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Abstract

The possibility of electron temperature decreasing below
the lattice temperature in the presence of an external electric f?e]d
(electron-cocling) has been pointed out by Paranjape and Ambrose (1964).
In the present work, we show that under suitable conditions an external
sound wave may produce the phenomenon of electron cooling in a semicon-
ductor. We have shown that a decrease in electron temperature may occur
when (1) the electrons are predominantly scattered by optical polar or
non-polar optical modes of the lattice vibrations and (2) when the in-
cident sound wave energy flux ¥ is greater than a certain critical value
Wy, (which depends on the type of semiconductor). Chapter I consists of
a description of the model and a brief outline of the calculations. In
Chapter II, using a displaced Maxwellian function, we have calculated
the rates of energy and momentum transfer from the électfons to the lat-
tice for acoustical, optical polar and non-polar optical types of scat-
tering. The rates of energy and momentum transfer from the sound wave
to the electrons are calculated in Chapter II, Section (2.b.1). Using
these rates in conservation conditions (1.11) and {(1.12), we obtain the
expression for the electron temperature T as a function of the energy
flux w (Eqn. (3.6)). 1Inequality conditions (3.7) and (3.8) are the main
results of our calculations. Condition (3.7) is equivalent to the elec-
tron cooling condition obtained by Paranjape and de Alba (1965) in the
case of an electric field, while (3.8) gives the minimum sound wave ener-

gy flux 28 required to produce electron cooling. 1In non-polar and polar



substances, the required predominance of optical scattering over
acoustical scattering is expressed by the ratios u,,/u,, and uppluac
in Eqns. (3.24) and (3.30), respectively. In Sections (3.b.1) and
(3.b.2), we have obtained the expressions for the sound absorption
coefficient o and acoustoelectric current J,, in terms of the energy

flux w.
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INTRODUCTION

The energy-momentum distribution of conduction electrons
in a non-degenerate semiconductor is given by the Maxwell-Boltzmann

i
/
distribution function. In thermal equilibrium

n2_ 3/ (1)

f(%\‘)’) = dmgyg ( pr—. exp(—ﬁ2p2/2mv<T0)

where f(p)dp represents the number of electrons with the wave vector
N

between p

-

n

tion electron density and m is the isotropic effective mass of an

and p+dp, T, is the lattice temperature, n,7 is the conduc-
LAV

electron.

In the presence of an external electric field, the electron
distribution deviates from its thermal equilibrium value. In the cal-
culations of the transport properties of the material, the field induced
distribution function is convenieﬁt]y developed along the field direction

as

s £, (p)P, (cose). (2)

fip)
v n=0

where © is the angle between p and the applied field { and P,(cosg) is
£ L

the Legendre polynomial of degree m. In a weak field, the expansion is

truncated after the second term, so that
f(p) = fE(p) + fi(p)coss (3)
£ ,

where fS(p) is the unperturbed distribution given by Eqn. (1) and f, (p)
v A



is the anisotropic part of the function f(ﬁ)' This approximation is
the usual starting point in the\discussion of 1inear transport theories
of solids (e.g. Ohm's Law) and is valid in sufficiently weak electric
fields.

In strong fields, however, non-linear conduction phenomena
may become significant and the distribution function f(p) cannot be
adequéte]y described by Egn. (3). It is possible to de;] with the high
field case by taking into account more terms from the right-hand side of
Eqn. (2). Their computation, however, is highly involved, which limits
the usefulness of this approach.

To avoid the inclusion of higher order terms and the difficult
calculations associated with it, Frohlich (1947) introduced the concept
of electron temperature. He pointed out that the distribution function
in high etectric fields can be conveniently expressed by using this con-
cept. The theory of electron temﬁerature is based on the assumption that
the electrons and the lattice can be treated as two separate systems which
are connected by electron-lattice interaction. In thermal equilibrium,
(i.e. in the absence of an external field), there is no net transfer of
energy from one system to another. The electric field gives energy and
momentum to the electrons, but it has no direqﬁweffect on the lattice and,
as a result, the equilibrium between the two systems is disturbed. A sta-
tionary state will, however, be reached when the rates at which electrons
receive momentum and energy from the field equal the rates at which they
transfer momentum and energy to the lattice.

It will be shown later (APPENDIX III) that in the stationary

state the average energy of the electrons is larger than its zero-field



value (i.e. 3/2 «7 ). According to Frohlich, if the electron system
reaches a quasi—eqﬁi?ibrium through interelectronic collisions, then

the average energy E may be equated to 3/2 «T where T is the tempera-
ture of the electron gas (the interelectronic collisions randomize ‘the
energy and momentum over the electron gas). Frohlich and Paranjape (1956)
proposed that the distribution function f(g), in the presence of aa‘e1ec-
tric field, under suitable conditions, can be represented by a Maxwellian
function displaced in momentum space and characterized by the electron

temperature (different from the lattice temperature).

hz(p—po)2
JAVEAY)

Flp) = Aexp { - —pir—) (4)

22 3/2
4 = 4 7 5
el ( 2mmeT ) ( )

where p  1is the average wave vector of an electron in the direction of
the apE]ied field. The values of Py and T depend on the strength of
the applied field and the types of lattice scattering relevant to the
crystal. It is important to note that the fun;}ion given in Eqn. (4)
is valid for high fields, as well as for zero-field. Hence, F0, €0+0
and 7-7.

Until recently, it has been assumed that an increase in the
average energy due to electric fields always leads to an increase in
the electron temperature, I>T,, which is known as the "hot electron”
phenomenon. Contrary to this, it has been theoretically demonstrated

by Paranjape and Ambrose (1964) that the phenomenon may not always



occur; in fact, under suitable conditions, the electron temperature
may, on application of the field, decrease below the lattice tempera-
ture, T,. This may be described as the "cooled electron" phenomenon
and was predicted when the electrons were predominantly scattereﬂ by
the phonons, whose energy is greater than the average electron energv.
The theoretical possibility of electron cooling was further investi-
gated by de Alba and Warman (1965), Blotekjaer (1967) and Baynham et
al. (1968). So far, there is no experimental verification of this
phenomenon - the difficuities are immense. The present work proposes
an alternative method of producing cooled electrons in semiconductors.
We show in this work that the cooled electrons can be produced by pas-
sing a sound wave through a suitable semiconductor.

