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Abstract 

The possibility of electron temperature decreasing below 

the lattice temperature in the presence of an external electric field 
• ! 

(electron cooling) has been pointed out by Paranjape and Pjnbrose (1964). 

In the present works we show that under suitable conditions an external 

sound wave may produce the phenomenon of electron cooling in a semicon- 

ductor. We have shown that a decrease in electron temperature may occur 

when (1) the electrons are predominantly scattered by optical polar or 

non-polar optical modes of the lattice vibrations and (2) when the in- 

cident sound wave energy flux is greater than a certain critical value 

WQ (which depends on the type of semiconductor). Chapter I consists of 

a description of the model and a brief outline,of the calculations. In 

Chapter II, using a displaced Maxwellian function, we have calculated 

the rates of energy and momentum transfer from the electrons to the lat- 

tice for acoustical, optical polar and non-polar optical types of scat- 

tering. The rates of energy and momentum transfer from the sound wave 

to the electrons are calculated in Chapter II, Section (2.b,l). Using 

these rates in conservation conditions (1.11) and (1.12), we obtain the 

expression for the electron temperature T as a function of the energy 

flux W (Eqn. (3.6)). Inequality conditions (3.7) and (3.8) are the main 

results of our calculations. Condition (3.7) is equivalent to the elec- 

tron cooling condition obtained by Paranjape and de Alba (1965) in the 

case of an electric field, while (3.8) gives the minimum sound wave ener- 

gy flux P/Q required to produce electron cooling. In non-polar and polar 



substances, the required predominance of optical scattering over 

acoustical scattering is expressed by the ratios VQyi/vao 

in Eqns. (3.24) and (3.30), respectively. In Sections (S.b.l) and 

(3.b.2), v/e have obtained the expressions for the sound absorption 

coefficient a and acoustoelectric current in terms of the energy 

flux P/. 
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INTRODUCTION 

The energy-momentum distribution of conduction electrons 

ii;i a non-degenerate semiconductor is given by the Maxwell-Bo1 tzmann 
I 

I 
distribution function. In thermal equilibrium 

f(p) = 4i\n^i ( —- ) exp(-?j^pV'2wi<2’o) 
r\j 2TT?72KTQ 

where f(p)dp represents the number of electrons v;ith the wave vector 
Or 'V , 

between p and v-^-dp^ TQ is the lattice temperature, is the conduc- 

tion electron density and w is the isotropic effective mass of an 

electron. 

In the presence of an external electric field, the electron 

distribution deviates from its thermal equilibrium value. In the cal- 

culations of the transport properties of the material, the field induced 

distribution function is conveniently developed along the field direction 

as 

f(p) = E /„rpjp„(cosey (2) 
n=0 

where 0 is the angle between p and the applied field F and P^^{cose) is 
a- "" 

the Legendre polynomial of degree n. In a weak field, the expansion is 

truncated after the second term, so that 

f(p) = f^(p) f i(p)oosQ (3) 

where f%(v^ is the unperturbed distribution given by Eqn. (1) and f^(p) 
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is the anisotropic part of the function f(p). This approximation is 
'\j 

the usual starting point in the discussion of linear transport theories 

of solids (e.g. Ohm's Law) and is valid in sufficiently weak electric 

fields. 

In strong fields, however, non-linear conduction phenomena 

may become significant and the distribution function f(p) cannot be 
a. 

adequately described by Eqn. (3). It is possible to deal with the high 

field case by taking into account more terms from the right-hand side of 

Eqn. (2). Their computation, hov/ever, is highly involved, which limits 

the usefulness of this approach. 

To avoid the inclusion of higher order terms and the difficult 

calculations associated with it, Frohlich (1947) introduced the concept 

of electron temperature. He pointed out that the distribution function 

in high electric fields can be conveniently expressed by using this con- 

cept. The theory of electron temperature is based on the assumption that 

the electrons and the lattice can be treated as tv/o separate systems which 

are connected by electron-lattice interaction. In thermal equilibrium, 

(i.e. in the absence of an external field), there is no net transfer of 

energy from one system to another. The electric field gives energy and 

momentum to the electrons, but it has no direct effect on the lattice and, 

as a result, the equilibrium between the two systems is disturbed. A sta- 

tionary state will, however, be reached when the rates at which electrons 

receive momentum and energy from the field equal the rates at which they 

transfer momentum and energy to the lattice. 

It v/ill be shown later (APPENDIX III) that in the stationary 

state the average energy of the electrons is larger than its zero-field 
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value (i.e. 3/2 KT ). According to Frdhlich, if the electron system 
0 

reaches a quasi-equi1ibriurn through interelectronic collisions, then 

the average energy ¥ may be equated to 3/2 KT where T is the tempera- 

ture of the electron gas (the interelectronic collisions randomize |the 

energy and momentum over the electron gas). Frdhlich and Paranjape (1956) 

proposed that the distribution function f(p), in the presence of an elec- 
'\j 

trie field, under suitable conditions, can be represented by a Maxwellian 

function displaced in momentum space and characterized by the electron 

temperature (different from the lattice temperature). 

f(pj = ^ exp { - - } (4) 

A ( ) 
2'nrriKT 

3/2 
(5) 

where p is the average wave vector of an electron in the direction of 
'\j 

the applied field. The values of p and T depend on the strength of 

the applied field and the types of lattice scattering relevant to the 

crystal. It is important to note that the function given in Eqn. (4) 

is valid for high fields, as well as for zero-field. Hence, 

and T-^TQ. 

Until recently, it has been assumed that an increase in the 

average energy due to electric fields always leads to an increase in 

the electron temperature, T>TQ, which is known as the "hot electron" 

phenomenon. Contrary to this, it has been theoretically demonstrated 

by Pa ranjape and Ambrose (1964) that the phenomenon may not always 
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occur; in fact, under suitable conditions, the electron temperature 

may, on application of the field, decrease below the lattice tempera- 

ture, TQ. This may be described as the "cooled electron" phenomenon 

and was predicted when the electrons were predominantly scatterecj by 

the phonons, whose energy is greater than the average electron energy. 

