOINT . 
YPLOT TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF Y-AXIS IN COLUMN JPOINT . 
JPOINT; INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT 

TO BE INITIALIZED WITH THE PLOT-POINTS.. 
INTEGER VALUE. NUMBER OF PLOT-POINTS. 
INTEGER VALUE. USED FOR SCALING PURPOSES. 
REAL” VALUE. USED FOR SCALING PURPOSES. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBNDA,NBNDB,JCOUNT,IP,JPOINT,IWOR 
DIMENSION INDEXA(N,NBNDA),INDEXB(N,NBNDB),A(N,NBNDA),B(N,NBNDB) , 
RH(N), XK(N) 
REAL YPLOT(610,4),XPLOT(610,4) 
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP 
REAL COMP 
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500) 
IBOUND = ( NBNDB - 1 )/2 + 1 
JCOUNT = 0 
IP = 1 
ERR = NORM( XK,N ) 

IP 
IWOR 
COMP 
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C ERR = NORME(XK,N) 
CALL INITPLOT{N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP) 

88 KZEIG = 0 
JZAEHL = 0 

3 IF ( JZAEHL .GT. N ) GOTO 1 
DO 10 I = l,IBOUND 
JZAEHL = KZEIG + I 
IF ( JZAEHL .GT. N ) GOTO 1 
DO 20 J = 1,N 
SCRAT(J) = XK(J) 

20 CONTINUE 
CALL AX2MAT(JZAEHL,IBOUND,N,NBNDA,A,INDEXA,SCRAT ) 
DO 30 J = 1,N 
SCRAT(J) = - SCRAT(J) + RH{J) 

30 CONTINUE 
CALL ZEILVEC( JZAEHL,N,NBNDB,B,INDEXB,SCRAT ) 
XK(JZAEHL) = SCRAT(JZAEHL) + XK(JZAEHL) 

10 CONTINUE 
KZEIG = KZEIG + ( NBNDB + 1 ) 
GOTO 3 

1 CONTINUE 
KZEIG = IBOUND 
JZAEHL = 0 

4 IF (JZAEHL .GT. N) GOTO 2 
DO 40 I = 1,IBOUND 
JZAEHL = KZEIG + I 
IF ( JZAEHL .GT. N ) GOTO 2 
DO 50 J = 1,N 
SCRAT(J) = XK(J) 

50 CONTINUE 
CALL AX2MAT( JZAEHL, IBOUND,N,NBNDA, A, INDEXA, SCR2VT ) 
DO 60 J = 1,N 
SCRAT(J:) = - SCRAT(J) + RH(J) 

60 CONTINUE 
CALL ZEILVEC( JZAEHL,N,NBNDB,B,INDEXB,SCRAT ) 
XK( JZAEHL) = SCRAT ( JZAEHL ) 4- XK( JZAEHL) 

40 CONTINUE 
KZEIG = KZEIG + ( NBNDB + 1 ) 
GOTO 4 

2 CONTINUE 
ERR = NORM( XK,N ) 

C ERR = NORME(XK,N) 
xJCOUNT = JCOUNT + 1 
WRITE(6,*) JCOUNT 
IF(MOD(JCOUNT,IWOR).EQ.0) CALL INIT^LOT(N,ERR,XPLOT,YPLOT, 

1 IP,JPOINT,COMP) 
C IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(6,*) JCOUNT 

IF ( ERR .LE. EPS ) GOTO 99 
IF ( JCOUNT .GE. 6000 ) GOTO 99 

C WRITE(6,*) JCOUNT 
GOTO 88 

99 CONTINUE 
RETURN 
END 
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XK 
ERR 

SUBROUTINE GGS(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS, 
1 ERR,XK,JCOUNT^XPLOT,YPLOT,IP,JPOINT,IWOR,COMP ) 

THIS SUBROUTINE PERFORMS THE ITERATION : X(k+1)=X(k}+B(- A X(k)+RH) 
TO SOLVE THE LINEAR SYSTEM A X = RH. 
ALL COMPONENTS ARE UPDATED SEQUENTIALLY (GAUSS-SEIDEL LIKE). 
DESCRIPTION OF PARAMETERS. 
N ; NUMBER OF UNKNOWNS. 
NBNDA ; NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A. 
NBNDB : NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B. 
A : TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 

ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 

RH ; REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND 
SIDE OF THE LINEAR SYSTEM. 

B : TWO DIMENSIONAL REAL ARRAY OF SIZE N, NBNDB . CONTAINS ON 
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A 
MATRIX IN THE CORRESPONDING LOCATIONS. 

