Wetland restoration in China

By

Ke Zhang

0592197

Faculty of Natural Resources Management

Lakehead University

April 18th, 2019

Major Advisor

Second Reader

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for the HBScF (or HBEM) degree at Lakehead University in Thunder Bay, I agree that the University will

make it freely available for inspection.

This thesis is made available by my authority solely for private study and research and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority.

Signature:

Date: _____

A CAUTION TO THE READER

This HBScF (or HBEM) thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for advancing the practice of professional and scientific forestry.

The reader should be aware that the opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty, or Lakehead University.

ABSTRACT

China has the fourth largest area of wetland in the world. China has many types of wetland, but because of the environmental damage, many wetland areas were lost or converted to other land use such as farmland. As the biodiversity of wetland declined, many species disappeared including many rare species. Since this century, China has started to restore wetland areas. Many farmlands were returned to the wetland condition, and water pollution was controlled. Wetland plants, fishes and birds are three indicators that can justify the quality of the wetland restoration efforts. Population and species data collected from four wetlands across the country demonstrate the results of wetland restoration in China. Possible solutions for biodiversity increase in the wetlands in China are examined. After data analysis, all wetlands showed increased biodiversity after restoration. The wetland restoration of returning farmlands and residential areas to wetland seems to be successful for water pollution control will have a significant effect of increasing biodiversity.

Tables of Contents

Abstract	iv
Acknowledgement	vi
Introduction	1
Materials and Methods	5
Results	9
Discussion	19
Conclusion	22
Literature Cites	23
Appendix	26

ACKNOWLEDGEMENTS

Thank to Dr. Wang who is the supervisor of this thesis and Dr. Meyer who is the second reader of this thesis. Dr. Hutchison also gave the support on the thesis symposium. Thanks to my friends Allysa Lovatt and Yuen Ting Lam who helped me on my preparation for the thesis symposium.

INTRODUCTION

China has the third largest national territory area and the fourth largest wetland area in the world. This vast territory creates the conditions for various types of wetland (Wetland China 2019). Because of industry development in the 1990s, many of the wetland areas were destroyed, and wetland plants decreased or even disappeared (Lu *et al.* 2004). Rare birds lost their habitats, and their migratory routes disappeared.

At the beginning of the twentieth century, China launched a wetland restoration program. The program includes: restoration of damaged wetland, restoration of lost wetland, restoration of wildlife habitats, water pollution control for increasing wetland species and allowing the return of rare birds (Wetland China 2019).

A wetland is an ecosystem saturated by water that may be permanent or seasonal. There are five types of wetland: swamp, marsh, bog, fen, and open water (Forest Hydrology 2018). The unique vegetation types and hydric soil make wetlands different from land or water bodies (Wang *et al.* 2009). Wetland plays the role as the "kidneys" of the earth, which means it can purify as well as store water. It is part of the process of nutrients cycling for carbon and provides habitats and food resources to wildlife (Forest Hydrology 2018). Wetlands contain one of the highest biodiversity of all ecosystem and have an important role in the ecological environment (Cui *et al.* 2009). Wetland ecosystems provide many benefits to the environment. Wetlands recharge the groundwater, store and purify water, store carbon, help control floods, provide habitats for many animals, provide clean energy and increase tourism (Wang *et al.* 2006; Marts *et al.* 2007; Acreman *et al.* 2007)

Wetland in China

China has a large climatic region and different topography, and as such, China has abundant wetland resources, and it holds 6.6 million hectares total surface area. China has the most diversity of wetlands in Asia (Wetland China 2019).

Two large rivers connect west and east China also, coastal line in the southeast side and inland in the west of the country. Partly because of its variable topography, China spatially has many types and numbers of wetland. Marsh, bog, swamp, fen, open water, riverine wetland, lake wetland, and marine marsh are the common wetland types in China (Wang *et al.* 2009). Because China has agriculture and irrigation rather than livestock in the southern area, paddy fields are special wetland types (Lu *et al.* 1995). China can have different types of wetlands in the same territory and the same wetland across the different regions, increasing the diversity of the ecosystem (Yu *et al.* 2011).

Wetland restoration

Human activities are the major damage to a wetland in most countries. Those anthropogenic disturbances include clear-cut, overgrazing of livestock, oil and gas extraction, dredging, draining, and filling, and turn wetland to agriculture land (Li *et al.* 2016; Luo *et al.* 2015).

Wetlands restoration aims to return adversely affected wetlands to their natural trajectory. The restoration methods should assist the natural processes of the ecosystem in helping wetland recovery and function (Meli *et al.* 2014). Restoration in China has

2

usually happened after functional damage to the ecosystem such as flooding, drought, or other natural disturbances.

Different disturbances cause different damage to the wetland. Different levels of restoration require different methods (Xu *et al.* 1999). There are three types of wetland restoration: prescribed natural regeneration assisted natural regeneration, and partial reconstruction (Pfadenhauer *et al.* 1999). In China, the major restoration methods return farmland and residential lands to wetlands and water pollution control.

There are many different methods to restore wetlands throughout the world: planting along the wetlands, (Wang *et al.* 2006), returning the wetland from agriculture to its original form, and removing roads are common methods (Li *et al.* 2005). Some Japanese cases of wetland restoration create artificial wetlands to restore the wetland area in cities (Nakamura *et al.* 2006). Studies and models of wetland restoration (William *et al.* 1996) and the process of wetland restoration ecology are mentioned (Zedler 2000). Hydrological and hydrochemical process are a few examples of the wetland restoration (Holden *et al.* 2004). Restoring aquatic ecosystems is still an immaturity technique so, further study is necessary (Simenstad *et al.* 2006)

Human activities harm many wetland ecosystems. This includes water pollution, dam building, agriculture, overfishing, and climate change (Wang *et al.* 2006; Su *et al.* 2007). Large populations, shortage of land and food resources lead people to turn many water bodies and wetlands to plant crops in China (Wang *et al.* 2006; Su *et al.* 2007). Herbicides and insecticides used in those areas may create damage to the ecosystems. These types of

3

damage cannot be recovered by natural wetland process in a short period. Different approaches are required to ameliorate that kind of damage (Lu *et al.* 2004).

Wetland biodiversity

Biodiversity describes species diversity and species richness. Biologists define biodiversity as the "totality of genes, species and ecosystems of a region" (Lovejoy 1980). There are different types of diversity, taxonomic diversity, ecological diversity, morphological diversity, and functional diversity (Gibbs 2000).

