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ABSTRACT

The AI research community has recently been intensely focused on diagnosing COVID-

19 by applying deep learning technology to the X-ray scans taken of COVID-19 patients.

COVID-19 shares many of the same imaging characteristics as other common forms of bac-

terial and viral pneumonia. Differentiating COVID-19 from other common pulmonary infec-

tions, therefore, is a non-trivial task. While RT-PCR tests are the first viral tests commonly

performed on COVID-19 patients, radiological tests are often reserved for further study of

the illness in patients presenting with increased risk factors. To help offset what commonly

requires hours of tedious manual annotation, our work uses Convolutional Neural Networks

and other machine learning techniques to decrease the time radiologists spend interpreting

COVID-19 radiological scans.

Deep learning experts commonly use transfer learning to offset the small number of

images typically available in medical imaging tasks. Our first study’s architecture included

a deep neural network that was pretrained on over one hundred thousand X-ray images. We

incorporated this architecture into two models with the purpose of diagnosing COVID-19.

The experimental results demonstrate the robustness of our deep learning models, ultimately

achieving sensitivities of 95% and 96% for our three-class and two-class models respectively.

To help further clarify the diagnosis of suspected COVID-19 patients, in our second

study, we have designed a deep learning pipeline with a segmentation module and ensemble

classifier. After performing a thorough comparative analysis, we demonstrate that our best

model can successfully obtain an accuracy of 91% and a sensitivity of 92%. Following a de-

tailed description of our deep learning pipeline, we present the strengths and shortcomings

of our approach and compare our model with other similarly constructed models. Finally,

we conclude with possible future directions for this research.
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Chapter 1

Introduction

1.1 COVID-19 Diagnositic Testing - An Urgent Need

The medical industry and researchers around the world have been urgently seeking

new modalities to diagnose COVID-19. A lack of testing supplies in countries around the

world has left many COVID-19 patients without a diagnosis, leading to the further spread of

the illness. To help alleviate this exponentially growing need, deep learning researchers have

been attempting to image COVID-19 with the use of radiological techniques. COVID-19

is the disease caused by SARS-CoV-2 and is an airborne illness that can be rapidly spread

between individuals. The COVID-19 outbreak was officially recognized by the WHO as

being the cause of a pandemic on March 11, 2020.

The AI research community has recently invested considerable time and resources into

developing deep learning models based on chest radiographs for the purpose of diagnosing

COVID-19. Many medical institutions are finding themselves in difficult positions when faced

with countless numbers of patients presenting with symptoms of the illness. In Canada, there

have been over 1.4 million reported COVID-19 cases and over 26,000 COVID-19 deaths since

the start of the pandemic [1]. Many of these deaths may have been avoided if COVID-19

cases were detected sufficiently early and the disease was not allowed to spread rapidly. AI

systems that can process chest radiographs hold promise as potential tools for fighting the

coronavirus pandemic.
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Recently deep learning techniques have come to permeate “the entire field of medical

image analysis” [2]. With deep learning methodologies, AI researchers have made consid-

erable progress in improving the quality of automated diagnostic medical imaging systems.

Because of their pioneering work, many promising directions are now opening up that could

potentially help diagnose COVID-19. Here in this work, we present two state-of-the-art X-

ray-based deep learning models that can diagnose COVID-19. Both systems can perform as

well as available molecular tests on the market and offer an independent means of testing

COVID-19 patients.

1.2 Background

1.2.1 Competing Molecular Tests

There are several kinds of COVID-19 tests that are currently on the market. Molecular

tests (polymerase chain reaction tests), Antigen tests (rapid tests), and antibody tests (blood

tests) have seen widespread use. Of these three tests, the RT-PCR test is considered the

present gold standard for diagnosing COVID-19 [3]. RT-PCR tests are not perfect, however,

and reports have been made considering problems with the test’s overall sensitivity [4]. Luo

et al. [5] in a study including 4653 participants found that RT-PCR tests have a sensitivity

of around 71%. Other studies have reported a range of sensitivities between 70 and 90

percent [6]. Kucirka et al. [7] in a John’s Hopkins study reported that an RT-PCR test’s

sensitivity has wide variability over the 21 days after a patient is first exposed to SARS-

CoV-2. They also noted that “although the false-negative rate is minimized 1 week after

exposure, it remains high at 21%” [7]. Kucirka et al. [7] therefore ultimately found that

it takes about a week from the time of symptom onset, for RT-PCR testing to deliver the

lowest false-negative rate. This leaves room for other tests that may work better over the

time that RT-PCR tests are less accurate. Radiological testing is a leading contender in the

research community for such a scenario. Research has shown it to be useful over the time

that a patient has obtained a negative RT-PCR test [8]. Radiological testing can therefore
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be used in conjunction with other tests and possibly give more clarity regarding a patient’s

current diagnosis.

1.2.2 Identifying COVID-19 in Radiological scans

Before diving into the details of deep learning algorithms that may assist in diagnosing

COVID-19, it is beneficial to first consider what imaging details radiologists have cited in

determining a COVID-19 diagnosis. These image characteristics are of considerable impor-

tance during the process of validating COVID-19 deep learning models with saliency maps.

A common feature of COVID-19 in radiological imaging includes bilateral GGOs with pe-

ripheral predominance [9]. A GGO is an infected pulmonary location in a radiological scan

with increased attenuation. Song et al. [10] have additionally discovered that consolidation

can commonly be observed in patients as the disease worsens. These consolidated areas

in radiology represent regions where a patient’s lung is filled with pus, liquid, and other

materials that normally would not be present.

Song et al. have reported that ”patients older than 50 years had more consolidated

lung lesions than did those aged 50 years or younger.” [10] Older patients, therefore, have

clinical radiological evidence that shows they are at greater risk of negative health outcomes

when they are infected. Cozzi et al. have likewise published research involving X-ray scans

indicating that COVID-19 patients “show patchy or diffuse reticular–nodular opacities and

consolidation, with basal, peripheral and bilateral predominance.” [11] The same authors

have additionally established that in cases where only one lung is infected, the right lung

typically is more often affected. To obtain a visual appreciation for the manifestations of

COVID-19 inside an infected patient’s lungs, Fig. 1.1 shows the chest X-rays of two COVID-

19 patients with some of the visual markers that have been discussed.

1.3 Objectives and Scope

The objective of our work is to build a diagnostic model capable of detecting COVID-

19 with the use of chest radiographs. We originally also wanted to work on determining
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(a) (b)

Figure 1.1: Lungs of 2 men with COVID-19 pneumonia in their 50s showing (a) bilateral
consolidation and (b) GGOs (white arrows) and linear opacity (black arrow). [12]

the severity of a patient’s disease with images and metadata. This was not practicable for

reasons that will be explained in the literature review. There is a debate among researchers

and medical professionals in the field concerning which radiological modality would best be

suited for COVID-19 testing. Chest X-rays and thoracic computed tomographic scans are

the most common modalities radiologists use in detecting COVID-19 related pneumonia in

individuals. Both technologies have their merits and shortcomings. In comparing CXRs

and CT scans, CXRs are generally less expensive and hence more widely used. This is

especially true in developing countries where budgeting for a CT scanner can be more of

a challenge. X-ray machines have another advantage over CT scanners in that they are

commonly manufactured to be portable. They can be physically carted into ICUs and

patients can remain in their physical location. There is also the question of how closely a

radiologist should be exposed to suspected COVID-19 patients. X-rays require a single flat

surface to be placed down onto a patient, while for a CT, a patient needs to be brought into a

3D enclosure and positioned properly within it. We initially considered both modalities when

setting out to design a system capable of diagnosing COVID-19. We eventually settled on

choosing X-rays as our chief modality in developing a deep-learning algorithm for diagnosing

COVID-19. Our reasons for making this choice will be clear following our literature review

in the following chapter.

Prior to beginning our work, many teams at universities and institutions around the

world had already designed deep learning models for detecting COVID-19. Several highly
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cited papers made claims of achieving extraordinarily high-performance metrics. Hemdan

et al. [13], Rajaraman et al. [14], and Apostolopoulos and Mpesiana [15] all made claims of

achieving common performance metrics (F1-Scores, Accuracies, Sensitivities, etc.) above 90

percent. Many of these papers on careful analysis, however, missed important details that

allowed their classifiers to achieve overly optimistic results. Many papers incorporated a

dataset from Kermany et al. [16] that contained the chest X-rays of young children suffering

from various forms of bacterial and viral pneumonia. These X-rays had the effect of biasing

a large number of COVID-19 datasets that were used in academic studies. There were

additional dataset composition issues that existed in many studies where multiple scans of

the same patients were mixed in their training, validation, and testing sets. The datasets

of many studies additionally were quite small and prone to overfitting. Since these dataset

issues were common to the majority of studies, we realized that there was a good opportunity

to compete with the limited number of studies published so far that have constructed their

datasets correctly. In our first publication [17], we focused on attempting to achieve higher

COVID-19 sensitivities than other studies [18, 19, 20] without dataset composition issues.

In our second publication [21], we employed segmentation in preprocessing X-ray scans

prior to classifying them. Segmentation can help to remove many of the irrelevant portions

of an image that should not affect a classifier’s final output. We have found that there are

significantly fewer deep learning COVID-19 X-ray studies that perform segmentation. Many

teams have likely shied away from performing segmentation due to the difficulty involved in

creating a segmentation-classification pipeline. We experimented with several segmentation

units and eventually worked towards optimizing the dice similarity coefficients of these units.

We wanted to analyze any potential effect that segmentation might have on a classifier that

is trained on X-ray scans. To create a more robust system, we also investigated the effect

of ensembling multiple CNNs in our deep learning pipeline. Ultimately, we wanted to build

a deep learning segmentation-classification pipeline that can achieve the highest possible

evaluation metrics.
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1.4 Study Limitations

Our research has experienced limitations in terms of the available data that can be used

in training our deep learning models. Our final deep learning models were ultimately trained

on datasets that contained three to four thousand COVID-19 lung X-rays. While this may

seem like a significant number of images, in computer vision research, biomedical imaging

experts prefer to have hundreds of thousands or even millions of images when training a deep

network.

Current available public datasets also do not include the metadata that would be

helpful in increasing the performance of our classifiers. Useful metadata would include

information concerning a patient’s age, sex, exposure location, bloodwork, etc. All of these

metadata categories would not have only been useful diagnostically, but also may have been

helpful in predicting a patient’s prognosis. This lack of metadata accompanying COVID-19

radiographs has led us to focus on diagnosis alone.

1.5 Research Outline

Our research begins in chapter 2 with an in-depth literature review. In this literature

review, we set out to discover the various deep learning methodologies that have been im-

plemented to process X-ray and CT scans. A major objective of this section also includes

finding the best possible datasets that can help with determining the diagnosis or progno-

sis of COVID-19 patients. Following the literature review, in chapter 3, we introduce the

background information required for understanding how to design the deep learning systems

that we modeled in chapters 4 and 5. This section provides an introduction to the struc-

ture of the neural network, CNN, and segmentation layers that are used in both studies.

In chapter 4, we introduce our ”COV-SNET” X-ray-based deep learning model which was

built to diagnose COVID-19. To the best of our knowledge, the COV-SNET model has a

higher sensitivity than all other deep learning models in the COVID-19 imaging literature

not trained on improperly biased datasets. In this section, we also describe in detail how

pretraining on related images can help when training a model on a smaller dataset. Our
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work in chapter 5 takes a different approach to classifying COVID-19. In our second study,

we have added segmentation as an extra preprocessing step prior to classifying COVID-19

images. We additionally show how ensembling can effectively be used to slightly increase

the overall performance of a COVID-19 deep learning pipeline. Finally, in chapter 6, we

conclude with our research studies’ main findings and we discuss possible future directions

for our work.

1.6 Publications Produced Throughout Master’s Re-

search Work

The following is a list of publications that were produced throughout the master’s

research work:

1. Deep Learning Techniques for COVID-19 Diagnosis and Prognosis Based on Radiolog-

ical Imaging. [22] Sent to ACM Computing Surveys Dec. 21, 2020.

2. COV-SNET: A deep learning model for X-ray-based COVID-19 classification. [17]

Published in Informatics in Medicine Unlocked on Jun. 03, 2021.

3. A Deep Learning Segmentation-Classification Pipeline for X-Ray-Based COVID-19

Diagnosis. [21] Published in Informatics in Medicine Unlocked on Jul. 06, 2021.
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Chapter 2

Literature Review

2.1 Background

This literature review summarizes the current methods generated by the medical imag-

ing AI research community which are focused on resolving lung imaging problems related

to COVID-19. The literature reviewed here is a summary of the X-ray-based and CT-based

AI COVID-19 detection systems that have been published so far. This literature review

also contains a summary of current machine learning studies that have been focused on

determining the prognosis of COVID-19 patients.

The current gold standard for diagnosing COVID-19 is the real-time RT-PCR test

[3]. The test has been reported to suffer from sensitivity issues [4]. Depending on when an

RT-PCR test is administered, the false-negative rate of an RT-PCR COVID-19 test can vary

substantially. A John Hopkins led study found that RT-PCR tests elicit false-negative rates

close to 100 percent at the time of symptom onset. This number falls to 61 percent by day 4.

On the 8th day since COVID-19 symptoms onset, the false-negative rate drops to 26 percent.

After this however, the false-negative rate increases to 61 percent on the 21st day [7]. This

large variation in RT-PCR test accuracy leaves a lot of room for other tests that could be

helpful over the time that RT-PCR tests are inaccurate. Medical imaging techniques are

at times able to detect COVID-19 pneumonia when RT-PCR tests are unable to. This was

especially true in China during the early days of the outbreak. CT scans are still used there
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regularly to contain the illness [23]. In cases where patients suspected of having COVID-19

initially receive negative RT-PCR test results, radiography may be helpful [8].

Figure 2.1: Variations in false-negative RT-PCR tests since a patient’s time of exposure. [7]

2.2 A Choice Between Modalities

Chest X-Rays and thoracic computed tomographic scans are the conventional imaging

modalities radiologists use to detect pneumonia in COVID-19 patients. Both technolo-

gies have their advantages and disadvantages. Healthcare practitioners would prefer to use

contactless imaging workflows in the detection of pathologies associated with transmissible

diseases. Imaging specialists and radiologists are highly important to medical institutions

and all possible hazards that could expose them to COVID-19 need to be reduced. It is

often not possible to fully reduce contact between radiologists and patients, depending on

the imaging technique being used and the imaging protocol being followed.

Around the world, CXRs are more easily accessible than CTs and used more widely

in low-income areas. X-ray machines are often portable and can be taken directly inside

ICUs. X-rays may therefore be the first imaging modality doctors turn to when diagnosing

COVID-19 patients. CT scans require a patient to be physically moved to a room with a
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CT scanner. This leads to additional possible vectors of viral transmission within a medical

institution. X-ray units are easier to clean and can be quickly disinfected for use on another

patient. CT scans conversely require a patient to enter inside an imaging apparatus. After

the necessary imaging is complete, the entire room and scanner need to be disinfected. The

use of CT scans for diagnosing COVID-19 in patients varies between countries. In China,

CT scans are used routinely, while the largest radiological societies in Western countries

have published various opinion pieces suggesting that CT scans be used only in specific

circumstances [24]. This concern in western countries mostly stems from concern over the

transmission of COVID-19 in hospitals.

X-ray imaging may have fewer viral transmission issues in diagnosing COVID-19, but

it also does not provide the same kind of high-resolution 3D imaging that a CT scanner

does. X-rays produce 2D images of a chest pathology. CT scans produce a batch of 2D slices

forming a 3D volume inside a patient. This increased imaging quality may be necessary for

determining the nature and severity of a patient’s illness. In the context of imaging COVID-

19, the detection of pulmonary nodules and ground-glass opacity lesions are better detected

across multiple CT slices in 3D information. A recent study reported that X-rays can often

show normal in early or mild cases of COVID-19 [25]. The workflow for obtaining 3D scans

from CT scanners is substantially different from how X-rays are performed for obtaining 2D

lung images. During preparation for a CT scan, a patient is assisted by a technician to pose

on a bed using a specific CT protocol. A CT scan takes place over a single breath-hold.

The acquired data is thereafter processed and sent to an archive. There it can be analyzed

by radiologists with the help of a computer-aided detection system for finding the patient’s

diagnosis or prognosis. CT scan protocols can take a long time to develop. Many intensities,

resolutions, and patient positions are investigated for optimal imaging characteristics. CT

scan protocols are still being fine-tuned in hospitals around the world for better COVID-19

detection. Beyond infection control issues there are a couple of other disadvantages in using

CT scans for diagnosing COVID-19. One major disadvantage is that CT imaging is more

costly than using CXRs. Another disadvantage is that the radiation dose a patient typically

receives on a chest CT scan is typically 55 times higher than if a CXR was used [26]. Low-

dose computed tomographic scans have been shown to reduce the radiation exposure of a
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patient, but they are less effective than normal CTs at detecting the pulmonary features

that are required in a COVID-19 diagnosis [27].

2.3 Division of COVID-19 Machine Learning Litera-

ture

There are several deep learning CAD systems that have been developed for screening

and classifying COVID-19 patients using lung X-rays and CT scans. These systems fall into

multiple categories in this review: system dimensionality, system purpose, deep learning

methods/segmentation network, size/type of dataset, and system evaluation/results. The

papers reviewed following this section will be presented in order of system dimensionality.

Figure 2.2: Division of summarized literature.
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2.3.1 Dimensionality

The dimensionality of the data being processed by a computer vision system changes

how an entire system is built. All X-ray CAD classifiers in the literature are based on 2D

images. Many CT-based CAD classifiers in the literature are also 2D. They are often based

on CNNs and operate over entire CT volumes using a slice by slice analysis. Most of the

systems require preprocessing where images/volumes are normalized in terms of intensity and

volume. A preprocessing step may also include removing images that have obstructions or

have a closed lung. The form of preprocessing required in the system can change depending

on the system’s dimensionality. Many systems use 3D classifiers for CT-based CAD systems.

3D classifiers can be extremely data intensive. Adding a third dimension to a CNN adds

more parameters to the model and increases the number of operations that are computed

during implementation. The last kind of CT system that is used in the COVID-19 AI medical

imaging literature is a 2.5D classification system. A 2.5D system in this literature review

includes any system that somehow combines 2D and 3D algorithmic elements into a hybrid

system. These hybrid systems often can reduce the computational cost incurred by a 3D

system, while maintaining the same system accuracy. 2D and 3D segmentation models are

also often combined with the 2D, 2.5D, and 3D classifiers in the studies reviewed here.

2.3.2 Purpose

The purpose of designing AI CAD systems varies between studies. Some studies are

concerned primarily with developing a system for the detection or diagnosis of COVID-19.

In some COVID-19 detection studies, the authors build systems for detecting COVID-19

alone. Other COVID-19 detection studies build computer vision systems for differentiating

COVID-19 patients from patients suffering from other kinds of pneumonia. Some of the

studies primarily interested in diagnosis perform binary classification, while other studies

perform multiclass classification for helping to sort through multiple pathologies. Many

studies are interested in developing imaging tools for the management of patients within

a hospital. Creating image-based biomarkers can be an important step in determining the

severity of a patient’s illness. This may or may not be combined with predictive modeling
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techniques that combine imaging data with other metadata (age, sex, patient history, etc.)

to get a better picture of a patient’s prognosis.

2.3.3 Deep Learning Methods

There are many classifiers used in the COVID-19 imaging literature, but the majority

of classifiers tend to be CNNs. This is not a surprise given the recent performance results

CNN models have achieved in many imaging competitions and real-life applications around

the world. Various classes of CNNs mentioned in the COVID-19 imaging literature include

AlexNets [28], ResNets [29], VGGs [30], DenseNets [31], SqueezeNets [32], EfficientNets

[33] and Inception Networks [34]. Multilayer perceptrons, generative adversarial networks

[35], and encoder-decoder systems are also used in many models. Some machine learning

techniques are used in addition to deep learning techniques in a few of the reviewed papers.

Random forest classifiers feature prominently in a couple of papers.

Segmentation is relevant to the study of 2D and 3D medical scans in that it can assist a

learning algorithm by reducing the total area of a scan to analyze. It is a critical procedure

in many medical imaging tasks. Lung segmentation is used to isolate regions of interest

from other regions that have less useful spatial information. It can help a classifier focus on

the regions that matter the most for diagnosing COVID-19. In problems with high spatial

complexity, this reduction in superfluous data is very important. The main region of interest

in lung segmentation algorithms at times only includes the lungs. At other times the lesions,

nodules, and lobes in a COVID-19 patient’s lungs are segmented out as well. Many of the

authors in the studies reviewed here believe segmentation to be a necessary prerequisite

component in COVID-19 diagnosis/prognosis systems.

Segmentation is not used as often in X-ray systems compared with CT systems in the

COVID-19 detection literature. This may be because frontal 2D scans offer unique challenges

that CT scans can avoid. 2D X-ray lung segmentation is a difficult task because a patient’s

ribs present image contrast problems. This is due to their composition and position in front

of the lungs. There are however some studies in this review that perform lung segmentation

on X-rays.
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2.3.4 Datasets

Many papers have obtained datasets from hospitals or private institutions that are not

public. Others have been using publicly available datasets. Most of the papers reviewed

mention the sizes of their datasets and inform readers whether data augmentation methods

were used. Since COVID-19 is such a new disease, datasets tend to be small (in the range of

hundreds or thousands of images). Finding annotated images is difficult. Data augmentation

methods are very important to help offset the lack of data in many computer vision tasks.

Many papers reviewed here have also reported needing to construct systems that correct for

extremely imbalanced datasets.

2.3.5 Evaluation

The results reported in the COVID-19 computer vision imaging literature typically are

based on several evaluation metrics. While accuracy is almost always discussed, sensitivity,

specificity, F1-score, and area under the receiver operating characteristic curve are all also

metrics used in the literature. The literature for the most part always includes what kind of

validation methodology the authors used. Below are a few of the equations used in calculating

the most popular metrics in the reviewed literature:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Specificity =
TN

TN + FP
(2.2)

Sensitivity =
TP

TP + FN
(2.3)

Precision =
TP

TP + FP
(2.4)
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Recall =
TP

TP + TN
(2.5)

NPV =
TN

TN + FN
(2.6)

PPV =
TP

TP + FP
(2.7)

F1− Score =
2 · (Precision ·Recall)
Precision+Recall

(2.8)

2.4 Interpreting COVID-19 in CXRs and CTs

The data required for interpreting COVID-19 in a deep learning algorithm needs to be

taken from radiologists directly. This is especially important when researchers are validating

their deep learning systems by using saliency maps. The main features of COVID-19 are

mentioned here for easy reference. For CTs, radiologists have found that COVID-19 typically

has bilateral GGOs with peripheral predominance [9]. A GGO in radiology is an area

with increased attenuation during a scan of a patient’s lungs. It is a region of hazy lung

radiopacity. Song et al. [10] have found that consolidation is more common while the

disease progresses. Consolidation combined with GGOs is found in the majority of patients.

Consolidation in radiology represents the replacements of normal air in the lungs with fluid,

pus, and other substances. The vast majority of patients have bilateral lung involvement

[36]. Their infections are often in the posterior part of the lungs and can be seen peripherally

as well. Song et al. have also found that ”patients older than 50 years had more consolidated

lung lesions than did those aged 50 years or younger.” [10] Age therefore also plays a role in

how the CT images present in the radiological findings. Using CXRs, Cozzi et al. [11] have

published research proving that they “show patchy or diffuse reticular–nodular opacities and

consolidation, with basal, peripheral and bilateral predominance.” Cozzi et al. [11] have
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shown that if the infection is in one lung alone that the right lung typically is more often

infected. The same authors and Guan et al. [37] have shown that the consolidations, GGOs,

and interstitial abnormalities in COVID-19 CTs also appear in COVID-19 X-rays.

2.5 Reviewed Computer Vision COVID-19 Studies

2.5.1 X-ray Studies

The X-ray studies reviewed here all use 2D classification techniques for diagnosing

COVID-19. The ideas in the 2D X-ray studies below are all mostly applicable to 2D and

2.5D CT imaging applications as well.

Zhang et al. [38] have released a paper where they have built ”a confidence-aware

anomaly detection (CAAD) model to distinguish viral pneumonia cases from non-viral pneu-

monia cases.” It does not specifically diagnose COVID-19 but helps healthcare providers

eliminate potential pathologies from a patient’s final diagnosis. Due to the extremely small

datasets presently available for viral pneumonia, an extreme class-imbalance exists. Zhang et

al. use anomaly detection on the X-VIRAL dataset. The dataset contains 37393 individuals

with non-viral pneumonia and 5977 individuals with viral pneumonia. The datasets used in

this study were in-house datasets. Rather than using binary classification, they use anomaly

detection, which is a one-classification approach. An anomaly detection module is used that

assigns every X-ray an anomaly score. The viral COVID-19 pneumonia scores should ideally

be much higher than the negative samples that are used to train the system. Their system

uses a 2D EfficientNet that has been pre-trained on ImageNet for feature extraction. The

feature extractor forks out into ”an anomaly detection module, and a confidence predic-

tion module.” [38] The anomaly detector has no error correction mechanism but uses the

confidence aware module to predict when the anomaly detection module will fail. With no

previous training on COVID-19 images, on a small COVID-19 dataset (X-COVID), the sys-

tem achieves a sensitivity of 0.717 and an AUC of 0.836. No mention of image segmentation

is found in the study although gradient-weighted class activation maps [39] are being used

to ensure the virus is being localized in the lungs.
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Figure 2.3: Zhang et al.’s [38] hybrid classifier and anomaly detection system.

Hemdan et al. [13] have designed COVIDX-Net to diagnose COVID-19 using X-ray

images. The designers of COVIDX-Net compare seven 2D off-the-shelf architectures and

compare these pre-trained architectures using the same training and test methods. The

training and test sets are distributed in an 80 percent - 20 percent split. The paper does

not explain how the off-the-shelf models used by the authors have been trained. It does not

explain what CNN layers were frozen during transfer learning or if the CNNs were trained

in a fully end-to-end fashion using the ImageNet weights for initialization. It mentions that

data augmentation was not used in the study. They achieved their best results with the

VGG-19 and DenseNet-201 architectures achieving F1-scores of .89 and .91 respectively.

Many of the other models they used however also obtained high F1-scores. It is unsurprising

their paper achieved their best results with a DenseNet-201 architecture. That network is

the deepest off-the-shelf network the authors tested. Near the beginning of the pandemic,

there were multiple instances of teams rushing to find 2D classifiers that can be quickly

applied to diagnosing COVID-19 patients. While the COVID-19 patient vs. non-COVID-19

patient distinction is important, it is a non-trivial task to differentiate COVID-19 from other

possible lung pathologies. This work only scratched the surface of the kind of classifiers that

would be needed in a true clinical setting. The biggest criticism of this paper is that their

dataset was likely too small to generate truly meaningful results.
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Figure 2.4: Hemdan et al.’s [13] various off-the-shelf-models approach

Apostolopoulos and Mpesiana [15] took a similar approach to Hemdan et al. [13]

in terms of trying as many standard off-the-shelf classifiers as possible. Their dataset was

composed of 224 COVID-19 patients, 714 bacterial/viral pneumonia patients, and 504 normal

patients. Their best model was found to be a VGG-19 with a 2-class (COVID vs. non-

COVID) accuracy of 98.5 percent and a 3-class (COVID vs. pneumonia vs. normal) accuracy

of 93.48 percent. This work explains which layers were frozen to perform transfer learning.

Using 3 classes was a better approach than Hemdan et al. [13] used in that it is very

important to distinguish COVID-19 from other forms of pneumonia in a clinical setting.