The theoretical possibility of electron cooling was further investi- 

gated by de Alba and Warman (1965), Blbtekjaer (1967) and Baynham et 

at, (1968). So far, there is no experimental verification of this 

phenomenon - the difficulties are immense. The present v;ork proposes 

an alternative method of producing cooled electrons.in semiconductors. 

We show in this work that the cooled electrons can be produced by pas- 

sing a sound wave through a suitable semiconductor. 

An external acoustic wave of energy flux W transfers energy 

and momentum to the conduction electrons as it propagates through the 

crystal; and, as a result, the electrons acquire drift velocity in the 

direction of the sound wave. Under suitable conditions, given by Froh- 

lich and Paranjape (1956), the steady state distribution can be repre- 

sented by a "displaced Maxwellian" function given in Eqn. (4). The 

values of p. and T, in this case, will depend on the energy flux W. 

Using a procedure similar to the one used by Paranjape and Ambrose 

(1964) and Paranjape and de Alba (1965) for the case of an electric 

field, we obtain conditions under which electron cooling may occur. 

The conditions show that, if the incident energy flux ?7 is greater 

than a critical value (which depends on the types of lattice scat- 

tering effective in the semiconductor), electron cooling is possible; 



and, 1f it is less than electron heating would take place. We 

discuss the electron cooling conditions for various types of lattice 

scattering. The calculations for the polar and non-polar semiconductors 

show that electron cooling is possible only if optical polar or optical 

non-polar scattering dominates over acoustical scattering. Finally, the 

acoustoelectric current and the sound absorption coefficient are calcu- 

lated as a function of W. 



- 6 - 

CHAPTER I 

§l.a.l. Model 

I 

We consider a high frequency sound wave incident at a 

crystal of an n-type (polar or non-polar) semiconductor. The crystal 

is kept in contact with a heat bath and its two ends along the direc- 

tion of the sound wave are connected by a suitable conductor. 

We wish to investigate the effect of the sound wave on the 

energy distribution of the conduction electrons under the following 

assumptions: 

(1) The sound wave while passing through the crystal interacts 

only with the electrons. The assumption is valid at sufficiently low 

temperatures5 because for temperatures higher than 20°K the sound ab- 

sorption due to other sources (e.g. lattice vibrations) dominates the 

absorption due to electrons. 

(2) The temperature of the lattice TQ is maintained constant by 

the heat bath and the lattice (phonon) energy distribution is given by 

Planck's distribution 

= [exp(f2aj/KTQ)-f] 

(1.1) 

exp (^ZOO/K^TQ ) 

where nj^ is the excitation number of phonons with wave vector k. 
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(3) Our calculations assume a free electron model. Thus an 

electron V7ith a wave vector p will have energy E(p), given by 
^ a. 

/ 

E(p) = fi^p'^/2m (1*2) 

where m is the effective mass of an electron. The assumption is not 

usually valid due to non-parabolicity in the band structure at high 

temperatures. However, for the range of temperatures in which we are 

interested (less than 20°K), the assumption is reasonable. 

Throughout this work, the energy momentum distribution of 

the conduction electrons, in the presence of a sound wave,is represented 

by a displaced Maxwellian function. Frohlich and Paranjape (1956) have 

discussed the conditions under v^hich this representation is valid (see 

APPENDIX I). They pointed out that for electron densities higher than 

lO^^/cm^ the electron-electron interaction is stronger than the electron- 

lattice interaction. Under this condition, it is reasonable to assume 

the electron distribution given by the function in Eqn. (4). 

§l.a.2. Mathematical Outline of the Calculations 

A steady state Boltzmann equation, in the presence of a 

sound wave-, can be v/ritten as 

df(p) 
g. 
at 3-et 

+ 
dfCp) 

g 
at et-et 

+ 

df(p) 
g 

at eZ-ta 
0 (1.3) 

where the first, second and third terms represent the rates of change 
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of fCp) due to electron-sound wave interaction, electron-electron scat- 

tering and electron-lattice scattering, respectively. The solution of 

jthe above equation would represent a steady state energy distribution 

of the electrons under the influence of an external sound wave. It is, 

however, well known that the electron-electron collision term in Eqn. 

(1.3) is difficult to evaluate and its exact solution cannot be easily 

obtained. We know that the interelectronic collisions conserve total 

momentum and total energy of the electron system. This fact can be 

utilized to avoid the evaluation of "term by transforming 
'\j 

Boltzmann's equation into momentum and energy conservation conditions. 

The momentum conservation follovys since 

df(p) 
'\j 

2 % {■ , p o T* s-eZ et-el 

df(p) 

dt et-ta 
} = 0 (1.4) 

and the energy conservation because 

z — { 
p 2m 
'\j 

df(p) 

s~el 

df(p) 
+ 

dfCp) 

et-et dt et-ta 
} = 0 (1.5) 

However, since 

df(p) 
I fip { 
P 'h dt 

} = 0 
et-et 

(1.6) 

and 

I 
p 

fi^p^ 

2m 

df(p) 

dt 
} - 0 

et-et 
0.7) 
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1t follows that 

z hp 
P ^ dt s-et 

~ T. ftp 
p -u 

sf(p) 

et-ta 
} 

and 

a. 

df{p) 

s-et 

2„2 

z 
p 
f\j 

h p 
2m 

^f(p) 

at et-ta 

Using the following simplifying notations 

and 

z ftp { 
p 'i. 
'V- 

2 n p E —^ 
p 2m 
<\j 

a- 

-Z 

a. 
2m 

df(p) 
a. 

at } = 
s-et 

^f(p) 

at s-et 

p a- ot Za 

f|2p2 

at 

£P 
<it \s-et 

dE 
dt 

s-et 

} = 
dP 

dt et- ta 

} = 
dE 

et-ta dt et-ta 

> 

(1.8) 

(1.9) 

(1.10) 
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equations (1.8) and (1.9) become 

dt s-et dt eZ-ta 
(1.11) 

and 

d* s-el ^*\el-la (1.12) 

These two equations simply show that in a stationary state 

the rates at which momentum and energy are absorbed from the sound V7ave 

equal the rates at which these quantities are transferred to the lattice. 

We shall use these conditions to determine the steady state distribution 

of the electrons. 

