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ABSTRACT 

Hydrogen sulfide (H2S), regarded as the third gasotransmitter, plays diverse 

physiological and pathological roles in the body along with another two gasotransmitters, 

including nitric oxide (NO) and carbon monoxide (CO). In the liver, cystathionine gamma-

lyase (CSE) is the main enzyme to generate H2S. The functions of H2S in the liver are largely 

unknown even though many studies showed H2S and CSE are important in redox control of 

liver. S-sulfhydration, a novel post-translational modification of proteins, is now considered 

as an important mechanism of H2S effects under various physiological and pathological 

conditions.  

 Pyruvate carboxylase (PC), a mitochondrial enzyme, is an enzyme in the first step of 

gluconeogenesis in the liver. PC plays a critical role in tricarboxylic acid (TCA) cycle in 

mitochondria and in gluconeogenesis in the liver. PC is also involved in diverse metabolic 

pathways, such as lipogenesis and the biosynthesis of neurotransmitters. Here we found that 

H2S regulates gluconeogenesis through PC S-sulfhydration. First, PC activity and glucose 

production were decreased in liver of CSE-knockout (KO) mice comparing to the liver of 

wild type (WT) littermates. PC S-sulfhydration was lower in the liver tissue of CSE-KO mice 

than WT mice. NaHS which is commonly used for the H2S study as a H2S donor treatment 

induces glucose production and PC activity in the primary liver cells from mice. PC S-

sulfhydration was increased by NaHS treatment in a time–dependent manner. Through 

mutation study with site direct mutagenesis, we further confirmed that the cysteine residue 

265 is responsible for H2S S-sulfhdyration of PC. In cysteine 265 mutant-transfected 

HEK293 cells, PC activity was significantly decreased and PC S-sulfhydration was abolished. 

 Thioredoxin 1 (Trx1), a well-known redox protein, is reported to be involved in 

transnitrosylation and/or denitrosylation of proteins. Here we first demonstrated that Trx1 

acts as a S-desulfhydrase. Overexpressed Trx1 in HEK293 and HepG2 cells diminished H2S 
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induced S-sulfhydration of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

PC proteins. The S-desulfhydration activity of Trx1 was inhibited by PX12, an inhibitor of 

Trx1, and DNCB, an inhibitor of thioredoxin reductase. Furthermore, the cysteine 32 in Trx1 

is required for the direct interaction of Trx1 with GAPDH or PC, and mutation of cysteine 32 

abolished the S-desulfhydration activity of Trx1.  

 Taken together, our studies demonstrated that H2S induces the gluconeogenesis 

through PC S-sulfhydration, and Trx1 acts as a S-desulfhydrase. Our findings will help to 

understand the mechanisms of H2S regulation of metabolic pathways via S-sulfhydration. 

These understandings will also extend the knowledge of physiological and pathological roles 

of H2S in both health and diseases. 
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1. Hydrogen Sulfide (H2S) 

1. 1 Gasotransmitters 

 Gasotransmitter refers to a gaseous messenger molecule which is synthesized and 

released into the extracellular spaces to transit a series of signals and affect various cellular 

functions (1). The characterization of gasotransmitters has been clearly stated by Dr. Rui 

Wang (2) as: 1) small molecules of gas; 2) freely permeable to membranes; 3) endogenously 

and enzymetically generated and the generation is regulated; 4) well-defined specific 

functions at physiologically relevant concentrations; 5) mandatory to have specific cellular 

and molecular targets. The classification for gasotransmitters recently was updated including 

one more criteria as described below (3). 1) small molecule of gas, dissolved in biological 

milieu or not; 2) freely permeable to membrane not rely on cognate membrane receptors or 

other transportation machineries; 3) endogenously generated in mammalian cells with 

specific substrates and enzymes; 4) well-defined specific functions at physiologically relevant 

concentrations; 5) functions of endogenous gases can be mimicked by their exogenously 

applied counterparts; 6) specific cellular and molecular targets, and involved in signal 

transduction. 

 Gasotransmitters play important roles in various physiological and pathological 

condition, such as blood pressure regulation, neurotransmitter release, inflammation, cell 

growth and differentiation, and longevity, as reviewed in the article (4). Their unique roles 

have been received attentions since these simple inorganic compounds, such as hydrogen 

sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), act as important biological 

messengers in various cellular metabolisms and functions of vertebrates. After the 

identification of NO and CO as the first two gasotransmitters, the effects of H2S in 

physiological processes has been demonstrated and now H2S is well recognized as the third 

gasotransmitter (1, 3).  
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1. 2 H2S 

 H2S is a colorless, flammable, water-soluble gas with a strong odor of rotten eggs. 

This gas is generally produced by bacteria breakdown of waste material, and is found in 

volcanic gases and hot springs in nature, or contaminant from petroleum industry (5). Its 

toxicity has been known for more than 300 years in humans and animals (6). It is lethal in 

mammals above 1,000 ppm when inhaled, and it causes severe malfunctions when inhaled 

above safe levels, such as anxiety, irritation to eyes and respiratory tract, fatigue, and 

headache (2). 

 In spite of its toxicity, H2S has received attention as a physiological molecule since it 

is found in the body and plays a significant role in mammals. In cardiovascular system, H2S 

induced vasorelaxation was found in numerous types of blood vessels, such as aorta, portal 

vein, mesenteric artery, cerebral arteries, and vas deferens, from different species (rats, mice, 

cows, guinea pigs, sheep, and humans) (5). The vasorelaxant effect of H2S results from the 

modulation of KATP channel (7-10). In central nervous system, H2S also exerts multifaceted 

and important effects through the modulation of neurotransmitters, as reviewed in the article 

(5). Glutamate is an important neurotransmitter which is well known for its role in learning 

and memory in mammalian brain (11). It was found that H2S selectively enhances N-methyl-

D-aspartate (NMDA) receptor-mediated currents and expedites the induction of hippocampal 

long-term potentiation (LTP) in rats (12,13). In endocrine system, H2S-induced inhibition of 

insulin release was shown in INS-1E cells from a pancreatic insulinoma cell line (14) and in 

another insulin-secreting cell line, HIT-T15 (15) through the stimulation of KATP channels. 

Furthermore, diverse roles of H2S were found in various conditions of body, such as 

inflammation, cardiac protection, hypoxic damage, and etc (16). However, many things about 

the regulatory mechanisms of H2S on physiological roles in various tissues still remain 

unclear even though diverse roles of H2S were reported as described above. 
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1. 3 Biosynthesis of H2S 

 The biosynthesis of H2S in mammals occurs via enzymatic and non-enzymatic 

pathways (2). In enzymatic biosynthesis of H2S, it can be synthesized endogenously in 

mammalian tissues from L-cysteine by cystathionine beta-synthase (CBS), cystathionine 

gamma-lyase (CSE), and/or 3-mercaptosulfurtransferase (3-MST) (17). The expression of 

these enzymes is tissue specific. In some tissues, CBS, CSE and 3-MST are all needed for the 

generation of H2S, whereas in others, one enzyme suffices. H2S is synthesized mainly by 

CBS in the brain, whereas H2S is mostly generated by CSE in the liver, kidney, and vascular 

smooth muscles (2). In liver and kidney, 3-MST expression was higher than other tissues and 

3-MST is mainly localized in mitochondria (18). However, CSE is responsible for H2S 

production more than 3-MST in liver and kidney and 3-MST is expressed relatively more 

than CSE in other tissues (19). Based on its localization, 3-MST is responsible for the H2S 

production in mitochondria (20,21). Other sources of H2S is generated via non-enzymatic 

reduction of elemental sulfur, which is derived from the reducing equivalents of the oxidized 

glucose during glycolysis (22). H2S production through non-enzymatic reduction of 

elemental sulfur is minor in the cells compared to enzymatic production. The equation of H2S 

production in glycolysis is (22): 2C6H12O6 + 6S0 + 3H2O  3C3H6O6 + 6H2S + 3CO2   

 H2S production via non-enzymatic pathways is further described in 1. 3. 4 Non-

enzymatic synthesis of H2S. In gastrointestine, H2S can be uptaken from bacteria which can 

produce H2S. In the mucosa of the gut, cells and tissues are continuously exposed to H2S 

produced by sulfate-reducing bacteria, such as Desulfovibrio, Desulfomicro-bium, 

Desulfobulbus, Desulfobacter, Desulfomonas, and Desulfotomaculum genera (23). Patients 

with chronic fatigue syndrome (CFS) are shown with higher levels of H2S in intestine and 

higher concentrations of intestinal bacteria than normal (24). Abnormal chronic exposure of 

high concentration of H2S may be involved in the pathological effects in CFS. The healthy 
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microbiota is an important factor to regulate normal concentration of H2S in gastrointestine.   

 

1. 3. 1 CBS 

 CBS (EC 4.2.1.22) is a member of the beta family of pyridoxal phosphate-dependent 

enzyme to catalyze homocysteine to cystathionine in the first irreversible step of the 

transsulfuration pathway. Cystathionine is subsequently converted to cysteine, alpha-

ketobutryate, and H2S by CSE (Fig. 1. 1). CBS is composed with 551 amino acids and 

molecular weight of 63 kDa. The gene of CBS is located on chromosome 21 in humans or 17 

in mouse (25,26). The active form of CBS is a homotetramer and the enzyme activity is 

dependent on the heme group (protoporphyrim 1X). CBS is an essential enzyme for 

homocysteine metabolism in the cells (27). Human CBS deficiency, which is caused by 

inherited rare disorder, influences the homocysteine catabolism, and causes 

hyperhomocystinuria (28). Furthermore, CBS deficiency is associated with a wide range of 

clinical symptoms such as mental retardation, ectopia lentis, osteoporosis, skeletal 

abnormalities and hepatic steatosis (29). 

 

1. 3. 2 CSE 

 CSE (EC 4.4.1.1) is composed of 398 amino acids and the molecular weight is 43 

kDa, and CSE gene is located on chromosome 1 (2). CSE catalyzes cystathionine to cysteine, 

alpha-ketobutyrate, and ammonia in the second step of transsulfuration pathway (Fig. 1. 1). 

CSE then catalyses cysteine to H2S, ammonia, and pyruvate (30). CSE plays a critical role for 

supplying cysteine in various cellular functions (31,32). Cysteine is a necessary component 

for the synthesis of glutathione (GSH), a major intracellular antioxidant. CSE is critically 

involved in the biogenesis and regulation of GSH in physiological conditions (33-35). CSE is 

expressed in many tissues such as the cardiovascular system, respiratory system, liver, kidney, 
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placenta, and pancreatic islets (7,36,37). Its expression is tissue-specific (2,5,12,38). In 

human, CSE deficiency is caused by autosomal recessive inheritance, which leads to 

cystathioninuria (39). The hypercystathioninemia triggers the development of atherosclerosis 

and cancer (40,41).  

 

1. 3. 3 3-MST 

 Recently, it was found that MST (EC 2.8.1.2) is involved in the H2S synthesis in the 

cells. 3-MST is located in both mitochondria and cytosol, while it mainly contributes to 

generate H2S in mitochondria (20,21). 3-MST catalyzes the sulfur transfer reactions from 3-

mercaptopyruvate (3-MP) to sulfite or other sulfur acceptors or forming elemental sulfur as 

shown in Fig 1. 1. Many studies on the physiological roles of 3-MST have been done in brain 

and neuron system (20,42,43). 3-MST was found in vascular endothelium of thoracic aorta 

and it plays an important role for the cellular bioenergenetic response in mitochondria (21,44). 

However, human deficiency of 3-MST is rare and it is not life-threatening (45).  

 

1. 3. 4 Non-enzymatic synthesis of H2S 

 Non-enzymatic synthesis of H2S is a minor source of total endogenous H2S 

generation in mammalian systems (2). H2S is generated from glucose, thiocystine, glutathione 

and thiosulfate in non-enzymatic synthesis as shown in Fig 1. 1 (46). Glucose and 

phosphogluconate can produce H2S via glycolysis and NADPH oxidase, respectively. In 

glycolysis, reducing equivalents of the glucose oxidation pathway mediates to reduce 

elemental sulfur to H2S. H2S is also generated through direct reduction of glutathione and 

thiocystine. Reductive reaction of thiosulfate can generate H2S from thiosulfate through the 

reaction with pyruvate, which is a hydrogen donor in this reaction. 



７ 
 

 

Figure 1. 1 Enzymatic and non-enzymatic synthesis of H2S (46). Cystathionine β-synthase 

(CBS), Cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MST) are 

responsible for generating H2S in the mammalian systems. Through glucose, glutathione and 

polysulfides, non-enzymatic synthesis of H2S occurs under physiological condition.  
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1. 4 H2S metabolism  

 Endogenous H2S in the cells exists in various forms, such as free sulfide, acid-labile, 

and bound sulfide as cellular bioavailable pools. Cellular redox status or acidic pH may 

regulate the mobility of H2S from these pools for physiological responses (46). H2S is 

metabolized through expiration and excretion, methylation, scavenging, and oxidation in the 

body (Fig. 1. 2). Firstly, H2S can be metabolized into methanethiol and thiosulfate by 

bisulfide methyltransferase (BMT) and thiosulfate reductase (TSR) enzymes respectively as 

shown in Fig 1. 2. Produced thiosulfate is further oxidized to sulfite by thiosulfate 

sulfurtransferase (TSST) and subsequently to sulfate (46). Methanethiol can be methylated to 

dimethylsulfide. Alternately, H2S can be scavenged by methemoglobin or metallo- or 

disulfide-containing molecules such as oxidized glutathione (GSSG) (2,6,47). BMT and TSR 

are located in cytosol and periplasm, respectively. TSST is a mitochondrial enzyme. 

 It was recently found that sulfide-quinone reductase-like protein (SQRDL), the 

verterbrate homolog of sulfide-quinone oxidoreductase (SQR), contributes to  H2S 

metabolism in mammalian cells (48). SQR catalyses bisulfide (SH-) and quinine to 

polysulfide and quinol. SQR mediates in regulation of H2S levels in yeast (49). In various 

tissues in rats, it was found that SQRDL plays the same role as SQR in mitochondria (48). 

These researches showed the possibility that SQRDL can be responsible for the regulation of 

H2S metabolism in mitochondria, along with TSST. 
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Figure 1. 2 Metabolism of H2S (46). H2S is metabolized into thiocyanate, methanethiol and 

thiosulfate catalyzed by rhodanese, bisulfide methyltransferase (BMT) and thiosulfate 

reductase (TSR) enzymes respectively. Thiosulfate can be further oxidized to sulfite through 

thiosulfate sulfurtransferase (TSST) and subsequently to sulfate. H2S reacts with hemoglobin 

to form sulfhemoglobin and with proteins in the tissues in the form of bound sulfur pool.  
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1. 5 Pharmacological inhibitors of H2S producing enzymes  

 The development of pharmacological inhibitors of H2S producing enzymes and H2S 

releasing drugs are critical for the study of H2S effects on various physiological and 

pathophysiological events. Inhibitors for each H2S-generaing enzyme are shown in Table 1. 1. 

Propargylglycine (PPG), commonly used for a specific inhibitor of CSE, targets the pyridoxal 

phosphate binding site of CSE and irreversibly inhibits CSE activity. Aminoxyacetic acid 

(AOA) is an inhibitor for aminotransferase and is proposed as an inhibitor of CBS (50). To 

date, AOA and beta-cyanoalanine (BCA) are claimed as a selective inhibitor of CBS. 