Both Hemdan et al. [13] and this paper could have improved their performances if they

had initialized their weights using modality-specific pretraining in their systems. CNNs that

have been trained to detect other lung pathologies with the use of X-rays would have been

better models to use while applying transfer learning. Instead, both papers focused on just

using ImageNet pretrained models. Both papers report research done at the beginning of

the COVID-19 pandemic and provided proof of concept in showing the capability of deep

learning models detecting COVID-19 with X-rays. Apostolopoulos and Mpesiana [15] made

the mistake of using Kermany et al.’s [16] pneumonia dataset of children between the ages of

one to five years old. Papers that use this dataset we have found tend to report unrealistic

evaluation metrics.
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Ozturk et al. [40] cited Hemdan et al. [13] as proof that further research was required

that was focused on X-rays as a modality for diagnosing COVID-19. Their article is widely

cited for researching whether a DarkNet19 classifier [41] could be a good candidate for

transfer learning when performing COVID-19 disease classification with X-rays. DarkNet

first gained popularity as being the classifier used in the real-time object detection model

YOLO (you only look once) [42]. The paper is mentioned here because DarkNet classifiers

have not been researched by any other studies as a CNN that can be used for diagnosing

COVID-19. The learning model the authors used had a total of 1,164,434 parameters. The

authors used an extraordinarily skewed dataset with 127 COVID-19 X-rays, 500 pneumonia

X-rays, and 500 normal X-rays. While training their system this had the effect of the

team seeing their model’s training loss increase during the first epochs of training. That

training loss eventually decreased and stabilized closer to 100 epochs after the network had

been exposed to all the samples repeatedly. Their system could have used a segmentation

network, but without it still achieved good binary classification in detecting COVID-19 with

an accuracy of 98.08 percent. When adding the extra pneumonia category however the

network’s performance degraded as it struggled to differentiate COVID-19 from common

pneumonia and ARDS. A trained radiologist examined the team’s saliency maps and found

that the model is not useful in this regard. The model is very good at diagnosing pneumonia,

but otherwise makes errors. The model’s accuracy for all three classes was reported to be

87.02 percent.

Haghanifar et al. [43] and Mangal et al. [44] have created two thoroughly validated

CAD systems for diagnosing COVID-19. Their articles are the two main examples in the

COVID-19 deep learning literature that use the ChexNet model [45] for transfer learning.

ChexNet is a model that has been made famous in past X-ray classification competitions for

diagnosing 14 different pathologies. Both papers also use ChexNet’s pretrained weights for

transfer learning. This is a reasonable pretrained model to use as ChexNet has been designed

with a DenseNet-121 architecture and has been trained on over 200,000 X-rays. Hagnifar et

al. [43] designed their model for diagnosing and differentiating between COVID-19 patients,

normal patients, and CAP patients. Both binary and trinary classifiers are built to predict

these categories. Their system has a large dataset with 780 images of COVID-19 patients,
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Figure 2.5: Ozturk et al.’s [40] various off-the-shelf-models approach.

5000 normal CXRs and 4600 images of CAP patients. These classes are later weighted in the

loss function of the models they design to deal with the class imbalance. The authors show

how the ChexNet model they use attains high accuracy metrics while localizing incorrect

features in the patients it diagnoses. They show this with the use of Grad-CAMs. They

go on to take the ChexNet model, add data augmentation and image segmentation (U-

Net-based [46]) and achieve improved results. A knowledge of how to read CXRs and the

use of Grad-CAMs is shown to be necessary within their paper. This is because a system

can achieve high accuracies while not generalizing correctly. This paper is a significant

improvement compared with some of the previous papers in this regard. Their final models

for binary classification (COVID-19 vs. non-COVID-19) and trinary classification (COVID-

19 Pneumonia vs. Normal vs. CAP) achieve f1-scores of 0.94 and 0.85 respectively. A

deficiency in this model was that it used a dataset from Kermany et al. which contains

”5,232 chest X-ray images from children” [16]. The dimensions of the lungs of these X-rays

therefore likely caused their final classifier to produce unpredictable results. Mangel et al.

[44] took the same approach as Haghanifar et al. [43] but split their data into four diagnosis

groups: normal (1583 patients), bacterial pneumonia (2780 patients), viral pneumonia (1493

patients), and COVID-19 (155 patients). They also made the mistake of inluding Kermany

et al.’s [16] dataset in their study. Mangel et al. [44] did not use a segmentation unit and

obtained a 3-class accuracy of 90.5 percent and a 4-class accuracy of 87.2 percent. These

20



results show that differentiating between more types of pneumonia can be a more difficult

task for CNNs trained on X-rays. Mangel et al.’s [44] results were later validated using

saliency maps to ensure their system was localizing lung infections correctly. Al-Waisy et

al. [47] likewise published a paper using a ChexNet model and made the same mistake as

Haghanifar et al. [43] and Mangel et al. [44] in using Kermany et al.’s [16] dataset to train

their model. They achieved a two-class accuracy of 99.99 percent, f1-score of 99.99 percent,

and sensitivity of 99.98 percent. Unfortunately, the use of Kermany et al.’s [16] dataset is

widespread and this has created a major flaw in all of these ChexNet models.

Figure 2.6: Haghanifar et al.’s [43] use ChexNet for pretrained weights and architecture.

Figure 2.7: Mangal et al.’s [44] use ChexNet for pretrained weights and architecture.

Khalifa et al. [48] proposed using a GAN as a form of data augmentation for increasing

the accuracy of an X-ray classifier that was designed to diagnose patients with pneumonia (it
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cannot differentiate COVID-19 pneumonia from normal pneumonia). A GAN is composed

of both a generator and a discriminator. The discriminator determines whether a sample

belongs to a false distribution. The generator attempts to deceive the discriminator by

generating false image distributions. The generative network designed by the team had 5

transposed convolutional layers, 4 ReLU layers, 4 batch normalization layers, and a final

Tanh layer. The discriminator network designed by the team had 5 convolutional layers,

4 leaky ReLU layers and 3 batch normalization layers. The authors of this paper mention

that the GAN helped them overcome their overfitting problem and increased the size of

their dataset by a factor of 10. Their dataset contains 5863 patients that are separated into

normal and pneumonia categories. Their research used only 624 images to prove the efficacy

of their technique. The team experimented with several popular deep learning models but

eventually settled on a ResNet-18 as their final classifier of choice because the total system

combined with a ResNet-18 achieved an accuracy of 99 percent. The team disappointingly

did not perform any saliency analysis on their final system or use a segmentation unit.

Unfortunately, Khalifa et al. [48] made the mistake many others have of using Kermany et

al.’s [16] pneumonia dataset to train their model. This paper was reviewed because it was

the earliest paper made available to the research community where the authors used a GAN

in their machine learning system for diagnosing COVID-19 related pneumonia.

Figure 2.8: Khalifa et al.’s [48] GAN for data augmentation together with ResNet-18.
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Waheed et al. [49] designed a system using a GAN and released a paper describing

their system about a month after Khalifa et al. [48] published their paper. Their dataset

consisted of 403 COVID CXRs and 721 normal CXRs. The team settled on using a VGG-

16 CNN for classification. The system’s implementation is different from Khalifa et al.

[48] in that they use an auxiliary classifier generative adversarial network architecture to

generate synthetic images as opposed to using a regular GAN. AC-GANs rely on the idea of

a conditional GAN, which inputs prior information to a GAN in the form of a class label.

An AC-GAN builds on the idea of a CGAN by tasking the discriminator with reproducing

the class label input. A simple example can be used to illustrate this. If a generator receives

a class label to generate a cat, the discriminator not only has to predict whether the image

is real or fake, but it also must label the generated image as a cat. This idea turns out

to improve the quality of generated images compared to a normal GAN. An interesting

property of ACGANs is that when ACGANs work with higher resolution images (ex: 64x64

to 128x128) they perform better. The team first uses a VGG-16 classifier on the original

dataset obtaining an accuracy of 85 percent. They then go on to use their ACGAN and

generate 1399 synthetic normal CXRs and 1669 synthetic COVID-19 CXRs. All of these

images are then used to train and test the VGG-16 classifier and its COVID-19 detection

accuracy is increased to 95 percent. This suggests that the synthetic images are helping the

CNN find meaningful features for diagnosing patients correctly. This study has the same

limitations as the last study in that saliency maps and a segmentation unit were not utilized.

Waheed et al. [49] like Khalifa et al. [48] made the mistake of using Kermany et al.’s [16]

pneumonia dataset of children between the ages of one to five years old. The authors of this

study interestingly used PCA visualization for visualizing the synthetic vs. non-synthetic

image distributions so as to see how the real and synthetic categories cluster. The team used

an RTX 2060 GPU in this project but was limited to working with 112x112 images likely

due to their GPU’s memory constraints.

Oh et al. [50] have developed a system that uses patch-wise disease probabilities to

generate a global saliency map. The model uses a patch-based CNN to provide interpretable

saliency maps that can be used for COVID-19 diagnosis and patient triage. The team’s 4 class

dataset included 200 viral pneumonia (includes COVID-19) patients, 54 bacterial pneumonia
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Figure 2.9: Waheed et al. [49] constructed this ACGAN for producing synthetic X-rays.

patients, 57 tuberculosis patients and 191 normal patients. The system initially uses a lung

segmentation network developed using a fully convolutional DenseNet-103. An ImageNet

pretrained ResNet18 is used on the segmented lungs for classification. An additional 100

patches are extracted from different parts of the segmented lungs and each of those patches

is input through a separate ResNet18. The number of patches was selected to cover the

number of lung pixels in each X-ray multiple times. The team afterward created a global

saliency map with all of the patches using aggregated Grad-Cams. Each patch had a different

COVID-19 score so the patch-wise saliency maps needed to be weighted with the probability

of each disease class. The authors show that the probabilistic patches method they used

allowed the team to differentiate multifocal lesions more accurately. The system using a

local patch-based model achieved a total accuracy of 88.9 percent and COVID-19 sensitivity

of 92.5 percent.

Figure 2.10: Oh et al.’s [50] Patch-Wise disease probability/saliency map model.
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Wang et al. [51] designed a custom CNN they called ”COVID-Net” for the purpose

of diagnosing COVID-19. They did so by designing the custom residual network shown in

Fig. 2.11. On March 22, 2020, when they released their paper, their system generated a

lot of excitement regarding the possibility of using AI to diagnose COVID-19. The authors

understood that the system they designed was by no means production ready but they did

demonstrate promising results that lead to their work being widely cited and eventually

published in nature. They generated their dataset using 13975 CXR images from 13780

patients. Their dataset consisted of several X-ray collections that contained in total 358

COVID-19 CXRs, 8066 normal CXRs, and 5538 CXRs with non-COVID-19 pneumonia.

Interestingly, they mentioned their motivation for building their system was to help clinicians

“better decide not only who should be prioritized for PCR testing for COVID-19 but also

which treatment strategy to employ depending on the cause of infection, since COVID-19

and non-COVID19 infections require different treatment plans.” [51] Three reasons they cite

for the performance of their system was that it had a lightweight design pattern, selective-

long-range connectivity and architectural diversity. The lightweight design pattern they used

was discovered using a “machine-driven design exploration strategy” [51] that uses generative

syntheses [52]. This design exploration strategy was being researched by one of the authors

before the pandemic and is used to generate efficient deep neural networks automatically.

Importantly, they also audited their system using an explainability method called GSInquire

[53]. They found that their system was localizing COVID-19 features correctly and not being

deceived by random peripheral objects in the X-ray images. Overall, their paper achieved

an accuracy of 93.3 percent and a COVID-19 sensitivity of 91 percent.

Rajaraman et al. [14] proposed a method of building iteratively pruned ensembles

of CNNs for diagnosing COVID-19. Their method of model building takes advantage of

several ideas that papers for X-rays and CT slices have commonly not used in the existing

COVID-19 deep learning literature. The authors built several popular pretrained CNNs

and trained them on a separate lung X-ray task (a modality-specific task) for which more

data is available. They used transfer learning on all these models to train them on binary

classification (COVID vs. non-COVID) and multiclass classification (COVID vs bacterial

pneumonia vs. normal). Their dataset had 7595 normal patient images, 2780 bacterial
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Figure 2.11: Wang et al’s [51] ”COVID-Net” model architecture.

pneumonia patient images, and 313 COVID-19 pneumonia images. To use fewer parameters

and still maintain or even improve their CNNs accuracy the team iteratively pruned their

CNNs. They used several ensemble strategies including max voting, stacking, averaging, and

weighted averaging. They found weighted averaging to have the best performance of all of

these strategies. Focusing their efforts on multiclass classification, the authors found that in

this task the three best performing iteratively pruned networks were the VGG-16, VGG-19,

and Inception-V3 network. This is surprising because the authors used a pruned deeper

network (DenseNet-201) and the accuracy of this network was not as high. The criteria for

using the three networks they chose came from the typical metrics derived from a confusion

matrix. If the team chose their learning ensemble by paying additional attention to the

saliency maps of these networks, it may have increased how generalizable their system is.

The team only created saliency maps for analyzing the VGG-16, VGG-19 and Inception-V3

after their network was finally chosen. The saliency map of the Inception-V3 CNN had the

best-looking performance as it did not focus on areas outside of the lungs. Watching the

saliency maps change during iterative pruning may be another area of research the team

could have invested time in. Overall this paper has some of the best results in all of the

published COVID-19 X-ray literature. The author’s overall pruned ensemble had an overall

accuracy of 0.9901, an AUC of 0.9972, a sensitivity of 0.9901 and an F1-score of 0.9901.
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These results seem promising although they made the mistake of using Kermany et al.’s [16]

pneumonia dataset of children between the ages of one to five years old.

Figure 2.12: Rajaraman et al. [14] used this workflow for evaluating pruned CNN models to
diagnose COVID-19.

Another study that deserves consideration is Wehbe et al.’s [19] paper that attempted

to diagnose COVID-19 using a large private dataset in a US medical institution. This paper

was similar to Rajaraman et al.’s paper [14] in that it constructed an ensemble of many

CNNs to detect COVID-19. Their dataset, however, didn’t suffer from the same deficiencies

in size as other datasets. They also did not use Kermany et al.’s [16] dataset. The paper

is noteworthy in that the authors assembled a team of five radiologists to determine the

diagnosis of COVID-19 patients. They thereafter compared the predictions of the radiologists

with their ensemble model. They found that the consensus of five radiologists was only able

to detect COVID-19 with 81 percent accuracy. These results give a reasonable estimate of

Bayes error for the task of determining the diagnosis of suspected COVID-19 patients. The

author’s ensemble model produced predictions with 82 percent accuracy, which is reasonable

given the experts’ consensus accuracy of 81 percent. Previous studies were unable to perform

a comparison of their models against the predictions of working radiologists. The evaluation

metrics mentioned in many of the previous papers were also liable to be skewed by the size

of their datasets. Smaller datasets can sometimes lead to overly promising results.

Yeh et al. [20] used private datasets from several medical institutions and added on

to Wang et al.’s dataset [51] when training their DenseNet-121 model [31]. They trained
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Figure 2.13: Wehbe et al.’s [14] ensemble model to diagnose COVID-19.

and tested their deep learning model initially using images from the same sources as Wang’s

COVIDx Dataset. They also used pneumonia, COVID-19, and normal X-ray images from

two medical institutions. They obtained very promising results and achieved COVID-19

sensitivities between 95-100 percent. They held out a third much larger private dataset

from a medical institution to see how their results would change with extra data. This

larger dataset caused their accuracy to drop and they achieved an 81.82 percent COVID-19

sensitivity on their test set. This is evidence that using a small COVID-19 X-ray dataset

leads to unrealistic evaluation metrics. The third private dataset only included 306 extra

COVID-19 patients, but these added images caused a drastic change to the results of their

deep learning model.

Horry et al. [54] developed a segmentation–classification deep learning pipeline for

diagnosing COVID-19 that was trained and tested on a relatively small preprocessed dataset.

While Horry et al.’s [54] final curated dataset was not biased, it contained only 100 COVID-

19 images, so it is difficult to ultimately know how well their work would translate to a

larger number of images. Horry et al. [54] additionally removed images from their dataset
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Figure 2.14: Yeh et al.’s [20] Densenet-121 models to diagnose COVID-19.

which contained features they believed their model would have difficulty classifying. The

authors’ segmentation model was not based on a deep learning model. They simply used

OpenCV’s GrabCut function and reasoned that “that the lung area could be considered the

foreground of the X-Ray image” [54]. After preprocessing they trained five base models with

their segmented images (VGG-16 [30], VGG-19 [30], Inception-V3 [34], Xception [55], and

ResNet-50 [29]). Their best base model (VGG-19 [30]) ultimately achieved an F1-score of

81 percent.

Tabik et al. [56] created a dataset dubbed the “COVID-GR-1.0” dataset which was

used in training their “COVID-SDNet” model in diagnosing COVID-19. Their dataset was

divided in a novel fashion whereby COVID-19 positive patients were subdivided into four risk

categories (normal-PCR+, mild, moderate, and severe). The authors created this dataset

to see how many of weak COVID-19 cases would be analyzed by a prospective classifier

correctly. More often than not, in COVID-19 datasets, there is an unequal number of severe

COVID-19 patients. Typically, patients who end up undergoing a radiological examination

end up being patients experiencing increased complications. COVID-GR-1.0 is a small but

well-curated dataset that has utility in that it can be employed to determine a classifier’s

efficacy on weak COVID-19 images. Tabik et al.’s [56] pipeline consisted of a segmentation

module and a classification module that performs “inference based on the fusion of CNN

twins.” [56] The authors used a U-Net [46] segmentation module and trained it on the

Montgomery County X-ray dataset [57], the Shenzhen Hospital X-ray datasets [57] and

the RSNA Pneumonia CXR challenge dataset [58]. They calculated the smallest rectangle
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around each segmented image and added a border containing 2.5% of the pixels around each

rectangle to obtain their final masked images. The X-rays they segmented were, therefore,

never fully masked. The authors did not want to exclude relevant information in these images

that could contain useful diagnostic information. After performing binary classification on

their segmented COVID-GR-1.0 dataset, Tabik et al.’s [56] classifier obtained a COVID-19

sensitivity of 72.59%.

Figure 2.15: The ’segmentation – classification’ system developed by Tabik et al. [56]

Teixeira et al. [59] designed a segmentation–classification pipeline used to diagnose

COVID-19 that consisted of a U-Net [46] and InceptionV3 [34] CNN. Their U-Net [46]

segmentation module was trained on images and masks that were hand-picked from a mixture

of public datasets ([57], [60], [61]). The number of images and mask pairings they chose
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in the Darwin V7 labs [60] segmentation dataset (489) was significantly lower than the

total number of pairings available in that dataset (6504). This approach looks as though

it allowed them to train their U-Net [46] to have a higher dice similarity coefficient (0.982)

than other segmentation units we have seen in the literature for this task. For classification

they otherwise used the RYDLS-20 dataset [62]. They had developed this dataset in a

previous work and further added images to it to create a new “RYDLS-20-v2” dataset.

They attempted to use several classifiers but ultimately found that using an InceptionV3

[34] CNN resulted in giving them their best overall multiclass performance metrics.

Figure 2.16: The ’segmentation – classification’ system developed by Teixeira et al. [59]

Abdulah et al. [63] implemented a segmentation – classification pipeline that used a

unique segmentation unit and ensemble model for classification. Their segmentation unit,

the Res-CR-Net, is a new kind of segmentation model the authors introduced in a previous

study [64] that does not contain the same encoder-decoder structure that the popular U-Net

[46] contains. According to the authors, the Res-CR-Net “combines residual blocks based on

separable, atrous convolutions [65, 66] with residual blocks based on recurrent NNs [67].” [64]

The authors trained their Res-CR-Net [64] on several open-source sets of masks and images

[57, 60, 61]. They acquired their classification dataset from the Henry Ford Health System

(HFHS) hospital in Detroit. This private dataset contained 1417 COVID-negative patients

and 848 COVID-positive patients. The authors used this dataset to train a unique hybrid

convnet called the “CXR-Net” that contains a Wavelet Scattering Transform (WST) block
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[68, 69], an attention block containing two MultiHeadAttention layers [70, 71], and several

convolutional residual blocks. This segmentation-classification pipeline ultimately achieved

an accuracy of 79.3% and an F1 Score of 72.3% on their test set.

Figure 2.17: The ’segmentation – classification’ system developed by Abdulah et al. [63]

2.5.2 2D CT Studies

There are only a few true 2D CT COVID-19 studies that have been reviewed here.

If the only criteria for diagnosing a person with COVID-19 in a study involves checking

whether a single slice in a volume contains COVID-19, that study ends up in this 2D CT

section. If there are machine learning techniques that analyze a set of slices after passing
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through a 2D classifier in a study, that study ends up in the 2.5D CT section of this report.

The studies reviewed in this section below attempt to diagnose COVID-19 based on using

single slices.

Amyar et al. [72] created a multi-task system that classifies patients to be COVID-

19 positive vs. COVID-19 negative. The team built a 2D U-Net encoder-decoder network

for processing the 2D CT slices of suspected COVID-19 patients. The latent space in the

encoder-decoder network was utilized for three separate parallel tasks. The first task was to

reconstruct the original images of the CT slices input into the system. The second and third

tasks were for creating a robust segmentation network and classifier. For the third task,

the output of the encoder had a convolutional layer added to it, followed by a max-pooling

and flattening layer. The flattened layer had an MLP with three dense layers added to it,

where the last layer was a single neuron with a sigmoid output (COVID vs non-COVID).

The authors of this paper created this model to leverage information in the three related

tasks to improve the segmentation and classification models. As the tasks were all trained

in parallel, they felt this could eventually lead to the creation of better systems for each

task. They combined three datasets to obtain a total dataset of 449 COVID-19 patients and

595 non-COVID-19 patients. The non-COVID-19 patients were either normal patients or

had some other lung pathology. This study suffers from a few deficiencies. No mention of

data augmentation is found in the study. Interpretable saliency maps have not been used,

making it difficult to know if their system results can be trusted with such a small amount

of data. The method the used for training three parallel tasks however is unique in the

COVID-19 literature. For the segmentation task, they report achieving a dice coefficient of

78.52 percent. The classifier they have built results in an accuracy of 0.86, a sensitivity of

0.94, a specificity of 0.79 and an AUC 0f 0.93.

Polsinelli et al. [73] proposed a model for COVID-19 detection based on the SqueezeNet

architecture [32]. Polsinelli et al. [73] was an Italian research team looking to make a fast

contribution to the task of detecting COVID-19 when Italy was being the hardest hit in

April 2020. The authors attempted to make an original research contribution of their own

by changing SqueezeNet’s architecture to help make it more lightweight while retaining or
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Figure 2.18: Amyar et al.’s [72] multi-task model for training segmentation and
classification tasks simultaneously.

improving its accuracy. The SqueezeNet architecture uses “Fire Modules” and the authors

of this paper suggest making changes to the classic modules used in the original architecture.

They have replaced all ReLU layers with exponential linear unit (ELU) [74] layers because

there is literature showing that ReLU networks with batch normalization can be outper-

formed by ELU networks without batch normalization [74]. The authors encourage their

readers to keep in mind that each batch normalization added increases computational over-

head by approximately 30 percent. Their architecture removes the original skip connection

of the SqueezeNet architecture and adds a transpose convolutional layer to the last custom-

designed fire module in the network. The dataset they used consisted of 460 COVID-19

images and a batch of 397 CT scans from patients who either had other lung illnesses or

were healthy. They decided to use a Bayesian optimization [75] approach for the tuning of

their learning rate, momentum and L2-regularization hyperparameters. The achieved results

were 83 percent accuracy, 85 percent specificity, 81 percent specificity, and an F1-score of

0.8333. The authors created a metric to measure their performance in terms of efficiency

(sensitivity/number of parameters) to compare their work with other papers. This is a sen-

sible step since the team was attempting to show the lighter SqueeeNet architecture could

be used in place of the very deep networks used in other COVID-19 papers. The system is
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trained on a high-end workstation (Intel Xeon Processor E5-1620, CPU RAM 16GB, GPU

Nvidia Quadro M4000 8GB) but ultimately tested on an i5 laptop (8 GB Ram without a

dedicated GPU). The aforementioned evaluation metric for determining the model’s effi-

ciency is important here in showing that the system can be implemented on a device with

less computational capacity. The performance of the model in this paper was evaluated using

Grad-CAMs. While the system has noted areas of infection correctly it also has mistakenly

found other areas not relevant to a positive COVID-19 diagnosis.

Figure 2.19: Polsinelli et al.’s [73] SqueezeNet model CT model to diagnose COVID-19.

Ko et al. [76] developed the fast-track COVID-19 classification network (FCONet) to

perform diagnose COVID-19. Their dataset has 264 images from 264 COVID-19 patients.

It also has 1357 CT scans from 100 CAP patients and 1442 CT scans from 126 normal

patients. Their image sizes were 256x256 and they used image rotation and zooming as data

augmentation methods. They used five-fold cross-validation and used a holdout test set.

They compared four very popular pre-trained 2D models for classification. Ultimately out

of the four models they tested, they found the ResNet50 was the best, having a sensitivity of

99.58 percent, a specificity of 100 percent and an accuracy of 99.75 percent. To improve the

interpretability of the model the authors used Grad-CAMs. The heatmaps they generated for

COVID-19 lung images strongly indicated the suspected infection regions. The framework is
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Figure 2.20: (a) Original fire module, (b) Polsinelli et al.’s [73] custom fire module.

useful in that it is more easily generalizable to other CT sets because it works on a slice-by-

slice basis. CT scanners depending on their settings can output different numbers of scans.

The thickness of these scans often varies as well. One major limitation is the authors did

not make use of lung segmentation. Another limitation is that the ”testing data set was

obtained from the same source as the training data set” [76] so it is difficult to tell how well

the system generalizes.

Figure 2.21: Ko et al.’s [76] various 2D CT models that were attempted.

2.5.3 2D X-ray and CT Studies

There are very few machine learning models that deal with both X-ray and CT modal-

ities in the COVID-19 imaging literature. This means there is a lot of room in this space
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for exploring models that leverage both imaging modalities. Below are the only two models

that can be found in online databases at present.

Maghdid et al.[77] is the first available paper published that diagnoses COVID-19 using

a combination of X-ray images and single CT scan slices. The authors of this paper designed

a very simple CNN that is built using a single CNN layer, two fully connected layers and

a softmax classification layer. For comparison, the authors used an ImageNet pretrained

2D version of AlexNet. The system did not use a segmentation unit although during the

preprocessing stage the chest and lung areas were cropped to remove unnecessary information

surrounding regions of interest. The authors ensured that their images were gathered from

various facilities and devices so that the system could generalize to new examples. Their

dataset had 170 X-rays and 361 CT images. The model on X-ray images had an accuracy

of 94 percent, a sensitivity of 100 percent and a specificity of 88 percent. The performance

changed when inputting CT images into their CNN. CT images with their model produced

a 94.1 percent accuracy, 90 percent sensitivity, and 100 percent specificity. Although the

results seem acceptable, no posthoc analysis was performed using Grad-CAMs to ensure the

classifier was operating correctly on such a small dataset. The model is included in this

review only because it was the first model that worked on the principle of using a single

classifier using both major radiological modalities simultaneously.

Figure 2.22: Maghdid et al. [77] built this single model to work on either single X-rays or
CT slices.
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In another related study, Alom et al. [78] used a 2D system to work on both X-ray and

CT images. Unlike Maghdid et al. [77], Alom et al. [78] did not use the same single system

to train both X-rays and CT scans simultaneously. To be clear, the authors performed the

training and testing on each modality separately (two separate systems that were the same).

The system has been named COVID-MTNet and is mentioned because the authors felt

that if they were working on a 2D system for X-rays they should additionally use the same

system for CT slices as well. The CT dataset used in this study has 420 samples collected

from normal patients and 178 samples from COVID-19 patients. They used an Inception

Recurrent Residual Neural Network (IRRCNN) [79] for the task of detecting COVID-19.

The system they have designed additionally uses a segmentation module they have dubbed

the “NABLA-N” model. Their CT lung segmentation module is trained on 267 samples

with corresponding masks and labels for a task not COVID-19 related. They train their

X-ray segmentation module similarly. Their CT and X-Ray systems use the exact same

architectures and they are both initially trained for another task (normal vs. pneumonia)

for which more X-ray images and CT scans are available. Once they have two good working

systems for the normal vs. pneumonia task, transfer learning is used, and the IRRCNN-

model gets trained on the COVID-19 classification task. The authors have created Grad-

CAM heatmaps to show the performances of their X-ray and CT algorithms. This gives

more confidence in their system’s reported performance metrics. Their system for CT slices

achieves a testing accuracy of 98.78 percent and their system for X-ray images achieves a

testing accuracy of 84.67 percent. The authors believed the X-ray classifier struggled more

because it needs to be trained on more samples. The model on X-ray images had an accuracy

of 94 percent, a sensitivity of 100 percent and a specificity of 88 percent. The performance

changed when inputting CT images into their CNN. CT images with their model produced

a 94.1 percent accuracy, 90 percent sensitivity, and 100 percent specificity.

2.5.4 3D CT Studies

3D CT studies tend to involve a greater amount of hardware than is available to many

academic research teams. Some teams at good universities or medical institutions have
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Figure 2.23: Alom et al. [78] built twin versions of this model for working on X-rays and
CT slices.

the necessary hardware (GPU clusters with lots of VRAM) to perform 3D segmentation

and classification on a COVID-19 patient’s lungs. Sometimes a 2D segmentation unit is

used by a 3D classifier in a manner that concatenates segmented CT slices into whole CT

volumes before classifying them. Often the segmentation techniques in the literature require

a substantial amount of annotated data. Annotated data can be difficult to obtain for

researchers who are not working within or alongside a medical institution. Within medical

institutions, investing time in manually annotating CT slices for building deep learning

models is expensive. The models below often use annotated data not commonly available.