INDEXB: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 
IS LESS THAN EPS . 
REAL ARRAY OF SIZE N . ITERATION VECTOR. 
REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO 
THE SOLUTION ON OUTPUT. 

JCOUNT: INTEGER VALUE. ITERATION COUNTER. 
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT 
FOR PLOTTING THE ERROR FUNCTION. 
XPLOT : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF X-AXIS IN COLUMN JPOINT . 
YPLOT : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 

VALUES OF Y-AXIS IN COLUMN JPOINT . 
JPOINT; INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT 

TO BE INITIALIZED WITH THE PLOT-POINTS. 
INTEGER VALUE. NUMBER OF PLOT-POINTS. 
INTEGER VALUE.. USED FOR SCALING PURPOSES. 
REAL VALUE. USED FOR SCALING PURPOSES. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N, NBNDA, NBNDB, JCOUNT, IP, JPOINT , IV70R 
DIMENSION INDEXA(N, NBNDA) , INDEXB (N, NBNDB.) , A (N, NBNDA) , B(N, NBNDB ) , 
RH(N), XK(N) 
REAL YPLOT(610,4),XPLOT(610,4) 
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP 
REAL COMP,S 
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500) 
S = N 
S = SQRT(S) 
ID = INT(S) 
JCOUNT = 0 
IP = 1 

IP- 
IWOR 
COMP 



ERR = NORM( XK,N ) 
ERR = NORME(XK,N) 
CALL INITPLOT(N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP) 
DO 10 I = 1,N 
DO 20 J = 1,N 
SCRAT(J) = XK(J) 
CONTINUE 
CALL AX2MAT(I,ID,N,NBNDA,A,INDEXA,SCRAT ) 
DO 30 J = 1,N 
SCRAT(J) = - SCRAT(J) + RH(J) 
CONTINUE 
CALL ZEILVEC( I,N,NBNDB,B,INDEXB,SCRAT ) 
XK(I) = SCRAT(I) + XK(I) 
CONTINUE 
ERR = NORM( XK,N ) 
ERR = NORME(XK,N) 
JCOUNT = JCOUNT + 1 
WRITE(6,*) JCOUNT 
IF(MOD(JCOUNT,IWOR).EQ.0) CALL INITPLOT(N,ERR,XPLOT,YPLOT, 
IP,JPOINT,COMP) 
IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(6,*) JCOUNT 
IF ( ERR .LE. EPS ) GOTO 99 
IF ( JCOUNT .GE. 6000 ) GOTO 99 
WRITE(6,*) JCOUNT 
GOTO 88 
CONTINUE 
RETURN 
END 



APPENDIX G 

A FORTRAN SUBROUTINE FOR THE 

PRECONDITIONED CONJUGATE GRADIENT ALGORITHM 

SIMULATED ON A UNIPROCESSOR 

This appendix contains the FORTRAN subroutine PCG 

that performs the preconditioned conjugate gradient 

algorithm of chapter 4. The subroutine PCG expects an 

approximate inverse as an input parameter. If the identity 

is used as an approximate inverse, the plain conjugate 

gradient algorithm is performed. The subroutines DOTRPRO 

and COPY are‘used by PCG . DOTPRO performs the usual 

vector inner-product and COPY copies one vector into 

another. 
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SUBROUTINE PCG ( N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS, 
1 ERR,XK,JCOUNT,XPLO,YPLO,JPO,IWORK,COMP ) 

DESCRIPTION OF PARAMETERS. 
N 
NBNDA 
NBNDB 
A 

RH 

NUMBER OF UNKNOWNS. 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A 
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON 
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN 
ITS COLUMNS. 
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND 
SIDE OF THE LINEAR SYSTEM. 
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON 
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS 
THE COLUMN INDICES OF THE ELEMENTS THAT ARE*STORED IN A 
MATRIX IN THE CORRESPONDING LOCATIONS. 
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS, 
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE 
APPROXIMATE INVERSE B. 
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR 
IS LESS THAN EPS . 
REAL ARRAY OF SIZE N . ITERATION VECTOR. 
RETO^ VALUE. CONTAINS THE ABSOLUTE ERROR TO 
THE SOLUTION ON OUTPUT. 
INTEGER VALUE. ITERATION COUNTER. 

THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE 
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT 
FOR PLOTTING THE ERROR FUNCTION. 

