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Abstract 

The Mesoarchean Red Lake carbonate platform is the oldest (~2.93 Ga) known carbonate 

platform on Earth. It is comprised of a variety of chemical sedimentary rocks including: limestone, 

dolostone, chert, oxide iron formation, and sulfide iron formation. This study deals with its five 

different types of deeper water lithofacies, including four chemical sedimentary rocks and 

siliciclastic black slate, to delineate Mesoarchean ocean chemistry and comprehend the localized 

depositional settings. Geochemical analysis of selected elements in the chemical sediments were 

used to constrain depositional processes. Of these positive Eu anomalies in REE patterns suggests 

that the ocean was heavily influenced by hydrothermal activity and positive Ce anomalies in oxide 

iron formation indicate that a redoxcline existed in the depositional environment. Zirconium and 

hafnium in oxide facies iron formation were mostly derived from seawater, and their sorption was 

dependent on the rate of precipitation of iron hydroxide. Multiple sulfur isotope analyses revealed 

that mass-independent fractionation of sulfur was operating along with bacterial sulfate reduction, 

and the source of sulfur was diverse. Organic carbon isotopes increase from ~ -27 ‰ to ~ -20 ‰ 

up-section towards the shallow portion of the carbonate shelf, possibly reflecting the presence of 

anoxic phototrophs in the shallows. Inorganic carbon isotopic ratios averaging ~ -1.5 ‰ fall within 

the range of Archean carbonate and reflect seawater values. Also, δ18O data reveals that 

dolomitization occurred in a freshwater influenced environment. Evidence such as increasing Mn 

concentration towards the carbonate platform and positive Ce anomaly in oxide iron formation, as 

well as redox-sensitive element enrichment in the chemical sedimentary rocks, suggests that 

bacterial O2 production was somewhat active in the Mesoarchean sea. The interlayering of various 

types of chemical sediments at differing stratigraphic scales indicates that localized ocean 

chemistry changed repeatedly over both short and long time intervals. Carbonates were perhaps 

formed in the slightly oxic shallow water environment, while magnetite and chert were precipitated 

in a suboxic environment distal to any venting fluids and iron sulfides accumulated in a reducing, 

anoxic environment during intervals of intense venting of hydrothermal fluids. Shale was 

deposited as background sediment and accumulated during cessation of chemical sedimentation. 

Finally,  the deeper water sediments repeatedly interlayered with the shallow water stromatolitic 

carbonate successions, which suggests multiple events of carbonate platform flooding. 
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Chapter 1: Introduction 

1.1 Overview  

 The relationships between the primitive atmosphere, hydrosphere, and emerging life in the 

Archean Era have remained poorly understood. The free oxygen level in the atmosphere during 

this time interval was probably less than ~10-5 PAL (present atmospheric level), and ocean 

chemistry in Earth’s early history was very different from today’s (Kasting et al., 2001; Pavlov & 

Kasting, 2002; Holland, 2006). The early ocean was largely anoxic, except for possible local 

oxygen oases in shallow seas, and was heavily influenced by hydrothermal activity (Bau & Dulski, 

1995; Bolhar et al., 2004; Holland, 2006). The composition of the Archean deeper ocean was 

primarily ferruginous to silica-rich (Poulton, 2011; Delvigne, 2012), while carbonate deposition 

was possible in the shallow ocean. Juxtapositions of these compositions were caused by the 

deposition of iron-rich minerals, chert, and carbonate in different parts of the ocean or at different 

times due to changes in water chemistry. Hence, chemical sediments can be used as a tracer, 

providing significant clues to ancient oceanic processes and helping to determine the specific 

conditions required for the precipitation of different chemical sediments. In particular, the 

geochemistry of rare earth elements (REE) is very important because the REE composition of 

sediments reflects the REEs present in the ancient ocean from which they precipitated (Shields & 

Stille, 2001; Kamber et al.,  2004; Bolhar et al., 2004; Allwood et al., 2010; Planavsky et al., 2010). 

In addition, analysis of organic and inorganic δ13C carbon and multiple sulfur isotopes gives 

insights into the ancient ocean’s carbon and sulfur sources and their role in evolving biologic 

activity (Shegelski, 1978; Thode & Goodwin, 1983; Schidlowski, 1988; Hayes et al., 1989; Thode 

et al., 1991; Canfield, 2001; Ono et al., 2003). 
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In this connection, the Red Lake area provides ample opportunity to study the 2.93 Ga old 

(Corfu & Wallace, 1986) chemical sedimentary rocks deposited adjacent to the Earth’s oldest 

known carbonate platform and to explore the deeper basinal facies. Previous work in the Red Lake 

area was conducted by Hofmann et al. (1985) on stromatolites, and by McIntyre & Fralick  (2017), 

mostly on peritidal stromatolites and partially on deep subtidal to upper slope chemical sediments. 

No comprehensive study has been done so far on the various chemical sediments belonging to the 

offshore area of this carbonate platform. As a step towards rectifying the lack of in-depth research 

on the Red Lake platform, this study aimed to examine the sedimentological aspects and 

geochemistry of the ~200 m thick sedimentary assemblage beneath the carbonate platform and 

inter-fingering with it. 

1.2 Objectives 

 This study focusses on the Archean chemical sediments of Earth’s oldest, carbonate 

platform, which is at Red Lake, in northwest Ontario. It investigates the nature of the chemical and 

siliciclastic sediments lying below and interlayered with the carbonate portion of the platform and 

gathers information about the water chemistry of the ancient ocean and processes that operated 

during the formation of this Archean carbonate platform. The 2.93 Ga Red Lake carbonate 

platform consists of a variety of chemical and siliciclastic sediments including chert, oxide iron 

formation, sulfide iron formation, carbonate, siliciclastic black shale, sandstone, and 

conglomerate. This research describes the facies of the non-carbonate units and delineates the 

geochemistry of each facies to understand Archean ocean water chemistry and sediment-water 

interaction. 
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1.3 Regional Geology 

The Superior Province is the largest known Archean craton in the world, which covers 

about 23% of the exposed Archean crust of the Earth (Thurston et al., 1991). It is in the south-

central area of the Canadian Shield and extends from the northwestern part of Quebec to the shores 

of Lake Superior in Ontario and extends south into the northern fringes of USA. Card & Ciesielski 

(1986) divided Superior Province into various subprovinces based on unique rock types which 

were of mainly Meso-Neoarchean age and underwent significant deformation. The Superior 

Province includes the Berens River subprovince, the Sachigo subprovince, the Uchi subprovince, 

the English River subprovince, the Winnipeg River subprovince, the Wabigoon subprovince, the 

Quetico subprovince, the Western Abitibi subprovince and the Wawa subprovince (Figure 1.1) 

(Thurston et al., 1991). 

 

Figure 1.1: Subprovince map of Superior Province, modified from Card (1990) 
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The Red Lake carbonate platform occurs within the Uchi subprovince, which lies between 

the North Caribou Terrane and the English River subprovince (Sanborn-Barrie et al., 2000, 2001;  

McIntyre & Fralick, 2017). It is bounded to the south by the English River subprovince via the 

Sydney Lake Fault and to the north by the Berens River subprovince. In Northwestern Ontario, 

this subprovince is exposed for about 600 kilometers and stretches into Manitoba for about 90 

kilometers until it reaches Lake Winnipeg, where it is situated beneath younger Phanerozoic rocks 

to the west (Thurston et al., 1991). A series of Neoarchean to Mesoarchean ca. 3000-2700 Ma 

rocks lie in the northwestern area of this subprovince (Corfu & Wallace, 1986; Fralick & Burton, 

2008). Most parts of the Uchi subprovince had undergone greenschist to lower amphibolite facies 

metamorphism, while higher grade metamorphosed rocks are common at the boundaries of the 

major plutons and in areas with high degrees of strain (Corfu & Wallace, 1986; Thurston & Breaks, 

1978). Supracrustal rocks that formed the greenstone belt of Uchi subprovince include mafic 

tholeiitic-komatiitic sequences to calc-alkalic and tholeiitic volcanic arc sequences, and chemical 

and clastic sedimentary rocks, which were deposited within and upon the volcanic assemblages 

(Card, 1990; Card & Ciesielski, 1986; Hollings et al., 1999). 

The Uchi subprovince consists of a number of greenstone belts including the Lang Lake, 

the Pickle Lake, the Bee Lake, the Lake St. Joseph, the Red Lake, the Birch-Uchi, the Meen-

Dempster, the Miminiska-Fort Hope and the Rice Lake greenstone belts (Thurston et al., 1991).  

1.3.1 Red Lake Greenstone Belt 

 The Red Lake Greenstone Belt (RLGB) belongs to the Uchi subprovince of the 

Archean Superior Province in Northwestern Ontario and it comprises a complex succession of 

metavolcanic-metasedimentary rocks (Figure 1.2). The RLGB is an east trending structure marked 
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by steeply dipping strata of metavolcanic and metasedimentary rocks with more shallowly dipping 

strata present in the central and eastern part of the belt (Sanborn-Barrie et al., 2000). 

 

Figure 1.2: The top map shows the location of the Red Lake greenstone belt in the Uchi 

subprovince, and the bottom map shows different types of rock in the Red Lake greenstone belt 

(Satkoski et al., 2017). 

 

The Meso-Neoarchean strata of the Red Lake greenstone belt comprise the Balmer, Ball, 

Slate Bay, Bruce Channel, Trout Bay, Huston, and Confederation assemblages (Figure 1.3). The 

Balmer assemblage (U-Pb zircon age: 2992-2960 Ma) occurs in the eastern part of the belt, where 

the tholeiitic to komatiitic sequence comprises tholeiitic basalts, basaltic komatiites, komatiite lava  
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Figure 1.3: Red Lake greenstone belt with different assemblages of rocks and U-Pb ages (modified 

from Stott et al., 1991; Sanborn-Barrie et al., 2001).  

 

flows, and minor interbedded units of felsic metavolcanic rocks and metasedimentary rocks (Corfu 

& Andrews, 1987; Hollings et al., 1999). The felsic volcanic rocks are mainly pyroclastic, with 

local flows and metasedimentary rocks that include argillites, cherts, banded iron formations, and 

ferruginous marbles as well as wacke-mudstone, with polymictic conglomerates occurring near 

the top of the sequence (Corfu & Wallace, 1986; Pirie, 1981; Sanborn-Barrie et al., 2000, 2001).  

The Ball assemblage lies in the western part of the belt, comprises ultramafic and mafic flows 

intercalated with volcanic rocks of intermediate and felsic composition. (Hollings et al., 1999). 