They also tend to perform better than their 2D counterparts but may suffer from lower

interpretability in some cases.

Shan et al. [80] published a paper where they set out to develop a deep-learning-

based system for the ”automatic segmentation and quantification of infection regions” within

COVID-19 CT scans. Their system uses a 3D VB-Net segmentation network [81] that is

trained on 249 COVID-19 patients and tested on 300 different COVID-19 patients. Their

fast auto-contouring tool is constructed using a human-in-the-loop strategy. The training

data is segmented into multiple batches. The smallest batch is manually contoured by

trained radiologists first. After the first batch is used to train the network its output is
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manually corrected by radiologists. This initial batch gets added to the next batch and this

iterative process continues. The authors have discovered that the human-in-the-loop method

converges after 3 to 4 iterations. The system they constructed results in a dice coefficient of

91.6 percent. The time it takes for radiologists to segment out COVID-19 CT images ranges

between 1 to 4 hours, whereas it only takes their final system 4 minutes to perform the

same task. After segmentation, the authors of this study developed quantitative metrics for

measuring the volumes of infection in each region of interest and calculating the percentage

of infection. The system they have developed will only work on volumes generated with

their CT machine and their particular set of CT imaging protocols. The system is not

generalizable for all volumes generated at different medical institutions.

Figure 2.24: Shan et al. [80] built a segmentation model for segmenting regions of interest
in quantifying COVID-19 infections.

Shi et al. [82] developed a 3D VB-Net segmentation module that is used prior to a

series of random forest classifiers that perform COVID-19 screenings using location-aware

feature extraction. The dataset for this study contains 1658 COVID-19 patients and 1027

CAP patients. Four handcrafted features have been created to analyze the data: the volume

of lesions, the infected lesion number, a histogram of pixel intensity values for infected

regions, and ”the distance of each infection surface vertex to the nearest lung boundary

surface.”[82] The first random forest classifier in the model separates infection regions based

on their measurements into four groups. Several random forest classifiers are then designed

to operate on those four groups. During training, the authors employed the LASSO [83]
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method to discover the most effective features that will provide clarity for a diagnosis. The

selected features were input into logistic regression classifiers, support vector machines and

neural network models for comparison with the proposed SARF (Size Aware Random Forest)

model in this paper. The final trained SARF model used five-fold cross-validation and the

method obtained an AUC of 0.942 on the test set. The method additionally obtained a

sensitivity of 0.907, a specificity of 0.833 and an accuracy of 0.879. The authors found it

difficult to screen for COVID-19 patients in the early stages of its progression, but as the

lesion sizes grew the patients could be reasonably diagnosed using the SARF method.

Figure 2.25: Shi et al. [82] built their SARF model to predict a COVID-19 diagnosis using
4 handcrafted features.

Tang et al. [84] designed a system for measuring the severity of a COVID-19 patient’s

illness that uses random forest classifiers. This study used a professional tool for lung

segmentation developed by Shanghai United Imaging Intelligence Co. Ltd. that is based

on a VB-Net architecture. The 3D segmentation module is important as it was used to
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extract the quantitative features from the whole lung, right/left lung, 5 lung lobes, and 18

lung segments. The infection volume and ratio of all these segments are calculated. The

volumes and ratios of these areas are used to create a total of 63 final features. These features

are extracted from a dataset containing the chest CT scans of 176 patients. The authors

created separate random forest models using 63, 50, 40, 30, 20, and 10 features. Their

model with ten features obtained the best performance and so it was chosen as their final

severity assessment model. This model obtained an accuracy of 0.875 and an AUC of 0.91.

A limitation of this study is that the authors only designed the system to perform binary

classification (non-severe and severe) rather than design for more nuanced categories (mild,

common, severe, and critical for example). There are not many COVID-19 deep learning

severity assessment models in the literature, so this is an important paper in that regard.

One interesting finding of the authors was that the right lung lobes were more relevant to

the severity of COVID-19 than the left lung lobes. Another important finding was that the

infection volume of the entire lung is highly correlated to the severity of a patient’s illness.

This kind of imaging severity assessment requires good quality lung segmentation and a large

number of annotations from experienced radiologists.

Wang et al. [18] designed COVID-19Net for the diagnostic and prognostic analysis of

COVID-19 patients. The system starts with a segmentation module that has a DenseNet121-

FPN as a backbone and is trained on the VESSEL12 dataset [85]. During segmentation

module training, the authors fine-tuned their ImageNet pretrained DenseNet121-FPN back-

bone using 3 adjacent CT slices from the VESSEL12 dataset. During testing, however, ”lung

segmentation was performed slice-by-slice.” [18] The segmentation process is performed on

a two-dimensional basis whereby the segmented slices form concatenated volumes that are

fed into the team’s classifier. In addition to lung segmentation, the team preprocessed the

data to suppress non-lung areas that still existed after segmentation by reducing those areas’

pixel intensities. This is due to their finding that deep learning systems tend to focus on

areas with high intensity. COVID-19Net is a custom-built DenseNet-like classifier with a

series of carefully chosen convolution layers, dense blocks, and pooling layers. At the last

convolutional layer, it uses ”global average pooling to generate 64-dimensional deep learning

features.” [18] A sigmoid function at the tail end of the classifier results in a positive or
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Figure 2.26: Tang et al. [84] built a segmentation model for segmenting regions of interest
in quantifying COVID-19 infections.

negative diagnosis for COVID-19. This model is initially designed for the task of making

predictions on the CT-EGFR dataset to predict lung cancer in people with EGFR gene

mutations. This modality-specific pretraining is an important part of designing the 3D clas-

sifier. The dataset for this step has 4106 patients and is much larger than current COVID-19

CT datasets. Following this auxiliary training step, COVID-19Net is trained on a COVID-

19 dataset. The COVID-19 dataset contains 1266 patients (471 with CT follow-ups, 924

COVID-19 patients, and 342 with other pneumonia). COVID-19Net’s final 64-dimensional

feature vector was later combined with metadata (age, sex, and comorbidity) to predict a

patient’s prognosis using a multivariate Cox proportional hazard model [86]. The authors in

this study have used Grad-CAMs and visualization tools to ensure their system is localizing

COVID-19 features correctly. In diagnostic classification, the model on their 2nd validation

set achieves an AUC of 0.88, an accuracy of 80.12 percent, a sensitivity of 79.35 percent, a

specificity of 81.16 percent and an F1-score of 82.02 percent. Their prognostic Kaplan-Meier

analysis [87] shown in Fig. 2.28, succeeded in demonstrating that ”patients in high- and

low-risk groups had a significant difference in hospital stay time.” [18]
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Figure 2.27: The COVID-Net19 system model built by Wang et al. [18]

Figure 2.28: Prognostic Kaplan-Meier analysis for high and low risk patients by Wang et al.
[18]

Wang et al. [88] have published a study on a ”weakly supervised deep learning frame-

work” that uses 3D volumes for classification/diagnosis. The purpose of this study is to

automatically annotate lesions to speed up the work of radiologists. Their classifier is a

lightweight 3D CNN model they have named ’DeCoVNet’. Their dataset consists of 540

patients, 313 of which have been diagnosed with COVID-19. The dataset also has 229 nor-

mal patients. All these patients initially came into the hospital with possible symptoms for

COVID-19 (fever, cough, fatigue and diarrhea). The slices of each 3D volume are slice-by-

slice sent through a U-Net segmentation module. The authors trained a 2D U-Net while
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using masks that were generated using the unsupervised 3D connected component method

[89]. The authors here hoped to require less large-scale annotation than would otherwise be

required using supervised segmentation. The team made use of trained professionals who

were able to manually remove poorly annotated segmented images output by the unsuper-

vised U-Net. All of the slices were processed for segmentation and thereafter concatenated

to form a 3D CT volume of each patient. These volumes were fed into the 3D DeCovNet

classifier. The main classifier they used consisted of a 5x7x7 3D stem, two 3D ResNet blocks,

an adaptive max-pooling block and several fully connected blocks leading to two outputs.

They used localization algorithms to find the 2D and 3D locations where DecoVNet was

identifying infection regions. The author’s algorithm results in a ROC AUC of 0.959, a

PR AUC of 0.976, an accuracy of .901, a ppv of 0.840 and an npv of 0.982. One draw-

back of this approach is that all the images sent through the system are from the same CT

scanner. This means the system may not generalize well to other CT scans from different

facilities. The drawback of using a 2D segmentation approach is that segmentation is often

performed by radiologists in both a 2D and 3D fashion. If a radiologist thinks a slice should

be annotated a certain way, he/she will look at several other nearby slices to inform his/her

annotations. The 2D U-Net will miss some 3D annotated information but takes considerably

fewer resources to train.

Figure 2.29: The 2D U-Net and 3D DeCovNet classifier system built by Wang et al. [88]
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Jin et al. [90] built a system to detect COVID-19 and distinguish it from other pul-

monary diseases. Their model has deployed in 16 hospitals in China and ”is performing

over 1300 screenings/day.” [90] The authors in this study used 1136 cases for training (723

were positive) and 282 for testing (154 were positive). Their data-gathering stage was well

planned and they obtained CT scans from five Chinese hospitals. Those hospitals used eleven

different CT scanner models. This data-gathering stage ensured the system could general-

ize across a host of CT scanners. The authors designed a “segmentation – classification”

system. Particular regions of interest were extracted using a 3D U-Net++ [91] and those

regions were thereafter forwarded to a 3D classifier for diagnosis. The system segments out

the lungs first before segmenting out regions of interest. The supervised segmentation units

built by the authors of this study required the large-scale annotation of CT scans to design

a robust system. The authors used lesions that were annotated from COVID-19 images as

well as lesions taken from subjects suffering from other pulmonary diseases. They had a

large team of trained radiology experts performing these annotations. After segmenting out

lesions, a 3D ResNet-50 classifier was used by the authors to classify whether the lesions in

the patches presented to the classifier were caused by COVID-19. The authors tried vari-

ous segmentation and classification modules and determined that a “U-Net++ - ResNet-50”

combined model obtained the best results. Their model achieved an AUC of 0.991, a sensi-

tivity of 0.974 and a specificity of 0.922. The system had extensive hardware requirements.

It required ”an Intel Xeon E5-2680 CPU, an Intel I210 NIC, two TITAN X GPUs and 64

GB RAM” [90] at deployment. The system additionally required a server with 8 TITAN X

GPUs during training.

2.5.5 2.5D CT Studies

There are more 2.5D CT studies in the COVID-19 deep learning literature than there

are 2D or 3D CT studies. The individual slices that are processed in 2D and 2.5D CT

systems can be input into models that were pretrained on millions of images, whereas an

ImageNet for 3D volumes currently does not exist. 2D CT systems are rare in the literature in

comparison to 2.5D systems because most researchers feel that it is important to leverage the
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Figure 2.30: The 3D ’segmentation – classification’ system developed by Jin et al. [90]

3D information in a CT volume. 2.5D CT systems, therefore, offer a compromise where they

are easier to train/implement than 3D CT systems, but can also leverage 3D information.

This compromise is often motivated additionally by hardware/cost considerations. Many

3D CT systems require a server with many CPUs/GPUs. 2.5D systems however may only

require an expensive workstation with one or two high-quality GPUs. The lower cost and

option of leveraging transfer learning in a 2D system leads many researchers to prefer some

of the approaches provided below.

A study published in Nature Medicine by Mei et al. [92] used two CNNs and an

MLP for diagnosing COVID-19. Their system used 2D images and 12 clinical features to

classify patients as COVID-19 positive or COVID-19 negative. Their dataset of 905 patients

consisted of 419 COVID-19 patients and 486 COVID-19 normal patients. The authors chose

to separate this data into a 60 percent training set / 10 percent tuning set / 30 percent test

set division. The image preprocessing of the system initially uses a standard lung window to

normalize the pixel intensities into 256 bits. There is a form of segmentation in the system

that uses some thresholds in the intensities of the pixels throughout the image to allow the

system to focus only on the lungs. A slice selection CNN (Inception-ResNet-v2) has been

pretrained on a related task and is used to identify abnormal CT images [93]. The 10 most

abnormal slices get sent on to another CNN that performs an image-level diagnosis of a
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patient. The diagnosis CNN’s output has a global averaging layer that is used to create a

512-dimensional feature vector. This vector is combined with a patient’s clinical features

in a three-layer MLP. The MLP and CNN are trained together. The CNNs weights were

initialized using a weakly supervised method whereby the CNN is initially trained to classify

small image patches chosen from randomly selected training set images. The system was

trained afterward on normal and augmented data for ”40 epochs with a batch size of 16

samples.” [92] The final system achieves an AUC of 0.92 and a sensitivity of 84.3 percent.

This AUC and sensitivity outperformed a senior radiologist the hospital had on staff. The

model has some limitations. Despite its promising initial results, it is not generalizable

to other patient populations. Choosing slices out of an entire volume helps reduce the

computational complexity of working with 3D CT scans, but can result in missing some key

information from the other slices. One last weakness in this approach is that it has a bias

towards COVID-19 patients and has difficulty detecting other forms of respiratory illnesses.

Figure 2.31: Mei et al.’s [92] model for combining the 10 highest 2D slice probabilities with
metadata for COVID-19 diagnosis.

Song et al. [94] have developed a model called ”DRE-Net” for COVID-19 diagnosis.

It was developed right at the beginning of the pandemic (February) in China. It uses a

pretrained ResNet-50 and a feature pyramid network is added to it to extract the top details

of CT images. They have coupled an attention module to their network to focus their

system on the most important details of the network. The authors have a dataset of 88

COVID-19 patients (777 CT images) and 101 patients infected with bacterial pneumonia

(505 CT slices) and 86 normal patients (708 CT slices). The 3D volumes of the patients

have been preprocessed into 15 slices and the slices with incomplete lungs were removed.
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Rahimzadeh et al. [95] who copied Song et al. [94] in terms of using a ResNet feature

pyramid did the same thing. Although Rahimzadeh et al.’s [95] paper will not be reviewed

here, in Fig. 2.33 they published an instructive figure showing an example of incomplete

lung that requires preprocessing. Song et al.’s [94] dataset has been randomly split into

60/30/10 percent training, validation, and test sets respectively. After the images pass

through their DRE-Net model the slices are aggregated and pooling is used to calculate a

result for each person. For two pneumonia patients, the team validated their model results

using visualization techniques on the patient’s top 3 predicted slices. They did so to see if

the model was making the correct predictions in locating GGO abnormalities. The model

succeeds in detecting areas with GGOs in both patients. It achieves an AUC of 0.97 at

the image level and 0.99 at the patient level. At the patient-level, the system additionally

achieves a recall of 0.93, precision of 0.96, F1-score of 0.94 and accuracy of 0.94.

Figure 2.32: Song et al.’s [94] system for diagnosing COVID-19.

Bai et al. [96] have created a system that inputs all the slices in a CT scan through a

series of parallel 2D classifiers. They use parallel EfficientNet-B4 CNNs on each slice (each

slice is stacked to 3 channels of the CNN) of a patient and each network outputs a prediction.

The predictions of the network are then pooled and a two-layer neural network is thereafter

used to output a prediction as to whether a patient suffers from COVID-19 pneumonia or

has some other form of pneumonia. The authors chose to use EfficientNets because this type

of architecture possesses fewer parameters and still achieves good performance in comparison

with other kinds of CNNs. Each slice of the network was segmented based on attenuation
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Figure 2.33: Rahimzadeh et al.’s [95] lung preprocessing step in their 2D CT CNN models
cutting out uninformative slices.

(-320 HU used as a threshold value) to exclude non-pulmonary regions of the CT before

being input through the classifier. The authors used a lung window with a window width of

1500HU and a window level of -400HU. This lung window was applied during preprocessing

to generate 8-bit images that eventually were normalized from a 0-255 value to a 0-1 value.

There was an additional step mentioned where the authors needed to normalize to the Ima-

geNet mean and standard deviation values. The authors used data augmentation methods

dynamically during training and this ”included flips, scaling, rotations, random brightness

and contrast manipulations, random noise, and blurring.” [96] Heatmaps were additionally

generated to ensure the classifiers were finding locations with COVID-19 correctly in the

lungs. The model achieved a test accuracy of 96 percent, a sensitivity of 95 percent, a

specificity of 96 percent and an AUC of 0.95. The model was later shown to help actual

radiologists improve their diagnoses.

Lin et al. [97] have created a system that has both 2D and 3D features. Their dataset

consists of 4356 volumetric CT scans from 3322 patients. 1296 patients are confirmed to

have COVID-19, 1735 patients have CAP and 1325 patients have no form of pneumonia

whatsoever. Their COVID-19 positive patients all have had confirmed RT-PCR tests. They

first preprocess the images and extract the lungs using a U-net segmentation method. The

images then are input through the team’s ’COVNet’ classifier for generating predictions.
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Figure 2.34: Bai et al.’s [96] model of using parallel EfficientNet CNNs followed by a two
layer neural net.

COVNet is designed with several parallel 2D ResNet-50s whose outputs are all fed into a

max-pooling layer. Following the max-pooling layer, ”the final feature map is fed to a fully

connected layer and softmax activation function.” [97] The purpose of this processing step

is to extract features from local 2D slices while also extracting global 3D features. Their

system detects COVID-19 with a sensitivity of 90 percent and specificity of 96 percent. The

AUC for COVID-19 detection is 0.96. For detecting CAP their system achieves a sensitivity

of 87 percent, a specificity of 92 percent and an AUC of 0.95. Their system uses Grad-CAMs

to ensure it localizes areas of infection correctly. The study accurately detects COVID-19

and has differentiated it from other sources of pneumonia (bacterial and viral). It may suffer

from an issue of generalizability in that all the CT scans they used came from the same

hospital. They suggest including a history of exposure that could further increase their

model accuracy and reduce misclassifications for more challenging imaging cases.

Gozes et al. [98] designed a system that concatenates a 3D system (designed by

RADLogics Inc) for detecting nodules / focal opacities and a 2D system for detecting and

localizing larger-sized diffuse opacities. These diffuse opacities are indicative of coronavirus

infection. Existing lung pathology detection solutions that are commercially available often

focus on nodule detection and cannot be relied on for detecting global GGOs. This is the

motivation the authors have cited for building their 2D ResNet-50 classifier. The classifier

depends on a lung segmentation module with a U-net architecture. It has been trained

on 6150 CT slices with lung abnormalities that have corresponding masks. Their ResNet-50
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Figure 2.35: Li et al. [97] created this model for extracting 3D features from 2D ResNet-50s.

was pretrained on ImageNet. They mention that they employ data augmentation techniques.

They calculate the number of positive slices that are output by the classifier for each patient

out of the total number of slices and use a threshold to determine whether the patient should

be diagnosed with COVID-19. The dataset used by the authors has 1036 normal slices and

829 COVID slices. They have used in-house radiologists to annotate these slices. To validate

their system the authors used Grad-CAMs to localize the areas contributing the most to the

classifier’s decisions. Their total system uses 2D and 3D localizations throughout the lungs

to generate a corona score ”that measures the progression of the disease over time.” [98] This

quantization of a patient’s disease burden could be used for the management of patients in

the future. Their classification of COVID-19 vs. Non-COVID-19 patients results in an AUC

of 0.996, a 98.2 percent sensitivity and a 92.2 percent specificity.

Gozes et al. [99] released another paper with a related but different system that again

utilizes the idea of a “Corona Score.” This score is derived from the degree of localized corona

infected patches in a patient’s lungs. This “Corona Score” is used for disease detection and

is additionally used as a measure for categorizing the severity of the patient’s illness. The

model proposed by the team operates exactly as the previous model except it does not use a

separate subsystem for 3D nodule detection like before. The model still uses the 2D ResNet-

50s of the previously mentioned system and still volumetrically combines slices as before.

The difference between Gozes et al.’s previous work [98] and this paper is this paper’s use
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Figure 2.36: Gozes et al.’s [98] model combines a commercial 3D nodule detector with a 2D
slices abnormality detector.

of k-means clustering. They use K-means clustering and the elbow method and eventually

find the optimal number of clusters to be 3. The 3 classes that the authors found using

unsupervised learning corresponded to normal, focal, and diffuse disease manifestations. For

positive slices from coronavirus patients (n = 1592 from 110 patients) and negative slices

from patients (n = 701 from 81 patients), the final convolutional layer of each 2D input is

flattened into a 2048-dimensional feature vector. PCA further reduces the dimensions from

2048 to 2. The space that results can be visualized in Fig. 2.38. This feature map shows

that COVID-19 positive and negative patients can be clearly differentiated. The system

is attractive because the classifier is not a black box and allows for 3D visualization by a

radiologist. The overall system achieves an AUC of 0.948.

Jin et al. [100] developed a 2.5D CT model for detecting COVID-19 using a large

dataset with 10,250 CT scans. These scans came from COVID-19, non-pneumonia, CAP,

and influenza-A/B patients. The model leverages the advantages of using a pretrained

ResNet-152 for slice diagnosis. Lung segmentation is performed prior to classification using

a 2D U-Net. After segmentation, the masked slices are input into the slice diagnosis network.

Following the slice diagnosis module, a fusion block is used to perform an analysis on the en-

tire 3D volume of a subject. The top 3 slice scores are averaged over the volume and used for

diagnosis. Grad-CAMs were used to obtain attentional regions and generate heatmaps of in-

fected regions. An additional COVID-infectious slice diagnosis ResNet-152 module was built
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Figure 2.37: Gozes et al.’s [99] model combines a commercial 3D nodule detector with a 2D
slices abnormality detector.

Figure 2.38: Gozes et al.’s [99] Principal Component Analysis (2048 Dimensions to 2
Dimensions).

by the team. It was trained on COVID-19 slices where normal slices or abnormal slices had

been manually marked. The COVID-infectious slice diagnosis module had a better ability

to locate COVID-19 infected slices than the first classifier (the slice diagnosis module). The
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slice diagnosis module was trained on COVID-19, influenza-A/B, CAP and non-pneumonia

subjects. Finally, t-SNE [101] was used on features from the slice diagnosis module. The

last fully-connected layer of the slice diagnosis module was stripped away and the last layer’s

features were max pooled with all the other slices. The CT volumes were all mapped to a

”2048-d latent which was used to perform t-SNE.” [100] The system obtained an AUC of

97.17 percent, a sensitivity of 90.19 percent and a specificity of 95.76 percent. The authors

mentioned that they first used a 3D classifier, but eventually abandoned the project due to

the 3D classifier memory requirements and a lack of accuracy. The main importance of the

methodology in this work lies in how the authors have been able to achieve high accuracy

when combining 2D slices for a 3D representation of the data while not creating so many

parameters that the system cannot be run on a GPU with approximately 11GB of RAM.

Figure 2.39: Jin et al.’s [100] model where the top 3 slice scores are averaged per volume.

Zhou et al. [102] have developed a 2.5D model that is designed for estimating the

disease burden of COVID-19 patients and representing different states of the illness in time.

This estimation is broken down into three categories. Early, progressive, and serious states

of the disease are tracked. 2D state-of-the-art lung segmentation methods for CT scans

often rely only on a single axis direction (z-axis) on which to obtain the slices (on the x-

y plane) that will be processed for segmentation. This is not the only fashion in which
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real radiologists perform segmentation. True segmentation requires information from all

three axes and 3D segmentation units can capture this behavior at a very large and often

unreasonable computational expense. There is a need in the medical imaging community

to find methods that perform the necessary 3D segmentation on a pathology while reducing

a system’s parameters, convergence rate, and memory requirements. This paper offers a

unique solution that uses a series of 2D slices from the x-y, x-z, and y-z planes. During the

manual annotation process, radiologists may not get enough information along one axis and

need to use slices along other axes when they run into problems segmenting an area. For

every voxel in Zhou et al.’s [102] system, there are three images (Pxy, Pyz, and Pxz) where

the probability of each voxel being an infection point is calculated. Intermediate models

composing the equation of a voxel being an infection point are individually trained first.

An aggregation function over these separate models brings the system to a final prediction.

The authors note that there is no current method they are aware of that can normalize a

3D CT signal intensities and dimensions simultaneously. They propose a new preprocessing

method that performs spatial and signal normalization steps and makes different 3D volumes

fit into a standard volume. Data augmentation techniques help to improve the system given

the limited 3D volumes available. The authors have used visualization techniques to ensure

that infected regions are being picked up by the team’s deep learning model. Their model

achieves state-of-the-art segmentation results and outperforms many 3D segmentation units.

They used a dataset of 201 CT scans from 140 COVID-19 patients (using 6 different CT

scanners) for testing. Segmentation on the largest tested dataset resulted in a dice-coefficient

of 0.783. Their disease quantification results were accurate with their model achieving an

average error rate of 2.5 percent.
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Figure 2.40: Zhou et al.’s [102] model estimating the disease burden of COVID-19 patients.
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Table 2.1: Summary of Papers Reviewed

Paper Dimension Purpose M.L. Methods Datasets Evaluation

Zhang et al. [38] 2D X-ray Diagnosis EfficientNet Feat. Ext. 37393 Non-Vir. Pne. Images AUC: 83.61%
MLP 5977 Pne. Images Sens.: 71.7%
Anomaly Detector

Hemdan et al. [13] 2D X-ray Diagnosis DenseNet-201 (Best) 25 COVID Images F1: 91%
25 non-COVID Images

Aposto. et al. [15] 2D X-ray Diagnosis VGG-19 (Best) 224 COVID Images 2-Class Acc: 98.75%
714 Pne. Images 3-Class Acc: 93.48%
504 Normal Images

Ozturk et al. [40] 2D X-ray Diagnosis DarkNet-19 2-Class Acc: 98.08%
3-Class Acc: 87.02%

Haghanifar et al. [43] 2D X-ray Diagnosis ChexNet (DenseNet) 780 COVID Images 2-Class F1: 94%
Seg: U-Net 4600 CAP Images 3-Class F1: 85%

5000 Normal Images
Mangel et al. [44] 2D X-ray Diagnosis ChexNet (DenseNet) 155 COVID Images 3-Class Acc: 90.5%

1493 Viral Pne. Images 4-Class Acc: 87.2%
2780 Bac Pne. Images
1583 Normal Images

Al-Waisy et al. [47] 2D X-ray Diagnosis ChexNet (DenseNet-121) 400 COVID Images 2-Class Acc: 99.99%
400 Normal Images F1: 99.99%

COVID Sens: 99.98%
Khalifa et al. [48] 2D X-ray Diagnosis GAN 6240 Images 2-Class Acc: 99%

ResNet-18
Waheed et al. [49] 2D X-ray Diagnosis AC-GAN 403 COVID Images 2-Class Acc: 95%

721 Normal Images
Oh et al. [50] 2D X-ray Diagnosis Parallel ResNet-18s 200 Viral pne. Images 4-Class Acc: 91.9%

Triage Seg: FC-DenseNet-103 54 Bacterial pne. Images
57 Tuberculosis Images
191 Normal images

Wang et al. [51] 2D X-ray Diagnosis Custom ResNet 358 COVID Images 3-Class Acc: 93.3%
8066 Normal Images
5538 Other Pne. Images

Rajaraman et al. [14] 2D X-ray Diagnosis VGG-16 313 COVID-19 Images 3-Class Acc: 99.01%
VGG-19 2780 CAP Images F1: 99%
Inception-V3 7595 Normal Images
Ensemble: Weight Avg
Seg: U-Net

Wehbe et al. [19] 2D X-ray Diagnosis Ensemble: Weight Avg 4253 COVID-19 Images 2-Class Acc: 82%
Seg: Cropped Lung Box 10,535 Normal Images F1: 83%

AUC: 90.0%
COVID Sens: 75%

Yeh et al. [20] 2D X-ray Diagnosis DenseNet-121 510 COVID-19 Images 3-Class Acc: 82%
45030 Normal Images F1: 83%
17906 Pne. Images AUC: 90.0%

COVID Sens: 75%
Horry et al. [54] 2D X-ray Diagnosis VGG-19 100 COVID-19 Images F1: 81%

Seg: OpenCV GrabCut 100 Pne. Images
Teixeira et al. [59] 2D X-ray Diagnosis VGG-16 503 COVID-19 Images F1: 94%

Seg: U-Net 1016 Normal Images
1159 Opac. Images

Tabik et al. [56] 2D X-ray Diagnosis ResNet-50 426 COVID-19 Images 2-Class Acc: 76.18%
Seg: Cropped Lung Box 426 Normal Images COVID Sens: 72.59%

Abdulah et al. [63] 2D X-ray Diagnosis Hybrid Convnet 848 COVID Images 2-Class Acc: 79.3%
Seg: Res-CR-Net 1417 non-COVID Images F1: 72.3%

Aymer et al. [72] 2D CT Diagnosis MLP 449 COVID Images 2-Class Acc: 86%
Seg: U-Net 595 Non-COVID Images Dice-coeff: 78.52%

Polsinelli et al. [73] 2D CT Diagnosis SqueezeNet 460 COVID Images 2-Class Acc: 83%
397 Non-COVID Images Sens.: 81%

Spec.: 85%
F1: 83.3%

Ko et al. [76] 2D CT Diagnosis ResNet-50 264 COVID Images 3-Class Acc: 99.75
1357 Pne. Images Sens.: 99.58%
1442 Non-COVID Images Spec.: 100%

Maghdid et al [77] 2D X-ray/CT Diagnosis Custom small CNN 85 X-ray COVID Images X-ray Acc: 94%
203 CT COVID Images CT Acc: 94.1%
85 X-ray Non-COVID Images X-ray Sens.: 100%
153 CT Non-COVID Images CT Sens.: 90%

Alom et al. [78] 2D X-ray/CT Diagnosis IRRCNN 178 CT COVID Images CT Acc: 94.1%
Seg: NABLA-N 247 CT Normal Images X-ray Acc: 84.67%

1341 X-ray Normal Images
3875 X-ray Pne. Images
67 X-ray COVID Images

Shan et al. [80] 3D CT Quantifaction Seg: 3D VB-Net 549 COVID Scans Dice-coeff: 91.6%.
Shi et al. [82] 3D CT Diagnosis Random Forest 1658 COVID Scans AUC: 94.2%

Seg: 3D VB-Net 1027 CAP Scans 2-Class Acc: 87.9%
Sens.: 90.7%
Spec.: 83.3%

Tang et al. [84] 3D CT Quantification Random Forest 176 COVID Non-severe Pat. 2-Class Acc: 87.5%
Seg: 3D VB-Net 55 COVID Severe Pat. AUC: 91%

Wang et al. [18] 3D CT Diagnosis Custom DenseNet 924 COVID Patients AUC: 88%
Prognosis Seg: DenseNet121-FPN 342 Pneumonia Patients 2-Class Acc: 80.12%

Metadata Sens.: 79.35%
Spec.: 81.61%
F1: 82.02%

Wang et al. [88] 3D CT Diagnosis Custom CNN ResNet 313 COVID Patients AUC : 95.9%
Unsuperised.. Seg: 2D U-Net 229 Non-COVID Patients 2-Class Acc: 87.9%
Annotation
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Paper Dimension Purpose M.L. Methods Datasets Evaluation

Jin et al. [90] 3D CT Diagnosis 3D ResNet-50 877 COVID AUC: 99.1%
Seg: 3D U-Net++ 413 Other Pulm. Disease Sens.:97.4%

Spec.: 92.2%
Mei et al. [92] 2.5D CT Diagnosis Inception-ResNet-v2 419 COVID AUC: 92%

ResNet-18 486 Non-COVID Sens.: 84.3%.
MLP Metadata
Seg: Pixel Thresh.