An external acoustic wave of energy flux W transfers energy
and momentum to the conduction electrons as it propagates through the
crystal; and, as a result, the electrons acgquire drift velocity in the
direction of the sound wave. Under suitable conditions, given by Frdh-
1ich and Paranjape (1956), the steady state distribution can be repre-
sented by a "displaced Maxwellian" function given in Egn. (4). The
values of 20 and 7, in this case, will depend on the energy flux W.
Using a procedure similar to the one used by Paranjape and Ambrose
(1964) and Paranjape and de Alba (1965) for the case of an electric
field, we obtain conditions under which electron cooling may occur.
The conditions show that, if the incident energy flux ¥ is greater
than a critical value Wy (which depends on the types of lattice scat-

tering effective in the semiconductor), electron cooling is possible;



and, if it is less than w,, electron heating would take place. We
discuss the electron cooling conditions for various types of lattice
scattering. The calculations for the polar and non-polar semiconductors
shqw that electron cooling is possible only if optical polar or éptica]
non-polar scattering dominates over acoustical scattering. Finally, the
acoustoelectric current and the sound absorption coefficient are calcu-

lated as a function of w.



CHAPTER 1

§l.a.1l. Model
|

We consider a high frequency sound wave incident at a
crystal of an n-type (polar or non-polar) semiconductor. The crystal
is kept in contact with a heat bath and its two ends along the direc-
tion of the sound wave are connected by a suitable conductor.

We wish to investigate the effect of the sound wave on the
energy distribution of the conduction electrons under the following

assumptions:

(1) The sound wave while passing through the crystal interacts
only with the electrons. The assuhption is valid at sufficiently low
temperatures, because for temperatures higher than 20°K the sound ab-
sorption due to other sources (e.g. lattice vibrations) dominates the
absorption due to electrons.

{(2) The temperature of the 1att§ce T, is maintained constant by.
the heat bath and the lattice (phonon) energy distribution is given by

Planck's distribution

[exp (7w/er, )-1] o

"%
(1.17)
np+1 = ng exp(hw/KTo)

where nj is the excitation number of phonons with wave vector k.
’ 1%



(3) Our calculations assume a free electron model. Thus an
electron with a wave vector p will have energy E(p), given by
/-‘ Y n,

E(g) = #2p2/om (1.2)
where m is the effective mass of an electron. The assumption is not
usually valid due to non-parabolicity in the band structure at high
temperatures. However, for the range of temperatures in which we are
interested (less than 20°K), the assumption is reasonable.

Throughout this work, the energy momentum distribution of
the conduction electrons, in the presence of a sound wave, is represented
by a displaced Maxwellian function. Frohlich and Paranjape (1956) have
discussed the conditions under whﬁch this representation is valid (see
APPENDIX I). They pointed out that for electron densities higher than
101%/cm? the electron-electron interaction is stronger than the electron-

lattice interaction. Under this condition, it is reasonable to assume

the electron distribution given by the function in Eqn. {(4).
§l.a.2. Mathematical Outline of the Célculations

A steady state Boltzmann equation, in fhe_presence of a

sound wave., can be written as

d3f(p)
Y
3t

of (p)
n,
ot

af(p)
+ Y]
el-el ot

s-el el-la

where the first, second and third terms represent the rates of change



of f(ﬁ) due to electron-sound wave interaction, electron-electron scat-
terkng and electron-lattice scattering, respectively. The solution of
Fhe above equation would represent a steady state energy distribution
of the electrons under the influence of an external sound wave. It is,
however, well known that the electron-electron collision term in Eqgn.
(1.3) is difficult to evaluate and its exact solution cannot be easily
obtained. We know that the interelectronic collisions conserve total
momentum and total energy of the electron system. This fact can be
utilized to avoid the evaluation of df(pz/at,ez_ez term by transforming
Boltzmann's equation into momentum and Znergy conservation conditions.

The momentum conservation follows since

3f (p) of (p) 3f(p)
I p | e + — § — Y =0 (1.4)
p " 0t |s-el 3t |el-el 3t lel-1la
") .
and the energy conservation because
#2p? af(p)] 3f (p) 3f (p)
) { s + at + % }=0 (1.5)
p om 3t |s-el 3t |el-el 3t |el-la
")
However, since
of (p)
T hp { ———— } =0 (1.6)
p n ot |el-el
n
and
E 3f (p)
#2p? f P
} =0 (1.7)



it follows

s

and

thz

af(g)l

g om

{

ot Is—eZ

}

Using the following simplifying notations

and

7ip | = } = =
o 2 dt
wp® M%) - 2B
2m 9t |g-el dt
3f (p) dP
_2 hp { .———.&, ‘ o e—
v 3t lel-1a dt
#2p2 { af(g) } dE
2 T

3f (p)

-z ap | X! }
p L o0t |el-1la
n,

d

—Ethz { f(zi)l
p am 9t leZ—Za
ny

(1.8)

(1.9)

> (1.10)
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equations (1.8) and {1.9) become

dP dpP

= 1.11
dt|g_e1 dt el-la ( )
and
dE dE
- = == 1.12
dt s-el dt el-la ( )

These two equations simply show that in a stationary state
the rates at which momentum and energy are absorbed from the sound wave
equal the rates at which these quantities are transferred to the lattice.
We shall use these conditions to.determine the steady state distribution
of the electrons.