This assemblage predominantly consists of tholeiitic basalt flows, felsic calc-alkalic flows, 

pyroclastic rocks, chemical sediments, e.g. magnetite-chert, dolomite-chert, sulfides and 

metasedimentary siliciclastic rocks (Pirie, 1981; Hofmann et al., 1985; Corfu & Wallace, 1986; 
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Hollings et al., 1999; Sanborn-Barrie et al., 2000, 2001). The U-Pb zircon ages of the two rhyolitic 

units lies directly above and below the stromatolitic sequence are 2940-2925 Ma, respectively 

(Corfu & Wallace, 1986; Sanborn-Barrie et al., 2000, 2001). The Slate Bay assemblage is clastic 

sediment dominated unit derived from erosion of the Balmer and Ball assemblages (Sanborn-

Barrie et al., 2000, 2001). It unconformably overlies the Balmer assemblage to the north. The 

maximum depositional age of this assemblage is ca. 2916 Ma from detrital zircon analysis, and it 

consists of feldspathic wacke interbedded with lithic wacke, argillite, pebble conglomerate and 

quartzose arenite (Sanborn-Barrie et al., 2000, 2001). The U-Pb zircon age of Bruce Channel 

assemblage is 2894 Ga which is found in the eastern part of the belt and comprises intermediate 

pyroclastic rocks, pebble conglomerate, siltstone, cross-bedded wacke and magnetite iron 

formation (Sanborn-Barrie et al., 2000). Calc-alkalic volcanic sequences include dacitic to 

rhyodacitic pyroclastic rocks (Pirie, 1981; Corfu & Wallace, 1986). The Trout Bay assemblage 

represents Neoarchean volcano-sedimentary sequences of 2853 Ma (U-Pb zircon age) which 

consist of basalt, tholeiitic basalt, intermediate tuff, chert-magnetite iron formation and clastic 

rocks (Sanborn-Barrie et al., 2001). To the north of the Slate Bay assemblage is the Huston 

assemblage, which is made up of a polymictic conglomerate deposited between 2890-2740 Ma 

determined by the U-Pb zircon ages (Sanborn-Barrie et al., 2001). This sedimentary assemblage 

marks an angular unconformity between Mesoarchean and Neoarchean strata (Sanborn-Barrie et 

al., 2001; McIntyre & Fralick, 2017). The Confederation assemblage is the youngest assemblage 

(U-Pb zircon ages 2750-2730 Ma), and it represents several volcanic sequences (Sanborn-Barrie 

et al., 2000, 2001). It is dominated by felsic to mafic volcanic flows and felsic to intermediate 

pyroclastic breccia with both calc-alkaline and tholeiitic compositions (Sanborn-Barrie et al., 

2000, 2001; McIntyre & Fralick, 2017).    
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The current study examined the chemical and siliciclastic sediments which are interlayered 

in the upper portion of the Ball Assemblage. The age of the platform was determined by Corfu and 

Wallace (1986) by U-Pb zircon age dating of the rhyolitic lapilli tuff below the carbonates and a 

rhyolitic flow above the carbonates which show the age ranges from 2.94 + 2 Ga to 2.92 + 3 Ga 

(Thurston et al., 1991). This defines a general younging direction to the south, which corresponds 

to the up direction of the numerous stromatolites. In the Red Lake area, the Mesoarchean carbonate 

platform comprises various chemical sediments, i.e., chert, magnetite iron formation, sulfide iron 

formation, stromatolitic and other forms of carbonate, as well as siliciclastic sediments, i.e., black 

shale, siltstone, sandstone, and conglomerate. The sedimentary assemblage is overlain and 

underlain by mafic to felsic volcanic rocks. The stromatolitic unit is present in an east-west 

trending southwardly dipping band under Pipestone Bay and is bounded by a rhyolitic pyroclastic 

unit on Galena Island of Red Lake (McIntyre & Fralick, 2017). The carbonates are associated with 

oxide iron formation, sulfide iron formation, and carbonaceous mudstone. The oxide iron 

formation is considered Algoma-type as it was deposited in close association with volcanic 

activity. In older literature, Algoma-type iron formation was believed to have generally 

precipitated from hydrothermal plumes and been deposited closer to the venting sites (Gross, 1980; 

Gross & Zajac; 1983) . However, more modern interpretations consider Algoma-type iron 

formation to have been precipitated from Archean ocean bottom waters in general (Fralick, 1987; 

Danielson et al., 1992). The volcanic unit overlying the carbonate succession to the north is 

composed of calc-alkaline to tholeiitic mafic flows, komatiitic flows, and felsic pyroclastic rocks. 
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Chapter 2: Methodology 

2.1 Fieldwork 

Fieldwork was carried out for a week in the Red Lake area in August 2017. It was 

conducted along the shorelines of Bridget Lake, Trout Bay and Hall Bay to describe and sample 

the 2.94 Ga - 2.92 Ga (Corfu & Wallace, 1986; Sanborn-Barrie et al., 2001) Ball Assemblage 

sedimentary rocks of the Red Lake Greenstone Belt. Samples were collected from different 

lithofacies for geochemical analysis, petrographic analysis, and for slabbing and polishing. 

Outcrop locations, lithofacies, and bed orientations were documented, and numerous photographs 

were taken of fieldwork sites.  

 

Figure 2.1: Drill hole and outcrop sites in the Red Lake area. 

 

2.2 Drill Hole Locations  

Drill core data were obtained from 11 different holes from the Red Lake area (Table 2.1). 

The drill hole and outcrop sites of the Red Lake area is presented in a google map in Figure 2.1. 

In 2010, Halo Resources Ltd. drilled four holes, three to the east of Bridget Lake and another to 

the north shore of Trout Bay, directly across from Galena Island (Figure 2.2). They conducted 
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further drilling of seven holes in 2012, five in the Pancake Bay area and two in the Bridget Lake 

area (Figure 2.3). 

Table 2.1: Summary of Red Lake drill-hole information compiled by Halo Resources Ltd.  

Hole Easting Northing Azimuth Dip Drilling depth (m) True vertical depth (m) 

PB12-32 412950 5654540 210º 42º 301  272  

PB12-33 413225 5654560 216º 43º 250  138  

PB12-34 413128 5654391 210º 44º 250  123  

PB12-35 412845 5654352 214º 40º 286  236  

PB12-36 413035 5654273 255º 45º 208 154  

BL12-37 414405 5653996 120º 45º 330  206  

BL12-38 414250 5653980 261º 45º 50  21  

EBL10-27 415838 5653986 216º 48º 396  174  

EBL10-28 415727 5653936 230º 48º 453  204  

EBL10-29 415473 5653970 215º 47º 180  61  

NGI10-31 416319  5653970 180º 51º 372  142  

 

 

Figure 2.2: 2010 drilled-hole locations at east Bridget Lake and north Galena Island (Timpa, 2011). 
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Figure 2.3: Drill-hole locations for holes drilled in 2012 in the (A) Pancake Bay area and (B) 

Bridget Lake area (Timpa, 2012a, 2012b).  

A 

B 
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2.3 Core Logging  

 Approximately 400 m of core of chemical and siliciclastic sedimentary rocks 

associated with the carbonate from 11 drill-holes were logged in the summer of 2017. Each unit in 

the cores was thoroughly described and measured. Samples were taken commonly at 2 m intervals 

for geochemical analysis, thin sectioning, slabbing, and polishing.  

2.4 Whole Rock Geochemical Analysis  

Rock samples of various lithologies were collected in the Red Lake area from both field 

work and drill-hole cores. A total of 200 samples were selected from different lithofacies including 

chert, oxide iron formations, sulfide ion formations, black slates, carbonates, siliciclastics, and 

volcanic rocks. These samples were analyzed at Lakehead University Instrumentation Laboratory 

(LUIL), Thunder Bay, Ontario for whole-rock major, minor and rare earth elements.  

The sample preparation was started by cutting core, and field samples with a rock saw, 

crushing a selected fresh piece with a hammer, and finally milling the fragments in an agate ring 

mill at the lapidary facility in the Department of Geology at Lakehead University. To prevent 

cross-contamination between samples, the agate mill was cleaned with acetone after the 

pulverizing of each sample. Additionally, by using a magnet, the magnetite samples were separated 

from the associated rocks, and 7 samples were washed to get rid of fine-grained siliciclastics. An 

electric micro-drill was also used to obtain pure pyrite and pyrrhotite samples. The powdered 

samples were preserved in plastic vials.  
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Whole Rock Dissolution 

            In the analysis, 0.5 g of powdered samples were put into Teflon beakers, and 10 ml of 

double distilled water (DDW) and 5 ml of nitric acid (HNO3) were added to the beakers along with 

three blanks and three standards. The three standards include Hawaiian basaltic rock (BHVO-2), 

quartz latite (QLO-1) (samples from United States Geological Survey, USGS) and a carbonate 

standard (8-44A) from Fralick & Riding (2015). The beakers were placed on a hot plate at 90˚C 

and left overnight to remove effervescence from the samples and evaporate the liquids. The next 

day, 5 ml of hydrofluoric acid (HF) and 10 ml of nitric acid were added and left overnight on the 

hot plate at 90˚C. The same process was repeated for the next two days. This four-day process 

allowed silica (SiO2) to digest completely and remove CO2 from the samples. On day five, 2 ml of 

nitric acid was added to the samples and simmered for 10 minutes at 90˚C. Then the beakers were 

filled to ¾ with DDW and simmered for another 20 minutes. After that, the samples were 

transferred to a 100 ml volumetric flask by adding DDW to fill it partially. Finally, the flasks were 

placed on the hot plate for two hours until the solution became transparent. After cooling, the flasks 

were filled with DDW to make 100 ml solutions of each sample which gave 200 times dilutions 

of the measured samples. For the ICP-AES analysis, 50 ml of each sample was transferred to 

plastic vials. However, for ICP-MS analysis 1000 dilution is required, which is obtained with 10 

ml of the sample solution and 40 ml of DDW with 2% nitric acid solution in a 50 ml vial.  

Partial Dissolution Geochemistry 

A partial dissolution process was applied to leach the carbonates from any siliciclastic 

contamination and to separate magnetite from associated carbonate samples. 0.2 g of powdered 

sample was used in the sample preparation process. Samples were placed into Teflon vials, and 10 
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ml of 5% acetic acid was added and allowed to digest overnight. The next day, the clear liquids 

were siphoned off from the beakers and placed into new Teflon beakers for drying. After drying, 

the samples were weighed. The samples were then added to 2% nitric acid and DDW to make 100 

ml solutions. Finally, samples were poured into 50 ml plastic vials for analysis by ICP-AES and 

ICP-MS. The empty Teflon vials were reweighed to determine the sample weights during 

dissolution. 

Analyses 

Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) was used for 

whole rock major and minor elements analysis while Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS) was used to determine the elemental concentration of rare earth elements. 

Selected samples were analyzed in the Lakehead university instrumentation laboratory by a Varian 

Vista Pro Radial (CETAC ASX-510 Auto Sampler) and a Perkin-Elmer Elan DRC-e analyzer for 

ICP-AES and ICP-MS respectively.  

Analysis Accuracy 

Geochemistry samples were analyzed in five batches along with standards and blanks. A 

total of 138 samples were prepared for the analysis. Table 2.2 is the sample analysis list of various 

lithologies. 

The accuracy of the analysis was determined using the equation below: 

Analysis Accuracy = [(Sample This study - Sample Standard) / Sample Standard] x 100% 
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Table 2.2: Geochemistry sample analysis list 

Geochemistry sample analysis list: ICP-AES and ICP-MS 

Sample type No. of samples 

Carbonate 38 

Magnetite 42 

Chert 7 

Pyrite 7 

Pyrrhotite 6 

Black slate 19 

Sandstone 12 

Volcanic rocks 4 
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Figure 2.4: USGS standard sample of (A) 

Standard Quartz Latite. (B) Standard 

Basalt and (C) Standard carbonate sample 

from Fralick and Riding (2015) were 

plotted against current analysis results. 
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In Figure 2.4 (A) and 2.4 (B), standard quartz latite and Hawaiian basalt results for rare earth 

elements obtained from this study were plotted against the USGS results, and in Figure 2.4 (C) 

standard carbonate REE analysis results from this study were plotted with Fralick and Riding 

(2015) results.  Carbonate samples were analyzed in one batch, which is why Figure 2.4 (C) 

represents a single analysis of a standard along with the given standard results. From the plots, it 

is clear that the analysis results of REEs in the standard samples of this study are similar to the 

USGS results. The analytical accuracy for ICP-AES analysis is ±10 % and for ICP-MS is ±3 %.  

2.5 Carbon, Oxygen, and Sulfur Isotope Analysis  

Carbon, oxygen, and sulfur isotope analyses were completed at the European Institute for 

Marine Studies, Brest, France, and G.G. Hatch Stable Isotope Laboratory at Ottawa. Powdered 

samples, which were prepared for geochemical analysis, were sent to France and Ottawa for the C 

and S analysis. δ13C isotope analysis of both organic carbon and inorganic carbonate were 

performed in the French lab in Brest, whereas only limited inorganic carbonate δ13C isotope 

analysis was conducted in Ottawa. δ34S isotope analysis was done at the G.G. Hatch Stable Isotope 

Laboratory at the University of Ottawa, while multiple S isotope analysis, δ32S, δ33S, δ34S, and 

δ36S, were determined at laboratory in Paris, France. 

Isotope Analysis Procedure at the European Institute for Marine Studies, France: 

δ13C Isotope Analysis for Organic Carbon 

In a fume hood, 6 N HCl was added to the powdered sample and left for 12 hours then 

warmed for 2 hours at 80°C. This process allows samples to be de-carbonated and the residues 

were washed with Milli-Q water. The residues were centrifuged three to four times to obtain a 

neutral pH. Then 10-15 mg of the de-carbonated samples were placed into tin capsule to analyze 
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carbon isotopic composition using a Thermo Scientific Delta V plus mass spectrometer coupled to 

a Flash 2000 elemental analyzer. Carbon isotope ratios are reported in conventional delta notation 

with respect to VPDB-standard (Vienna Pee Dee Belemnite). Precision (2σ) for δ 13Corg is ± 0.1 

‰.  