Song et al. [94] 2.5D CT Diagnosis ResNet50 Feat Pyr. 777 COVID Images AUC image-lvl: 97%
505 CAP Images AUC Patient-lvl: 99%
708 Normal Images F1 Patient-lvl: 94%

Acc. Patient-lvl: 94%
Bai et al. [96] 2.5D CT Diagnosis EfficientNet-B4 521 COVID Patients 2-Class Acc: 96%

Seg: Pixel Thresh. 665 Pneumonia Patients Sens.: 95%
MLP 132583 Slices Total Spec.: 96%,

AUC: 95%
Li et al. [97] 2.5D CT Diagnosis ResNet-50 1296 COVID Scans COVID AUC: 96%

Seg: 2D U-Net 1735 CAP Scans COVID Sens.: 96%
MLP 1325 Normal Scans COVID Spec.: 96%

Gozes et al. [98] 2.5D CT Diagnosis ResNet-50 829 COVID Images AUC: 99.6%
Quantifaction RADLogics Nodule Det 1036 Normal Images

Seg: 2D U-Net
Gozes et al. [99] 2.5D CT Quantifaction ResNet-50 1592 COVID Images AUC: 94.8%

PCA 701 Normal Images
K-means Clustering
Seg: 2D U-Net

Jin et al. [100] 2.5D CT Diagnosis ResNet-152 2228 COVID Scans AUC: 97.17%
Seg: 2D U-Net 2298 CAP Scans Sens.: 90.19%
t-SNE 83 Influenza Scans Spec.: 95.76%

3338 Non-Pne. Scans
Zhou et al. [102] 2.5D CT Quantifaction Seg: 3 2D U-Nets 160 COVID Scans Dice-coeff: 78.3%
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2.6 Discussion About the Approaches Reviewed

2.6.1 Choice of Dataset

An important aspect of designing a deep learning system for finding the diagnosis or

prognosis of a COVID-19 patient starts with the data. What data is available to build a

system in terms of images/volumes and metadata is important. It will determine the entire

direction of how the project is implemented. All of the studies reviewed here started with

a data-gathering stage. Some of the datasets cited in these articles are publicly available.

It is clear however that many institutions are keeping information to themselves and not

making that information public. The information that is released to a public dataset is often

missing some of the additional information researchers would require to begin a project. This

is especially true with metadata (age, sex ICU stay, hospital stay, survival) which is necessary

for discovering the prognosis of a COVID-19 patient. There is only one study [18] that has

been able find the prognosis of COVID-19 patients using metadata and the authors of the

study had access to private information that was collected from several regional hospitals.

The vast majority of studies [18, 102, 98, 80, 84] attempting to perform prognosis had

insufficient metadata and instead relied mostly on imaging quantification methods. While

this is important work, extra metadata would have greatly assisted these authors. More

often than not most researchers have been focused on diagnosis alone due to this lack of

available information. There is currently only a small number of COVID-19 X-ray images

and CT scans that are publicly available, but this should change in the coming months as

more datasets are released.

Following the data-gathering stage, a plan needs to be developed around structuring

the data into a format that can allow a deep learning algorithm to glean meaningful insights

from the data. There could be hundreds of gigabytes of data that need to be organized. One

consideration among the studies reviewed here that often goes unmentioned is concerning

whether the authors have ensured no cross-contamination has crept into the training set and

test set. Sometimes public datasets are composed of other public datasets. The datasets

different authors have produced and distributed can often be combined and thereafter redis-
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tributed with a new name. When this happens, information from the original datasets gets

removed. Many datasets for instance do not include patient number in their composition.

With no way to determine whether multiple images from the same patient have been in-

cluded in a dataset data leakage can occur. Many papers do not mention how they ensured

their data somehow did not become compromised. If multiple duplicates and/or different

images from the same patient are mixed between a learning algorithm’s training and test

sets, the overall statistics a paper reports cannot be fully trusted. Many papers additionally

do not discuss the variance in their image datasets given the different imaging systems and

protocols that were responsible for generating the images in their datasets.

One extremely concerning problem regarding some X-ray datasets in wide distribution

is their use of Kermany et al.’s dataset that is constructed from ”5,232 chest X-ray images

from children” [16]. This dataset started incorrectly being used by researchers to have normal

and non-COVID-19 pneumonia X-rays to compare COVID-19 X-rays against. The children

in this dataset are between one and five years old and the dimensions and features of their

lungs should not be used in a learning algorithm against adult lungs. There are so many

COVID-19 datasets on Kaggle and other dataset platforms that use this dataset that caution

is urged when accessing public datasets. It is good practice to ensure that datasets compiled

by other individuals mention the sources of all of their original images.

2.6.2 Purpose: Diagnosis and Prognosis

After gathering the data, a decision needs to be made about whether the system

can be built for diagnosis, prognosis, or both. From a diagnosis perspective the classes a

model predicts will have consequences on how the deep learning system can be used. Some

papers focus solely on binary classification [38, 13, 48, 49, 72, 73, 77, 78, 92, 96, 98]. Binary

classification in some of the reviewed studies was viewed as acceptable so long as the model

was trained on a sufficient amount of non-COVID-19 illnesses that closely resemble COVID-

19 (viral pneumonia, bacterial pneumonia, etc.). If a system has been constructed to diagnose

COVID-19, there needs to be a way for that system to differentiate the scans of COVID-19

patients from other closely related illnesses. This would be important in a clinical setting
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if a suspected COVID-19 patient obtained a negative RT-PCR test result. Other studies

[44, 50, 51, 14, 76, 80, 18, 88, 90] believed that multiclass classification was important as

well. If a patient could have the flu, bacterial pneumonia or COVID-19, it would be nice to

have a model that could inform healthcare professionals what the patient is suffering from.

That way the healthcare professional could develop a personalized approach to dealing with

each patient. Some studies [15, 40, 43] employed both binary and trinary diagnosis models

and compared the two approaches. All of these approaches to diagnosing COVID-19 could

be acceptable depending on the end application and data availability in the data-gathering

stage.

To determine the prognosis of a COVID-19 patient, it clearly must first be determined

whether a patient has COVID-19. A prognostic system might proceed based on a patient

having undergone an RT-PCR test. A few of the quantification and prognosis systems in

the AI medical imaging literature worked by diagnosing a patient with COVID-19 using

imaging technology first. This step adds extra clarity to a patient’s original diagnosis if the

image classification system is sufficiently sensitive at differentiating COVID-19 from other

illnesses. The metadata associated with COVID-19 radiological images will be of the utmost

importance for determining the future course of a patient’s illness. There is currently only

one CT study so far that in a very limited way was able to glean insights by combining

radiological images and metadata [18] to classify patients as high-risk or not. The study

used a Kaplan-Meier analysis to show ”high- and low-risk groups had a significant difference

in hospital stay time.” [18]

2.6.3 Hardware Considerations

There are hardware considerations to consider when implementing a deep learning

imaging system. If a project moves ahead with using CT scans, a purely 3D CNN system

is hard to fit on high-end workstations. Even workstations with a GPU larger than 8GB

RAM will struggle to fit a 3D model. Jin et al. [90] for instance, mentioned that their

3D system required 8 TITAN X GPUs for training. VRAM (Video RAM) is often the

largest bottleneck in terms of whether an engineer will be able to implement an experimental
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architecture. If the GPU cannot hold the model, the experimental model may never get off

the ground. An example of this in our survey was in a 2.5D CT study conducted by Jin

et al. [100]. They initially tried to implement a 3D model but eventually found that they

did not have the necessary hardware and were forced to move to designing a 2.5D model.

Their workstation used an 11GB GPU and this limited the team’s options. Waheed et al.

[49] were implementing a GAN as a part of their system and they as well found that their

hardware limited them to using images that were 112 x 112.

If a team’s workstation uses less VRAM, this will result in more data transfers be-

tween the CPU and GPU. This is likely going to matter more than the number of tensor

cores an engineer has available in a GPU. The hardware requirements of computer vision,

therefore, prioritize purchasing GPUs with a higher amount of VRAM. Extra space is also

required in terms of a system’s CPU/RAM requirements. When originally fitting a model

on a CPU’s RAM, it is best to use only 80 percent of the available RAM or the system may

start to implement paging and slow down the performance of the entire system. Resource

management from a computer architecture perspective is extremely important for imple-

menting deep learning computer vision systems. The system’s resource availability as well

its accuracy requirements will ultimately determine which choice of model is designed.

2.6.4 Resolving the Class Imbalance

Resolving the class imbalance of COVID-19 vs non-COVID-19 datasets was an impor-

tant consideration when designing deep learning systems in many of the articles reviewed

here. There are far fewer COVID-19 scans in many datasets than the X-ray and CT-scans

that are taken from other sources. In binary and multiclass classification this can result

in an algorithm that will see mostly non-COVID-19 examples. A deep learning algorithm

usually has equal amounts of images in each class. One solution to this that is mentioned

in the literature is to weight the loss function in a manner whereby the smaller number of

COVID-19 patients in the dataset has more weight than the normal examples. An example

where X-rays with COVID-19 are underrepresented in a dataset is shown in Fig. 2.41. This

procedure was mentioned by Hagnifar et al. [43], Mangal et al. [44], and Rajaraman et al.
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[14] in dealing with their studies’ class imbalances of COVID-19 X-ray images. Another com-

monly used method in tackling the class imbalance problem is resampling. Alom et al. [78]

used resampling in their paper where they ”applied class specific data augmentation” [78] to

boost the amount of COVID-19 images in their dataset. Resampling involves shuffling the

examples in a dataset to create an even distribution of classes to analyze. Resampling can

involve using fewer images from the class with more examples. It can also involve using more

images from the class with fewer examples multiple times. Ultimately an even distribution

is input into a CNN. An example of a system which shuffles images to achieve a normal

distribution can be seen in Fig. 2.42. An alternative to the aforementioned strategies is

mentioned by Zhang et al. [38]. The authors there used anomaly detection and their system

was trained on a larger dataset with no exposure to viral pneumonia. The authors then used

a small viral pneumonia dataset and tested their model to see if it could be picked up by

the anomaly detection unit.

Figure 2.41: Adjusting the weight of the loss function to correct for class imbalance.
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Figure 2.42: Example of resampling to correct for class imbalance.

2.6.5 Preprocessing and Segmentation

Segmentation generally always improves the accuracy of a system. The systems that

achieved the best performances usually included image segmentation. Some systems segment

out the lungs alone, while others segment out specific lung areas. Depending on the annotated

data made available, a designer must choose the kind of segmentation to be used. There

are 2D and 3D segmentation systems that are publicly available to be adapted to a project.

3D segmentation units preserve original spatial relations between the slices of a CT scan.

Using a 2D segmentation unit on all the slices of a CT scan is common but some spatial

information is lost. The training of a 3D segmentation module however may require multiple

GPUs and medical staff to annotate entire volumes. Segmenting an entire 3D volume is

ideal, but sometimes to do so within existing hardware constraints the spatial resolution

(256 x 256 for instance) along a 3D volume needs to be reduced (perhaps to 100x100 as

an example). This also depends on the batch sizes being used. A higher batch size could

likely be used on 2D slices. A 3D system may require a stochastic batch size of 1 for a

3D volume. Simple thresholding for lung segmentation can also be effective in that lung

tissue exists within certain intensities in CT scans. Bai et al. [96] for instance segmented

each slice using attenuation (-320 HU used as a threshold value) to exclude non-pulmonary

regions in CT scans. Mei et al. [92] followed a similar procedure. Mei et al. [92] normalized

pixel intensities to exist within a 0-255 window and afterward the lung region was defined
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to exist underneath a threshold intensity of 175. They also found that small regions of the

lungs with pixel intensities less than 64 needed to be removed due to random noise. Fitting

a segmented organ within threshold regions therefore is quite common. Normalizing pixel

intensities and the scale of images/volumes is standard in virtually all papers. Song et al.

[94] performed an operation in their 2.5D CT model to remove slices of incomplete lung as

a preprocessing step. Many deep learning computer vision systems perform better with a

preprocessing step that removes less helpful images before training.

2.6.6 Transfer Learning

CNNs tend to be the most popular machine learning methods used in most of the

studies reviewed, which is unsurprising given their recent success in imaging competitions.

The majority of studies favour using transfer learning. Many deep learning networks re-

quire millions of training samples and computer vision problems often have only hundreds

or thousands of samples. This is why transfer learning using image datasets like ImageNet

is so popular in biomedical imaging. The medical industry often makes it difficult for re-

searchers to obtain datasets due to privacy concerns. Transfer learning using X-rays for

diagnosing COVID-19 is easier for two reasons. The first reason is that X-rays are 2D im-

ages and utilizing 2D image datasets for transfer learning is easier. There is no ImageNet

for 3D volumes in medical imaging. The 2nd reason is that there are larger high-quality

datasets with hundreds of thousands of chest X-rays specifically made for diagnosing pul-

monary diseases. This allows for modality-specific transfer learning whereby a CNN that

was designed for 14 pulmonary diseases like ChexNet [45] can be fine-tuned on another chest

X-ray problem in diagnosing COVID-19. Modality-specific transfer learning has been shown

to increase the efficacy of transfer learning on new problems. ImageNet is a fine resource,

but in application-specific circumstances, modality-specific transfer learning is more effective

than using ImageNet alone. CT scans do not have the same availability of resources for per-

forming modality-specific transfer learning. There are many more X-ray pneumonia samples

online than there are for CT scans. ResNet, DenseNet, VGG, Inception and SqueezeNet

architectures are some of the most popular off-the-shelf architectures found in the literature.
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In the literature reviewed here, custom 3D CNNs are often designed for 3D systems. The

3D systems used in the literature use shallower CNNs than the CNNs often used in 2D stud-

ies. 2D Multimodal diagnosis systems in the literature review were mentioned briefly that

use both X-rays and CT scans. The primary multimodal system mentioned here [77] could

diagnose COVID-19 using either X-rays or CT scans. It would have been interesting to see

if X-rays and CT scans on the same patient could have been combined in training, but no

such study has ever been conducted. Current datasets do not contain many examples where

both the X-rays and CTs of individual patients are available.

Unsurprisingly, a majority of the studies reviewed here used transfer learning. This

was especially true for most 2D systems. Leveraging transfer learning is more effective than

training a CNN from scratch with very little data. A challenge for many deep learning

architectures is that they are very data-hungry algorithms. Biomedical datasets are often

smaller than a million images and it is common to only have thousands of images when

diagnosing pulmonary pathologies. This problem is compounded by how recent the pandemic

is. Many medical institutions are mainly trying to deal with a flood of patients rather

than concerning themselves with organizing and releasing data for developing deep learning

algorithms. With the small datasets currently available, transfer learning is one of the main

tools available to imaging specialists in the AI community. In transfer learning, it is generally

understood, that the earliest layers in a CNN capture low-level image features like the edges

of an object. The later layers of a CNN learn to identify entire portions of an image. When

training with ImageNet, the early layers are generally the most useful and the later layers

(which identify whole random objects in photographs) are less useful. In medical imaging, a

CNN may first be trained on ImageNet, but afterward, be fine-tuned on the medical dataset.

There are a couple of ways to do this. One way is to freeze all of the layers in a CNN except

for the last layer or last couple of layers. The last layer(s) can then be trained on the medical

dataset. A software engineer may otherwise consider not freezing any of the layers. In doing

so, the engineer might initialize a model with ImageNet’s weights and then train the CNN

in an end-to-end fashion.
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2.6.7 Optomizers and Hyperparameter Optomization

Many of the studies reviewed here use the Adam optimization algorithm [43, 76, 78, 96]

in a CNN to update their network weights in iterative training. The reasons cited are that

the method is computationally efficient, easy to use, does not require as much memory as

other optimizers, and leads to high accuracy when implemented in deep learning models. The

Adam optimizer is widely used and can quickly train CNNs with reasonably accurate results.

As seen in Fig. 2.43 and Fig. 2.44, it outcompetes many other optimizers on popular image

datasets. Stochastic gradient descent, however, is also used in some papers [13, 14] and with

a well-chosen learning rate converges better than the Adam optimizer in certain cases. The

learning rate is typically a hyperparameter that receives a lot of attention in papers. It is the

hyperparameter that determines how much a model responds to the model’s generated error

every time the model’s weights are updated. It is often the most important hyperparameter

when adjusting a model for optimal performance. Using a learning rate scheduler is another

option. If the learning rate is too large, the system might not converge (unstable training)

or a designer could end up with sub-optimal final model weights. Other hyperparameters

such as batch size however are also closely paid attention to in the studies reviewed here.

There a several techniques researchers have available to help them settle on an optimal

set of hyperparameters. Bayesian optimization is a hyperparameter optimization technique

Polsinelli et al. [73] discussed using for optimizing their model.

2.6.8 System Generalizability

One of the major barriers to deep learning technologies being applied in clinical situ-

ations is system generalizability. Achieving system generalizability in one country does not

mean that the system will generalize to another population in another country. We first need

to use an external validation set formed from a group of patients in the other country. If

the system cannot generalize to the population in another country, the deep learning system

may be later fine-tuned on a population of patients in the new country so that it functions

appropriately. Another consideration when thinking about system generality is related to

the type of device used to take an X-ray or CT scan. An X-ray machine or CT scanner may
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Figure 2.43: Adam optimizer compared with other optomizers on the MNIST dataset. [103]

Figure 2.44: Adam optimizer compared with other optomizers on the CIFAR dataset. [103]

have different settings and different protocols in terms of how a patient is positioned. A liq-

uid contrast agent is often injected into patients to get improved images. Different contrast

agents may lead to different results. Contrast materials can greatly assist a radiologist to
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distinguish abnormal patients from normal patients. The position of a person can change in

radiological imaging. Patients undergoing an X-ray commonly have both lateral (patients

positioned on their side) and frontal X-rays taken. A deep learning model constructed with

both of them either needs to filter out lateral X-rays or needs to be fine-tuned to work on

both of them.

Figure 2.45: A major barrier to applying deep learning technologies in medical imaging is
system generalizability

2.6.9 Saliency Maps

A key point that can be derived from the COVID-19 deep learning literature is that

a designer often cannot evaluate a CNN on the basis of its numerical metrics alone. Using

the F1-score, sensitivity, specificity and accuracy of a model is important, but deep learning

algorithms can often focus on incorrect details and achieve great results on small datasets.

Increasing the size of a dataset will help train a CNN to focus on more relevant details. The

way to figure out if the current system is correctly identifying features in an image is to

use a saliency map. Many good papers in the literature made extensive use of them when

determining if a system is localizing COVID-19 correctly [43, 50, 51, 14, 73, 76, 78, 18, 98,

100]. It takes a trained expert to determine whether the visual features of an image were

correctly identified by a CNN. Saliency maps are informative in that they can show if a

system is being deceived by features that have nothing to do with COVID-19. The system

could be focusing on an area outside of the lungs for instance and that would indicate an
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issue with the algorithm. An example showing some saliency maps from a chest X-ray can

be seen in Fig. 2.46. Segmentation always helps generate better saliency maps and allows a

learning algorithm to focus on the most relevant areas.

Figure 2.46: Inspecting saliency maps for infection localization performance [14]

2.7 Choosing a Modality and Narrowing our Scope

At the end of this literature review, we determined that it was best to proceed with

building an X-ray-based deep learning diagnostic model. While a project based on CT scans

may have been rewarding, there were significant hardware restraints for following through

with such a project. A 2.5D or 3D CT project would, unfortunately, require several high-

performance GPUs. The hardware requirements for segmenting CT scans are even more

severe. Our research budget only allowed room for using a CPU and GPU hosted on a

Google Colab Pro server. In the absolute best-case scenario, Google Colab Pro allows a user
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to use an NVIDIA Tesla K80 GPU for 24 hours. There are, however, interruptions to the

service and this 24 period is not guaranteed. Over the time that we have used Google Colab

Pro, we have found that there are a sufficient number of interruptions throughout any given

day that one can never assume that 24 hours of service will be available.

There are significantly fewer COVID-19 CT scans available in public datasets than

COVID-19 X-ray scans. We came to eventually realize over time that a greater number of

X-ray datasets were coming online throughout the pandemic. This increased availability of

images in conjunction with our restricted computer resources caused X-ray scans to be the

most practicable modality to be used in our project. As we discussed earlier, there are several

advantages that X-ray scanners have over CT scanners in terms of how they are deployed in

a medical environment. We decided, therefore, to proceed with X-ray scans for the duration

of this project. While it would have been an appealing option to incorporate metadata over

the course of this project, sufficient amounts of metadata accompanying X-ray images never

became available. We, therefore, removed COVID-19 prognosis from our project’s scope and

instead focused on COVID-19 diagnosis alone.
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Chapter 3

Neural Networks, Classification, and Segmen-
tation

3.1 The Basics of Neural Networks

Neural Networks (also referred to as ANNs) are algorithms modeled originally on neu-

rons contained in the brains and nervous systems of most animal species. Understanding

the biological motivation of ANNs can be helpful in initially understanding how ANNs func-

tion. Originally modeling small biological neurons proved difficult. Neuroscientists required

relatively large naturally occurring neurons from different species to visually observe and

physically measure these systems. Eventually, by the 1950s, Frank Rosenblatt developed

the first ANN. A typical neuron in an animal species is comprised of many dendrites, a cell

nucleus, and an axon. The dendrites of a biological neuron input the signals of other cells

into the cell nucleus. The nucleus contains a threshold function determining whether the

inputs into the neuron have a high enough potential to trigger an output. If this threshold is

passed, an output signal is carried away from the cell body via the cell’s axon. The output

signal is eventually sent to other cells residing alongside the axon’s terminals. Fig. 3.1 shows

an illustration describing the picture more clearly. This simple illustration helps build an

understanding of how some of the simplest neural networks like logistic regression function.

Logistic regression is an algorithm that is useful when working on a binary classification

problem. It is typically the first neural network presented to new students being introduced

to the subject. When logistic regression is given a feature vector (x), the algorithm will
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Figure 3.1: The biological comparison of a neuron with a neural network. [104]

output a prediction (ŷ) which is an estimate of the output (y). The training set to the

algorithm will have multiple training samples (x(i)) that get fed into the algorithm. In an

ANN, each input into a neuron has a weight associated with it (w) that is multiplied with a

part of the feature vector (x). These weights are summed within the neuron and an offset (b)

is added as well. This summation is passed through an activation function (sigmoid function

for binary classification) and if the predesigned threshold is reached, the neuron outputs a

positive prediction. The part of logistic regression we so far have described is called forward

propagation. A figure describing this system can be seen next to the biological neuron in

Fig. 3.1. The equations describing forward propagation in logistic regression can be seen in

equations 3.1 and 3.2:

z = wTx(i) + b (3.1)

σ(z) =
1

1 + e�z
(3.2)
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Logistic regression needs a way of determining if the outputs generated during forward

propagation are correct. It is classified as a supervised training algorithm because during

training it is fed the correct answers (y) for each feature vector (x). This allows for a deter-

mination regarding whether the algorithm is outputting correct predictions. The resulting

error information is fed back into the algorithm’s weights in a process known as backpropa-

gation. To train the parameters w and b, the model requires both a cost and a loss function.

The cost function is modeled by summing the loss functions of the training examples and

dividing that sum by the number of training examples. The loss and cost functions in logistic

regression are defined in equations 3.3 and 3.4 respectively as follows:

L(ŷi, yi) = −yilog(ŷi)–(1–yi)log(1− ŷi) (3.3)

J(w, b) =
1

m

m∑
i=1

L(ŷi, yi) (3.4)

Gradient Descent as a part of logistic regression can now be implemented on the cost

function we have derived. The goal of gradient descent is to minimize the cost function

and discover the best parameters that optimize for that function. An illustration showing a

simple version of gradient descent can be seen in Fig. 3.2. The plot ignores b for now and

only shows a simple one-dimensional plot that takes w into account during updates. Gradient

descent performs the following operation when considering both w and b in equation 3.5:

Repeat[

w := w − α∂J(w, b)

∂w

b := b− α∂J(w, b)

∂b

]

(3.5)

In Fig. 3.2, the slope of the tangent (taking the derivative) where w starts is negative.

When we multiply alpha (the learning rate) by a negative number, we end up increasing w
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Figure 3.2: Gradient descent along one dimension. [105]

as we move to the local minimum point (towards the right). The inverse can be shown if w

start on the other side of Fig. 3.2. In that case, gradient descent slowly decreases w to move

towards the local minimum. As the w parameters are updated, the error decreases, and the

algorithm eventually converges on the minimum point. There are different forms of gradient

descent. The batch size for gradient descent is the hyperparameter that determines how

many samples will be used before updating the weights over an iteration. The batch size for

gradient descent is a useful hyperparameter that can sometimes assist a learning algorithm

in achieving better results. Batch gradient descent uses all of the samples in a training set

during each iteration of training. This can result in an extremely slow learning algorithm

for problems with a large training set. Stochastic gradient descent uses only a single sample

over each iteration of training. Mini-batch gradient is probably the most common and allows

for different batch sizes. This allows for faster training than batch gradient descent and

also allows for a higher accuracy than stochastic gradient descent. Batch gradient descent

converges on global minima over a smooth function. Mini-batch and stochastic gradient

descent are noisier and may not directly converge on a global minimum but hover around it.

