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Abstract

In this study, a Takagi-Sugeno fuzzy model based tracking controller is proposed for nonlinear

high index singular systems with a guaranteed H∞ model reference tracking performance. A

coordinate transformation is introduced, which allows to represent the nonlinear high index

singular systems using T-S fuzzy model. This transformation facilitates the specification of a

dynamic reference system that satisfies the same constraints as the actual system. Moreover,

the proposed transformation relaxes the existence condition of a full order observer for a

nonlinear high index singular system. A modification of the existing linear matrix inequality

optimization algorithm has been proposed to make the algorithm compatible for singular

systems. The proposed approach is general and can be used for designing the tracking

controller and defining the dynamic reference model for any singular systems with any index.

Without using the exact feedback linearization technique and complicated adaptive schemes,

this tracking controller design approach is simple and feasible for practical applications.

Finally, two high index singular systems from two different fields are used as examples to

demonstrate the proposed design effectiveness.
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1 Introduction

The main focus of this chapter is to give an overall idea of singular systems along with the

available methods to analyze and design controllers for singular systems. The discussion will

emphasize the state space representation of singular systems while giving priority towards

the nonlinear singular systems involving nonlinear constraints, which is the primary direc-

tion of this study. A brief introduction of the state space representation of singular systems

is given in the Section 1.1. Section 1.2 illustrates a physical example of a singular system,

specifically, a constrained mechanical system. Section 1.3 covers the review of the studies on

both linear and nonlinear singular systems. Moreover, this section defines some important

terms regarding singular systems such as index and solvability. The differences between the

ordinary differential equations (ODE) and the high index singular systems are explained in

Section 1.3.4 Section 1.3.5 deals with the important term known as regularity of singular sys-

tems. Section 1.4 provides a motivation for this research, pointing out the existing problems

related to design dynamic tracking controllers for high index singular systems. Sub-Section

1.5 explains the contribution of this study. Finally, the organization of the following chapters

of this research note is given in the Section 1.6.

1.1 Singular Systems

Based on state space models, system analysis and synthesis are the core features in modern

control theory, which were developed at the end of the 1950s and the beginning of the 1960s.

To produce a state space model, some variables are chosen as state variables, such as speed,

weight, temperature, and acceleration. These must be sufficient to characterize the system

of interest. Then, according to the laws of physics, several equations are established to

represent the relationships among the variables. Naturally, it is differential and algebraic
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equations that form the mathematical model of the system. Its general form is given as

follows:

f(xn(t), . . . , x(t), u(t), t) = 0 (1)

g(xm(t), u(t), y(t), t) = 0 (2)

where x(t) is composed of state variables and called the state of the system , u(t) is the

control input, y(t) is the measured output, f and g are vector-valued functions of xn(t),. . .,

x(t), u(t), and t with appropriate dimensions. Generally Eq. (1) and Eq. (2) are called state

and output equations, respectively.

Systems represented using differential algebraic equations are referred to as singular, implicit

descriptor, semi-state, and generalized systems. This types of representation is very natural

and commonly found in dynamic models of chemical [1],[2], electrical [19],[3], and mechanical

engineering [4],[29] and their applications [6]. Singular systems have fundamentally different

characteristics from ordinary differential equation (ODE) systems [7]. For example, unlike

ODEs, arbitrary initial conditions or non-smooth inputs in singular systems may lead to

impulsive solutions, which are a common cause of failure for standard ODE simulation

methods. A approach commonly used to measure the differences between singular systems

and ODE systems is that of the differential index. In simple words, the index of a singular

system is the minimum number of differentiations required to obtained an equivalent ODE

system. Singular systems with indices exceeding one are referred to as high-index singular

systems. High-index singular systems have been a subject of vast research [8],[9]. A variety of

numerical simulation methods have been developed for specific classes of high-index singular

systems, ranging from those resulting from index reduction techniques [10], [11], [12], and

[14] to those from nonlinear constrained optimization problems [71],[72]. The high-index

singular systems is still an area of active research [15],[16].
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Figure 1: Constrained robot link

1.2 A Physical Example of Singular Systems

Consider a holonomic constrained robotic system shown in the Fig. 1 This robotic link has 2

joints and one end effector which is confined to a line, i.e., the movement of the end effector

is holonomically constrained.

The dynamics of this constrained robotic link can be expressed as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = T + Jφ(q)
Tλ (3)

φ (q) = 0 (4)

where q = [q1 q2]
T , q1, q2 are generalized coordinates, M(q) denotes the inertial matrix,

C(q, q̇) is a matrix which characterizes the Coriolis or centrifugal terms, G(q) represents

gravitational effects, T =
[

T1 T2

]T

is the input torque vector at the joints, Jφ(q) is the

Jacobian of φ (q) which defines the constraint, λ is Lagrangian multiplier, and

M(q) =





m11 m12

m12 m22




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C(q, q̇) = m2l1l2(cos q1 sin q2 − sin q1 cos q2)





0 −q̇2

−q̇1 0





G(q) =





−(m1 + m2)l1g sin q1

−m2l2g sin q2





The constraint in working space is given by

φ (x) = −x + a(l1 + l2) − y

and in joint space

φ (q) = a (l1 + l2) − l1 (cos q1 + sin q1) − l2 (cos q2 + sin q2)

Jφ(q) =
[

l1 sin q1 − l1 cos q1 l2 sin q2 − l2 cos q2

]

with m11 = (m1 + m2)l
2
1, m12 = m2l1l2(sin q1 sin q2 + cos q1 cos q2), m22 = m2l

2
2, m1 and m2

being link masses, l1 and l2 being link lengths, and g denoting the acceleration due to gravity.

The dynamics can be expressed in the vector form by





M(q) 0

0 0









q̈

λ̇



 =





−C(q, q̇)q̇ − G(q) + T + Jφ(q)
Tλ

a (l1 + l2) − l1 (cos q1 + sin q1) − l2 (cos q2 + sin q2)



 (5)

which consists of two differential equations and one algebraic equation where there are three

unknowns, i.e., q1, q2 and λ. These differential equations and algebraic equations are in-

trinsically coupled. Since the matrix of coefficients of the derivative term is singular, 5 is a

high-index singular system.
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1.3 Literature Review

Early research on the control of singular systems focused on linear systems [17],[56] and [18].

For such systems, fundamental properties, such as solvability, stability, and solution charac-

teristics [19],[20], and concepts related to control, such as controllability and observability

[17],[31], [21], and [22], system equivalence [73],[75], [76], and [77], and minimal realizations

[23],[24], [25], and [26], have been intensively studied. Based on these controller design

methods can be broadly categorized into two classes. The first class of these methods is

developed within the framework of smooth solutions corresponding to consistent initial con-

ditions [17],[27] and [74], and the second one is for singular systems with arbitrary initial

conditions [48],[29], [30],[49],[31],[32],[33] and [47].

The advancements in control of nonlinear ODE systems [78],[79],[80], and [81] have acceler-

ated the growth of the research activities on the control of nonlinear singular systems over the

several decades. In this regard, system-theoretic properties, such as existence and uniqueness

of solutions [57],[82],[83],[59],[60], and [64], and stability analysis using Lyapunove techniques

[61],[62], and [31], have been studied for different classes of nonlinear singular systems. A va-

riety of controller design results have also been derived [34],[35],[36],[37],[38],[39],[40],[41],[42],

and [43]. These results lie within the classical framework of smooth solutions and in general,

rely on the derivation of an ODE representation of the original singular system or singular

system modified through feedback. Finally, the design of optimal controllers through non-

linear programming has also been addressed for certain classes of nonlinear singular systems

[44],[45].
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1.3.1 Linear Singular Systems

Consider a linear system with the following form

Eẋ = Ax (t) + Bu (t) (6)

where x ∈ Rn is the vector of state variables, u (t) ∈ Rm is the vector of input variables, and

E, A and B are constant matrices. It is assumed that E is singular, that is why the system

of the form Eq. (6) is called singular system [85],[78]. The solution characteristics of the

singular system in Eq. (6) are determined by the corresponding matrix pencil P = (sE −A)

[84], where s ∈ C. More specifically, the system is solvable if and only if the pencil P is

regular, that is det(P ) 6= 0. A practical procedure for verifying the regularity of the matrix

pencil is provided by Luenberger’s shuffle algorithm [86].

If rank(E) = r < n and det(P ) is a polynomial of degree d(0 ≤ d ≤ r), then there exist

non-singular matrices P and Q such that pre-multiplying Eq. (6) with P and employing a

coordinate change.

x̄ =





x̄1

x̄2



 = Qx

yields the following standard canonical form representation [84]

ẋ1 = A1x̄1 + B1u (t)

Nẋ2 = x̄2 + B2u (t) (7)

where x̄1 ∈ Rs and x̄2 ∈ Rn−s. In the above description, A1, B1, and B2 are constant

matrices of appropriate dimensions, and N is a (n − s) × (n − s) matrix of nil-potency ϕ,

i.e., all eigen values of N are zero and Nϕ = 0 while N i 6= 0 for i ≤ ϕ − 1. When d = r,

the matrix N is identically zero with an index of nil-potency ϕ = 1, and the x2 subsystem

in Eq. (7) is a purely algebraic system.

6



In the system of Eq. (7), the ODE subsystem in x1 is decoupled from the x2 subsystem and

has a solution given by

x1(t) = eAtx1(0) +

∫ t

0

eA(t−τ )x1B1u (τ ) dτ, t ≥ 0 (8)

for any initial condition x2 (0) and continuous inputs u (t), which is smooth.

The singularity of the matrix E may arise from a sudden change in the dynamic system or

from approximating some small parameters with zero. Therefore, the state x of the system

at time t = 0 need not be constrained. For such an arbitrary initial condition x(0 ) ∈ Rn,

the system of Eq. (6) has a distributional solution under the same condition of regularity of

the matrix pencil P . The system in Eq. (7) with the arbitrary initial condition x2 (0 ), the

x2 subsystem has the following distributional solution [20],[87].

x2 (t) = −

ϕ−1
∑

i=0

δ(i−1)N ix2 (0 ) −

ϕ−1
∑

i=0

N iB2u
i (t) , t ≥ 0 (9)

where δ denotes the unit impulse (Dirac delta) function and δ(i) denotes the i-th distributional

derivative. Starting from an arbitrary initial condition x2 (0 ), the above solution for x2(t)

exhibits an impulsive behavior at t = 0.

For the consistent initial conditions x2(0 ), N ix2 (0 ) = 0. As a result, the solution for x2(t)

is uniquely determined by the forcing inputs u(t):

x2 (t) = −

ϕ−1
∑

i=0

N iB2u
i (t) , t ≥ 0 (10)

where u(i) denotes the i-th derivative of the input. Thus, unlike ODE systems, singular

systems of Eq. (6) do not have smooth solutions for arbitrary initial conditions. Only initial

conditions x(0) that are consistent, i.e., x(0) such that x2(0) satisfies Eq. (10) at t = 0, yield

smooth solutions. Furthermore, unlike ODE systems, if the index ϕ for singular systems of

Eq. (6) exceeds one, then the solution of the singular system may depend on derivatives of

7



the inputs u(t).

The solvability of linear time-invariant systems of Eq. (6) is equivalent to the regularity of

the matrix pencil P . However, for linear time-varying systems with the form

E(t)ẋ(t) = A(t)x (t) + B(t)u (t) (11)

solvability and regularity of the pencil, P = (sE(t)−A(t)), are totally independent concepts

[8]. A characterization of solvability for linear time-varying systems of Eq. (11) and a general

canonical form representation for solvable systems were obtained in [46].

The impulsive behavior in the solution for x2 essentially corresponds to the presence of poles

at infinity in the system of Eq. (6). In a generalized state-space framework [31], the system

of (6) has impulsive modes if and only if ϕ > 1, or equivalently d < r, i.e. the degree of

polynomial det(sE − A) is strictly less than the rank of matrix E.

The systems that are controllable at infinity [48], and [31], or equivalently, systems for which

the pencil (sE − A − BK) has index ϕ = 1 for some feedback u, those systems can have

arbitrary initial conditions. For such systems, the problem of feedback pole placement [30]

and optimal control [48], [49], and [32] through state feedback have been addressed.

A key requirement in the above-mentioned results is that singular system of (6) must be

controllable at infinity. However, there is a broad class of singular systems that are not con-

trollable at infinity, for which it is not possible to eliminate the impulsive behavior arising

from arbitrary initial conditions. Thus, another research direction has focused on address-

ing the control of singular systems within the conventional perspective of smooth solutions

corresponding to consistent initial conditions [17],[27], and [28]. This study is also focusing

on singular systems that are not controllable at infinity.