China has a high wetland biodiversity, and many endangered species are native to China's wetlands (Wang 2008). China has more than 2,760 wetland plants species of which 100 are endangered. Wetland provides the habitats for many aquatic plants, and those plants such as submerged plants can be the food resources for fish. They also can change the physical conditions of the water by increasing the organic material in the water or reducing the pollution in the water (Li *et al.* 2006). Wetland restoration can increase the biodiversity of the aquatic plants, and the population of the fish can be increased too (Li *et al.* 2006).

A total of 1,040 fish species live in wetlands in China (Lu *et al.* 2004). More than 300 species of aquatic birds are living or are using wetlands as migrational stops (Wang *et al.* 2009). Nine of the fifteen crane species in the world are found in China's wetlands. Seven of the nine species are endangered (Shan *et al.* 2006) and include the: Black-necked Crane (*Grus nigricollis*), Hooded Crane (*Grus monacha*), Red-crowned Crane (*Grus japonensis*), White-naped Crane (*Grus vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siberian White Crane (*Grus Siponensis*), White-naped Crane (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Siponensi (*Grus Siponensis*), White-naped Crane (*Grus Vipio*), Sipon

leucogeranus), Sarus Crane (*Grus antigone*), and Demoiselle Crane (*Anthropoides virgo*).

Biodiversity is changing in many places in China. For example, the biodiversity declined in Qinghai wetland because of the loss of wetland area. (Su *et al.* 2007). However, the bird's biodiversity increased in Zhangchaohu wetland area (Li *et al.* 2005).

This article compares the data from four large China's wetland before restoration and after restoration and finds the restoration results of each wetland. The null hypothesis is that the wetland restoration of returning farmlands and residential area to wetland and water pollution control will have a significant biodiversity increase. The objective is a thorough data analysis to define the quality of restoration projects and to discuss the future trends of wetland restoration in China.

MATERIALS AND METHODS

A literature review was done using the keywords: wetland ecosystem, wetland restoration, China's wetland and wetland restoration in China. All data came from four wetland restoration projects (Figure 1) which include different regions and types of wetland in China. Collected data included the total number of species counted in the wetland restoration area subdivided into species numbers before and after wetland disturbance and species numbers after start wetland restoration.

Dianchi wetland is the southernmost wetland of the four wetlands restoration projects. It is an inland wetland close to a Lake. Dianchi wetland is an important

5

wetland ecosystem because it is warm in the winter and it can provide habitats for many birds and fish in winter. After the 1960s, the wetland was damaged by water pollution and invasive species. The restoration project started around 2000 and the farmland, houses and fishpond were returned to wetland, lake and forests; pollution was controlled, and artificial wetlands were built. (Jiang 2016)

Dajiuhu wetland is in the middle of China. It was damaged in 1940 by an increasing population and in 1986 from digging artificial channels and from other human activities (Li *et al.* 2016; Luo *et al.* 2015). The restoration project started in 2005; the farmlands were returned to wetland and fish species were introduced into this wetland. (Li *et al.* 2016).

Yellow River Delta wetland is a coastal wetland and is located at the delta of Yellow River. It has an important role in being a transfer station for many migratory birds (Liao 2009). Because of the drying up and shifting of the Yellow river route (caused by upstream vegetation and soil loss), this wetland lost many of its ecological functions (Zhu *et al.* 2011). The restoration in this wetland started in 2001. With a second restoration term started in 2005, a dam was built for storage of water. Freshwater was stored in the summer and levels were maintained by fresh water imported in flood season. (Liao 2009, Zhu *et al.* 2011).

Anbang River Nature Reserve is the northernmost wetland. A large area of the wetland was lost or damaged due to increasing farmland use. The restoration project started in 2001, and the farmlands have been returned to a wetland condition. (Liu 2011).

6

Figure 1. The location of wetlands used for this study.

Sources: WorldMap 2019

Data were analyzed by using Microsoft Excel. Birds, plants and fish population were used as indicators to justify the results of four selected wetland restoration areas. Plants help form the physical structure of wetland creates habitats and provides food resources for animals who live around the wetland and are important indicator of wetland recovery. Wetland plants also can regulate pH and mineral nutrients.

Fish are another indicator that is monitored to justify the results of wetland restoration projects. The fish population represent economic and ecological benefits in the wetland. Fish affects the health of the fishing industry and provide ecological functions for the wetland. The presence of fish also reflects the quality of water and microorganism conditions of wetlands. The bird is the most important indicator. Birds are very sensitive to the wetland environment, as they stop and breed in those wetlands which have a high water quality, enough food, abundant coverage of high growing plants, and distance from disturbances. Those three indicators (plants, fish and birds) form a food web and are integral to healthy wetland function.

RESULTS

Dianchi wetland

Table 1 shows the numbers of species existing in 1960 at the beginning of the damage, at 2000, and in 2016 after over ten years of restoration efforts. In 1960, there were 26 species of fishes, and it decreased to 11 species. However, by 2016, after over ten years of restoration, fish species increased to 25 and had recovered to the original 1960 levels. 232 plant species existed in 2000, which increased to 290 in 2016. Most birds had disappeared by 2000, but after recovery efforts had climbed to 140 species in 2016. The results (Figure 2) of wetland restoration for increasing biodiversity were considered good in Dianchi wetland, the numbers of birds, fish and plants in the wetland having increased over time since the restoration.

Table 1.	The	fish,	plant,	and bi	rd speci	es count	in 1	1960,	2000,	and 2	016 in	Diar	nchi
wetland	•												

	1960	2000	2016
Fish	26	11	2010
Plants	/	232	290
Birds	/	less	140

Source: Jiang Z 2016 China Forestry web.

Figure 2. The fish, plant, and bird species count in 1960, 2000, and 2016 in Dianchi wetland.

Sources: Jiang Z 2016

Dajiuhu wetland

Table 2 shows the fish species in Dajiuhu wetland in the 1980s before wetland damage and 2014 after restoration. The order, family, genera, species, and total count in 2014 is still lower than the original numbers in the 1980s.

Table 2. The fish species count in Dajiuhu wetland in 1981-82 and in 2014.

	1981~82	2014
Order	4	2
Family	9	2
Genera	28	9
Species	59	9
Count	2500	474

Source: Li J 2016

The major species in the wetland is *Carassius auratus*, and it has over half the population (Table 3). The population of those fish is low, and the richness is low. This

wetland has a closed environment, and it needs a specific way of increasing fish species diversity and richness.

Species	Count	Percentage
Carassius auratus	265	55.91%
Cyprinus carpio var. specularis	22	4.64%
Abbottina rivularis	85	17.93%
Pseudorasbora parva	42	8.86%
Hypophthalmichthys molitrix	41	8.65%
Rhodeus sinensis	10	2.11%
Schizothorax prenanti	5	1.05%
Ctenopharyngodon idelus	3	0.63%
Hyposeleotris swinlonis	1	0.21%

Table 3. The fish species count and percentage in Dajiuhu wetland in 2014 after wetland restoration.