Boltzmann's equation, given in Eqn. (1.3), can be solved in
two extreme cases. In the first case, electron-electron interaction ié
entirely negqlected and the distribution function is developed in the
first few terms. This corresponds to the case of low electron density

and weak electric field. In the following work, we shall follow the

other case and assume the dominance of the df(p%/&t el-c1 term. The as-

sumption allows us to represent the solution of Eqﬁ. (1.3) by a displaced
Maxwellian function containing parameters Py and 7. Using this distribu-
tion, we evaluate the four rates given in Egns. (1.11) and (1.12). Ve

shall then solve fhe momentum and energy conservation conditions and ob-

tain the parameters. The electron cooling conditions will then follow

from the expression for the electron temperature.
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CHAPTER II

§2.a.1. Calculations Concerning Momentum and Energy Transfer
From the Electrons to the Lattice: General Theory

To evaluate the momentum and energy transferred from the
electrons to the lattice, we must first calculate df(p)/d¢|,7-14 -
This can be done by considering the scattering proces: which involves
the absorption or emission of a gquantum of lattice vibrations (phonon)
by an electron. Let g be the wave vector of the phonon and #w(q) be
the energy. Momentum%conservation requires that electronic tra:sitions
from a state p (momentum #p) are only possible to the state p+g in the

Y v N

case of absorption and to the state p-g in the case of emission of such
N

a quantum. Clearly we can write

3f(p)
ny, = 3 + _ o .
Gt ozt T & BB - PR )
Y]
- flpleo,(pop-q) + f(p-q)e, (p-gp) (2.1)
nvoO8 AR A A E A a AL

where pa(€»2+z)~and pe(€+€-g) are the probabilities per unit time, for

the transition from state p to ptg and p to p-gq, respectively. These
N VY Y oy

probabilities can be calculated using standard quantum mechanical pro-

cedures leading to
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Pg = 2%-B(q)nq6(ya)
Pg = -2-;7 B.’q)nqﬁ(ye)

(2.2)
Yg = E’I: - Ef + ﬁw(q)

Yo = E; - f—ﬁw(q)

where B(q) is the square of the interaction element, § is Dirac's delta
function, E; and Ef are the energies of the initial and the final elec-

tronic states and n,, is the phonon excitation number with a wave vector

q
q given by Planck's distribution. The distribution functions occurring
n

in Eqn. (2.1) are displaced Maxwellian and, for the sake of convenience,

we develop them in powers of P, i.e.

2 252
0 = cos2e]} (2.4)

mk

. ‘ﬁzpp 0 'th
fp) = fop){1 + ——— C0S8— —— [1+

and
: ﬁzpo A
flpxq) = Folprq){1 + [pCOSGi'qCOS(poq)]
oA VW T Ao
- 0 i A Y2
e U g (p0sosqcos (pyg ) (2.5)
where
_ #2p2
fo(p) = Aexp { - G~ } (2.6)
. #2(p2rq)?
&+ = - —v N 2.7
fo(p+q) A exp { P } (2.7)
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The angle between Po and q is denoted by (ggz) and that
between p, and p is denoted by 6. It is important to note that even
though fge succzeding terms in these expansions decrease rapidly, re-
tention of second order terms in p, is necessary. In fact, it wi?] be
shown later that the prediction of electron cooling depends entirely on
the inclusion of these second order terms in the calculations.

Changing the summation in Egn. (2.1) to integration over

polar coordinates

83

Q™

o J q2dqsing 'de'ds’ (2.8)

and then using the integration over &' to eliminate the § functions

(which ensure the energy conservation) we get the condition

2l p+al2
7 lg,%l #2p2

= + Fiw(q) (2.9)
2m m
which implies
A q mhw(q)
cos(gz)i; Y %" g (2.10)

where the suffix 4+ or — corresponds to the case of absorption or emission
of a phonon, respectively.

We also note that



- 14 -

o
] cos(ﬁ&)ide' = [ {cosecos(ﬁa) + singsin(pg)cose" }de’
0 [AVAV] H"AY v
_ _q mhiw(q)
= 21 { 1 -E; Hipg } cose (2.11)

Substitution of Eqns. (2.2) to (2.11) in Eqn. (2.1) gives

3f(p)
n
ot

= g,(p) + pyg,(p) + py?g,(p) (2.12)
el-la

/' where
0(p) = gois B Fote) [ adantaing x ([1 - exp (B,
+ [exp (m(q) ) - ”“’(q) )]_) (2.13)
gl(p) - fo( ) cose J qqu(q)n « ([7 - ex p—; ﬁw(z) ﬁmig) )
(1 + g-cos(g%))]+-b[(exp ( ﬁt(z) ) - exp ( %M(q) ))(z - 5-cos(pq))] (2.14)

and
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= V 11 4B d

X

¢ (" #%p2cos?e wlq) _ Fwl(q)
——————— L 1" - }
¢ ( mkT )[{ eXp ( kT A ) +

e (P - ep (el gy )
kT KTO -
2,.2c062 2 (e
Holq)  Fwlq) | #2q4cos?6cos Qaz)
- [ exp ( - ) 1
kT, kT meT
#2q2sin2esin2 (py) 2%2pqcos20cos (P
+ -"\/\.p + 2% }+]
ameT m<T
F(q) ‘ﬁquCOSZSCOSZQé%)
- [exp ( ) {
mxT
#22sinZesinipy) 2%2pqcos20cos (By)
Ay
+ M - ~—1_]} (2.15)
omcT mkT

The integration limits are partially determingq_by the fact that
Icos(p%)i{, as given by Eqn. (2.10), can never exceed unity and
Rvav

this imposes different upper and Tower limits on g for two cases

denoted by + and -. It now follows from Eqn. (1.5) that
; 3f (p) 5
dP f ny 2 ﬁ po :
3 = ﬁp ( a= — ( )d3 )
Ttlo1-10 S SR L Jfgl p)d®  (2.18)




Te——
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: #2p2 3f (p)
%E . = 2p (=K ' )a3p
t el-la m a_t el-1la
%2 2¢ P J3 ?
= Em—fp g0(p) + pyg,(®)}dp (2.17>)

To carry out the final integration over ¢ in dos 9, and g, it is first
necessary to define w(qg) and B(gq). The dependence of these quantities

on g is determined by the type of lattice modes involved in the process
of electron scattering. We, therefore, separate the cases of acoustical,
optical polar and optical non-po]ér scattering and evaluate for each the

integrals over g and p in Eqns. (2.16) and (2.17).

§2.a.2 Acoustica} Scattering
For acoustical scattering, we have
finl(g) = Tisq
and (2.18)
202q

Blq) = Z 23—
SMshi o

where C is a constant of energy of the order of 1 ev and N;, is the

number of lattice points in the crystal. If the large values of p are
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unimportant, then the Timits of integration on g are determined from Eqn.