B 

INDEXA: 

INDEXB 

EPS 

XK 
ERR 

JCOUNT 

XPLO 

YPLO 

JPO 

IPO 
I WORK 
COMP 

: TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 
VALUES OF X-AXIS IN COLUMN JPO . 

; TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS 
VALUES OF .Y-AXIS IN COLUMN JPO . 

: INTEGER VALUE. DETERMINES THE COLUMN OF YPLO AND XPLO 
TO BE INITIALIZED WITH THE PLOT-POINTS. IF IWORK = 1, 
THE PLAIN CONJUGATE GRADIENT METHOD IS PERFORMED. 

; INTEGER VALUE. NUMBER OF PLOT-POINTS. 
: INTEGER VALUE. USED FOR SCALING PURPOSES. 
: REAL VALUE. USED FOR SCALING PURPOSES. 
IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NBNDA,NBNDB,JCOUNT,IPO,JPO,IWORK,IW 
DIMENSION INDEXA(N,NBNDA),INDEXB(N,NBNDB),A(N,NBNDA), 
B(N,NBNDB),RH(N),XK(N) 
REAL XPLO(610,4),YPLO(610,4) 
REAL ERR,EPS,NORM,NORME,AI,BI,DOTPRO,COMP 
REAL RES(4900),SCRATP(4900),SCRATD(4900), 
SHELP(4900),SHELP2(4900),SHELP3(4900),SXK(4900) 
REAL COMP 
REAL *8 ERR,EPS,NORM,NORME,AI,BI,DOTPRO 
REAL *8 RES(4900),SCRATP(2500),SCRATD(2500),SHELP(2500) 
REAL *8 SHELP2(2500) 
REAL *8 SHELP3(2500),SXK(2500) 
DO 500 I = 1,N 
WRITE(3,*) ( INDEXB( I,J),J=1,5 ) 

C500 CONTINUE 
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IF ( JPO .NE. 1 ) GOTO 11 
B(l,l) = 1.0 
B(l,2) = 0.0 
B(l,3) = 0.0 
DO 5 I = 2,N 
B(I,1) = 0.0 
B(I,2) = 1.0 
B(I,3) = 0.0 

5 CONTINUE 
11 CONTINUE 

IPO = 1 
IW = 0 
ERR = NORM(XK,N) 

C ERR = NORME(XK,N) 
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO,COMP) 
CALL COPY(N,XK,RES) 
CALL MATVEC(N,NBNDA,A,INDEXA,RES) 

C DO 510 I = 1,N 
C WRITE(3,*) RES(I) 
C510 CONTINUE 

DO 10 I =1,N 
RES(I) = RH(I) - RES(I) 

10 CONTINUE 
CALL COPY(N,RES,SCRATD) 

C DO 530 I = 1,N 
C WRITE(3,*) ( B(I,J),J=1,5 ) 
C530 CONTINUE 

CALL MATVEC{N,NBNDB,B,INDEXB,SCRATD) 
CALL COPY(N,SCRATD,SCRATP) 
JCOUNT = 0 

88 CALL COPY(N,SCRATP,SHELP) 
CALL COPY(N,XK,SXK) 
CALL MATVEC(N,NBNDA,A,INDEXA,SCRATP) 
AI = DOTPRO(N,RES,SCRATD)/DOTPRO(N,SCRATP,SHELP) 

C ERR = ABS(AI) * NORM(SHELP,N) 
DO 20 I = 1,N 
XK(I) = XK(I) + AI * SHELP(I) 
SHELP3(I) = RES(I) 
RES(I) = RES(I) - AI * SCRATP(I) 

20 CONTINUE 
ERR = NORM(XK,N) 

C ERR = NORME(XK,N) 
CALL COPY(N,SCRATD,SHELP2) 
CALL COPY(N,RES,SCRATD) 
CALL MATVEC (N, NBNDB, B, INDEXB, SCRATD ). 
BI = DOTPRO(N,RES,SCRATD)/DOTPRO(N,SHELP3,SHELP2) 
DO 30 I = 1,N 
SCRATP(I) = SCRATD(I) + BI * SHELP(I) 