Source: Li J2016

Table 3 and Figure 3 show the plant species in 1980, 1997, and 2012 in Dajiuhu wetland. In the 1980s, the wetland area already decreased a lot in the area, and the species decreased to nine, the plant species increased to 24 in 2000 but experienced the largest increase in 2012, after restoration. The increase of plants created a positive feedback on diversity after wetland restoration, as the numbers increased to 98 in 2012, almost ten times that starting in 1980.

Table 4. The plants count in 1980, 1997, and 2012 in Dajiuhu wetland.

Year	1980	1997~2000	2012
Count	9	24	98

Figure 3. The plants count in 1980, 1997, and 2012 in Dajiuhu wetland.

Source: Luo T 2015

This restoration project has a large diversity increase in plants but had a slow impact on fish. Although plants are often easily established through various agents of dispersal (wind, water, animal, *etc.*) fish are not spread so readily. In this wetland, different fish species need to be physically introduced by humans to increase the diversity and richness of fish species.

Anbang River Nature Reserve

Table 5 shows the bird species and counts before wetland damage, at early stage of restoration and at the medium stage of restoration. Compared to the early stage of restoration, the medium stage of restoration had a significant increase in species and population. The original wetland had 55 species and by the medium stage of restoration already had recovered to 52 species. The medium stage of restoration even had 16 new

species. This restoration project has a good result on increasing biodiversity, and in the future, the wetland will most likely be recovered.

Table 5. The bird species count in original wetland before damage, early stage of restoration and medium stage of restoration.

	Original	Early Stage	Medium Stage
Species Count	55	30	52
Amount	7826	682	5809

Source: Liu Z 2011

Yellow River Delta wetland

Table 6 shows the plant species count, height and density in Yellow River Delta wetland before restoration and after restoration. The numbers of plant increased after restoration, but the height of these plants and the density of these plants do not have a significant difference. There are eight species before restoration and eleven species after restoration. However, three species disappeared, and six new species were found. Overall, the diversity of plant increased in this wetland, and the restoration has a positive result on plants.

Table 6. The plant diversity in Yellow River Delta wetland before restoration and after restoration.

Species		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Before	Height (cm)	120-210	60-140	20-65	60-210	10-60	10-55	140-190	60-145						
	Density plant /m ²	92	121	244	4	12	43	8	7						
After	Height (cm)	120-320	50-145	20-65	60-390				70-175	140-230	160-270	45-80	40-110	40-75	60-110
	Density plant /m ²	166	20	148	8				5	3	43	12	9	12	13

Figure 4. Bird species count in 2001, 2007 and 2008 in Yellow River Delta wetland.

Source: Liao 2009 and Wang 2008.

Figure 4 shows the bird species count in 2001, 2007 and 2008 in Yellow River Delta wetland. The diversity increased after restoration, and linear equation shows a positive correlation ($R^2 = 0.788$).

Figure 5 shows the number of new bird species found in the Yellow River Delta wetland from 2002 to 2008. The blue dots show the increase of species number each year, and the red dots show the total increase number from the previous year. There was a total of 16 new species is entering the wetland from 2002 to 2008, with more species existing in the early stage for restoration. It shows a positive correlation ($R^2 = 0.907$) in liner equation.

Figure 5. The new bird species found in Yellow River Delta wetland from 2002 to 2008.

Source: Zhu S 2011.

Figures (6-11), show the population of *Ciconia boyciana*, *Grus leucogeranus*, *Grus monacha*, *Antigone vipio*, *Grus japonensis* having a significant increase in numbers. After restoration, except *Grus grus*, the population of the crane family increased. Figure 8 shows a decrease population of *Grus grus* in migration and during migration. *Grus grus* need wheat, but the planting of wheat decreased in this area because of the economics, so, the population of *Grus grus* decreased. The numbers decreased in 2005 for all species because the second term restoration started in 2005, as human activities most likely interfered with the bird's presence. The population continued to increase in 2006. This restoration project also showed a positive result on increasing diversity of bird populations in Yellow River Delta wetland.

Figure 6. *Ciconia boyciana* breeding and migration population change in Yellow River Delta wetland from 1997 to 2011.

Source: Shan K 2006

Figure 7. Population change of *Grus leucogeranus* in migration, during migration and during overwinter in the Yellow River Delta wetland from 2001 to 2006.

Figure 8. Population change of *Grus grus* in migration, during migration and during overwinter in the Yellow River Delta wetland from 1998 to 2006.

Figure 9. Population change of *Grus monacha*, during migration and overwintering in the Yellow River Delta wetland from 1999 to 2006.

Figure 10. Population change of *Antigone vipio* in migration, during migration and during overwintering in the Yellow River Delta wetland from 1998 to 2006.

Source: Shan K 2006

Figure 11. *Grus japonensis* migration, during migration and overwinter population change in Yellow River Delta wetland from 1998 to 2006.

DISCUSSION

All wetland projects show good results or good future trends in this study. The major damage on these wetlands was from resource development and by the increase of the population in China in the middle of the last century. With more people, more resources need to be developed, but the land area is limited. Many natural places were turned to residential areas, and many farmlands were built from wetlands to provide more food. Water pollution in wetlands occurred from increased industry and agriculture. The wetland area declines, and their functions were destroyed. Many wildlife species lost their habitats and disappeared in these areas.

The major restoration method used in China is to return farmlands and residential lands to the wetland and reduce the water pollution around these areas. Increasing the area of wetland and providing a good water quality were used in the four wetlands' restoration projects examined by this thesis.

In Dianchi wetland, the diversity increased plant and bird species. This meant the restoration project created good water quality for plants and suitable habitat for birds. For the fish species, the diversity almost recovered but the rate was not as fast as for the plant and birds. Similar results were found for the Dajiuhu wetland: the diversity of fish only slowly increased, and with some species having a very small population. Fish cannot come to a restored wetland by themselves, so, the way to increase the biodiversity is not only create suitable habitat but also introduce fish species to the place. For these two wetland areas, more fish species need to be introduced to increase the diversity of fish species.

The results for plant species restoration are good for both Dianchi wetland and Yellow River Delta wetland. Plants can spread their offspring to other places relatively easily. In polluted water, the species which has high pollution tolerance can dominate and reduce the diversity. The way to increase the diversity of plant in the wetland is to increase the water quality and keep a healthy water body. Since the habitats were restored, water quality increased, leading to better plant survival. Less pH change microelement change, and microorganisms change made a better environment for plant survival. However invasive species is a problem that needs to be considered to order to maintain plant diversity. Remove of invasive species and maintaining and improving water body health will be the way to increase plant species diversity in the wetland.