We have briefly summarized the basics of logistic regression to show the simple case

where we are only using one neuron. ANNs, however, were developed to work over a series of

layers. If we were to add another layer of neurons in front of the logistic regression algorithm
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we were discussing, we would not just be computing the derivatives for w and b in a single

layer. The w and b parameters of all the neurons in each layer would need to be computed.

Introducing more layers often leads to longer training times. Better results, however, can

be achieved. More input data is often required when constructing deeper networks. There

is a wide variety of layers that we have used in our research studies, and in the following

sections, we introduce their basic structures. While doing so, we highlight how these layers

are trained and initialized.

3.2 The Training and Construction of Neural Networks

3.2.1 Weight Initialization

When training a neural network, it is important to initialize its weights to nonzero

values. Initializing the bias terms to zero values is acceptable but initializing the weight

terms to zero values is a mistake. If each row of weights is initialized to zero, the derivative

for every column of weights (w) remains the same. During weight updates, new features

can then not be learned on successive iterations. The topic of weight initialization, however,

is deeper than that. There are many weight initialization schemes that have been put

forward by the AI research community that are useful. Initializing the weights of your

neural network to the weights of a network trained on a similar task can greatly increase the

accuracy and training speed of your network. On training simple fully-connected networks,

we should also decide on more parameters than the weights (w) and biases (b) alone. In

deep learning textbooks, authors refer to the weights and biases of a network as parameters.

Other designer choices like a network’s number of layers, learning rate, number of hidden

units, and activation function are referred to as hyperparameters.

3.2.2 Dataset Division

One of the main considerations a designer must initially make when designing a neural

network is the division of the project’s data. Splitting a project’s data into a training set,
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validation set, and test set is a common division in the literature. In computer vision projects,

a designer usually has a limited number of images. The division of the data in computer

vision projects, therefore, often favors larger validation and test sets. In computer vision

problems with small datasets, it is common to see 60/20/20 splits and 80/10/10 splits. In

an ideal big data scenario, however, the validation and test sets may only be 1 or 2 percent

of the overall data available. When choosing a validation and test set, it is best to consider

from what sources the original data has been derived. It is often best to not use the same

distribution of images in the training set, validation, and test set. As a rule of thumb, it

is common for the validation and test set to come from the same distribution and for the

training set to come from a larger but different distribution. A designer often spends a lot of

time choosing hyperparameters to optimize a neural network’s performance on the validation

set. It is appropriate, therefore, for the test set to come from the same distribution as the

validation set. The network should train, however, on a completely different set of images to

avoid biasing the network via cross-contamination. If the final trained model works well on

both the validation and test set, a designer can have confidence that the model generalizes

well.

3.2.3 Underfitting Versus Overfitting

A common scenario most machine learning practitioners find themselves in involves

deciding on whether a network is either underfitting or overfitting. A designer ultimately

wants to make the training error small and the gap between the training error and the test

error small. According to Goodfellow et al., “Underfitting occurs when a model is not able

to obtain a sufficiently low error value on the training set. Overfitting occurs when the gap

between the training error and the test error is too large” [106]. A couple of good illustrations

showing both cases of underfitting and overfitting can be seen in Figs. 3.3 and 3.4. Both

situations present problems. Finding a balanced mix with neither underfitting or overfitting

results in an optimal model that generalizes accurately. Large neural networks tend to be

prone to overfitting, while small neural networks tend to be prone to underfitting. Adjusting

the number of layers in a neural network can have an effect in either direction. Getting more
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training examples can help with fixing high variance (overfitting). Adding more features

into a network can help with fixing high bias (underfitting). Adding regularization to a

model is common and often helps to reduce overfitting. In the case of logistic regression,

this involves adding an additional expression to the cost function of logistic regression shown

here in equation 3.6:

J(w, b) =
1

m

m∑
i=1

L(ŷi, yi) +
λ

2m

m∑
i=1

(w2
i ) (3.6)

The additional regularization lambda hyperparameter when increased can fix high

bias. When it is decreased, it can fix high variance. This extra term penalizes a neural

network’s weight matrices for being too large. Setting the regularization parameter to be

large incentivizes the weight matrices to end up closer to zero. This will reduce the effect of

many neurons in the network, creating a sparser network.

Figure 3.3: Underfitting vs. overfitting. [106]

3.2.4 Dropout

Another common technique for regularization in computer vision is dropout. This

technique over every iteration assigns a probability to each node in a layer and determines

which nodes are eliminated. It allows a neural network to not concentrate its weights only
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Figure 3.4: Underfitting vs. overfitting when choosing lambda. [106]

on certain nodes and allows for learning from other nearby nodes. An illustration of this

concept can be seen in Fig. 3.5. In this illustration, each node in both layers is assigned

a probability of being dropped over the course of every iteration. Dropout in computer

vision systems is commonly used after multiple fully connected layers towards the tail end

of a CNN. Some computer vision researchers use dropout in all their learning algorithms,

although preferences vary.

Figure 3.5: Dropout. [105]

3.2.5 Input Normalization

Normalizing the data that is input into a neural network is common across all branches

of deep learning. After normalization, the cost function of a neural network looks more
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symmetric, and gradient descent is allowed to learn more quickly. It helps the parameters of

the network to be updated in equal proportions, allowing for a higher learning rate. Without

normalizing inputs, larger parameters tend to dominate in the network, and gradient descent

may require many steps to eventually reach the global minimum. This feature scaling is

illustrated in Fig. 3.6. The left part of Fig. 3.6, shows a picture of gradient descent that has

an easier path towards the global minimum. On the right side of the figure, the first feature

is larger than the second, causing descent towards the global minimum to be constricted.

In this scenario, a small learning rate is required. The first common step in normalizing

inputs is to subtract every sample by the mean of the training set. The second common

step is to normalize the variance in the training set. The mathematical expressions seen in

equations 3.7 and 3.8 are commonly implemented in the code of neural networks that use

input normalization:

mean :

µ :=
1

m

m∑
i=1

xi

x := x− µ

(3.7)

variance :

σ(z) :=
1

m

m∑
i=1

x2i

(3.8)

Figure 3.6: Gradient descent with (left) and without (right) feature scaling. [105]
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3.2.6 Batch Normalization

While input normalization has been around for a long time, in a paper in 2015, Sergey

Ioffe and Christian Szegedy invented an extremely useful idea called batch normalization

[107]. It is used in many famous CNNs that have been published over the past five years.

For framing the motivation behind developing this technique, Goodfellow et al. in their pop-

ular textbook on deep learning wrote in 2016: “Very deep models involve the composition

of several functions or layers. The gradient tells how to update each parameter, under the

assumption that the other layers do not change. In practice, we update all of the layers simul-

taneously” [106]. What the authors are saying here is that while weights are being updated

during backpropagation, the algorithm assumes all layers are fixed. That is not in reality

what is happening. The only layer that a designer can count on being fixed is the network’s

input layer, which is dealt with using input normalization. The layers behind the layer being

updated are in flux. With all layers changing during an update, the weight updates in the

network are constantly chasing a moving target. This phenomenon in the industry is called

internal covariate shift. In deeper networks, the problem is especially pronounced, and early

layers can cause great disruptions to the weight updates of downstream layers where this

effect is amplified. Batch normalization was designed to account for changing parameter

values in the shallow layers of deep neural networks. If we were trying to update layer three

of a neural network, we would need to know what to expect from the output of layer two.

What batch normalization does is normalize the outputs of the previous layer (layer two)

so as to train the parameters of the next layer more effectively (layer three). In the field

of computer vision, this process is also called ’whitening.’ In their paper introducing the

world to batch normalization, Sergey Ioffe and Christian Szegedy state: “By whitening the

inputs to each layer, we would take a step towards achieving the fixed distributions of inputs

that would remove the ill effects of the internal covariate shift” [107]. By standardizing the

activations of previous layers, batch normalization ensures there are not any large swings in

the value of the inputs into the subsequent layers. This helps to speed up and stabilize the

training of the network.
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3.2.7 Activation Functions

Before describing other layers in a CNN, a couple of common activation functions

should be discussed. In Fig. 3.7, some of the more common choices of activation functions

are represented. The sigmoid function was previously shown in equation 3.2. As previously

discussed, this activation function is used in predicting an output between zero and one.

This function will be shown again below for the sake of comparison with the other activation

functions. The tanh activation function is used to predict an output between negative one

and one. The ReLU activation function accounts for some limitations of the sigmoid and tanh

activation functions. The tanh function was favored over the sigmoid function during the late

1990s and early 2000s until the ReLU function gained in popularity. The function has been

noted as ”[another] major algorithmic change that has greatly improved the performance

of feedforward networks”[106]. The simpler ReLU function allows deep networks to train

several times faster than networks trained with tanh and sigmoid functions. The sigmoid,

tanh, and ReLU activation functions are respectively listed below in equations 3.9, 3.10, 3.10

and 3.11:

σ(z) =
1

1 + e�z
(3.9)

tanh(z) :=
ez − e�z

ez + e�z
(3.10)

ReLU(z) = max(0, z) =

0, if z < 0

1, if z >= 0

(3.11)

ReLU activation functions are presently the default activation unit used throughout

most networks. That is generally true except on the last layer of a network where sigmoid,

tanh, and softmax functions are used. The softmax activation function is useful for multi-

class problems and can replace sigmoid and tanh activation functions in such scenarios. A
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Figure 3.7: Common activation functions. [104]

representation showing such a scenario on a small MLP network is shown in Fig. 3.8. The

softmax function is shown below in equation 3.12:

σ(−→z )i =
ezi∑k

j=1 e
(zj)

(3.12)

Figure 3.8: MLP with ReLU activations in hidden layer and softmax layer. [105]

3.3 Construction of Convolutional Neural Networks

Having described many of the layers common to neural networks, it is now time to

move on to discussing several layers that are specific to CNNs. CNNs typically have two main

84



portions: A feature extractor portion and a classification portion. An illustration depicting

this division is shown in Fig. 3.9. These two portions can be treated in isolation. Let us

cover the feature extraction portion first. There are two main layers used in the feature

extraction portion of a CNN, although there is considerable architectural diversity that can

be added. These two layers are convolutional layers and pooling layers.

Figure 3.9: A CNN with its feature extraction and classification portions. [108]

3.3.1 Feature Extraction - Convolutional Layers

The purpose of a convolutional layer is to extract the high-level features of complex

input images. Convolutional layers help to reduce input image matrices into forms that

are easier to process. They do this while attempting to retain features that are relevant to

classifying an image. A convolutional layer takes a 2D image and runs a kernel overtop of

it. This kernel traverses the entire surface area of the image and produces a feature map.

The depth of the output of a convolutional layer depends on its number of kernels/filters

(k). If there are three kernels, for example, the output will have three corresponding feature

maps. To calculate the final feature maps output by a convolutional layer, a dot product of

the original image matrix and the kernels is calculated as is illustrated in Fig. 3.10.

The stride (s) of a convolutional layer is the number of pixels that a kernel moves over

top of while traversing the input image matrix. A higher stride setting has the effect of

reducing the height and width of a convolutional layer’s final feature maps. Padding (p) is
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Figure 3.10: A kernel traversing a convolutional layer with dot product calculation shown.
[109]

occasionally used in CNNs to account for instances where a convolutional layer’s kernels do

not spatially fit the original input image. There are two main kinds of padding available on

deep learning platforms: valid padding and same padding. Valid padding is the no padding

option. Same padding forces a convolutional layer’s output feature maps to be the same size

as its input image if there is a stride of one. The kernel window using this option spills over

the edges of the input image while traversing it. An example showing this is illustrated in

Fig. 3.11.

Figure 3.11: A kernel traversing a convolutional layer with ’same’ padding. [110]
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3.3.2 Feature Extraction - Pooling Layers

In CNNs, pooling layers are almost always used in combination with convolutional

layers to conduct dimensionality reduction. Pooling also uses a filter operation that sweeps

across an entire input matrix. Unlike with convolutional layers, however, this filter operation

does not have any weights associated with it. Instead, this filter uses an aggregation function

across a specified receptive field. There are two main kinds of pooling: max pooling and

average pooling. Max pooling moves a filter across an input matrix, selects the pixel with

the highest intensity, and forwards it to the output matrix. Average pooling, on the other

hand, takes the average value of the pixels across the field that is encompassed by the filter

and outputs that value to the output matrix. Both forms of pooling are illustrated in Fig.

3.12. While some information in pooling is lost, it has significant advantages. Max pooling is

generally more popular as it helps to extract the sharpest features in an image. It also helps

to reduce complexity and protects against overfitting. Importantly, pooling helps to add

translational invariance into a CNN. This means that small horizontal or vertical translations

in an input image do not have as severe of an effect on a CNN’s final interpretation.

Figure 3.12: max pooling and average pooling. [111]
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3.3.3 CNN Classification Layers

The feature extraction portion of a CNN helps to reduce the complexity of the features

that eventually need to be classified by the classification portion of a CNN. While convolu-

tional layers and pooling layers are the most common parts of a feature extractor, before we

move on, it should be mentioned that batchnormalization layers are commonly found in the

feature extraction portions of CNNs as well. After a 2D image passes through the feature

extraction portion of a CNN, the classification layers of a CNN work to classify the processed

image. The classification portion of a CNN takes 2D reduced images from a CNN’s feature

extractor and flattens them into a 1D fully connected MLP network. This MLP network

takes the high-level features represented at the output of the feature extractor and classifies

an image. The classification portion of a CNN is typically composed of a flatten layer, sev-

eral fully connected layers, occasionally a dropout layer, and a softmax/sigmoid classification

layer. For binary classification, a sigmoid activation function is generally used in the final

layer. For multiclass classification, a softmax activation is almost always used instead. In

more recent implementations of CNNs, it is also common to see global max pooling layers

or global average pooling layers used as alternatives to flatten layers.

3.4 Segmentation Networks

Segmentation is often used in computer vision problems to help improve the perfor-

mance of a classifier. A deep learning classifier like a CNN is excellent at classifying the

patterns of original images that are presented to it. Sometimes, however, it is better to re-

strict the original pixel information that is input into a CNN. Removing unnecessary imaging

details can assist a CNN to focus on more relevant portions of an image. CNNs, unfortu-

nately, often get deceived by non-relevant segments of an image. It is not uncommon for a

CNN to obtain the correct classification for the wrong reasons. A CNN, for instance, may

focus on the text in an image that is related to the object being classified in the picture.

Rather than focusing on the actual object, a CNN might focus on text because it occurs

more often in one of the categories being classified. Quite often, if a CNN has had issues
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during training, it is looking at unexpected parts of an image like the background. This can

be discovered by creating and analyzing the saliency maps of images classified by the CNN.

There are two main kinds of image segmentation: semantic segmentation and instance

segmentation. Semantic segmentation gives each pixel in an image a class label. This process

causes objects to be grouped into defined categories with predetermined colors. On the other

hand, instance segmentation assigns a new color to every object in the same group. Fig. 3.13

shows an example where a ground truth image of two dogs is processed with both semantic

segmentation and instance segmentation. The instance segmentation in Fig. 3.13 causes

both dogs to receive a different color. Using semantic segmentation, however, both dogs

receive the same color and the background is removed. Both forms of segmentation are used

in medical imaging, but only an understanding of semantic segmentation is necessary for the

work presented in later chapters.

Figure 3.13: Ground truth Vs semantic segmentation Vs. instance segmentation. [112]

3.4.1 U-Net Segmentation Layers

The medical imaging industry in recent years has made wide use of the U-Net [46]

architecture in performing semantic segmentation. The basic architecture of the U-Net was

originally designed by Ronneberger et al. [46] in 2015. The U-Net [46] is designed with

many of the deep learning and CNN layers already highlighted in this chapter, with one

notable exception. The U-Net [46] has also been designed to operate with up-convolution

layers, which we will discuss shortly. Let us take a look at the overall original structure of

Ronneberger et al.’s [46] U-Net shown in Fig. 3.14 and discuss the design methodologies

employed in its architecture.
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Figure 3.14: U-Net architecture. [46]

On initial inspection, an observer might first notice that a U-Net’s [46] output image

is the same size as its input. This is due to every pixel in the original image getting classified

as belonging to a certain class. The architecture is shaped like a U and has a very nice

symmetric design. The first half of a U-Net architecture [46] is the ’encoder’ or ’contraction’

path. The encoder path processes an image using two convolutional layers. These are each

followed by a ReLU activation function and batchnormalization layer. Following each set of

these layers along the ’encoder’ path, downsampling using max pooling occurs at progressive

intervals. Eventually, the spatial dimensions of the images become reduced in size. These

image matrices, thereafter, get pushed through the bottom middle part of the U-Net called

the ’bottleneck.’ The bottleneck is composed of another two convolutional layers that can

further extract features. The bottleneck, unlike the encoder, however, does not contain any

form of max pooling.

After the bottleneck layer, the ’decoder’ or ’expansive’ path eventually upsizes a con-

densed image back up to its original size. Directly after the bottleneck, an upsampling layer

is used to move the condensed image back up to the fourth level of the U-shape. This

upsampling layer is typically a transposed convolutional layer. A transposed convolutional
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(a) Inital Steps

(b) Final Steps

Figure 3.15: Transposed convolution. [113]

layer in effect performs the reverse operation of a convolutional layer. As shown in Fig. 3.15,

a transposed convolutional layer inserts zeros (z) between all the rows and columns of the

input image matrix. It also adds a layer of padding (p) around the image before employing

kernels that move along the image matrix with a predetermined stride (s). The result is an

upsampled output. This upsampling procedure moves the image matrix up to the fourth

layer of the U-Net [46]. The filters in this portion of the encoder get concatenated with a set

of filters from the decoder via a skip connection. This leaves us with a total of 1024 filters on

the fourth layer. The concatenated set of 1024 filters gets passed through two convolutional

layers and another transposed convolutional layer. This pattern continues until the end of

the decoder. At the final stage, an output segmentation map is created after performing a 1

x 1 convolution.
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Chapter 4

COV-SNET: A Deep Learning Model for X-
Ray-Based COVID-19 Classification

4.1 Introduction

Our first research study was focused on the development of a new deep learning model

that was trained to classify patients suspected of suffering from COVID-19. Our objec-

tive was to obtain the highest COVID-19 sensitivity possible in order to ensure COVID-19

patients receive a positive diagnosis. The contributions of our work are three-fold:

1. The proposed COV-SNET models we present are capable of diagnosing COVID-19

with accuracies above those reported by practicing radiologists in a related work [19]

2. The dataset we use does not incorporate several sources of bias contained in related

works

3. Our work presents a comprehensive study that benchmarks our new COV-SNET mod-

els with other existing COVID-19 deep learning models

Our work commences in section 2 with a discussion of other studies that have used

transfer learning for diagnosing COVID-19. In section 3, we then move on to discuss our

proposed network architecture and the deep learning methods we have employed for process-

ing the X-ray scans of COVID-19 patients. After explaining these methods, in section 4 we

present the experimental results of our system. We thereafter compare the performance of
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our models with other existing systems and discuss the advantages of our approach. Lastly,

in section 5 we conclude our discussion with possible future directions for this research.

4.2 Related Works

There are a number of papers that have been published on using deep learning methods

on X-ray images for diagnosing COVID-19. There is a variety of approaches that have been

researched on the subject and a large assortment of public COVID-19 X-ray datasets in

circulation. Below are some of the findings of the most important papers that have been

published on the subject.

The designers of COVIDX-Net [13] compared seven 2D off-the-shelf architectures.

Hemdan et al. [13] intended to compare these architectures using the same training and

test methods. Apostolopoulos and Mpesiana [15] took the same approach as Hemdan et al.

[13] and compared several architectures that were pretrained on ImageNet weights. Hem-

dan et al. [13] reported the best architecture’s results came from using the VGG-19 [30]

and DenseNet-201 architectures [31]. Apostolopoulos and Mpesiana [15]’s approach differed

from Hemdan et al. [13] in that they reported 2-class and 3-class (COVID vs. pneumonia

vs. normal) results. They found a VGG-19 obtained the highest results. There were a

couple of major deficiencies in these reported studies. These studies’ datasets (especially

Hemdan et al. [13]) were both too small to achieve trustworthy results. They also only used

ImageNet and neglected using a form of modality-specific transfer learning. Apostolopoulos

and Mpesiana [15] made the mistake of using Kermany et al.’s [16] pneumonia dataset of

children between the ages of one to five years old. We noticed that papers that have used

this dataset tend to report unrealistic evaluation metrics.

Khalifa et al. [48] first proposed using a generative adversarial network (GAN) [35] to

further augment the images input into their classifier and increase its accuracy in diagnosing

patients with pneumonia. The authors increased the size of their dataset by a factor of

ten. They believe this helped their classifier to avoid overfitting. They attempted to use

several deep learning classifiers in their model and ultimately decided to use a ResNet-18 [29].

93



Waheed et al. [49] also designed their model incorporating a GAN and later released a work

similar to Khalifa et al. [48]. Their model differed in that they used an auxiliary classifier

generative adversarial network (AC-GAN) [114]. Their AC-GAN generated synthetic images

that were input into a VGG-16 classifier [30]. Khalifa et al. [48] made the mistake of using

Kermany et al.’s [16] pneumonia dataset. Waheed et al. [49] look to have made the same

mistake by using the COVID-19 Radiography Database [115].

Wang et al. [51] designed ”COVID-Net” for the purpose of diagnosing COVID-19.

The dataset used to train this custom-designed CNN was made public and eventually used

in several other research papers. This dataset is one of the largest datasets publicly avail-

able and the dataset does not contain many of the errors found in several other public

datasets. Their model demonstrated promising results and achieved an accuracy of 93.3

percent. Their model was constructed using a “machine-driven design exploration strategy”

[51] that uses generative syntheses [52]. This particular strategy was the subject of some of

the authors’ previous research prior to the COVID-19 pandemic. Their approach is capable

of generating efficient deep neural networks automatically and designs these networks using

a ResNet architecture [29]. The authors of this paper also used an explainability method

called GSInquire [53] to validate their work.

Rajaraman et al. [14] created a model of iteratively pruned deep learning ensembles

to diagnose COVID-19. The authors carried out their work by first training several popular

CNN models (VGG-16/VGG-19 [30], Inception-V3 [34], Xception [55], DenseNet-201 [31],

etc.) on a separate lung X-ray task (a modality-specific task). To use fewer model parameters

and help improve the model’s accuracy, the authors iteratively pruned their CNNs. They

combined these iteratively pruned CNNs using several ensemble strategies. They found

weighted averaging to be the most effective ensemble strategy. Like many other studies,

they made the mistake of using Kermany et al.’s [16] pneumonia dataset.

Another study that deserves consideration is Wehbe et al.’s [19] publication that at-

tempted to diagnose COVID-19 using a large private dataset from a US medical institution.

This paper was similar to Rajaraman et al.’s paper [14] as the authors constructed an en-

semble of many CNNs to detect COVID-19. Their dataset, however, didn’t suffer from the
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same deficiencies in size as other datasets. They also did not use Kermany et al.’s [16]

dataset. The paper is noteworthy in that the authors assembled a team of five radiologists

to determine the diagnosis of COVID-19 patients. They thereafter compared the predic-

tions of the radiologists with their ensemble model. They found that the consensus of five

radiologists was only able to detect COVID-19 with 81 percent accuracy. These results give

a reasonable estimate of Bayes error for the task of determining the diagnosis of suspected

COVID-19 patients. The author’s ensemble model produced predictions with 82 percent

accuracy, which is reasonable given the experts’ consensus accuracy of 81 percent. Previous

studies were unable to perform comparisons of their models against the predictions of work-

ing radiologists. The evaluation metrics mentioned in many of the previous papers were also

liable to be skewed by the size of their datasets. Smaller datasets can sometimes lead to

overly promising results.

Yeh et al. [20] used private datasets from several medical institutions and added them

to Wang et al.’s dataset [51] when training their DenseNet-121 model [31]. They trained

and tested their deep learning model initially using images from the same sources as Wang’s

COVIDx Dataset. They also used pneumonia, COVID-19, and normal X-ray images from

two medical institutions. They obtained very promising results and achieved COVID-19

sensitivities between 95-100 percent. They held out a third much larger private dataset

from a medical institution to see how their results would change with extra data. This

larger dataset caused their accuracy to drop and they achieved an 81.82 percent COVID-19

sensitivity on their test set. This is evidence that using a small COVID-19 X-ray dataset

leads to unrealistic evaluation metrics. The third private dataset only included 306 extra

COVID-19 patients, but these added images caused a drastic change to the results of their

deep learning model.

Mangal et al. [44] have created a computer-aided detection (CAD) system for diag-

nosing COVID-19 based on a ChexNet model [45]. ChexNet first gained the attention of the

research community because of its ability to diagnose 14 pulmonary pathologies. The model

is designed using a DenseNet-121 architecture [31] and has been trained on over 100,000 X-

rays. They created 3-class and 4-class models. Mangal et al. [44] validated their model using
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Gradient-weighted Class Activation Mappings (Grad-CAMs) [39]. A deficiency in this model

was that it used a dataset from Kermany et al. [16] when making use of Paul Mooney’s Chest

X-ray dataset on Kaggle [116]. The dimensions of the lungs in these X-rays that were taken

from children likely caused their final classifier to produce unpredictable results. Haghanifar

et al. [43] improved on Mangal et al.’s [44] original design by including a segmentation unit

with their ChexNet model. They constructed a different dataset than Mangal et al. [44] for

training their ChexNet model. Hagnifar et al. [43] made the same mistake as Mangal et

al. [44] in including Kermany et al.’s [16] dataset. Al-Waisy et al. [47] likewise published

a paper using a ChexNet model that made the same mistake. The authors obtained an

even more exaggerated set of performance metrics than the previous two models mentioned.

Unfortunately, the use of Kermany et al.’s [16] dataset is widespread and this has created a

major flaw in all of these ChexNet models.

Islam et al. [117] developed a novel CNN-LSTM model for diagnosing COVID-19 with

chest X-rays. Their model was unique in terms of its architecture in the literature. During

validation, they obtained accuracies, specificities, sensitivities, and F1-scores between 98-100

percent for all classes in their results. Their model seemed to report what looked like overly

optimistic performance metrics. This suspicion was confirmed when it was noticed that their

model reported using Kermany et al.’s dataset [16] (also referred to as the Kaggle chest X-ray

repository in their article).

Rahimzadeh et al. [95] developed a deep learning model that combined the Xception

[55] and ResNet-50 [29] models together. Two ’10 Ö 10 Ö 2048 feature maps’ [95] forming the

last feature extractor layers of both models were concatenated to improve on the final results

of each classifier. This novel architecture worked quite well and the authors additionally

performed five-fold cross-validation to improve the robustness of their results. Overall the

authors of this article achieved reasonable success with their model as they achieved an

overall accuracy of 91.4 percent and sensitivity of 80.5 percent.

Panwar [118] et al. constructed and optimized a VGG-19 model with ImageNet weights

to detect COVID-19 in suspected patients. Their model was trained both on x-ray and CT

scans. Their models were all binary models and these models compared COVID-19 patients
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vs. normal patients, COVID-19 vs. pneumonia patients, and COVID-19 patients vs. non-

COVID-19 patients. The authors also focused on generating Grad-CAM heatmaps to make

sure they were picking up the features of COVID-19 in X-rays and CT scans. While their CT

classifier’s dataset is likely adequate, their dataset for comparing COVID-19 vs pneumonia

patients had a source of bias as their X-ray pneumonia images were derived from Kermany

et al.’s [16] dataset.

Afshar et al. [119] published a paper that utilized a unique deep learning approach

to diagnosing COVID-19. While the vast majority of models in the literature use CNNs

to detect COVID-19, Afshar et al.’s [119] model utilized Capsule Networks (CapsNets).

CapsNets are alternative models that can better utilize the spatial information in images

by using ”routing by agreement” [119]. The capsules in these networks are thereby capable

of reaching ”a mutual agreement on the existence of the objects” [119] in an X-ray. Like

previous teams mentioned before, the authors pretrained their COVID-CAPS model on

94,323 X-rays before fine-tuning the model to a smaller COVID-19 dataset. A deficiency we

found in this work is that the authors included Kermany et al.’s dataset [16] when making

use the Paul Mooney’s Chest X-ray dataset [116] on Kaggle.