8



1.3.2 Nonlinear Singular Systems

The general fully-implicit form of nonlinear singular systems,

F (ẋ, x, u(t)) = 0 (12)

where x ∈ χ ⊂ Rn is the vector of state variable (χ is an open connected set), u(t) ∈ Rm

is the vector of input variables and F : Rn × χ × Rm → Rn is a smooth function. In this

subsection, the characteristics of singular systems with specified time-varying inputs u(t)

will be discussed. Clearly, the system in Eq. (12) is an implicit ODE system, if the Jacobian
(

∂F
∂ẋ

)

is non-singular. On the other hand, if
(

∂F
∂ẋ

)

is singular, then the system exhibits

fundamentally different characteristics from ODE systems.

There has been a substantial amount of research on addressing basic system theoretic issues

such as existence and uniqueness of solutions [57],[58],[59], and [60], stability [61],[62] and

[63], for fully implicit singular systems of Eq. (6). However, the generality of the form

of the system in Eq. (6) does not allow the development of explicit controller synthesis

results. Furthermore, the majority of mechanical, electrical, and chemical process appli-

cations are modeled by singular systems in the so-called semi-explicit form where there is

a distinct separation of differential and algebraic equations. In particular for mechanical

systems, energy balances of mass dampers and springs yield explicit differential equations,

while holonomic constraints on the motion give algebraic equations. On the other hand, for

chemical processes, the standard dynamic balances of mass and energy yield explicit differ-

ential equations, while thermodynamic relations, empirical correlations, quasi-steady state

relations, etc. comprise the algebraic equations.

Nonlinear singular systems can be represented with the following semi-explicit form for the

9



modeling of mechanical, electrical, and chemical process applications:

ẋ = f(x) + b(x)zα + g(x)u(t) (13)

0 = k(x) + l(x)zα + c(x)u(t)

where x ∈ χ ⊂ Rn is the vector of differential variables for which we have explicit differ-

ential equations, z ∈ Z ⊂ Rp is the vector of algebraic variables that vary according to

the algebraic equations, χ and Z are open connected sets, u(t) ∈ Rn is vector of the input

variables, f(x) and k(x) are smooth matrices of appropriate dimensions. The inputs u and

the algebraic variables zα appear in the system equations in a linear fashion, which is typical

of most practical applications. Systems which are nonlinear in u and/or zα can also be easily

transformed into the above form [81].

1.3.3 Solvability and Index

Initial research on solvability of nonlinear singular systems focused on specialized classes of

systems [64], the solvability of the class of systems with the form:

F (y, t) = 0, A(y, t)
dy

dt
= G(y, t) (14)

was studied using the theory of differential equations on manifolds. In (14), F and G are

vector valued mappings of dimensions n and m (m < n), respectively, and A is a matrix

operator of dimension m×n. Under sufficient smoothness of F , A, and G and the condition

that the matrix:

det









DyF (y, t)

A(y, t)







 6= 0 (15)

on the manifold where F (y, t) = 0, a solution exists. In Eq. (15), DyF (y, t) denotes the

Jacobian
(

∂F (y,t)
∂y

)

. The system of Eq. (14) corresponds to a locally unique vector field on

this manifold. On the other hand, if the matrix in (15) is singular, then the system in Eq.

10



(14) permits solutions only on a lower dimensional manifold. This latter class of systems

was termed as algebraically incomplete; they are essentially high index systems. The work

of [64] was extended in [65] to a more general class of first and second order singular systems

with indices not exceeding two and three, respectively.

This differential-geometric approach of viewing singular systems as appropriate vector fields

on manifolds was used in [66] to address the solvability of singular systems with the form:

A(y, t)
dy

dt
= f(z) (16)

where the matrix A(z) is singular and then generalized in [60] to more general systems of

the form:

F (t, x, ẋ) = 0 (17)

The approach for the specification of sufficient conditions for solvability entailed a recursive

identification of a family of constraint manifolds Mi, i = 0, . . . s, where M(i+1) ⊂ Mi and

s, called the degree of the singular system, is the largest integer such that M(s−1) 6= Ms.

The singular system was termed as regular if, under appropriate conditions, it corresponded

to a unique vector field on the constrained manifold and thus, permitted a locally unique

solution on the manifold. An analogous approach was followed in [58],[59] to derive sufficient

conditions under which a general singular system of the form in Eq. (17) is equivalent to an

ODE system on an appropriately constrained manifold.

[57] gives a method of repetitive differentiation of Eq. (17) to obtain sufficient conditions for

solvability in terms of an extended set of equations, called the derivative array equations.

More specifically, differentiating Eq. (17) k times with respect to t yields the following
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extended set of equations

Fk(t, x, ẋ, w) =

















F (t, x, ẋ)

Fl(t, x, ẋ) + Fx(t, x, ẋ)ẋ + Fẋ(t, x, ẋ)ẍ
...

dk

dtk
F (t, x, ẋ)

















= 0 (18)

which involves higher-order time derivatives of x, w = [x(2), . . . , x(k+1)]. While the above set

of equations is still singular with respect to x(k+1) owing to the singularity of Fẋ(t, x, ẋ), it is

possible that they uniquely determine ẋ = φ(x, t) for some k ≥ 1. Indeed, under certain rank

conditions for suitable Jacobians of Fk. [57] gives a detailed description of these conditions

and their comparisons with other results of solvability conditions.

For the general fully implicit singular system of Eq. (17), the index ϕ is defined as the

smallest integer such that the derivative array equation Fvd(t, x, ẋ, w) = 0 in Eq. (18)

uniquely determines ẋ as a function of t, x [8]. In practice, depending on the structure of

the system in Eq. (17), it may not be necessary to differentiate all equations. In particular,

for the semi-explicit singular system of (13), one needs to differentiate only the algebraic

equations, and the index of such systems has the following definition [8].

Definition 1.1:[90] The index ϕ of the singular system in Eq. (13), with specified smooth

input u(t), is the minimum number of times the algebraic equations or their subsets have to

be differentiated to obtain a set of differential equations for zα, i.e.

żα = Fϕ(x, zα, t).

The index ϕ provides a measure of the ”singularity” of the algebraic equations and the

resulting differences from ODE systems. More specifically, consider the singular system of

Eq. (13) with a non-singular matrix l(x). Clearly, the algebraic equations can be solved for
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zα:

zα = −l(x)−1 [k(x) + c(x)u(t)] (19)

and one differentiation of the algebraic equations in Eq. (13) or equivalently the solution for

zα, would yield the differential equations for zα, i.e., the singular system has an index ϕ = 1.

For such systems, a direct substitution of the solution for zα in the differential equations for

x, yields an equivalent ODE representation:

ẋ = f̄(x) + ḡ(x)ū(x) (20)

where

f̄ (x) = f(x) − b(x)l(x)−1k(x)

ḡ(x) = g(x) − b(x)l(x)−1c(x)

Thus singular systems of Eq. (13) with an index of 1 are essentially the same as ODE

systems, and the simulation and control of such systems can be easily addressed on the basis

of their ODE representations. Note that, due to linear appearances of the algebraic variables

zα in Eq. (13), the linearity with respect to the inputs u is preserved in Eq. (20).

In contrast, systems with singular algebraic equations, more specifically a singular matrix

l(x), cannot be readily reduced into ODE systems and they may have a high index ϕ > 1.

It is worth noting that some singular systems may not have any index. This research note

will focus on only singular systems which have an index greater than one. Moreover, a finite

index for some smooth input u(t) is assumed, since this is necessary for the existence of a

locally unique smooth solution x(t) and zα(t).
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1.3.4 Difference Between High Index Singular Systems and ODE Systems

Considering an ODE system with the following form is considered

ẋ = f(x) + g(x)u(t) (21)

where x ∈ χ ⊂ Rn is the vector of state variables, u(t) ∈ Rn is the vector of input variables,

f(x) is smooth vector field, and g(x) is a smooth matrix of dimension (n × m). The ODE

system can be viewed as a special class of singular systems of the form in (13) with an index

ϕ = 0. As mentioned before, index-1 singular systems of Eq. (13) with non-singular matrices

l(x) are also the same as ODE systems of Eq. (21).

High index singular systems with a singular matrix l(x) are different from ODE systems.

The singular algebraic equations in Eq. (13) imply the presence of algebraic constraints in

the differential variables x. If the index ϕ exceeds 2, then the algebraic equations have to

be differentiated several times in order to obtain a solution for zα, and the differentiated

equations impose additional constraints in x. These constraints restrict the solution for x

in a state space of dimensions less than n. Consequently, for arbitrary initial conditions

x(0), the singular system exhibits an impulsive behavior at the initial time t = 0. This is

a common cause of failure in the numerical simulation of singular systems. Only the initial

conditions x(0) that satisfy the underlying algebraic constraints in the x, allow smooth

solutions (x(t), zα(t)) and are referred to as consistent initial conditions [68],[69] and [70].

This is clearly in contrast with ODE systems of Eq. (21) for which a well defined solution

exists for any initial condition x(0). Furthermore, unlike ODE systems in Eq. (21), the

solution (x(t), zα(t)) of high index singular systems in Eq. (13) may also depend on the time

derivatives of the inputs u(t), in which case these inputs must be sufficiently smooth. These

fundamental differences between singular systems and ODE systems can be illustrated more

clearly through the following simple example.

14



Example 1.1

Consider the following singular system [90]

x1 = x2 + z

x2 = x1 + x3

x3 = x1 + x2 + u(t)

0 = x2 + x3 (22)

with one algebraic variable z and one input u(t) specified as a function of time. Note that

the algebraic equation

0 = x2 + x3 (23)

does not involve zα, i.e. l(x) = 0, and thus the system has a high index. Moreover, the

algebraic equation already denotes a constraint in the differential variables x. Differentiating

this constraint once and using the relation for ẋ2 and ẋ3 yields the following new algebraic

equation:

0 = 2x1 + x2 + x3 + u(t) (24)

which denotes another constraint in x. Note however that this constraint explicitly involves

the input u(t). Another differentiation of this constraint yields the following equation:

0 = 2x1 + 3x2 + x3 + u(t) + u̇(t) + 2zα (25)

which can be solved

zα = −0.5(2x1 + 3x2 + x3 + u(t) + u̇(t)

Thus the singular system in Eq. (22) has an index vd = 3. Another differentiation of Eq.

(25) would yield the differential equation for z. The algebraic equations in Eq. (23) and Eq.

(24) denote two constraints in x, one of which involves u(t). These two constraints restrict

the evolution of x(t) in a one dimensional state and a smooth solution (x(t), z(t)) exists
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only for consistent initial conditions x(0) which satisfy the consistencies x2 + x3 = 0 and

2x1 + x2 + x3 + u(t) = 0. The solution for z depends on the derivative of the input, u(t),

implying that the input u(t) must be continuously differentiable at least once.

1.3.5 Regularity

In the context of numerical simulations of singular systems with specified inputs u(t), this

implies that the inputs u(t) must vary smoothly with time. However, in the context of

feedback control, u (t) is the vector of manipulated inputs that are not specified a priori as a

function of time. As such, a feedback control law is designed for these inputs. The presence

of these manipulated inputs in the underlying algebraic constraints in x, has important

ramifications on controller designs due to the fact that the constrained state space region for

x depends on the feedback control law for u. Regularity can be defined simply as follows:

Definition 1.2: [90] a singular system is called regular if the following conditions are satis-

fied.

1. There exists an index ϕ.

2. The set where the differential variable x are constrained to evolve is invariant under any

control law for u.

Remark 1.1: Condition 2 in the above definition of regular systems essentially states that

the underlying algebraically constrained state space region does not involve the inputs u.

Thus, the requirement for a finite index in condition (1) is independent of the time-varying

nature of these inputs, since the index does not depend on u under condition(2).

The notions of regularity is different from existing notions of regular systems used in the
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literature in the context of solvability; in [8], a linear singular system of Eq. (6) is referred

to as regular if the associated matrix pencil P is regular, while in [66] and [60], a nonlinear

singular system is said to be regular if it corresponds to a locally unique vector field on

a manifold. This study is limited to regular singular systems that are not controllable in

infinity. In the future, this study will be extended to the non-regular singular system.

1.4 Research Motivation

Singular systems describe a wider class of systems more naturally than regular systems [94]-

[100]. Like regular systems, the stabilization problem of singular systems is comparatively

easier than the tracking problem. A number of studies have been done on the tracking control

problem of nonlinear singular systems using different controller design methods [101]-[105],

[101]. Independently of this, nonlinear control systems based on Takagi-Sugeno (T-S) fuzzy

model have also received a great deal of attention over the last several decades because

of the model’s simplicity and feasibility of industrial applications [106]-[110]. T-S fuzzy

approach provides a simple and straightforward way to decompose the task of modeling

and control design into a group of local tasks, which tend to be easier to handle. It also

provides mechanism to blend these local tasks together to deliver the overall model and

control design. It allows to use all the available advanced linear controller design tools as

well. These tools for linear systems range from elegant state space optimal control to robust

control paradigms. T-S fuzzy approach is more structure based and systematic to design

controller than other fuzzy approaches. Moreover, advancement in convex optimization

techniques makes complex Linear Matrix Inequality (LMI) problems easier to solve, which

results in a simpler and more organized controller design technique based on the Takagi-

Sugeno (T-S) fuzzy model and the Lyapunov method. There are many papers on the stability

of index-1 singular systems using T-S fuzzy model based controllers [111]-[115], however very

few studies have examined the tracking control of singular systems using T-S fuzzy model
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based methods [111], [115] and [116]. All of these studies related to the tracking problem

use the same procedure proposed by Tadanari and Tanaka [115]. The approach followed in

those papers takes advantage of the redundancy of singular systems to reduce the number

of LMI conditions. This approach is only valid for regular systems, not for singular systems.