However, it was shown that AOA and BCA can inhibit effectively CSE as well (51). 

Furthermore, it was found that BCA more selectively inhibits CSE than CBS and is a more 

potent inhibitor for CSE than PPG with a reversible inhibition (51). 3-mercaptopropionic acid 

is a non-competitive inhibitor of 3-MST. The specificity of these inhibitors are still 

questionable (5). 

 These pharmacological inhibitors of H2S-generating enzymes, including PPG, BCA, 

and AOA, have been employed to test the biological effect of inhibition of endogenous H2S 

production in several studies. PPG or BCA (50 mg per kg) in rats subjected to haemorrhagic 

shock accelerated the recovery of arterial blood pressure (52). In rodent models of local 

inflammation, PPG treatment (25-75 mg per kg) dose-dependently decreased paw oedema 

and paw neutrophil infiltration in a carrageenan-induced inflammation model of rat (53), and 

PPG (100 mg per kg) attenuated pancreatic necrosis and reduced the degree of acute lung 

injury in a cerulean model of pancreatitis (54). Furthermore, it was recently found that AOA 

treatment (0.2 mM, daily) inhibits colon cancer growth in patient-derived tumor xenografts 

and breast cancer growth in vivo (55). 
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1. 6 H2S releasing drugs (donors) 

NaHS and Na2S are two well-used H2S donor. NaHS and Na2S are convenient to 

handle, however they are not appropriate for the study of long term exposure since H2S are 

easily evaporated and H2S is released immediately from NaHS and Na2S in biological media. 

Within 2 hours, H2S is not able to be detected in biological media treated by NaHS and Na2S 

(56,57). Nowadays, many H2S releasing drugs are developed for investigating the 

physiological effects of H2S. Those are convenient for controlling the concentration of H2S in 

biological media and H2S releasing can be lasted longer compared with NaHS and Na2S (57-

62). Sustaining H2S concentration in culture medium is observed when incubation of the cells 

with GYY4137 (400 µM) from 2 hours to 7 days (57). Other slow-releasing H2S drugs 

similar to GYY4137 include S-diclofenac (ACS15 and ACS32), S-sildenafil (ACS6), S-

latanoprost (ACS67), and S-mesalamine. These drugs are produced from combination of 

parent compound (drug chemical) and 5-(4-hydroxyphenyl)-3H-1,2-dithiol-3-thione (ADT-

OH), which in turn break down to H2S (38). The moiety of ADT-OH is the most widely used 

for synthesizing slow-releasing H2S drugs and H2S releasing drugs are included the moieties 

of H2S donor similar to ADT-OH.  

 GYY4137 and ATB346 (the derivate of naproxen) as well as ACS32 (derivate of S-

diclofenac) induced cell death of several cancer cell lines but not in normal cells (57,63,64). 

GYY4137 and ATB346 further exhibit anti-inflammation activity along with ACS85 and 

ACS86, which are derivates of levadopa (65-71). Cardiovascular protection effects of 

Thioamide, perthiols, and GYY4137 were further found (72-74). Rhodanine derivates 

showed anti-virus and anti-microbial activity (75-77). Furthermore, GYY4137 regulates ion 

channels similar to H2S roles as an opener of ion channel proteins (78,79). The list and 

functions of H2S releasing drugs are shown in Table 1. 2. 

 Recently, functional H2S releasing donors are under investigation. General H2S 
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donors are lacked to mimic the slow and continuous H2S generation process in vivo. Cysteine 

activated H2S donors, as a controllable H2S donor, which can produce H2S in presence of 

excess cysteine were developed (73, 74, 80). H2S releasing from donors can be regulated by 

the cysteine concentration. However, further biological data will be required to evaluate the 

pharmacological functions of donors. For the study of H2S releasing donors, cytotoxicity of 

donors is critical in the cell. H2S releasing donors based on ADT-OH induced cellular 

trafficking of ADT-OH and then toxic to the cells. To prevent the cytotoxicity of H2S 

releasing donors based on ADT-OH, a poly (ethylene glycol)-ADT was developed (81). It 

was successfully to release H2S in macrophages and was not shown obvious cytotoxicity 

compared to H2S releasing donors based on ADT-OH. Furthermore, mitochondrially-targeted 

H2S releasing donor, AP39, [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) 

triphenylphosphonium bromide], was developed and investigated the effects of AP39 on 

bioenergetics, viability, and mitochondrial DNA integrity (82). The control of H2S releasing 

location in the cells is a great benefit to study of pharmacological and physiological effects of 

H2S.  
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Table 1. 2 H2S releasing drugs 

Donor Effect Reference 

GYY4137 

Ion channel regulation (78,79) 

Cardiovascular protection (72) 

Anti-cancer (57) 

Anti-inflammation (70,71,87,88) 

Rhodanine 

derivatives 

Anti-HIV (75) 

Anti-microbial (76,77) 

ATB346 

Anti-cancer (64) 

Reduce toxicity and anti-inflammation (65,66) 

Anti-nociceptive and anti-inflammation (67) 

ACS32 Anti-cancer (63) 

ACS85 and ACS86 Nervous protection and anti-inflammation (68,69) 

Thioamide Cardiovascular protection (73) 

Perthiols Cardiovascular protection (74) 
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1. 7 Liver 

   

1. 7. 1 Gluconeogenesis in liver 

 Glucose metabolism is a critical biochemical process in liver since glucose is an 

energy source in mammalian systems. Especially, liver regulates glucose level through 

gluconeogenesis. Insulin inhibits gluconeogenesis in the liver, while glucagon and 

glucocorticoid induce gluconeogensis to produce glucose. 

 Gluconeogenesis is a metabolic pathway that generates glucose from non-

carbohydrate carbon substrates such as pyruvate, lactate, glycerol, and glucogenic amino 

acids. When the glucose level drops (hypoglycemia) in blood, there are two ways for 

supplying glucose including degradation of glycogen via glycogenolysis and gluconeogenesis 

from non-carbohydrate carbon source. In animals, gluconeogenesis takes place mainly in the 

liver and cortex of kidneys. Targeting gluconeogenesis is an efficient strategy for the therapy 

of type 2 diabetes. Metformin, an antidiabetic drug, is well known for the inhibition of 

glucose formation and stimulation of glucose uptake by cells (89).  

 Gluconeogenesis is regulated by a series of enzymes (Fig. 1. 3). Depending on the 

substrates, gluconeogensis occurs in the mitochondria from pyruvate or from glycerol in the 

cytoplasm. In the mitochondria, pyruvate carboxylase (PC) catalyzes pyruvate into 

oxaloacetate. Oxaloacetate is reduced to malate for its transportation to cytosol. Malate is 

oxidized to oxaloacete in the cystosol for remaining steps of gluconeogenesis. In 

gluconeogenesis, oxaloacetate is decarboxylated and then phosphorylated to 

phosphoenolpyruvate by phosphoenolpyruvate carboxykinase (PEPCK). The next steps are 

the reverse direction of glycolysis from phosphoenolpyruvate to glucose.   

 PC is a key enzyme in the control of gluconeogenesis. Most factors which are 

involved in the regulation of gluconeogenesis act through modification of activity or 
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expression of PC. Aacetyl CoA and citrate activate PC, respectively (90). Global control of 

gluconeogenesis is mediated by hormones. Those hormones are actually regulated by blood 

glucose level. When blood glucose is low, glucagon and glucocorticoid are released from 

pancreas and zona fasciculate of the adrenal cortex, respectively. Once glucagon is released 

from pancreas, glucagon binds to the glucagon receptors in liver cells. Liver cells then 

produce glucose through promotion of gluconeogenesis and glycogenolysis. Glucagon turns 

off glycolysis and provides the glycolytic intermediates to gluconeogenesis in order to 

synthesize glucose. Also, glucocorticoid stimulates gluconeogenesis in the liver. 

Glucocorticoid binds to glucocorticoid receptors in the liver and then induces the synthesis of 

glucose from non-hexose substrates, such as amino acids and glycerol, in gluconeogenesis. 

Insulin is produced by pancreas when blood glucose is high. Insulin increases glucose uptake 

in muscle, adipose and several tissues and glycogen synthesis for storage of glucose in liver 

and muscle cells. In addition, insulin decreases gluconeogenesis for preventing further 

glucose production from non-hexose (91,92).  

Gluconeogenesis is associated with metabolic syndromes, such as diabetes, obesity, 

etc. Metabolic syndrome is clinically defined by the National Cholesterol Education Program 

(NCEP) as any three of the following five traits: abdominal obesity, impaired fasting glucose 

(reflecting insulin resistance), hypertension, hypertriglyceridemia, and low HDL cholesterol 

(93). Obesity initiates metabolic syndrome through increase of lipogenesis and 

gluconeogenesis with insulin resistance (93). Increased abdominal fat mass induces the 

accumulation of intracellular fatty acids and its metabolites (fatty acyl CoA, diacylglyceride), 

causing insulin resistance. Insulin resistance induces gluconeogenesis to stimulate plasma 

glucose content. Increased glucose and insulin raises lipogenesis which enhances adipocyte 

insulin resistance. Gluconeogenesis is critically involved in the development of metabolic 

syndrome and can therefore be a therapeutic target. 
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1. 7. 2 The roles of H2S in liver 

 CSE is a main enzyme to generate H2S in the liver. Deficiency of CSE gene 

diminished H2S production by more than 90% in mouse liver (37,94). H2S affects diverse 

metabolisms which take place in the liver, such as lipid, glucose, and bioenegetic metabolism 

(95). Lipid metabolism is critically associated to cholesterol and low density lipoprotein 

(LDL) cholesterol. In previous study, it has been found that CSE knockout (KO) mice on 

atherogenic diet showed increased plasma total cholesterol and LDL cholesterol levels and 

decreased HDL cholesterol compared to wild type (WT) mice (96). It was also reported that 

H2S is directly involved in the lipid metabolism (97). H2S significantly impaired basal and 

insulin-stimulated glucose uptake and glycogen storage, and enhanced gluconeogenesis and 

glycogenolysis (98). H2S induced by MST in the mitochondria of murine hepatoma cell line 

Hepa1c1c7 enhanced mitochondrial electron transport and cellular bioenergetics (99). Altered 

hepatic H2S generation and metabolism have been demonstrated to be involved in the 

pathogenesis of many liver diseases, such as ischemia/reperfusion injury, hepatic fibrosis and 

cirrhosis (100-103). Furthermore, H2S is involved in hepatoprotection. H2S attenuates hepatic 

ischemia-reperfusion injury through preservation of intracellular redox balance and by 

inhibition of apoptosis in the ischemia-reperfusion injury (104).  

 

2. Pyruvate Carboxylase (PC) 

 PC (EC6.4.1.1) is a nuclear encoded mitochondrial enzyme that catalyses pyruvate 

into oxaloacetate (105). PC was first discovered in 1959 and isolated from chicken liver (106). 

In mammals, PC plays a crucial role in gluconeogenesis and lipogenesis, in the biosynthesis 

of neurotransmitters, and in glucose-induced insulin secretion by pancreatic islets (107). PC 

is highly expressed in the liver, kidney, adipose, and pancreatic islets (108). The pyruvate 

carboxylation reaction of PC is shown in Fig 1. 4 (109).  
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Figure 1. 4 The overall pyruvate carboxylation reaction by PC (109). 

 

PC is an important metabolic enzyme, and its expression is regulated in different 

pathphysiological conditions, including nutritional alterations, diabetes, hormonal changes, 

and neonatal development (110). PC activity and expression have been shown to be induced 

in fasting animals (91,111-113). Hormonal alterations affect PC activity and expression. 

Hepatic PC activity was increased in hyperthyroid rats, whereas in hypothyroid rats PC was 

decreased (114). Furthermore, hormonal regulation is involved in the increase of PC activity 

and expression in fasting through glucagon and glucocorticoids (92). It has been recently 

found that PC plays an important role in insulin release of pancreatic β-cells in obesity and 

type II diabetes (115,116), and is involved in the development of insulin resistance in mice 

(117). PC expression was elevated in genetically obese Zucker fatty rats (118). In humans, 

PC deficiency is an autosomal, recessively inherited disease (110). PC deficiency leads to 

congenital lactic acidosis and deterioration of the central nervous system (119,120). In mild 

PC deficiency, patients suffer from mild-to-moderate lactic acidaemia, delayed development 

and psychomotor retardation. Patients in severe PC deficiency exhibit severe lactic acidaemia 

with hyperammonaemia, citrullinaemia, and hyperlysinaemia, and they rarely survive longer 

than 3 months after birth (110).  

 PC activity was reduced in the islets of animal models of type 2 diabetes and is a 

critical factor for the beta cell adaptation to insulin resistance in the rat (121). Furthermore, it 

was found that decreased PC activity in islet is related to the development of type 2 diabetes 

in Agouti-K mice (122). In pancreas, reduced PC activity is a pathological factor for the 

development of type 2 diabetes. However, recent study showed that tissue-specific inhibition 
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of PC is a potential therapeutic approach for hepatic insulin resistance and type 2 diabetes 

(116). Specific antisenese oligonucleotide (ASO) for PC decreases PC expression in liver and 

adipose tissue in rats. Decreased PC activity by ASO reduces gluconeogenesis in liver and 

improved heaptic insulin sensitivity. Therefore, PC will be a promising therapeutic target for 

type 2 diabetes and insulin resistance through the regulation of PC activity in tissue-specific 

manner, for example, PC activity is induced in pancreas and reduced in liver.  

 

2. 1 Regulation and modification of PC 

 Fasting or starvation enhances glucose production in liver sustained by an increased 

pyruvate flux through increases of PC activity and expression (123). Transcriptional 

regulation of PC gene is extensively studied. The distal promoter of the rat PC gene is active 

in pancreatic islets but the proximal promoter is active in gluconegenic and lipogenic tissue 

(Fig. 1.5) (107). The basal transcription activity of PC is regulated by Sp1/Sp3 and NF-Y in 

the distal promoter. Pancreatic specific promoters, such as forkhead transcription factor 

boxA2 (Foxa2/HNF3beta), upstream stimulatory factors (USF1 and USF2), PDX1, and v-

Mafa, are found in pancreatic cells and tissues through analysis of PC gene promoters and 

identification of its functions in PC regulation (107). In the proximal promoter, Peroxisome 

proliferator-activated receptor (PPAR) gamma1 and PPARgamma2 are involved in the 

transcriptional regulation of PC in the adipose tissues. cAMP-responsive element binding 

protein (CREB) is found to be involved in the regulation of proximal promoter of PC in the 

liver. PC expression is increased in rodent models of type 1 diabetes which is induced by 

streptozotocin (124,125) and obese Zucker diabetic fatty rats (126). The proximal promoter in 

the liver and adipocytes is involved in the increase of PC expression in diabetes, not the distal 

promoter. Islet PC expression is decreased in severe type 2 diabetic Agouti-K mice and 

human patients with type 2 diabetes (122,127). The different PC expression among liver, 
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adipocytes, and pancreas in diabetic conditions results from the different transcriptional 

regulation of PC by proximal and distal promoter. The detail regulatory mechanisms of PC 

expression in diabetic conditions are not clearly determined yet. However, these regulations 

may be related to the development of diabetes and dysfunction of glucose homeostasis in the 

body. For the regulation of PC activity, the allosteric regulation is one of the important 

factors. Acetyl CoA is a well known allosteric activator of PC. In some bacteria, such as 

Mycobacterium smegmatis and  Rhodobacter capsulatus, PC activity exhibits a nearly 

absolute requirement for acetyl CoA while mammalian PC activity is retained between 2 % 

and 30 % of maximal activity in the absence of acetyl CoA (109). PC activity is dependent on 

the concentration of Acetyl CoA. Acetyl CoA cooperates with Mg2+, which is an allosteric 

activator. In yeast PC, it was shown that acetyl CoA and K+ are the enzyme activator and 

cysteine 249 in yeast PC is involved in the regulation of binding and action of acetyl CoA and 

K+ to active site of PC (128).  