Boltzmann's equation, given in Eqn. (1.3), can be solved in 

two extreme cases. In the first case, electron-electron interaction is 

entirely neglected and the distribution function is developed in the 

first few terms. This corresponds to the case of low electron density 

and weak electric field. In the following work, we shall follow the 

other case and assume the dominance of the df(-p)/dt^Qi^Qi term. The as- 

sumption allows us to represent the solution of Eqn. (1.3) by a displaced 

Maxwellian function containing parameters p and T. Using this distribu- 
'\j 

tion, we evaluate the four rates given in Eqns. (1.11) and (1.12). We 

shall then solve the momentum and energy conservation conditions and ob- 

tain the parameters. The electron cooling conditions v/ill then follow 

from the expression for the electron temperature. 



CHAPTER II 

§S.a.l. Calculations Concerning Momentum and Energy Transfer 
From the Electrons to the Lattice: General Theory 

To evaluate the momentum and energy transferred from the 

electrons to the lattice, we must first calculate df( 

This can be done by considering the scattering process which involves 

the absorption or emission of a quantum of lattice vibrations (phonon) 

by an electron. Let q be the v;ave vector of the phonon and na^Cq) be 

the energy. Momentum conservation requires that electronic transitions 

from a state p (momentum fip) are only possible to the state v+q in the 
f\f ^ ^ 

case of absorption and to the state p-q in the case of emission of such 

where (>^Cp->p-^q) Bind p^(p^p-q) are the probabilities per unit time, for 

the transition from state p to p+q and p to p-q, respectively. These 
r\j Oj '\j '\j 

probabilities can be calculated using standard quantum mechanical pro- 

cedures leading to 

a quantum. Clearly we can v/rite 

‘^f(p) 

dt et-ta 

(2.1) 
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Pa = 

Pg = ^ B(q)n^6(y^) 

{2.2) 

ya ^ + fibiCq) 

ye ^ " ^f ~ 

where B(q) is the square of the interaction element, 6 is Dirac's delta 

function, E^ and Ef are the energies of the initial and the final elec- 

tronic states and is the phonon excitation number v/ith a wave vector 

q given by Planck's distribution. The distribution functions occurring 

in Eqn. (2.1) are displaced Maxwellian and, for the sake of convenience, 

we develop them in pov/ers of i.e. 

f(p) ^ + 
TUKT 

cose- 
TUKT WIKT 

cos^s]} (2.4) 

and 

where 

■?z^p 
f(p±q) - f ^(p^q) ^ rpCOS8±pCOS (p^p^l 

f\. f\, r\, TTI\CT L i\y!\. J 

—— ■ {l + ipCOSQ±qCOSCp'^q))^ 
m^T rriKT ^ ^ (2.5) 

f^(p) = 4 exp { - sr } (2.6) 

f (p±q) = A exp { - 
fi^(p±q) ^ 

A> <\j 
2rriKT 

(2.7) 
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The angle between and q is denoted by (PQC?) and that 
'V 'Xi '\i 

between pg and p is denoted by e. It is important to note that even 

though the succeeding terms in these expansions decrease rapidly, re- 

tention of second order terms in pg is necessary. In fact, it will be 

shown later that the prediction of electron cooling depends entirely on 

the inclusion of these second order terms in the calculations. 

Changing the summation in Eqn. (2.1) to integration over 

polar coordinates 

E (2.8) 

and then using the integration over o' to eliminate the 6 functions 

(which ensure the energy conservation) v/e get the condition 

fl^ |p+p I ^ 
a. a. 
2m 2m 

+ fiii^Cq) (2.9) 

which implies 

cos(p^)^ = + 
— 

q mfibi(q) 

%^pq 
(2.10) 

where the suffix 4- or - corresponds to the case of absorption or emission 

of a phonon, respectively. 

We also note that 
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,7T 

0*' 

COS ('j^q)^d^^ 

’ 

{cosecosfp^; + sinesinfpqjcose'}de’ 
>\/\j r\y\, 

2-n { + 
q mHbi(q) 
— +  } cose 
2p n^yq 

(2.11) 

Substitution of Eqns. (2.2) to (2.11) in Eqn. (2.1) gives 

^f(p) 

dt 
et-ta 

= 9'o<'P'’ + PQ^/P'’ + Po^^a'’?-’ (2.12) 

where 

9o^P^ 
V m _P / y qdqB(q)nq x { [^ _ exp 

. 

fluy(q) fib:i(q) 

KTQ KT 

+ [exp 
fib}(q) 

KTQ 
) - exp ( 

floiCq) 

KTQ 
)]_} (2.13) 

/ 1 _ V ^ / I cose - . , r r f fiii^(q) fLbi(a) . 
qdqB(q)n^ x { [2 - exp ( — ^ ) 

(2 + ^ cosrp^;)] -.'-[(exp ( —) - exp ( ))(; - 1 cos^p^J)], (2.14) 
P + K^n KT P rv,o. 

an(d 
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g^Cp) = V 1 
4j\hp KT 

I qB(q)n^dq 

X { (■ ^^P^COS^e _ ^ , fu^(q) _ fu^^(q) 
rriKT rr. rr. KTQ KT ' 

+ { exp ( ) - exp ( )} ] 
KT, KT, 

r , fibi(q) ^b:>(q) v , 

- [ exp ( —2 ^ ) { 
fi^q^COS^&ZO%^ (-pq) 

K^TQ K2" 

fz^q25ip203-{p2^p^; 2H^pqC0S^eC0S (;^) 

'XAJ 

2rriKT 
+ 

<vv 
>j 

, , ^^(q) , -^"q^coszecoszr^; 
- [ exp (  ^ ) { 

KT TTIKT 

ft^q^sin^esln rpq^ 2ii^pqcos^Qcos (pq) 
+  - —   1} 

2mKT TTIKT 
(2.15) 

The integration limits are partially determined by the fact that 

|cos{'pqj+|, as given by Eqn. (2.10), can never exceed unity and 

this imposes different upper and lov/er limits on q for two cases 

denoted by + and -. It now follows from Eqn. (1.5) that 

\et-ta 

H(p) 

dt )dh 
et- ta 

pg^ (p)d^p 
''u 

(2.16) 
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(2.17) 

To carry out the final integration over q in g^ and g^^ it Is first 

necessary to define u}(q) and B(q), The dependence of these quantities 

on q is determined by the type of lattice modes involved in the process 

of electron scattering. We, therefore, separate the cases of acoustical, 

optical polar and optical non-polar scattering and evaluate for each the 

integrals over q and p in Eqns. (2.16) and (2.17). 