All wetland restoration projects show good result towards increasing bird diversity. More birds currently show up in each of the four wetlands, and even some rare bird species came back. Restoration of wetland has a significant function to bird species. The diversity of birds and the population of birds both increased in the restored wetlands of this thesis. Birds need plants to build nests and hiding. In addition, the fish species present will contribute to the bird food resources. When both plant and fish species increased in the wetlands, birds will have more ideal habitats, and it follows that the population and diversity of birds will increase. Wetlands also serve as a transitionary station for many migratory birds.

In the Yellow River Delta wetland, the population and species of birds increased after the restoration in 2001 but had a huge decline around 2005. This is because the restoration project in Yellow River Delta wetland occurred as two-terms. The second

20

term started in 2005 when many human activities also happened. Because birds are very sensitive to the presence of humans, the population of most bird species declined in 2005. After 2005, the population increased as the human presence decreased. The way to increase the diversity of bird is to provide good habitats for them and reduce human interruption around their habitats.

CONCLUSION

Wetland ecosystems are an important resource. They can provide food resources and habitats for many species, recharge groundwater, purify the surface water, store carbon, provide habitats for many animals, provide clean energy and help control floods. China has large wetland resources, but many of them were damaged in the last century by increasing population and resources development. Biodiversity was decreasing, and some rare species disappeared. Wetland restoration stared in this century in many places of China, and so far, there are promising restoration results. The major method used in China is returning farmlands to wetland and water pollution control.

From the results of four wetland restorations used by this thesis, the wetland restoration in China the diversity of birds and plants had a significant increase. The diversity of fishes is recovering and may increase in the future. Removal of invasive species and maintenance or improvement water body health will be the way to increase plant species diversity in the wetlands. The diversity of birds will increase with good habitats provided and less human interruption around their habitats. More fish species need to be introduced to the wetland to increase the diversity of fish species. This research supports the hypothesis that wetland restoration (by returning farmlands and residential area to wetlands) and water pollution control will result in a significant biodiversity increase.

LITERATURE CITES

- Acreman, M. C., J. Fisher, C. J. Stratford, D. J. Mould, and J. O. Mountford. Hydrological science and wetland restoration: some case studies from Europe. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2007, 11 (1), pp.158-169.
- Cui, B. Q Yang, Z Yang, and K Zhang. 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering. 35(2009). Pp 1090-1103.
- Gibbs, J P. 2000.Wetland Loss and Biodiversity Conservation. Conservation Biology. 14(1). Pp 314-317.
- Holden, J., P.J Chapman, and J. C Labadz. 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28 (1). Pp. 95-123.
- Jiang Z. 2016. The restoration of biodiversity brought the Dianchi lake to life, The number of lakeside wetland species increased by about 25%, Native fish stocks recover. China Environment News. China Forestry web. http://www.forestry.gov.cn/bhxh/651/content-841773.html
- Li J, M Liu, J Gao, and Y Zhao. 2016. Fish Species composition after restoration in a Dajiuhu wetland. Ecological Science. 36(1): 159-164
- Li, L., Z Ni, Y Li, H Wu, and G Peng. 2006. Investing action of wetland protection and optimized fishery production model of Zhangduhu Lake. Resources and Environment in the Yangtze Basin. 15(3). Pp 366-371.
- Li, X, Z Zhao, and J Luo. 2005. Wetland Restoration & Habitat Rehabilitation and Their Ecological Consequences on Habitats of Waterbirds. Resources Science. 27(6). Pp 112-117
- Liao X. 2009. Effects of water birds on wetland restoration in the Yellow River delta nature reserve. BNU Beijing Normal University. No.19, Xinjiekouwai Street, Haidian District, Beijing. 100875. Pp 64.

- Liu Z. 2011. Study on the Diversity of Bird Community in Different Restoration Stages of Anbang Wetland. Northeast Forestry University. No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang. 150040. Pp 83.
- Lovejoy, T. E. 1980. Senior Fellow at the United Nations Foundation and university professor in the Environmental Science and Policy department at George Mason University.
- Lu, X., and F Wang. 1995. Study on Wetland Biodiversity in China. Chinese Geographical Science. 6(1). Pp 15-23.
- Lu, X., and C He. 2004. The Status quo and restoration of wetland in China. China Academic Journal Electronic Publishing House. 56 (3).
- Luo, T. Z Lun, Y Gu, Y Qin, Z Zhang, B Zhang. 2015. Plant community survey and ecological Protection Dajiuhu lake in Shennongjia area. Wetland Science. (13)2. Pp. 153-160
- Maris, T., T. Cox, S. Temmerman, P. De Vleeschauwer, S. Van Damme, T. De Mulder, E. Van den Bergh, and P. Meire. 2007. Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Springer Science+Business Media. Hydrobiologia. 588:31–43
- Meli P, Rey Benayas JM, Balvanera P, Martı'nez Ramos M. 2014. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. PLoS ONE 9(4): e93507.
- Nakamura, K., K Tockner., and K Amano. 2006. Nakamura, K., K Tockner., and K Amano. 2006. BioScience. 56(5). Pp 419-429.BioScience. 56(5). Pp 419-429.
- Pfadenhauer, J., and A Grootjans. 1999. Wetland restoration in Central Europe: aims and methods. Applied Vegetation Science, 2(1). Pp 95-106.
- Shan K, Y Wang, and W Wang. 2006. Experiment on ecological restoration of degraded wetland in the Yellow River delta. Chinese Journal of River Management and Ecological Restoration Technology. China Water Conservancy Information Technology Center. Pp 8.
- Simenstad, C., D Reedb, and M Ford. 2005. When is restoration not? Incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal

wetland restoration. Ecological Engineering. 26 (2006). Pp 27–39. Elsevier B.V. All rights reserved.