 Catalytic activity of PC is dependent on the presence of pyruvate, HCO3
-, and 

MgATP along with acetyl Co-A and Mg2+, as described above (106). Pyuvate is related to the 

PC activity, as a main substrate. PC catalytic carboxylation of pyruvate is composed of two 

steps in distinct active sites (110,129). These two partial reactions occurs in biotin 

carboxylase (BC) domain and carboxyl transferase (CT) domain. HCO3
-, and MgATP, except 

for pyruvate and Acetyl-CoA, are mainly involved in the catalytic reaction of BC domain 

which is the first partial step of catalytic reaction of PC. HCO3
- is the substrate in the first 

partial step of pyruvate carboxylation. MgATP is necessary for the pyruvate carboxylation 

and acts as a cofactor. Especially, the activation of HCO3
- is dependent on MgATP. The use of 

MgATP is required for the diminished electrophilicity of HCO3
- to form the highly labile 

carboxylphosphate intermediate via the nucleophilic attack of HCO3
- on the gamma-

phosphate of ATP. However, MgATP-dependent carboxylation did not occur through the 
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formation of a phophorylated-enzyme intermediate (130). Every intermediate is prepared in 

the first partial step of pyruvate carboxylation. In CT domain, the second step is occurred that 

pyruvate reacts with CO2 to form oxaloacetate.   

 The post-translational modification on PC has not been well-studied as compared to 

the PC transcription regulation by hormone. S-nitrosylation of PC has been observed in yeast 

and HeLa cells (131,132), however, the functions and roles of PC S-nitrosylation were not 

determined.  
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Figure 1. 5 The promoter of PC in mammalian tissues (107). The PC gene is regulated by 

two alternative promoters, the proximal (P1) and the distal (P2). P1 promoter mainly is active 

and responsible for the expression of PC in adipose and gluconeogenic tissue. P2 is a main 

promoter for regulation of PC expression in pancreatic tissue. 
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3. Post-translational modification of proteins (PTM) 

 Post-translational modification is a common mechanism for regulating the activity of 

proteins. There are many factors involved in protein post-translational modification, such as 

phosphate, acetate, methane, various lipids and carbohydrates.  

 

3. 1 Phosphorylation 

 Phosphorylation is the addition of a phosphate group to a protein. Phosphorylation 

plays a significant role in a wide range of cellular processes, and a large number of proteins 

can be regulated by phosphorylation. Phosphorylation occurs with the aid of kinases, which 

transfers phosphate from ATP to the target proteins. The specificity of kinases ranges broadly. 

The commonly occurring sites of phosphorylation in proteins are on the serine, threonine, 

and/or tyrosine residue (133,134). Phosphorylation is regulated by kinases, which 

phosphorylate proteins. In many enzymes and receptors, phosphorylation and 

dephosphorylation play a regulator of enzymes and receptors, as a switch-on and off of 

enzyme activity (135). Those regulatory mechanisms resulted from a conformational change 

in the structure of enzymes and receptors. ATP is required for the phosphorylation as a donor 

of phosphate. Kinases transfer one of phosphoryl groups of ATP to a specific amino acid as 

described above. Phosphatases reverse the effects of kinases by catalyzing the removal of 

phosphate from phosphorylated protein.  Antibodies for recognizing phosphorylated proteins 

are powerful tools for the detection of protein phosphorylation. These antibodies can detect 

phosphorylation-induced conformational changes in proteins based on the addition of 

phosphate in target site, called phospho-specific antibodies. Hundreds of phospho-specific 

antibodies are commercially available for basic research and clinical diagnosis. 
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3. 2 Acetylation 

 Protein acetylation is an important modification of proteins which consists of N-

terminal acetylation and lysine acetylation. N-terminal acetylation is a common co-

translational covalent modification of proteins which occurrs concurrently with its mRNA 

translation by N-terminal acetyltransferases. N-terminal acetylation plays a critical role in the 

synthesis, stability and localization of proteins (136,137). Lysine acetylation occurs in lystine 

residues in proteins as a post-translational modification. Acetyl-coenzyme A is an important 

factor for lysine acetylation, as the acetyl group donor. Lysine acetylation is important for the 

histone acetylation and deacetylation to regulate gene expression. These reactions are 

regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). The 

regulatory mechanism of lysine acetylation is analogous to phosphorylation and 

dephosphorylation by kinases and phosphatases.  

 Lysine acetylation is an important regulation of transcription factors, such as effector 

proteins and molecular chaperones for the gene regulation. Furthermore, histone acetylation 

and deacetylation are critical targets for the transcriptional regulation in the epigenetics. The 

detection of protein acetylation relies on acetylation antibodies. These antibodies can detect a 

conformational change by acetyl group on the specific amino acid residue from the acetylated 

proteins.  

 

3. 3 Methylation 

 Protein methylation typically occurs in arginine or lysine amino acid residues in 

proteins (137). Arginine can be methylated for one or two times on terminal nitrogens by 

peptidylarginine methyltransferases (PRMTs) and lysine can be methylated up to three times 

by lysine methylatransferases. Protein methylation is commonly studied in the histones which 

methylation is occurred by histone methyltransferases. Histone methyltransferases transfer 
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methyl groups from S-adenosyl methionine to histones. Methylated histone by histone 

methyltransferases act epigenetically to repress or activate gene expression (138). The 

detection methods for protein methylation also rely on the specific methylated antibodies 

similar to protein acetylation. 

 

3. 4 Cysteine modifications: S-nirosylation, S-sulfhydration, S-glutathionylation, and 

sulfenylation 

 Cysteine and methionine are two sulfur-containing amino acids in protein. 

Methionine does not have a catalytic role because sulfur in methionine possesses high 

stability compared to sulfhydryl (thiol) group in cysteine (139). Cysteine possesses a free 

thiol side chain which is nucleophilic, acidic (pKa ~8) and redox active (140). Thiol side 

chain in cysteine plays important roles for regulating protein structure and function through 

the formation of disulfide bond or interactions with metal ions, such as zinc, copper, and iron 

in proteins (141,142). High reactivity of cysteine in proteins is essential for the function of 

proteins. Cysteine modification in proteins is critical for regulation of protein activity, 

including S-nitrosylation, S-sulfhydration, S-glutathionylation, and sulfenylation (143).  

 

3. 4. 1 S-nitrosylation 

 S-nitrosylation is a well known mechanism for NO-based signaling, which is the 

covalent incorporation of a NO moiety into thiol group of cysteine to form S-nitrosothiol (S-

NO) in the targeted protein. Many factors are essential for the formation of S-nitrosylation, 

including i) the acid-base motif in 3D structure of proteins i.e, cysteine residue is located 

between aspartic acid (acid) and histidine (base); ii) nucleo-philicity (pKa) of target cysteine 

residue; and iii) presence of different metal ions, such as Mg2+ or Ca2+ (144).  

 It is predicted that S-nitrosylation influences protein functions through 
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conformational change (144). A large number of studies have reported that S-nitrosylation is 

involved in diverse regulations, such as epigenetics, transcription, metabolism, and the 

activities of membrane-associated proteins, and so on (145). During neuronal development, 

nNOS induced S-nitrosylation of histone deacetylase 2 (HDAC2) leading to its dissociation 

from chromatin (146). S-nitrosylation of HDAC2 promotes chromatin remodeling and the 

activation of genes which are associated with neuronal development. S-nitrosylation of 

HDAC2 is essential for the neuronal development. S-nitrosylation-induced activation of 

glucokinase and inhibition of insulin receptor contribute to metabolic changes in pancreatic 

beta-cells (147,148). The activities of membrane-associated proteins, such as ion channels, 

are also regulated by S-nitrosylation (145). L-type Ca2+ channels are inhibited by S-

nitrosylation in smooth muscle cells and K+ and Ca2+ channels are modified by S-

nitrosylation in the heart (145,149). S-nitrosylation influences NMDA receptor which are 

associated with ion channels(150). In mutated NMDA receptor in cysteine 399 on the NR2A 

subunit, S-nitrosylation was deleted and the regulation of ion channels by NMDA receptor 

was not modulated by endogenous NO.  

 The studies for the forming mechanism of protein S-nitrosylation are commonly 

focusing on searching the consensus motifs from the linear sequence of amino acids. Based 

on the analysis of NO transfer in hemoglobin, the acid-base motif was suggested as a concept 

for S-nitrosylation in linear sequence of amino acids (151). In the report by Ascenzi and 

colleagues (152), the acid-base motif has been advanced in the three-dimensional (3D) 

structure basis in order to elucidate the concept for S-nitrosylation and denitrosylation. It was 

suggested that the mechanism of protein S-nitrosylation is dependent on its 3D structure, but 

not on linear sequence of amino acids in the protein. Therefore, acid-base motif may be a 

docking site of NO donor for protein S-nitrosylation and donor molecules of NO are 

necessary to form protein S-nitrosylation in acid-base motif. The proposed forms of NO 
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donor molecules for protein S-nitrosylation are nitrosothiols (RSNO). Nitrosoglutathione 

(GSNO) is a well known endogenous RSNO which is critically involved in NO signaling and 

acts as a pool of NO in the cells. Endogenous GSNO is regulated by GSNO reductase 

(GSNOR) and GSNOR is involved in the controlling protein S-nitrosylation (153,154). 

However, GSNOR is not directly related to the regulation of protein S-nitrosylation. The 

regulation of protein S-nitrosylation by GSNOR is in the indirect regulation of protein S-

nitrosylation through the controlling of GSNO levels in the cells. Along with GSNO, another 

bioavailable source of NO is a nitrosocysteine (CSNO). CSNO is often employed as a donor 

of NO for protein S-nitrosylation (155-157). Since some cases of protein S-nitrosylation were 

found not followed with the acid-base motif, the acid-base motif for the forming mechanism 

of S-nitrosylation is lacked to explain all the cases of protein S-nitrosylation (158). Marino 

and Gladyshev suggested that these exceptional cases were explained with protein-protein 

interaction and direct interaction by NO to form protein S-nitrosylation. In these cases, S-

nitrosylated cysteine residues in 3D structure of protein are available to directly bind with 

other proteins and NO. Diverse forming mechanisms of protein S-nitrosylation may be 

existed (158). 

 For the detection of S-nitrosylation, NO-based strategies are mainly considered for 

either the direct NO detection or NO switched manner. The sulfur-nitrogen bond in SNO is 

particularly labile, and the lability of NO in SNO is an important factor for the detection of S-

nitrosylation. Based on this concept, many methods were developed for detection of S-

nitrosylation. Biotin switch assay (BSA) is often used for the detection of protein S-

nitrosylation (159). The overview of BSA procedure is as follow. First, free thiol groups in 

proteins are blocked with thiol-specific methylthiolating agent, methyl methanethiosulfonate 

(MMTS). NO in SNO is decomposed and reduced to free thiol with ascorbate, and then 

labeled with a thiol-specific biotinylating reagent. Total S-nitrosylated proteins can be 
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detected with anti-biotin antibody by immunoblotting. To detect specific protein which is S-

nitrosylated, biotinylated proteins were purified with avidin conjugated beads and then 

immunoblotted with specific antibody to visualize specific S-nitrosylated protein for analysis. 

 

3. 4. 2 S-sulfhydration 

 S-sulfhydration, which is a novel post-translational modification of cysteine residues 

in proteins, is similar to S-nitrosylation. H2S interacts with the free thiol group and forms a 

hydropersulfide group (-SSH) in the target proteins. It is predicted that H2S posttranslational 

modification of protein through S-sulfhdyration mediates most of H2S bioactivity in the body. 

H2S acts as an endothelium-derived hyperpolarizing factor through the S-sulfhydration of 

potassium channels (160). S-sulfhydration of Keap1 activates Nrf2 and protects against 

cellular senescence (34). S-sulfhydration MEK1 leads to PARP activation and improves DNA 

damage repair (161).  

 The regulatory mechanisms of protein S-sulfhydration are relatively unknown 

compared to the regulatory mechanisms of protein S-nitrosylation. The regulation of protein 

S-sulfhydration by GSSH was suggested (162). It was found that the abundant quantities of 

GSSH and H2S are related to protein S-sulfhydration and transsulfuration reactions when 

compared in plasma, brain, and liver.  The concentration of GSSH in tissues was in direct 

proportion to the concentration of H2S. Furthermore, the concentration of GSSH was related 

to the increase of protein S-sulfhydration in the tissues, like a GSNO in protein S-

nitrosylation. Similar to GSNOR in degradation of GSNO in the cells, a mitochondrial 

persulfide dioxygenase enzyme, ETHE1, mediates degradation of GSSH (162,163). ETHE1 

indirectly governs protein S-sulfhydration through the controlling of GSSH, like a GSNOR in 

protein S-nitrosylation. Therefore, acid-base motif might be a potential concept for the 

formation of protein S-sulfhydration with GSSH, as a donor of H2S for protein S-
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sulfhydration.  

 At present, BSA is employed as a main technique to determine S-sulfhydrated 

proteins. The difference between BSA detection of S-sulfhydration and S-nitrosylation is in 

the first step, where deferoxamine is used to reduce SNO to free thiol and then all free thiols 

are blocked by MMTS. The procedures of BSA for protein S-sulfhydration and S-

nitrosylation are shown in Fig 1. 6.  
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3. 4. 3 S-glutathionylation 

 S-glutathionylation, a reversible modification of cysteine residues, is formed by a 

reaction of oxidized glutathione (GSSG) with free thiol. S-nitrosylated thiol is one of the 

possible intermediates for S-glutathionylation (143). S-glutathionylation of proteins are 

involved in the various diseases such as diabetes, cardiovascular disease, and 

neurodegenerative diseases (164). Aldose reductase (AR) plays an important role in glucose 

metabolism to provide sorbitol for the synthesis of fructose, which is associated with diabetes. 

S-glutathionylation of AR at cysteine 298 inhibits its activity with normal glucose 

concentration (165). Ryanodine receptors (RyR) regulate calcium release from the 

endoplasmic reticulum into the cystosol which is an important subject for pathological 

implications, including diabetes, cardiovascular complications, and Alzheimer’s disease (164). 

S-glutathionylation of RyR1 at cysteine 3635 is involved in calcium release and RyR1 is 

critically regulated by S-glutathionylation along with S-nitrosylation at same cysteine residue 

(166). Furthermore, S-glutathionylation was found in various proteins which are related to 

signal transduction in the cells, such as Ras, MAPK/ERK kinase kinase (MEKK), c-Jun, Akt, 

IkB kinase (IKK), and protein kinase C (PKC) (164).  