δ13C and δ18O Isotope Analysis for Inorganic Carbon 

δ13C and δ18O isotope composition of carbonate samples were determined by a Kiel IV 

automated carbonate preparation device. Powdered samples react with 100 % H3PO4 at 72ºC and 

release CO2  which was analyzed using a Finnigan MAT 253 mass spectrometer for isotope 

compositions of C, and O. 13C/12C and 18O/16O ratios were reported in delta notation relative to the 

VPDB-standard. Precision of δ13Ccarb and δ18O was 0.1‰ (2σ) and 0.2‰ (2σ), respectively. 

Multiple Sulfur Isotope Analysis 

 Conventional wet chemical extraction was used to retrieve sulfur from sulfide, and to 

extract mono-sulfides and primary pyrite acid volatile sulfide (AVS) and chromium reducible 

sulfur (CRS) were deployed respectively. By using cold concentrated hydrochloric (HCl) for 2 

hours, AVS was released and resulting hydrogen sulfide (H2S) was precipitated as silver sulfide 

(Ag2S) with a 0.3 M silver nitrate (AgNO3) solution. On the other hand, CRS was released after 

using hot and acidic 1.0 M chromium chloride (CrCl2) solution (Canfield et al.,1986), and the 

resulting H2S was precipitated as Ag2S. After centrifugation, the precipitated Ag2S was washed 

several times with deionized distilled water and dried at 50°C for 48 hours in an oven and weighted 

to calculate the amount of AVS and CRS. It was then fluorinated to produce SF6 and analyzed for 

their multiple sulfur (δ32S, ∆33S, ∆36S, and δ34S) isotope compositions. The isotope compositions 

were determined by using a dual-inlet Thermo Scientific MAT 253 gas source mass spectrometer 
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and monitoring ion beams at 127, 128, 129, and 131 m/z (Labidi et al., 2012). Sulfur isotope ratios 

are reported in conventional delta notation with respect to VCDT (Vienna-Canyon Diablo Troilite) 

as Eq. (1): 

 

where a is either 3, 4 or 6;  

and as equations. (2) and (3) for capital delta notation (following Johnston et al., 2008): 

∆33S = δ33S − 1000 ×  

∆36S = δ36S − 1000 ×  

International standards IAEA-S-1, IAEA-S-2, and IAEA-S-3 were used for calibration assuming 

δ34SVCDT values of -0.3 ‰, +22.7 ‰ and -32.3 ‰ respectively and for normalization IAEA-S-2 

standard sample was used which has +5.224 ‰, +0.030 ‰ and -0.203 ‰ of δ34S, Δ33S, and Δ36S, 

respectively (Thomazo et al., 2018). Analytical precision is ±0.3 ‰. 

Isotope Analysis Procedure at G.G. Hatch Stable Isotope Laboratory, Ottawa 

δ13C and δ18O Isotope Analysis for Inorganic Carbon 

About 0.5-0.7 mg of sample was measured into clean Exetainer vials. In another vial, about 

10 mL of anhydrous phosphoric acid was poured and then capped, heated and evacuated on a 

vacuum line for at least 1 hour to degas the acid. Samples vials were placed in a rack with standard 

samples and 0.1 mL of the prepared acid was carefully added to the samples. Next, the prepared 

vials were tilted straight and directly placed in the heated block of the Gas-Bench and left for 24 

[(1+ δ34S /1000)0.515 – 1] 

[(1+ δ34S /1000)1.9    – 1] 

(2) 

(3) 
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hours to react at 25°C for calcite and at 50°C for dolomite. Afterward, vials were flushed and filled 

with UHP helium off-line for 4 minutes at a rate of 60-70 mL/min into a Thermo Finnigan Delta-

Plus XP IRMS mass spectrometer for δ13C and δ18O analysis. Carbon and oxygen isotopes were 

normalized using international standards NBS-18, NBS-19, and LSVEC (C only). The analytical 

precision is ±0.15 ‰ and ±0.3 ‰ for δ13C and δ18O respectively. 

δ34S Isotope Analysis 

The powdered sulfide samples processed at the Hatch Lab in Ottawa were weighed into tin 

capsules with at least twice the sample weight of tungstic oxide (WO3) for inorganic and organic 

sulfur. Samples were placed into an isotope cube elemental analyzer to be flash combusted at 

1800ºC with the addition of oxygen.  Released gases were carried by ultrapure helium through the 

elemental analyzer to be cleaned, then separated. SO2 gas was separated for analysis by the 

chemical adsorption method and then carried by helium into a Thermo Finnigan Delta-Plus XP IR 

mass spectrometer, via a conflo IV interface for 34S determination. International standards IAEA-

S1, IAEA-S2, and AG-2 were used for calibration assuming δ34SVCDT values of -0.3 ‰, +22.7 ‰ 

and -0.71 ‰ respectively. Analytical precision is ±0.2 ‰. 

2.6 X-Ray Fluorescence (XRF) Scanning 

 Nine slabbed core and outcrop samples were scanned to obtain elemental mapping using a 

high resolution XRF scanner at the European oceanographic institution, IFREMER, Brest. 

2.7 CNS Analysis 

 This analysis was done in the Lakehead University Instrumentation Laboratory. Selected 

39 sulfide iron and black slate samples were run via standard TCD detector on a CHNS [Cl] 

Elementar vario EL analyzer to determine the carbon, nitrogen and sulfur % in these samples. 
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2.8 Petrographic and FE-SEM-EDS Analysis 

Polished thin sections were prepared from selected lithofacies samples. Initially, thin 

sections were examined under reflected and transmitted light. Photographs were taken to obtain 

images under plane polarized light (PPL) and cross-polarized light (XPL) with an Olympus DP-

70 petrographic microscope.  

After analyzing the thin sections with a petrographic microscope, they were coated with 

carbon in order to be scanned under a scanning electron microscope (SEM). The carbon-coated 

slides were analyzed with a Hitachi SU-70 Schottky Field Emission SEM with a working distance 

of 15 mm and an acceleration voltage of 20 kV. Backscattered electron images were taken to 

compare with petrographic images. EDS (energy dispersive x-ray spectroscopy) mineral mapping 

was done to ascertain the elemental composition in different lithofacies. Point analysis was 

accomplished to determine the major element geochemistry of minerals within the carbonate 

sequence. 
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Chapter 3: Lithofacies 

3.1 Sedimentary Lithofacies Associated with the Red Lake Carbonate Platform 

This chapter includes a description of lithofacies observed in the field and drill-core. Each 

lithofacies present in the deeper water areas of the platform, as defined by McIntyre and Fralick 

(2017), is discussed with respect to their lithology, bedding characteristics, abundance, and 

association with other lithologies. The description of the lithofacies is followed by a discussion of 

the geochemistry of the lithofacies employing XRF elemental mapping of slabs, SEM-EDS 

investigations of entities smaller than the XRF mapping could resolve, and ICP-AES and ICP-MS 

whole rock and mineral separate geochemistry. The geochemical analysis of major, minor and rare 

earth elements of the different lithofacies samples is presented in Appendix 1.1 and 1.2. Isotope 

geochemistry including sulfur, carbon, and oxygen isotope analysis are presented in Appendix 1.3, 

1.4, and 1.5.  

3.1.1 Carbonate 

 Carbonate is common in the study area although in some places it is highly silicified. It 

generally appears dark gray to orangey brown on the weathered surface and white to grayish on 

the fresh surface. Carbonates of both organic and inorganic origin occur in outcrop as well as drill 

core. Microbialites present in the shallow water portion of the platform include stromatolitic 

carbonates (McIntyre and Fralick, 2017) that are now largely silicified and react very weakly with 

10% HCl. They are identified by features such as dome-shaped structures with wavy to flat laminae 

(Figure 3.1). Deeper water carbonaceous slate, chert, and iron formation underlie, overlie and are 

intercalated with the 200 m thick shallow water carbonate succession. The deeper water carbonate 
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rocks observed in outcrops are classified here base on their sedimentary features and mode of 

occurrence.  

  

Figure 3.1: (A) Well-preserved domal-stratiform stromatolites and (B) wavy laminated 

stromatolitic carbonates are common in outcrops and represent shallow water carbonate. 

 

Carbonate Associated with Oxide Facies Iron Formation 

 Carbonate associated with oxide facies iron formation consists of millimeter-scale 

magnetite-rich laminae interlayered with ~ 1cm thick calcite layers. The calcite bands are white 

but orangish on weathered surfaces. Magnetite laminae are thin, straight to wavy and black to dark 

grey. Contacts between the carbonate and magnetite layers are mostly sharp with little magnetite 

in the carbonate layers, and the carbonate present in the magnetite layers serves as a matrix to the 

recrystallized magnetite. At the base of the polished slab section in Figure 3.2-B, magnetite 

laminae are mm-thick and separated by 0.5 cm thick calcite layers and grade up through a more 

diffuse mixture of magnetite and calcite to purer calcite while others are sharp sided (see especially 

3.2-C). Thin section analysis of carbonate associated with oxide facies iron formation shows, under 

cross polarized light, recrystallized calcite with obliterated primary textures with the magnetite 

also recrystallized forming large euhedral crystals. This facies is exposed next to the stromatolitic 

A B 
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carbonate unit on the NW shoreline of the Hall Bay area. However, this facies is probably rare in 

the Red Lake area, and no drill core sections exhibiting this type of facies were observed. 

 

Figure 3.2: Carbonate associated with oxide facies iron formation in A) Outcrop at the shoreline 

of Hall Bay. Approximately 1 cm thick, white calcite layers alternate with mm-scale magnetite 

layers. The majority of contacts are sharp with little magnetite in the carbonate layers. (B) and (C) 

are polished slabs showing some layers in B have a mm-thick magnetite-rich lamina at their base 

and grade up through a more diffuse mixture of magnetite and calcite to more pure calcite (see 

especially B), whereas others are sharp sided (see especially C). (D) Thin section under XPL. Note 

the recrystallized nature of the calcite obliterating primary textures. The carbonate in the magnetite 

layers serves as a matrix to the recrystallized magnetite which has large euhedral crystals. 

 

Slumped Carbonate 

 Carbonate-containing slump features are present in association with iron formations and/or 

siliciclastic sediments on the shoreline of the Hall Bay area in Red Lake. The carbonate 

clasts/broken layers are contorted, different in size and shape, white to orange in color, and 

composed of calcite which reacts very strongly with 10% HCl (Figure 3.3). The carbonate 

clasts/broken layers are hosted in fine-grained, dark gray to black siliciclastic mudstone, 

A 

C 

B 

D 
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magnetite-rich iron formation or an assemblage of both. The siliciclastic matrix in places reacts 

with HCl acid and/or contains magnetite, which indicates slumping possibly occur before 

lithification so that calcite and magnetite were mixed with mudstone. The upper part of the section 

contains elongated, flat to curvy, 1 mm to 3 mm thick cherty carbonate clasts in a siliciclastic 

matrix, while the lower portion is matrix dominated with a minor amount of carbonate clasts 

(Figure 3.3 B). The cherty carbonate clasts also react with HCl, but the matrix does not. The slab 

in Figure 3.3-C contains slightly magnetic, carbonaceous mudstone matrix with convolute 

carbonate clasts that are <1 mm to a few mms thick. The carbonate clasts are sub-rounded to sub-

angular, a few mm to a cm thick and sprinkled over the carbonaceous mudstone with larger clasts 

at the center. However, near the bottom carbonate layering is preserved and continuous and has a 

sharp contact with a ~2.5 cm thick magnetite band (Figure 3.3 D). 

The slab in Figure 3.4-A is an example of a slump in carbonate associated with oxide iron 

formation, where cm-thick broken carbonate layers alternate with mm-scale magnetite layers. 