From this author’s best knowledge, until now, the robust tracking problem of high index

singular systems using the T-S fuzzy model based controller design approach with LMI

has not been discussed. Moreover, the reference model can not be arbitrarily chosen for

singular systems. The reference model must satisfy the same algebraic constraints as the

actual system to get an impulse-free solution. This condition makes the tracking controller

design of nonlinear high index singular systems more difficult. Studies have been done to

generate reference models for nonholonomic constraint (programmed constraint) systems

[117]. Until now, for holonomic constraint systems, no attempts have been made to define a

dynamic reference system that satisfies the same holonomic constraints of the plant. Using

identification techniques, generating a stable nonlinear dynamic reference model for high

index singular systems is not always feasible. The level of difficulty of the generation of

the reference model increases with the increment of the index of the singular system. That

is why a general and organized way is needed to solve this problem. Moreover, working

with nonlinear constraints complicates the controller design technique. Therefore, a simple

approach is necessary to design tracking controllers for nonlinear high index singular systems.

On the other hand, very few studies have been done on designing full order observers for

nonlinear singular systems using T-S fuzzy logic based model. There are a number of research

works on the observer design for linear singular systems [91],[92]. From the author’s best

knowledge, there is no work on the observer design for high index singular system using T-S

fuzzy model. Singular systems are needed to be I-observable and R-observable to ensure the

existence of a full order Luenberger observer. To satisfy this condition, the level of difficulty

increases with the increment of the index of singular systems. Therefore, a convenient method

is needed to design a full order robust optimal observer for the nonlinear singular systems,
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relaxing some of the conditions such as I-observability.

1.5 Contributions

In this thesis, the tracking control problem is discussed for a class of nonlinear high-index

singular systems relying on T-S fuzzy modeling approach. First, a coordinate transforma-

tion is introduced to change a nonlinear high index singular system into a singular system

composed of a linear fast subsystem and a nonlinear slow subsystem with strict-feedback

form. With consistent initial conditions, the transformed singular system is equivalent to a

nonlinear index-1 singular system with affine constraints. A stable linear reference system is

proposed for the tracking control problem based on the nonlinear index-1 singular system.

This reference system shares the same linear fast subsystem with the transformed singular

system so that its response to the consistent initial conditions satisfies both the algebraic

equation and hidden constraints. As a result, the dynamics of both the original system and

the reference system are on the same constrained manifold. This transformed system satis-

fies the existence condition of a full order Luenberger observer, relaxing the I-observability

condition.

Second, a T-S fuzzy system is used to model a nonlinear index-1 singular system. Based

on this T-S fuzzy model, initially a state feedback controller and later on a observer-based

state feedback controller are designed. In both cases, error dynamics are derived. From the

derived error dynamics H∞ tracking problems are formulated.

Third, a Lyapunov function method is used to develop sufficient conditions which guarantee

the stability of the closed-loop systems and a prescribed H∞ tracking performance. An LMI-

based optimization problem is formulated from the sufficient conditions to obtain feedback

gains for a prescribed attenuation level ρ. The simplicity of the proposed tracking controller
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design approach makes it suitable for practical applications.

Finally, two high index nonlinear singular systems from different fields are taken as exam-

ples to illustrate the entire design procedure and to verify the robustness of the proposed

controllers for all bounded disturbances.

1.6 Thesis Outline

This thesis is organized as follows: In Chapter 2, a coordinate transformation is proposed to

transform a high index singular system into a singular system with index-1 with hidden and

explicit constraints in affine form. A dynamic reference model following the tracking control

problem for the high index singular system is discussed. A state feedback controller is de-

signed based on the T-S fuzzy model. The gains of the feedback controller are calculated by

solving the optimization problem which is formulated by converting the H∞ tracking prob-

lem into a LMI-based optimization problem. Sufficient conditions are derived to guarantee

the solvability of the H∞ tracking problem. In Chapter 3, the same transformation is derived

but in a more general form. An observer-based reference model following the tracking control

problem for the high index singular system is proposed, following the same procedure intro-

duced in Chapter 2. Moreover, in this chapter, sufficient conditions are derived to ensure

the existence of the T-S fuzzy based observer for high index singular systems. Chapter 4

provides two comprehensive examples to demonstrate the effectiveness of the designs intro-

duced in Chapters 2 and 3. In Chapter 5, the positive aspects, along with the limitations

of the proposed designs are discussed along with indications of future research directions of

this study.
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2 State Feedback Controller Design

Modeling is probably the most basic topic in any system theory. Fuzzy T-S model of any

nonlinear system is actually based on the combination of linearized models along the system’s

trajectory. On the other hand, linearization methods of the nonlinear singular systems with

nonlinear constraints need to satisfy several strong assumptions [89] and [88]. Therefore, a

simple way is necessary to linearize the nonlinear singular systems having non-linear con-

straints. Section 2.1 provides a short discussion about the difficulties involved in linearizing

the nonlinear singular systems with nonlinear constraints. A coordinate transformation is

proposed to transform a high index singular system into a singular system with index-1 and

to convert the system into a special form, suitable for linearization, which is given in Section

2.2. This transformation is slightly biased by the dynamics of the constrained mechanical

systems. In Section 2.3, a fuzzy T-S model is derived for this transformed system. A dynamic

reference model for the nonlinearly constrained singular system is introduced in Section 2.4.

A state feedback tracking controller is designed based on T-S fuzzy model in the Section

2.5. The gains of the feedback controller are calculated by solving the optimization problem

which is formulated, converting the H∞ tracking problem into a LMI-based optimization

problem. The H∞ tracking problem is formulated in Section 2.6 and the conversion of the

H∞ problem into an LMI-based optimization problem is derived in Section 2.7, satisfying

sufficient conditions to guarantee the solvability of the H∞ tracking problem. Section 2.8

deals with the solution of the formulated LMI problem.

2.1 The Necessity of the Transformation

Special classes of singular systems can be linearized considering a number of assumptions

[89]. It is easy to linearize a non-linear singular system with linear constraints, but when
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the constraints become nonlinear, the linearization process fails to approximate the linear

version of the non-linear constraints. After linearization the stability becomes different

from the stability of the actual nonlinear system excepts some special cases [89],[88]. The

solution of the constrained state variables solved from the linearized constraints are not the

same as those solved from the nonlinear constraints. The deviation of the error increases

with the increase of the index of singular systems and the non-linearity of the constraints.

After linearization, the linear constraints become different from the actual constraints. The

problem regarding the linearization process of nonlinear singular systems can be overcome

if nonlinear algebraic constraints can be linearized exactly. This is possible, by changing

the basis of the actual state space to a new basis, where the non-linear constraints become

linear. Moreover, it is easier to analyze the system and design the controller if the singular

system is decoupled into two subsystems. One is a dynamic system which is called the slow

system, and the other is an algebraic system which is known as the fast system. Therefore,

a transformation is necessary to change the basis of the state space along with decoupling

the system into a fast and a slow sub-systems..

2.2 Transformation for Nonlinear High Index Singular Systems

Consider a general singular system (or implicit system) described by the following differential-

algebraic equations

f

(

dnx (t)

dtn
,
dn−1x (t)

dtn
, ......, x(t), u(t), λ

)

= 0 (26)

fc(x(t)) = 0 (27)

where x = [xT
d , xT

c ]T ∈ Rm, xd ∈ Rm−β is a vector of dynamic variables, xc ∈ Rβ is a vector

of constraint variables, u ∈ Rm is a vector of control variables, λ ∈ Rβ is a vector of algebraic

variables, and f(·) ∈ Rm and fc(·) ∈ Rβ are sufficiently smooth functions. It is known that
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most of constrained mechanical systems can be modelled by Eq. (26)-Eq. (27) [96], [131]. It

is assumed that ∂f

∂(dnx
dtn )

is non-singular, which means that, by the implicit function theorem

[132], there exists a function F
(

dn−1x(t)
dt

, . . . , x(t), u(t), λ
)

so that

f

(

F

(

dn−1x

dtn
, . . . , x, u, λ

)

,
dn−1x

dtn−1
, . . . , x, u, λ

)

= 0

that is, dnx(t)
dtn

= F
(

dn−1x(t)
dtn−1 , . . . , x(t), u(t), λ

)

. It is further assumed that
(

dfc

dx
∂F
∂λ

)

is non-

singular so that the index of the system is η = n +1. As a matter of fact, λ can be uniquely

determined by differentiating (27) n times,

d

dt
fc(x(t) = h

1
(x (t))+

d

dx
fc(x(t))

d

dt
x(t)

d2

dt2
fc(x(t) = h 2

(

d

dt
x(t), x (t)

)

+
d

dx
fc(x(t))

d2

dt2
x(t)

... =
...

dn−1

dtn−1
fc(x(t)) = h

n−1

(

dn−2

dtn−2
x (t) , . . . , x (t)

)

+
d

dx
fc(x(t))

dn−1

dtn−1
x(t)

dn

dtn
fc(x(t)) = h

n

(

dn−1

dtn−1
x (t) , . . . , x (t)

)

+
d

dx
fc(x(t))

dn

dtn
x(t)

= hn

(

dn−1

dtn−1
x(t), . . . , x(t)

)

+
dfc(x(t))

dx
×

×F

(

dn−1

dtn−1
x, . . . , x(t), u(t), λ

)

= H

(

dn−1

dtn−1
x (t) , ......x(t), u(t), λ

)
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It is convenient to introduce the variables

z1 = xc, z2 =
d

dt
xc(t), . . . , zn =

dn−1

dtn−1
xc(t)

zn+1 = λ

zn+2 = xd, zn+3 =
d

dt
xd(t), . . . , z2n+1 =

dn−1

dtn−1
xd(t)

Now define a change of coordinates v = ϕ (z) , which is given by

v1 = −fc(x(t)) = −fc(z1, zn+2)

v2 = −
dv1

dt
=

d

dt
fc(x(t)) = h1 (x (t)) +

d

dx
fc(x(t))

d

dt
x(t)

= h1 (z1, zn+2) +
d

dx
fc(z1, zn+2)





zn+3

z2





v3 = −
dv2

dt
= −

d2

dt2
fc(x(t)) = h2

(

d

dt
x(t), x (t)

)

+
d

dx
fc(x(t))

d2

dt2
x(t)

= h2 (z1, z2, zn+2, zn+3) +
d

dx
fc(z1, zn+2)





zn+4

z3





... =
...

vn = −
dvn−1

dt
= (−1)n dn−1

dtn−1
fc(x(t))

= hn−1

(

dn−2

dtn−2
x (t) , . . . , x (t)

)

+
d

dx
fc(x(t))

dn−1

dtn−1
x(t)

= hn−1 (z1, . . . , zn−1, zn+2, . . . , z2n) +
d

dx
fc(z1, zn+2)





z2n+1

zn




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vn+1 = H

(

dn−1

dt
x (t) , ......x(t), u(t), λ

)

= H (z1, . . . , zn, zn+2, . . . , z2n+1, u(t), zn+1)

vn+2 = xd = zn+2

vn+3 =
dvn+2

dt
=

d

dt
xd(t) = zn+3

... =
...

v2n+1 =
dv2n

dt
=

dn−1

dtn−1
xd(t) = z2n+1

and its inverse z = ϕ−1 (v) exists if dfc(x(t))
dxc

and ∂
∂λ

H
(

dn−1

dtn−1 x (t) , ......, x(t), u(t), λ
)

=
(

dfc

dx
∂F
∂λ

)

are non-singular. It can be verified that, in the new coordinates v, Eq. (26)-Eq. (27) takes

the form of Eq. (28)-Eq. (29)

0 = −v1

dv1

dt
= −v2

dv2

dt
= −v3

... =
...

dvn−1

dt
= −vn

dvn

dt
= −vn+1 (28)

and

dvn+2

dt
= vn+3

... =
...

dv2n

dt
= v2n+1

dv2n+1

dt
= g (v, u) (29)
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with g (v, u) = dn

dtn
xd = F1

(

dn−1

dt
x (t) , ......x(t), u(t), λ

)

= F1 (z, u(t)) = F1 (ϕ−1 (v) , u(t)). It

is obvious that the fast subsystem Eq. (28) is linear and the slow subsystem Eq. (29) is in

a strict feedback form.