(2.10) and are

Lower Limit g(+) = 0
(2.19)

Upper Limit  q(+)

]
AM]
BN
+
|

Further, we consider the case in which the temperature is sufficiently

high such that

KT, >> ms 2

and (2.20)

ac _ BelNggefip, T \1/2

dP )
e 2.21
dE|*¢ 32N, 782 7 2 ap, A%py?
tlyy1a ~ Fae (T ) Lry U G
#2%p,2
L 2P (2.22)
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where
AT = (T - Tgy) (2.23)
and
' 3Vms 2A" M pe
ac = 2.24
(2mT )1/ 2¢T ym2C2V (2.24)
§2.a.3. Optical Non-Polar Scattering

We assume w(q) independent of ¢, i.e.

wlqg) = w (2.25)

-and the 1imits of integration over g thus become

2.2

Lower Limit gq(+) = = { 7p ;ZM%w }1/2¢p
(2.26)

%sziZmﬁw 1/2

Upper Limit g(x) = p + {..___“_;i___,_,~ }
Foliowing Seitz (1948), we write
292 v 2

Blo) = o (2.27)

2N i oMhw

where D is a constant of energy and k is the reciprocal lattice distance.

Now, combining Egns. (2:25) to (2.27) and (2.12) to (2.17), we get
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iEO?’L B _Z_Q_( nq . Nezeﬁpo (_2_7__ )1/2
dt eZ_Za 9 an+1 muOn To
7 7 12
x [{exp ( E?%" E%-) + 1}1, + E%-exp (
and
dE|°on 8 ( g e18hp T )1/2
fw 72D 0% 7w
x [lexp ( 7= - =5 ) - Do + o0
0
Fiw Aw vy ﬁzpoz
x { exp (-Efg' E?')}Io + 5 { exp (
2
( 3 I1 - IO)
where
. 8Vreh?MN ; , i
on 3(2mKT)1/2m2D2K2(2nq+1)V
R .1/2 fiw ,1/2
Iy = Oj expl-yly " “(y + = )71 dy

fiw
KTO

Fw

KTO

#

- E%')IOJ
Aw

aliy 1)}

(2.28)

(2.29)

(2.30)
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and
I, = J exp(—y)yl/z(y + %%-)l/zdy (2.31)
0

Paranjape and de Alba (1965) have evaluated the integrals for the;case
#w/xTy>1 and they are |

I o= (w2
0 4KTO
° (2.32)
1/2
1, = ( 9w ) /
4kT
§2.a.b. Optical Polar Scattering

Following Frohlich and Paranjape (1956), we define w(q)

independent of g and

2me27%3w 1 1

vihere € and e, are, respectively, the high frequency and static
dielectric constants of the crystal. Now Eqﬁgt (2.26), (2.33) and
(2.13) to (2.18) lead to

dP|P Veze fip, #w Aw Fw
dt ez~za - Zm}.lop ( JO ) X [ PPVE { exp ( T E.f )_J}JO
fiw  _ Fw oy,
+ Lexp (= - = )+1}7,] (2.38)

0
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and
dgE|fa _ 3wilgre 5
dt el 4muopn<T0 J
#w Fw 'thoz Fw
x [{exp(?ﬁ)—-ﬁ) -114d, + S w7 Y0
?’ &
#Cep (- T8y - 21y Bgag - 100 ] (2.35)
where
_ hd (x+ﬁw/KT)1/2+x1/2)}dx 23
To = OJ exp(-x)1og { (x + %w/xT)V2 - 21/2) (2.36)
& (x + Ho/<T)2 4+ £1/2)
J = - ] de
) OJ exp(-z)log { (o 7 ForeT T x1/2)}y (2.37)
and
3T ( 2% 30 )1/2 kTog 1/2 1
Yop = Gomw m (%‘5)“ J
| sy _ g3 1 1y-!
x { exp ( E?E-) 11} (E;- EBJ (2.38)

So far in this chapter, we have calculated the rates of
momentum and energy transfer from the electrons to the lattice for
three different scattering processes. These rates were calculated

by using the "disp]aceﬂ Maxwellian" distribution function and, there-
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fore, they contain the parameters p, and T. The difference between the
ratgs calculated by Frohlich and Paranjape (1956) and those calculated
aboﬂe (originally calculated by Paranjape and de Alba (1965)) is that

in the former calculations the functions in Egns. (2.4) and (2.5) were
developed only to the first order in p,; while in the latter, the terms
proportional to pG2 were iﬁc1uded. Paranjape and Ambrose (1964) have
shown that the presence of these additional terms leads to the possibil-
ity of electron cooling when the semiconductor is under the influence of

an electric field (see APPENDIX II).

§2.b.1. Momentum and Energy Transfer
From the Sound Wave to the Electrons

The problem of interaction between the conduction electrons
and the sound wave has been treated by many workers using macroscopic
models. Their calculations are based on the assumption wrt<<I where 2ww
is the frequency of the applied sound wave and t is the mean collision
time for thé electrons. However, when w is large, so that the wave -
length of the sound wave is comparable to the mean free path of the
electrons, these macroscopic considerations break down an§ a more soph-
isticated quantum mechanical treatment becomes necessary..

Van den Beukel (1956) and Mikoshiba (1259) have treated the

problem quantum mechanically with the assumption
wt>1 . (2.39)

They, however, neg]ectedmthe electron heating produced by the sound wave.
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Paranjape (1964) has considered the effect of electron heating in the
calculations by using a Maxwellian (undisplaced) distribution function.
Epshtein (1966) has taken into account the asymmetric part of the dis-
tribution function, but his calculations are for the case of weak elec-
tron-electron interactions.