These layers are folded and continuous to some extent at the center of the figure but at the bottom 

carbonate clasts are present in a magnetite-rich matrix. The slumped carbonate sample in the 

Figure 3.4-B exhibits chaotic association of carbonate, magnetite, and slate, which suggest 

slumping occur before lithification.  
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Figure 3.3: (A) Slumped carbonate on the shoreline of Hall Bay. (B) Polished slab of slumped 

carbonate with the upper part dominated by elongate cherty carbonate clasts/broken convolute 

layers, while the bottom part is mudstone-rich with a small amount of carbonate clasts. (C) 

Contorted carbonate clasts scattered in slightly magnetic carbonaceous slate and (D) sub-rounded 

to sub-angular carbonate clasts sprinkled over the carbonaceous mudstone with larger clasts 

present at the center. Near the bottom, carbonate layering is somewhat preserved and has a sharp 

contact with a ~2.5 cm thick magnetite band. 

 

These carbonate slumps are probably caused by soft-sediment deformation rather than a 

tectonic brecciation process as the tectonic overprint of the rocks is a regional feature, but none of 

the other lithofacies have any indication of tectonic brecciation. In addition, facies overlying and 

underlying the contorted units have parallel layering. Also, the broken carbonate layers/clasts are 

randomly oriented, and they would be expected to have a preferred orientation if post-lithification 

tectonism were the cause. Finally, the associated slates have no cleavage associated with the 
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chaotic folding where present. Therefore, it is assumed that this slumped carbonate facies is formed 

by soft-sediment deformation due to slope instability in the upper slope environment and the slump 

blocks landed in the mid to lower slope environment and became interbedded with the sediments 

of those areas.  

 
Figure 3.4: (A) Carbonate associated with oxide iron formation slumps where cm-thick broken 

carbonate layers alternate with mm-scale magnetite layers and suggest slumping occured after 

lithification of the carbonate. (B) A chaotic association of carbonate and magnetite suggests 

slumping occur before lithification.  

 

Geochemistry of Carbonate 

 X-ray Fluorescence (XRF) scanning of laminated carbonate, slumped carbonate, and 

carbonate associated with oxide iron formation was conducted to visualize the different elemental 

distributions in these samples. The scanned image of the laminated carbonate in Figure 3.5 reveals 

that the upper part of the sample is composed of calcite and the lower part is composed of mm-

scale thin magnetite laminae and mm size magnetite grains in a siliciclastic matrix. Magnesium 

content is very low in the upper carbonate portion. Secondary sulfide laminae of mm-scale are also 

present near the top of the siliciclastic portion.  

A B 
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Figure 3.5: XRF scanned image of a laminated carbonate core sample showing the original image 

(A) and elemental false-color maps of (B) calcium; (C) iron; (D) sulfur and (E) silica. The upper 

part of the sample is composed of calcite where magnesium content is negligible, and the lower 

part is composed of mm-scale iron laminae embedded in a siliciclastic matrix. Secondary sulfide 

is also present in the siliciclastic unit.  

 

The scanned XRF false-color images of slumped carbonate and chert indicate that 

carbonate layers are composed of calcite and are hosted in a siliciclastic, iron-rich matrix (Figure 

3.6). The top photos are of white carbonate clasts in a siliciclastic matrix rich in iron oxides and 

calcite. At the base of these scans, a >1 cm-thick magnetite band is present. However, in the bottom 

sample, the white convolute clasts/layers are mostly composed of chert clasts embedded in a calcite 

matrix. The matrix in the upper part of the slab is mixed with calcite and magnetite.  

 

 

 

 

20 mm 20 mm 20 mm 20 mm 20 mm 
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Figure 3.6: XRF scan images of slumped carbonate samples showing original images (A) and (E), 

and elemental images of calcium in (B) and (F); iron in (C) and (G); silica in (D) and (H). The top 

photos represent limestone sample where carbonate clasts are aligned near the bottom and the 

matrix is mixed with calcite and magnetite, with a magnetite band at the base of this slab. The 

bottom picture shows chert clasts with a matrix of magnetite and calcite. 

 

 

Figure 3.7: XRF scanned false-color images of carbonate associated with oxide iron formation. 

(A) original image and elemental images of (B) calcium; (C) iron; (D) silica. The images contain 

mm-scale magnetite layers alternating with cm-scale calcite layers and the stromatactis cavities 

with pendant calcite cement are filled with secondary silica. 

 

The XRF scanning false-color image of carbonate associated with oxide facies iron 

formation exhibits mm-scale magnetite laminae interlayered with cm-scale calcite layers (Figure 
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3.7). The stromatactis cavities between calcite layers are filled by pendant calcite cement on the 

roofs and secondary silica. 

 

 

Figure 3.8: A) SEM-EDS layered false-color image of Fe and Ca in the carbonate associated with 

oxide iron formation. The carbonate band and the iron band are formed by calcite and magnetite 

respectively. Calcite is also present as a matrix in the magnetite band. B) and C) Elemental map 

of Al and Si respectively in the same section showing the presence of what was originally mud 

lining both sides of the magnetite band. D) BSE image and point analysis of carbonate layers on 

both sides of the magnetite band.  

 

SEM-EDS elemental false-color maps of carbonate associated with oxide facies iron 

formation also show that carbonate and iron bands were formed by calcite and magnetite 

respectively. However, calcite is also present as a matrix in the magnetite band. The presence of 

magnetite associated with calcite is difficult to explain, as to whether the magnetite (Fe3O4) was 
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diagenetically altered from siderite (FeCO3) or altered from iron hydroxide (Fe(OH)2). Multiple 

point analyses were performed on two carbonate layers, and it was apparent that compositional 

variation in carbonates is very significant. The Mg, Mn, and Fe content is high close to the 

magnetite band but gradually decreasing away from it. The data is presented in Table 3.1. 

Table 3.1: Composition of carbonate on both side of an iron band 

Carbonate compositions in wt. % on the left 

side of the magnetite band 

Carbonate compositions in wt. % on the right 

side of the magnetite band 

Elements S-1 S-2 S-3 S-4 S-5 S-6 Elements S-1 S-2 S-3 S-4 S-5 S-6 

MgO 6.68 1.29 1.43 1.08 0.8 0.91 MgO 1.16 1.21 1.15 1.09 0.92 0.83 

CaO 37.6 48.6 47.2 47.4 46.5 46.3 CaO 46.9 46.9 48.4 49.5 48.3 45.4 

MnO 2.51 1.91 1.98 1.73 1.69 1.47 MnO 1.93 1.78 1.75 1.61 1.63 1.42 

FeO 12.43 4.05 4.4 3.21 3.2 2.78 FeO 4.37 4.64 4.43 4.26 3.99 4.1 

Al2O3  0.25     Al2O3       

SiO2  0.68     SiO2       

Total 59.2 56.7 55.0 53.4 52.2 51.5 Total 54.3 54.6 55.7 56.5 54.8 51.7 

 

 

Figure 3.9: Al2O3 vs. TiO2 plot shows that carbonate samples have a negligible amount of 

siliciclastics (Al2O3 content is < 1%).  
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Figure 3.10: PAAS normalized (Taylor & McLennan, 1985) whole rock and partial dissolution of 

rare earth element patterns of carbonate samples have overall heavy rare earth enrichment, positive 

Eu anomaly and one sample has a negative Ce anomaly. 

 

The Al2O3 vs. TiO2 plot in Figure 3.9 shows carbonate samples have a very low amount of 

siliciclastics (Al2O3 content is < 1%). The Al2O3 content ranges from 0.09 wt % to 0.46 wt %. 

Similarly, TiO2 contents range from 0.001 wt % to 0.005 wt %. The rare earth element systematics 

of carbonate samples is described in Figure 3.10 represents a compilation of this data discussed in 

detail in Chapter Four. In summary, the PAAS normalized REE patterns of carbonate samples 

have heavy rare earth element enrichment, positive Eu anomalies, and no negative Ce anomaly 

except for one sample (Figure 3.10).  

3.1.2 Chert    

Chert in the Red Lake carbonate platform occurs mostly either interbedded with magnetite 

or as massive chert. It also occurs as secondary in origin replacing carbonate throughout the 
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stratigraphy. Pure chert tends to be white while the variation of color depends on the degree of 

contamination or addition of other minerals, for example, chlorite gives a greenish appearance, 

iron oxides give reddish coloration, organic carbon and/or carbonaceous mud gives a grayish color, 

and pure mud gives a cream color. Chert is common in most of the drill holes either as massive 

chert or as an associate of the oxide iron formation (Figure 3.30). There is an approximately 10 m 

thick chert bed present beneath the deeper water chemical sedimentary rocks near the top of the 

PB-32 hole (stratigraphic top) while the deeper water assemblage itself is about 45 m thick. This 

chert bed is overlain by black slate and underlain by sandstone. There are a few thin chert layers 

associated with carbonate, sandstone, and oxide iron formation in this hole. The EBL-27 hole has 

an approximately 130 m thick package of chemical sedimentary rocks where a number of 0.5 m to 

8 m thick chert beds are interlayered with black slate, sulfide iron formation, and oxide iron 

formation. The EBL-28 hole contains a few approximately 5 m thick chert beds in association with 

sandstone and siltstone. The other drill holes have a somewhat less occurrences of massive chert. 

The presence of chert interbedded with magnetite is mentioned in the oxide iron formation section. 

The description of different types of chert in the Red Lake area is discussed below. 

Chert Interbedded with Oxide Iron Formation 

Chert is mainly interbedded with magnetite in the Red Lake area. The chert bands are 1 cm 

to 4 cm-thick and alternate with magnetite. Layering is parallel, mostly straight to slightly wavy 

and white to grey (Figure 3.11 A). The color variation from white to grey is due to an increase in 

the amount of siliciclastics and incorporation of carbonaceous materials into the chert. Contacts 

between the chert and magnetite layers are sharp. The chert interbedded with oxide iron formation 

is laterally continuous in the shoreline of the Bridget Lake area. The core sample in Figure 3.11-B 

is chert dominated and exhibits 2 cm to 4 cm-thick, slightly fractured white to greyish chert layers  
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Figure 3.11: Primary Chert in the Red Lake area. (A) 1 cm to 4 cm-thick chert interbedded with 

magnetite, layering is straight to slightly wavy, parallel and laterally continuous. This is exposed 

on the shoreline of Briget Lake (outcrop -1). (B) Polished core section showing variable thickness 

of slightly fractured, white to grey chert laminae interlayered with relatively thin magnetite where 

grunerite is present along the contact of chert and iron oxide; and in (C) mm to cm-thick chert 

layers are separated by thick magnetite layers which are rich in secondary iron sulfide. Layering 

is straight and parallel in both sections. (D) 15 cm to 20 cm-thick chert interbedded with thin 

magnetite. This is exposed at outcrop - 3. (E) Approximately 15 cm thick massive chert bed 

interlayered with magnetite at Bridget Lake. 

 

A 

D E 

C B 
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separated by 1 cm- to 2 cm-thick magnetite layers, layering is parallel and straight, and contacts 

are sharp. The lining along the contacts of magnetite and chert are formed by grunerite. The 

fractures in the chert layers are filled with secondary sulfides. The core sample in Figure 3.11-C 

has mm to cm-thick chert  layers that are separated by thick, parallel magnetite layers with sharp 

contacts. The magnetite bands are rich in secondary sulfides. 

Massive Chert 

 The thickness of massive chert beds in outcrops varies from 10 cm to 15 cm. A 30 cm thick 

massive chert bed is present in outcrop -3. Sometimes massive chert beds are heavily stained with 

a rusty color due to the oxidation of adjacent sulfide-bearing rocks, which has obscured the original 

appearance of the chert in the outcrop. Internal lamination may be present in massive chert layers 

but are not obvious in outcrop sections. In core data, massive cherts are white to gray and 

sometimes have a fractured appearance. Massive 10 to 20 cm thick, parallel chert beds are 

commonly interbedded with relatively thin (2 to 4 cm) (Figure 3.11 D) to very thin (0.5 to 1 cm) 

(Figure 3.11 E) magnetite bands and have sharp contacts with adjacent magnetite and sulfidic slate 

layers. In outcrop, massive chert beds are present at the shoreline of Bridget Lake (outcrop-1) and 

along the shoreline of outcrop -3 (see map in Figure 2.1). 