In order to guarantee that solutions to Eq. (28) and Eq. (29) are impulse-free, initial

conditions are required to be consistent, which means that vi (0) = 0 for i = 1, . . . , n + 1. It

can be verified that, for the consistent initial conditions, solutions to (28) are vi (t) = 0 for

i = 1, . . . , n + 1. As a result, (28) and Eq. (29) are equivalent to

0 = −v1

0 = −v2

0 = −v3

... =
...

0 = −vn

0 = −vn+1 (30)

and

dvn+2

dt
= vn+3

... =
...

dv2n

dt
= v2n+1

dv2n+1

dt
= g (v, u) (31)

respectively. It is obvious that the system described by Eq. (30) and (31) is regular and

impulse-free for any initial consistent conditions.
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2.3 T-S Fuzzy Model of The Transformed Nonlinear High Index

Singular System

In order to represent a Takagi-Sugeno fuzzy model for Eq. (30) and (31), the function

g (v1, . . . , v2n+1, u) is linearized at different operating points (vi, ui) using Taylor series ex-

pansion, that is,

ai =
∂

∂v
g (v, u)

∣

∣

∣

∣

(vi,ui)

bi =
∂

∂u
g (v, u)

∣

∣

∣

∣

(vi,ui)

Then, the linearized singular system in v space becomes

Ev̇ (t) = Aiv + Biu (32)

where E =





























0 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · I 0

0 0 0 · · · 0 I





























, Bi =
[

0 0 0 · · · 0 bT
i

]T

,

Ai =





























−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · I

ci
1 ci

2 ci
3 ci

4 · · · ci
n+1





























with
[

ci
1 ci

2 ci
3 ci

4 · · · ci
n+1

]

= ai.
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2.4 Dynamic Reference Model for Transformed Nonlinear High

Index Singular System

Consider a reference system in v space as

0 = −vr1(t)

0 = −vr2(t)

0 = −vr3(t)

... =
...

0 = −vr(n+1)

dvn+2

dt
= vr(n+3)

... =
...

dv2n

dt
= vr(2n+1)

dvj
2n+1

dt
=

n+1
∑

i=1

aj
crivri +

n
∑

i=1

aj

dr(n+1+i)v
j

r(n+1+i) + rj
I(t),

where j = 1, . . . , m − β

where vri has the same dimension as vi for i = 1, . . . , 2n + 1, vj

r(n+1+i) is the j-th element

of vr(n+1+i), aj
cri ∈ R1×(n+1)β can be chosen arbitrarily for j = 1, . . . , m − β, aj

dr(n+1+i) ∈

R, i = 1, . . . , n, are the coefficients of a stable polynomial for j = 1, . . . , m − β, rI =
[

r1
I · · · rm−β

I

]T

εR(m−β)×1 is the vector of reference inputs. This reference system au-

tomatically satisfies the constraints of the original system in v space, which can be written

as

Ev̇r (t) = Arvr (t) + BrrI (t) (33)
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where Br =
[

0 0 0 · · · 0 I
]T

,

Ar =





























−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · I

ar1 ar(n+2) ar(n+3) ar(n+4) · · · ar(2n+1)





























with for , i = 1, . . . , n

ar1 =











a1
cr1 · · · a1

cr(n+1)

...
. . .

...

am−β
cr1 · · · am−β

cr(n+1)











, and ar(n+1+i) =











a1
dr(n+1+i) · · · 0

...
. . .

...

0 · · · am−β

dr(n+1+i)











.

2.5 T-S Fuzzy Model and State Feedback Controller

A nonlinear singular system can be approximated by a Takagi-Sugeno fuzzy model with

linear rule consequences [112]-[114]. The i-th rule of the continuous-time fuzzy model for

the nonlinear singular system is of the following form,

If z1 (t) is Mi1 and · · · and zp (t) is Mip

Then Eẋ (t) = Aix (t) + Biu (t) + dS (t)

output

y (t) = Cix (t) + dO (t)
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Here, Mip is the fuzzy set, L is the number of rules, x (t) ∈ R(2n+1), u (t) ∈ Rm, and dS (t) ∈

R(2n+1) are the bounded external disturbance, E ∈ R(2n+1)×(2n+1), Ai ∈ R(2n+1)×(2n+1), and

Bi ∈ R(2n+1)×m are defined in Section 2.2. z (t) = [z1 (t) , z2 (t) , . . . , zp (t)] is the vector of

premise variables. It is assumed that the premise variables are not functions of the input

vector u (t). dS (t) and dO (t) are the bounded disturbance in the states and in the outputs.

Given a pair of (x (t) , u (t)), the outputs of the fuzzy systems are inferred to as

Eẋ (t) =

∑L
i=1 µi (z (t)) [Aix (t) + Biu (t)] + dS (t)

∑L

i=1 µi (z (t))

=
L
∑

i=1

hi (z (t)) [Aix (t) + Biu (t)] + dS (t) (34)

y (t) =

∑L

i=1 µi (z (t)) Cix (t) + dO (t)
∑L

i=1 µi (z (t))

=

L
∑

i=1

hi (z (t)) Cix (t) + dO (t) (35)

where

µi (z (t)) =

p
∏

j=1

Mij (zj (t))

hi (z (t)) =
µi (z (t))

∑L

i=1 µi (z (t))

for all t. The term Mij (zj (t)) is the grade of membership of zj (t) in Mij.It is assumed that

for all t,
∑L

i=1 µi (z (t)) > 0 and µi (z (t)) ≥ 0 for i = 1, 2, . . . , L. It follows from [118]-[120]

that for all t,
∑L

i=1 hi (z (t)) = 1 and hi (z (t)) ≥ 0 for i = 1, 2, . . . , L.

Consider a reference model as follows:
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Erẋr (t) = Arxr (t) + BrrI (t) (36)

where xr (t) ∈ Rn is the vector of reference state variables, Ar ∈ Rn×n is an asymptotically

stable matrix, Br ∈ Rn×m, and rI(t) ∈ Rm represents the reference input.

Now, parallel distributed compensation (PDC) [121]-[123] is used to design the fuzzy con-

troller with a T-S fuzzy model.

Control rule i:

If z1 (t) is Mi1 and · · · and zp (t) is Mip

Then u(t) = Ki[x (t) − xr (t)]

The overall fuzzy PDC controller is given by

u(t) =

∑L

i=1 µi (z (t)) [Kj(x(t) − xr(t))]
∑L

i=1 µi (z (t))

=
L
∑

i=1

hi (z (t)) [Ki(x(t)− xr(t))] (37)

The error dynamics are formulated by combining the actual system Eq. (34) and the reference

system Eq. (36). After simplification, the augmented system can be expressed as:

Ẽ
.

x̃ (t) =
L
∑

i=1

hi (z (t))
L
∑

j=1

hj (z (t)) ÃT
ijx̃ (t) + W̃ (t) (38)
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where

Ẽ =





E 0

0 Er



 , x̃ (t) =





x(t)

xr(t)





Ãij =





Ai + BiKj −BiKj

0 Ar



 , W̃ (t) =





dS (t)

BrrI(t)





Define the following H∞ tracking performance [124]-[125], related to tracking error [x(t)− xr(t)],

considering initial conditions x̃(0),

∫ tf

0

[x(t)− xr(t)]
TQ[x(t)− xr(t)]dt

≤ x̃T (0)P̃ x̃(0) + ρ2

∫ tf

0

W̃ (t)T Q̃W̃ (t)dt (39)

where P̃ is a symmetric positive definite weighting matrix, tf is the final time of control, ρ is

the prescribed attenuation level, Q is a positive definite weighting matrix, and Q̃ is defined

by

Q̃ =





Q −Q

−Q Q





In Eq. (37) the objective is to bound the infinity norm of the systems operator smaller than

the ρ, where L2 norms are considered for the input and the output signals.

Definition 2.1: The problem of robust H∞ fuzzy tracking control is solvable if there exist a

fuzzy tracking controller in Eq. (37) for the augmented system in Eq. (38) so that an H∞

tracking performance in Eq. (39) is achieved for all W̃ (t) with an attenuation level ρ and

the closed loop system in Eq. (40) is quadratically stable.

Ẽ
.

x̃ (t) =
r
∑

i=1

hi (z (t))
r
∑

j=1

hj (z (t)) Ãijx̃ (t) (40)

32



2.6 Design for H∞ Tracking Controller

It can be easily verified that the transformed system Eq. (32), i = 1, . . . , L, and the reference

system Eq. (33) are regular and impulse-free. The transformed open loop system Eq. (34)

is regular, due to the fact that
∑L

i=1 hi (z (t)) = 1,

L
∑

i=1

hi (z (t)) Ai

=
L
∑

i=1

hi (z (t))

























































−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · I

ci
1 ci

2 ci
3 ci

4 · · · ci
n+1

























































=

























































−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · I

c̄i
1 c̄i

2 c̄i
3 c̄i

4 · · · c̄i
n+1

























































which results in det
(

sE −
∑L

i=1 hi (z (t)) Ai

)

6= 0, where c̄i
j =

∑L
i=1 hi (z (t)) ci

j . Again the

transformed open loop system Eq. (34) is impulse-free because,

the fast system










0
...

0











=











−I 0 0

0
. . . 0

0 0 −I





















v1

...

vn+1











where Ac =











−I · · · 0
...

. . .
...

0 · · · −I











, is always invertible therefore, the initial values of the con-

strained states variables can be uniquely determined from the independent state variable,

resulting in a impulse free open loop system.

The following theorem provides sufficient conditions for the problem of robust H∞ fuzzy
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tracking control to be solvable.

Theorem 2.1: If there exists a common matrix P̃ ε R2n×2n > 0 such that

ẼT P̃ = P̃ T Ẽ ≥ 0 (41)

ÃT
ijP̃ + P̃ Ãij +

1

ρ2
P̃ P̃ + Q̃ < 0 (42)

for hi (z (t))hj (z (t)) 6= 0, ∀t, i, j = 1, 2, · · · , L, for a prescribed attenuation level ρ, then the

problem of robust H∞ fuzzy tracking control is solvable.

Proof:

Consider the Lyapunov like function candidate V (x̃ (t)) = x̃T (t)ET P̃ x̃ (t). Then, the time

derivative of V (x̃ (t)) is

V̇ (x̃ (t))

=
.

x̃
T

(t) ẼT P̃ x (t) + x̃T (t) ẼT P̃
.

x̃ (t) =
(

Ẽ
.

x̃ (t)
)T

P̃ x̃ (t) + x̃T (t) P̃ T
(

Ẽ
.

x̃ (t)
)

=

L
∑

i=1

L
∑

j=1

hi (z (t)) hj (z (t)) x̃T (t)
[

ÃT
ijP̃ + P̃ T Ãij

]

x̃ (t) + W̃ T (t) P̃ x̃ (t) + x̃T (t) P̃ W̃ (t)

=
L
∑

i=1

L
∑

j=1

hi (z (t)) hj (z (t)) x̃T (t)
[

ÃT
ijP̃ + P̃ T Ãij

]

x̃ (t)−
1

ρ2
x̃T (t) P̃ P̃ x̃ (t) + x̃T (t) P̃ W̃ (t)

+W̃ T (t) P̃ x̃ (t) − ρ2W̃ T (t) W̃ (t) +
1

ρ2
x̃T ( t) P̃ P̃ x̃ ( t) + ρ2W̃ T (t) W̃ (t)

=
L
∑

i=1

L
∑

j=1

hi (z (t)) hj (z (t)) x̃T (t)
[

ÃT
ijP̃ + P̃ T Ãij

]

x̃ (t)

−

(

1

ρ
P̃ x̃ (t)− ρW̃ (t)

)T (
1

ρ
P̃ x̃ (t)− ρW̃ (t)

)

+
1

ρ2
x̃T ( t) P̃ P̃ x̃ ( t) + ρ2W̃ T (t) W̃ (t)

≤

L
∑

i=1

L
∑

j=1

hi (z (t)) hj (z (t)) x̃T (t)
[

ÃT
ijP̃ + P̃ T Ãij

]

x̃ (t)

+
1

ρ2
x̃T ( t) P̃ P̃ x̃ ( t) + ρ2W̃ T (t) W̃ (t)
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≤
L
∑

i=1

L
∑

j=1

hi (z (t))hj (z (t)) x̃T (t)

[

ÃT
ijP̃ + P̃ T Ãij +

1

ρ2
P̃ P̃

]

x̃ (t) + ρ2W̃ T (t) W̃ (t)

It follows from Eq. (42) that

V̇ (x̃ (t)) ≤ −

r
∑

i=1

r
∑

j=1

hi (z (t))hj (z (t)) x̃T (t) Q̃x̃ (t) + ρ2W̃ T (t) W̃ (t)

≤ −x̃T (t) Q̃x̃ (t)
r
∑

i=1

r
∑

j=1

hi (z (t)) hj (z (t)) + ρ2W̃ T (t) W̃ (t)

≤ −x̃T (t) Q̃x̃ (t) + ρ2W̃ T (t) W̃ (t) (43)

Integrating Eq. (43) from 0 to tf yields

V (tf) − V (0) ≤ −

∫ tf

0

x̃T (t) Q̃x̃ (t) dt + ρ2

∫ tf

0

W̃ T (t) W̃ (t)

which is equivalent to

∫ tf

0

(x (t)− xr (t))T Q̃ (x (t)− xr (t)) dt

=

∫ tf

0

x̃T (t) Q̃x̃ (t) dt

≤ x̃T (0) P̃ x̃ (0) − x̃T (tf) P̃ x̃ (tf) + ρ2

∫ tf

0

W̃ T (t) W̃ (t)

≤ x̃T (0) P̃ x̃ (0) + ρ2

∫ tf

0

W̃ T (t) W̃ (t)

Therefore, the augmented system Eq. (38) is stable for W̃ T (t) = 0 and the H∞ tracking

performance (39) for a prescribed attenuation level ρ is achieved if Eq. (41) and Eq. (42)

are satisfied.
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2.7 Conversion of H∞ Optimal Problem into LMI Problem

It is known that the problem of robust H∞ tracking control for regular systems can be

formulated as a minimization problem [126]. The minimization problem consists in finding

a common matrix P̃ such that both Eq. (41) and Eq. (42) are satisfied for a minimum

attenuation level ρ. This minimization problem can be transformed into a minimization

problem subject to some LMIs. The LMI problem can be solved in a computationally

efficient manner using a convex optimization technique such as interior point method [127]-

[128]. The following theorem provides sufficient conditions for the solvability of the problem

of robust H∞ tracking control based on LMIs.