" We consider this problem by using a displaced Maxwellian dis-
tribution function (which requires the dominance of electron-electron in-
teraction). Under the inequality condition, Eqn. (2.39), a sound wave in
a crystal can be considered as a phonon flux. (At 20°K, t=10"10 sec.,
then to satisfy the inequality, Eqn. (2.39), the value of w required is
of the order of 10% cy/sec.) That is, the intensity of a high frequency
sound wave, at a certain point in the crystal, can be expressed by a phonon
excitation number. This phonon number, in general, will be a function of
position in the crystal because the sound wave intensity is reduced as it
progresses away from the incident face. For the sake of simplicity, how-
ever, we shall confine our calculations to a small region in the crystal
in which the variation in this number is negligible.

We assume that the applied acoustical wave is monocromatic and

hence can be represented as
N = Nqé(ﬁ—z)dk (2.40)

where Ng is the total number of phonons excited by the sound wave. At any
instant, in the small volume under consideration, the total phonon excita-
tion number Ni of wave vector k is the sum of g internal or thermally
excited phonons and ¥, external or sound wave-excited phonons. These

phonons are absorbed or.emitted during their inelastic collisions with
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the lattice. When only internal phonons are present in the thermal
equilibrium, there is no overall transfer of momentum and energy be-
tween electrons and lattice. However, the addition of acoustical
phonons to the lattice results in a net absorption of these phonops

(and hence momentum and energy from the sound wave) by the electrons.

We have
and (2.41)
dny,
at = ¢
dNi dny,
Hence alfxk  dir
aE = dt (2.42)

The rates of momentum and energy gained by the electrons

from the sound wave may now be defined as

dP Adny
= I (hk) —=
dt|g_e1 AR
dig . 3
= u j #k il (g—z)dd k
A an,
= =g
u (%q) 7 (2.43)

and
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dE = s oner Mk
dt s-el k dt

¥

[ (hisk) Na s (req) ain
= § (k-q)
BT P IR

an
, g
= % —L 2.44
v (fisq) 7 ( )
where u is the density of the lattice vibrational modes with wave vector
q in the volume element under consideration. To evaluate diy/dt in the
Eqns. (2.43) and (2.44), we follow Paranjape (1962) and Conwell (1964)

and write

qu B(q) ;
et = j-————h {(Nq+1)f‘(p+q) - qu(p)}
#2(p+q)? ﬁz 2
- p
S ALY - - 3 .45
x & > _ #sq)d>p (2.45)

where the interaction is through acoustical scattering. Putting the
values of the distribution functions in Eqn. (2.45) from Eqn. (4) and

assuming that ¥ >>7, we get

q

diig
gz = [12(pg,q) - ¥(py,q)} (2.46)

where



71"12(2'/‘2)2 %zpz
x & ( o - #sq)d3p (2.47)
¥(py.q) = A’ I exp { _:ﬁf.(p-po)}
kKT « n

22 (. 2
71 (R#g) #%2p2

- - 3
x & S o #sq)dp (2.48)
and
C2gh2N
A = T el g, (2.49)
MBN¢0(2ﬂmKT)1/2

Since the direction of the incident phonon flux and the drift

velocity is the same

cos(plg) = 1 (2.50)
oy
and recalling that
cos(pgo) = CO0SH
aVa"}
we have (2.51)

i cos(py) = cos8
' Uy
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Now integrating over 6 in Eqns. (2.47) and (2.48) to eliminate

the delta functions, we get the condition

]

/
!

emtisq-H? 2]
C 6 = ————
oS [ E%j—p;c?q— (2.52)
Since cose<Z, it follows that

p>m L. _1 (2.53)

Using this limit and carrying out the integration over p in

Eqns. (2.47) and (2.48), we get

onlm2¢T . %
®(pysq) = _ﬂ__gﬁ__;_@;;f exp { - ( #py - “29* )2
2mtis (g-py)
2mxT
and
7
2w2m? T, _ (7p, —«»-2—6-2-)2 + 2ms7p, -
¥(py.q) = -~a%§-—-A' exp { - T 1 (2.55)

Developing the expressions in Eqns. (2.54) and (2.55) in the powers of

po and substituting in Eqn. (2.46), we get
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Mg et c? I )
dt MUio * sti(2mmeT,)1/2 4 axly  ms
(71- ms?  #sq _ i3_7?‘235902 + 7#%py° 0}
kT, 2xT, 2 mxT 2777KT0ms
mlgg c? ﬁpo
=~ q v, [1-—-—"7 (2.56)

MIV; o Sﬁ(2'rrm|<To)1/2 q ms

In these calculations, we have assumed the relative orders of magnitude

for various quantities involved, which can be expressed as

ﬁ2p02

m

< ms? < #sq << xTg (2.57)

If the first order terms in 7p, o% the right-hand side in the equation
are neglected, then Eqn. (2.56) coincides with the value of qu/dt
obtained by Paranjape (1964). However, for arbitrarily large values of
sound wave flux, the drift velocity can become comparable to sound ve-
locity and then it is incorrect to neglect the term #p,/ms 1in compar-
ison with unity. Finally, substituting the value of qu/dt from Egn.
(2.52) in Eqns. (2.43) and (2.44), we get \

dapP Py
ay = ulhg) m ( 2= ) W
dt|s_e1 ! Mizo = 4
0'2 %p
C1- =% (2.58)

% ( 2mnT ) 3/ 2
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and

dE
dt
s-el

02
7 (2mmeT,) 3/ 2

C1

If w is the sound wave energy

volume, then it can be defined as

W =

= u(7sq)l,

With this definition of

following way

utasq) v ( 7=

(2.59)

flux reaching the element of

3
w [ (heq)lgs(k-q)dk

(2.60)

7, the above rates can be expressed in the

apP _ Po
-‘-t— = WB El - ’—-S-" (2.6])
s-el
and
dE #p ,
g = wes [ 1 - 55 (2.62)
s-el
where
T2HgN e
el (2.63)

B =
"4KT0uac(mKT0)2

‘These are the rates of -momentum and energy transferred from the

wave to the electrons.

sound
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CHAPTER III

§3.a.1. Electron Cooliﬁg Conditions:

/ General Discussion

We have so far calculated the rates of momentum and energy
transfer from the sound wave to the electrons: Eans. (2.61) énd (2.62)
and from the electrons to the lattice: Sec. (2.a.2), (2.a.3) and (2.a.u).
Using these rates in the momentum and energy conservation equations (1.11)
and (1.12) and solving those equations, we shall obtain the values of the
parameters p, and T of the displaced Maxwellian distribution. The electron
cooling conditions would then follow from the value of 7. If we develop
the expressions for dEy&t,eZ_Za and dE/gt,eZ—Za: given in Sec. (2.a.2)
(2.a2.3) and (2.a.u), in the powers of p, and AT, then these rates for

three different scattering mechanisms can be expressed by two general

equations:
dapP
= = Yp ﬁpo (3-])
dt|e1-14 ee
and
%2 2
dE| AT "Po
“h = &) = o 3.2
d.t eZ—.Za Y€ € TO 3mKT0] \( )

where Y., 6. and p_ are the constants characterizing the scattering
mechanism. Note that in the right-hand side of Egns. (3.1) and (3.2)
the terms containing ﬁ2p02/2mKTo are neglected in comparison with unity;

however, the term in p,2 of Eqn. (3.2) must be retained, since it is of
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the same order of magnitude as AT/T,.
Equating these rates with the corresponding rates of momentum

and energy transfer from the sound wave to the electrons, we get

,h .
wg [1 - %Qj = Yo fip, (3.3)
and
- —— = Y e —— 3.
wee [1 - — eOe ETo + 3m|<TO:] (3.4)

Solving these equations for #p, and T, we get

Ep ms . -1

_ (3.5)

#py = ms [1 +
and

E + WB ms] (3.6)

eps -2
- 3|<T |"_'1 + ms_] }

It is easy to see that (7-T,) = AT is negative only when

—

3KTO :—E < 1 (3.7)
€

In addition to this

Y_.p_ms 0 -1
W o> -—E’E & __ - 1 3.8
S T te (3.8)
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is also a necessary condition for electron cooling. Inequality condition
(3.7) corresponds to the electron cooling conditions obtained in the

éase of an electric field by Paranjape and de Alba (1965).
We shall discuss this phencmenon in the cases of three

different scattering processes.
§3.a.2. Acoustical Scattering

The values of the constants Y., p. and 6. can be obtained

from Sec. (2.a.2) and they are

) 32neze
1T Fige
; .
py = Z (3.9)
91 = 32

Putting these constants in condition (3.7), we see that for electron

cooling we must have

kT

> < 1 (3.10)
ms .

The inequality is contradictory to the assumption made in
Egn. (2.20) and hence when the electron-lattice scattering is acoustical

carrier temperature never decreases below the lattice temperature.
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§3.a.3. Optical Non-Polar Scattering

The constants in this case are

y _ 2Ny7e ( ng )
2 oy - I+an,

£ [or, +@-6-Ij

©
N
]

o (fo_) 1,

/ The electron cooling conditions then become

fiw 41, 1 2
.(KTO) > E1=+(1+":T'O“) _

and
n 7T s !
q 0 L‘ac 2
7> e (T ) Camg ) (522) (meto)

x [or + ( h““‘o ) 1,]

Lo

2 [eI, + () 1,
KTO

If #iw>cTy, then I,,I, take approximate values given in Eqgn.
0 0241 _

Hence, the above conditions become

(3.11)

(3.12)

(3.13)

(2.32).
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hu 3.14
(KTO) > 3.646 (3.14)
and
16 nq KTy Hae 2
w>;¢(z+2n>(hq)( ) (me )
q
x {1+ 3 }?— ( 520 )3/2 (3.15)
§3.a.i. Optical Polar Scattering

The constants in this case are

(3.16)

°
w
]
REL
Ny
o

Using these values of constants in conditions (3.7) and (3.8)

we see that the cooling of electrons can occur if

fw Iy 1/2 3.17
(=) > 2 (50) (3.17)
and
~ (mTq)?2
v L(Yae) (0) ey (3.18)



- 35 -

8§3.a.5. Non-Polar Substances

{ In non-polar substances, such as si]icon, germahium, etc., if
the temperature is not too low, then the important scattering mechanisms
are both acoustical and non-polar optical. Thus, the total energy and
momentum transferred to the lattice will be the sum of these quantities

transferred via acoustical modes and optical non-polar modes. We may,

therefore, write

daP _ P
o = (Yo, + szz) P, (3.19)
el-la
th 2
dE = (v.8. +v,0,) AL _EZo_ (3.20)
dt|,1-14 11 Y2%2) L 2’"KT0.]

Egns. (3.19) and (3.20) can be expressed conveniently in terms of the

constants
¥ _ 2Ny7e
v 3”uac
_ 16,2 ¢ Mac "q hw 3.21
oy = Fm e () Caggg ) L2+ ) T (3.21)
_ 2 4 hw "q fiw Uge
Oy 16s m IO ( 1+2nq ) T, ) Hon )
where
Yiey T Yo, = Yypy
and (3.22)

Y, 8, Y8, = V.0
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The electron cooling conditions in this case become

fiw - 2
(KT0 ) 12 > 3.64¢ (3.23)
(Homy o YT g2 yig)p-1P (3.24)
Hae 4
where
yz) = [i* - 212 - 6] (3.25)
and
g 2
W > i__(_n_?f_.(?.)__ (|<_’7_"0)2 ms
w3 hltq
x { py Caer, + 277" 3 (3.26)
Py
§3.a.6. Polar Substances

In polar substances 1ike pbs, CdSe, InSb, etc., the important
scattering mechanisms are optical polar and acoustical. Hence, in this

case, we define

I
o = 32 , 0 (Hac) (3.27)

where
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Y1Py F YgPy 5

and (3.28)
Y8, £ Y0, = Y0

The electron cooling conditions in this case become

J
(Fw_ ) 0 > ; (3.29)
KTO 4I0
Hop Ir ¢ (fw_ yo _d1_
and
24 (mcTq) : : 05 mm—1
W 22 7 (kT 3xT — 3.31)

Eqns. (3.14), (3.15), (3.17), (3.18), (3.24), (3.26), (3.30) and (3.31)
express the conditions under which the phencmenon of electron cooling

may occur in different substances.

§3.b.