Karthik et al. [120] presented a unique CNN in their work, which used a Channel-

Shuffled Dual-Branched (CSDB) CNN that is augmented with Distinctive Filter Learning

(DFL). This unique architecture learns ”custom filters within a single convolutional layer

for identifying specific pneumonia classes.” [120] They compared their model with a variety

of standard CNNs and promisingly outperformed those CNNs after training them on the

same dataset. Their dataset, unfortunately, contained a deficiency whereby the authors

used bacterial pneumonia and pneumonia X-rays derived from Kermany et al.’s dataset [16].
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4.3 Proposed Network Architecture

4.3.1 Dataset

An important aspect of developing a deep learning model in medical imaging begins

with the data. The availability of X-ray images and metadata is important when considering

the research directions for such a project. In our data-gathering stage, we found it difficult

to find metadata accompanying X-ray images. There was an insufficient amount of metadata

to assist with developing a practical COVID-19 diagnosis system. There were many publicly

available datasets available, but in analyzing these datasets we found that many of them

were incorrectly assembled. Many datasets on Kaggle and in various research papers used

Kermany et al.’s [16] dataset. As previously mentioned, this dataset consists of chest X-rays

from children between the ages of one and five years old. A child’s lungs have different

features than an adult’s lungs and hence these datasets were taken out of consideration.

We also found that the vast majority of publicly available datasets made no mention as

to whether they divided their training and test sets by patient number. Most datasets

incorporated COVID-19 X-rays harvested from medical research papers. In many of these

datasets, multiple images from the same patient could be found. Wang et al.’s [51] ’COVIDx’

dataset does not suffer from the same disadvantages. Wang et al. [51] split their training

and test sets by patient number. Their COVIDx dataset is large in comparison with other

datasets and is ”comprised of a total of 13,975 CXR images across 13,870 patient cases”

[51]. This dataset contains 358 COVID-19 images, 8066 normal images, and 5541 pneumonia

images. The COVIDx dataset has been used by many other research teams and is currently

a good benchmark for testing a new model’s results with other papers. For these reasons,

we decided to use the COVIDx dataset in our study.

We divided the COVIDx dataset into a 90 percent training set and 10 percent test

set ratio. This allowed for a suitable number of COVID-19 examples in the training set

given the extreme class imbalance in the COVIDx dataset. The multi-class training set,

therefore, consisted of 258 COVID-19 patients, 7966 normal patients, and 5441 pneumonia

patients. Ten percent of the dataset was leftover for validation, but within the test set, there
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was again a class imbalance. We, therefore, reduced the number of normal and pneumonia

examples in the test set to match the number of COVID-19 examples. In doing so, we

obtained a balanced test set for evaluating our model’s performance. This three-class test set

ultimately consisted of 100 COVID-19 examples, 100 normal examples, and 100 pneumonia

examples. A binary classifier was also designed in this study which grouped pneumonia and

normal images into a single category. Our two-class COVID-19 vs. non-COVID-19 X-ray

classifier was constructed to compare our approach with other two-class studies. Our binary

training set consisted therefore of 258 COVID-19 images and 13407 non-COVID-19 images.

The binary classifier’s test set consisted of 100 COVID-19 X-rays and 100 non-COVID-19

X-rays.

We first trained and tested our deep learning model on the aforementioned datasets

but later went on to create another set of larger training sets. Given the small number of

COVID-19 images available in the COVIDx dataset, we expanded the number of COVID-19

images in this dataset to examine possible overfitting. Previous studies [20, 19] mention

this specifically as a reason for reduced COVID-19 sensitivity in their work. We wanted to

investigate if more COVID-19 images would create a significant correction to our classifier’s

COVID-19 sensitivity. This second training set we created started out with 517 COVID-

19 images from the COVIDx5 [51] training set. This second training set also included 922

images from the MIDRC-RICORD-1C database [121] and 2474 images from the BIMCV

dataset [122]. Our second training set, therefore, consisted of 3913 COVID-19 images, 7966

normal images, and 5441 pneumonia images. For binary classification, we also examined

how well our model works with a training set of 3913 COVID-19 images and 13417 non-

COVID-19 images. We kept the original test sets as a benchmark to test our system against

our previously trained classifiers and Wang et al.’s published model [51]. Tables 4.1 - 4.2

shows the COVIDx training set dataset alongside our expanded training set as well as our

shared test set.
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Table 4.1: Datasets - Number of Images in the Multiclass Training and Test Sets

COVID-19 Normal Pneumonia

COVIDx Multiclass Training Set 258 7966 5451
Our Expanded Multiclass Training Set 3913 7966 5451

Multiclass COVIDx Test Set 100 100 100

Table 4.2: Datasets - Number of Images in the Binary Training and Test Sets

COVID-19 Non-COVID-19

COVIDx Binary Training Set 258 13417
Our Expanded Binary Training Set 3913 13417

Binary COVIDx Test Set 100 100

4.3.2 System Design

Both models in our study are designed with a DenseNet-121 [31] base feature extractor

and trained on the ChestX-ray14 dataset [123]. The ChestX-ray14 dataset contains ”112,120

frontal-view X-ray images of 30805 patients” [45]. This form of modality-specific transfer

learning increases our model’s ability to capture COVID-19 features. The DenseNet-121’s

earliest layers contain feature maps that have already been trained to pick up many of the

tissues and patterns seen in chest X-ray images. Many architectural design options were

investigated before finalizing a new architecture model based on a DenseNet-121 network.

The proposed system architecture, COV-SNET network, has the following features. After

loading our pretrained weights into the DenseNet-121 network we have added a dense layer

with 128 units, a dropout layer with a dropout rate of 10%, and a 3-class softmax layer for

multiclass classification. An illustration of our model can be observed in Fig. 4.1. For our

binary classifier, we replaced the softmax layer with a dense layer containing a single sigmoid

activation function. Table 4.3 shows a detailed layer by layer description of our model.

Prior to training our models, we noticed that a class imbalance existed that required

correction. This mainly was due to the lack of COVID-19 X-rays publicly available. A

weighted loss function was used during training to correct for this class imbalance. The

class weights parameter in Kera’s model.fit method was used to balance our classes. This
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Figure 4.1: Proposed network architecture.

Table 4.3: Proposed Network Architecture for COVID-19 Classification

Layers Output Size Model

Convolution 112x112 7x7 conv, stride 2

Pooling 56x56 3x3 max pool, stride 2

Dense Block
(1)

56x56

[
1x1 conv
3x3 conv

]
x6

Transition Layer 56x56 1x1 conv
(1) 28x28 2x2 average pool, stride 2

Dense Block
(2)

28x28

[
1x1 conv
3x3 conv

]
x12

Transition Layer 28x28 1x1 conv
(2) 14x14 2x2 average pool, stride 2

Dense Block
(3)

14x14

[
1x1 conv
3x3 conv

]
x24

Transition Layer 14x14 1x1 conv
(3) 7x7 2x2 average pool, stride 2

Dense Block
(4)

7x7

[
1x1 conv
3x3 conv

]
x16

Average Pooling 1x1 7x7 global average pool

DNN - 128 units, relu

Dropout - 10 percent

Classification - 3 category softmax
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function took a while to find. At first, we attempted to use a custom weighted loss function.

We found, however, that this algorithm took too long to compute on successive iterations and

we thereafter used Kera’s inbuilt function. An equation describing the function cannot cur-

rently be found Kera’s documentation. For finding weights, early in our work, we attempted

to use the inverse of the number of samples in each category. We did so to find a reasonable

ratio between the classes. When setting our weights, we ensured that the minority class was

set to be a higher weight to compensate for its underrepresentation. We later found that the

performance of our COVID-19 class needed improvement, so we later finetuned its weight

to be more highly represented. In doing so, we achieved a higher COVID-19 sensitivity.

In addition to correcting for the class imbalance, we also used data augmentation methods

during training to increase our model’s capacity to generalize on new examples. All final

models used image rotations, vertical/horizontal translations, horizontal flips, shearing, and

random zooms to augment the training datasets. Each category of augmentation was set

to 15 percent for the multiclass models and 20 percent for the binary models. In addition

to correcting for the class imbalance, our training required some necessary preprocessing

steps. We used data augmentation methods during training to increase our model’s capacity

to generalize on new examples. For our multiclass models, we set image rotations to 15%,

vertical/horizontal translations to 15%, image shearing to 15%, and random zooms to 15%

when augmenting our training dataset. For our binary models, each of the aforementioned

augmentation categories was set to 20%. In all of our models, we additionally used horizontal

flips in our augmentation process. During training and testing, our batch size was set to

32. Using Kera’s ImageDataGenerator class, we additionally normalized our training data

so that the values in each batch had a mean of 0 and a standard deviation of 1.

The first step in training our COV-SNET models involved initially training the final

layer alone. The last layer of each network was trained in TensorFlow 2.0 for 9 epochs. The

Adam optimizer was used during this training. To increase the performance of our networks

we unfroze all of the layers in our models for further training. For 6 epochs we left the Adam

optimizer at its default learning rate. After 6 epochs we fixed the learning rate to 1x10-5

and trained each model until their peak sensitivities were reached. For the models trained

on the COVIDx dataset alone this required 10 epochs. For the models trained on our larger
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training set, this took 13-14 epochs. Before unfreezing the layers in our model, we fixed the

moving mean and moving variance of the batches in our model’s batchnormalization layers.

These batchnormalization parameters were fixed to the weights generated from training our

model on the ChestX-ray14 dataset.

4.4 Experimental Results

4.4.1 Performance Evaluation

The results reported in the COVID-19 deep learning literature are typically based on

a variety of evaluation metrics. Accuracy, specificity, sensitivity, precision, recall, negative

predictive value (NPV), positive predictive value (PPV), F1-Score, and area under the ROC

curve (AUC) are all evaluation metrics used in the literature and included in our final results.

After training the last layer of each model for 9 epochs, the overall validation accuracy

for each model was between 75 to 80 percent. While this was close to the performance

of practicing radiologists in a previous study [19], we knew this result could be further

improved upon by unfreezing layers in each model. After the models were unfrozen, all of

the models achieved COVID-19 sensitivities of at least 95 percent. The entire set of class-

wise performance statistics that were calculated for each classifier can be seen in Tables 4.4

- 4.7. Their corresponding confusion matrices can also be seen in Figs. 5.4 - 5.7. Our three-

class model trained on the original COVIDx training set ultimately hit a final validation

accuracy of 84.3 percent. Our 3-class model trained on our expanded training set obtained

a validation accuracy of 86 percent. The final accuracy of the two-class model trained on

the original COVIDx training set was 88.5 percent. The two-class model trained on our

expanded training set obtained a validation accuracy of 87.5 percent. The AUC curves of

all four of our models generated comparable results as can be seen in Figs. 5.8 - 4.7.
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Table 4.4: Three-Class Model Performance Metrics After Training on the COVIDx
Multiclass Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 95 166 34 5 0.870 0.95 0.830 0.736 0.971 0.84
Normal 86 192 8 14 0.926 0.86 0.960 0.915 0.977 0.88
Pneumonia 72 195 5 28 0.890 0.72 0.975 0.935 0.874 0.82

Figure 4.2: Confusion matrix generated by three-class model with COVIDx training set.

Table 4.5: Two-Class Model Performance Metrics After Training on the COVIDx Binary
Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 96 81 19 4 0.885 0.96 0.81 0.835 0.959 0.89
Non-COVID-19 81 96 4 19 0.885 0.81 0.96 0.953 0.835 0.876

Figure 4.3: Confusion matrix generated by two-class model with COVIDx training set.
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Table 4.6: Three-Class Model Performance Metrics After Training on Our Expanded
Multiclass Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 95 170 30 5 0.833 0.95 0.850 0.760 0.971 0.86
Normal 93 189 11 7 0.940 0.93 0.945 0.894 0.964 0.91
Pneumonia 70 199 1 30 0.897 0.70 0.995 0.989 0.869 0.82

Figure 4.4: Confusion matrix generated by three-class model with expanded training set.

Table 4.7: Two-Class Model Performance Metrics After Training on Our Expanded Binary
Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 95 80 20 5 0.875 0.95 0.80 0.826 0.941 0.883
Non-COVID-19 80 95 5 20 0.875 0.80 0.95 0.941 0.826 0.865

Figure 4.5: Confusion matrix generated by two-class model with expanded training set.
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(a) (b)

Figure 4.6: ROC AUC graphs for COVIDx on (a) Three-class model and (b) Two-class
model.

(a) (b)

Figure 4.7: ROC AUC graphs for Expanded Set on (a) Three-class model and (b) Two-class
model.
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(a) X-ray (b) Grad-CAM

(c) X-ray (d) Grad-CAM

Figure 4.8: Two different COVID-19 patients showing their original X-rays alongside their
Grad-CAM produced heatmaps.
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The evaluation metrics of a deep learning model should never alone be relied upon

while validating the model’s performance. Small datasets may only contain hundreds of

images of the particular pathology under investigation. They tend to be prone to generating

unrealistic evaluation metrics. To ensure a deep learning model is picking up correct features,

saliency maps are widely employed in medical imaging. Saliency maps are important in that

they can inform a designer whether a deep learning algorithm is being deceived by image

characteristics that are unrelated to the pathology being imaged. Deep learning algorithms

often incorrectly lock onto necklaces, medical devices, and text appearing in X-ray images.

In our study, a Grad-CAM [39] was used to determine whether our COV-SNET model is

fixing onto the correct features of COVID-19 in frontal chest X-rays. The heatmaps produced

by a Grad-CAM contain color encoded information that highlights the features of an image

that are the most relevant to a CNN’s final classification. Fig. 5.9 shows the performance

of our model on COVID-19 patients using Grad-CAM generated heatmaps. The red and

orange regions of these Grad-CAM heatmaps are the most relevant parts of each image

that contributed to a COVID-19 diagnosis in both patients. These colors transition into

blue regions that are the least relevant portions of each image in contributing to our CNN’s

final classification. The Grad-CAM we employed uses the final feature maps in the last

convolutional layers of our model to generate these regions of importance. As can be seen

from our two examples, our Grad-CAM is locating the opacities in both images that would

normally be picked by a radiologist when assessing these patients.

4.4.2 Discussion

All of our COV-SNET models achieved higher evaluation metrics than the consen-

sus performance of the five radiologists in Wehbe et al.’s study [19] on a related dataset.

While their dataset is not available publicly at this time, Wehbe et al.’s [19] study on the

performance of five radiologists provides a good approximation for Bayes error. The best

performing radiologist in Wehbe et al’s [19] study only achieved an accuracy of 81 percent in

diagnosing COVID-19 correctly. The best sensitivity among the radiologists was 76 percent.

All of our models beat their best-performing radiologists by a substantial margin. Their
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Table 4.8: Performance of Five Radiologists in Diagnosing COVID-19 with X-rays [19]

Acc. Sens. Spec.

Consensus 81% 70% 89%
Best Radiologist 81% 76% 91%

Worst Radiologist 76% 60% 75%

work has been useful in that it provides designers with beneficial insights as to whether a

deep learning model is providing reasonably grounded performance metrics. The consensus

and best/worst performances of the five radiologists in Wehbe et al. [19] are provided in

Table 4.8.

Many deep learning models in the literature report metrics that are superior to the

performance of the radiologists in Wehbe et al.’s study [19]. Some papers report evaluation

metrics that are superior to our own as well. What could be the reasons for this? Many

papers have incorporated Kermany et al.’s [16] dataset. This dataset contains chest X-rays

from children between the ages of one and five years old. The children in these chest X-rays

are all suffering from various forms of bacterial and viral pneumonia. The extra categories in

Kermany et al.’s [16] dataset were used as sources for comparison when diagnosing COVID-

19 in other deep learning models. Many designers thought these extra categories would be

useful in clinical situations for ruling out other possible sources of infection. It is incorrect

however to train a deep learning algorithm with children’s lungs if that same algorithm

will ultimately be deployed on adult lungs. Apostolopoulos and Mpesiana [15], Khalifa et

al. [48], Waheed et al. [49], Rajaraman et al. [14], Haghanifar et al. [43], Mangal el al.

[44], Al-Waisy et al. [47], and Islam et al. [117] all used Kermany et al.’s [16] dataset in

their models. Many of those models reported exceedingly high-performance metrics. To the

best of our knowledge there is only one other deep learning model in the existing literature

that uses a COVID-19 dataset as large as our own and at the same time does not make

the mistake of using Kermany et al.’s [16] dataset. That model was published by Wehbe

et al. [19] and they ultimately only achieved a COVID-19 sensitivity of 75 percent. There

is still a need therefore to explore whether a deep learning model can achieve a higher

COVID-19 sensitivity while using a larger training set than has commonly been available
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Table 4.9: Performance of Past DenseNet-Based Models Versus
Radiologists

Paper Reviewed F1 ACC COVID-19 Sens.

Yeh et al. [20]
3-class - - 81.82%

Haghanifar et al. [43]
2-class 94% 98.62% -
3-class 85% 81.04% -

Mangal et al. [44]
3-class 92.3% 90.5% 100%

Al-Waisy et al. [47]
2-class 99.99% 99.99% 99.98%

Rajaraman et al. [14]
4-class 96.77% 96.83% 96.34%

Radiologists [19]
2-class - 81% 70%

Note: Haghanifar et al. [43], Mangal et al. [44], Al-Waisy et al.
[47], and Rajaraman et al. [14] all improperly used Kermany et
al’s dataset [16].

to past authors. A correctly constructed dataset is required to perform this research. Prior

to expanding Wang et al.’s [51] COVIDx dataset, we attempted to use public datasets that

incorporated Kermany et al.’s dataset [16]. We trained a DenseNet-121, a DenseNet-201, and

an Inception V3 architecture on these datasets. In doing so, we obtained suspiciously high-

performance metrics and obtained accuracies between 98.0 and 99.6 percent on three-class

and two-class models respectively. These performance metrics mirrored the performance

metrics we have found in other studies that made the same mistake. Table 4.9 illustrates our

point. It compares the performance of the radiologists in Wehbe et al.’s [19] study with other

DenseNet-based models we have reviewed from the COVID-19 deep learning literature.

There are other possible reasons for the deep learning models in other studies to be

generating unrealistic performance metrics. Many public datasets on Kaggle and various

other platforms do not specifically state whether they have divided their training and test

sets by patient number. If there has been cross-contamination between a deep learning
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model’s training and test sets, there is a high probability that the trained model will have

a better knowledge of the features in the test set. This data leakage leads to unrealistic

performance metrics. The X-ray files in public datasets are often renamed and their original

source information in many instances is lost. Many papers have combined several public

datasets. They often have done so without making any mention as to how they ensured the

same images from different datasets were not duplicated in their own dataset. The datasets

in some papers are also difficult to reconstruct and it is challenging to trace the chain of

images that ended up being included in some datasets. These are all likely factors that are

contributing to the high-performance metrics of some studies which are far outside of the

performance range of practicing expert radiologists. We decided to use Wang et al.’s [51]

’COVIDx’ dataset because the designers of that dataset took into account these issues being

discussed. The dataset, therefore, is more conservative and grounded compared to other

online public datasets.

It should now be clear that the composition of the datasets used to train deep learning

COVID-19 models is one of the main contributing factors to the high evaluation metrics often

being reported in the literature. There is however another crucial factor that is contributing

to these unrealistic evaluation metrics. Many datasets in the COVID-19 X-ray imaging

literature do not have a sufficient number of COVID-19 images. This lack of COVID-19

X-ray images in medical datasets can sometimes lead to unpredictable results. When more

images are added there can be a correction in a system’s evaluation metrics towards the

performance reported by practicing experts in the field. This is precisely what happened

in Yeh et al.’s [20] study. The work in [20] commenced with using an earlier version of the

COVIDx dataset. The authors of the study also initially used the private X-ray images

of two medical institutions. When the authors trained a DenseNet-121 classifier on these

initial datasets alone they achieved a COVID-19 sensitivity of 96.8 percent. This did not last

however and the inclusion of a third medical institution’s COVID-19 X-rays in their model’s

training caused a correction in its evaluation metrics. This led their model to have a final

COVID-19 sensitivity of 81.82 percent.
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Yeh et al.’s [20] final dataset contained 510 COVID-19 images. The COVIDx dataset

we used had 358 COVID-19 images. Our original three-class model, therefore, contained only

70 percent of the number COVID-19 images that Yeh et al.’s [20] model initially trained on.

Our three-class model generated a COVID-19 sensitivity of 95 percent. Yeh-et al.’s [20]

three class-model obtained a final COVID-19 sensitivity of 81.82 percent. Wang et. al.’s

[51] three-class model used the same original dataset as ours and obtained a COVID-19

sensitivity of 91 percent. How do we know however that our 95 percent sensitivity would not

correct if we trained on more COVID-19 images? After all, there are some in the research

community [19] that have pointed out that overfitting is occurring in past models trained

on small COVID-19 datasets. Recently a large number of COVID-19 images have become

available that are independent of previous COVID-19 datasets. This led us to create an

expanded dataset from the original COVIDx dataset that we used to check for overfitting.

After further examination, we discovered that our evaluation metrics were not impacted by

training our model on the expanded COVID-19 dataset. We were able to maintain the same

COVID-19 sensitivity (95 percent) using this dataset on our three-class model.

We thereafter moved on to creating a two-class model with the same expanded dataset.

Our original two-class model generated a COVID-19 sensitivity of 96 percent. After training

this model on our expanded dataset we obtained a COVID-19 sensitivity of 95 percent.

Wehbe et al.’s [19] two-class COVID-19 model obtained a COVID-19 sensitivity of 75 percent.

Their ensemble model however was trained on a slightly larger dataset than ours. Their

dataset contains 4253 COVID-19 images. They showed in their paper that their model’s

sensitivity (75 percent) was better than the consensus performance of the five radiologists in

their study. They also argued that the high sensitivities of deep learning models presented

in other studies were caused by a lack of COVID-19 images in publicly available datasets.

We wrote earlier that this was indeed the case in Yeh et al.’s [20] study, but have been

able to prove that it is not the case in our study. Expanding the COVIDx dataset did

not significantly affect the performance of our classifier. Of all of the studies that do not

improperly use Kermany et al.’s [16] dataset, our models achieve the highest sensitivities that

we can find in the literature. Table 4.10 presents a comparison of the sensitivities among

models that do not have any issues regarding dataset composition. Out of the papers in
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Table 4.10: Performance of Papers Without
Dataset Composition Issues

Research Paper COVID-19 Sens.

Yeh et al. [20]
3-class 81.82%

Wang et al. [51]
3-class 91%

Wehbe et al. [19]
2-class 75%

Rahimzadeh et al.
[95]
3-class 80.53%

Ours
2-class 95%
3-class 95%

Note: These papers all do not include Ker-
many et al.’s dataset [16].

Table 4.10, we were able to only make a direct comparison of our work with Wang et al.’s

[51] COVID-Net model. Our models ultimately required different augmentation settings

than theirs in order to achieve optimal results. Unfortunately, we were unable to replicate

the other datasets in Table 4.10. A couple of the papers in Table 4.10 mention that their

datasets are private. Wehbe et al. [19] currently have the largest COVID-19 dataset that

we have found in the literature, but unfortunately, it’s entirely private. We have however

been able to assemble a dataset that is now much closer in size to Wehbe et al.’s [19] private

COVID-19 dataset. In doing so, we have been able to prove that deep learning models are

capable of obtaining higher COVID-19 sensitivities than has previously been reported.

113



Chapter 5

A Deep Learning Segmentation-Classification
Pipeline for X-Ray-Based COVID-19 Diagno-
sis

5.1 Introduction

Our second research study has been fully devoted to the task of constructing a segmentation-

classification pipeline for diagnosing COVID-19. Many deep learning X-ray studies up until

now have solely focused on classification in diagnosing COVID-19 in X-rays. While excellent

research has occurred in this space, the number of articles dealing with COVID-19 X-ray

segmentation has been quite limited. Segmentation is an important preprocessing technique

that can shield a classifier from unnecessary pixel information when categorizing an im-

age. Many authors from the studies published on various computer vision applications have

found that proper segmentation increases the overall accuracy of a classifier [124, 125, 126].

It is vital, therefore, to explore the effect that segmentation has while training a COVID-19

classifier.

Our work begins in section 2 with an overview of various research studies that have

constructed segmentation-classification deep learning pipelines to diagnose COVID-19. In

section 3, we thereafter present our proposed deep learning pipeline’s architecture, showing

the internal details of our segmentation and classification modules. Following a discussion

of our pipeline’s architecture, in section 4 we present the experimental results of our overall

system. In section 4, we additionally present a detailed comparative analysis of our pipeline
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versus other well-constructed models in the literature. Concluding in section 5, we discuss

potential future directions for this research.

5.2 Related Works

A large number of deep learning models have been designed that classify COVID-19

with and without segmentation. Here is a summary of some of the more important models

that have been published in the field. We have expended considerable effort to include

articles with a segmentation unit in order to see how our deep learning pipeline compares

with other related studies. There are several public datasets available in circulation for

segmenting chest X-rays that have been cited in the articles below. There are also a number

of public and private datasets mentioned in these articles that were prepared specifically for

COVID-19 classification. Combining a segmentation unit and classification model together

is an especially challenging task. The following works below are all studies that influenced

how we ultimately implemented our final system.

Rajaraman et al. [14] created a segmentation – classification deep learning pipeline

to diagnose COVID-19 that included an ensemble of iteratively pruned CNNs. The au-

thors trained several CNN models (VGG-16/VGG-19 [30], Inception-V3 [34], Xception [55],

DenseNet-201 [31], etc.) after their dataset had been preprocessed by a U-Net [46] segmen-

tation module that included a Gaussian dropout layer [127]. The authors of this paper tried

to employ many different ensemble strategies and, in the end, found that weighted averaging

produced the best results. The authors of this paper unfortunately listed Kermany et al.’s

[16] dataset as being contained in their dataset which likely contributed to exaggerated eval-

uation metrics. It is incorrect to bias a dataset with only certain categories of the dataset

having images of children’s lungs.

Alom et al. [78] designed an X-ray-based system that diagnoses COVID-19 with a

NABLA-N segmentation network [128] and an Inception Residual Recurrent Convolutional

Neural Network (IRRCNN). Their X-ray model is initially trained on a normal vs. pneumonia

dataset first as more images are in the public sphere for making such a comparison. After
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obtaining acceptable performance on this separate task, they fine-tune their model on a

smaller COVID-19 dataset. This segmentation-classification pipeline ultimately achieves a

final test accuracy of 84.67 percent. The authors of this paper, unfortunately, used Paul

Mooney’s chest X-ray dataset on Kaggle [116] to obtain pneumonia images when training

their final classifier. This contains images from Kermany et al.’s dataset [16] of children’s

lungs, which means unfortunately that Alom et al.’s [78] classifier was incorrectly biased.

Yeh et al. [20] combined several public datasets as well as datasets from several private

medical institutions when training their segmentation-classification pipeline. Unlike the two

previous studies, the authors of this work look like they have constructed an unbiased dataset.

They do, however, reference several private datasets that are unavailable to the research

community. It is therefore impossible to directly compare our pipeline against their work.

They initially trained a U-Net segmentation model [46] as a preprocessing step to exclude

non-informative regions of CXRs from their model. Yeh et al. [20] trained this segmentation

unit on the Montgomery County X-ray Set and the Shenzhen Hospital X-ray Set [57]. After

training their segmentation unit, they obtained a dice similarity coefficient of 88 percent.

Following this preprocessing step, they trained a DenseNet-121 [31] classifier on segmented

images and obtained a COVID-19 sensitivity of 83.33% on their validation set. Their hold-

out test set contained 306 COVID-19 images and their final COVID-19 sensitivity on this

test set corrected to 81.8 percent.

Horry et al. [54] developed a segmentation–classification deep learning pipeline for

diagnosing COVID-19 that was trained and tested on a relatively small preprocessed dataset.

While Horry et al.’s [54] final curated dataset was not biased, it contained only 100 COVID-

19 images, so it is difficult to ultimately know how well their work would translate to a

larger number of images. Horry et al. [54] additionally removed images from their dataset

which contained features they believed their model would have difficulty classifying. The

authors’ segmentation model was not based on a deep learning model. They simply used

OpenCV’s GrabCut function and reasoned that “that the lung area could be considered the

foreground of the X-Ray image” [54]. After preprocessing they trained five base models with

their segmented images (VGG-16 [30], VGG-19 [30], Inception-V3 [34], Xception [55], and
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ResNet-50 [29]). Their best base model (VGG-19 [30]) ultimately achieved an F1-score of

81 percent.