Theorem 2.2: If there exist symmetric positive definite matrices S11, S22, C11, C22 such that

P11 = diag(S11, S22) and P22 = diag(C11, C22) satisfying the following LMIs for a prescribed

attenuation level ρ and a positive definite weighting matrix Q

S11 = ST
11 > 0 (44a)

S22 = ST
22 > 0 (44b)

C11 = CT
11 > 0 (44c)

C22 = CT
22 > 0 (44d)











M11 −P11BiKj − Q 0

(−P11BiKj − Q)T M22 P22

0 P22 −ρ2I











< 0 (45)

then the problem of robust H∞ tracking control is solvable, where

M11 = (Ai + BiKj)
T P11 + P11 (Ai + BiKj) +

1

ρ2
P11P11 + Q

M22 = AT
r P22 + P22Ar + Q

Proof: Define P̃ = diag(P11, P22). First, let us show that P̃ satisfies Eq. (41). Due to Eq.
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(44a) to Eq. (44d)

ET P11 =





I 0

0 0









S11 0

0 S22



 =





S11 0

0 0



 ≥ 0

P T
11E =





ST
11 0

0 ST
22









I 0

0 0



 =





ST
11 0

0 0



 ≥ 0

ET
r P22 =





I 0

0 0









C11 0

0 S22



 =





C11 0

0 0



 ≥ 0

P T
11Er =





CT
11 0

0 CT
22









I 0

0 0



 =





CT
11 0

0 0



 ≥ 0

It follows that ETP11 = P T
11E ≥ 0 and ET

r P22 = P T
11Er ≥ 0. Therefore,

ẼT P̃ =





ET 0

0 ET
r









P11 0

0 P22



 =





ET P11 0

0 ET
r P22





=





P T
11E 0

0 P T
22Er



 =





P T
11 0

0 P T
22









E 0

0 Er





= P̃ T Ẽ ≥ 0.

To show that Eq. (42) is satisfied with P̃ , replacing P̃ with diag(P11, P22) in Eq. (42) gives





Ai + BiKj −BiKj

0 Ar





T 



P11 0

0 P22



+





P11 0

0 P22





T 



Ai + BiKj −BiKj

0 Ar





+
1

ρ2





P11 0

0 P22









P11 0

0 P22



 +





Q −Q

−Q Q



 < 0 (46)

After simplification and taking the Schur complements, it can be shown that (46) can be

expressed as Eq. (45) [126].
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2.8 Solution of the LMI Problem

Note that Eq. (45) can not be solved in a single step using LMI toolbox. However, it can

be solved by the following two-step procedure [126].

Step 1: Find P11 and Kj

S11 = ST
11 > 0 (47)

S22 = ST
22 > 0 (48)

(Ai + BiKj)
T P11 + P11 (Ai + BiKj) +

1

ρ2
P11P11 + Q < 0 (49)

for P11. Set Z̄11 = P−1
11 , Z̄11 = diag(z11, z22), z11 = S−1

11 , z22 = S−1
22 and Yj = KjZ̄11. Eq.

(47), Eq. (48) and Eq. (49) can be rewritten as

z11 = zT
11 > 0 (50)

z22 = zT
22 > 0 (51)





Z̄11A
T
i + AiZ̄11 + BiYj + (BiYj)

T + 1
ρ2 I Z̄11

Z̄11 −Q−1



 < 0 (52)

For a prescribed attenuation level ρ, the matrices Z̄11 and Yj (thus P11 = Z̄−1
11 and Kj =

YjW
−1
11 ) can be obtained by solving LMIs Eq. (50), Eq. (51) and Eq. (52).

Step-2: Find P22

P11 and Kj are substituted into Eq. (45). Then the LMIs (44c), Eq. (44d) and Eq. (45) are

solved for P22.
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The attenuation level ρ can be minimized by searching for P11 > 0, P22 > 0 so that min
P11,P22

ρ2.

This optimization problem can be solved by reducing ρ and solving the LMIs with the above

two-step procedure until just before no feasible solutions P11 = P T
11 > 0, P T

22 > 0 of the LMI

problem can be found.
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3 Observer-Based State Feedback Controller Design

The transformation introduced in the previous chapter is biased by the mechanical system

dynamics but a more general form of the transformation is given in the Section 3.1, dealing

with semi-explicit representation of the singular system, as most of the electrical, mechan-

ical, and chemical systems are modeled in that form. A full-order fuzzy T-S model based

observer for the singular system is designed in Section 3.2. Necessary conditions to ensure

the existence of an observer are derived in Section 3.3. In the same section, an H∞ problem

is formulated by augmenting the tracking error and observer error dynamics. All the gains

of the controller as well as the observer are obtained by solving this H∞ optimal problem.

Sufficient conditions are derived to guarantee the solvability of the H∞ tracking problem.

The H∞ problem is converted into an LMI-based optimization problem to solve the problem

using the convex optimization technique. These conversions are discussed in Section 3.4.The

solution of the convex optimization problem is given in Section 3.5.

3.1 Transformation for Nonlinear High Index Singular System in

Semi-explicit Form

Consider nonlinear multi-input multi-output (MIMO) singular systems with the semi-explicit

form:

dnx

dtn
= f(x(t)) + b (x(t)) z + g (x(t))u(t) (53)

0 = k (x(t)) + l (x(t)) z + c (x(t))u (54)
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yi = hi (x) , i = 1, · · · , m (55)

where x = [xT
d , xT

c ]T εRm, xdεR
m−β is a vector of dynamic variables, xcεR

β is a vector of

constraint variables, zεRp is a vector of algebraic variables, uεRm is a vector of control vari-

ables, and yi is the i-th output. f(x(t))εRm and k (x(t)) εRp are sufficiently smooth functions.

b (x(t)), l (x(t)), c (x(t)), and g (x(t)) are smooth matrices of appropriate dimensions. In the

above description, the input u(t) and the algebraic variable z appear in the affine form in

the system equations, which is typical of most practical applications. singular systems have

a high index only if l (x(t)) = 0, i.e.

0 = k (x(t)) + c (x(t))u (56)

As the focus of this study is only regular singular system therefore c (x(t)) = 0, then the

algebraic equation becomes,

0 = k (x(t)) (57)

Let consider the index of this system is η = n + 1.Then, z can be uniquely determined from

the equation obtained by differentiating equation (57 ) n times with respect to time, that is

d

dt
k (x(t)) =

d

dx
k (x(t))

dx(t)

dt
d2

dt2
k (x(t)) =

d2

dx
k (x(t))

d2x(t)

dt
... =

...

dn−1

dtn−1
k (x(t)) =

dn−1

dx
k (x(t))

dn−1x(t)

dt
dn

dtn
k (x(t)) =

dn

dx
k (x(t))

dnx(t)

dt
=

dn

dx
k (x(t)) [f(x(t)) + b (x(t)) z + g (x(t))u(t)]

= H

(

dn−1

dtn−1
x (t) , ......x(t), u(t), z

)
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For simplification of the representation a new variable p, is introduced

p1 = xc, p2 =
d

dt
xc(t), . . . , pn =

dn−1

dtn−1
xc(t)

pn+1 = xd, pn+2 =
d

dt
xd(t), . . . , p2n =

dn−1

dtn−1
xd(t)

Now define a change of coordinates v = ϕ (p) , which is given by

v1 = −k (x(t)) = −k(p1, pn+1)

v2 = −
dv1

dt
=

d1

dx
k (x(t))

d1x(t)

dt
=

d

dx
k(p1, pn+1)





pn+2

p2





... =
...

vn = −
dvn−1

dt
= (−1)

n dn−2

dx
k (x(t))

dn−2x(t)

dt

=
d

dx
k(p1, pn+1)





p2n−1

pn−1





vn+1 = −
dvn

dt
= H

(

dn−1

dtn−1
x (t) , ......x(t), u(t), z

)

= H (p1, . . . , pn, . . . , p2n, u(t), z)

vn+2 = xd = pn+1

vn+3 =
dvn+2

dt
=

d1

dt
xd(t) = pn+2

... =
...

v2n =
dv2n−1

dt
=

dn−2

dtn−2
xd(t) = p2n−1

v2n+1 =
dv2n

dt
=

dn−1

dtn−1
xd(t) = p2n

and its inverse p = ϕ−1 (v) exists if d
dxc

k(x(t)) is non-singular. It can be verified that, in

the new coordinates v, (53)-(54) takes the same form as equations (28)-Eq. (29). The

rest of the part will be same as shown, in the Chapter 2. The difference between the
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previous transformation and the transformation derived in this chapter is, in the constrained

mechanical system, the objective was to keep the algebraic variable (i.e., contact force) λ ≈ 0

or any constant value, where as in other singular systems the algebraic variables have a

value which changes with time depending on the nature of the constraint. That is why, in

the transformation derived in this chapter, the n-th derivative of the constrained function is

constrained to zero not the algebraic variable.

3.2 T-S Fuzzy Model Based Observer and Observer Based State

Feedback Controller

Based on T-S fuzzy model Eq. (34) and Eq. (35), the i-th rule of the continuous-time fuzzy

model based observer for the nonlinear singular system is,

Observer Rule i

If z1 (t) is Mi1 and · · · and zp (t) is Mip

Then E
·

x̂ (t) = Aix̂ (t) + Biu (t) + Li (y (t) − ŷ (t)) ,

ŷ (t) = Cix̂ (t)

Remark 3.1: The premise variables Z(t) can be measurable state variables, outputs or com-

bination of measurable state variables. For T-S type fuzzy model, using state variables as

premise variables are common, but not always [101]-[103], [103]-[109]. The limitation of this

approach is that some state variables must be measurable to construct the fuzzy observer

and fuzzy controller. This is a common limitation for control system design of T–S fuzzy

approach [107]-[108], If the premise variables of the fuzzy observer depend on the estimated
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state variables, i.e., Z(t) instead of Ẑ(t) in the fuzzy observer, the situation becomes more

complicated. In this case, it is difficult to directly find control gains Kj and observer gains

Li. The problem has been discussed in [108]. For simplification, it is considered that premise

variables do not depend on estimated state variables.