- Su, D., J Sang. 2007. Biodiversity Conservation of Wetland in Qinghai Province. Qinghai Environment. 17 (4). Pp 173-177.
- Wang, M. 2008. Effects of wetland restoration in Yellow River delta on wetland bird community. Qufu Normal University. No. 21 Jingxuan West Road, Qufu City, Shandong. 273165. Pp 64.
- Wang, S., M Niu. 2009. The Ecological Functions of Wetland System and the Wetland Ecological Restoration. Journal of Shanxi Agricultural. 37(7). Pp 55-57.
- Wang, Y. B Fan, L Li, and J Wang. 2006. The status quo and discussion on wetland ecological restoration of the middle and lower Yangtze River. Changing River Scientific Research Institute, Wuhan 430010, China. 15 (5). Pp 5-12
- Wetland China. 2019. Threats and degradation of wetlands: biodiversity loss http://www.shidi.org
- William, J. Mitsch, and R. F Wilson. 1996. Improving the Success of Wetland Creation and Restoration with Know-How, Time, and Self-Design. Ecological Applications. 6(1). Pp 77-83.
- Xu, F. S Tao. Xu Z. 1999. The restoration of riparian wetlands and macrophytes in Lake Chao, a eutrophic Chinese lake: possibilities and effects. Hydrobiologia. 405: 169–178, Kluwer Academic Publishers. Printed in the Netherlands.
- Yu, K. Y Chen. C Wang. D Li. 2011. Ecological Restoration of a Reclaimed Island Landscape in The Yangtze River. Resources and Environment in the Yangtze Basin.20 (10). Pp. 1255-1261.
- Zedler, J B. 2000.Progress in Wetland Restoration Ecology. Elsevier Science Ltd. All rights reserved. 15(10). Pp 402-407.
- Zhu, S., W Wang, Y Wang, S Kai. 2011. Wetland restoration and biodiversity conservation I the Yellow River Delta Nature Reserve. Journal of Beijing Forestry University. (33)2. Pp. 1-5.

Reference Location Species Sanjiang Plain Ciconia boyciana werland China Dianchi Lake Jiang Z 2016 Ottelia acuminata Rissa tridactyla Jiang Z 2016 Jiang Z 2016 Larus glaucescens Chlidonias hybrid Jiang Z 2016 Chlidonias leucopterus Jiang Z 2016 Charadrius leschenaultii Jiang Z 2016 Jiang Z 2016 Charadrius mongolus Numenius phaeopus Jiang Z 2016 Jiang Z 2016 Phalacrocorax carbo Hypophthalmichthys molitrix Jiang Z 2016 Jiang Z 2016 Hypophthalmichthys nobilis Jiang Z 2016 Carassius auratus Jiang Z 2016 Hemisalanx prognathus Regan Palaemon modestus Jiang Z 2016 Cultrichthys erythropterus Jiang Z 2016 Jiang Z 2016 Misgurnus anguillicaudatus Sinocyclocheilus grahami Jiang Z 2016 Anabarilius alburnops Jiang Z 2016

	Dajiuhu wetla	nd
Number	Species (family)	Reference
1	Climaciaceae	Luo T 2015
2	Sphagnaceae	Luo T 2015
3	Aulacomniaceae	Luo T 2015
4	Brachytheciaceae	Luo T 2015
5	Hypnaceae	Luo T 2015
6	Polytrichaceae	Luo T 2015
7	Scrophulariaceae	Luo T 2015
8	Violaceae	Luo T 2015
9	Primulaceae	Luo T 2015
10	Juncaceae	Luo T 2015
11	Onagraceae	Luo T 2015
12	Orchidaceae	Luo T 2015
13	Gentianaceae	Luo T 2015
14	Saxifragaceae	Luo T 2015
15	Equisetaceae	Luo T 2015
16	Osmundaceae	Luo T 2015
17	Pteridaceae	Luo T 2015
18	Droseraceae	Luo T 2015
19	Oxalidaceae	Luo T 2015
20	Convolvulaceae	Luo T 2015
21	Plantaginaceae	Luo T 2015
22	Rubiaceae	Luo T 2015
23	Commelinaceae	Luo T 2015
24	Salicaceae	Luo T 2015

APPENDICES

25	Papaveraceae	Luo T 2015
26	Celastraceae	Luo T 2015
27	Cornaceae	Luo T 2015
28	Angiospermae	Luo T 2015
29	Lentibulariaceae	Luo T 2015
30	Caprifoliaceae	Luo T 2015
31	Dipsacaceae	Luo T 2015
32	Sparganiaceae	Luo T 2015
33	Araceae	Luo T 2015
34	Euphorbiaceae	Luo T 2015
35	Caryophyllaceae	Luo T 2015
36	Geraniaceae	Luo T 2015
37	Clusiaceae	Luo T 2015
38	Lamiaceae	Luo T 2015
39	Liliaceae	Luo T 2015
40	Apiaceae	Luo T 2015
41	Ranunculaceae	Luo T 2015
42	Fabaceae	Luo T 2015
43	Polygonaceae	Luo T 2015
44	Cyperaceae	Luo T 2015
45	Aster	Luo T 2015
46	Rosaceae	Luo T 2015
47	Poaceae	Luo T 2015

Anbang River Nature Reserve				
Number	Species	Reference		
1	Gruiformes	Liu Z 2011		
2	Charadriiformes	Liu Z 2011		
3	Anseriformes	Liu Z 2011		
4	Lariformes	Liu Z 2011		
5	Podicipediformes	Liu Z 2011		
6	Ciconiiformes	Liu Z 2011		
7	Pelecaniformes	Liu Z 2011		
8	Falconiformes	Liu Z 2011		
9	Galliformes	Liu Z 2011		
10	Columbiformes	Liu Z 2011		
11	Passeriformes	Liu Z 2011		
12	Cuculiformes	Liu Z 2011		
13	Coraciiformes	Liu Z 2011		

	Anbang River Nature Res	erve
Number	Species	Reference
1	Tachybaptus ruficollis	Liu Z 2011
2	Podiceps cristatus	Liu Z 2011
3	Phalacrocorax carbo	Liu Z 2011
4	Ardea cinerea	Liu Z 2011
5	Ardea purpurea	Liu Z 2011
6	Nycticorax nycticorax	Liu Z 2011
7	Ardea alba	Liu Z 2011
8	Ixobrychus eurhythmus	Liu Z 2011
9	Botaurus Stellaris	Liu Z 2011
10	Ciconia boyciana	Liu Z 2011
11	Platalea leucorodia	Liu Z 2011
12	Anser cygnoides	Liu Z 2011
13	Anas acuta	Liu Z 2011
14	Anas crecca	Liu Z 2011
15	Anas formosa	Liu Z 2011
16	Anas falcate	Liu Z 2011
17	Anas platyrhynchos	Liu Z 2011
18	Anas poecilorhyncha	Liu Z 2011
19	Anas strepera	Liu Z 2011
20	Anas penelape	Liu Z 2011
21	Anas querquedula	Liu Z 2011
22	Anas clypeatar	Liu Z 2011
23	Aythya ferina	Liu Z 2011
24	Aythya fuligula	Liu Z 2011
25	Aix galericulata	Liu Z 2011
26	Melanitta fusca	Liu Z 2011
27	Accipiter gentilis	Liu Z 2011
28	Circus spilonrus	Liu Z 2011
29	Circus cyaneus	Liu Z 2011
30	Circus melanoleucos	Liu Z 2011
31	Falco amurensis	Liu Z 2011
32	Phasianus colchicus	Liu Z 2011
33	Grus vipio	Liu Z 2011
34	Gallinula chloropus	Liu Z 2011
35	Fulico atra	Liu Z 2011
36	Vanellus vanellus	Liu Z 2011
37	Charadrius dubius	Liu Z 2011
38	Charadrius alexandrinus	Liu Z 2011
39	Tringa erythropus	Liu Z 2011
40	Tringa totanus	Liu Z 2011
41	Tringa ochropus	Liu Z 2011
42	Tringa hypoleucos	Liu Z 2011
43	Gallinago stenura	Liu Z 2011
44	Himantopus himantopus	Liu Z 2011
45	Larus argentatus	Liu Z 2011
46	Larus ridibundus	Liu Z 2011