Laminated Chert 

The laminations in the chert are more conspicuous in slabbed sections than outcrop 

sections. Generally, the laminations are parallel, a few mm to 1 to 2 cm thick. The chert in Figure 

3.12 A has 2 mm to 5 mm thick parallel laminations, which alternate between white and grey chert, 

and has a sharp contact with thin magnetite layer at its top. The variation of light to dark grey color 

is due to the difference in mud and/or organic carbon content. However, some laminations are 
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stained with a rusty color. This is due to the weathering of pyrite inclusions. In Figure 3.12 B, the 

laminated chert band has sharp upper and lower contacts with magnetite. The chert band is ~10 

cm thick with mm to cm-scale internal laminations. The laminations are greenish at the top and 

cream to orange in color at the center and dark grey near the bottom. Laminated chert was observed 

along the NE shoreline of Hall Bay (outcrop - 2).   

 

Geochemistry of Chert 

An XRF scanned false-color image of a core slab of chert interlayered with oxide iron 

formation confirms the presence of iron and silica in the sample. The thickness of both chert and 

magnetite layers varies from a few mms to cms in scale. The scanned image displays the chert and 

magnetite layers as parallel and straight with sharp contacts, though there are examples of 

magnetite grading to chert and chert grading to magnetite. An approximately 2 cm thick white 

chert layer is present in the middle of the slab that is vaguely divided by wispy magnetite laminae. 

Figure 3.12: A, polished slab of laminated 

chert with 2 to 5 mm thick, parallel, white to 

grey laminations, and a sharp contact with thin 

magnetite layer at the top. (B) mm to cm-scale  

chert laminations with sharp upper and lower 

contacts with magnetite. 

A B 
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The 2.5 cm thick grey chert layer above the white chert layer is not as bright as the white chert 

layer in the XRF silica map, and there is a trace of iron which indicates this is a ferruginous chert 

layer. The magnetite laminae thickness gradually increases towards the top and at the top an 

approximately 1 cm thick magnetite layer that has a yellowish gray lining on both sides is present. 

This yellowish gray lining at the contact of chert and magnetite is probably grunerite, which is a 

common iron silicate mineral found in regionally metamorphosed terrains.  

 

Figure 3.13: XRF scanned image of chert interbedded with magnetite. Elemental mapping shows 

the distribution of iron and silica. Both chert and magnetite layers have variable thicknesses. Most 

contacts between the iron and silica-rich bands are sharp but some are gradational. 

2 cm 2 cm 2 cm 
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Figure 3.14: Photomicrographs of chert thin sections under cross polarized light using a 

petrographic microscope. (A) Massive chert composed of mainly quartz. (B) Chert interbedded 

with magnetite. (C) Chert in association with grunerite and magnetite. 

 

In banded iron formation, chert occurs with magnetite (Figure 3.14 B) and sometimes with 

magnetite and grunerite (Figure 3.14 C). The cross polarized light image shows radiating, acicular 

crystals of grunerite, which is a characteristic mineral of metamorphosed iron-rich siliceous 

sediments with low concentrations of aluminum. In a regionally metamorphosed terrain, the 

typical assemblage is magnetite-grunerite-quartz (Stevens et al., 2002). 

A B 
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Figure 3.15: Al2O3 vs. TiO2 plot shows siliciclastic contamination in chert samples is negligible 

except one sample that has >1 wt % Al2O3 content. 

 

 

 

Figure 3.16: PAAS normalized (Taylor & McLennan, 1985) REE patterns of chert with positive 

Eu anomalies on a somewhat heavy rare earth element depleted pattern. 
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To determine the siliciclastic contamination in chert samples an Al2O3 vs. TiO2 plot was 

used. The Al2O3 and TiO2 contents range from 0.039 wt % to 0.15 wt % and 0.001 wt % to 0.006 

wt % respectively (Figure 3.15), except for one sample which has 1.8 wt % Al2O3 and 0.025 wt % 

TiO2. The low concentrations of Al2O3 and TiO2 indicate siliciclastic contamination in most chert 

samples is negligible. The spider diagram of chert samples is presented in Figure 3.16 and an 

explanation of the REE systematics is described in Chapter Four. In brief, PAAS normalized REE 

trends of chert samples show positive Eu anomalies and somewhat heavy rare earth element 

depleted patterns. Some chert samples could not be plotted on the spider diagram due to their being 

below the detection limit of REEs. It must also be noted that the REEs are not structurally in the 

chert but must reside in mineral and fluid inclusions. 

3.1.3 Oxide Iron Formation 

 The oxide iron formation in the Red Lake carbonate platform is characterized by magnetite 

interbedded with chert. Hematite is uncommon in the Red Lake stratigraphy. Magnetite bands are 

black, 1-5 cm thick and commonly have sharp contacts with the chert bands (Figure 3.17). 

Layering is straight to slightly wavy, parallel, and laterally continuous.  

Oxide iron formation is abundant in EBL-27 and NGI-31 holes whereas EBL-29, BL-37, 

BL-38, and PB-32 holes have less of this lithology.  In the  EBL -27 hole, oxide iron formation of 

1 m to 5 m in thickness alternates with sulfide iron formation of 0.5 m to 10 m thickness at 

approximately 35 m from the stratigraphic base of the drill hole. In the NGI-31 hole, the oxide iron 

formation is abundant in the ~65 m thick deeper water assemblage where it is overlain and 

underlain by carbonates. In addition, the oxide iron formation here is of variable thickness (1 m to 

10 m ) and is interlayered with carbonaceous slate. The oxide iron formations in the EBL-27 and 
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NGI-31 holes are magnetite dominated and strongly magnetic while oxide iron formations in the 

BL-37 and BL-38 holes are chert dominated. A 5 m thick oxide iron formation is bracketed with 

carbonates in the EBL-29 hole. The BL-37 and BL-38 holes have poorly developed oxide iron 

formation (< 0.5 m thickness) which is associated with chert and carbonate in BL-37 and black 

slate and chert in BL-38. The PB-32 hole has limited occurrence of oxide iron formation of only 1 

m to 5 m thick and it is embedded in a ~175 m thick carbonate succession. 

 

Figure 3.17: Oxide facies iron formation in different locations in the Bridget Lake area. (A), (B), 

(C) and (D) Magnetite interbedded with chert where magnetite band thickness varies from 1 cm to 

5 cm, bands are parallel, mostly straight with sharp contacts with chert. (E) Rock saw cut sample 

of oxide iron formation. The bottom part of the slab is magnetite dominated. Near the top thin 

magnetite laminae are separated by 0.5 cm to 1 cm thick chert layers. 

 

On a smaller scale the upper part of the slab of iron formation in Figure 3.17 E contains 

mm-scale magnetite laminae in the chert bands, but the bottom part of the slab is magnetite 

dominated. The magnetite band thickness varies from 0.5 cm to 3 cm and alternates with chert 

bands. Contacts are sharp. A core sample of oxide iron formation was already described in the 

chert section. 
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Geochemistry of Oxide Iron Formation 

XRF scanned false-color images of oxide facies iron formation are discussed in the 

previous section. The SEM mineral mapping of oxide iron formation depicts it as mainly 

magnetite-rich, but it occasionally contains grunerite and Figures 3.18 A-B show the presence of 

acicular grunerite with magnetite and quartz. 

 

Figure 3.18: SEM-EDS false-color elemental map of oxide iron formation showing magnetite 

(Mag), quartz (Qtz), and grunerite (Gru) in (A) and (B). Grunerite has typical acicular crystals 

shape. 

 

The magnetite samples were plotted on an Al2O3 vs. TiO2 diagram to estimate the siliciclastic 

influence (Figure 3.19). The graph shows Al2O3 and TiO2 content range from 0.032 wt % to 1.4 

wt % and 0.002 wt % to 0.094 wt % respectively. Most of the samples have <1 wt % Al2O3 content, 

which indicates the siliciclastic influence in these magnetite samples is insignificant. But a few 

magnetite samples have >1 wt % Al2O3 content which suggest these samples are somewhat 

contaminated by siliciclastics, which will influence the shape of their REE patterns. 
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Figure 3.19: Al2O3 vs. TiO2 plot showing most of the samples have < 1 wt % Al2O3 content. This 

indicates the siliciclastic influence in most magnetite samples is insignificant. A few magnetite 

samples have >1 wt % Al2O3 content which suggests these samples are somewhat contaminated 

by siliciclastics, which will influence their REE patterns by flattening them. 

 

 

Figure 3.20: PAAS normalized (Taylor & McLennan, 1985) rare earth element patterns of oxide 

iron formation showing positive Eu* anomalies and heavy rare earth element enrichment. 
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The PAAS normalized REE systematics of magnetite samples is displayed in the spider 

diagram of Figure 3.20 and the description of REE systematics is discussed in Chapter Four. In 

short, the REE pattern of oxide facies iron formation is characterized by positive Eu anomalies 

and heavy rare earth element enrichment. 

3.1.4 Sulfide Iron Formation 

 The sulfide iron formation at Red Lake is composed of either pyrite or pyrrhotite or both 

in the same sample and is commonly associated with carbonaceous black slate. This type of deposit 

is readily identified in the field by oxidation of iron sulfide minerals, the presence of white sulfate 

salts and sometimes by pyrite nodules. It is often ambiguous to differentiate the sulfide iron 

formation from carbonaceous shale because black shale usually contains iron sulfide minerals. 

However, sedimentary rock with more than 20% iron minerals is considered as iron formation 

(James, 1954).  

Sulfide iron formation is plentiful in the EBL-27, NGI-31, and PB-32 holes but limited in 

the PB-33 hole (Figure 3.30). A deeper water assemblage of approximately 130 m thickness is 

contained in the EBL-27 hole where sulfide iron formation occurs near the bottom of the hole. 

Additionally, a 13 m thick sulfide iron formation is interlayered with black slate and oxide iron 

formation in the deeper water chemical sedimentary package. At the top of EBL-27, a few 0.5 m 

to 1.5 m thick iron sulfide layers are underlain by carbonate units and interlayered with 0.5 m to 

4.5 m thick chert beds. A ~65 m thick interval in the deeper water succession, bracketed within 

carbonate units, exists near the top of the NGL-31 hole. This succession contains sulfide iron 

formations of variable thickness (0.5 m to 5 m) which are interbedded with carbonaceous slate and 

oxide iron formation. On the other hand, sulfide iron formation (~15 m thick) is interlayered with 

carbonaceous slate and occurs near the top of the PB-32 hole where it is underlain by carbonate 
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and overlain by chert. Furthermore, the core sections where they are sulfides interlayered with 

black slate or disseminated as cubes show their textures better in the drill-core than in outcrops. 

The slabbed core samples with sulfide minerals in black slates contain pyrite as thick to thin layers 

and as blobs of dull golden to brass yellow colour. The layering is composed of laminae of variable 

thickness ranging from a few mms to cms. In core samples, pyrrhotite occurs primarily as dark 

bronze coloured patches to well-layered laminae. 

 

 
Figure 3.21: Sulfide iron formation in outcrops. (A) Rusty weathered iron sulfide with white 

sulfosalts in outcrop -1 in the Bridget Lake area. (B) and (C) Highly weathered iron sulfide in 

contact with massive chert in outcrop - 3. (D) 0.5 cm to 1 cm diameter pyrite nodules present in 

sulfide iron formation in outcrop - 1 in the Bridget Lake area. 

 

Highly weathered sulfide iron formations were observed occurring with massive chert and 

oxide iron formation in two outcrop locations. The sulfide iron formations look massive, but it is 

E 
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difficult to see any textures because of weathering. However, pyrite nodules of roughly 0.5 cm to 

1 cm diameter are present in the weathered sulfidic iron bed of outcrop - 1 at Bridget Lake. The 

thickness of this sulfide iron formation is from 22 cm to 50 cm, and it has sharp contacts with 

adjacent oxide iron formation and chert. Four sets of highly weathered sulfide iron formations of 

variable thickness from 15 cm to 80 cm were observed in outcrop – 3, which is ~ 600 m east of 

the Bow Narrows fishing lodge. They are interbedded with oxide iron formation and chert and 

have sharp upper and lower contacts with them.  