30 CONTINUE 
JCOUNT = JCOUNT + 1 

C IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(6,*) ERR 
C IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(3,*) ERR 
C WORK-SCALING IN ONE DIMENSION FOR PCG WITH DBQ(7) COMPARED WITH CG, 
C PCG WITH DBQ(3) AND DBQU(5) . 
C IF ( IW .NE. 3 ) GOTO 22 
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IF ( MOD(ICOUNT,IWORK) .NE. (IWORK-1) ) GOTO 33 
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO) 
IW = 0 
GOTO 33 
CONTINUE 
IF (MOD( JCOUNT,IWORK) .NE. 0 ) GOTO 33 
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO,COMP) 
IF ( JPO .EQ. 4 ) IW = IW + 1 
CONTINUE 
IF ( MOD(JCOUNT,50) .EQ. 0 ) WRITE(6,*) JCOUNT 
IF ( ERR .LE. EPS ) GOTO 99 
IF ( JCOUNT .GE. 6000 ) GOTO 99 
IF ( ICOUNT .GT. 1 ) GOTO 333 
IF ( JPO .EQ. 2 ) COMP = 17/12 
IF ( JPO .EQ. 3 ) COMP == 23/12 
IF ( JPO .EQ. 4 ) COMP = 29/12 
CONTINUE 
GOTO 88 
CONTINUE 
RETURN 
END 

REAL FUNCTION DOTPRO(N,VECl,VEC2) 
C THIS SUBROUTINE PERFORMS THE USUAL VECTOR 
C INNER-PRODUCT. 
C DESCRIPTION OF PARAMETERS. 
C N : SIZE OF THE VECTORS. 
C VECl : REAL ARRAY OF SIZE N. FIRST VECTOR. 
C VEC2 : REAL ARRAY OF SIZE N. SECOND VECTOR. 
C USED BY SUBROUTINE PCG. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N,NORG 
DIMENSION VEC1(N),VEC2(N) 
DOTPRO = 0.0 
DO 10 I = 1,N 
DOTPRO = DOTPRO + VECl(I) * VEC2(I) 

10' CONTINUE 
RETURN 
END 

■SUBROUTINE COPY ( N,VEC1,VEC2 ) 
C THIS SUBROUTINE COPIES TWO VECTORS OF SIZE N. 
C VECl IS COPIED INTO VEC2. 
C USED BY SUBROUTINE PCG. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER N 
DIMENSION VECl(N),VEC2(N) 
DO 10 I =1,N 
VEC2(I) = VECl(I) 

10 CONTINUE 
RETURtJ 
END 



APPENDIX H 

MISCELLANEOUS SUBROUTINES AND FUNCTIONS 

This appendix contains subroutines and functions that 

are called by the above subroutines. The subroutine BIOUSE 

performs the Householder transformation to solve an 

overdetermined linear system in the least-squares sense. 

The function NORMl is used by subroutine HOUSE . The 

subroutine GAUSS performs the Gauss elimination process. 

Both subroutines are called by the subroutines APPRINV and 

AINV2 . The subroutine INITPLOT is used by the 

subroutines that perform the iterative processes (see 

appendix E-F ). This subroutine writes the abscissas and 

ordinates of the error function into a two dimensional 

array. The functions NORM and NOI^E comput the maximum 

norm and the Euclidian norm of a vector. 
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SUBROUTINE HOUSE(A,B,N,M,X,IFLAG,ORN,ORM) 
C THIS SUBROUTINE USES A HOUSEHOLDER TRANSFORMATION 
C TO SOLVE AN OVERDETERMINED SYSTEM OF LINEAR EQUATIONS 
C IN THE LEAST SQUARES SENSE. 
C DESCRIPTION OF PARAMETERS. 
C M NUMBER OF EQUATIONS. 
C N NUMBER OF UNKNOWNS. 
C ORN MAXIMUM NUMBER OF EQUATIONS. 
C ORM MAXIMUM NUMBER OF UNKNOWNS. 
C A TWO DIMENSIONAL ARRAY OF SIZE (M,N).ON ENTRY, 
C THE MATRIX OF THE COEFFICIENTS OF THE OVERDETERMINED 
C SYSTEM MUST BE STORED IN A.ON EXIT,A CONTAINS THE 
C UPPER TRIANGULAR MATRIX RESULTING FROM THE 
C HOUSEHOLDER TRANSFORMATION. 
C B ONE DIMENSIONAL ARRAY OF SIZE (M).ON ENTRY,B MUST 
C CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS. 
C X ONE DIMENSIONAL ARRAY OF SIZE (N).ON EXIT, 
C X CONTAINS A SOLUTION TO THE PROBLEM. 
C IFLAG AN EXIT CODE WITH VALUES .. 
C 0 ~ NO PROBLEM OCCURRED. 
C 1 - ZERO NORM WHILE UPDATING THE ELEMENTARY 
C REFLECTOR MATRIX. 
C 2 - ZERO DIVISION OCCURRED IN BACK SUBSTITUTION. 