47	Chlidonias hybrida	Liu Z 2011
48	Chlidonias leucoptera	Liu Z 2011
49	Sterna hirundo	Liu Z 2011
50	Atreptopelia arientalis	Liu Z 2011
51	Cuculus micropterus	Liu Z 2011
52	Cuculus canorus	Liu Z 2011
53	Alcedo atthis	Liu Z 2011
54	Halcyon pileata	Liu Z 2011
55	Hirundo rustica	Liu Z 2011
56	Hirundo daurica	Liu Z 2011
57	Motacilla fiava	Liu Z 2011
58	Motacilla alba	Liu Z 2011
59	Lanius cristatus	Liu Z 2011
60	Oriolus chinensis	Liu Z 2011
61	Pica pica	Liu Z 2011
62	Corvus macrorhynchos	Liu Z 2011
63	Erithacus calliope	Liu Z 2011
64	Erithacus cyane	Liu Z 2011
65	Tarsiger cyanurus	Liu Z 2011
66	Paradaxornis heudei	Liu Z 2011
67	Acrocephalus orientalis	Liu Z 2011
68	Acrocephalus bistrigiceps	Liu Z 2011
69	Phylloscopus inornatus	Liu Z 2011
70	Phylloscopus borealis	Liu Z 2011
71	Passer montanus	Liu Z 2011
72	Emberiza elegam	Liu Z 2011
73	Emberiza cia	Liu Z 2011

			Dajiuhu wetland	
Number		Speci	ies	Reference
1	Sphahnaceae	Sphagnum	Sphagnum palustre	Luo T 2015
2	Aulacomniaceae	Aulacomnium	Aulacomnium androgynum	Luo T 2015
3	Brachytheciaceae	Brachythecium	Brachythecium pulchellum	Luo T 2015
4	Hypnaceae	Hypnum	Hypnum plumaeforme	Luo T 2015
5	Polytrichacceae	Polytrichum	Polytrichum commune	Luo T 2015
6	Equisetaceae	Equisetum	Equisetum hyemale	Luo T 2015
7	Osmundaceae	Osmunda	Osmunda cinnamomea	Luo T 2015
8	Pteridaceae	Pteris	Pteris cretica var. intermedia	Luo T 2015
9	Salicaceae	Populus	Poplulus lasiocarpa	Luo T 2015
10	Polygonaceae	Polygonum	Polygonum macrophyllum	Luo T 2015
11			Polygonum suffultum	Luo T 2015
12			Polygonum orientale	Luo T 2015
13			Polygonum nepalense	Luo T 2015
14			Polygonum sieboldii	Luo T 2015
15		Rumex	Rumex crispus var. japonicus	Luo T 2015
16	Caryophyllaceae	Dianthus	Dianthus chinensis	Luo T 2015
17		Silene	Silene gallica	Luo T 2015
18	Ranunculaceae	Cimicifuga	Cimicifuga foetida	Luo T 2015
19		Thalictrum	Thalictrum Aquilegiifolium var sibiricum	Luo T 2015

20		Ranunculus	Ranunculus natans	Luo T 2015
21		1	Ranunculus ficariifolius	Luo T 2015
22	_	Halerpestes	Halerpestes cymbalaria	Luo T 2015
23	Papaveraceae	Papaver	Papaver nudicaule	Luo T 2015
24	Droseraceae	Drosera	Drosera Rotundifolia	Luo T 2015
25	Saxifragaceae	Astilbe	Astilbe Chinensis	Luo T 2015
26	Rosaceae	Spiraea	Spiraea salicifolia	Luo T 2015
27		Aruncus	Aruncus sylvester	Luo T 2015
28		Crataehus	Crataehus wilsonii	Luo T 2015
29		Malus	Malus hupehensis	Luo T 2015
30		Argrimonia	Argrimonia Pilosa	Luo T 2015
31		Sanguisorba	Sanguisorba officinalis	Luo T 2015
32		Kerria	Kerria Japonica	Luo T 2015
33		Fragaria	Fragaria orientalis	Luo T 2015
34			Fragaria nilgerrensis	Luo T 2015
35	Fabaceae	Trifolium	Trifolium repens	Luo T 2015
36			Trfolium pratense	Luo T 2015
37		Kummerowia	Kummerowia strata	Luo T 2015
38		Vicia	Vicia sativa	Luo T 2015
39			Vicia sepium	Luo T 2015
40	Oxalidaceae	Oxalis	Oxalis corniculata	Luo T 2015
41	Geraniaceae	Geranium	Geranium rosthornii	Luo T 2015
42		Geranium	Geranium pratense	Luo T 2015
43	Euphorbiaceae	Euphorbia	Euphorbia Hylonoma	Luo T 2015
44	-	-	Euphorbia esula	Luo T 2015
45	Celastraceae	Euonymus	Euonymus sanguineus	Luo T 2015
46	Clusuaceae	Hypericum	Hypericum attenuatum	Luo T 2015
47			Hypericum monogynum	Luo T 2015
48	Violaceae	Viola	Viola acuminata	Luo T 2015
49	Onagraceae	Epilobium	Epilobium hirsutum	Luo T 2015
50	Umbelliferae	Buleurum	Buleurum longicaule var. franchetii	Luo T 2015
51	v		Bupleurum hamiltonii	Luo T 2015
52		Oenanthe	Oenanthe thomsonii	Luo T 2015
53		Angelica	Angelica dahurica	Luo T 2015
54	Cornaceae	Cornus	Cornus kousa subsp. Chinensis	Luo T 2015
55	Primulaceae	Lysimachia	Lysimachia stenosepala	Luo T 2015
56	Loganiaceae	Buddleja	Buddleja lindlevana	Luo T 2015
57	Gentianaceae	Menvanthes	Menvanthes trifoliata	Luo T 2015
58	Convolvulaceae	Dichondra	Dichondra micrantha	Luo T 2015
59	Lamiaceae	Prunella	Prunella vulgaris	Luo T 2015
60		Clinopodium	Clinopodium urticifolium	Luo T 2015
61	Scrophulariaceae	Pedicalaris	Pedicalaris torta	Luo T 2015
62	Lentibulariaceae	Utricularia	Utricularia aurea	Luo T 2015
63	Plantaginaceae	Plantago	Plantago asiatica	Luo T 2015
64	Rubiaceae	Galium	Galium aprine var. echinospermum	Luo T 2015
65	Carifoliaceae	Viburnum	Viburnum opulus var sargentii	Luo T 2015
66	Disacaceae	Dipsacus	Dipsacus asper	Luo T 2015
67	Asteraceae	Erigeron	Erigeron annuus	Luo T 2015
68	11010. 40040	Anaphalis	Anaphalis sinica	Luo T 2015
69		Inula	Inula britannica	Luo T 2015
70		Helianthus	Helianthus tuberosus	Luo T 2015
10		110/10/11/100	110110111111111111111111111111111111111	240 1 2012