The overall fuzzy observer is represented as follows:

E
·

x̂ (t) =

∑L

i=1 µi (z (t)) [Aix̂ (t) + Biu (t) + Li (y (t) − ŷ (t))]
∑L

i=1 µi (z (t))

=
L
∑

i=1

hi (z (t)) [Aix̂ (t) + Biu (t) + Li (y (t) − ŷ (t))] (58)

ŷ (t) =

∑L
i=1 µi (z (t))Cix̂ (t)
∑L

i=1 µi (z (t))

=
L
∑

i=1

hi (z (t))Cix̂ (t) (59)

Consider the estimation error as

ê = x (t) − x̂ (t) (60)

By differentiating (60) with respect to time, we get

·

ê = ẋ (t) −
·

x̂ (t)

E
·

ê = Eẋ (t) −E
·

x̂ (t)

E
·

ê =
L
∑

i=1

hi (z (t)) [Aix (t) + Biu (t)] + dS (t)

−
L
∑

i=1

hi (z (t)) [Aix̂ (t) + Biu (t) + Li (y (t)− ŷ (t)) + LidO (t)]
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E
·

ê =
L
∑

i=1

L
∑

j=1

hihj (z (t)) [{Aix (t) + Biu (t)} − {Aix̂ (t) + Biu (t) + LiCj (x (t) − x̂ (t))}

+LidO (t)] + dS (t)

E
·

ê =
L
∑

i=1

L
∑

j=1

hihj (z (t)) {[Ai (x (t) − x̂ (t)) − LiCj (x (t) − x̂ (t))] + LidO (t)} + dS (t)

E
·

ê =
L
∑

i=1

L
∑

j=1

hihj (z (t)) {[(Ai − LiCj) ê] + LidO (t)} + dS (t) (61)

For this case, the parallel distributed compensation (PDC) [121]-[123] controller takes the

following form

Control rule i:

If z1 (t) is Mi1 and · · · and zp (t) is Mip

Then u(t) = Ki[x̂ (t) − xr (t)]

The overall fuzzy PDC controller is given by

u(t) =

∑L

i=1 µi (z (t)) [Kj(x̂(t) − xr(t))]
∑L

i=1 µi (z (t))

=
L
∑

i=1

hi (z (t)) [Ki(x̂(t)− xr(t))] (62)

where i = 1, 2, . . . , L.

The augmented system is formulated by combining the error dynamics of estimation error

45



and tracking error. After simplification, the augmented error dynamics can be expressed as:

Ẽ
.

x̃ (t) =

L
∑

i=1

hi (z (t))

L
∑

j=1

hj (z (t)) Ãijx̃ (t) + ẼiW̃ (t) (63)

where

Ẽ =











E 0 0

0 E 0

0 0 E











, x̃ (t) =











ê(t)

x(t)

xr(t)











, Ñi =











Li I 0

0 I 0

0 0 I











Ãij =











Ai + CiLi 0 0

−BiKj Ai + BiKj −BiKj

0 0 Ar











, W̃ (t) =











dO(t)

dS(t)

r(t)











Define the following H∞ tracking performance [124]-[125], related to tracking error (x (t) − xr (t)),

considering initial conditions (x (0) − xr (0)),

∫ tfT

0

(x (t) − xr (t))T (t) Q̃ (x (t)− xr (t)) dt

≤ x̃T (0)P̃ x̃(0) + ρ2

∫ tf

0

W̃ (t)/TW̃ (t)dt (64)

where P̃ is a symmetric positive definite weighting matrix, tf is the final time of control, ρ is

the prescribed attenuation level, Q is a positive definite weighting matrix, and Q̃ is defined

by

Q̃ =











0 0 0

0 Q −Q

0 −Q Q











Definition 3.1: The problem of robust H∞ fuzzy tracking control is solvable if there exists

a fuzzy tracking controller in (62) for the augmented system in (63) so that an H∞ tracking

performance in (64) is achieved for all W̃ (t) with an attenuation level ρ and the closed loop
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system in (65) is quadratically stable.

Ẽ
.

x̃ (t) =
r
∑

i=1

hi (z (t))
r
∑

j=1

hj (z (t)) Ãijx̃ (t) (65)

3.3 Design for H∞ Observer Based Tracking Controller

First, let us check if the system Eq. (61) with zero inputs is regular and impulse-free. To

this end, suppose the output matrix Ci can be decomposed as

Ci =
[

C̄1i C̄2i C̄3i · · · C̄n C̄(n+1)i

]

Similarly, Li can be denoted by

Li =





























L1i

L2i

L3i

.

.

.

Lni

L(n+1)i





























Then, a straightforward derivation gives
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L
∑

i=1

hi (z (t)) (Ai − LiCi)

=

L
∑

i=1

hi (z (t))

























































−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 0 · · · I

ci
1 ci

2 ci
3 ci

4 · · · ci
n+1





























−





























L1i

L2i

L3i

.

.

.

Lni

L(n+1)i





























[

C̄1i C̄2i C̄3i C̄4i · · · C̄(n+1)i

]




























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=
L
∑

i=1

hi (z (t))

























































−I 0 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 0 · · · I

ci
1 ci

2 ci
3 ci

4 · · · ci
n+1





























−





























L1iC1i L1iC2i L1iC3i L1iC4i · · · L1iC(n+1)i

L2iC1i L2iC2i L2iC3i L2iC4i · · · L2iC(n+1)i

L3iC1i L3iC2i L3iC3i L3iC4i · · · L3iC(n+1)i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LniC1i LniC2i LniC3i LniC4i · · · LinC(n+1)i

L(n+1)iC1i L(n+1)iC2i L(n+1)iC3i L(n+1)iC4i · · · L(n+1)iC(n+1)i

























































=
L
∑

i=1

hi (z (t))

























































−I − L1iC1i −L1iC2i −L1iC3 −L1iC4 · · · −L1iC(n+1)i

−L2iC1i −L2iC2i I −C3L2i −C4L2i · · · −L2iC(n+1)i

−L3iC1 −L3iC2i −C3L3i I − C4L3i · · · −L3iC(n+1)i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−LniC1 −LniC2i −LniC3 −LniC4 · · · I − LniC(n+1)i

ci
1−L(n+1)iC1 ci

2−L(n+1)iC2 ci
3−L(n+1)iC3 ci

4−L(n+1)iC4 · · · ci
n+1−L(n+1)iC(n+1)i

























































(66)

Note that the solution to Eq. (30) is zero, thus L1 can be set to 0. As a result, Eq. (66)

becomes
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L
∑

i=1

hi (z (t)) (Ai − LiCi)

=
L
∑

i=1

hi (z (t))





























−I 0 0 0 · · · 0

−L2iC1i −L2iC2i I − C3L2i −C4L2i · · · −L2iC(n+1)i

−L3iC1 −L3iC2i −C3L3i I − C4L3i · · · −L3iC(n+1)i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−LniC1 −LniC2i −LniC3 −LniC4 · · · I − LniC(n+1)i

ci
1−L(n+1)iC1 ci

2−L(n+1)iC2 ci
3−L(n+1)iC3 ci

4−L(n+1)iC4 · · · ci
n+1−L(n+1)iC(n+1)i





























which is equivalent to

det

(

sE −
L
∑

i=1

hi (z (t)) (Ai − LiCi)

)

6= 0 (67)

Therefore, the system Eq. (61) is regular.

From [91], the singular system Eq. (34) and Eq. (35) has a full-order impuse-free singular

state observer in the form of Eq. (58) if and only if it is R-observrable and I-observable.

After the transformation, the condition can be relaxed for the existence of a full-order

impulse-free singular state observer for the system.

Theorem 3.1: The singular system Eq. (34) and Eq. (35) has a full-order impulse-free

singular state observer in the form of Eq. (58) if it is R-observrable.

Proof:

The fast system is impulse free because v (t) = 0, t ≥ 0, which has been proved in Section
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2.5. Therefore, The singular system Eq. (34) and Eq. (35) is I-observable. As a result, only

R-observability is sufficient for the existence of a full-order singular state observer.

Condition 3.1: [91] The slow subsystem is R-observable if and only if

rank





sI − A22i

C2i



 = n1 (68)

where A22i is the i-th system matrix of the slow system. Eq. (68) will satisfy the existence

condition of a full order state observer given below,

eig (E, (Ai − LiCi)) ⊂ C
− (69)

As the pair (E, (Ai − LiCi)) is regular according to Eq. (67), there exists gain Li so that

eig

(

λE −

L
∑

i=1

hi (z (t)) (Ai − LiCi)

)

⊂ C
− (70)

Moreover, setting C1i = 0 and L1i = 0 for, i = 1, . . . , L, in the equation Eq. (66), it

can be shown that, det
(

sE −
∑L

i=1 hi (z (t)) (Ai − LiCi)
)

6= 0, In that case, the condition

eig
(

λE −
∑L

i=1 hi (z (t)) (Ai − LiCi)
)

⊂ C− is still satisfied.

For a certain Li,
∑L

i=1 hi (z (t)) (Ai − LiCi) 6= 0 ,therefore, the matrix pair (E, (Ai − LiCi))

is regular.

The following theorem provides sufficient conditions for the problem of robust H∞ fuzzy

observer based tracking control to be solvable.

Theorem 3.2: If there exists a common matrix P̃ ε R2n×2n > 0 such that

ẼT P̃ = P̃ T Ẽ ≥ 0 (71)

ÃT
ijP̃ + P̃ T Ãij +

1

ρ2
P̃ ẼiẼ

T
i P̃ + Q̃ < 0 (72)
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for hi (z (t))hj (z (t)) 6= 0, ∀t, i, j = 1, 2, · · · , L, for a prescribed attenuation level ρ, then the

problem of robust H∞ fuzzy tracking control is solvable.

Proof:

Considering the Lyapunov like function V (x̃ (t)) = x̃T (t)ET P̃ x̃ (t), theorem 2 can be proved

following the same proof shown in chapter 2.

A optimization problem is derived to find a common matrix P̃ such that both Eq. (71)

and Eq. (72) are satisfied for a minimum attenuation level ρ. This optimization can be

transferred into a optimization problem subject to some LMIs. The LMI problem can be

solved in a computationally efficient manner using a convex optimization technique such as

interior point method [127]-[128]. The following theorem provides sufficient conditions for

the solvability of the problem of robust H∞ observer based tracking control based on LMIs.

3.4 Conversion of H∞ Optimal Problem into LMI Problem

Theorem 3.3: If there exist positive definite matrices Z11, Z22, H11, H22, N11, N22 such

that, for a prescribed attenuation level ρ and a positive definite weighting matrix Q, P11 =

diag(Z11, Z22), P22 = diag(H11, H22), and P33 = diag(N11, N22) satisfy the following LMIs

Z11 = ZT
11 > 0 (73a)

Z22 = ZT
22 > 0 (73b)

H11 = HT
11 > 0 (73c)

H22 = HT
22 > 0 (73d)

N11 = NT
11 > 0 (73e)

N22 = NT
22 > 0 (73f)
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



























M11 P11 Xi MT
41 0 0

P11 −p2I 0 0 0 0

XT
i 0 −p2I 0 0 0

M41 0 0 M44 M45 0

0 0 0 MT
45 M55 P33

0 0 0 0 P33 −p2I





























< 0 (74)

then the problem of robust H∞ tracking control is solvable, where

M11 = (Ai − LiCi)
T P11 + P11 (Ai − LiCi)

M41 = − (BiKj)
T P22 +

1

ρ2
P22P11

M44 = (Ai + BiKj)
T P22 + P22 (Ai + BiKj) +

1

ρ2
P22P22 + Q

M45 = −P22BiKj − Q

M55 = AT
i P22 + P22Ai + Q

Proof:

Define P̃ = diag(P11, P22). First, let us show that P̃ satisfies (71). Due to (73a) to (73f).

ET P11 =





0 0

0 I









Z11 0

0 Z22



 =





0 0

0 Z22



 ≥ 0

P T
11E =





ZT
11 0

0 ZT
22









0 0

0 I



 =





0 0

0 ZT
22



 ≥ 0

ET P22 =





0 0

0 I









H11 0

0 H22



 =





0 0

0 Z22



 ≥ 0
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P T
22E =





HT
11 0

0 HT
22









0 0

0 I



 =





0 0

0 HT
22



 ≥ 0

ET P33 =





0 0

0 I









X11 0

0 X22



 =





0 0

0 X22



 ≥ 0

P T
33E =





XT
11 0

0 XT
22









0 0

0 I



 =





0 0

0 XT
22



 ≥ 0

It follows that ETP11 = P T
11E ≥ 0 and ET

r P22 = P T
11Er ≥ 0. Therefore,

ẼT P̃ =











ET 0 0

0 ET 0

0 0 ET





















P11 0 0

0 P22 0

0 0 P33











=











ET P11 0 0

0 ET P22 0

0 0 ETP33











=











P T
11E 0 0

0 P T
22E 0

0 0 P T
33E











=











P T
11 0 0

0 P T
22 0

0 0 P T
33





















E 0 0

0 E 0

0 0 E











= P̃ T Ẽ ≥ 0.