Wehbe et al.’s [19] published deep learning pipeline that was trained on the largest

COVID-19 X-ray dataset we have found reported in the literature. The authors developed

their pipeline by working in collaboration with a private US medical institution. Their

large classification dataset is therefore inaccessible to the public at this time. This dataset

also appears to have not been improperly biased with the inclusion of incorrect data. The

authors were aware of the need to divide their training and test sets by patient number. The

authors chose to train their U-Net-based segmentation module [46] on the Montgomery [57]

and JSRT [61] datasets. Wehbe et al. [19] in their study also created an ensemble model

to detect COVID-19. Their final model contained a weighted average of 6 popular CNNs

(Inception [34], Inception-ResNet [129] Xception [55], and ResNet-50 [29], and DenseNet-

121 [31]). An important reason to include this paper in our discussion is that the authors

managed to perform an interesting study that up until now we have not seen reproduced

elsewhere. The authors commissioned a study involving five radiologists to determine the

effectiveness of experts in the field in differentiating COVID-19 from other illnesses. This is

important when trying to approximate Bayes error prior to building a deep learning model.

Wehbe et al.’s [19] compared the results of their model with the performance of expert

radiologists and discovered their model to a minor extent outcompetes them. Their final

binary weighted average model obtained a final accuracy of 82% on their test set. The

expert radiologists manually obtained a consensus accuracy of 81% on the same images.

These final results coincided very nicely with one another.

Tabik et al. [56] created a dataset dubbed the “COVID-GR-1.0” dataset which was

used in training their “COVID-SDNet” model in diagnosing COVID-19. Their dataset was

divided in a novel fashion whereby COVID-19 positive patients were subdivided into four risk

categories (normal-PCR+, mild, moderate, and severe). The authors created this dataset

to see how many of weak COVID-19 cases would be analyzed by a prospective classifier

correctly. More often than not, in COVID-19 datasets, there is an unequal number of severe

COVID-19 patients. Typically, patients who end up undergoing a radiological examination
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end up being patients experiencing increased complications. COVID-GR-1.0 is a small but

well-curated dataset that has utility in that it can be employed to determine a classifier’s

efficacy on weak COVID-19 images. Tabik et al.’s [56] pipeline consisted of a segmentation

module and a classification module that performs “inference based on the fusion of CNN

twins.” [56] The authors used a U-Net [46] segmentation module and trained it on the

Montgomery County X-ray dataset [57], the Shenzhen Hospital X-ray datasets [57] and

the RSNA Pneumonia CXR challenge dataset [58]. They calculated the smallest rectangle

around each segmented image and added a border containing 2.5% of the pixels around each

rectangle to obtain their final masked images. The X-rays they segmented were, therefore,

never fully masked. The authors did not want to exclude relevant information in these images

that could contain useful diagnostic information. After performing binary classification on

their segmented COVID-GR-1.0 dataset, Tabik et al.’s [56] classifier obtained a COVID-19

sensitivity of 72.59%.

Teixeira et al. [59] designed a segmentation–classification pipeline used to diagnose

COVID-19 that consisted of a U-Net [46] and InceptionV3 [34] CNN. Their U-Net [46]

segmentation module was trained on images and masks that were hand-picked from a mixture

of public datasets ([57], [60], [61]). The number of images and mask pairings they chose

in the Darwin V7 labs [60] segmentation dataset (489) was significantly lower than the

total number of pairings available in that dataset (6504). This approach looks as though

it allowed them to train their U-Net [46] to have a higher dice similarity coefficient (0.982)

than other segmentation units we have seen in the literature for this task. For classification

they otherwise used the RYDLS-20 dataset [62]. They had developed this dataset in a

previous work and further added images to it to create a new “RYDLS-20-v2” dataset.

They attempted to use several classifiers but ultimately found that using an InceptionV3

[34] CNN resulted in giving them their best overall multiclass performance metrics.

Oh et al. [50] published a novel “patch-based deep neural network architecture with

random patch cropping” [50] for detecting COVID-19. Their model initially begins with

a preprocessing step whereby a fully convolutional DenseNet-103 [31] segments incoming

chest X-rays. The authors thereafter use a ResNet-18 [29] on the segmented images for
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classification. The authors generate 100 randomly cropped patches from the previously

segmented chest X-rays and feed those patches through ResNet-18s [29] as well. In this

process, the authors have selected a sufficient number of lung patches to ensure that the

entire surface area of the segmented lungs is covered. The authors of this paper unfortunately

selected images from Kermany et al. [16] to include in their work and thereby biased their

classifier.

Abdullah et al. [63] implemented a segmentation – classification pipeline that used a

unique segmentation unit and ensemble model for classification. Their segmentation unit,

the Res-CR-Net, is a new kind of segmentation model the authors introduced in a previous

study [64] that does not contain the same encoder-decoder structure that the popular U-Net

[46] contains. According to the authors, the Res-CR-Net “combines residual blocks based on

separable, atrous convolutions [65, 66] with residual blocks based on recurrent NNs [67].” [64]

The authors trained their Res-CR-Net [64] on several open-source sets of masks and images

[57, 60, 61]. They acquired their classification dataset from the Henry Ford Health System

(HFHS) hospital in Detroit. This private dataset contained 1417 COVID-negative patients

and 848 COVID-positive patients. The authors used this dataset to train a unique hybrid

convnet called the “CXR-Net” that contains a Wavelet Scattering Transform (WST) block

[68, 69], an attention block containing two MultiHeadAttention layers [70, 71], and several

convolutional residual blocks. This segmentation-classification pipeline ultimately achieved

an accuracy of 79.3% and an F1 Score of 72.3% on their test set.

5.3 Proposed Network Architecture

5.3.1 Segmentation Dataset

To train our segmentation model, we looked at the datasets used in our literature

review and decided to use the Darwin V7 Labs dataset[60]. We opted in favor of this dataset

for three reasons. The first reason was its overall size. The Darwin V7 Labs dataset [60] is

significantly larger (6504 images/masks) than most lung segmentation datasets. This being

the case, we were able to train a robust segmentation unit that could accurately operate on a
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Table 5.1: Number of Images/Masks in the Preprocessed Darwin V7 Labs Dataset [60]

Number of Image/Mask Pairings

V7 Labs preprocessed training set 5102
V7 Labs preprocessed test set 1275

wide range of chest X-rays. Our second reason for using the dataset involved considerations

involving the regions of the chest X-rays that its masks cover. Most masks in popular lung

segmentation datasets include only the lungs. The Darwin V7 Labs [60] masks, however,

included space next to the lungs. This left room for the heart to not be excluded. Initially, we

did not give the heart and its size any consideration. Eventually, we came to realize, however,

that cardiomegaly (an enlarged heart) is found in 29.9% of COVID-19 patients [11]. This

symptom would not show up with most general-purpose lung segmentation masks. Our

third reason for using the Darwin V7 Labs dataset [60] was that its masks were created

for patients with a variety of conditions. Some masks were created for normal patients and

others were created for patients exhibiting a variety of lung pathologies including COVID-

19, bacterial pneumonia, viral pneumonia, Pneumocystis pneumonia, fungal pneumonia, and

Chlamydophila pneumonia.

Some preprocessing was required on the Darwin V7 labs dataset [60] to create a model

that operated correctly on the segmentation unit we later created. The segmentation unit

we chose for this study was a ResUnet [130], and this segmentation unit was designed for

256x256 images/masks. We needed to perform some data wrangling using the JSON files that

were included with the dataset to ensure that images smaller than 256x256 were excluded.

The JSON files provided with the Darwin V7 Labs dataset [60] had a field indicating which

kind of X-ray each image was. We, therefore, were able to automate a process whereby we

removed all of the lateral X-rays that were sparsely hidden throughout the dataset. Our

dataset, therefore, solely contained posteroanterior (PA) X-rays. After preprocessing, we

were left with 6377 masks/image pairings. We finally divided this preprocessed Darwin V7

Lab dataset [60] into the 80% training / 20% validation split shown in Table 5.1.
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5.3.2 Classification Datasets

In medical imaging, the ability of a model to generalize to new examples typically is

limited by the size of the training set. Because research into imaging COVID-19 is relatively

recent, there is only approximately a year’s worth of images that have been collected for

classification purposes. For this reason, most published studies cannot present a model

that can be deployed in a clinical setting. This study is no different, although in the work

presented here we have taken significant steps forward in remediating several mistakes we

have witnessed in the datasets of most papers.

When we first started gathering data, we initially realized that publicly available

datasets generally have very little metadata available. That being the case, we decided

to build a classifier that works on images alone. While doing so, we came to realize that

the classification datasets in many studies have been incorrectly assembled. The majority of

papers that have focused on differentiating COVID-19 from similar illnesses have cited using

Kermany et al.’s [16] images in their dataset. As we have previously mentioned in our re-

lated works section, this dataset is composed of children that are suffering from various forms

of bacterial and viral pneumonia. Since the lungs of small children have different features

than adult lungs, we realized these images should not be included in our final classification

dataset. This dataset likely poses more of a problem in biasing classifiers that are trained

on nonsegmented images. The bones of adults are fused and the bones of children are not

fused. This is feature can easily be picked up by a CNN. Kermany et al.’s [16] dataset,

however, still would pose an issue even with a segmentation unit as the spatial features of

adult lungs would differ from those of children’s lungs. The classifiers in studies that include

this dataset, therefore, can pick up features both internal and external to the lungs that are

inconsistent between adults’ and childrens’ lungs. This has, unfortunately, lead to the unfair

biasing of several COVID-19 classifiers in the literature.

Another difficulty facing many studies is the lack of metadata accompanying images.

At least some metadata is required alongside images to ensure that X-rays from individual

patients do not get mixed in the training and test/validation sets. This problem of data

leakage, we believe, is an issue in some studies we have reviewed. We find it disconcerting
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that most studies do not mention how they ensured the separation of patients’ X-ray scans

between training and test sets. An enthusiasm surrounding finding the most images possible

has resulted in a large number of images being harvested from medical research papers.

Wang et al. [51] last year released a popular ’COVIDx5’ dataset that has been able to avoid

this pitfall. Their COVIDx5 dataset [51] is relatively large and we used 14,258 CXR images

from their dataset. In total, this consists of 617 COVID-19 images, 8066 normal images, and

5575 pneumonia images.

We added more COVID-19 images to the COVIDx5 dataset [51] because of the large

COVID-19 class imbalance that existed within it. We hoped it would help to reduce overfit-

ting in our classifier. We therefore added 922 COVID-19 images from the MIDRC-RICORD-

1C database [121] and 2474 images from the BIMCV dataset [122]. In total, we constructed

a dataset that contains 4013 COVID-19 images, 8066 normal images, and 5445 pneumonia

images. The images from the COVIDx5 dataset [51] had the necessary metadata needed

to allow us to split these images into three sets (80% training/ 10% validation/ 10%test)

without creating data leakage. The MIDRC-RICORD-1C dataset [121] and BIMCV dataset

[122] were released long after the COVIDx5 dataset [51], and none of these datasets had

any relation with one another. It was therefore possible to split the COVID-19 images

within these datasets into three sets without creating data leakage between them. The

BIMCV [122] COVID-19 images were entirely used in the training set and the COVIDx5

[51] COVID-19 images were entirely split evenly between the validation and test set. The

MIDRC-RICORD-1C [121] COVID-19 images were used in all three sets. The MIDRC-

RICORD-1C [121] images came with metadata. Fortunately, the metadata allowed us to be

able to divide the images from the MIDRC-RICORD-1C [121] dataset by patient between

our training and validation/test sets. In this way we were able to create the datasets shown

in Tables 5.2 and 5.3. We created both multiclass (3-class) and binary datasets to later

compare our segmentation-classification pipeline with models that are reported in various

other papers. It was important to produce our large COVID-19 dataset with both validation

and test sets to help mitigate concerns that have been brought up by Wehbe et al. [19]

concerning overfitting.
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Table 5.2: Number of Images in Our Multiclass Training and Test Sets

COVID-19 Normal Pneumonia

Multiclass Training Set 3209 7262 4771
Multiclass Validation Set 402 402 402

Multiclass Test Set 402 402 402

Table 5.3: Number of Images in Our Binary Training and Test Sets

COVID-19 Non-COVID-19

Binary Training Set 3209 12033
Binary Validation Set 402 402

Binary Test Set 402 402

Table 5.4: Number of Images in the COVID-GR-1.0 Training and Test Sets [56]

COVID-19 Normal

COVID-GR-1.0 Training Set 340 340
COVID-GR-1.0 Test Set 86 86

In addition to the above dataset that we created, we also directly tested our model

on another dataset that was used in Tabik et al.’s [56] study. We wanted to test our

segmentation-classification against Tabik et al.’s [56] pipeline because their model worked

on many of the same principles ours did. Their model used a segmentation algorithm that

leaves more pixels surrounding the lungs in the images they segment. It has been difficult

to find segmentation-classification pipelines like our own with unbiased and correctly con-

structed datasets. We were unable to find a study to directly compare ourselves against that

uses a segmentation-classification pipeline and has a larger public dataset. Tabik et al.’s [56]

study used a very conservative dataset that was meant to measure the performance of a deep

learning model on weaker COVID-19 cases. Their “COVID-GR-1.0” binary dataset has 426

COVID-19 patients and 426 normal patients. The authors originally split this dataset into

a 80% training / 20% test split. The dataset split in this format is shown in Table 5.4.
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5.3.3 System Design

We set out to construct our deep learning segmentation-classification pipeline by first

choosing an appropriate segmentation module to preprocess our classification dataset. We

tested the preprocessed Darwin V7 Labs dataset [60] on a host of different segmentation

modules including the popular U-Net [46], the ResUnet [130], the ResUNet-a [131], the

TransResUNet [132] and U-Nets containing VGG and DenseNet backbones. Before training,

we required the images in our preprocessed V7 Labs dataset [60] to undergo additional

preprocessing in the form of image augmentation. During augmentation, we set the rotation

range to 180 degrees, width/height shift ranges to 30%, shear range to 20%, zoom range

to 20%, and set horizontal flips to true. We ultimately found that our best results on the

preprocessed Darwin V7 Labs dataset [60] were obtained using Zhang et al’s ResUnet [130].

We therefore decided to move forward using this segmentation module in our pipeline. The

ResUnet [130] on our preprocessed V7 Labs dataset ultimately obtained a dice similarity

coefficient of 95.04% after 45 epochs. This segmentation module uses a 7-level architecture

shown in Fig 5.1. Its architecture can be understood by dividing it conceptually into three

main parts. The first part of the architecture is an encoder that fits the images input into

the module into smaller and more compact representations. The last main segment of this

architecture is the decoder which ”recovers the representations to a pixel-wise categorization,

i.e., semantic segmentation.” [130] The second middle part of the classifier serves as a bridge

between the encoder at the ResUNet’s [130] input and the decoder at the ResUNet’s [130]

output.

Having discussed the segmentation portion of the deep learning pipeline, we now move

on to discussing the models that we have constructed for classifying COVID-19 images. We

trained our preprocessed multiclass training set on a DenseNet-201 [31], a ResNet-152 [29],

and a VGG-19 [30]. Each of these models was set to pretrained ImageNet weights. While

designing each of these models we added an extra dense layer and dropout layer to the end of

each model. The DenseNet-201’s [31] extra dense layer contained 128 neurons. The ResNet-

152’s [29] extra dense layer contained 1024 neurons. The VGG-19’s [30] extra dense layer

contained 4096 neurons. Each of the activation functions in these dense layers was set to a
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Figure 5.1: ResUnet architecture [130]

ReLU activation. The dropout layer added to the end of each model was set to a dropout

rate of 10 percent. This helped each model to avoid overfitting. We constructed both binary

and multiclass versions of all of these classifiers. For the binary version of each classifier, we

replaced the final softmax layer of each classifier with a single neuron containing a sigmoid

activation function. For the multiclass version of each of these classifiers, our final layers

contained three neurons each and had a softmax activation function.

Prior to training our DenseNet-201 [31], ResNet-152 [29], and VGG-19 [30] CNNs, we

noticed that a class imbalance existed in our multiclass and binary datasets. There were

lower amounts of COVID-19 images in comparison to the other categories of images in our

datasets. We, therefore, needed to weigh the loss functions of our classifiers to correct for

this imbalance. Prior to training our classifiers, we additionally used image augmentation on

the segmented images from our ResUNet [130] to prevent overfitting in our classifiers. Using

Kera’s ImageDataGenerator class, we set the rotation range to 15%, the width/height range
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Figure 5.2: Proposed network architecture for COVID-19 classification with majority voting.

to 15%, the shear range to 15%, the zoom range to 15%, and horizontal flips to true. Our

training and test set batch sizes were set to 32. In addition to segmenting and augmenting

our classification datasets, we also normalized our data. In doing so, we ensured that the

scaled data in each batch had a mean of zero and a standard deviation of one.

After our initial preprocessing steps, we trained the final fully-connected layers of each

classifier alone for five epochs. We used the ADAM optimizer during this training and kept

the ADAM optimizer set to its default settings. After performing this training, for each

classifier we progressively unfroze each model’s layers and fine-tuned our models at a fixed

learning rate of 1x10-5 until each model hit its highest possible validation accuracy. Prior to

unfreezing progressive layers in our models, we froze the moving mean and moving variance of

the batches in our models’ batchnormalization layers to keep these parameters fixed to their

pretrained ImageNet weights. After training each of our CNNs to their optimal validation

accuracies, we constructed a majority voting ensemble and a weighted average ensemble

that combined all of our classifiers together. The weighted average ensemble’s VGG-19

and DenseNet-121 were weighted more heavily with weights of 0.4, while the ResNet-152

had a weight of 0.2. After the probabilities of each classifier were combined with their

corresponding weights, a probability for each class could be determined. The class with the

highest probability was chosen as the final prediction. The majority voting classifier worked

by assigning a final vote to each classifier and the category with the most votes was the final

prediction. We constructed both a binary version and a multiclass version of each type of

ensemble classifier. Illustrations showing our overall deep learning pipelines can be observed

in Figs. 5.2 and 5.3.
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Figure 5.3: Proposed network architecture for COVID-19 classification with weighted
averaging.

5.4 Experimental Results

5.4.1 Performance Evaluation

Within the COVID-19 deep learning literature, we have found that most studies report

common evaluation metrics. To compare our models against the literature we have reviewed,

we have chosen to report the accuracy, sensitivity, specificity, F1-Score, precision, recall,

negative predictive value (NPV), positive predictive value (PPV), and area under the receiver

operating characteristic curve (AUC-ROC) of our deep learning pipeline.

We first set out to train our multiclass and binary DenseNet-201 [31], ResNet-152 [29],

and VGG-19 [30] models for five epochs. On each model, we obtained a validation accuracy

that ranged between 70 and 80 percent. This largely mirrored the performance of expert

radiologists who had their expertise measured in a research study led by Wehbe et al. [19].

We performed this initial work using our multiclass and binary training sets before moving

on to test ourselves against Tabik et al.’s [56] model (which was trained on the “COVID-

GR-1.0” dataset). During this initial stage, we worked toward increasing the accuracy of all

three of these classifiers by unfreezing each model during training progressively.

On our multiclass dataset set, we obtained final validation set accuracies of 82.16%

on our DenseNet-201 [31], 84.25% on our ResNet-152 [29], and 81.09% on our VGG-19 [30].

Likewise, on our multiclass dataset set, we obtained final test set accuracies of 82.42% on our

DenseNet-201 [31], 81.84% on our ResNet-152 [29], and 77.53% on our VGG-19 [30]. The

test accuracies we obtained all saw a decrease of 2% - 4% from their corresponding validation

set accuracies. When we ensembled all three classifiers into majority voting and weighted
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Table 5.5: The Performance of Our Classifiers on Our Multiclass Dataset

Classifier Val. Acc. Test Acc. Val. COV. Sen. Test COV. Sen.

DenseNet-201 82.16% 82.42% 84.32% 82.09%

ResNet-152 84.25% 81.84% 82.59% 76.86%

VGG-19 81.09% 77.53% 81.34% 75.62%

Weighted Avg. Ens. 87.40% 84.07% 85.32% 81.34%

Maj. Voting Ens. 87.14% 84.00% 86.07% 81.84%

Table 5.6: The Performance of Our Classifiers on Our Binary Dataset

Classifier Val. Acc. Test Acc. Val. COV. Sen. Test COV. Sen.

DenseNet-201 89.55% 88.43% 88.81% 85.82%

ResNet-152 85.70% 82.09% 91.04% 84.82%

VGG-19 89.55% 84.55% 89.30% 83.08%

Weighted Avg. Ens. 91.17% 91.17% 91.79% 91.79%

Maj. Voting Ens. 90.67% 88.18% 91.29% 87.06%

average ensembles, we saw an increase in performance on our validation and test sets. For our

weighted average ensemble, we obtained a validation set accuracy of 87.40% and a test set

accuracy of 84.07%. For our majority voting ensemble, we obtained a validation set accuracy

of 87.14% and a test set accuracy of 84.00%. In both instances, we found that the test set

accuracies of both ensembles outperformed our best individual classifier (DenseNet-201 [31])

by more than 1.5%. The overall performance of our three classifiers and our ensembles on

our multiclass validation and test sets can be seen in Table 5.5. Our binary classifiers were

trained in the same way as our muilticlass classifiers. The overall performance of our three

classifiers and our ensembles on our binary validation and test sets can be seen in Table

5.6. Tables 5.7 - 5.10 show a larger suite of statistics generated on the multiclass and binary

test sets using both our weighted average and majority voting ensembles. Figs. 5.4 - 5.7

show the corresponding confusion matrices generated by our weighted average and majority

voting ensembles on our multiclass and binary test sets. Fig. 5.8 shows the AUC-ROC

curves generated by our weighted average ensembles.
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Table 5.7: Weighted Average Ensemble Performance Metrics After Training on Our
Multiclass Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 327 737 67 75 0.88 0.81 0.92 0.83 0.94 0.81
Normal 362 742 55 40 0.92 0.90 0.93 0.87 0.95 0.88
Pneumonia 325 734 70 77 0.88 0.81 0.91 0.82 0.91 0.81

Figure 5.4: Confusion matrix from weighted average ensemble after training on our
multiclass training set.

Table 5.8: Majority Voting Ensemble Performance Metrics After Training on Our Multiclass
Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 329 729 75 73 0.88 0.82 0.91 0.81 0.91 0.82
Normal 362 754 50 40 0.93 0.90 0.94 0.88 0.95 0.89
Pneumonia 322 736 68 80 0.88 0.81 0.92 0.83 0.90 0.81

Figure 5.5: Confusion matrix from majority voting ensemble after training on our multiclass
training set.
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Table 5.9: Weighted Average Ensemble Performance Metrics After Training on Our Binary
Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 369 364 38 33 0.91 0.92 0.91 0.91 0.92 0.91
Non-COVID-19 364 369 33 38 0.91 0.91 0.92 0.92 0.91 0.91

Figure 5.6: Confusion matrix from weighted average ensemble after training on our binary
training set.

Table 5.10: Majority Voting Ensemble Performance Metrics After Training on Our Binary
Training Set

TP TN FP FN Acc. Sens. Spec. PPV NPV F1

COVID-19 350 359 43 52 0.88 0.87 0.89 0.89 0.87 0.88
Non-COVID-19 359 350 52 43 0.88 0.89 0.87 0.87 0.89 0.88

Figure 5.7: Confusion matrix from majority voting ensemble after training on our binary
training set.
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(a) (b)

Figure 5.8: AUC-ROC graphs of (a) Our multiclass weighted average ensemble trained on
our multiclass training set and (b) Our binary weighted average ensemble trained on our

binary training set.

(a) Original Image (b) Nonseg. Grad-CAM

(c) Segmented Image (d) Segmented Grad-
CAM

Figure 5.9: Example of a segmented and non-segmented Grad-CAM heatmap produced by
our DenseNet-201.
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Table 5.11: Our Binary Models Vs. COVID-SDNet on the COVID-GR-1.0 Dataset [56]

Classifier Val. Acc. Val. COV. Sen.

Weighted Avg. Ens. 76.74% 77.91%

Maj. Voting Ens. 76.16% 73.26%

COVID-SDNet 76.18% 72.59%

After training and testing our segmentation-classification pipeline on our datasets, we

also tested our binary pipeline directly against Tabik et al.’s [56] COVID-SDNet model.

The details of their publicly available ”COVID-GR-1.0” dataset [56] are provided in Section

5.3.2. It should be noted that Tabik et al.’s [56] dataset is smaller than ours and composed

in a fashion whereby the authors collaborated with radiologists to intentionally incorporate

weaker COVID-19 images into their dataset. This being the case, lower performance metrics

should be expected out of this dataset. These two datasets have been designed to deal with

separate problems and a detailed discussion concerning these differences is presented in the

following section. Table 5.11 shows how our models compared against Tabik et al.’s [56]

COVID-SDNet model.

Every deep learning expert working in computer vision understands that it is necessary

to validate the final version of a classifier after it has been trained. In medical imaging,

saliency maps are widely employed on computer vision models to ensure that these models

are correctly identifying important features in an image. In radiology, it is common for

deep learning models to incorrectly focus on necklaces, medical devices, and the text within

X-ray scans. The reason we included a segmentation unit in our study was to ensure that

our model’s CNNs were rejecting unnecessary image details outside of the boundaries of the

lungs. We used a Grad-CAM [39] in this study to ensure that our segmentation module was

doing its job correctly in assisting our models to pick up the correct features of COVID-19.

A Grad-CAM [39] functions by using the final feature maps in the last convolutional layer of

a CNN to signal regions of importance within an image. We were interested in studying our

CNNs that were trained on segmented images. We therefore devised a plan to compare them

with CNNs that were trained on nonsegmented images. Fig. 5.9 shows the performance of

our a DenseNet-201 [31] after being trained on segmented and nonsegmented X-rays. Our

132



DenseNet-201 [31] was one of the three CNNs that we used in constructing our majority

voting and weighted average ensembles. Part (b) of Fig. 5.9 shows the performance of our

DenseNet-201 [31] on a test image after it was trained without a segmentation module. The

red parts of the heatmap indicate the primary parts of the image that the DenseNet-201 [31]

focused on when determining a patient has COVID-19. The orange/yellow portions of the

heatmap represent areas of medium importance. The green/blue areas of the Grad-CAM

[39] heatmap represented areas that were the least important diagnostically in determining

that a patient is COVID-19 positive. Unfortunately, portions of the red and orange/yellow

parts of the heatmap in part (b) of Fig. 5.9 are focused on areas outside of the lungs. The

area that the Grad-CAM [39] partially focused on in the upper right-hand side of the image

was a problem. This area should have been irrelevant to a COVID-19 diagnosis. When our

DenseNet-201 [31] was trained on segmented images however, its behavior improved as is

shown in part (d) of Fig. 5.9. We monitored the performance of our model in this way

to ensure that our model was picking up the features of COVID-19 that we highlighted in

section 5.1.

5.4.2 Discussion

Wehbe et al. [19] conducted an important study that measured the performance of

practicing radiologists on a private COVID-19 vs. non-COVID-19 dataset. In our work,

we took it upon ourselves to build a COVID-19 dataset of comparable size. We wanted to

measure our pipeline’s ability to compete with the radiologists in their study and their model.

We were more specifically interested in comparing our pipeline’s COVID-19 sensitivity with

the radiologists in Wehbe et al.’s [19] study given the problems concerning RT-PCR test

sensitivity we have read about in scientific journals. The radiologists’ consensus sensitivity

in Wehbe et al.’s study [19] was 70%. All of our ensembles, including those trained on the

weaker images in the ”COVID-GR-1.0” dataset [56], obtained a higher COVID-19 sensitivity.

The COVID-19 sensitivity of the five expert radiologists in Wehbe et al.’s [19] study versus

that of our ensembles’ can be seen in Table 5.12.
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Table 5.12: The COVID-19 Sensitivity of Five Expert Radiologists in Wehbe et al.’s Study
[19] Vs. Our Classifiers

Group/Individual/Classifier COV. Sens.

The Consensus of Expert Radiologists 70%
The Best Radiologist 76%

The Worst Radiologist 60%
Weighted Avg. Ensemble (Our Binary dataset) 91.79%

Weighted Avg. Ensemble (COVID-GR-1.0 dataset [56]) 77.91%

As can be seen in Table 5.12, when we compare our ensemble models with the perfor-

mance of the radiologists in Wehbe et al.’s [19] study, we outperform even the best radiol-

ogist’s COVID-19 sensitivity. In Table 5.12, another item that stands out is the difference

in sensitivity between the ensemble we trained on our binary dataset versus the ensemble

we trained on the COVID-GR-1.0 dataset [56]. This discrepancy can be explained by the

higher number of weak COVID-19 images that were intentionally placed by radiologists in

the ”COVID-GR-1.0” dataset [56]. Tabik et al. [56] created the ”COVID-GR-1.0” dataset

to measure the performance of their classifier on COVID-19 images that are more difficult to

classify. Even after we trained our ensemble model on this extremely conservative dataset,

we still managed to obtain a higher sensitivity than the radiologists in Wehbe et al.’s [19]

study.