 

3. 4. 4 Sulfenylation 

 Sulfenylation (SOH) is an oxidation in cysteine residue of proteins induced by 

reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide (.O2-). 

Sulfenylation is considered to be the intermediate for redox-signaling as the process of 

deleterious oxidative damage (143). Sulfenic acid is reactive and unstable with short life span 

in the cells. Sulfenylation of proteins were identified in a relatively small number of proteins 

because the identification of this modification remains difficult (142). Forty seven 

sulfenylated-proteins have been identified by crystal structure analysis (167). The regulation 
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and mechanism of sulfenylation in proteins are not well studied because crystal structure 

analysis and direct mass analysis are problematic for the identification of sulfenylation (143).   

 

4. The regulation of S-nitrosylation and S-sulfhydration 

 So far, there is no report about the regulatory mechanisms of protein S-sulfhydration, 

whereas many studies have been conducted to analyze the regulation of protein S-

nitrosylation. The knowledge on the regulatory mechanism for S-nitrosylation will definitely 

provide clues for further exploring protein S-sulfhydration.  

 

4. 1 The regulation of S-nitrosylation  

 The regulation of S-nitrosylation by Thioredoxin 1 (Trx1) has been reported (168-

171). It was suggested that Trx1 acts a denitrosylase and/or transnitrosylase. Trx1 mediates 

denitrosylation of caspase3 and TrxR is also involved in the denitrosylation of caspase3 (170). 

Denitrosylation of Trx1 is dependent on the cysteine 32 and 35 in Trx1 (132). However, the 

transnitrosylation activity of Trx1 relies on cysteine 69 and 73 in Trx1. S-nitrosylation of 

nuclear factor κB (NF- κB) inhibits its activity and Trx1 increases cytokine-induced NF-κB 

activation through the denitrosylation of NF- κB (169). Cysteine 69 in Trx1 plays a critical 

role for the transnitrosylation of proteins in redox regulation and anti-apoptotic functions of 

Trx1 (168). Trx1 is S-nitrosylated itself and S-nitrosylation of Trx1 transnitrosylates proteins 

which are related to apoptosis, such as caspase-3 and apoptosis signal-regulating kinase 1 

(ASK1) (172,173). Cyteine 73 of Trx1 also plays an important role for the transnitrosylation 

of target proteins which are interacted with Trx1 (132). The target proteins of denitrosylation 

or transnitrosylation by Trx1 are shown in Table 1. 3 and 1.4.  S-nitrosylation of diverse 

proteins is regulated by Trx1 and Trx1 acts differently in target proteins. Detail regulatory 

mechanism of protein S-nitrosylation by Trx1 still is not clear.
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Table 1. 3 Target proteins and peptides denitrosylated by Trx1 (174).  

Protein name Swiss-Prot 
Identifier Peptide 

40S ribosomal protein S4, X 
isoform  RS4X K.FDTGNLCMVTGGANLGR.I 
40S ribosomal protein SA  RSSA R.ADHQPLTEASYVNLPTIALCNTDSPLR.Y 
40S ribosomal protein SA  RSSA R.YVDIAIPCNNK.G 
60S acidic ribosomal protein P1  RLA1 K.ALANVNIGSLICNVGAGGPAPAAGAAPAGGPAPST

AAAPAEEK.K 
ATP-dependent RNA helicase A  DHX9 K.SSVNCPFSSQDMK.Y 
Cofilin-1  COF1 K.AVLFCLSEDKK.N 
Cytoplasmic dynein 1 heavy 
chain 1  DYHC1 K.TSAPITCELLNK.Q 
Dihydropyrimidinase-related 
protein 2  DPYL2 R.GLYDGPVCEVSVTPK.T 
Dopamine beta-hydroxylase  DOPO K.VISTLEEPTPQCPTSQGR.S 
Elongation factor 1-alpha 1  EF1A1 K.SGDAAIVDMVPGKPMCVESFSDYPPLGR.F 
Elongation factor 2  EF2 R.ETVSEESNVLCLSK.S 
Eukaryotic translation initiation 

factor 5A-1  IF5A1 K.KYEDICPSTHNMDVPNIK.R 
Far upstream element-binding 
protein 1  FUBP1 R.SCMLTGTPESVQSAK.R 
Fascin  FSCN1 R.LSCFAQTVSPAEK.W 
Filamin-A  FLNA K.IVGPSGAAVPCK.V 
Galectin-1  LEG1 K.DSNNLCLHFNPR.F 
Glyceraldehyde-3-phosphate 

dehydrogenase  G3P R.VPTANVSVVDLTCR.L 
Guanine nucleotide-binding 
protein G(I)/G(S)/G(T) subunit 
beta-1 

 GBB1 R.LFVSGACDASAK.L 
Heterogeneous nuclear 
ribonucleoprotein H  HNRH1 R.DLNYCFSGMSDHR.Y 
Heterogeneous nuclear 
ribonucleoprotein H  HNRH1 R.YGDGGSTFQSTTGHCVHMR.G 
Heterogeneous nuclear 
ribonucleoprotein K  HNRPK K.GSDFDCELR.L 
Heterogeneous nuclear 
ribonucleoprotein L  HNRPL R.VFNVFCLYGNVEK.V 
Heterogeneous nuclear 
ribonucleoproteins A2/B1  ROA2 K.LTDCVVMR.D 
High mobility group protein B1  HMGB1 K.MSSYAFFVQTCR.E 
High mobility group protein B1  HMGB1 K.RPPSAFFLFCSEYRPK.I 
L-lactate dehydrogenase A chain  LDHA R.VIGSGCNLDSAR.F 
Malate dehydrogenase, 
cytoplasmic  MDHC K.VIVVGNPANTNCLTASK.S 
Myosin light chain 6B  MYL6B K.ILYSQCGDVMR.A 
Nucleoside diphosphate kinase B  NDKB R.GDFCIQVGR.N 
Phosphoglycerate kinase 1  PGK1 K.ACANPAAGSVILLENLR.F 
Poly(rC)-binding protein 1  PCBP1 R.INISEGNCPER.I 
Prostaglandin E synthase 4  TEBP K.LTFSCLGGSDNFK.H 



３５ 
 

Pyruvate kinase isozymes 
M1/M3  KPYM R.NTGIICTIGPASR.S 
Serine/arginine–rich splicing 
factor 1  SRSF1 R.EAGDVCYADVYR.D 
Small glutamine-rich 
tetratricopeptide repeat-
containing protein alpha 

 SGTA K.AIELNPANAVYFCNR.A 
T-complex protein 1 subunit 
gamma  TCPG R.TLIQNCGASTIR.L 
Triosephosphate isomerise  TPIS R.IIYGGSVTGATCK.E 
Tubulin alpha-1A chain  TBA1A R.TIQFVDWCPTGFK.V 
Tubulin alpha-1B chain  TBA1B R.SIQFVDWCPTGFK.V 
Tubulin beta-2A chain  TBB2A K.LTTPTYGDLNHLVSATMSGVTTCLR.F 
Tubulin beta-2A chain  TBB2A R.EIVHIQAGQCGNQIGAK.F 
Ubiquitin carboxyl-terminal 
hydrolase isozyme L1  UCHL1 K.NEAIQAAHDAVAQEGQCR.V 
Voltage-dependent anion-
selective channel protein 1  VDAC1 K.YQIDPDACFSAK.V  
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Table 1. 4 Target proteins and peptides transnitrosylated by Trx1 (174). 

Protein name Swiss-Prot 
Identifier Peptide  

60S ribosomal protein L12  RL12 R.CTGGEVGATSALAPK.I 

60S ribosomal protein L12  RL12 K.EILGTAQSVGCNVDGR.H 
60S acidic ribosomal protein P0-
like  RLA0L R.AGAIAPCEVTVPAQNTGLGPEK.T 

Alpha-enolase  ENOA K.VNQIGSVTESIQACK.L 

Heat shock cognate 71 kDa protein  HSP7C K.GPAVGIDLGTTYSCVGVFQHGK.V 

Peptidyl-prolyl cis-trans isomerase 
A  PPIA K.KITIADCGQLE.- 

Peptidyl-prolyl cis-trans isomerase 
A  PPIA R.IIPGFMCQGGDFTR.H 

Peroxiredoxin-1  PRDX1 K.HGEVCPAGWKPGSDTIKPDVQK  
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4. 2 The regulation of S-sulfhydration  

 Protein S-sulfhydration shares many similar properties with S-nitrosylation. Firstly, 

both of them occur in the cysteine residues on the proteins. Secondly, formation of S-

sulfhydration may depend on a chemical reaction similar to other cysteine modifications, 

such as S-nitrosylation, S-glutathionylation, and sulfenylation, but not phosphorylation. 

Thirdly, they all belong to redox modifications on cysteine residues. The detail mechanisms 

on the regulation of protein S-sulfhydration has not been determined yet. In forming 

mechanism of S-nitrosylation, S-nitrosogluathione (GSNO) is a candidate as a S-nitrosylating 

agent. NO itself can induce S-nitrosylation but it was shown that GSNO may be an 

intermediate for the forming of S-nitrosylation in proteins (175,176). Especially, GSNO/GSH 

ratio is responsible for the S-nitrosylation of GAPDH in Arabidopsis thaliana (175). 

Glutathione persulfide (GSSH) is suggested as a S-sulfhydrating agent (162). Similar to the 

formation of S-nitrosylation, GSSH/GSH ratio may influence on the formation of S-

sulfhydration on proteins. Compared to regulation of protein S-nitrosylation by other proteins, 

such as Trx1, the understanding of the regulation of protein S-sulfhydration is still in its early 

stages. However, the regulation of protein S-sulfhydration by other proteins may be similar to 

the regulation of protein S-nitrosylation as described above if the similarity of protein S-

nitrosylation and S-sulfhydration is considered. Therefore, Trx1 may be a candidate for the 

regulation of protein S-sulfhydration as a trans/de-sulfhydrase. Further study on the 

regulation of S-sulfhydration will be helpful for understanding the physiological roles of H2S.  
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HYPOTHESIS & OBJECTIVES OF THE STUDY 

 

 S-sulfhydration is considered as a novel post-translational modification of protein, 

which mediates most of the activities of H2S in biological system. H2S is required for 

maintenance of normal liver function. Here, we hypothesized that H2S induces 

gluconeogenesis in liver through PC S-sulfhydration, and Trx1 is involved in the regulation of 

protein S-sulfhydration. The objectives of this study are to: 

 

1. Determine the effects of exogenous and endogenous H2S on gluconeogenesis in liver 

through S-sulfhydration of PC. 

2. Evaluate the difference of PC S-sulfhydration in pathological conditions, such as obesity. 

3. Investigate the regulatory mechanism of protein S-sulfhydration by Trx1.  
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2. 1 Abstract 

Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H2S) possesses diverse 

roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, mitochondrial 

bioenergetics and biogenesis. H2S S-sulfhydration is now proposed as a major mechanism for 

H2S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for 

gluconeogenesis. S-sulfhydration regulation of PC by H2S and its implication in 

gluconeogenesis in liver have been unknown. In the present study, we demonstrated that 

exogenously applied H2S stimulates PC activity and gluconeogenesis in both HepG2 cells (a 

human hepatocellular liver carcinoma cell line) and mouse primary liver cells. CSE 

overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver 

cells, and blockage of PC activity abolished H2S-induced gluconeogenesis. We further found 

that H2S has little effect on the expressions of PC mRNA and protein, while H2S S-

sulfhydrates PC in a dithiothretiol-sensitive way. PC S-sulfhydration was significantly 

strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H2S 

enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human 

PC diminished H2S-induced PC S-sulfhydration and activity. In addition, high fat diet feeding 

of mice decreased both CSE expression and PC S-sulfhydration in liver, while glucose 

deprivation of HepG2 cells stimulated CSE expression. The finding displays a novel 

physiological signaling for H2S regulation of gluconeogenesis via S-sulfhydrating PC in liver.  

 

Key words: H2S, CSE, PC, S-sulfhydrarion, Gluconeogenesis  

 

 

 

https://www.google.ca/search?biw=1680&bih=904&q=gluconeogenesis&spell=1&sa=X&ei=JFjjVKKnFueIsQS5tILQBQ&ved=0CBkQvwUoAA
https://www.google.ca/search?biw=1680&bih=904&q=gluconeogenesis&spell=1&sa=X&ei=JFjjVKKnFueIsQS5tILQBQ&ved=0CBkQvwUoAA
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2. 2 Introduction 

Hydrogen sulfide (H2S) is considered as a novel gasotransmitter that plays a critical 

role in liver functions, including lipoprotein synthesis, insulin sensitivity, mitochondrial 

bioenergetics and biogenesis, and detoxification of various metabolites etc. 

(95,96,99,104,177). In analogy with protein S-nitrosylation, protein S-sulfhydration has been 

proposed as a major mechanism for H2S-mediated signaling (94,178,179). H2S can be 

endogenously produced in a variety of cells, tissues, organs, and systems by cystathionine 

beta-synthase, cystathionine gamma-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase. 

The expressions of these genes are tissue-specific (2,5). Compared with all other tissues in 

the body, all these three genes are expressed in liver with a large amount of H2S production 

(37,94,95,180). Deficiency of CSE gene diminished H2S production by more than 90% in 

mouse liver, suggesting CSE acts as a major H2S-generating enzyme in liver (37,94). Altered 

hepatic H2S generation and metabolism have been demonstrated to be involved in the 

pathogenesis of many liver diseases, such as ischemia/reperfusion injury, hepatic fibrosis and 

cirrhosis (100-103).  

Pyruvate carboxylase (PC; EC6.4.1.1) is a nuclear encoded mitochondrial enzyme 

that catalyses pyruvate to form oxaloacetate (105). PC serves two biosynthetic purposes: it 

sustains the level of oxaloacetate in the tricarboxylic acid cycle, and it provides oxaloacetate 

for phosphoenolpyruvate carboxykinase to convert to phosphoenolpyruvate (129). 

Phosphoenolpyruvate can be converted into glucose, therefore, PC is considered as an 

enzyme that is crucial for intermediary metabolism, controlling fuel partitioning toward 

gluconeogenesis (129). Gluconeogenesis is a ubiquitous process, present in animals, plant, 

fungi, and other microorganisms. In animals, gluconeogenesis takes place mainly in the liver 

(181). In the fed state, the liver stores energy as glycogen from glucose. Conversely, when 

plasma glucose concentration is decreased during fasting or under nutrition, the liver 

http://en.wikipedia.org/wiki/Detoxification
http://en.wikipedia.org/wiki/Metabolite
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produces glucose through glycogenolytic and gluconeogenic pathways (182). PC is positively 

regulated by glucagon and glucocorticoids while negatively regulated by insulin (183). H2S 

regulation of PC expression and/or activity as well as its involvement in liver 

gluconeogenesis is not clearly understood. 