To prove that (72) is satisfied with P̃ , replacing P̃ with diag(P11, P22, P33) in (72) gives











Ai + CiLi 0 0

−BiKj Ai + BiKj −BiKj

0 0 Ar











T 









P11 0 0

0 P22 0

0 0 P33











+











P11 0 0

0 P22 0

0 0 P33











T 









Ai + CiLi 0 0

−BiKj Ai + BiKj −BiKj

0 0 Ar











+
1

ρ2











P11 0 0

0 P22 0

0 0 P33





















−Li I 0

0 I 0

0 0 I





















−Li I 0

0 I 0

0 0 I











T 









P11 0 0

0 P22 0

0 0 P33










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+











0 0 0

0 Q −Q

0 −Q Q











< 0

⇒











(Ai + CiLi)
T − (BiKj)

T 0

0 (Ai + BiKj)
T 0

0 − (BiKj)
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r




















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0 P22 0

0 0 P33











+











P11 0 0

0 P22 0

0 0 P33





















Ai + CiLi 0 0

−BiKj Ai + BiKj −BiKj

0 0 Ar




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

+
1
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






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+











0 0 0

0 Q −Q

0 −Q Q











< 0
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









(Ai + CiLi)
T P11 − (BiKj)

T P22 0

0 (Ai + BiKj)
T P22 0

0 − (BiKj)
T P22 AT

r P33
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







+











P11 (Ai + CiLi) 0 0

−P22BiKj P22 (Ai + BiKj) −P22BiKj

0 0 P33Ar
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
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1
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





P11LiL
T
i + P11 P11 0

P22 P22 0

0 0 P33












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
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0 P22 0

0 0 P33




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


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
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0 0 0

0 Q −Q

0 −Q Q




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



< 0

⇒




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



(Ai + CiLi)
T P11 − (BiKj)

T P22 0

0 (Ai + BiKj)
T P22 0

0 − (BiKj)
T

P22 AT
r P33











+











P11 (Ai + CiLi) 0 0

−P22BiKj P22 (Ai + BiKj) −P22BiKj

0 0 P33Ar




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



+
1

ρ2


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



P11LiL
T
i P11 + P11P11 P11P22 0

P22P11 P22P22 0

0 0 P33P33








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+











0 0 0

0 Q −Q

0 −Q Q











< 0

⇒










f11 f12 0

f21 f22 f23

0 f32 f33











< 0 (75)

where

f11 = (Ai + CiLi)
T P11 + P11 (Ai + CiLi) +

1

ρ2

(

P11LiL
T
i P11 + P11P11

)

f12 = − (BiKj)
T

P22 +
1

ρ2
P11P22

f21 = −P22BiKj +
1

ρ2
P22P11

f22 = (Ai + BiKj)
T P22 + P22 (Ai + BiKj) +

1

ρ2
P22P22 + Q

f23 = −P22BiKj −Q

f32 = − (BiKj)
T P22 −Q

f33 = AT
r P33 + P33Ar +

1

ρ2
P33P33 + Q

After simplification and taking the Schur complements, it can be shown that (75) can be

expressed as (74) [126]. where, Xi = P11Li,


























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M11 P11 Xi MT
41 0 0

P11 −p2I 0 0 0 0

XT
i 0 −p2I 0 0 0

M41 0 0 M44 M45 0

0 0 0 MT
45 M55 P33

0 0 0 0 P33 −p2I





























< 0
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3.5 Solution of the LMI Problem

Note that (74) is not a linear matrix inequality problem. Therefore it can not be solved in a

single step using LMI toolbox. However, it can be solved by the following two-step procedure

[126].

Step 1: Solving M44 < 0, find P11 and Kj

H11 = HT
11 > 0 (76)

H22 = HT
22 > 0 (77)

(Ai + BiKj)
T

P22 + P22 (Ai + BiKj) +
1

ρ2
P22P22 + Q (78)

for P22. Set R22 = P−1
22 , R22 = diag(r11, r22), r11 = H−1

11 , r22 = H−1
22 and Yj = KjR22. (76),

(77), and (78) can be rewritten as

r11 = rT
11 > 0 (79)

r22 = rT
22 > 0 (80)





R22A
T
i + AiR22 + BiYj + (BiYj)

T + 1
ρ2 I R22

R22 −Q−1



 < 0 (81)

For a prescribed attenuation level ρ, the matrices R22 and Yj (thus P22 = R−1
22 and Kj =

YjR
−1
22 ) can be obtained by solving LMIs (79), (80). and (81).

Step 2: Find P11, P33 and Li

The values of P11 and Kj (where j = 1, . . . , L) obtained in the Step 1 are substituted into

(74). Then the LMIs (74) are solved for P11, P33 and Li, i = 1, . . . , L.

The attenuation level ρ can be minimized by searching for P11 > 0, P22 > 0 so that min
P11,P22

ρ2.
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This optimization problem can be solved by reducing ρ and solving the LMIs with the above

two-step procedure until just before no feasible solutions P11 = P T
11 > 0, P22 = P T

22 > 0 and

P33 = P T
33 > 0 of the LMI problem can be found.
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4 Simulations

4.1 Simulations for State Feedback Controller

Consider a two link planar elbow manipulator, as shown in Fig. 1, where joint-1 is driven

by a motor mounted at the base and joint 2 is passive. The dynamic equation of the 2-link

planar elbow manipulator, with a given constraint as shown in Fig. 1, is given below [96],

[129], [131].

M(q)q̈ + C(q, q̇)q̇ + G(q) = T + Jφ(q)
Tλ (82)

φ (q) = 0 (83)

where q = [q1 q2]
T , q1, q2 are generalized coordinates, M(q) denotes the inertial matrix,

C(q, q̇) is a matrix which characterizes the Coriolis or centrifugal terms, G(q) represents

gravitational effects, T =
[

T1 T2

]T

is the input torque vector at the joints, Jφ(q) is the

Jacobian of φ (q), λ is Lagrangian multiplier, and

M(q) =





m11 m12

m12 m22





C(q, q̇) = m2l1l2(cos q1 sin q2 − sin q1 cos q2)





0 −q̇2

−q̇1 0





G(q) =





−(m1 + m2)l1g sin q1

−m2l2g sin q2




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φ (q) = a (l1 + l2) − l1 (cos q1 + sin q1) − l2 (cos q2 + sin q2)

= −x + a(l1 + l2) − y

Jφ(q) =
[

l1 sin q1 − l1 cos q1 l2 sin q2 − l2 cos q2

]

with m11 = (m1 + m2)l
2
1, m12 = m2l1l2(sin q1 sin q2 + cos q1 cos q2), m22 = m2l

2
2, m1 and m2

being link masses, l1 and l2 being link lengths, and g = 9.8 (m/s2) is the acceleration due to

gravity.

The constraint Eq. (83) is a straight line which intersects the x-axis and y-axis at (a(l1+l2), 0)

and (0, a(l1 + l2)), respectively. It is assumed that a < 1 to avoid singularity of the Jacobian.

Set q1 = q1, q2 = q2, q3 = q̇1 and q4 = q̇2. Then, Eq. (82) and Eq. (83) can be expressed as

the following state space form including external disturbances dSi, i = 1, 2:

[

q̇1

]

= q3
[

q̇2

]

= q4





q̇3

q̇4



 = M(q1, q2)
−1 [−C(q1,q2,q3,q4)q̇ − G(q1,q2)

+T + Jφ(q1,q2)
T λ
]

+





dS1

dS2





0 = a (l1 + l2) − l1 (cos q1 + sin q1)

−l2 (cos q2 + sin q2)

Because q1 is an independent joint angle, q2 has to be determined as a function of q1 from

the constraint equation Eq. (83). As a result, by setting xd = q1 and xc = q2, the model Eq.
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(82)-(83) is equivalent to Eq. (30) and Eq. (31) with n = 2, which can be expressed as

0 = v1

0 = v2

0 = v3

v̇4 = v5

v̇5 = f1 + g11T1 + g12T2 (84)

where T2 = 0,





f1

f2





= −M−1Cq̇ −M−1G + M−1JT
(

JM−1JT
)

−1



v3 + JM−1Cq̇ + JM−1G − JM−1J̇





q̇2
1

q̇2
2









and




g11 g12

g21 g22



 = M−1 − M−1JT
(

JM−1JT
)

−1
JM−1

The parameters are l1 = 1m, l2 = 1m, m1 = 1kg, m2 = 1kg, a = 0.8. q1 is constrained

within
[

0, π
2

]

. The T-S fuzzy model for the system in Eq. (84) is given by the following 3

fuzzy rules.

Rule i:

If v4 is about θi

then Ev = Aiv + Biu + dS

where i = 1, 2, 3, θ1 = 1
36

π, θ2 = 1
4
π, θ3 = 9

4
π,
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


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
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Figure 2: Membership function for joint angle q1

The dynamic reference Eq. (33) is used with

Er = E, rI = 8(5π
18

+ 5π
18

sin(t)),

Ar =























−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 −6 −5























and Br =























0

0

0

0

1























.

For the convenience of design, S-shape, Z-shape and Triangle membership functions, as

shown in Fig. 2, are considered. External disturbances in Newton meters are assumed to be

dS1 = 5 sin(2t) and dS2 = 0.

The LMI optimization is done using YLMIP toolbox incorporating with Matlab. The solu-
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tions of the LMI problems are

P11 =























0.9453 0 0.0000 0 0

0 0.0095 0 0 0

0.0000 0 0.0001 0 0

0 0 0 11.840 0.0273

0 0 0 0.0273 0.0023























,

P22 =























176.68 0 0.0000 0 0

0 176.77 0 0 0

0.0000 0 176.77 0 0

0 0 0 569.02 325.89

0 0 0 325.89 248.68























,

K1 =
[

3.859 0 −0.1405 −20964.4 −1733.7
]

,

K2 =
[

3.859 0 −0.1405 −20964.4 −1733.7
]

,

K3 =
[

3.859 0 −0.1405 −20964.4 −1733.7
]

.

The trajectories of the state variables q1 to q4, along with qr1 to qr4, are given in the figures

from Fig. 3 to Fig. 10 respectively, including disturbances.

The initial condition is assumed to be (q1(0), q3(0), qr1(0), qr3(0)) = (5π
18

, 0, 5π
18

, 0)T in the

simulation. The states q2, q4 and qr2, qr4 are calculated from the algebraic constraint. In

the presence of disturbances, the state q3 follows reference trajectory with a very small

error. From the simulation results, the performance of the proposed controller is obviously

satisfactory in the presence of disturbances.

Imposing 10% parameters uncertainties on the lengths l1, l2 and the masses m1, m2 and keep-

ing the disturbance same as before the simulation is run. The tracking responses obtained

are given in the figures from Fig. 11 to Fig. 18,
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Figure 3: The trajectories of q1 and qr1
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Figure 4: The trajectories of q2 and qr2
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Figure 5: The trajectories of q3 and qr3
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Figure 6: The trajectories of q4 and qr4
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Figure 7: Tracking error (q1-qr1)
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Figure 8: Tracking error (q2-qr2)
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Figure 9: Tracking error (q3-qr3)
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Figure 10: Tracking error (q4-qr4)
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Figure 11: The trajectories of q1 and qr1
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Figure 12: The trajectories of q2 and qr2
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Figure 13: The trajectories of q3 and qr3
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Figure 14: The trajectories of q4 and qr4
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Figure 15: Tracking error (q1-qr1)
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Figure 16: Tracking error (q2-qr2)
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Figure 17: Tracking error (q3-qr3)
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Figure 18: Tracking error (q4-qr4)
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Figure 19: Continuously stirred tank reactor

4.2 Simulations for Observer Based State Feedback Controller

Consider a continuously stirred tank reactor (CSTR) with heating jacket [90], as shown in

Fig. 19. Reactant A is fed at a flow rate FA, molar concentration CA0, and temperature

TA to the reactor, where the irreversible endothermic reaction A → B occurs. The rate of

reaction is given by the following relation:

RA = k0 exp

(

−
Ea

RT

)

CA (85)

where k0 and E are the reaction rare coefficient and activation energy, respectively. CA is

the molar concentration of A in the reactor holdup, and T is the reactor temperature. The

product stream is withdrawn at a flow rate F and heat is provided to the reactor through

the heating jacket, where the heating fluid is fed at a flow rate Fh. Consider the case when

the heat transfer rate Q = UA (Tj − T ) is fast, i.e. the product of overall heat transfer U

and heat transfer area A is large. The detailed rate-based model of the process, where the
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heat transfer rate expression is explicitly included, is given by the following ODE system:

v̇ = FA − F

ĊA =
FA

V
(CA0 − CA) − k0 exp(

−Ea

RT
)CA

ĊB = −
FA

V
CB + k0 exp(

−Ea

RT
)CA

Ṫ =
FA

V
(TA − T )− k0 exp(

−Ea

RT
)CA

dHr

pcp

+
Q

pV cp

Ṫj =
Fh

Vh

(Th − Tj) −
Q

phVhcph

(86)

0 = Q − UA (Tj − T ) (87)

Owing to the presence of the large parameter UA in the rate expression for the fast heat

transfer, the ODE model in (86) exhibits stiffness. Equivalently, the fast heat transfer implies

a time-scale multiplicity in the process dynamics where after an initial fast transience, the

reactor and jacket are essentially at thermal equilibrium, i.e. Tj ≈ T . Thus, under the

quasi-steady-state (QSS) assumption of thermal equilibrium, the explicit rate expression for

the fast heat transfer is replaced by the relation Tj = T , to obtain the following singular

system model:

v̇ = FA − F (88)

ĊA =
FA

V
(CA0 − CA) − k0 exp(

−Ea

RT
)CA (89)

ĊB = −
FA

V
CB + k0 exp(

−Ea

RT
)CA (90)

Ṫ =
FA

V
(TA − T )− k0 exp(

−Ea

RT
)CA

dHr

pc
p

+
Q

pV cp

(91)

Ṫj =
Fh

Vh

(Th − Tj) −
Q

phVhcph

(92)

0 = Tj − T (93)

Clearly due to the assumption of thermal equilibrium, the algebraic equation is singular and

can not be solved for the algebraic variable Q. It can be verified that above singular system
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Table 1: Nominal value of the process parameters [90]

Variables Description Nominal value
CA0 feed reactant concentration (mole/l) 5.0

CA reactant concentration in reactor (mol/l) 1.596

CB product concentration in reactor (mol/l) 3.404
cp specific heat capacity (J/g K) 6.0

E activation energy (J/mol K) 50000

FA outlet flow rate from reactor (l/min) 3.0

Fh heating fluid flow rate (l/min) .1
k0 pre-exponential factor in reaction rate (l/mol min) 1.0 × 109

TA feed reactant temperature (K) 300

T reactor temperature (K) 284.08
Th heating fluid temperature (K) 375

Tj jacket temperature (K) 285.37

V reactor hold up volume (l) 10.0

Vh jacket volume (l) 1.0
p liquid density (g/l) 600

∆Hr heat of reaction (J/mol) 20000

R universal gas constant (J/mole K) 8.134

has an index two.