§2.a.2 Acoustical Scattering 

where C is a constant of energy of the order of 1 ev and is the 

number of lattice points in the crystal. If the large values of p are 

For acoustical scattering, we have 

fiu)(q) = Usq 

and (2.18) 
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unimportant, then the limits of integration on q are determined from Eqn. 

(2.10) and are 

Lower Limit q(~h) = 0 

Upper Limit q(+) 2p + 2ms 
n 

(2.19) 

Further, we consider the case in which the temperature is sufficiently 

high such that 

KT^ » ms'^ 

and (2.20) 

KTQ 
% - J~“ 

T nsq 

Combining Eqns. (2.12) to (2.20), we are able to write 

dt 

ao 

el-la 

32tigienp^ 
(2.21) 

dt 

ao 

el- la ^ 2’o ' ^ ^0 ^ 

+ 

2 

ZmKT } (2.22) 
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where 

hT = (T ^ TQ) 

and 

^ao 
S/v8^n‘*MN^^e 

(SmKTf.)^/^KTf^m'^C^V 

(2.23) 

(2.24) 

§2.a. 3. Optical Non-Polai? Scattering 

We assume tjd(q) independent of q, i.e. 

- 0) (2.25) 

and the limits of integration over q thus become 

Lower Limit q(±) = 

Upper Limit q(±) = 

Following Seitz (1948), 

^ .1/2 ± { 
n 

p ^ 

we write 

(2.26) 

B(q) 
iz^D^ K ^ 

BNipMhi^ 
(2.27) 

where D is a constant of energy and K is the reciprocal lattice distance. 

Now, combining Eqns. (2;25) to (2.27) and (2.12) to (2.17), we get 
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dt 

on 

et~Za 

16 ^ ”<? j ^el^Va ^ ^ ji/2 
PTT -2 OTUo„ To 

rfexD f —-- — ) + 2}J + — exD f — - — )J 1 (2.28) Li-exp V KT ^ KT K2^Q ^ ' 

and 

dE 
dt 

8 n, N^iefvp^ rp 1/2 

) 1, ° ( / ) 
et-ta ■ 3TT 2 + 2nn ^V-on ^ 

. [lexp ( 4!^ - % ) - I>x. - 
K2^0 KT 

X { exp ( 
KTQ KT ' ^ ^ 0 SwicT 

, .... , -?za3 
)>.Z‘n + { exp ( KTQ 

fib) 

KT 
- 1)} 

(ih- ^0^ (2.29) 

where 

Von 
S>QeH^MN 

~Z(2mKT) '^ r^m'^D'^K^ (2n -^1) V 
H 

(2.30) 

■To expr-^;^^/^ry + ^ )^^'^dy 
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and 

(2.3.1) 

Paranjape and de Alba (1965) have evaluated the integrals for the case 

^mlKTQ>l and they are I 

I 
0 

( )^^^ 
4KT^ 

<0 

I 1 
/ PTT?Z(JO 

(2.32) 

§2.a.4. Optical Polar Scattering 

Following Frbhlich and Paranjape (1956), we define u^(q) 

independent of q and 

B(q) = ( / -/ ) (2.33) 
Vq^ ^0 

where and are, respectively, the high frequency and static 

dielectric constants of the crystal. Now Eqns. (2.26), (2.33) and 

(2.13) to (2.18) lead to 

dt 

op 

et~ta 

, %o_ \ f 
I- 2KT 

{ exp ( 
KT KT 

^ { exp ( ^ 42}Jo] (2.34) 
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and 

eZ ~ ^wu^pKro JQ 

X [ { exp ( •feco 
K^O 

fzoj 
KT ) - 2 } Jo 

-nm 
■'■ SOTK? (cr ^0 

■f { exp ( 
^0) 
KTQ 

■?zco 
KT ) - :z } fJl + ^ Jo - -To^ ] (2.35) 

where 

J 0 

“OO 

0- 
exp( -X )log { (x + + x^f ^) \3 

(x -f- ^X/KT)^!- x^f^) 
(2.36) 

J 1 f” exp(-ic)log { 
oJ 

(x + fiii^/KT)^^ + x^!'^) 
(x -f “^W/KT; 1 /2 - x^l'^) 

(2.37) 

and 

3/7 . >1/2 ^ 1/2 _2 
Q/onni^\ ' rw ' ' -?7/.\ * .T ^ 

X { exp ( •^CO 
KTQ 

- 7 } ( (2.38) 

So far in this chapter, we have calculated the rates of 

momentum and energy transfer from the electrons to the lattice for 

three different scattering processes. These rates were calculated 

by using the "displaced Maxwellian" distribution function and, there- 
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fore, they contain the parameters and T. The difference between the 

rates calculated by Frbhlich and Paranjape (1956) and those calculated 
\ 
i 

above (originally calculated by Paranjape and de Alba (1965)) is that 

in the former calculations the functions in Eqns. (2.4) and (2.5) were 

developed only to the first order in while in the latter, the terms 

proportional to p^^ were included. Paranjape and Ambrose (1964) have 

shown that the presence of these additional terms leads to the possibil- 

ity of electron cooling when the semiconductor is under the influence of 

an electric field (see APPENDIX II). 

§2.b.l. Momentum and Energy Transfer 

From the Sound Wave to the Electrons 

The problem of interaction between the conduction electrons 

and the sound wave has been treated by many workers using macroscopic 

models. Their calculations are based on the assumption o3T<<i where STTOJ 

is the frequency of the applied sound wave and T is the mean collision 

time for the electrons. However, when m is large, so that the wave • 

length of the sound wave is comparable to the mean free path of the 

electrons, these macroscopic considerations break down and a more soph- 

isticated quantum mechanical treatment becomes necessary. 