In the present study, we performed detailed investigation on H2S modification of PC 

protein by S-sulfhydration and the actual S-sulfhydration site(s), and explored the functional 

relevance of PC S-sulfhydration in liver glucose production. By using human hepatocellular 

liver carcinoma cell line (HepG2) and mouse primary hepatocyte isolated from both wild-

type (WT) mice and CSE knockout (CSE-KO) mice, we found that H2S induces PC activity 

directly by S-sulfhydrating PC protein at cysteine 265, and increased PC activity contributes 

to H2S-stimulated gluconeogenesis. We further demonstrated that high fat diet (HFD) feeding 

decreases both CSE expression and PC S-sulfhydration in mouse liver. This study advances 

our understanding of H2S signal in liver gluconeogenesis by targeting PC. 
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2. 3 Materials and methods 

Cell culture and animal preparation 

 HepG2 and HEK293 cells (American Type Culture Collection, Manassas, VA) were 

maintained in Dulbecco’s Modified Eagle’s medium (DMEM, Sigma, Oakville, ON) 

supplemented with 10 % fetal bovine serum (FBS, Clontech, Mountain View, CA) and 1 % 

penicillin-streptomycin solution (Sigma). For overexpression of PC and CSE, recombinant 

hPC, or PC mutant plasmids, or CSE cDNA plasmid (184) was transfected into HEK293 or 

HepG2 cells using LipofectamineTM 2000 reagent as described by the manufacturer’s 

protocol (Invitrogen, Burlington, ON). Before treatment with high glucose, HepG2 cells and 

primary liver cells were pre-incubated overnight in DMEM containing 1 % FBS and 1 mM 

glucose and then subjected to 25 mM glucose for additional 24 hours.      

CSE-KO mice were generated as previously described (37). All animal experiments 

were conducted in compliance with the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH publication no. 85-23, revised 1996) 

and approved by the Animal Care Committee of Lakehead University, Canada. Animals were 

maintained on standard rodent chow and had free access to food and water. For high-fat diet 

(HFD, paigen-type) feeding, mice were initially fed with a standard rodent chow diet (Rodent 

RQ 22–5, Zelgler Bros Inc, PA) until 6 weeks of age and then switched to either a HFD 

(TD.02028, Harlan Tekald, Madison, WI) or control diet (TD.05230, Harlan Tekald, Madison, 

WI) for 12 weeks. In all HFD feeding experiments, we followed the procedure according to 

previous study (96). 

 

Isolation of primary liver cells 

 Hepatocytes were isolated from 12-week-old male WT and CSE-KO mice as 

described previously with modification (185). Briefly, liver organ were perfused through the 
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inferior vena cava with a buffer (140 mM NaCl, 2.6 mM KCl, 0.28 mM Na2HPO4, 5 mM 

glucose, and 10 mM HEPES (pH 7.4)). The perfusion was first for 5 min with buffer A (0.5 

mM EGTA) and then for 10 min with buffer B (5 mM CaCl2 and 100 U/ml collagenase type 

IV) (Worthington, Lakewood, NJ). All solutions were pre-warmed at 37 oC incubator. The 

isolated hepatocytes were filtered on nylon mesh (100 μm pore size), and selected by 

centrifugation in a 36 % Percolliso density gradient. Selected cells were seeded in collagen-

coated plates with DMEM containing 10 % fetal bovine serum and 5.5 mM glucose. 

 

PC activity 

 For the measurement of PC activity, coupled enzyme assay was employed as 

described previously (186). Briefly, cells or liver tissues were sonicated in a buffer containing 

10 mM HEPES (pH 7.4), 250 mM sucrose, 2.5 mM EDTA, 2 mM cysteine, 0.02 % bovine 

serum ablumin, and then centrifuged at 13,000 g for 30 min at 4 oC. Collected extract was 

then added to reaction buffer containing 80 mM Tris/HCl (pH 8.0), 2 mM ATP, 8 mM 

potassium pyruvate, 21 mM KHCO3, 9 mM MgSO4, 0.16 mM acetyl CoA, 0.16 mM reduced 

nicotinamide adenine dinucleotide (NADH), and 5 U/ml malate dehydrogenase. The activity 

of PC was calculated by the conversion of NADH to NAD+ with the measurement of the 

change in absorbance at 340 nm over time. Absorbance at 340 nm was measured in a 

multicell spectrophotometer (Fisher Scientific, Ottawa, ON) and the PC activity was 

expressed as nmol/min/mg of total protein. Data was normalized by protein concentration 

determined by the Bradford method. 

 

Biotin switch assay of S-sulfhydration 

 BSA was carried-out as described previously with some modifications (94). Briefly, 

cells or mouse liver tissues were homogenized in HEN buffer (250 mM HEPES (pH 7.7), 1 
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mM EDTA, and 0.1 mM Neocuproine) supplemented with 100 μM deferoxamine and 

centrifuged at 13,000 x g for 30 min at 4°C. The lysates were added to blocking buffer (HEN 

buffer adjust to 2.5% SDS and 20 mM methyl methanethiosulfonate (MMTS)) at 50°C for 20 

min with frequent vortexing. The MMTS was then removed by acetone and the proteins were 

precipitated at -20°C for 20 min. Proteins were resuspended in HENS buffer (HEN buffer 

containing 1 % SDS) and 4 mM biotin-N-[6-(biotinamido) hexyl]-3’-(2’-pyridyldithio) 

propinamide (HPDP) in DMSO without ascorbic acid. After incubation for 2 h at 25°C, 

biotinylated proteins were purified by streptavidin-agarose beads, which were then washed 

with HENS buffer. The biotinylated proteins were eluted by SDS-PAGE sample buffer and 

subjected to Western blotting analysis with anti-PC antibody or anti-His6 antibody (Santa 

Cruz Biotechnology, Santa Cruz, CA).  

 

Western blotting 

 The cells or mouse liver tissues were harvested and lysed in a cell lysis buffer (Cell 

signaling, Danvers, MA) including protease inhibitor cocktail (Sigma). The extracts were 

separated by centrifugation at 14,000 g for 15 min at 4°C. Equal amount of proteins were 

boiled in 1 × SDS sample buffer (62.5 mM Tris-Cl (pH 6.8), 2% SDS, 10% glycerol, 50 mM 

DTT, and 0.01% bromophenol blue) and run in a 10% SDS-PAGE gel, and then transferred 

onto pure nitrocellulose blotting membranes (Pall Corporation, Ville St. Laurent, QC). The 

dilutions of primary antibodies were 1:500 for PC (Santa Cruz Biotechnology), 1:500 for 

His6 (Santa Cruz biotechnology), 1:1,000 for CSE (Proteintech, Chicago, USA), 1:10,000 for 

β-actin (Sigma), and HRP-conjugated second antibody was diluted as 1:5,000 (Sigma). The 

blots were developed using chemiluminescence (GE Healthcare life sciences, Baie d’Urfe, 

QC).  
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Glucose production in HepG2 and primary hepatocytes 

 HepG2 cells or primary hepatocytes were planted in 6-well plates at a density of 1.5 

× 105/ well at 37 oC in a humidified atmosphere (5% CO2) for 24 h. Cells were then washed 

twice with cold PBS (phosphate buffered saline) to remove excess glucose from the media 

and then incubated for another 3 h in glucose and phenol red-free DMEM containing 2 mM 

sodium pyruvate and 20 mM sodium lactate (pH 7.4). Medium (300 μl) were collected for 

glucose measurement using glucose assay kit (Sigma). Glucose concentration was normalized 

with cellular protein content.  

 

Site-directed mutagenesis 

 Human PC cDNA construct was purchased from Origene (Rockville, MD). PC 

cDNA was cloned into pcDNA3.1/Myc-His tag (Invitrogen). Single mutation at cyteine-265 

(hPC-C265) or cysteine-739 (hPC-C739) in PC was conducted using the Quick Change Site-

Directed Mutagenesis kit (Stratagene, La Jolla, CA) (34). The oligonucleotides using for 

mutagenesis were 5’- TGTACGAGCGAGACTCCTCCATCCA-GCGGCG-3’ (forward) and 

5’-GCCGCTGGATGGAGGAGTCTCGCTCGTACAG-3’ (reverse) for cysteine-265, and 5’-

CGAGCTGGCACCCACATCCTGTCCATCAAGGACAT-3’ (forward) and 5’-

ATGTCCTTGA-TGGACAGGATGTGGGTGCCAGCTCG-3’ for cysteine-739. The site-

directed mutants were confirmed by DNA sequencing at the Paleo-DNA Laboratory of 

Lakehead University, ON, Canada. 

 

Immunohistology 

 Mouse livers were dissected out and fixed in 4% paraformaldehyde for 18 h and then 

cryoprotected in 30% sucrose/phosphate-buffered saline at 4 °C for 3 days. Samples were 

embedded in optimal cutting temperature compound (Triangle Biomedical Sciences, Durham, 
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NC).  Sections were then cut into 10-μm with Leica CM1850 UV microtome-cryostat (Leica 

Biosystems, Concord, ON) and picked up on poly-L-lysine-coated slides. Slides were 

incubated with 2% bovine serum albumin at room temperature for 30 min. Primary antibody 

against PC and CSE was added at 4°C for overnight. Slides were then washed twice with 

PBS following incubation with fluorescent secondary antibody for PC (Goat anti-rabbit IgG, 

Sigma) and for CSE (Rabbit anti-mouse IgG, Sigma) for 1h. The slides were washed twice 

with PBS and mounted with media containing 4',6-diamidino-2-phenylindole. Stained tissue 

sections were observed under a fluorescent microscope (Olympus, Richmond Hill, ON).  

 

Statistical analysis 

 Data were presented as means ± SEM, representing at least three independent 

experiments. Student’s t-test was used to evaluate the difference between two groups. For 

multiple groups, Two ANOVA was employed followed by post-hoc Turkey test using 

SigmaPlot 12.0 (Systat Software Inc. San Jose, CA). The significance level was set at p<0.05. 
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2. 4 Results 

H2S increases PC activity 

We first observed that incubation of HepG2 cells with NaHS (a well known H2S 

donor) at as lower as 10 µM significantly increases PC activity by 78.0% (Fig. 2. 1A). The 

stimulatory role of NaHS on PC activity was time-dependent, as NaHS treatment (50 µM) of 

HepG2 cells for 30 min, 2 hrs and 12 hrs induced PC activity by 35.4 %, 69.3 %, and 

105.6 %, respectively (Fig. 2. 1B). We further validated that CSE overexpression in HEK293 

cells enhances PC activity in comparison with the control or vehicle transfected-cells (Fig. 2. 

1C and 1D). CSE is a major source of H2S production in the liver with cysteine as substrate. 

Here we found that PC activity in liver tissues from CSE-KO mice is only 58.5 % of that 

from WT mice (Fig. 2. 1E). NaHS (50 µM) incubation with both WT and CSE-KO liver 

lysates significantly increased PC activity, while cysteine (1 mM) only stimulated PC activity 

in liver lysates from WT mice but not CSE-KO mice (Fig. 2. 1E and 1F). 

 

PC mediates H2S-stimulated glucose production 

To see the functional implication of H2S-stimualted PC activity in liver cells, we 

measured glucose production in HepG2 cells and primary hepatocytes. Incubation of HepG2 

cells with 50 µM NaHS induced glucose production by 29.3 % compared with the control 

cells (Fig. 2. 2A). siRNA-mediated PC knockdown completely reversed NaHS-stimulated 

glucose production (Fig. 2. 2A and 2B), indicating the involvement of PC in H2S-initiated 

glucose production. PC knockdown also significantly decreased the basal level of glucose 

production, while PC overexpession increased glucose production in HepG2 cells (Fig. 2. 2A, 

2C, 2D). We further confirmed that incubation of HepG2 cells with phenylacetic acid (PAA), 

a PC inhibitor, evidently blocks H2S-induced PC activity and glucose production (Fig. 2. 2E 

and 2F). By using primary hepatocytes isolated from both WT and CSE-KO mice, we 

https://www.google.ca/search?biw=1120&bih=579&q=primary+hepatocytes&spell=1&sa=X&ei=C1nJVMj7J8WuyAT814GwBw&ved=0CBkQvwUoAA
https://www.google.ca/search?biw=1120&bih=579&q=primary+hepatocytes&spell=1&sa=X&ei=C1nJVMj7J8WuyAT814GwBw&ved=0CBkQvwUoAA
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demonstrated that glucose production is decreased by 55.6 % in CSE-KO hepatocytes in 

comparison with WT hepatocytes (Fig. 2. 2G). Similarly, PAA also significantly blocked 

NaHS-stimulated glucose production in both WT and CSE-KO hepatocytes (Fig. 2. 2G). 

 

H2S S-sulfhyrates PC at cysteine 265  

To investigate how H2S stimulates PC activity, we studied the effects of H2S on PC 

protein and mRNA expression. Interestingly, treatment of HepG2 cells with different 

concentration of NaHS (10-100 µM) for 0.5-12 h did not affect PC protein and mRNA 

expression (Fig. 2. 3A-3C). CSE deficiency also had no effect on PC protein and mRNA 

expressions in mouse liver tissues (Fig. 2. 3D and 3E), suggesting H2S may induce PC 

activity at post-translational level. So next we explored whether H2S induces PC activity 

directly by S-sulfhydrating PC protein with modified BSA. Treatment of HepG2 cells with 

NaHS (10, 50, 100 µM) for 2 h significantly increased PC S-sulfhydration compared to the 

untreated cells, and PC was basically S-sulfhydrated even in the absence of exogenous H2S 

(Fig. 2. 4A). We further demonstrated that NaHS (50 µM) induces PC S-sulfhydration in a 

time-dependement manner. In comparison with the control cells, the level of S-sulfhydrated 

PC was increased by 14.1, 38.0, and 76.9 % after 30 min, 2 h, and 12 h of NaHS incubation, 

respectively (Fig. 2. 4B). PC S-sulfhydration was DTT sensitive, and DTT significantly 

reduced the basal and H2S-induced PC S-sulfhydration (Fig. 2. 4C). In line with these data, 

DTT also markedly attenuated H2S-induced PC activity in HepG2 cells (Fig. 2. 4D). The 

basal level of PC S-sulfhydration was significantly higher in WT liver than that in CSE-KO 

liver, and the supplement of cysteine further strengthened PC S-sulfhydration in liver lysates 

from WT mice but not CSE-KO mice (Fig. 2. 4E). In addition, CSE overexpression in 

HEK293 cells stimulated PC S-sulfhydration by 40.2 % compared with the control and 

vehicle-transfected cells (Fig. 2. 4F). 
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There are total 13 cysteine residues in human PC protein, and two of them are highly 

conserved among mammalian and microorganism (Fig. 2. 5A) (131,171,187). Through 

bioinformtic analysis, we found only cysteine 265 in human PC (hPC), one of the highly 

conserved cysteine residues, is located in the surface of PC protein, which forms acid-base 

motif and is easily targeted by external stimuli (Fig 2. 5B) (152,158). To validate whether 

cysteine 265 is responsible for PC S-sulfhydration, we mutated cysteine 265 to serine in hPC. 