Attenuation of the sound wave and generation of acoustoelectric
current are the two physical aspects of the electron-sound wave interaction.
In the following section, we shall calculate sound absorption coefficient
o and the acoustoelectric current Jgqe With the help of the distribution

function established in Chapter III.
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§3.b.1, Sound Absorption Coefficient

From Eqn. (2.56), we observe that the rate at which the phonons
are absorbed by the electrons from the sound wave is proportional %o the

number of phonons reaching the volume element under consideration. Thus,

. g

N .
o o< N, (3.32)

s~el

and if the sound wave s travelling along the X-direction, with the velocity

s, then

(3.33)

It now follows that m,(z), the number of phonons at a distance x from the

incident face of the elements, can be written as

Ny(w) = Hg(0) expl-ox} (3.34)

where o is called the coefficient of sound absorption and can be defined as

1 dig

N S (3.35)
qu(O) dt

s-el
Substituting the value of qu/dtls_eZ from Eqn. (2.56), we get

Mgy c? Apo
* =T (szio ) s2n(gmmeT )1/2 Lz- ms (3.36)

Finally, using Eqn. (3.5), we obtain
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mN 2
- el c
* w MIV; ) 827 (2mmkTo)1/2
. -1
x {1~ [1 +1%€—msj } (3.37)

for the sound absorption coefficient.

3.b.2. Acoustoelectric Current

The sound wave travelling through the crystal transfers
momentum to the electrons and, as a result, the electron gas acquires
drift velocity in the direction of sound wave propagation. The electron
drift causes a flow of charge across the crystal and, if the two ends of
the specimen are connected by a suitable conductor, then a current flows
through the closed circuit. This current, induced by the sound wave, is
called acoustoelectric current.

If there are no positive charge carriers (or electron holes)
in the crystal, then the current is due to the conduction electrons only
and can be calculated from the distribution function established in Sec-

tion (3.a.1). The acoustoelectric current J4. is given by

. mp
Jac = e J fip) { ~ 1 &% (3.38)
n,

m
Substituting the value of f(p) from Eqn. (2), we get

Jac = e—nez (3.39)

and hence
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YPms ] -1

Jge = neles [ 1 + e

(3.40)
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Discussion

The main results of our calculations are the electron

cooling conditions obtained in Section (3.a.1). |

(I) 3KTOQ

and (11) W

The first inequality is equivalent to the electron cooling
condition obtained by Paranjape and de Alba (1965) in the case of an
electric field. The second inequality defines the minimum value of
sound wave energy flux W, required to produce electron cooling. In
non-polar substances, the condition

Fiw

—_— .64
Ty > 3.646

determines the maximum value of Tlattice temperature at which we can

expect to achieve the effect of electron cooling. The condition

Hon
Hae

NP

12y(1)e-1?

shows that electron cooling can occur only if the non-polar optical
scattering dominates over the acoustical scattering.
In polar substances, the condition (3.29)
Fw 41, 1/2
kT > J )
0 0

gives the maximum value of 7 . The integrals I, and J, are evaluated



- 42 -

by Paranjape and de Alba (1965) by expressing them in terms of Bessel
functions from which the minimum value of Aw/«T, is = 5.

The condition

(32) « oty o)
shows that the electron cooling in polar substances can occur only if
optical polar scattering predominates over acoustical scattering.

Eqns. (3.5) and {3.6) give the values of the parameters p,
and T as a function of incident energy flux W. We observe that as w»0,
-7, and py>6 and the displaced Maxwellian function becomes simple Max-

wellian, as expected. In this Timit, the sound absorption coefficient

tends to a value oy i.e,

_ Py c2
0,000, = 1 (e ) S tamerg 172

This result is in agreement with the results of Paranjape
(1964) and Epshtein (1966), except for small numerical factors. We

also see that
W0, doge > 0

i

On the other hand, for infinitely large values of W, we get

py > 2 and Jac > ngles
7L
i.e. the drift velocity hpolh tends to the sound velocity. For all
finite values of W, however, the drift velocity is less than the sound

velocity. In other words, the sound wave cannot drive the electrons



- 43 -

faster than its own speed.

show that the electrons drifting with the velocity of sound remaiﬁ un-
affected by the sound wave.

For very large but finite values of energy flux, we get

YePe

W >> ms

LS NES

@ > ay (15

This result is in agreement with the result obtained by Epshtein (1966),
i.e. for large values of W the absorption coefficient varies as the in-

verse of the energy flux.
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APPENDIX I

| The electrons and the lattice can be considered as two sep-
éfate systems when the density of conduction electrons is so high that
the rate of energy exchange between electrons, through mutual collisions,
is large compared with the rate of energy exchange between electrons and
lattice. The electron density required to make interelectronic collisions

more effective than the electron-lattice collisions can be estimated as

follows:
(1 The rate of energy.exchange between lattice and electrons
is given by
atf ., .. Ty v(E,T,)
where s is the speed of sound and T(EZTO) is the average time
between two electron-lattice co1lis%ons.
(2) The rate of energy exchange of an electron due to collisions

with other electrons, Pines (1953), is of the order

4 AL
dE = Mel®  ogy (11)

dt el-el p p

where ¢* is an effective charge, 7 is the r.m.s. momentum of

an electron and 1ogYp is a factor weakly depending on the



(3)
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electron density and is of the order of unity.