Van den Beukel (1956) and Mikoshiba (1959) have treated the 

problem quantum mechanically with the assumption 

o)T>l . (2.39) 

They, however, neglected the electron heating produced by the sound wave. 
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Paranjape (1964) has considered the effect of electron heating in the 

calculations by using a Maxwellian (undisplaced) distribution function. 

Epshtein (1966) has taken into account the asymmetric part of the dis- 

tribution function, but his calculations are for the case of weak elec- 

tron-electron interactions. 

We consider this problem by using a displaced Maxwellian dis- 

tribution function (v'/hich requires the dominance of electron-electron in- 

teraction). Under the inequality condition, Eqn. (2.39), a sound wave in 

a crystal can be considered as a phonon flux. (At 20°K, T=^10"^° sec., 

then to satisfy the inequality, Eqn. (2.39), the value of co required is 

of the order of 10^ cy/sec.) That is, the intensity of a high frequency 

sound wave, at a certain point in the crystal, can be expressed by a phonon 

excitation number. This phonon number, in general, v/ill be a function of 

position in the crystal because the sound v/ave intensity is reduced as it 

progresses away from the incident face. For the sake of simplicity, how- 

ever, we shall confine our calculations to a small region in the crystal 

in which the variation in this number is negligible. 

We assume that the applied acoustical wave is monocromatic and 

hence can be represented as 

= N^^(k-q)dk (2.40) 

where Nq is the total number of phonons excited by the sound wave. At any 

instant, in the small volume under consideration, the total phonon excita- 

tion number of wave vector k is the sum of internal or thermally 

excited phonons and Nj^ external or sound wave-excited phonons. These 

phonons are absorbed or-emitted during their inelastic collisions with 



24 - 

the lattice. When only internal phonons are present in the thermal 

equilibrium, there is no overall transfer of momentum and energy be- 

tween electrons and lattice. However, the addition of acoustical 

phonons to the lattice results in a net absorption of these phonons 

(and hence momentum and energy from the sound wave) by the electrons. 

We have 

and 

dt 0 

(2.41) 

Hence dNk __ d^k 
dt ~ dt 

(2.42) 

The rates of momentum and energy gained by the electrons 

from the sound wave may now be defined as 

dt 

J 717 

= U f 6 (k-q)-d^k 
^ dt ^ 

s-el 
= E r^; 

k dt 

y (fiq) ^ 
^ dt (2.43) 

and 
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<iE 
dt s-et 

2 nsk 
k dt 

y / (%sk) 
dt 

6 (k-q) d^k 

dNq 
= y (fisq) 

du 
(2.44) 

v/here y is the density of the lattice vibrational modes with wave vector 

q in the volume element under consideration. To evaluate dNq/dt in the 

Eqns. (2.43) and (2.44), v;e follow Paranjape (1962) and Conwell (1964) 

and write 

dNn f 

n^(p+q)^ 
X 6 (  —   fisq)d^p (2.45) 

2m -2m ^ 

where the interaction is through acoustical scattering. Putting the 

values of the distribution functions in Eqn. (2.45) from Eqn. (4) and 

assuming that we get 

- ’i’f'PoW'’} (2.46) 

where 
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^(po^q^ 

X 

'i’(Po^q^ 

X 

and 

Since the 

velocity is the same 

and recalling that 

we have 

A exp { 
2mKT 

5 ( a- a. 
2m 2m 

= A exp { 
2mKT 

s ( 
fi^(p-hq)^ f^2 2 

g. 
2m 2m 

(p-pQ-hq)^} 
0-0- o 

- fisq)d^p 

(p-Po)y 
o o 

■hsq)d^p 

(2.47) 

(2.48) 

A' 
Msld^lo (2-nmKT) ^ ^ 

N, (2.49) 

direction of the incident phonon flux and the drift 

cos Cp^q) = 2 
0^0 

(2.50) 

cos (PPQ) 

OO 

cose 

(2.51) 

cos = 
OO 

cose 
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Nov^f integrating over e in Eqns. (2.47) and (2.48) to eliminate 

the delta functions, we get the condition 

cose = (2.52) 

Since cosec7, it follows that 

P ^ 
ms 

h 2 2 
(2.53) 

Using this limit and carrying out the integration over p in 

Eqns. (2.47) and (2.48), we get 

2i\^m^KT 

cfi‘ 
i. A [ exp { - { ^Po ■ ^ 

2mns(q-po) ^ 

2m\cT 
(2.54) 

and 

2'n^m^KTQ 

qfi^ 
A' exp { - 

(%o ” ^^sfzpQ 
2mKT 

} (2.55) 

Developing the expressions in Eqns. (2.54) and (2.55) in the powers of 

Po and substituting in Eqn. (2.46), we get 
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X N f 7 - ^PO 
dt ^^i,o sfi(2'nmKTQ)^l^ ^ 

(1 _ mL _ ) _ 1 ^... , 
^ <2*0 SK^Q 2 WKTQ 2mKT^ms 

mN 
TT eZ- 

^o 
  77 
s^(2'umKTrx)^ f^ ^ 

^PQ-1 
r/7S (2.56) 

In these calculations, we have assumed the relative orders of magnitude 

for various quantities involved, which can be expressed as 

— < ms^ < ^sq « K2"O (2.57) 

If the first order terms in fipQ of the right-hand side in the equation 

are neglected, then Eqn. (2.56) coincides with the value of dN /dt 

obtained by Paranjape (1964). However, for arbitrarily large values of 

sound wave flux, the drift velocity can become comparable to sound ve- 

locity and then it is incorrect to neglect the term fip^/ms in compar- 

ison with unity. Finally, substituting the value of dd^/dt from Eqn. 

(2.52) in Eqns. (2.43) and (2.44), we get 

dt s-et 
p (^q) 7T MN. 'lO 

sh(2imKTf^) 

^Po-| 
ms —^ (2.58) 
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and 

dt 
s-et 

y (‘fisq) 7T ( 
mH et 
MN. ) 

  

sfi(2imKTQ) 
Li (2.59) 

If p/ is the sound wave energy flux reaching the element of 

volume, then it can be defined as 

P/ = y / (ilsq)N^6(k~q)d^k 

= \i(nsq)N^ (2.60) 

With this definition of the above rates can be expressed in the 

following way 

and 

dt 
6-el 

ms (2.61) 

dg 
dt 

s-el 

(2.62) 

where 

3 = 
qN 

(2.63) 

These are the rates of-momentum and energy transferred from the sound 

v/ave to the electrons. 