We also randomly mutated cysteine 739, which is located inside PC protein and could not 

form acid-base. NaHS significantly induced PC S-sulfhydration in hPC-transfected HEK293 

cells, and mutation of Cysteine 265 but not cystiene 739 abolished the basal level of PC S-

sulfhydration. NaHS further strengthened PC S-sulfhydration in cysteine 739 mutant 

transfected cells but failed in Cysteine 265 mutant transfected cells, pointing to the critical 

role of cystiene 265 in PC S-sulfhydration (Fig. 2. 5C). Consistently, NaHS induced more PC 

activity in both hPC and cysteine 739 mutant transfected cells when compared with Cysteine 

265 mutant transfected cells (Fig. 2. 5D).     

 

Reduced liver CSE expressioin and PC S-sulfhydration in high fat diet (HFD)-feeding 

mice 

We first found that HFD feeding of WT mice for 12 weeks decreases liver PC S-

sulfhydration by 37.5 % compared with the control diet-feeding WT mice (Fig. 2. 6A). Liver 

PC S-sulfhydration was hardly detected in control diet-feeding CSE-KO mice, which was not 

changed by HFD feeding (Fig. 2. 6A). Similar to the change of PC S-sulfhydration, liver PC 

activity was decreased by 22.1 % in HFD-feeding WT mice comparing to control diet-

feeding WT mice (Fig. 2. 6B), and PC activity was not altered in CSE-KO liver under either 

control diet or HFD feeding (Fig. 2. 6B). With immunohistology, we observed that HFD 

feeding significantly decreases CSE expression in WT mice (Fig. 2. 6C). As expected, CSE 
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expression was undetectable in CSE-KO mice with control diet or HFD feeding (Fig. 2. 6C). 

We next determined that high glucose (25 mM) treatment of both HepG2 cells and primay 

hepatocytes reduced CSE expression by 76.9 % and 86.0 %, respectively (Fig. 2. 6D and 6E). 

In parallel of lower CSE expression, PC S-sulfhydration was also significantly reduced by 

high glucose incubation (Fig. 2. 6D). Differently, compared with the control cells, CSE 

expression was increased by 42.2 % and 49.0 % in glucose deprived-HepG2 and primary 

hepatocytes , respectively (Fig. 2. 6F and 6G). 
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2. 5 Discussion 

 PC is an important enzyme in gluconeogenesis along with fructose-1,6-

bisphosphatase, glucose-6-phosphatase, and phosphoenolpyruvate carboxylase (106,188,189). 

PC expression and activity in human is greatest in hepatic cells, where PC catalyzes the first 

committed step in gluconeogenesis and is well poised to regulate hepatic glucose balance 

(190). PC provides the oxaloacetate for both gluconeogenesis and the replenishment of TCA 

cycle intermediates (90). Altered liver PC activity has been directly correlated with the 

pathophysiology of Type 2 diabetes, obesity and other metabolic syndrome (116,126,183). 

Given the importance of PC in gluconeogenesis, it is essential to fully understand the 

fundamental catalytic and regulatory mechanism of PC activity.  

In the present study, we demonstrated that H2S, a novel gasotransmitter, stimulates PC 

activity in liver cells, while deficiency of CSE in mouse liver tissues attenuates PC activity. 

We previously reported that H2S plays a critical role in regulating gluconeogensis in liver 

(98). Gluconeogenesis is a metabolic pathway that results in the generation of glucose from 

non-carbohydrate carbon substrates, which mainly occurs in liver tissue. To investigate 

whether increased PC activity is involved in H2S-induced gluconeogenesis, we used a loss-

of-function approach. Consistent with our previous discoveries, exogenously applied H2S or 

CSE overexpression significantly induced gluconeogenesis in liver cells. siRNA-mediated 

knockdown of PC mRNA or inhibition of PC activity by PAA blocked H2S-strenthenghed 

gluconeogenesis, clearly indicating the mediation of PC in H2S-induced glucose generation. 

Gluconeogenesis has been the target of therapy for diabetes, and inhibition of CSE/H2S 

pathway would decrease PC activity and lower glucose formation (90,98). Besides with PC, 

many other enzymes are involved in the process of gluconeogenesis (90). It has been reported 

that H2S enhances renal and liver gluconeogenesis by activating peroxisome proliferation-

activated receptor-γ-1α, fructose-1,6-bisphoaphatase and PEPCK (98,191). Nevertheless, it is 
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not clear how H2S regulates the activities of these gluconeogenesis-related enzymes.   

Our next focus is to study how H2S affects PC activity. H2S-induced activation of PC 

is not caused by increased PC transcription and translation, because both PC mRNA and 

protein expressions are not changed by exogenously applied NaHS, CSE overexpression or 

CSE knockout in liver cells. H2S has been recently demonstrated to post-translational 

modification of proteins by formation of a persulfide (-SSH) bond to reactive cysteine 

residues of target proteins, termed as S-sulfhydration (94). Interestedly, we observed that PC 

is basically S-sulfhydrated and PC S-sulfhydration further enhanced by H2S. Lack of CSE 

significantly reduced but overexpression of CSE stimulated PC S-sulfhydration. To locate the 

responsible cysteine residue for H2S S-sulfhydration of PC, we considered three aspects: the 

conservativeness of cysteine residue among species, the accessibility by H2S, and the 

potential acid-base motif (152,158,192,193). The conserved amino acid residue(s) among 

various species can be often targeted by external stimuli (192,194,195). Accessibility of H2S 

to the target cysteine residue is critical for forming S-sulfhydration (193). S-sulfhydration is 

also dependent on the acid dissociation constant (pKa) of cysteine residues, and the cysteine 

residue in acid-base motif can be easily targeted by the intermediate which can induce protein 

S-sulfhydration (152,158,179). In consideration of these factors, we found that cysteine-265 

in human PC is highly potential for forming S-sulfhydration. Cysteine-265 in human PC is 

conserved with cysteine-249 in yeast, the latter has been reported to be the target for nitric 

oxide to form S-nitrosylation (128,131). Cysteine-249 in yeast was also involved in the 

binding with K+ and acetyl-CoA (128). With mutation study, we validated that cysteine-265 

in BCdomain of PC protein is responsible for S-sulfhydration, because mutation of cysteine-

265 to serine completely abrogated S-sulfhydration of PC. Cysteine-739 in CTdomain 

appears not responsible for PC S-sulfhydration.  

PC consist of four functional domains, the N-terminal BC domain, the CT domain, the 
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allosteric domain and the C-terminal biotin carboxyl carrier protein domain (129). The 

regulation of PC activity is extensively reliant on the multifarious interactions of various 

factors with the functional domains (107). The crystal structure of PC protein demonstrated 

the active sites for several critical factors, including MgADP, HCO3
−, Mg2+ and free biotin, 

are located in BC domain (107). Acetyl CoA is well known as an allosteric activator of PC, 

and the main binding site of acetyl CoA is located in the BC domain, where acetyl CoA 

stabilizes the tetrameric structure of the enzyme, enhances the binding of some substrates, 

and stimulates the reaction rates (107). It is predicted that, by change in electrostatic 

environment, hydrophobicity, contiguity and orientation of aromatic side chains, and 

proximity of target thiols to transition metals or redox centers, S-sulfhydration can alter 

protein conformation and the final function and activity of target proteins (161,162). In line 

with acetyl CoA, we deduced that the interaction of H2S and PC through cysteine-265 in BC 

domain may cause a conformational change in PC protein and alter the binding of MgADP, 

HCO3
−, Mg2+ or free biotin with BC domain, which finally trigger higher pyruvate flux and 

gluconeogenesis (107,183). Further kinetic and structural analysis of S-sulfhydrated PC is 

needed to fully define the roles of the interactions of H2S with cysteine-265 and understand 

the mechanism by which it induces enzyme activation. 

Fasting or starvation usually lower endogenous glucose level, in this case, PC activity 

is induced leading to increased pyruvate flux and higher gluconeogenesis (183). In our study, 

we found that glucose deprivation stimulates CSE expression, which would induce H2S 

generation and enhance glucose generation by S-sulfhydrating PC activity. In contrast, HFD 

feeding of mice reduced CSE expression and PC activity, which may inhibit gluconeogenesis 

but induces glycolysis in liver (196,197). Similarly, we also proved that high blood glucose 

decreases CSE expression in the liver cells. In the presence of higher glucose, lower level of 

H2S due to reduced CSE expression would diminish PC S-sulfhydration and eliminate PC 
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activity. Lower PC activity will subsequently attenuate the process of gluconeogenesis and 

decrease glucose production in liver. Following the change of glucose level, CSE expression 

and H2S production can be restored leading to higher PC activity by S-sulfhydration. 

Increased PC activity by S-sulfhydration then activates gluconeogenesis. Therefore, CSE/H2S 

pathway would act as a critical factor for regulating gluconeogenesis and maintaining glucose 

balance in the liver (Fig. 2. 7).  

Taken together, our results indicated that CSE/H2S pathway plays an important role in 

the regulation of glucose production through S-sulfhydrating PC in liver. Tissue-specific 

regulation of CSE/H2S pathway might be a promising therapeutic target of diabetes and other 

components of metabolic syndromes. 
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the control. n=4.  (B) H2S induced PC activity in a time-dependent manner. HepG2 cells 

were incubated with NaHS (50 µM) for 0.5, 2 and 12 h, respectively. For long term treatment 

of NaHS (12 h), HepG2 cells were treated once in every 3 h with replacement of old medium. 

* p<0.05 versus the control. n=4.  (C) and (D) CSE overexpression stimulated PC activity in 

HEK293 cells. HEK293 cells were transfected with CSE cDNA (184) for 24 h to overexpress 

CSE, the cells were then collected to analyze CSE expression and PC activity, respectively. * 

p<0.05 versus all other groups. n=4. (E) H2S induced PC activity in liver tissues. Liver 

lysates from both WT and CSE-KO mice were incubated with 50 µM NaHS for 30 min. * 

p<0.05 versus WT without NaHS treatment; # p<0.05 versus CSE-KO without NaHS 

treatment. (F) Cysteine strengthened PC activity in liver lysates from WT mice but not CSE-

KO mice. Liver lysates from both WT and CSE-KO mice were incubated with 1 mM cysteine 

for 30 min. * p<0.05 versus WT without cysteine treatment. Eight 12-week-old male WT 

mice and CSE-KO mice were used for these studies. 
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of PC reversed H2S-induced glucose production. HepG2 cells were transfected with PC 

siRNA for 24 h in the presence or absence of NaHS (50 µM), and the cells were then 

collected for analyzing glucose production and PC protein expression. *, p<0.05 versus the 

cells transfected with control siRNA. n=3. (C) and (D) PC overexpession increased glucose 

production in HepG2 cells. HepG2 cells were transfected with PC cDNA for 24 h, the cells 

were then collected for analyzing glucose production and PC protein expression. *, p<0.05. 

n=4. (E) and (F) PAA lowered down H2S-induced PC activity and glucose production. HepG2 

cells were incubated with PAA (1 mM) for 30 min and/or NaHS (50 µM) for 2 h, the cells 

were collected for measuring PC activity and glucose production. *, p<0.05 versus control. 

n=4. (G) glucose production was decreased in CSE-KO hepatocytes. Hepatocytes isolated 

from WT and CSE-KO mice were incubated with PAA (1 mM) for 30 min and/or NaHS (50 

µM) for 2 h, the cells were collected for measuring glucose production. * p<0.05 versus WT 

control; # p<0.05 versus CSE-KO control. n=4. 
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for the indicated time (0.5-12 h) (B), the cells were then collected and lysed for western 

blotting analysis of PC protein expression (A and B). (C) HepG2 cells were incubated with 

different concentration of NaHS (10-100 µM) for 2 h and real-time PCR analysis of PC 

mRNA expressioin was then performed. n=4 (D) and (E) CSE deficiency did not affect PC 

protein and mRNA expressions in mouse liver tissues. four WT and four CSE-KO mice were 

used to prepare liver tissues. 
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and PC S-sulfhydration was then analyzed by BSA with anti-PC antibody. * p<0.05 versus 

the control. n=4.  (B) H2S induced PC S-sulfhydration in a time-dependent manner. HepG2 

cells were incubated with NaHS (50 µM) for 0.5, 2 and 12 h, respectively. * p<0.05 versus 

the control. n=4.  (C) and (D) DTT reversed H2S-induced PC S-sulfhydration and PC 

activity. HepG2 cell lysates were incubated with NaHS (100 µM) and/or DTT (1 mM) for 30 

min, the cells were then collected for analyzing PC S-sulfhydration and PC activity, 

respectively. * p<0.05 versus control. n=4. (E) Cysteine strengthened PC S-sulfhydration. 

Both WT and CSE-KO liver lysates were incubated with L-cysteine (1-10 mM) for 30 min. * 

p<0.05 versus WT control. n=4. (F) CSE overexpression stimulated PC S-sulfhydration. 

HEK293 cells were transfected with CSE cDNA (184) for 24 h following detection of PC S-

sulfhydration. * p<0.05 versus all other groups. n=4. 
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Figure 2. 6    Reduced liver CSE expression and PC S-sulfhydration in HFD-feeding 

mice. (A) and (B) HFD feeding of WT mice decreased liver PC S-sulfhydration and activity. 

Both WT and CSE-KO mice were feed with HFD for 12 weeks following detection of PCS-

sulfhydration (A) and activity (B). * p<0.05 versus all other groups. n=4. (C) HFD feeding 
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significantly decreased CSE expression in WT mice. Both WT and CSE-KO mice were feed 

with HFD for 12 weeks following detection liver CSE expression by immunohistology. Bar: 

20 µm. (D) and (E) High glucose inhibited CSE expression and PC S-sulfhydration in both 

HepG2 cells and primay hepatocytes. The cells were incubated with different concentration 

of glucose (5.5 and 25 mM) for 24 hours following detection of CSE expression and PC S-

sulfhydration. * p<0.05. n=3. (F) and (G) Glucose deprivation enhanced CSE expression in 

both HepG2 cells and primay hepatocytes. The cells were deprived of glucose for 24 hours 

following detection of CSE expression. * p<0.05. n=3. 
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3. 1 Abstract 

 The importance of H2S in biology and medicine has been widely recognized in recent 

years, and protein S-sulfhydration is proposed to mediate most of H2S bioactivity in the body. 

Thioredoxin 1 (Trx1) is an important reducing enzyme that cleaves disulfides in proteins and 

acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here 

we showed that Trx1 is essential for protein S-desulfhydration. Overexpression of Trx1 

attenuated the basal level and H2S-induced protein S-sulfhydration by direct interacting with 

S-sulfhydated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate 

carboxylase. Mutation of cysteine-32 but not cysteine-35 in the Trp-Cys32-Gly-Pro-Cys35 

motif eliminated the binding of Trx1 with S-sulfhydated proteins and abolished the S-

desulfhydrating effect of Trx1. In contrast, blockage of Trx1 redox activity with PX12 or 2,4-

dinitrochlorobenzene enhanced protein S-sulfhydration. All these data suggest that Trx1 acts 

as an S-desulfhydrase. 