 

 

Figure 3.22: Sulfide iron formation in polished core slabs showing in (A) mm- to cm-scale pyrite 

layers separated by carbonaceous mudstone, in (B) >1 cm diameter pyrite nodules disseminated in 

black slate, in (C) coalesced mm-scale crenulated pyrite lamination, and in (D) mm- to cm-scale 

pyrrhotite layers separated by carbon-rich mudstone layers that abruptly changes in abundance 

upward. 

 

The polished core slabs show the occurrence of thin sulfide layers with black slate. 

However, massive pyrite layers of 5 cm to 10 cm thick are also present in core samples. The pyrite 

and pyrrhotite layers are parallel, almost straight to slightly wavy, with sharp contacts with the 

carbonaceous slate (Figure 3.22-A, D). Lamination thickness of pyrite varies from a few mm to 1 
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cm and are separated by mm- to cm-scale layers of carbonaceous mudstone (Figure 3.22-A). Pyrite 

nodules of sub-rounded to rounded shape and > 1 cm in diameter are scattered throughout some 

areas of the black slate unit (Figure 3.22-B). Some nodules are fractured, and some appear to 

coalesce. In Figure 3.22-C the mm-scale crenulated, coalesced pyrite laminations alternate with 

black slate and the proportion of pyrite is greater than siliciclastics. In Figure 3.22-D this 

pyrrhotite-rich sample contains 1 mm to 0.5 cm thick pyrrhotite laminations separated by carbon-

rich mudstone, and the upper part has mm-scale delicate laminae of pyrrhotite. 

Geochemistry of Sulfide Iron Formation 

XRF scanned false-color images of sulfide iron formation samples show the elemental 

zonation created by the interlayering of pyrite or pyrrhotite layers with carbonaceous slate layers 

(Figure 3.23). However, the bottom left corner of the pyrrhotite sample (top photos) is cherty which 

is conspicuous from the Si image in Figure 3.23-D. Similarly, the Si map of the pyrite sample 

shows that chert content increases toward the top right side of the sample (Figure 3.23-I).  
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Figure 3.23: XRF scanned false-color images of core slabs of sulfide iron formation. The top five 

photos represent the elemental composition of a pyrrhotite sample while the bottom five pictures 

represent the elemental composition of a pyrite sample. 

 

One sulfide iron formation present in the bottom portion of EBL-27 drill-hole contained 

small amounts of sphalerite (ZnS) and chalcopyrite (CuFeS2) (Figure 3.24-A, B, C). These are 

anhedral in shape, < 0.2 mm in size and are intergrown with pyrite. Backscattered electrons false-

color images and SEM elemental mapping also highlights the co-occurrence of pyrite and 

pyrrhotite (Figure 3.24-D, E). These images display large euhedral pyrite recrystallized over 
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anhedral pyrrhotite and the recrystallized pyrite exhibits typical polygranular texture. Such co-

occurrences indicate the iron sulfides have undergone replacement reactions making original 

phases difficult to ascertain. 

 

 

Figure 3.24: (A), (B), and (C) SEM-EDS mineral map of iron sulfides showing the presence of 

sphalerite (spl) and chalcopyrite (cp). BSE image of iron sulfide sample showing (D) co-

occurrence of pyrite (Py) and pyrrhotite (Po). (E) SEM-EDS mineral map depicts recrystallized 

euhedral pyrite (Py) over an anhedral pyrrhotite (Po) layer. 
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Figure 3.25: Cu vs. Zn plot of iron sulfides, and black slate samples showing most of the pyrite 

samples have higher presence of Zn and Cu whereas the pyrrhotite samples have low Zn, but some 

have high Cu content. Increased presence of these elements is an indication of the influence of 

high-temperature hydrothermal fluid. 

 

Figure 3.25 illustrates the Cu and Zn content present in the pyrite and pyrrhotite rich 

samples and black slate samples. The graph shows that most pyrite samples have higher copper 

and zinc values than the pyrrhotite samples. Pyrrhotite samples have low Zn content but a higher 

amount of Cu. Siliciclastic black slate has both lower Cu and Zn content than most of the sulfide 

iron formation samples. As sphalerite and chalcopyrite minerals usually form close to the chimney 

or vent sites due to high-temperature hydrothermal venting, their elevated presence in sulfide 

samples is possibly an indication of high-temperature hydrothermal input (Hekinian et al., 1985). 
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The Al2O3 vs. TiO2 plot is not used here because sulfide iron formations occur in intimate 

association with black slate and samples are more or less influenced by these siliciclastics. The 

REE systematics of sulfide iron formation is discussed in Chapter Four. Briefly, sulfide iron 

formation displays flat REE patterns like the black slate. The REEs cannot substitute into the pyrite 

or pyrrhotite lattices, thus they must be contained in inclusions in the sulfides. This explains the 

similarity between the REE patterns of carbonaceous slate and the sulfides (Figure 3.26 C), as the 

inclusions donating REEs to the sulfides are most likely siliciclastic- and carbon-rich. 
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Figure 3.26: PAAS normalized (Taylor & 

McLennan, 1985) REE patterns of pyrite (A) 

and pyrrhotite (B) samples showing flat REE 

patterns with slight Eu and Gd anomalies. As 

REEs will not substitute into the sulfide’s 

crystal lattice their pattern reflects inclusions, 

probably of carbonaceous slate (C).  
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3.1.5 Carbonaceous Slate 

 Carbonaceous slates are organic carbon-rich (TOC up to 5 %) metamorphosed 

carbonaceous black shale that has developed cleavage and is rare in outcrop due to weathering of 

the soft rock. Red Lake black slates are mainly composed of muscovite, feldspar, and quartz. Pyrite 

is more or less commonly associated with carbonaceous slate. Pyrite occurs in black slates as thin 

laminae, as disseminated small cubes, and as irregular aggregates. Some samples contain 

spessartine, a Mn-rich garnet.  

Black slate is common in drill holes and is mostly massive (i.e., no preserved sedimentary 

structure inside layers) (Figure 3.30). Near the bottom the EBL-27 hole has a 10 m thick black 

slate layer that is in association with sulfide iron formation and chert. Moreover, there are several 

black slate layers of variable thickness (0.5 m to 3 m) present throughout the ~130 m thick deeper 

water assemblage. Near the top of the PB-32 hole, there is a 40 m thick deeper water chemical 

sedimentary package which contains a ~10 m thick black slate unit. Carbonaceous slate of 

approximately 25 m thickness is present in the upper part of the PB-33 hole where it is underlain 

and overlain by carbonates. In the PB-34 hole, there is a deeper water assemblage of ~90 m 

thickness in which a number of thin (< 1 m) black slate layers are interbedded throughout the 

succession, with a  ~8 m thick black slate layer occurring at the top of the assemblage. This 8 m 

thick black slate layer is underlain by sandstone and overlain by carbonate. Unlike PB-34, the PB-

35 hole contains several 5 m to 10 m thick black slate units alternating with siltstone and this whole 

succession is overlain and underlain by carbonates. The other drill holes have a somewhat meagre 

abundance of carbonaceous slate. 



52 
 

 Black slate is common in drill core samples and is mostly massive (Figure 3.27 A). In 

Figure 3.27 B, the pyritic laminations in black slate are very thin, parallel, slightly wavy, 

commonly discontinuous and mm size pyrite cubes are sprinkled near the top.  

 

Figure 3.27: (A) Slabbed massive black slate core section and (B) polished core of black slate with 

thin pyrite laminae. 

 

Geochemistry of Black Slates 

SEM elemental false color mapping and spot analyses were conducted in order to 

determine the composition of black slates. Spot analysis shows the presence of quartz, plagioclase 

feldspar, muscovite, and pyrite minerals in the black slate. Some samples have an occurrence of 

spessartine, a manganese-rich garnet. 
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Figure 3.28: (A) and (B) SEM spot analysis showing the presence of quartz (Qtz), plagioclase 

feldspar (Pl), muscovite (Ms), pyrite (Py), and garnet (Grt). (C) and (D) SEM-EDS elemental 

mapping of black slate showing the presence of garnet and pyrite. 
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Figure 3.29: PAAS normalized (Taylor & McLennan, 1985) black slate samples have flat REE 

patterns with slight positive Eu and Gd anomalies. 

 

PAAS normalized REE systematics of black slate samples show relatively flat REE 

patterns with slight positive Eu anomalies and common Gd anomalies. The systematics of REEs 

of black slate is discussed in Chapter Four.  

3.2 Lithofacies Association 

As mentioned earlier in the methodology section continuous core from eleven drill-holes 

was described and based on the core descriptions lithofacies columns were made. The lithofacies 

correlation panel (Figure 3.30) displays the 200 m thick, shallow water carbonate succession 

underlain, overlain, and intercalated with the deeper water chert, oxide iron formation, sulfide iron 

formation, and carbonaceous slate. Oxide iron formation and sulfide iron formation are prominent 

in EBL-27 and NGI-31 holes but are rare in EBL-29, Bl-37, BL-38, PB-32, PB-33, PB-34, and 

PB-35 holes and are absent in EBL-28 and PB-36 holes. Black slates are ubiquitous in all the drill 
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doles. Lastly, there are several sandstones and conglomerates, and volcanic units both below and 

above the Red Lake carbonate platform.  

 

 

Figure 3.30: Lithofacies correlation panel of the drill holes in Pancake Bay, Bridget Lake, East 

Bridget Lake and North Galena Island of the western Red Lake area. The stratigraphic columns 

show that shallow and deep water chemical sediments are associated with siliciclastics and 

bracketed by volcanic events. 
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Chapter 4: Results and Discussion 

In this chapter, the geochemistry of different types of chemical sedimentary rock and black 

slate are discussed, and the depositional environment of these sedimentary rocks are described 

based on field observation, core data, and geochemistry. 

4.1 Rare Earth Element Systematics 

Rare earth element (REE) chemistry is commonly used as a proxy in geochemical studies 

of chemical sediments to decipher ancient and modern ocean chemistry due to their stable, 

immobile nature and resistance to diagenetic change (McConchie, 1987). Rare earth elements 

include the fifteen elements of the lanthanide series as well as scandium (Sc) and yttrium (Y). The 

latter two elements are considered REEs because their chemical properties are similar to the 

lanthanides and they tend to occur together in ore deposits with the lanthanides. These elements 

have trivalent charges, their ionic radius decrease systematically with consecutive atomic numbers, 

and usually occur together in nature. These properties make them useful indicator for geochemical 

processes in oceans, rivers, estuaries, lakes and groundwater  (Johannesson & Zhou, 1999; Shields 

& Stille, 2001; Kamber et al., 2004; Bolhar et al., 2005; Bolhar & Van Kranendonk, 2007; Allwood 

et al., 2010; Planavsky et al., 2010; Fralick & Riding, 2015). The lanthanide series elements are 

often divided into two groups: light rare earth elements (LREEs), which comprise La, Ce, Pr, Nd, 

Sm, Eu and Gd, and heavy rare earth elements (HREEs), which include Tb, Dy, Ho, Er, Tm, Yb, 

and Lu. Sometime Sm, Eu, Gd, Tb and Dy are included in a third group called middle rare earth 

elements (MREEs) (Stosch, 2002). In modern seawater, heavy rare earth element influx is 

relatively greater than light (Elderfield et al., 1990), while middle rare earth element enrichment 

is common in organic-rich areas (Hannigan & Sholkovitz, 2001). 
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Chemical sediments precipitated from seawater provide significant information about 

ocean chemistry. In particular, REE composition of precipitates reflects the water chemistry from 

which they precipitated (Barrett et al., 1987; Bau & Dulski, 1996b; Bau & Möller, 1993; Bekker 

et al., 2010; Bolhar et al., 2004; Danielson et al., 1992; Derry & Jacobsen, 1990; Kamber & Webb, 

2001; Planavsky et al., 2010; Van Kranendonk et al., 2003). Rare earth element concentrations in 

seawater reflect their occurrence in a combination of river runoff, hydrothermal input and aeolian 

transport (Elderfield, 1988). In modern seawater, continental weathering input via river runoff and 

aeolian action dominates over the hydrothermal input of the primitive ocean (Danielson et al., 

1992; Kamber & Webb, 2001). Rare earth element systematics of marine precipitates reflect ocean 

chemistry because their deposition is largely controlled by ocean water chemistry. Hence, marine 

sediments are used as a proxy for modern and ancient ocean water as they can provide important 

clues to the ocean water chemistry and the environmental changes related to the precipitation of 

sediment. Modern seawater has a shale normalized positive La anomaly, negative Ce anomaly, 

slightly positive Gd anomaly, slight negative Eu anomaly, depletion of LREEs relative to HREEs, 

and super-chondritic Y/Ho ratios greater than ~44 (Shields & Stille, 2001; Bolhar et al., 2005; 

Bolhar & Van Kranendonk, 2007; Planavsky et al., 2010). Many of these properties are similar to 

the ancient chemical precipitates and used for delineating a marine origin. However, in the Archean 

ocean, hydrothermal activity was the major source and control of REE abundances (Danielson et 

al., 1992; Bau & Dulski, 1995; Bolhar et al., 2004). 