When we constructed our binary dataset, we built our dataset so as to respond to

a criticism that Wehbe et al. [19] mentioned in their paper concerning the size of public

datasets. Wehbe et al.’s [19] study found that the consensus accuracy and sensitivity of

expert radiologists are 81% and 70% respectively. After training their ensemble model,

Wehbe et al. [19] found that their system achieved a test accuracy of 82% and test sensitivity

of 75%. Many other studies however have reported performance metrics that are much

higher than this. Wehbe et al. [19] explained this by showing how models with extremely

high metrics often have very small COVID-19 datasets. They posited that if the number of

COVID-19 images in these other studies increased, these models would see a correction. They

believed that early COVID-19 deep learning models were overfitting on small COVID-19

datasets. We therefore set out to construct a larger COVID-19 dataset than any other public
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COVID-19 dataset we have seen in the literature thus far. We felt that it was additionally

important to create separate validation and test sets in order to ensure that overfitting does

not occur. For the same reason, we also ensured that each of our CNNs had dropout layers

in their second last layers.

Wehbe et al.’s [19] criticism of small public datasets was not the only concern we

have ended up discovering when using public datasets. We later realized that many public

datasets include images from Kermany et. al.’s [16] dataset which contains the chest X-rays

of young children suffering from various forms of pneumonia. It is incorrect to take a model

that was trained on children’s X-rays and deploy it on adult X-rays. When we attempted to

use such a dataset for training one of our CNNs, we obtained extremely high-performance

metrics (accuracy/sensitivity between 98% - 100%). We noticed that several deep learning

segmentation-classification pipelines [14, 78, 50] made this mistake. In addition to this, we

have come to suspect that some authors may have unintentionally biased their classifiers by

mixing multiple images from individual patients in their training and test sets. In Table 5.13

we compare our work with other segmentation-classification pipelines that have not made

the mistake of incorrectly biasing their models with improperly constructed datasets.

Table 5.13: Performance of Similar Segmentation-Classification Pipelines
Without Dataset Composition Issues

Research Paper Seg. DSC Acc. COV. Sens.

Yeh et al. [20]
3-class 0.88 - 82%

Wehbe et al. [19]
2-class - 82% 75% -

Abdullah et al. [63]
2-class 0.96 79% -

Tabik et al. [56]
2-class (COVID-GR-1.0 dataset) - 76% 73%

Ours
Best 3-class Ens. (Maj. Vot.) 0.95 84% 82%
Best 2-class Ens. (Wei. Avg.) 0.95 91% 92%

2-class (COVID-GR-1.0 dataset) 0.95 77% 78%
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Our best three-class and two-class ensembles should only be compared against the first

three classifiers in Table 5.13. Our three-class and two-class ensembles were trained on a

dataset that we built after gathering as many COVID-19 images as possible. The authors

of the first three papers in Table 5.13, composed their datasets in the same way. The

COVID-GR-1.0 dataset [56], however, was trained intentionally on weak COVID-19 images

resulting in a classifier that should be treated in isolation. In comparing our segmentation

unit with Yeh et al.’s [20] U-Net [46] segmentation model, our ResUNet [130] achieved a

dice similarity coefficient that was 7 percent higher. In terms of dataset size, our COVID-19

dataset contained over 3000 more COVID-19 images. Yeh et al. [20] had a smaller dataset,

therefore, and were more likely to have overfit their model. Our model was, therefore,

more likely to face downward pressure in our performance metrics. Our three-class model,

however, was still capable of obtaining the same COVID-19 sensitivity as Yeh et al.’s [20]

model. It likely was able to do so with the help of better segmentation and the use of a

majority voting ensemble. This indicates that on datasets that are constructed with as many

COVID-19 images as possible, a three-class model (COVID-19 vs. Normal vs. Pneumonia)

can reasonably achieve a COVID-19 sensitivity of 82%. Our two-class weighted average

ensemble outperformed Wehbe et al.’s [19] classifier by a substantial margin. This may have

been caused by a difference in our approach to segmentation. Wehbe et al.’s [19] classifier

was trained to crop out the smallest rectangle that a patient’s lungs can fit within. Our

segmentation unit was trained on a set of masks that removed more pixels than Wehbe et

al.’s [19] segmentation unit. It still managed though to not eliminate the pixels showing the

heart. Our weighted average ensemble also outperformed Abdullah et al.’s [63] model despite

our having a segmentation unit that under-performed Abdullah et al.’s Res-CR-Net [64] by

one percent. We obtained a two-class accuracy that was 12 percent better than Abdullah

et al.’s [64] classification model. We believe this is a result of our having constructed an

extremely robust weighted average classification ensemble.

It should be noted that there are instances where using a segmentation unit can reduce

a model’s accuracy. While segmentation units should generally always help a classifier’s

accuracy, we have noticed in our work that classifiers without a segmentation unit can lock

onto features of an image that are external to the lungs. Sometimes this helps to increase a
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CNN’s ability to classify particular images. For instance, if one category of images has more

text than another you might notice the Grad-CAM [39] heatmaps for that category focusing

on text. Our segmentation unit removed this possibility from happening and ultimately

allowed us to boost our model’s accuracy in a more honest fashion.

The approach to creating datasets that is followed by the vast majority of research

papers is to obtain as many COVID-19 images as possible. During the early stages of

the coronavirus pandemic, there was a lack of COVID19 images and many papers were

being published that likely were overfitting on datasets containing only a couple of hundred

COVID-19 images. Tabik et al. [56] published their paper when fewer COVID-19 images

existed and therefore their paper only contained 426 COVID-19 images. The authors of

this paper obtained the help of an expert radiologist. This radiologist located PCR positive

images that did not have the visual features of COVID-19. They infused their dataset with

such images and wanted to see the effect this would have. They eventually found that their

classifier could identify COVID-19 in 85 to 97 percent of moderate to severe images. Mild

COVID-19 images, however, could only be diagnosed correctly 46 percent of the time. They

did not publish the accuracy of their classifier on Normal PCR positive images. We have to

imagine that the accuracy for Normal PCR positive images was even lower. In total, their

classifier had a final accuracy of 76 percent and COVID-19 sensitivity of 73 percent. When

our binary weighted average ensemble was trained on their dataset, it achieved a 77 percent

accuracy and a 78 percent COVID-19 sensitivity.

Tabik et al.’s [56] dataset was the only dataset that we could obtain that allowed us

to directly compare our pipeline with another author’s segmentation-classification pipeline.

It has been difficult to find publicly available datasets such as this one where the authors

have made clear how they segmented and classified their images. Tabik et al. [56] did not

report a dice similarity coefficient because they segmented their images in such a way so

as to create a small cropped rectangle around the lungs. This is similar in principle to

how we segmented our images. We chose the Darwin V7 Labs dataset [60] for training our

segmentation unit because the masks in this dataset left more room around the lungs to

show the heart. We believe that if a segmentation unit were to remove these pixels, that
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COVID-19 symptoms like cardiomegaly could go unobserved by a classifier. We believe

that our weighted average ensemble is ultimately what allowed us to achieve an improved

accuracy and improved COVID-19 sensitivity when comparing our model with Tabik et al.’s

[56] model. Our segmentation unit also likely helped as well, as it rejected a greater number

of superfluous pixels around the lungs in comparison to Tabik et al.’s [56] segmentation

methodology.

By now, when comparing the research studies in chapters 4 and 5, the reader is likely

wondering why the sensitivities in the second study are lower than the sensitivities in the

first study. After all, segmentation is supposed to improve the performance of a downstream

classifier. So why does the second study with its advanced methods not outperform the

first study? One of the most significant differences between the models in both studies is

the first study’s use of pretraining. When designing a system to have a segmentation unit

alongside a pretrained model, the pretrained model should originally be trained on segmented

images. The original ChexNet architecture [45] that our COV-SNET model was based on

originally was trained on over 100,000 non-segmented images. This is an important point.

Segmentation takes away a lot of the image that was originally available to be classified.

In this chapter, we previously discussed that cardiomegaly (an enlarged heart) is found

in 29.9% of COVID-19 patients [11]. While the segmentation unit we used in the second

study usually left the heart alone, in a minority of instances, segmentation failed to keep

the heart within our images. This problem can be seen in the two X-ray scans processed by

our segmentation unit in Fig. 5.10. The lungs of most images in our classification dataset

typically contained a black or grey background that was easy for a segmentation unit to

analyze. The segmentation unit, therefore, did a very good job at leaving the lungs alone in

most images. That, however, was not always true of the heart.

When we first implemented our segmentation unit, we trained it on the Darwin V7

Labs dataset [60] because it had masks that were designed to keep the pixels containing a

patient’s heart. We eventually came to realize, however, that our segmentation unit occa-

sionally removed the heart in problematic images. After analyzing the Grad-CAMs [39] of

our classified images with and without a segmentation unit, we came to discover that our
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CNNs often focused on the heart when determining whether a patient is COVID-19 positive.

Our segmentation unit, therefore, occasionally removed information that our COV-SNET

model relies on. The training of the original ChexNet [45] model that was utilized in the

first study relied on full X-ray images. One of the 14 pathologies it was trained to pick up

on was cardiomegaly. Since the pretrained model we used in our COV-SNET model was

trained to diagnose cardiomegaly, our COV-SNET model was able to use the features of car-

diomegaly when diagnosing a COVID-19 patient. When we used a segmentation unit on our

COV-SNET model, it underperformed. This led us to work with ImageNet pretrained CNNs

to see if we could obtain any improvement. Our ImageNet pretrained CNNs outperformed

our COV-SNET model in classifying segmented X-rays. Segmentation also improved the per-

formance of our ImageNet pretrained CNNs. Our ImageNet pretrained CNNs were trained

on segmented images and were never pretrained to pick on the features of cardiomegaly.

They therefore still under-performed the version of our COV-SNET model that was trained

on nonsegmented images. Ensembling our ImageNet pretrained CNNs further improved the

performance of our segmentation-classification pipeline. It allowed us to outcompete the

other COVID-19 segmentation-classification pipelines that we have found in the literature.

We were not capable, however, of outcompeting our COV-SNET model from chapter 4.

We have also found that COVID-19 images can occasionally contain a massive amount

of white area within a patient’s lungs in severe COVID-19 cases. This is additionally another

area where a segmentation unit can struggle. Most segmentation units are trained on datasets

where the lungs mostly have a black or grey background. It is difficult to segment lungs that

are completely full of white opacities. This is because a segmentation unit can interpret very

white lungs as belonging to the background that is supposed to be segmented out. This

becomes a problem when there is an insufficient number of X-rays in a segmentation dataset

with severe pneumonia. While the Darwin V7 Labs dataset [60] contained pneumonia images,

there was not a sufficient number of severe cases where the lungs were mostly white. We

believe this would have helped our segmentation unit to perform better on severe images.

An example of this problem from our segmentation unit is shown in Fig. 5.11. It is difficult

to know how much of an effect this had on our final classifier. In the majority of images,

this problem could not be found. We believe, however, that this may have contributed to
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(a) Original Image (b) Segmented Image

(c) Original Image (d) Segmented Image

Figure 5.10: Comparing a good vs. problematic X-ray scan processed by our ResUnet [130].
The heart in the right lung should not be removed.

(a) Original Image (b) Segmented Image

Figure 5.11: An example of our segmentation unit struggling with extremely white lungs.

reduced performance metrics and that more severe pneumonia images were necessary for

training our segmentation unit.

Out of the ensembles we constructed, the weighted average ensemble seems to be the

most reliable in producing the best results. The weighted average ensembles outperform

the majority voting ensembles in all performance metrics, except for in 3-class sensitivity

(a half percent minor difference). The test and validation accuracy metrics of the 2-class
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and 3-class weighted average ensembles were higher than those produced by the majority

voting ensembles. When comparing the performance metrics between the 3-class weighted

average ensemble and 3-class majority voting ensemble, it can be seen that they closely

match each other. The 2-class weighted average ensemble outcompeted the 2-class majority

voting ensemble by a substantial margin in all of our recorded metrics. The test sensitivity

of our 2-class majority voting classifier was 4.74% higher than the test sensitivity of the

2-class majority voting classifier.
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Chapter 6

Conclusion

6.1 Meeting the Objectives

This research aimed to design X-ray-based deep learning models capable of diagnosing

COVID-19. The research in our studies was limited to working on diagnosis alone as there

was an insufficient amount of metadata to work on prognosis. The focus of this research was

to achieve the highest sensitivity possible in comparison with other deep learning computer

vision models and molecular tests. RT-PCR tests are presently considered the gold standard

for COVID-19 testing and they have been reported to have a sensitivity ranging between

70 to 90 percent [6]. Initially, there were significant limitations in terms of the number of

X-ray images available. The authors of most papers in the literature review used datasets

that were incorrectly assembled. Deep learning models trained on public datasets prior to

early 2021 all have experienced dataset size limitations in terms of the number of COVID-19

X-rays available. This has made all of these models susceptible to possible overfitting. There

are now, however, several thousand COVID-19 X-rays publicly available. This recent surge

in available COVID-19 X-rays allows for past authors still working in this space to check and

see if their models will ultimately correct when training with a larger dataset. The two-class

and three-class datasets that we have constructed contain the largest number of publicly

available COVID-19 images that we have found in the literature.

At the beginning of our research, we started out hoping to benchmark our study against

a popular dataset. This led us to use Wang et al.’s [51] COVIDx dataset. The COV-SNET
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model ended up achieving a higher sensitivity than their model. The COV-SNET model

additionally was trained with more COVID-19 images. This ultimately allowed us to ensure

that our model was not overfitting on a dataset containing only a limited number of COVID-

19 images. The COV-SNET models are currently capable of obtaining a higher COVID-19

sensitivity than all other models we have reviewed in the literature so far. We have restricted

this analysis to those models that do not improperly use Kermany et al.’s [16] dataset or

otherwise make any observable dataset composition mistakes. The COV-SNET models led

to promising evaluation metrics in comparison with expert radiologists in the field [19]. We

achieved two-class and three-class COVID-19 sensitivities of 95 percent. This study also

achieved sensitivities that are superior to an RT-PCR test.

In training the segmentation-classification pipeline in our second study, we were ul-

timately able to design several ensembles that generated promising results. Our best two-

class weighted average ensemble achieved a 91 percent COVID-19 accuracy and 92 percent

COVID-19 sensitivity. We were additionally able to outcompete a segmentation-classification

pipeline from Tabik et al. [56] that we directly compared our pipeline against. Our

segmentation-classification pipeline also achieved a better overall sensitivity than all of the

other models we indirectly compared ourselves against. These comparisons were limited to

other published models that have been trained on correctly assembled datasets. In the end,

our second study also achieved a higher sensitivity than that of an RT-PCR test.

6.2 Advantages and Shortcomings of the Proposed Deep

Learning Systems

The COV-SNET model clearly showed that pretraining a deep learning model on a

related set of images is a successful methodology. This was apparent from the beginning,

when we started experimenting with Rajpurkar’s ChexNet [45] model. The images that

were used to train the original ChexNet were all frontal chest X-rays. They were all labeled

as belonging to one of 14 different pathologies. This makes the original ChexNet model

extremely versatile and allows it to be easily repurposed for diagnosing thoracic diseases like
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COVID-19. We also slightly modified the original ChexNet [45] to have extra classification

and dropout layers. This allowed us to avoid overfitting. Our dataset of COVID-19 X-rays is

larger than any we have been able to find in the literature. We have divided it into training,

test, and validation sets and ensured that there is no data leakage between our validation

and test sets. Our dataset’s size and structure has helped us to avoid the kind of overfitting

that has been reported in previous studies.

We originally believed we could improve on the COV-SNET models by pairing them

with a well-trained segmentation unit. This, unfortunately, was not possible. We later

discovered that our segmentation unit removed parts of our X-ray images that assisted the

COV-SNET model to diagnose COVID-19. Since cardiomegaly is found in 29.9% of COVID-

19 patients, we came to realize that the COV-SNET model’s performance was negatively

affected. When using a Grad-CAM [39], we noticed that the COV-SNET models often

focused on the heart when diagnosing COVID-19. There was nothing we could do, unfortu-

nately, to correct for the shortcomings of our segmentation dataset. We later came to find

out that the Darwin V7 Labs dataset [60] did not have enough COVID-19 masks and cor-

responding images to train a segmentation unit that will always segment COVID-19 images

accurately. Errors from our segmentation unit dragged down the performance of our final

classifiers. We eventually found that we had more success pairing our segmentation unit

with ImageNet-based CNNs. They seemed to perform slightly better than models based

on a ChexNet architecture [45]. We were unable to obtain the sensitivities of the classi-

fiers in chapter 4 with individual ImageNet-based CNNs, so we constructed an ensemble

of them to try to reach our previous study’s sensitivities. While we failed to reach our

previous study’s sensitivities, we managed to perform better than the other segmentation-

classification pipelines we have found in the literature. We also found that our Grad-CAM

[39] heatmaps improved with segmentation and that our classifiers were focusing on more of

the areas that they should be. We therefore obtained better validation results (in the visual

sense) for our CNNs when using segmentation.

Should segmentation, therefore, have assisted our second study’s classifier in diag-

nosing COVID-19? The answer is mixed. Our segmentation unit was not perfect due to
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the limitations of our segmentation dataset. We therefore had errors in how our classifier

processed X-rays. We believe that our segmentation unit required a better assortment of

COVID-19 and pneumonia masks/images. That was the real limitation that we experienced

in our second study. Ensembling was not able to make up for the fact that we needed a

richer segmentation dataset than is currently available. With a better segmentation dataset,

segmentation certainly would have assisted our classifier in diagnosing COVID-19.

6.3 Recommendations

Our models, as demonstrated in the experimental results, showed promising charac-

teristics in terms of the Grad-CAM heatmaps and performance metrics they produced. Our

models are currently not ready to be implemented in a clinical setting. For deep learning

models such as ours to be advanced into a clinical setting, the medical community and AI

experts require further collaboration. To the best of our knowledge, no study has been per-

formed whereby every single incoming patient at a medical facility was tested for COVID-19

with an X-ray and RT-PCR test simultaneously. The COVID-19 images that can be found

in public datasets tend to come from patients that were showing increased complications

from their illness. In private datasets, the same problem likely exists as well since radi-

ological evaluations are typically reserved for patients showing a concerning trend in the

development of their illness. It is important to find out the proportion of incoming patients

at a medical clinic that are COVID-19 positive after blind X-rays get administered to every

patient. Anyone wanting to clinically implement a deep learning system such as ours may

also benefit from blindly administering competing molecular tests (RT-PCR tests), antigen

tests, and antibody tests on the same patients during this data-gathering stage. Additional

metadata concerning each patient’s age, sex, and relevant background details would also

help tremendously.

We experienced some significant limitations due to the quantity of COVID-19 and

pneumonia masks/images in our segmentation dataset. Better segmentation datasets are

required. We need more segmentation datasets that have masks for both the lungs and
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the heart. These datasets need to contain more severe cases of pneumonia and COVID-19.

They need to contain images with opacities that are mostly filling the insides of the lungs.

Aside from this, we need more COVID-19 X-ray images. These images need to come with

accompanying metadata that outlines their original source. There are many studies with

incorrectly assembled datasets. There is a need for trusted institutions to gather properly

sourced images and for these images to be made available in an organized fashion to the

public.

6.4 Contributions

From chapters 4 and 5, our findings indicate that it is possible to achieve a COVID-19

sensitivity with a deep learning X-ray-based model that is in line with or better than an RT-

PCR test. This is important since novel independent methodologies are sometimes required

to determine a patient’s COVID-19 status. RT-PCR tests often initially give an incorrect

reading when determining a patient’s diagnosis. If an RT-PCR test is initially negative but

a doctor strongly suspects the patient has COVID-19, an X-ray may be a good option to

quickly determine the patient’s diagnosis. This may be especially important if the patient

has any risk factors that a COVID-19 diagnosis could complicate.

In this research, we have shown the effects of pretraining, segmentation, and ensembling

on training an X-ray-based deep learning model in diagnosing COVID-19. Pretraining a

model on a related task with over a hundred thousand X-rays has been shown to be an

an extremely successful technique. Segmentation should be able to marginally improve the

performance metrics of a classifier, but we need better segmentation masks and images to

improve the quality of our segmentation. Ensembling was also shown to be a marginally

effective technique. Our weighted average and majority voting ensembles improved the

sensitivity of our classifiers in the second study.
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6.5 Final Remarks

While the results of the two research studies presented in this work look promising,

more work is required to implement them in a clinical setting. The same can be said for

all of the other X-ray studies that we have reviewed. The addition of more COVID-19

images to public databases will no doubt help to further inform the research community as

to which approaches are the most promising. Medical institutions in countries all over the

world are in need of new diagnostic modalities that can help increase available COVID-19

testing capacity. Deep learning X-ray technology remains a promising candidate for fulfilling

this incredibly important need. We believe that our models are a promising step forward

towards radiologically automating the detection of COVID-19. With a little more time and

resources invested in data-gathering processes, we believe that an X-ray-based COVID-19

deep learning model could one day allow for a truly better standard of care.
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public chest x-ray datasets for computer-aided screening of pulmonary diseases,” Quant
Imaging Med Surg., vol. 4, no. 6, p. 475–477, 2014.

[58] Radiological Society of North America, “Rsna pneumonia detection chal-
lenge,” Kaggle, 2018. [Online]. Available: https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge/data

[59] L. O. Teixeira, R. M. Pereira, D. Bertolini, L. S. Oliveira, L. Nanni, G. D. C.
Cavalcanti, and Y. M. G. Costa, “Impact of lung segmentation on the diagnosis
and explanation of covid-19 in chest x-ray images,” arXiv, 2020. [Online]. Available:
https://arxiv.org/abs/2009.09780

[60] Darwin V7 Labs, “Covid-19 chest x-ray dataset,” 2020. [Online]. Available:
https://darwin.v7labs.com/v7-labs/covid-19-chest-x-ray-dataset

[61] J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K. Komatsu,
M. Matsui, H. Fujita, Y. Kodera, and K. Doi, “Development of a digital image database

153

http://arxiv.org/abs/1809.05989
http://arxiv.org/abs/1910.07387
http://arxiv.org/abs/1610.02357
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://arxiv.org/abs/2009.09780
https://darwin.v7labs.com/v7-labs/covid-19-chest-x-ray-dataset


for chest radiographs with and without a lung nodule: receiver operating character-
istic analysis of radiologists’ detection of pulmonary nodules,” American Journal of
Roentgenology, vol. 174, no. 1, pp. 71–74, 2000.

[62] R. M. Pereira, D. Bertolini, L. O. Teixeira, C. N. S. Jr., and Y. M. G. Costa,
“COVID-19 identification in chest x-ray images on flat and hierarchical classification
scenarios,” arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2004.05835

[63] H. Abdulah, B. Huber, S. Lal, H. Abdallah, L. L. Palese, H. Soltanian-Zadeh, and
D. L. Gatti, “Cxr-net: An artificial intelligence pipeline for quick covid-19 screening
of chest x-rays,” arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2103.00087

[64] H. Abdallah, A. Liyanaarachchi, M. Saigh, S. Silvers, S. Arslanturk, D. J. Taatjes,
L. Larsson, B. P. Jena, and D. L. Gatti, “Res-cr-net, a residual network with a novel
architecture optimized for the semantic segmentation of microscopy images,” Machine
Learning: Science and Technology, vol. 1, no. 1, p. 045004, 2020.

[65] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs,” arXiv, 2016. [Online]. Available: http:
//arxiv.org/abs/1606.00915

[66] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” arXiv, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05587

[67] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[68] E. Oyallon, E. Belilovsky, and S. Zagoruyko, “Scaling the scattering transform: Deep
hybrid networks,” arXiv, 2017. [Online]. Available: https://arxiv.org/abs/1703.08961

[69] E. Oyallon, S. Zagoruyko, G. Huang, N. Komodakis, S. Lacoste-Julien, M. Blaschko,
and E. Belilovsky, “Scattering networks for hybrid representation learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 9, p. 2208–2221,
Sep 2019. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2018.2855738

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” arXiv, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[71] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4055–4064. [Online]. Available:
http://proceedings.mlr.press/v80/parmar18a.html

154

https://arxiv.org/abs/2004.05835
https://arxiv.org/abs/2103.00087
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1706.05587
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1703.08961
http://dx.doi.org/10.1109/TPAMI.2018.2855738
http://arxiv.org/abs/1706.03762
http://proceedings.mlr.press/v80/parmar18a.html


[72] A. Amyar, R. Modzelewski, and S. Ruan, “Multi-task deep learning based ct imaging
analysis for covid-19: Classification and segmentation,” medRxiv, 2020. [Online].
Available: https://www.medrxiv.org/content/early/2020/04/21/2020.04.16.20064709

[73] M. Polsinelli, L. Cinque, and G. Placidi, “A light cnn for detecting covid-19 from ct
scans of the chest,” arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2004.12837

[74] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus).” arXiv, vol. 2, 2016. [Online]. Available:
https://arxiv.org/abs/1511.07289

[75] J. Mockus, On Bayesian Methods for Seeking the Extremum, ser. Lecture Notes in
Computer Science, G. I. Marchuk, Ed. Springer, 1974, vol. 27. [Online]. Available:
https://doi.org/10.1007/3-540-07165-2 55

[76] H. Ko, H. Chung, W. S. Kang, K. W. Kim, Y. Shin, S. J. Kang, J. H. Lee, Y. J.
Kim, N. Y. Kim, H. Jung, and J. Lee, “Covid-19 pneumonia diagnosis using a
simple 2d deep learning framework with a single chest ct image: Model development
and validation,” J Med Internet Res, vol. 22, no. 6, p. e19569, Jun 2020. [Online].
Available: http://www.jmir.org/2020/6/e19569/

[77] H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, and M. K. Khan, “Diagnosing
covid-19 pneumonia from x-ray and ct images using deep learning and transfer learning
algorithms,” arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2004.00038

[78] M. Z. Alom, M. Rahman, M. S. Nasrin, T. M. Taha, and V. K. Asari, “Covidmtnet:
Covid-19 detection with multitask deep learning approaches,” arXiv, 2020. [Online].
Available: https://arxiv.org/abs/2004.03747

[79] M. Z. Alom, M. Hasan, C. Yakopcic, and T. M. Taha, “Inception recurrent convolu-
tional neural network for object recognition,” 2017.

[80] F. Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han, Z. Xue, and Y. Shi, “Lung
infection quantification of covid-19 in ct images with deep learning,” arXiv, 2020.
[Online]. Available: https://arxiv.org/abs/2003.04655

[81] M. Han, G. Yao, W. Zhang, G. Mu, Y. Zhan, X. Zhou, and Y. Gao, Segmentation of
CT Thoracic Organs by Multi-resolution VB-nets, ser. CEUR Workshop Proceedings,
C. Petitjean, S. Ruan, Z. Lambert, and B. Dubray, Eds. CEUR-WS.org, 2019, vol.
2349. [Online]. Available: http://ceur-ws.org/Vol-2349/SegTHOR2019 paper 1.pdf

[82] F. Shi, L. Xia, F. Shan, D. Wu, Y. Wei, H. Yuan, H. Jiang, Y. Gao,
H. Sui, and D. Shen, “Large-scale screening of covid-19 from community acquired
pneumonia using infection size-aware classification,” arXiv, 2020. [Online]. Available:
https://arxiv.org/abs/2003.09860

[83] F. Santosa and W. W. Symes, “Linear inversion of band-limited reflection seismo-
grams,” SIAM journal on scientific and statistical computing, 1986.

155

https://www.medrxiv.org/content/early/2020/04/21/2020.04.16.20064709
https://arxiv.org/abs/2004.12837
https://arxiv.org/abs/1511.07289
https://doi.org/10.1007/3-540-07165-2_55
http://www.jmir.org/2020/6/e19569/
https://arxiv.org/abs/2004.00038
https://arxiv.org/abs/2004.03747
https://arxiv.org/abs/2003.04655
http://ceur-ws.org/Vol-2349/SegTHOR2019_paper_1.pdf
https://arxiv.org/abs/2003.09860


[84] Z. Tang, W. Zhao, X. Xie, Z. Zhong, F. Shi, J. Liu, and D. Shen, “Severity
assessment of coronavirus disease 2019 (covid-19) using quantitative features from
chest ct images,” arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2003.11988

[85] R. D. Rudyanto, S. Kerkstra, E. M. van Rikxoort, C. Fetita, P.-Y. Brillet, C. Lefevre,
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Estépar, J. C. Ross, G. R. Washko, J.-C. Prieto, M. H. Hoyos, M. Orkisz,
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