 

 

Key works: S-sulfhydration, S-desulfhydration, hydrogen sulfide, thioredoxin 1  
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3. 2 Introduction 

 Hydrogen sulfide (H2S) can S-sulfhydrate proteins by yielding a hydropersulfide 

moiety (–SSH) in the active cysteine residues (94,198,199). It is predicted that S-

sulfhydration can alter protein conformation and the final function and activity of target 

proteins (160,198). This particular redox modification of cysteine by S-sulfhydration has 

been achieved using proteomics techniques by coupling a specific enrichment strategy 

(biotin-switch assay and/or tag-switch assay) with high-throughput mass spectrometry 

analysis (94,179,200). So far, there have been a dozen proteins observed to be modified by 

H2S through S-sulfhydration. KATP channel is a direct target for H2S in regulating vasodilation 

and cardioprotection (7). In fact, H2S induces S-sulfhydration of Kir6.1 subunit of KATP 

channels, and dithiothreitol (DTT) reverses this S-sulfhydration (160). H2S-induced S-

sulfhydration of phosphatase PTP1B alters endoplasmic reticulum stress response (201). H2S 

S-sulfhydrates p65 and mediates the anti-apoptotic effect of NF-B (179). H2S modulates 

cellular redox signaling via direct S-sulfhydration of Keap1/Nrf2 system, p66, and 

electrophiles, contributing to the beneficial effects of H2S on cellular aging and heart failure 

(34,202,203). S-sulfhydration of MEK1 leads to PARP1 activation and DNA damage repair in 

endothelia cells (161). 

Like protein phosphorylation and S-nitrosylation, S-sulfhydration is proposed to 

mediate or modulate transduction of myriad cellular signals (94,198,199). While decades of 

research have established the generality and broad physiological importance of protein 

phosphorylation and S-nitrosylation, our current understanding of the fundamental biology 

and chemistry of S-sulfhydration as a protein signaling modality is still in its infancy 

(170,204). Is H2S S-sulfhydration of cysteine enzyme-regulated or a spontaneous process? 

How is the biochemical stability of S-sulfhydrated proteins? Which critical factors are 

involved and what conditions are required for the formation of S-sulfhydration? Is there any 
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possibility for desulfhydration and/or transsulfhydration and how are they regulated? Little is 

known about the nature of or even necessity for enzymatic mechanisms that may directly add 

or remove SH groups from cysteine thiols.   

In the present study, we demonstrated that thioredoxin 1 (Trx1), an oxidoreductase 

found in both prokaryotes and eukaryotes, is essential for protein S-desulfhydration. 

Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration 

by direct interaction with S-sulfhydated proteins, i.e., glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and pyruvate carboxylase (PC). In contrast, blockage of Trx1 

activity strengthened protein S-sulfhydration. Furthermore, mutation of cyseine-32 in Trx1 

eliminated the binding of Trx1 with S-sulfhydated proteins and abolished the S-

desulfhydrating effect of Trx1 on both GAPDH and PC. 

 

http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase
http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase
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3. 3 Materials and methods 

Cell culture and transfection 

HepG2 (a human hepatocellular liver carcinoma cell line) and HEK293 cells were 

purchased from American Type Culture Collection (Manassas, VA) and maintained in 

Dulbecco’s Modified Eagle’s medium (Sigma, Oakville, ON) supplemented with 10% fetal 

bovine serum (Clontech, Mountain View, CA) and 1% penicillin-streptomycin solution 

(Sigma). For cell transfection, wild-type Trx1 or mutant Trx1 was transfected into HEK293 

or HepG2 cells using LipofectamineTM 2000 reagent as described by the manufacturer’s 

protocol (Invitrogen, Burlington, ON).  

 

Biotin switch assay of S-sulfhydration 

 BSA was carried-out as described previously with some modifications (94). Briefly, 

the cells were homogenized in HEN buffer (250 mM HEPES (pH 7.7), 1 mM EDTA, and 0.1 

mM Neocuproine) supplemented with 100 μM deferoxamine and centrifuged at 13,000 × g 

for 30 minutes at 4°C. The lysates were added to blocking buffer (HEN buffer adjust to 2.5% 

SDS and 20 mM methyl methanethiosulfonate (MMTS)) at 50°C for 20 minutes with 

frequent vortexing. The MMTS was then removed by acetone and the proteins were 

precipitated at -20°C for 20 min. Proteins were resuspended in HENS buffer (HEN buffer 

containing 1 % SDS) and 4 mM biotin-N-[6-(biotinamido) hexyl]-3’-(2’-pyridyldithio) 

propinamide (HPDP) in DMSO without ascorbic acid. After incubation for 2 hours at 25°C, 

biotinylated proteins were purified by streptavidin-agarose beads, which were then washed 

with HENS buffer. The biotinylated proteins were eluted by SDS-PAGE sample buffer and 

subjected to Western blotting analysis with antibody against GAPDH or PC.  

 

Construction of Trx1 mutants 
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 The plasmid Myc-TRX was purchased from Addgene (MA, USA) (205). Single 

mutation of cyteine-32 (Trx1-C32) and cysteine-35 (Trx1-C35) to serine were conducted 

using the Quick Change Site-Directed Mutagenesis kit (Stratagene, CA, USA) (161). The 

oligonucleotides using for mutagenesis were 5’- 

CTTCTCAGCCACGTGGAGTGGGCCTTGCAAAATG-3’ (forward) and 5’-

CATTTTGCAAGG-CCCACTCCACGTGGCTGAGAAG-3’ (reverse) for cysteine-32, and 

5’-CGTGGTGTGGGCC-TAGCAAAATGATCAAGC-3’ (forward) and 5’-

GCTTGATCATTTTGCTAGGCCCACACCACG-3’ for cysteine-35. The correct mutant was 

confirmed by DNA sequencing at the Paleo-DNA laboratory in Lakehead University, ON, 

Canada. 

 

Co-Immunoprecipitation (Co-IP)  

 The cells were lysed in IP lysis/wash buffer (25 mM Tris, 0.15M NaCl, 1 mM EDTA, 

1% NP-40, 5% glycerol, pH7.4) including protease inhibitor cocktail (Sigma) (34). The 

proteins (500 µg) were then incubated with 5 μg anti-PC antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA) or anti-GAPDH (Santa Cruz Biotechnology) for overnight at 4 oC. Protein 

A/G agarose was incubated with lysates for 1 hour with gentle end-over-end mixing. Agarose 

resin was washed three times with IP lysis/wash buffer. The resin was then washed one time 

with saline solution (0.15 M NaCl). Immune complex was eluted with 2 × SDS PAGE sample 

buffer (62.5 mM Tris-Cl, pH 6.8, 2% SDS, 10% glycerol, 50 mM DTT, and 0.01% 

bromophenol blue) at 100 oC for 5 minutes. The samples were subjected to Western 

immunoblotting analysis. 

 

Western immunoblotting 

 The cells were harvested and lysed in a cell lysis buffer including protease inhibitor 

http://www.piercenet.com/method/co-immunoprecipitation-co-ip
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cocktail (Sigma). Extracts were separated by centrifugation at 14,000 g for 15 min at 4°C. 

SDS-PAGE and Western blot analysis were performed. Briefly, equal amount of proteins 

were boiled in 1 × SDS sample buffer and run in a 10% SDS-PAGE gel, and transferred onto 

pure nitrocellulose blotting membranes (Pall Corporation). Immunoblots were probed with 

mouse monoclonal anti-PC (1:500 dilution; Santa Cruz Biotechnology), anti-GAPDH 

(1:1,000 dilution; Santa Cruz Biotechnology) and horseradish peroxidase (HRP)-conjugated 

rabbit anti-mouse secondary antibody (1:10,000 dilution; Sigma). Anti-β-actin primary 

antibody (1:10,000 dilution; Sigma) and HRP-conjugated rabbit anti-mouse secondary 

antibody (1:5,000 dilution; Sigma) were employed to normalize protein expression. The blots 

were developed using chemiluminescence (ECL Western Blotting Detection Reagents, 

Amersham Biosciences).  

 

Statistical analysis 

 Data were presented as means ± SEM, representing at least three independent 

experiments. Statistical comparisons were made using Excel 2007 (Microsoft, Redmond, 

WA) with Student’s t-test to evaluate the difference between two groups, and the difference 

between multiple groups were analyzed by using SigmaPlot 12.0 (Systat Software Inc. San 

Jose, CA) with ANOVA and post-hoc Tukey test. Significance level was set at p<0.05. 
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3.4 Results 

Trx1 suppresses protein S-sulfhydration 

Protein S-sulfhydration can be detected by the modified BSA (94). Following the 

procedures descried in the Methods, the S-sulfhydrated thiols were labeled with biotin-HPDP 

and then detected by western blotting with the antibody against either biotin or specific 

protein. We first detected the basal labeling of multiple proteins using an antibody against 

biotin, and the signaling became even stronger after treatment with 50 µM NaHS (a well 

known H2S donor) for 2 hours in HEK293 cells. We further found that Trx1 overexpression 

in HEK293 cells markedly decreases H2S-induced protein S-sulfhydration (Fig. 3. 1A). 

Probing with antibodies to specific proteins, such as PC (Fig. 3. 1B) and GAPDH (Fig. 3. 1C), 

it was clearly showed that both GAPDH and PC proteins were basically S-sulfhydrated and 

further strengthened by exogenously applied NaHS, while transfection of HEK293 cells with 

Trx1 cDNA significantly reversed the basal and H2S-initiated S-sulfhydration of PC and 

GAPDH, suggesting Trx1 acts as a S-desulfhydrase. Identical results were further validated in 

another cell line, HepG2 cells (Fig. 3. 1D and 1E).  

 

Inhibition of Trx1 activity stimulates protein S-sulfhydration 

PX12, an irreversible and competitive inhibitor of Trx1, significantly enhanced the S-

sulfhydration of PC and GAPDH when compared with the control HepG2 cells (Fig. 3. 2A 

and 2B). Similarly, 2,4-dinitrochlorobenzene (DNCB), an irreversible inhibitor of thioredoxin 

reductase (TrxR), also increased S-sulfhydrated PC and GAPDH (Fig. 3. 2C and 2D), 

suggesting that thioredoxin reductase cooperates with Trx1 contributing to protein S-

desulfhydration. Either PX12 or DNCB did not further increase H2S-stimulated PC and 

GAPDH S-sulfhydration (Fig. 3. 2A-D). Furthermore, we observed that PX12 or DNCB 

significantly reverses the inhibitory role of Trx1 overexpression on S-desulfhydration of PC 
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and GAPDH (Fig. 3. 3A-D).    

 

Cysteine-32 is requisite for Trx1 desulfhydration of proteins 

 Trx1 has a highly conserved active site, Trp-Cys32–Gly–Pro–Cys35, which is required 

for its redox activity (206,207). Here we found that mutation of cysteine-32 but not cysteine-

35 in the Trp-Cys32–Gly–Pro–Cys35 motif eliminates the S-desulfhydration activity of Trx1 on 

both PC and GAPDH (Fig. 3. 4A and 4B), suggesting cysteine-32 is requisite for Trx1 S-

desulfhydration of proteins. Trx1 directly interacted with PC and GAPDH, which was not 

altered in the presence of NaHS. Interestedly, mutation of cysteine-32 but not cysteine-35 

abolished the binding of Trx1 with PC (Fig. 3. 4C) or GAPDH (Fig. 3. 4B).  
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3. 5 Discussion 

 H2S regulates cellular processes largely through S-sulfhydration of active cysteine 

residues within proteins (198,199). S-sulfhydration of proteins has been demonstrated to be 

involved in a broad range of signaling and metabolic pathways, including cell death and 

differentiation, enzymatic activity, protein localization, protein–protein interactions, and 

protein stability, etc (34,94,160,161,178,179,201,203,208). Given the importance of protein 

S-sulfhdyration in both health and diseases, much less is known about the systems governing 

protein S-desulfhydration. In our present report, we demonstrated that Trx1 is essential for 

breakage of hydropersulfide group from the cysteine thiol in S-sulfhdyrated proteins by direct 

interaction with Trx1 at cysteine-32. 

Trx1, a ubiquitous 12 kDa proteins with general anti-oxidative properties, is involved 

in a large number of cellular functions such as cell proliferation and differentiation, redox and 

metabolic pathways, gene transcription, embryogenesis, etc (162,169,173,209,210). In recent 

years, Trx1 has been suggested to mediate cysteine S-denitrosylation by reducing inter- and 

intramolecular disulfide bonds in proteins (153,162). By analogy to S-nitrosylation, the extent 

of S-sulfhydration of a given protein must be governed by the equilibrium between S-

sulfhydration and S-desulfhydration reactions (162). Protein S-sulfhydration is mainly 

dependent on the activity of H2S-producing enzymes (179,211). Here we showed that Trx1 is 

clearly involved in protein S-desulfhydration, because overexpression of Trx1 suppressed but 

blockage of Trx1 activity enhanced protein S-sulfhydration. Trx1 catalyzes thiol-disulfide 

oxidoreductions by using redox-active cysteine residues present in a Trp-Cys32-Gly-Pro-Cys35 

sequence motif (153,169,212). The active cysteine residues form a disulfide in oxidized Trx1, 

while the disulfide is broken in reduced Trx1 with the aid of TrxR using electrons from 

NADPH (169,175). In our study, inhibition of TrxR activity by DNCB must block the 

transition of reduced Trx1 to oxidized Trx1, which diminishes the inhibitory role of Trx1 on 
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protein S-desulfhydration. These findings indicate that protein S-desulfhydration is indeed 

mediated by the Trx1/TrxR system. 

We further provided evidence that Trx1 contributes to protein S-desulfhydration via 

protein-to-protein association between its substrate and Trx1 at cysteine-32. Co-

immunoprecipitation results demonstrated that Trx1 directly interacts with S-sulfhydrated 

proteins, and single mutation of cysteine-32 to serine abolished the inhibitory role of Trx1 on 

protein S-desulfhydration. Mutation of cysteine-32 also eliminated the binding of Trx1 with 

S-sulfhydrated proteins. In contrary, mutation of cysteine-35 in the same Trp-Cys32-Gly-Pro-

Cys35 sequence motif failed to change the S-desulfhydration activity of Trx1. There may be 

several reasons for this difference. Firstly, formation of the cysteine-32/cystine-35 disulfide 

bridge leads to a rotation of the side-chain of cysteine-32 away from cysteine-35 in the 

reduced form (207,210). Mutation of cysteine-32 will induce formation of new disulfide 

between cysteine-35 and other cysteine residues within Trx1, which would change the 

position of cysteine 32 and block the interaction of cysteine-32 with S-sulfhydrated proteins. 

Secondly, the thiol of cysteine-32 has a low pKa value in comparison with cysteine-35, and 

cysteine-32 is more easily attacked by S-sulfhydrated proteins for disulfide reduction 

(169,175,212). Thirdly, Trx-interacing protein (Txnip), a constitutively expressed protein, 

forms a mixed disulfide with the active site cysteine-32 of Trx1 (162,174,206). Mutation of 

cysteine-32 would interrupt the interaction of Txnip with Trx1, thereby affecting the 

oxidoreductase activity of Trx1. More studies are required to elucidate the precise interaction 

of Trx1 cysteine-32 and S-sulfhydrated proteins. In addition, we cannot exclude the 

possibility that other cysteine residues within Trx1 are involved in this process. 