30 - 

CHAPTER III 

§3.a.1. Electron Cooling Conditions: 

General Discussion 

We have so far calculated the rates of momentum and energy 

transfer from the sound wave to the electrons: Eqns. (2.61) and (2.62) 

and from the electrons to the lattice: Sec. (2.a.2), (2.a.3) and (2.a.4). 

Using these rates in the momentum and energy conservation equations (1.11) 

and (1.12) and solving those equations, we shall obtain the values of the 

parameters PQ and T of the displaced Maxwellian distribution. The electron 

cooling conditions would then follow from the value of T. If we develop 

the expressions for dP/dt^Qi_i^ and d£/dt^Qi^i^, given in Sec. (2.a.2) 

(2.a.3) and (2.a.4), in the pov/ers of PQ and AT, then these rates for 

three different scattering mechanisms can be expressed by two general 

equations: 

where 6^ and are the constants characterizing the scattering 

mechanism. Note that in the right-hand side of Eqns. (3.1) and (3.2) 

the terms containing ^'^p^‘^/2mKT^ are neglected in comparison with unity; 

however, the term in of Eqn. (3.2) must be retained, since it is of 

el-la 
Y£PE%O (3.1) 

and 

el-Xa 
(3.2) 
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the same order of magnitude as AT/TQ, 

Equating these rates with the corresponding rates of momentum 

and energy transfer from the sound wave to the electrons, we get 

ms e e ^ u 
(3.3) 

and 

2 
1_2 - j = L^r-+ 

ms TQ SmicTQ 3 (3.4) 

Solving these equations for ^PQ and T, v/e get 

_ y^p^ms-l 
^Po = ms □ (3.5) 

and 

T = Tn { ^ + 
Qms- Y p -1 

C;j+-^msJ (3.6) 
0, 

3KT 
0 

It is easy to see that (T-T^) = t^T \s negative only when 

3KTQ p£ 
® e 

< 1 (3.7) 

In addition to this 

w > ^£p£^g 
3 

  
3P£KTQ 

1) 
-1 

(3.8) 
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is also a necessary condition for electron cooling. Inequality condition 

(3.7) corresponds to the electron cooling conditions obtained in the 

base of an electric field by Paranjape and de Alba (1965). 

We shall discuss this phenomenon in the cases of three 

different scattering processes. 

§3.a.2. Acoustical Scattering 

The values of the constants and can be obtained 

from Sec. (2.a.2) and they are 

Zm 

6^ = 5^ 

(3.9) 

Putting these constants in condition (3.7), we see that for electron 

cooling we must have 

YiT ^ 

—I < 1 (3.10) 
ms^ 

The inequality is contradictory to the assumption made in 

Eqn. (2.20) and hence w'hen the electron-lattice scattering is acoustical 

carrier temperature never decreases belov; the lattice temperature. 
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§3.a.3. Optical Non-Polar Scattering 

The constants in this case are 

Si\\ion l+2n^ 

P2 3m 
^co 

02 ^0) f fzw T- 

(3.11) 

The electron cooling conditions then become 

and 

i^) 

41 Ct 1 \ 1 ^ 
2 +( 1 + -J-) J (3.12) 

r; > T~:r ( 

X C2^i + ( “ ) -foS <2”o 0 

flui \ 2 { ( ) '• ' .^rp / 
0 

Ir 

1:2X1 + ( ) JoS 
(3.13) 

If fzu3>KTQ, then IQJ,II take approximate values given in Eqn. (2.32). 

Hence, the above conditions become 
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and 

( ~~ ) > S.646 (3.14) 

W > 16 
^ l+2n 

nq ) ( ^ )( 52 

Won '' 0 

(3.15) 

§3.a.4. Optical Polar Scattering 

The constants in this case are 

T3 - P op 

- { — ) m WQ ^ 
(3.16) 

03 = 3 p (hi}}) ^ ‘n 
4 '^niKT 

0 

Using these values of constants in conditions (3.7) 

we see that the cooling of electrons can occur if 

(3.17) 

and 

W > 4 / X , Jn X ) ( _£ ) — SKT 
Tl/ ‘op J 0 fi^q 0 (3.18) 

and (3.8) 
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§3.a.5. Non-Polar Substances 

I In non-polar substances, such as silicon, germanium, etc., if 

the temperature is not too low, then the important scattering mechanisms 

are both acoustical and non-polar optical. Thus, the total energy and 

momentum transferred to the lattice will be the sum of these quantities 

transferred via acoustical modes and optical non-polar modes. We may, 

therefore, write 

dt 
et- ta 

(YiPj + Y^p^) (3.19) 

dE 
dt et-ta 

(Yj0: + Y202 ) C 
AT 

Tr. 2mKT^ 
(3.20) 

Eqns. (3.19) and (3.20) can be expressed conveniently in terms of the 

constants 

'S-nVac 

26 2 
Sm 3m 

go 

^on 
) ( 

nq 

l+2n. ) C2-T, (3.21) KT 

= 16s' 
h(i) 
m I. ( -:7 

nq 

l+2n. 
) ( hcd 

KT, 
) ( 

^on 

where 

and 

^1^1 ^2^2 ~~ ^4^' 

YjOj + Y^e^ = Y^e^ 

(3.22) 
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The electron cooling conditions in this case become 

where 

and 

( > 3,646 (3.23) 
Kl Q 

(Won) ^ ^l2Y(l)e-T'^ (3.24) 
Vao 4 

Y(l) = - 21'^ - (3.25) 

W > — 2— {KTH.)^ ms 
TI3 n\ ° 

x'{ P4 CSKT + } (3.26) 
P4 

§3.a.6. Polar Substances 

In polar substances like pbs, CdSej InSb, etc., the important 

scattering mechanisms are optical polar and acoustical. Hence, in this 

case, we define 

^5 

Ps 
S2 ^ ^0 / Ugg \ 
m mJ^ ^ \iop 

(3.27) 

_ 32s^ j3 (hdi) ^ / Pgg % 
5 “ STT 4 WKTQ ^ y^p ' 

where 



The electron cooling conditions in this case become 

( Sii- ) JA > 1 
KT^ 41^ 

(3.29) 

( ) 
^ac 

< iJL i ( 12 
32 ^ KTQ ^ ^Jo (3.30) 

and 

w > 24 (m^T^) 
7T^ fi^q 

{KT^S) {pj CSKT, + (3.31) 

Eqns. (3.14), (3.15), (3.17), (3.18), (3.24), (3.26), (3.30) and (3.31) 

express the conditions under which the phenomenon of electron cooling 

may occur in different substances. 