IMPLICIT REAL *8 (A-H,0-Z) 
INTEGER I,J,K,M,N,II,JJ,ORN,ORM 

C REAL A(ORN,ORM+l),B(ORN),X(ORM) 
C REAL V(8000),W(60),NORMl,TEM,Y,T,H 

REAL *8 A(ORN,ORM+I) ,B(ORN) ,X(OPvM) 
REAL *8 V(2500),W(60),NORMl,TEM,Y,T,H 
DO 70 J=1,M 
DO 10 I=J,N 

10 V(I)=A(.I,J) 
II=J 

C 
C FIND V=(X-Y)/NORMl(X-Y) 
C 

Y=NORMl(V,N,II) 
IF (A(J,J).GE.0.) V(II)=V(II)+Y 
IF (A(J,J).LT.0.) V(II)=V(II)-Y 
TEM=NORMl(V,N,II) 
IF (TEM.EQ.0.) GOTO 90 
DO 15 I=J,N 

15 V(I)=V(I)/TEM 
C 
C FIND A=A-2*V*VT*A 
C 

DO 25 JJ=1,M 
W(JJ)=0.0 
DO 20 I=J,N 

20 W(JJ)=W(JJ)+2.*V(I)*A(I,JJ) 
25 CONTINUE 

DO 40 I=J,N 
DO 30 JJ=1,M 

30 A(I,JJ)=A(I,JJ)-V(I)*W(JJ) 



CONTINUE 40 
C 
C FIND B=B-2*V*VT*B 
C 

T=0.0 
DO 50 I=J,N 

50 T=T+V(I)*B(I) 
DO 60 I=J,N 

60 B(I)=B(l)-2.*V(I)*T 
70 CONTINUE 
C BACK SUBSTITUTION 
C 

MM=M 
X ( MM ) = B (MM ) / A (MM, M ) 
DO 80 K=1,MM-1 
I=MM-K 
DO 75 JJ=I+1,M 

75 B(I)=B(I)-A(I,JJ)*X(JJ) 
C WRITE(3,*) I 

X(I)=B(I)/A(I,I) 
80 CONTINUE 

RETURN 
90 IFLAG=1 

RETURN 
END 

REAL *8 FUNCTION NORMl(X,N,J) 
C THIS FUNCTION COMPUTES A THE EUCLIDIAN 
C VECTOR NORM. 
C USED IN SUBROUTINE HOUSE. 
C DESCRIPTION OF PARAMETERS. 
C X : REAL .ARRAY OF SIZE N. THE NORM 
C OF A SUBVECTOR OF X IS COMPUTED 
C N ; INTEGER VALUE. SIZE OF VECTOR X 
C J : INTEGER VALUE. DETERMINES THE 
C SUBVECTOR OF X. 

IMPLICIT REAL *8 (A-H,0-Z) 
REAL *8 X(N),SUM 

C REAL X(N),SUM 
INTEGER I,J,N 
SUM=0.0 
£>0 100 I=J,N 

100 SUM=SUM+X(I)**2 
NORMl=SQRT(SUM) 
RETURN 
END 
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C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

SUBROUTINE GAUSS(A,X,N,NP1,NN,NNPl) 
THIS SUBROUTINE PERFORMS THE GAUSS ELIMINATION 
PROCESS. IT ACCEPTS THE DIMENSIONS OF 
THE MATRIX AS VARIABLES. 
DESCRIPTION OF PARAMETERS. 
A ; TWO DIMENSIONAL ARRAY OF SIZE (NN^NNPl). 

CONTAINS ON ENTRY THE COEFFICIENT MATRIX 
OF THE LINEAR SYSTEM IN THE FIRST N 
ROWS AND THE FIRST NPl-1 COLUMNS OF A 
AND ALSO THE RIGHT-HAND SIDE IN COLUMN NPl. 