Two major pathways for enzymatic denitrosylation have recently been recognized 

(162). Besides with Trx system, S-nitrosoglutathione (GSNO) reductase also can lower the 

levels of protein S-nitrosothiols (162,207,213). Unlike Trx1, which directly target specific S-
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nitrosylated proteins for cysteine reduction, GSNO reductase indirectly decreases cell protein 

S-nitrosylation through GSNO metabolism. In addition, glutathione, the most abundant 

intracellular thiols, plays a major role in protein S-denitrosylation by GSNO reductase. We 

had data showed that the supplemental of glutathione has no effect on protein S-

desulfhydration. Therefore, GSNO reductase would not act as an S-desulfhydrase. 

Based on these results above, we conclude that the S-desulfhydration of proteins is 

associated with the Trx1/TrxR system, and cysteine-32 within Trx1 is responsible for the 

direct interaction of Trx1 and S-sulfhydrated proteins following the breakage of 

hydropersulfide group. Further investigation on the role of Trx system in relation to protein S-

desulfhydation and their biological relevance needs to be explored. 
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Figure 3. 1    Trx1 acts as an S-desulfhydrase. (A), (B), and (C) Trx1 overexpression 

inhibited the S-sulfhydration level of total proteins, PC and GAPDH in HEK293 cells. 

HEK293 cells were transfected with Trx1 cDNA for 24 hours, and then treated with 50 µM 

NaHS for 2 hours. After that, the cells were collected for BSA using antibody against biotin 

(A), PC (B), and GAPDH (C), respectively. * p<0.05 versus all other groups; # p<0.05 versus 

control. n=4. (D) and (E) Trx1 overexpression inhibited PC and GAPDH S-sulfhydration in 

HepG2 cells. HepG2 cells were transfected with Trx1 cDNA for 24 hours, and then treated 
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with 50 µM NaHS for 2 hours. After that, the cells were collected for BSA using antibody 

against PC (D) and GAPDH (E), respectively. * p<0.05 versus all other groups; # p<0.05 

versus control. n=4. 
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Figure 3. 2    Inhibition of Trx system enhances protein S-sulfhydration.  (A) and (B) 

PX12 induces PC and GAPDH S-sulfhydration. HepG2 cells were firstly treated with 5 µM 

PX12 for 4 hours, and then 50 µM NaHS was added for additional 2 hours. After that, the 

cells were collected for BSA using antibody against biotin PC (A) and GAPDH (B), 

respectively. * p<0.05 versus control. n=4. (C) and (D) DNCB induces PC and GAPDH S-

sulfhydration. HepG2 cells were treated with 40 µM DNCB or 30 minutes and/or 50 µM 

NaHS for 2 hours. After that, the cells were collected for BSA using antibody against biotin 

PC (C) and GAPDH (D), respectively. * p<0.05 versus control. n=4.  
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hours following incubation with 5 µM PX12 for 4 hours and/or 50 µM NaHS for 2 hours. 

After that, the cells were collected for BSA using antibody against biotin PC (A) and GAPDH 

(B), respectively. * p<0.05 versus control. n=4. (C) and (D) DNCB reversed the inhibitory 

effect of Trx1 on PC and GAPDH S-desulfhydration. HEK293 cells were firstly transfected 

with Trx1 cDNA for 24 hours following incubation with 40 µM DNCB or 30 minutes and/or 

50 µM NaHS for 2 hours. After that, the cells were collected for BSA using antibody against 

biotin PC (C) and GAPDH (D), respectively. * p<0.05 versus control. n=4.  
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following incubation with 50 µM NaHS for 2 hours. After that, the cells were collected for 

co-immunoprecipitation assay as indicated in the figure. n=3. 
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GENERAL DISCUSSION 

 H2S is considered as the third gasotransmitter along with NO and CO. Similar to NO 

and CO, H2S plays diverse roles in metabolic and signaling pathways. Recently, it is 

recognized that H2S S-sulfhydration of protein mediates most of H2S activities in various 

cellular functions. Protein S-sulfhydration is analogous to protein S-nitrosylation by NO. 

Protein S-sulfhydration is just newly discovered, many things remain unclear about protein S-

sulfhydration, i.e., the regulatory and forming mechanism of S-sulfhydration, the interaction 

between S-nitrosylation and S-sulfhydration, and their alterations in health and diseases. Here 

we demonstrated that H2S regulates liver gluconeogenesis through S-sulfhydration of PC and 

Trx1 is involved in the regulation of protein S-desulfhydration.  

 In chapter 2, we found that S-sulfhydration of PC induced by H2S increases 

gluconeogenesis in HepG2 and mouse primary liver cells. To date, the post-translational 

modification of PC is poorly understood. The present study showed that PC S-sulfhydration 

occurs in cysteine 265 of human PC, and S-sulfhydration induces PC activity. H2S had no 

effect on the expression of PC. S-sulfhydration of PC is regulated by CSE in liver cells and it 

was further found that high glucose inhibits CSE expression and S-sulfhydration of PC. 

CSE/H2S pathway is involved in the regulation of gluconeogenesis through PC S-

sulfhydration and it is modulated by glucose in liver cells. In the last decade, CSE/H2S 

pathway has been gotten attentions for their pathological and physiological roles in liver. 

However, most studies of H2S in liver are related to its anti-oxidant, bioenergetic, and 

detoxification effects (95). In our previous studies, it was shown that CSE/H2S pathway plays 

critical roles for the metabolisms in liver, such as lipid metabolism (95,96) and glucose 

metabolism (98). Unfortunately, the detail regulation of metabolisms by H2S in liver was not 

fully determined yet. Here, based on my results, we suggest that PC S-sulfhydration regulated 

by CSE/H2S pathway in liver cells is one of the regulatory mechanisms for the glucose 

http://dict.cn/analogous
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metabolism, especially gluconeogenesis. Gluconeogenesis is associated with metabolic 

syndromes, such as diabetes, obesity, and hypertension. For metabolic syndromes, insulin 

resistance is considered as a main pathogenic factor. In our previous studies, it was shown 

that H2S plays a pathological role in the induction of hepatic insulin resistance (98,214). Until 

now, the effect and regulation of CSE/H2S pathway in metabolic syndromes are not well 

determined. In addition, malfunction of CSE/H2S pathway in liver may be related to the 

development of metabolic syndromes because abnormality of CSE/H2S system is often found 

in metabolic syndromes (215). Therefore, protein S-sulfhydration regulated by CSE/H2S 

pathway in liver will be a critical process to regulate metabolic pathways and syndromes 

through CSE/H2S pathway, and protein S-sulfhydration will be an useful therapeutic target for 

metabolic syndromes through the regulation of gluconeogenesis. 

 In chaper 3, we reported that S-sulfhydration of GAPDH and PC are regulated by 

Trx1. Trx1 is a well-known redox related small protein which plays a role as a denitrosylase 

and transnitrosylase. However, the role of Trx1 in regulation of protein S-sulfhydration is not 

clear. Here we found that Trx1 reverses S-sulfhydration of GAPDH and PC and acts as a S-

desulfhydrase. Especially, cysteine 32 but not cysteine 35 in Trx1 is a critical residue for the 

desulfhdyration activity of Trx1. The regulatory mechanism of desulfhydration activity in 

Trx1 by cysteine  32, not cysteine 35, results from the different properties between these two 

cysteines (216). Firstly, in the folding structure of Trx1, cysteine 35 is buried and cysteine 32 

is freely accessible for the interaction with substrate and target residue in biomolecules. Thus, 

cysteine 32 is able to access the S-sulfhydrated cysteine residue. Secondly, cysteine 32 is 

deprotonated at physiological pH and can be allowed for nucleophilic attack on target, such 

as disulfide bond. Persulfide in protein S-sulfhydration shares similar properties with 

disulfide bond. Consequently, cysteine 32 can play a nucleophilic attacker for the persulfide 

in protein S-sulfhydration. Finally, in physiological pH, cysteine 32 acts as an acid and 
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cysteine 35 as a base. Deprotonated and acidic cysteine 32 uptakes HS- from persulfide in 

protein S-sulfhydration and cysteine 35 then plays a role for the release of H2S from Trx1, as 

a base (Fig. 4). The study for the regulatory and forming mechanism of protein S-

sulfhydration is important to understand the effects and roles of H2S in pathological and 

physiological conditions. Unfortunately, up to now there is no report about the regulatory and 

forming mechanism of protein S-sulfhydration. The present study first explored the 

regulatory mechanism of protein S-sulfhydration and demonstrated that Trx1 is essential for 

removal of protein S-sulfhydration . 

 The forming mechanism is an important matter for the study of protein S-

sulfhydration. As mentioned in Chapter 1, the study of forming mechanism of protein S-

sulfhydration is rarely reported. It is unknown whether protein S-sulfhydration is enzyme-

catalyzed reaction or automatic redox reaction but it is clear that many intermediates must be 

in involved the formation of protein S-sulfhydration. RSSH including GSSH and CSSH is a 

highly potential intermediate for the forming of protein S-sulfhydration (162). Furthermore, 

the correlation between H2S and GSSH was determined in different tissues, such as brain, 

kidney, and liver, from mouse. It was suggested that H2S producing enzymes, CSE and CBS, 

are involved in the regulation of GSSH levels and may influence on the forming protein S-

sulfhydration (162). Therefore, further investigation on the forming mechanism of protein S-

sulfhydration will be required to determine regulation of protein S-sulfhydration and 

understand its roles and effects on diverse pathophysiological conditions. 
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CONCLUSION 

 

 The present studies showed that H2S plays an important role in up-regulation of 

gluconeogenesis, through PC S-sulfhydration, and Trx1 acts as a protein S-desulfhydrase.  

 In liver, CSE is mainly responsible for H2S production and contributes to PC S-

sulfhydration. I further found that glucose decreases CSE expression in liver and inhibits PC 

and gluconeogenesis. Malfunction of gluconeogenesis, elevated gluconeogenic activity, is a 

critical factor in metabolic syndromes. Gluconeogenesis is a therapeutic target of these 

syndromes through the inhibitory regulation of gluconeogenesis. Therefore, CSE/H2S 

pathway in liver is a potential therapeutic target for metabolic syndromes and PC S-

sulfhydration is a useful approach to understand the roles and effects of H2S on 

gluconeogenesis.  

 The PC and GAPDH S-sulfhydration are regulated by Trx1. Cysteine 32 among 

active sites in Trx1, but not cysteine 35, plays a critical role for the regulation of protein S-

sulfhydration (Fig. 4). I expect that the present finding about the regulatory mechanism of 

protein S-sulfhydration by Trx1 will provide the basis for the understanding of protein S-

sulfhydration in both health and diseases.  
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SIGNIFICANCE OF THE STUDY 

 

 Diabetes is a metabolic disease and it is estimated that 387 million people who suffer 

diabetes worldwide as of 2014. Type 2 diabetes makes up about 90 % of the cases which is 

equal to 8.3 % of the adult population. Diabetes can cause many complications, such as 

diabetic ketoacidosis, nonketotic hyperosmolarcoma, cardiovascular disease, stroke, kidney 

failure, foot ulcers, and damage to the eyes. Diabetes resulted in an estimated 1.5 to 4.9 

million deaths per year in the years 2012 to 2014. In Canada, diabetes is involved in over 

41,500 deaths each year. Furthermore, the cost for the diabetes is huge and direct cost ranges 

from $ 1,000 to $ 15,000 per year. In the United States, diabetes cost $ 245 billion in 2012. In 

Canada, Canadian healthcare system estimated that the cost will be $ 16.9 billion per year by 

2020.  

 Until now, the pathogenic mechanisms of diabetes have not been fully understood. 

Clinical therapies according to current mechanisms are not effective as much as expected and 

it is hard to prevent multiple complications caused by diabetes. Increased rates of endogenous 

glucose production by gluconeogenesis were commonly observed in patients with poorly 

controlled type 2 diabetes. Metaformin is a well known therapeutic drug for type 2 diabetes. 

Metaformin exerts its function in type 2 diabetes via inhibition of gluconeogenesis (89). It 

has been shown that H2S is involved in the development and progression of diabetes 

(217,218). The detailed mechanism of H2S in diabetes is still unclear. The regulation of 

CSE/H2S system on glucose balance in liver cells as a cellular response will be beneficial to 

understand the mechanism of diabetes and acts as a potential therapeutic target for diabetes. 

In addition, we demonstrated that H2S is involved in the regulation of gluconeogenesis 

through S-sulfhydration of PC, which provide a direct link for the role of CSE/H2S in 
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diabetes. In diabetic rat model, CSE expression and H2S production are increased (219). 

Pathogenic effects of CSE/H2S pathway in Zucker diabetic rats are found as well (217). 

Therefore, PC S-sulfhydration may act as a pathogenic factor in diabetes. Once detail 

regulation of PC S-sulfhydation and gluconeogenic pathway regulated by H2S is determined, 

it will provide the beneficial way for the therapy of diabetes. 

 S-sulfhydration is a novel posttranslational modification of proteins by H2S. Here we 

firstly reported that protein S-sulfhydration is regulated by Trx1. Further studies on the 

regulatory mechanisms of protein S-sulfhydration will provide the strategies for designing 

novel drug against diverse diseases linked to abnormal protein S-sulfhydration.  
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FUTURE DIRECTION 

 

 Future directions suggested as a follow-up on this study are: 

 

1. To further investigate the regulatory mechanism of S-sulfhydration. It has been 

well known that S-nitrosylation is extensively regulated via denitrosylation or 

transnitrosylation. I fully believe Trx1 is one of the factors involved for S-

sulfhydration regulation. In order to further investigate the regulatory mechanism 

of protein S-sulfhydration, two concerns are required. Firstly, the regulatory 

mechanism of protein S-sulfhydration by Trx1 may be commonly occurred in 

various proteins based on redox status of cells since Trx1 is related to control 

redox environment in the cells. Secondly, the possibility of other enzymes, except 

for Trx1, will be considered for further investigation of regulatory mechanism of 

protein S-sulfhydration since GAPDH also mediates protein S-nitrosylation (220).  

 

2. To further investigate the forming mechanism of S-sulfhydration. Unlike 

phosphorylation, the forming mechanism of S-sulfhydration is unclear. The 

relationship among GSSH, glutathione persulfide, and protein S-sulfhydration is 

critical for the regulation of protein S-sulfhydration (162). Acid-base motif is 

considered as a potential forming mechanism of protein S-nitrosylation. RSNO 

derived from NO including GSNO is known as a NO donor for protein S-

nitrosylation. Therefore, GSSH or other persulfides derived from H2S may be 

involved in forming of protein S-sulfhydration, similar to the forming mechanism 

of protein S-nitrosylation by GSNO through acid-base motif.  
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3. To elucidate the relationship between protein S-nitrosylation and S-sulfhydration. 

Methodological approach is important for this study. Up to date, the study for the 

relationship between protein S-nitrosylation and S-sulfhydration was determined 

with comparison of protein S-nitrosylation and S-sulfhydration in separate 

samples (94,178). Development of detection methods for protein S-nitrosylation 

and S-sulfhydration at the same time will be necessary for the further study. 

Protein S-nitrosylation and S-sulfhydration possess an opposite role in GAPDH 

and eNOS (94,178). In addition, protein S-nitrosylation and S-sulfhydration share 

the same cysteine residue in GAPDH and eNOS. Therefore, the balance of protein 

S-nitrosylation and S-sulfhydration in the cells may be involved in the various 

diseases which are related to protein S-nitrosylation and S-sulfhydration, such as 

Parkin’s and Alzheimer’s disease. 
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