Now consider the case of F0 = FA, which implies that the reactor holdup volume V is

constant. For simplicity, it is assumed that the density and specific heat capacities of the

two liquids are the same, i.e., ph = p and cph = cp.

In this process, it is desired to keep reactant concentration CA, the product concentration

CB, and reactor temperature T at a desired level using reactant flow rate FA and the heating

fluid flow rate Fh as the manipulated inputs.
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As the reactor holdup volume is constant, the dynamics of the CSTR becomes

ĊA =
FA

V
(CA0 − CA) − k0 exp(

−Ea

RT
)CA (94)

ĊB = −
FA

V
CB + k0 exp(

−Ea

RT
)CA (95)

Ṫ =
FA

V
(TA − T )− k0 exp(

−Ea

RT
)CA

dHr

pc
p

+
Q

pV cp

(96)

with an algebraic constraint on the dynamics

0 = Tj − T (97)

By setting xd =
[

CA CB T
]

and xc = Tj, the model (94)-(97) is equivalent to Eq. (30)

and Eq. (31) with n = 2, which can be expressed as

0 = v1 (98)

0 = v2 (99)

v̇3 = f1 + p1z + g1u1 (100)

where

f1 =











−k0 exp(−Ea

RT
)CA

k0 exp(−Ea

RT
)CA

−k0 exp(−Ea

RT
)CA

dHr
pcp











, p1 =











0

0

1
pV cp











,

z =
k0 exp(−Ea

RT
)CA

dHr
pcp

+ 1
V

(T − TA)FA + 1
Vh

(Th − Tj) Fh

Vh+V
pV Vhcp

g1 =











FA

V
(CA0 −CA) 0

−FA

V
CB 0

FA

V
(TA − T ) 0











, u1 =





FA

Fh





The nominal values of the parameters are given in a tabular form in Table 1. To shorten

the simulation time, the reactor is considered pre-heated. The T-S fuzzy model for CSTR

system is given by the following 9 fuzzy rules.
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Rule 1:

If v4 is about CB1 and v5 is about T1

then Ev = A1v + B1u + dS

Rule 2:

If v4 is about CB1 and v5 is about T2

then Ev = A2v + B2u + dS

Rule 3:

If v4 is about CB1 and v5 is about T3

then Ev = A3v + B3u + dS

Rule 4:

If v4 is about CB2 and v5 is about T1

then Ev = A4v + B4u + dS

Rule 5:

If v4 is about CB2 and v5 is about T2

then Ev = A5v + B5u + dS

Rule 6:
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If v4 is about CB2 and v5 is about T3

then Ev = A6v + B6u + dS

Rule 7:

If v4 is about CB3 and v5 is about T1

then Ev = A7v + B7u + dS

Rule 8:

If v4 is about CB3 and v5 is about T2

then Ev = A8v + B8u + dS

Rule 9:

If v4 is about CB3 and v5 is about T3

then Ev = A9v + B9u + dS

where CB1 = 3.4, CB3 = 3.8, CB3 = 4.2, T1 = 284.08 ,T2 = 284.3, T3 = 284.5, CAi =

CA0 − CBi (i = 1, 2, 3), and

E =























0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























,
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A1 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.9408 0 −0.0763

0 0 0.6398 −0.3011 0.0763

0.0089 0.0909 −3.2311 0 −0.6679























,

A2 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.9564 0 −0.0774

0 0 0.6503 −0.3060 0.0774

0.0098 0.0909 −3.2845 0 −0.6790























,

A3 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.9707 0 −0.0785

0 0 0.6601 −0.3106 0.0785

0.0106 0.0909 −3.3337 −3.8893 −0.6893























,

A4 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.8418 0 −0.0572

0 0 0.6398 −0.2020 0.0572

0.0105 0.0909 −3.2311 0 −0.4831























,

A5 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.8557 0 −0.0581

0 0 0.6503 −0.2054 0.0581

0.0111 0.0909 −3.2845 0 −0.4911























,
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A6 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.8685 0 −0.0589

0 0 0.6601 −0.2084 0.0589

0.0117 0.0909 −3.3337 0 −0.4985























,

A7 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.7616 0 −0.0381

0 0 0.6398 −0.1219 0.0381

0.0090 0.0909 −3.2311 0 −0.3124























,

A8 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.7742 0 −0.0387

0 0 0.6503 −0.1239 0.0387

0.0095 0.0909 −3.2845 0 −0.3176























,

A9 =























−1 0 0 0 0

0 −1 0 0 0

0 0 −0.7858 0 −0.0392

0 0 0.6601 −0.1257 0.0392

0.0099 0.0909 −3.3337 0 −0.3223























,

B1 =























0 0

0 0

0.3400 0

−0.3400 0

1.5920 0.0025























, B2 =























0 0

0 0

0.3400 0

−0.3400 0

1.5700 0.0025























, B3 =























0 0

0 0

0.3400 0

−0.3400 0

1.5500 0.0025























,
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B4 =























0 0

0 0

0.3800 0

−0.3800 0

1.5920 0.0025























, B5 =























0 0

0 0

0.3800 0

−0.3800 0

1.5700 0.0025























, B6 =























0 0

0 0

0.3800 0

−0.3800 0

1.5500 0.0025























,

B7 =























0 0

0 0

0.4200 0

−0.4200 0

1.5920 0.0025























, B8 =























0 0

0 0

0.4200 0

−0.4200 0

1.5700 0.0025























, B9 =























0 0

0 0

0.4200 0

−0.4200 0

1.5500 0.0025























.

The dynamic reference Eq. (33) is used with

Er = E, rI =
[

1.5800 3.42 284.3
]

,

Ar =























−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1























and Br =























0 0 0

0 0 0

1 0 0

0 1 0

0 0 1























.

For the convenience of design, S-shape, Z-shape, and Triangle membership functions, as

shown in Figs. 20-21, are considered. External disturbances in measuring the concentration

and temperature are assumed to be 0.2 sin(t) and 0.2 sin(t). The LMI optimization is done

using YLMIP toolbox incorporating with Matlab. The solutions of the LMI problems are
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Figure 20: Membership function for concentration
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Figure 21: Membership function for temperature
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P11 =























0.8858 −0.0000 0 0 0

−0.0000 0.8858 0 0 0

0 0 0.0167 −0.0145 0.0000

0 0 −0.0145 0.0178 −0.0000

0 0 0.0000 −0.0000 0.2208























,

P22 =























1.1289 0.0000 0 0 0

0.0000 1.1289 0 0 0

0 0 203.8549 165.5484 −0.0050

0 0 165.5484 190.5492 0.0037

0 0 −0.0050 0.0037 4.5285























,

P33 =























0.8858 −0.0000 0 0 0

−0.0000 0.8858 0 0 0

0 0 0.0167 −0.0145 0.0000

0 0 −0.0145 0.0178 −0.0000

0 0 0.0000 −0.0000 0.2208























,

K1 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K2 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K3 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105
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K4 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K5 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K6 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K7 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K8 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

K9 =





0.0000 0.0000 −0.0021 0.0014 −0.0000

−0.0000 −0.0004 1.2998 −0.8458 −0.0705



 ∗ 105

The trajectories of the state variables CA, CB, and T , along with CAd, CBd, and Td. are

given from Fig. 22 to Fig. 27, respectively, including sensor noise as disturbances.

Imposing 5% uncertainties in the process parameters ∆Hr , ρ and cρ and keeping sensor noise

as disturbances as before the simulation is run. The tracking responses obtained are given

from Fig. 28 to Fig. 33

4.3 Result Discussion

4.3.1 Holonomic Constrained Mechanical Link

The figures from Fig. 3 to Fig. 10 show the tracking responses of the constrained mechanical

link described in Section 4.1. This simulation is run in the presence of 5 N disturbance force.
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Figure 22: The trajectories of CA and CAd
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Figure 23: The trajectories of CB and CBd
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Figure 24: The trajectories of T and Td
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Figure 25: Tracking error (CA-CAd)
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Figure 26: Tracking error (CB-CBd)
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Figure 27: Tracking error (T-Td)
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Figure 28: The trajectories of CA and CAd
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Figure 29: The trajectories of CB and CBd
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Figure 30: The trajectories of T and Td
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Figure 31: Tracking error (CA-CAd)
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Figure 32: Tracking error (CB-CBd)
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Figure 33: Tracking error (T-Td)
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Figure 34: Magnified view of Fig. 33 to ensure the impulse freeness

In the exposure of such high magnitude disturbance, the error convergences to a bounded

value which is quite satisfactory. On other hand, the figures from Fig. 11 to Fig. 18

show the responses, considering both 5 N disturbance and 10% uncertainty in the modeling

parameters. The proposed controller still yields excellent performace. These simulations

verify the robustness of the proposed controller.

4.3.2 Continuously Stirred Tank Reactor

The figures from Fig. 19 to Fig. 27 display the set point tracking responses of the con-

tinuously stirred tank reactor described in Section 4.2. This simulation is run with the

measurement noise as disturbance. The controller makes the error converge to a bounded

value which is small enough. The figures from Fig. 28 to Fig. 33 provide the responses in

the presence of both measurement noise and 5% uncertainty in the modeling parameters.

Also in this case the proposed controller keeps excellent performance. Fig. 34 ensures that

the response to the fast system is impulse-free.
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5 Conclusion and Future Work

5.1 Conclusion

In this work, the H∞ tracking control problem has been discussed for high index singular

systems using T-S fuzzy approach. The main achievements are summarized as follows.

1. The coordinate transformation has been introduced to decouple a nonlinear high index

singular system into a linear fast subsystem and a nonlinear slow subsystem with strict-

feedback form. A linear reference system has been proposed to share the same linear fast

subsystem with the transformed singular system so that its response to the consistent initial

conditions satisfies both the algebraic equation and hidden constraints. The proposed trans-

formation also relaxes the I-observability condition of the existence of a full order Luenberger

observer.

2. Based on this T-S fuzzy model, a state feedback controller and an observer-based state

feedback controller have been designed for H∞ tracking problems of the high index singular

systems. Using Lyapunov function method, sufficient conditions for the stability of the

closed-loop systems with H∞ tracking performance have been derived.

3. An LMI-based optimization problem is formulated from the sufficient conditions to obtain

feedback gains for a prescribed attenuation level ρ. YALMIP toolbox has been used to solve

the LMI optimization problem. CVX toolbox can also be used to solve this optimization

problem.

4. Two high index nonlinear singular systems from different fields are taken as examples to

verify the robustness of the proposed controllers for both bounded disturbances and param-

eters uncertainties. Through the simulation, the performance of the proposed controllers are
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verified.

The advantage of the proposed tracking control design approach is that a simple T-S fuzzy

model based PDC controller is used for the controller design without the exact feedback

linearization technique and complicated adaptive schemes. The design simplicity makes the

proposed approach suitable to implement in practical applications where constraint systems

are involved. The robustness of the proposed tracking controller is verified from the simula-

tions of the illustrated physical problems.

5.2 Future Research Direction

The following problems are still open to be solved.

(1) The linearization of the non-regular high index singular system and model this high-index

singular system using fuzzy T-S model.

(2) Observer design for the non-regular high index singular systems using the T-S model

ensuring the existence of the observers.

(3) A simple way is needed to solve the LMI problems in a single step method instead of two

step methods specifically when dealing with H∞ tracking problem for nonlinear systems.

(4) A servo H∞ controller for high index singular systems without using dynamic refer-

ence model, rather using constant reference only. For this case the deviation error will be

estimated using observer not the states.
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