It is common to use shale normalized spider diagrams to display REE compositions of 

ancient ocean precipitates relative to the average composition of Post Archean Australian Shale 

(PAAS) (Nance & Taylor, 1976; Taylor & McLlnnan, 1988; Planavsky et al., 2010). Normalizing 

the REEs to PAAS allows a spider diagram to deviate from a flat pattern caused by siliciclastic 
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contamination and display anomalies. PAAS normalized REE data were plotted (Figure 4.1) for 

magnetite, chert, pyrite, pyrrhotite, and carbonate samples. These show values <1, indicating that 

REE concentrations in the Archean oceans were depleted relative to PASS. The REE patterns of 

these chemical sediments and siliciclastic black slate and their anomalies are described below. 

4.1.1 Eu Anomaly 

 Iron formation older than 2.5 Ga shows significant Europium (Eu) enrichment, but the 

trend decreases towards the early Proterozoic (Danielson et al., 1992). In modern seawater, the 

Eu/Eu* ratio has a slightly negative anomaly (Kamber et al., 2004). Eu* anomalies occur when 

Eu+3 is partially reduced to Eu+2, and this redox potential is strongly dependent on temperature. Eu 

changes its state from Eu+3 to Eu+2 with increasing temperature, and no positive Eu anomaly arises 

in low temperature (< 250ºC) hydrothermal fluid (Danielson et al., 1992; Peter, 2003). High-

temperature hydrothermal fluids circulating through the oceanic crust leach Eu+2, replacing Ca+2, 

from plagioclase feldspar (Fowler & Doig, 1983). Thus, a positive Eu anomaly is indicative of 

high-temperature hydrothermal inputs into the ocean. In Archean iron formations, Eu anomalies 

normally range from 1.0 to 4.29, and average 2.1 (Planavsky et al., 2010).  Eu anomaly (Eu/Eu*) 

is calculated by the formula:  Eu/Eu* = Eu(SN)/[0.67Sm(SN) + 0.33 Tb(SN)], where SN means shale 

normalized, which uses Post Archean Australian Shale (PAAS) (Bau & Dulski, 1996b; McLennan, 

1989).  
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Figure 4.1: PASS normalized (Taylor & McLennan, 1985) spider diagrams of Red Lake chemical 

sediments and siliciclastic black slate showing the REE patterns of (A) Magnetite, (B) Chert, (C) 

Pyrite, (D) Pyrrhotite, (E) Carbonate, and (F) Black Slate. 

 

Among the Red Lake chemical sediments, the magnetite samples have Eu anomalies 

between 1.0 and 3.24, with an average of 2.2, which is similar to the average Archean iron 
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formations’ Eu anomaly of 2.1 (Planavsky et al., 2010). The Red Lake iron formation’s positive 

Eu anomalies are similar to typical Archean iron deposits, e.g. Geraldton and Terrace Bay areas, 

north of Lake Superior, Canada; Kuruman iron formation, South Africa and banded iron formation 

in the Warrawoona Group, Pilbara Craton, Australia (Barrett et al., 1987; Bau & Dulski, 1995; 

Bolhar et al., 2005). This implies that the fluids in the depositional environment of the iron 

formation had this anomaly and therefore, it may be concluded based on the ubiquitous presence 

of Eu anomalies that the Archean ocean had a positive Eu anomaly produced by high-temperature 

Eu+2 leaching from plagioclase feldspar in ocean crust basalts and komatiites by circulating fluids 

due to the influence of direct hydrothermal inputs (Barrett et al., 1987; Danielson et al., 1992). 

Likewise, sediments derived from this process show positive Eu anomalies as the Archean ocean 

was being enriched in Eu compared to other rare earth elements (Danielson et al., 1992; Bau & 

Dulski, 1996). Hence, the presence of positive Eu anomalies in carbonate and siliciclastic black 

slate indicates that they inherited the seawater composition of the Archean ocean (Danielson et al., 

1992; Bau & Dulski, 1996; Planavsky et al., 2010). However, pure chert does not contain REEs 

because they will not fit into the lattice framework. The REE concentration in pure chert falls 

typically below the detection limit. A few of the Red Lake chert sample could not be plotted in the 

spider diagram because of this reason. Thus, the REE patterns found in chert are not derived from 

the chert, instead, they come from other accompanying materials in the chert. 

Surprisingly, among the sulfide iron samples, a few of the pyrrhotite samples have typical 

Eu anomalies expected of the Archean ocean while most of the pyrite samples have low Eu 

anomalies associated with Gd anomalies (Figure 4.1-C). As iron sulfides are similar to chert in 

that they cannot contain REEs in their crystal lattice these signatures must originate by other 

means. The absence of REEs in pyrite and pyrrhotite mean that the REE patterns in Figures 4.1 C 
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and D probably originate from fluid inclusions and crystal defects (Zhao & Jiang, 2007). More 

important is the sulfides’ association with black slate, thus, the presence of any little amount of 

siliciclastics can form a REE pattern similar to the black slate samples (Figure 3.26 C).  

Oxide iron formation and carbonate rocks show an overall positive slope of their patterns 

(Figure 4.1-A and 4.1-E). Moreover, LREE depletion compared to the HREEs is typical in  

Archean iron formations (Bohlar et al. 2005, Allwood et al. 2010) and a similar trend is observed 

in the REE plots of the magnetite samples in the Red Lake area. However, the opposite trend (i.e., 

HREE depletion) is observed in the chert, pyrite and pyrrhotite samples (Figure 4.1-B, 4.1-C and 

4.1-D) which, as stated earlier, must be the result of inclusions and/or crystal defects in the chert 

and iron sulfides.  

4.1.2 La and Ce Anomaly 

As La and Ce anomalies are related, it is better to plot them together to distinguish the 

anomalies (Fig. 4.2). Bau and Dulski (1996) described that anomalous concentrations of 

Lanthanum (La) in seawater could produce false negative Ce anomalies in chemical sedimentary 

rocks. They introduced a new set of equations to determine whether the chemical sediments are 

displaying a Ce anomaly or not. The following equations were used to differentiate La and Ce 

anomalies in chemical sediments: La anomaly (Ce/Ce*) = Ce*/(0.5LaSN)+(0.5PrSN) 

       Ce anomaly (Pr/Pr*) = Pr*/(0.5CeSN)+(0.5NdSN) 

where Ce/Ce* is the La anomaly, Pr/Pr* is the Ce anomaly and LaSN, CeSN, PrSN and NdSN are the 

geochemical analysis values divided by the PAAS value. 
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If (Pr/Pr*)SN > 1.05, then it indicates a prominent negative Ce anomaly similar to modern 

shallow seawater. A negative Ce anomaly is a common characteristic of modern oxic seawater 

where Ce3+ is oxidized to Ce4+ (Goldberg et al., 1963; Elderfield & Greaves, 1982; Peter, 2003) 

which results in precipitation of CeO2 or adherence to iron oxyhydroxide (Elderfield & Greaves, 

1981; Peter, 2003; McIntyre & Fralick, 2017). However, if there is an enrichment of La relative to 

Ce then (Ce/Ce*)SN < 0.95 and it indicates a positive La anomaly. The presence of a positive La 

anomaly is suggestive of uncontaminated marine REE signatures for shale-normalized REE 

patterns (Bau & Dulski, 1996; Kamber & Webb, 2001).  

Shale normalized Ce anomalies are widely used to deduce ancient redox conditions of the 

oceans (Shields & Stille, 2001; Bohlar et al., 2005; Allwood et al., 2010; Planavsky et al., 2010). 

A negative Ce anomaly occurs in an environment where Ce+3 is oxidized to Ce+4, which is highly 

insoluble in seawater, therefore, it is preferentially scavenged and absorbed onto Fe-Mn 

oxyhydroxide surfaces, or it can partition into octahedral sites of precipitates (Sholkovitz et al., 

1994; Bau & Dulski, 1996b; Bolhar et al., 2004; Planavsky et al., 2010; Tostevin et al., 2016). The 

fluid is then left with a negative Ce anomaly which will be inherited by any precipitates that later 

form from it. 
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Figure 4.2: PAAS-normalized Ce anomaly (Pr/Pr*) versus La anomaly (Ce/Ce*) plot (modified 

after Bau & Dulski, 1996). This plot differentiates between La and Ce anomalies. The shaded area 

represents no La and Ce anomaly as defined by Planavsky et al., (2010).  

 

In Figure 4.2, some of the magnetite and chert samples and a few of the carbonate samples 

plot in the positive La and positive Ce anomaly field suggestive of precipitation from a Ce present 

anoxic water column. The presence of a positive Ce anomaly in oxide iron formation indicates that 

the iron hydroxide formed in an environment where Ce found O2 to form CeO2 and preferentially 

co-precipitated with the iron hydroxide (de Baar et al., 1988; Tostevin et al., 2016). Almost all the 

sulfide iron formation and black slate samples plot in the middle white area representing no La 

and no Ce anomaly. One chert sample has a negative La anomaly. In contrast, most of the carbonate 

and some of the magnetite samples fall in the no Ce anomaly field and some magnetite and a few 

iron sulfide plots in the no La anomaly field. Negative Ce anomaly is uncommon in this plot, but 

one carbonate sample derived from the topmost part of the carbonate platform plots in the negative 

Ce anomaly field, which indicates that this sample precipitated from a Ce depleted water column. 
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However, due to the presence of a positive Ce anomaly in the Red Lake oxide iron formations, it 

is assumed that there was a presence of some oxygen in the Mesoarchean off-shore deeper ocean 

during the deposition of Red Lake iron hydroxides.  

4.1.3 Gd Anomaly   

Gadolinium (Gd) anomalies are calculated using the equation described by Bau and Dulski 

(1996). They showed that the size of the Gd anomaly in modern seawater is relatively small 

(GdSN/Gd*SN < 1.21). Gadolinium anomalies are generally used to determine the ligand types that 

control surface complexation of REEs on marine particles (Lee & Byrne, 1993; Bau & Dulski, 

1996a). 

GdPAAS/Gd*PAAS = GdPAAS /(0.33SmPAAS + 0.67TbPAAS) 

 

Figure 4.3: PAAS-normalized Gd anomaly versus Eu anomaly plot (modified after Bau and 

Dulski, 1996). This plot discriminates between Gd and Eu anomalies. The blue line represents the 

Eu and Gd anomalies zones where (Eu)SN > 1 and (Gd)SN > 1 are indicative of positive Eu and Gd 

anomalies respectively. Only two of the sulfide iron samples and one black slate sample have 

negative Eu anomalies. 
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A Gd and Eu anomaly plot of the Red Lake chemical sediments is shown in Figure 4.3. If 

(Eu)SN > 1, then it indicates a positive Eu anomalies while (Gd)SN > 1 indicates positive Gd 

anomalies. All chemical sediments (i.e., oxide iron formation, chert, and carbonate) cluster in the 

field of positive Eu anomalies except a few sulfide iron formations and one black slate sample. 

Among the sulfide iron samples, all pyrrhotite plots on the positive Eu anomaly field like the other 

chemical sediments whereas two pyrite samples and one black slate sample plot on the negative 

Eu anomaly field. Similarly, all chemical sediments and siliciclastic black slate has some degree 

of  positive Gd anomaly. However, most of the magnetite samples have slight positive Gd 

anomalies, while pyrite, pyrrhotite and black slate samples have high Gd anomalies. The reason 

for scavenging of Gd in marine sediments is uncertain.  