§3.b. 

Attenuation of the sound wave and generation of acoustoelectric 

current are the two physical aspects of the electron-sound wave interaction. 

In the following section, we shall calculate sound absorption coefficient 

a and the acoustoelectric current with the help of the distribution 

function established in Chapter III. 
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§3.b.l. Sound Absorption Coefficient 

From Eqn. (2.56), we observe that the rate at which the phonons 
i 

are absorbed by the electrons from the sound wave is proportional to the 

number of phonons reaching the volume element under consideration. Thus, 

dNq 
dt s-eZ 

CX (3.32) 

and if the sound wave is travelling along the x-directi on, with the velocity 

s, then 

dt s-et 
L 
s dx s-et 

(3.33) 

It now follows that N^(x) ^ the number of phonons at a distance x from the 

incident face of the elements, can be written as 

N^(x) ^ exp{-cw:} (3.34) 

where a is called the coefficient of sound absorption and can be defined as 

(3.35) 
s-et 

2 ^q 
sN^(O) dt~ 

Substituting the value of dN^/dt ^ from Eqn. 
s-el ^ 

(2.56), we get 

a ( ^^&t \  ^ r"? - n 
MN{^Q s'^%(2wnKTI^ ms 

(3.36) 

Finally, using Eqn. (3.5), we obtain 
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a 
' 'sW(2mfKT^JT/2 

(3.37) 

for the sound absorption coefficient. 

3.b.2. Acoustoelectric Current 

The sound wave travelling through the crystal transfers 

momentum to the electrons and^ as a result, the electron gas acquires 

drift velocity in the direction of sound wave propagation. The electron 

drift causes a flow of charge across the crystal and, if the two ends of 

the specimen are connected by a suitable conductor, then a current flows 

through the closed circuit. This current, induced by the sound wave, is 

called acoustoelectric current. 

in the crystal, then the current is due to the conduction electrons only 

and can be calculated from the distribution function established in Sec- 

tion (S.a.l). The acoustoelectric current is given by 

If there are no positive charge carriers (or electron holes) 

^ao = ^ > ^^P (3.38) 

Substituting the value of f(p) from Eqn. (2), we get 

ao (3.39) 

and hence 



-1 
-h D (3.40) 



- 41 

Discussion 

The main results of our calculations are the electron 

cooling conditions obtained in Section (s.a.l). 

and 

(I) 
6e 

3KT.P ^ 0 e 
1 

(II) w > ms 
Q £ 

SP^KTQ 
- 1 )-i 

The first inequality is equivalent to the electron cooling 

condition obtained by Paranjape and de Alba (1965) in the case of an 

electric field. The second inequality defines the minimum value of 

sound wave energy flux required to produce electron cooling. In 

non-polar substances, the condition 

KFO 
3.646 

determines the maximum value of lattice temperature at which we can 

expect to achieve the effect of electron cooling. The condition 

Vac 4 

shows that electron cooling can occur only if the non-polar optical 

scattering dominates over the acoustical scattering. 

In polar substances, the condition (3.29) 

KT ^ ^ Jr. ^ 
0 0 

gives the maximum value of The integrals I and J are evaluated 
^ 0 0 0 
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by Paranjape and de Alba (1965) by expressing them in terms of Bessel 

functions from which the minimum value of ^ZCO/KTQ is - 5. 

The condition 

( 
Vac 

) 
9TY fiiii 

32 ^ ^ KT, 
)2 

^^0 
- 2 } 

shows that the electron cooling in polar substances can occur only if 

optical polar scattering predominates over acoustical scattering. 

Eqns. (3.5) and (3.6) give the values of the parameters 

and T as a function of incident energy flux W. We observe that as W-^0^ 

T-^TQ and PQ-^0 and the displaced Maxwellian function becomes simple Max- 

wellian, as expected. In this limit, the sound absorption coefficient 

tends to a value aQ, i.e. 

W-^0^a-^a,Q = TT ( — ) 
MNio ' 2h(2-mKT^)\l2 

This result is in agreement with the results of Paranjape 

(1964) and Epshtein (1966), except for small numerical factors. We 

also see that 
y 0 ^ JQQ 0 

On the other hand, for infinitely large values of we get 

Po ^ ^ and Jae ^ n^ies n 

i.e. the drift velocity tends to the sound velocity. For all 

finite values of f/, however, the drift velocity is less than the sound 

velocity. In other words, the sound wave cannot drive the electrons 
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faster than its own speed. 

-> CO j a 0 

show that the electrons drifting with the velocity of sound remairi un- 

affected by the sound wave. 

For very large but finite values of energy flux, we get 

W >> " ms 
p 

a a 
0 

( ^)( 1. ) 

This result is in agreement with the result obtained by Epshtein (1966), 

i.e. for large values of W the absorption coefficient varies as the in- 

verse of the energy flux. 
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APPENDIX I 

I The electrons and the lattice can be considered as two sep- 

arate systems when the density of conduction electrons is so high that 

the rate of energy exchange between electrons, through mutual collisions, 

is large compared with the rate of energy exchange between electrons and 

lattice. The electron density required to make interelectronic collisions 

more effective than the electron-lattice collisions can be estimated as 

follows: 

(1) The rate of energy exchange between lattice and electrons 

is given by 

dt 
et- la 

E ms^ 
(I) 

where s is the speed of sound and I:(E^TQ) is the average time 

between two electron-lattice collisions. 