From Eqns. (I) and (II), it follows that the electron density
ngz, at which these two rates of energy transfer are equal, is

of the order

0 7 F3/2,3/252
el T gy T e* T (), T,) (111)

If t=10"1% sec., &*%/&"=10 and m/m*=1, then "gl is of the order
101%/cm3.  When the condition n,;>nJ; holds, electron-electron
collisions dominate and the concept of e]ectron_temperaturelis
valid. Equidistribution of momentum is realized oniy when the
rate of momentum exchange between mutual collisions of the elec-
trons is large compared to the rate of momentum exchange in elec-
tron-lattice collisions. 7o achieve this conditioﬁ, higher elec-

tron densities than ngz are required.
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APPENDIX II

Electron Cooling Conditions in an Electric Field

If we denote in this case

3f(p)

n 3 @
p ot )& dt

Field F-el

and €)
#2,2  3f(p)
25 ( —% )d%p = % _
Field F-el

then the momentum and energy balance equations (similar to Egns. (1.11)

and (1.12)) become

dapP _ dP
dt = dt (Imn
F-el el-la
and
dE = dE
dat at (111)
|F-el el-la

However, Frohlich and Paranjape (1956) have shown that



of (p)
3, =
Iﬁf ( v F)dp = efngg (1v)
and
%sz 3f (p) en,y
[ o {F)dsp = w7 )

where ﬁ is the applied field.
Thus, using Egns. (2.16), (2.17), (1), (1I1) and (I1I1), we get

2

7P o
T’ gy () = elner vD)

v

and

Fr_
e "o (VII)
m m

%2 2
‘/zj £ {go(p)tpo®g,(p)1d% =

In the case of acoustical scattering, using the rates from

Section (2.a.2.), we get

dP|*¢
F = 4r »
efngy dtle1. 14 (VIIT)
and
efnerine  dE * (1X)
m dtlel-la
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Now eliminating p, between Eqns. (VIII) and (IX) and assuming

AT/Ty<<1, we get

2
31 (2 FHge ( mg? )

32 g2 )

__::3( KTO

X)

From Eqn. (X) we observe that AT<0 would require msz>|<T0
which is not permissible in view of the assumption, Eqn. (2.20). Thus,
we can conclude that even the inclusion of second order terms in p, in
the calculations does not lead to the possibility of electron cooling
if the scattering mechanism is acoustical.

In optical non-polar scattering, we have

on
efn = dP
el dt|o1-1q D
and
Fre7 on
enelpo  dE| (XIT)
m dt|el-1a
which on elimination of p, gives
ézz_ - qugnfﬂ ( 27’lq+1 2 9742 KTO
To #ip ng, 128 " hw
: % : -1
x L1 {25,+14 ( E%;.O_ )37
1- ey 10 } (XIIT)
kT, 41, + 2I,(fw/xTg)
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Hence, AT<0 would require

( Fiw ) IO‘

1 X1V

Putting the values of I, and r; from Eqn. (2.32) in Egn. (XIV)
we obtain the condition for electron cooling in the case of optical non-

polar scattering as

7w
KTO

> 1+ 71/2 =~ 3,646 (Xv)

In optical polar scéttering, we have

dP|°P
F ar XVI)
erel dt|el-1a (
and
efngifipy dE|°P (XVII)
N dtlel-la
in which case we get
#2p.2.  J _
AT 7Po 0 (7w ) _ 73 (XVIII)
To dmxT 47 LS/

Thus, the electron cooling condition in the case of optical

polar scattering becomes

7iw Io 1/2
(ETE)>2(:T-O—) (XI1X)
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In addition, Paranjape and de Alba have derived the electron
cooling conditions in a polar and non-polar crystal where optical polar
aﬁd acoustical or optical non-polar and acoustical types of electron

scatterings are simultaneously in effect. The conditions were

(1) For the polar crystals in a weak field, for electron cooling,

we must have

Ho . J
R E 1 SR
ac 0 =L0

(2) For non-polar crystals, we require
Hon 1 g #w 2 ]
e < % ( Tiong ) { (————KT0 ) To. (XX1)

Y Bw
- 2(2I1 + ( m)l—o }

It should be noted that these electron cooling conditions arise
only because the second order terms are included in the calculations. But-
cher et al. (1968) have calculated these conditions by taking higher order
terms than poz.and their results are basically the same as above, except
that the discontinuous behaviour of the electron temperéfure in high fields
is removed; in fact, they have shown that for large fields electrons are

heated.
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APPENDIX TII

We point out that the decrease in electron temperature

does not lead to a decrease in the average energy E of an electron.

= h2p2
F o= J L f(p)dp

2., 2
3 Ai%po
= E—KT -+ om

and not just g kT as assumed by Frohlich (1948). Putting the values

of P, and 7, we get

= _ 3 3 2 Pe YePe -1
E = _fKTO+§—KTOmS §E1+—p—lé——r‘nsj

which shows that for any finite value of ¥, E is always greater than

3
E KTO.



References

Baynham, A., Butcher, P., Fawcett, W., Loveluck, J., 1967, Proc. Phys.
Soc., 92, 783.

Blétekjaer, K., 1967, Phys. Letters, 24A, 15.

Conwell, E., 1964, Phys. Letters, 13-4, 285.

de Alba, E., Warman, J., 1965, Rev. Mex. Fis., 14, 201.
Epshtein, E., 1966, Soviet Physics - Solid State, 8-2, 436.
Frohlich, H., 1947, Proc. Roy. Soc., A, 188, 532.

Frohlich, H., Paranjape, B., 1956, Proc. Phys. Soc., B, 69, 21.
Mikoshiba, N., 1959, J. Phys. Soc. Japan, 14, 22.
Paranjape, B., 1964, Physica, 30, 1641.

Paranjape, V., 1962, Proc. Phys. Soc., 80, 971.

Paranjape, V., Ambrose, T., 1964, Phys. Letters, 8, 223.
Paranjape, V., de Alba, E., 1965, Proc. Phys. .Soc., 85, 945.
Paranjape, V., Joshi, S., 1968, Phys. Rev., 174-3, 919.
Seitz, F., 1948, Phys. Rev., 73, 550.

Van den Beukel, A., 1956, Appl. Sci. Res., B5, 459.



ooooooooooooo

ooooooooooooo

-------------

ccccccccccccc

oooooooooooooo

oooooooooooooo

ooooooooooooo

ooooooooooooo

-------------

ooooooooooooo

-------------

List of Symbols

Planck's Constant

Mass of an Electron

Effective Mass of an Electron
Electronic Charge

Mass of an Ion

Boltzmann's Constant

Volume of the Crystal

Average Drift Wave Vector of an Electron in the
Presence of an External Electric Field

The Lattice Temperature
Electron Temperature

Thermal Excitation Number of Phonons With Wave
Vector g
n,

Total Number of Electrons in the Conduction
Band of a Solid

Electron Density in the Conduction Band

Number of Lattice Points