71		Artemisia	Artemisia lavandulifolia	Luo T 2015
72		Ligularia	Ligularia intermedia	Luo T 2015
73		Cirsium	Cirsium henryi	Luo T 2015
74			Cirsium fargesii	Luo T 2015
75	Sparganiaceae	Sparganium	Sparganium simplex	Luo T 2015
76	Gramineae	Festuca	Festuca rubra	Luo T 2015
77		Lolium	Lolium perenne	Luo T 2015
78		Deyeuxia	Deyeuxia henryi	Luo T 2015
79			Deyeuxia hakonensis	Luo T 2015
80		Agrostis	Agrostis matsumurae	Luo T 2015
81		Calamagrostis	Calamagrostis epigeios	Luo T 2015
82		Stipa	Stipa capollata	Luo T 2015
83		Miscanthus	Miscanthus sinensis	Luo T 2015
84		Arthraxon	Arthraxon hispidus	Luo T 2015
85		Capillipedium	Capillipedium assimile	Luo T 2015
86	Cyperceae	Scirpus	Scirpus lushanensis	Luo T 2015
87			Scirpus karuizawensis	Luo T 2015
88		Eleocharis	Eleocharis wichurai	Luo T 2015
89			Eleocharis plantagineiformis	Luo T 2015
90		Rhynchospora	Rhynchospora chinensis	Luo T 2015
91		Carex	Carex argyi	Luo T 2015
92	Araceae	Acorus	Acorus calamus	Luo T 2015
93	Commelinaceae	Commelina	Commelina communis	Luo T 2015
94	Juncaceae	Juncus	Juncus effusus	Luo T 2015
95	Liliaceae	Veratrum	Veratrum grandiflorum	Luo T 2015
96		Hemerocallis	Hemerocallis fulva	Luo T 2015
97		Aletris	Aletris spicata	Luo T 2015
98	Orchidaceae	Spiranthes	Spiranthes sinensis	Luo T 2015

		Dajiuhu wetland				
Nur	nber		Species		Reference	
1	Cypriniformes	Cyprinidae	Carassius	Carassius auratus	Li J 2017	
2			Cyprinus	Cyprinus carpio var. specularis	Li J 2017	
3			Abbottina	Abbottina rivularis	Li J 2017	
4			Pseudorasbora	Pseudorasbora parva	Li J 2017	
5			Hypophthalmichthys	Hypophthalmichthys molitrix	Li J 2017	
6			Rhodeus	Rhodeus sinensis	Li J 2017	
7			Schizothorax	Schizothorax prenanti	Li J 2017	
8			Ctenopharyngodon	Ctenopharyngodon idelus	Li J 2017	
9	Perciformes	Eleotridae	Hyposeleotris	Hyposeleotris swinlonis	Li J 2017	

	Yellow River Delta w	retland
Number	Species	Reference
1	Phasianus colchicus	Zhu S 2011
2	Pelecanus crispus	Zhu S 2011
3	Grus leacogeranus	Zhu S 2011
4	Ciconia nigra	Zhu S 201
5	Bubulcus ibis	Zhu S 201
6	Platalea leacorodia	Zhu S 2011
7	Platalea mionor	Zhu S 201
8	Cygnus olor	Zhu S 201
9	Anas formosa	Zhu S 2011
10	Aythya nyroca	Zhu S 201
11	Netta rufina	Zhu S 201
12	Tyto capensis	Zhu S 2011
13	Pandion haliaetus	Zhu S 2011
14	Aegypius monachus	Zhu S 201
15	Anthus rubescens	Zhu S 2011
16	Muscicapa griseisticta	Zhu S 2011

	Yellow River Delta wetland				
Number	Species	Reference			
1	Grus leucogeranus	Shan K 2006			
2	Grus grus	Shan K 2006			
3	Grus monacha	Shan K 2006			
4	Antigone vipio	Shan K 2006			
5	Grus japonensis	Shan K 2006			

	Yellow River Delta wet	land
Number	Species (Order)	Reference
1	Gruiformes	Wang M 2008
2	Charadriiformes	Wang M 2008
3	Anseriformes	Wang M 2008
4	Lariformes	Wang M 2008
5	Podicipediformes	Wang M 2008
6	Ciconiiformes	Wang M 2008
7	Pelecaniformes	Wang M 2008

	Yellow River Delta wetlan	d
Number	Species	Reference
1	Phragmites communis	Shan K 2006
2	Artemisia scoparia	Shan K 2006
3	Suaeda pterantha	Shan K 2006
4	Tamarix chinensis	Shan K 2006
5	Limonium sinense	Shan K 2006
6	Suaeda glauca (Bunge) Bunge	Shan K 2006
7	Aeluropus sinensis	Shan K 2006
8	Imperata cylindrica	Shan K 2006
9	Typha orientalis Presl	Shan K 2006
10	Persicaria hydropiper	Shan K 2006
11	Echinochloa phyllopogon	Shan K 2006
12	Scirpoides holoschoenus	Shan K 2006
13	Melilotus suaveolens	Shan K 2006
14	Apocynum venetum	Shan K 2006