(2) The rate of energy exchange of an electron due to collisions 

with other electrons. Pines (1953), is of the order 

dt el-el 

4i\n eV 
*4 

p 
logy (II) 

where is an effective charge, p is the r.m.s. momentum of 

an electron and logYp is a factor weakly depending on the 
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electron density and is of the order of unity. 

(3) From Eqns. (l) and (II), it follows that the electron density 

at which these two rates of energy transfer are equal, is 

of the order 

J I3/2„3/2S2 

4-n KT^e*‘*T(E^,T^) 

If T-10“i^ sec., e'^Ve^-lO and ^ then is of the order 

lO^^/cm^. When the condition n^i>n^i holds, electron-electron 

collisions dominate and the concept of electron temperature is 

valid. Equidistribution of momentum is realized only when the 

rate of momentum exchange between mutual collisions of the elec- 

trons is large compared to the rate of momentum exchange in elec- 

tron-lattice collisions. To achieve this condition, higher elec- 

tron densities than required. 
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APPENDIX II 

Electron Cooling Conditions in an Electric Field 

If we denote in this case 

and 

( 
9/rp; 

)d^p 
Field 

dP 
dt 

F-e -7 

(I) 

2^2 
fz p 

2m 

dfCp) 
ik. 
dt 

)d^ V = 

Field 
dt 

F-eZ 

then the momentum and energy balance equations (similar to Eqns. (1.11) 

and (1.12)) become 

and 

dP 
dt 

V-el 

dP 
dt 

el-la 
(II) 

dE 

dt 
F-eZ 

dt 
el-la 

(III) 

However, Frbhlich and Paranjape (1956) have shown that 



- 47 - 

and 

Itip 
^f(p^ 
  

dt 
)d^p 

F 
e?n el (IV) 

>?2 2 n p 
~'2m 

^f(p) 
A/ 

dt )d^P 
F 

m V fip^ (V) 

where F is the applied field. 

Thus, using Eqns. (2.16), (2.17), (l), (ll) and (ill), we get 

^Po 
^PQi (p)d^p efnsi Cvi) 

and 

{gQ(p)+VQ'^gi(p))d'^V 
m 

evil) 

In the 

Section (2.a.2.), 

case of acoustical 

we get 

scattering, using the rates from 

and 

dt 

aa 

el- la 
(VIII) 

m dt 

ao 

el-la 
(IX) 
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Now eliminating between Eqns. (VIII) and (IX) and assuming 

LT/TQ«1^ we get 

^ / - rns^ v 

TQ ~ ^ ^ 32 ^ s2 ^ ^ ^ 
(X) 

From Eqn. (X) we observe that l^T<0 v.'ould require ms^>KTQ 

which is not permissible in view of the assumption, Eqn. (2.20). Thus, 

we can conclude that even the inclusion of second order terms in in 

the calculations does not lead to the possibility of electron cooling 

if the scattering mechanism is acoustical. 

/ In optical non-polar scattering, we have 

and 

dt 

on 

el- la 
(XI) 

e^uel%p^ 
m dt 

on 

el- la 
(XII) 

which on elimination of p^ gives 

TQ 1%P ^ 

Ki Q 

r 7 £ ^03 -To 
^ 41^ + 2XO(WKTO; 

} (XIII) 
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Hence, i^T<0 would require 

( ^ ) £? > 1 
KTQ 411 + 21Q (fiiii/KTQ ) 

Putting the values of JQ and from Eqn 

we obtain the condition for electron cooling in the 

polar scattering as 

KT, 
2 + 3.646 

In optical polar scattering, we have 

dt 

op 

et-la 

and 

eFn^lfip^ = 
m dt 

op 

el- la 

in which case we get 

Ay ^ r \2 ^ . 

To 41Q KTQ “ " - 

Thus, the electron cooling condition in 

polar scattering becomes 

fib) 
KT, 

) > 2 ( £i 
^0 

1/2 

(XIV) 

\ 

(2.32) in Eqn. (XIV) 

case of optical non- 

(XV) 

(XVI) 

(XVII) 

(XVIII) 

the case of optical 

(XIX) 
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In addition, Paranjape and de Alba have derived the electron 

cooling conditions in a polar and non-polar crystal where optical polar 

and acoustical or optical non-polar and acoustical types of electron 

scatterings are simultaneously in effect. The conditions were 

(1) For the polar crystals in a weak field, for electron cooling, 

we must have 

^ 9j\_ r / fzO) \2 tlQ ^ 

^ac *^^0 ^^0 

(2) For non-polar crystals, we require 

(XX) 

Von ^ 
Vac 

L ( 
4 l+2n^ ' ^ KTQ 

(XXI) 

- 2C2Ji + ( ^ )Jo } 

It should be noted that these electron cooling conditions arise 

only because the second order terms are included in the calculations. But- 

cher et at. (1968) have calculated these conditions by taking higher order 

terms than and their results are basically,the same as above, except 

that the discontinuous behaviour of the electron temperature in high fields 

is removed; in fact, they have shown that for large fields electrons are 

heated. 
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APPENDIX III 

We point out that the decrease in electron temperature 

does not lead to a decrease in the average energy E of an electron. 

E = 1T 

j KT + 
2m 

and not just | KT as assumed by Frohlich (1948). Putting the values 

of Pp and T, we get 

E = ^ KTr.ms^ ms~2\ .2 0 2 0 0£ r/3-"^ 

which shows that for any finite value of VI, ^ is always greater than 

KTO • 
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List of Symbols 

2i\fi = fi 

m 

m 

e 

M 

K 

V 

0 

T 
0 

T 

nq 

Net 

^el 

N. -ho 

Planck's Constant 

Mass of an Electron 

Effective Mass of an Electron 

Electronic Charge 

Mass of an Ion 

Boltzmann's Constant 

Volume of the Crystal 

Average Drift Wave Vector of an Electron in the 
Presence of an External Electric Field 

The Lattice Temperature 

Electron Temperature 

Thermal Excitation Number of Phonons With Wave 
Vector q 

a. 

Total Number of Electrons in the Conduction 
Band of a Solid 

Electron Density in the Conduction Band 

Number of Lattice Points 