N : INTEGER VALUE. ACTUAL NUMBER OF ROWS OF A. 
NPl : INTEGER VALUE. ACTUAL NUMBER OF COLUMNS OF A. 
NN ; INTEGER VALUE. MAXIMUM NUMBER OF ROWS OF A. 
NNPl : INTEGER VALUE. MAXIMUM NUMBER OF COLUMNS OF A 

IMPLICIT REAL *8 (A-H,0-Z) 
DIMENSION A(NN,NNP1+1),X(NP1) 

BEGIN THE PIVOTAL CONDENSATION 
K NAMES THE PIVOTAL ROW 

NM1=N-1 
DO 600 K=1,NM1 
KP1=K+1 
L=K 

C FIND TERM IN COLUMN K ON OR BELOW MAIN DIAGONAL, THAT 
C IS LARGEST IN ABSOLUTE VALUE. AFTER THE SEARCH, 
C L IS THE ROW NUMBER OF THE LARGEST ELEMENT 

DO 400 I=KP1,N 
400 IF(ABS(A(I,K)).GT.ABS(A(L,K))) L=I 
C CHECK IF L=K WHICH MEANS THAT THE LARGEST ELEMENT IN 
C COLUMN K WAS ALREADY THE DIAGONAL TERM, MAKING 
C ROW INTERCHANGE UNNECESSARY 

IF(L.EQ.K) GO TO 500 
C INTERCHANGE ROWS L AND K, FROM DIAGONAL RIGHT 

DO 410 J=K,NP1 
TEMP=A(K,J) 
A(K,J)=A(L,J) 

410 A(L,J)=TEMP 
C , ELIMINATE ALL ELEMENTS IN COLUMN K BELOW MAIN DIAGONAL 
C ELEMENTS ELIMINATED ARE NOT ACTUALLY CHANGED 
500 DO 600 I=KP1,N 

FACTOR=A(I,K)/A(K,K) 
DO 600 J=KP1,NP1 

600 A(I,J)=A(I,J)-FACTOR*A(K,J) 
C BACK “SOLUTION 

X(N)=A(N,NP1)/A(N,N) 
I=NM1 

710 IP1=I+1 
SUM=0.0 
DO 700 J=IP1,N 

700 SUM=SUM+A(I,J)*X(J) 
X(I)=(A(I,NP1)-SUM)/A(I,I) 
1 = 1-1 
IF(I.GE.l) GO TO 710 
RETURN 
END 
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C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE INITPLOT( N,ERR,XPLOT,YPLOT,IPP,I,COMP ) 
THIS SUBROUTINE WRITES THE COORDINATES OF A POINT TO BE 
PLOTTED INTO THE ARRAYS XPLOT AND YPLOT. 
DESCRIPTION OF PARAMETERS. 
N 
ERR 
XPLOT 

YPLOT 

IPP 
I 
COMP 

INTEGER VALUE. NUMBER OF UNKNOWNS. 
REAL VALUE. CONTAINS THE ERROR. 
TWO DIMENSIONAL ARRAY OF SIZE (610,4). 
CONTAINS ON OUTPUT THE X-VALUE OF THE 
PLOT-POINT IN POSITION (IPP,I). 
TWO DIMENSIONAL ARRAY OF SIZE (610,4). 
CONTAINS ON OUTPUT THE Y-VALUE OF THE 
PLOT-POINT IN POSITION (IPP,I). 
INTEGER VALUE (SEE ABOVE). 
INTEGER VALUE (SEE ABOVE). 
REAL VALUE. USED FOR SCALING THE X-AXIS. 

INTEGER N,IPP,I 
REAL ERR,COMP 
REAL *8 ERR 
DIMENSION XPLOT(610,4),YPLOT(610,4) 
REAL COMP,SS 
SS = ERR 
YPLOT(IPP,I) = ALOG( SS ) 
XPLOT(IPP,I) = ( IPP - 1 ) * .1 * COMP 
IPP = IPP + 1 
RETURN 
END 

REAL FUNCTION NORME( X,N ) 
C THIS FUNCTION COMPUTES THE EUCLIDIAN 
C NORM OF THE VECTOR X OF SIZE N . 

INTEGER N 
REAL SUM 
DIMENSION X(N) 
SUM = 0.0 
DO 10 I == 1,N 
SUM = SUM + X(I) ** 2 

10 CONTINUE 
NORM = SORT(SUM). 
RETURN 
•END 
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C THIS 
C NORM 

C 

10 

REAL FUNCTION NORM( X,N ) 
SUBROUTINE COMPUTES THE MAXIMUM 
OF THE VECTOR X OF SIZE N. 
IMPLICIT REAL *8 (A-H,,0-Z) 
INTEGER N 
DIMENSION X( N ) 
REAL SUM 
REAL *8 SUM 
SUM = ABS( X(l) ) 
DO 10 J = 2,N 
IF ( SUM .LT. ABS( X(J) ) ) SUM = ABS( X(J) ) 
CONTINUE 
NORM = SUM 
RETURN 
END 