Yellow River Delta wetland					
Num	ber	Species		Reference	
1	Podicipediformes	Podicipedidae	Tachybaptus ruficollis	Liao X 2009	
2			Podiceps nigricollis	Liao X 2009	
3			Podiceps cristatus	Liao X 2009	
4	Pelecanifomes	Pelecanidae	Pelecanus crispus	Liao X 2009	
5		Phalacrocoracidae	Phalacrocorax acrbo	Liao X 2009	
6	Ciconiofmes	Ardeidae	Ardea cinerea	Liao X 2009	
7			Ardea purpurea	Liao X 2009	
8			Butorides striantus	Liao X 2009	
9			Ardeola bacchus	Liao X 2009	
10			Egretta alba	Liao X 2009	
11			Egretta garzetta	Liao X 2009	
12			Nycticorax nycticorax	Liao X 2009	
13			Botaurus stellaris	Liao X 2009	
14		Ciconiiadea	Cicnia nigra	Liao X 2009	
15			Cicnia boyciana	Liao X 2009	
16		Threskiornitthidae	Platalea leucorodia	Liao X 2009	
17	Ansieriformes	Anatidae	Anser cygnoides	Liao X 2009	
18			Anser fabalis	Liao X 2009	
19			Cygnus cygnus	Liao X 2009	
20			Cygnus columbianus	Liao X 2009	
21			Cygnus olor	Liao X 2009	
22			Tadorna ferruginea	Liao X 2009	
23			Anas acuta	Liao X 2009	
24			Anus falcata	Liao X 2009	
25			Anas platyrhyncha	Liao X 2009	
26			Anas poecilorhyncha	Liao X 2009	

27			Anas strepera	Liao X 2009
28			Anas penelope	Liao X 2009
29			Anas clypeata	Liao X 2009
30			Aythya ferina	Liao X 2009
31			Aythya fuligula	Liao X 2009
32			Mergellus albellus	Liao X 2009
33			Mergus merganser	Liao X 2009
34	Gruiformes	Gruidae	Grus grus	Liao X 2009
35			Grus monacha	Liao X 2009
36			Grus japonensis	Liao X 2009
37			Grus vipio	Liao X 2009
38			Grus leaucogeranus	Liao X 2009
39			Anthropoides virgo	Liao X 2009
40		Rallidae	Fulica atra	Liao X 2009
41	Charadriiformes	Charadriidae	Vanellus vanellus	Liao X 2009
42			Vanellus cinereus	Liao X 2009
43			Charadrius alexandrinus	Liao X 2009
44		Scolopaicidae	Numenius phaeopus	Liao X 2009
45			Numenius minutus	Liao X 2009
46			Numenius Arquata	Liao X 2009
47			Limosa limosa	Liao X 2009
48			Tringa erythropus	Liao X 2009
49			Tringa totanus	Liao X 2009
50			Tringa nebularia	Liao X 2009
51			Tringa glareola	Liao X 2009
52		Recurvirostrinae	Himantopus himantopus	Liao X 2009
53			Recurvirostra avosetta	Liao X 2009
54		Glareolidae	Glareola maldivarum	Liao X 2009
55	Lariformes	Laridae	Larus crassirostris	Liao X 2009
56			Larus canus	Liao X 2009
57			Larus argentatus	Liao X 2009
58			Larus ridibundus	Liao X 2009
59			Larus saundersi	Liao X 2009
60			Chlidonias hybridus	Liao X 2009
61			Hydroprogne caspia	Liao X 2009
62			Sterna hirundo	Liao X 2009
63			Strerna albifrons	Liao X 2009
64			Chlidonias leucopterus	Liao X 2009

Yellow River Delta wetland				
Number		Species		Reference
1	Podicipediformes	Podicipedidae	Tachybaptus ruficollis poggel	Wang M 2008
2			Podiceps cristatus cristutlus	Wang M 2008
3	Pelecaniformes	Phalacrocoracidae	Phalacrocorax carbo sine	Wang M 2008
4	Ciconiiformes	Ciconiiformes	Ardae cinerea jouyi	Wang M 2008
5			Ardea purpurea manilensis	Wang M 2008
6			Butorides striatus amurensis	Wang M 2008
7			Egretta alba Modesta	Wang M 2008
8			Egretta garzetta	Wang M 2008
9			Platalea leucorodia	Wang M 2008
10			Ardeola bacchus	Wang M 2008
11			Nycticorax nycticorax	Wang M 2008
12			Botaurus stellaris	Wang M 2008
13		Ciconiidae	Ciconia boyciana	Wang M 2008
14	Anseriformes	Anseriformes	Anuser cygnoides	Wang M 2008
15			Anser albifrons frontalis	Wang M 2008
16			Anser anser	Wang M 2008
17			Cygnus cygnus	Wang M 2008
18			Cygnus columbianus bewickii	Wang M 2008
19			Tadorna ferruginea	Wang M 2008
20			Anas crecca	Wang M 2008
21			Anas platyrhynchos	Wang M 2008
22			Anas poecilorhyncha	Wang M 2008
23			Anas acuta	Wang M 2008
24			Anas falcata	Wang M 2008
25			Anas strepera	Wang M 2008
26			Anas penelope	Wang M 2008
27			Anas querquedula	Wang M 2008
28			Anas clypeata	Wang M 2008
29			Mergus merganser	Wang M 2008
30			Mergellus albellus	Wang M 2008
31			Aythya	Wang M 2008
32	Gruiformes	Gruiformes	Grus japonensis	Wang M 2008
33		Rallidae	Fulica atra	Wang M 2008
34	Charadriiformes	Charadriidae	Charadrius alexandrinus alexandrinus	Wang M 2008
35		Scolopacidae	Numenius minutus	Wang M 2008
36			Numenius phaeopus variegatus	Wang M 2008
37			Limosa limosa melanuroides	Wang M 2008
38			Tringa glareola	Wang M 2008
39			Tringa erythropus	Wang M 2008

40			Tringa totanus	Wang M 2008
41			Tringa stagnatilis (Bechstein)	Wang M 2008
42			Tringa nebularia	Wang M 2008
43			Xenus cinereus	Wang M 2008
44			Calidris canutus rogersi	Wang M 2008
45			Calidris acuminata	Wang M 2008
46			Calidris alpina centralis	Wang M 2008
47		Recurvirostridae	Himantopus himantopus	Wang M 2008
48			Recurvirostra avosetta	Wang M 2008
49		Glareolidae	Glareola maldlvarum	Wang M 2008
50	Lariformes	Laridae	Larus crassirostris	Wang M 2008
51			Larus argentatus smithsonianus	Wang M 2008
52			Larus ridibundus	Wang M 2008
53			Larus saundersi	Wang M 2008
54			Gelochelidon nilotica affinis	Wang M 2008
55			Sterna hirundo longgipennis	Wang M 2008
56			Sterna albifrons sinesis	Wang M 2008
57			Chlidonias leucopterus	Wang M 2008
58			Chybridus hybridus	Wang M 2008