It is still unknown if positive Gd anomalies are created completely within the marine 

environment or sourced somewhat from continental run-off (Bau & Dulski, 1996a). However, Bau 

and Dulski (1996) analyzed river and stream water samples and defined that pristine rivers do not 

show Gd anomalies. But the rivers which are used for draining wastewater from industrial and 

populated areas are characterized by pronounced positive Gd anomalies, and Bau and Dulski 

(1996) identified this as an anthropogenic origin of Gd anomalies. Though the detail of this 

explanation is irrelevant for Gd anomalies present in Archean marine precipitates, there may be a 

relation with Gd scavenging by organic matter complexation, which can be predicted from Gd 

anomalies found in modern wastewater. 

4.1.4 Y/Ho Plot 

The Y/Ho ratio, a useful indicator of the purity of marine sediments, is used to monitor the 

siliciclastic contamination of REE patterns. Siliciclastic influence can reduce the primary seawater 
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signature such as La, Ce, Eu, and Gd anomalies and flattens the REE patterns (Webb & Kamber, 

2000; Peter, 2003). The Y/Ho weight ratio for crustal rocks ranges from 26 to 28 (Kamber & 

Webb, 2001). The Y/Ho ratio of modern seawater varies between 44 and 120 and can shift towards 

chondritic compositions (∼28) by addition of siliciclastics and volcanic ash (Nozaki et al., 1997; 

Webb & Kamber, 2000; Bolhar et al., 2004). Generally, the Y/Ho ratio of Archean carbonates is 

>44 (Kamber & Webb, 2001), and Red Lake carbonates have Y/Ho ratios of ~ 51. Archean iron 

formations are characterized by higher than chondritic (>40) Y/Ho ratios (Planavsky et al., 2010), 

and Red Lake magnetite samples have Y/Ho ratios of ~ 42. The Y/Ho ratios of carbonate (~51), 

iron formation (~42) and chert (~42) are noticeably higher than the PAAS shale ratio of 26. In 

contrast, the black slates’ Y/Ho ratio is ~27, and the sulfide iron samples have Y/Ho ratios of ~25, 

which is reasonable as sulfide iron formation is associated with black slate and probably inherits 

it’s REE signature from inclusions of this material. Thus, any siliciclastic contamination will lower 

the Y/Ho ratio in chemical sediments. It is a common practice to plot Y/Ho ratio against immobile 

elements such as Al2O3. A linear trend should indicate contamination by siliciclastic (Kamber & 

Webb, 2001; Bolhar et al., 2004). Plots of Y/Ho and Al2O3 in Figure 4.4 display no correlation 

between them, except at high Al values). However, the blue line in the graph is the PASS 

composite value, and most of the samples are above the line, which indicates siliciclastic 

contamination is minimal. Some of the sulfide iron formation samples are plotted on/near the line, 

which indicates that these samples have a siliciclastic influence to some extent. 
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Figure 4.4: Plot of the Y/Ho ratio against the immobile element Al2O3. The blue line represents 

the average PAAS composition (27). Samples with less than 1 wt. % Al2O3 are scattered, plotting 

mostly above the average shale indicating lower degrees of siliciclastic contamination. A few 

pyrite and pyrrhotite samples plot near the average shale line indicating siliciclastic influence. 

 

 

Figure 4.5: Plot of PAAS-normalized REE slope against Y/Ho ratio. The blue line is the average 

PAAS composition (27). Samples with slope values < 1 are scattered, plotting mostly above the 

average shale line and are HREE enriched. Samples with slope values > 1 are also scattered, 

plotting mostly above the average shale line are LREE enriched. 
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A plot of the PAAS-normalized light to heavy REE slope against Y/Ho ratios (Figure 4.5) 

shows that magnetite and carbonate samples have higher Y/Ho ratios and lower Pr/Yb ratios, 

which is similar to the modern seawater REE trend. This indicates that complexation and 

scavenging of REEs in the 2.93 Ga ocean was broadly similar to todays ocean. Siliciclastic black 

slate and sulfide iron formation samples have Y/Ho ratios close to the average PAAS value. This, 

plus their variable Pr/Yb ratios, probably resulted from mineral inclusions in the iron sulfides. 

Chert samples have both high Y/Ho and Pr/Yb ratios; however, the REEs present in the chert 

samples are not scavenged by chert; rather they are derived from mineral and fluid inclusions.  

4.1.5 REE Pattern Slope  

To calculate the slope of the REE curves, PAAS normalized ratios between light and heavy 

REEs (Pr/Yb) and medium and heavy REEs (Gd/Yb) was plotted in Figure 4.6 (Planavsky et al., 

2010). The plot of these ratios is useful to determine if there is a correlation between the light to 

heavy rare earth elements. 

 

Figure 4.6: PAAS normalized Gd/Yb and Pr/Yb ratios plot showing a positive correlation between 

light to heavy REE and medium to heavy REE slopes. 
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The light to heavy REE (Pr/Yb) slopes versus medium to heavy REE (Gd/Yb) slopes can 

differentiate between the enrichment or depletion trends of LREEs or HREEs. Pr/Yb ratio >1 

means samples are HREE-depleted and/or LREE-enriched, while a Pr/Yb ratio <1 indicates 

samples are HREE-enriched and/or LREE-depleted. Archean chemical precipitates derived from 

seawater are typically HREE enriched. The Red Lake chemical sediments show a strong positive 

correlation between Pr/Yb and Gd/Yb ratios. It is obvious that magnetite samples are the most 

LREE depleted, and next to them are carbonate samples. Alternatively, chert and most of the pyrite 

samples are HREE depleted. The pyrrhotite samples have a variable degree of LREE and HREE 

depletion/enrichment. The HREE-enriched and LREE-depleted patterns in the oxide iron 

formation and carbonate samples suggest that the ancient ocean had similar LREE and HREE 

fractionation trends as the modern ocean (Kamber & Webb, 2001). 

 In summary, the chemical sediments consisting of carbonate and magnetite from both 

shallow and deeper water environments have high positive Eu anomalies, higher Y/Ho ratios, and 

lower Pr/Yb ratios. These attributes suggest that the ocean was heavily influenced by hydrothermal 

activity and enriched in HREEs, the later is similar to the modern ocean. The positive Ce anomalies 

in the iron formation samples suggest that Ce was preferentially precipitating from seawater 

compared to the other rare earth elements. Therefore, it indicates the presence of some oxygen in 

deeper water during iron hydroxide precipitation events. 

4.2 Redox-sensitive Elements and their Implications  

Elements such as chromium (Cr), molybdenum (Mo), vanadium (V), and uranium (U) are 

generally derived in solution from oxidative weathering and behave similarly in the surface 

environment (Voegelin et al., 2010; Wille et al., 2013). The geochemical behavior of these 
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elements is highly sensitive to the redox condition of the ambient environment where they change 

valence state and act differently depending on whether or not oxygen is present (Calvert & 

Pedersen, 1993; Morford et al., 2001). Therefore, enrichment of redox-sensitive metals and their 

stable isotope variations in ancient marine sediments are used as powerful proxies, which provide 

implications for oxygenation of the atmosphere at, and before, the Great Oxidation Event (Anbar, 

2007; Wille et al., 2013).  Chemical weathering of crustal rocks and transport via river runoff is 

the main source of dissolved Mo into the ocean, and its precipitation from seawater occurs in both 

oxic and anoxic environments  (McManus et al., 2002; Voegelin et al., 2010). The increase in Mo 

concentration in Archean sediments was interpreted as a gradual rise of atmospheric O2 levels 

(Voegelin et al. 2010). Uranium rich minerals are dominantly derived from felsic igneous rocks, 

such as granites or pegmatites (Grandstaff 1976). Zircon, apatite, allanite, and monazite are also 

important accessory sources of U (Partin et al. 2013). However, riverine delivery is the main input 

of dissolved U into the seawater, which essentially reflects oxidative weathering of continental 

crust and release of rock-hosted U(IV) to soluble U(VI). Similarly, chromium (Cr) and vanadium 

(V) are also derived from oxidative weathering of crustal rocks and reach the ocean by river runoff.  

Under oxidative weathering conditions, Cr, Mo, V, and U are oxidized and transported into the 

ocean as soluble oxyanions (Wille et al. 2013).   

To understand the atmospheric redox conditions during the deposition of 2.93 Ga old 

chemical sediments at Red Lake, redox-sensitive trace metal concentrations were studied. 

Elemental concentrations of Cr, Mo, V, and U were plotted against Al2O3 and TiO2 content to 

determine whether they were derived from the siliciclastic phase or not. Figures 4.7 to 4.14 are 

logarithmic bivariate plots of Al2O3, and TiO2 with Cr, Mo, V, and U respectively. Bivariate plots 

of geochemical elements are useful to differentiate between mobile and immobile elements in 
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metamorphosed sedimentary rock  (McLennan, 1989; Fralick & Kronberg, 1997). The idea behind 

these bivariate plots is that the concentration of immobile elements will increase or decrease at a 

constant rate depending on the mass gain or loss of the mobile elements to/from the system, 

respectively. Therefore, samples containing immobile elements will form a linear array that goes 

through the origin (McLennan, 1989; Mclennan et al., 1993; Fralick & Kronberg, 1997).  

Element pairs of Al2O3 vs. Cr (Figure 4.7) and TiO2 vs. Cr (Figure 4.8) show a positive, 

linear correlation, which indicates Cr was immobile and derived from the siliciclastic phase in the 

samples. It is noticeable that the carbonate samples have very low Al2O3 and TiO2, but they have 

a slight enrichment of Cr. The enrichment of Cr in carbonate samples in these graphs is not 

significant enough to use it as evidence of oxidative weathering; however, it can be a trivial 

indication. In Figure 4.9 and 4.10 Al2O3 vs. Mo and TiO2 vs. Mo were plotted respectively. Both 

plots have a somewhat linear correlation, and data are scattered at a lower concentration. The 

correlation of Mo with Al2O3 and TiO2 suggest that Mo was derived from the siliciclastic phase. 

Some of the pyrite and pyrrhotite samples are showing Mo enrichment, which indicates sulfidic 

porewaters allowed to scavenge some Mo into pyrite and pyrrhotite. The plots of Al2O3 vs. V 

(Figure 4.11) and the TiO2 vs. V (Figure 4.12) have a somewhat linear, positive slope. Carbonate 

samples have below detection level concentrations of V hence, these samples are ignored in these 

graphs.  Thus, the source of V is derived from the siliciclastic input. The U vs. Al2O3 graph (Figure 

4.13) shows poor correlation whereas the U vs. TiO2 graph (Figure 4.14) has a better linear trend. 

The linear relationship indicates that U was immobile and derived from the siliciclastic phase. 

Similar to Cr enrichment, the carbonate samples have slight U enrichment. Again, in these graphs, 

this does not appear as a strong U enrichment to support oxidative weathering of U from crustal 

rocks. 
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Figure 4.7: A logarithmic bivariate plot of Al2O3 vs Cr, which shows a positive linear correlation 

between Al2O3 and Cr. The linear relationship indicates that Cr was immobile and derived from 

siliciclastics. 

 

 

Figure 4.8: A logarithmic bivariate plot of TiO2 vs Cr. This graph shows a somewhat positive 

linear correlation between TiO2 and Cr, but at lower concentrations the data becomes more 

scattered. The linear correlation indicates that Cr was immobile and derived from the siliciclastic 

phase. 
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Figure 4.9: A logarithmic bivariate plot of Al2O3 vs Mo, where the magnetite, pyrite, and pyrrhotite 

samples are mostly scattered. The lack of linear correlation between Al2O3 and Mo suggests that 

Mo was derived from a non-siliciclastic phase. 

 

 

Figure 4.10: A logarithmic bivariate plot of TiO2 vs Mo. The magnetite, pyrite, and pyrrhotite 

samples are mostly scattered. The lack of linear correlation between TiO2 and Mo suggests that 

molybdenum was derived from a non-siliciclastic phase. 
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Figure 4.11: A logarithmic bivariate plot of Al2O3 vs V. This graph shows a linear correlation 

between Al2O3 and V but some of the magnetite samples are scattered. However, the linear trend 

indicates a siliciclastic influence. 

 

  

Figure 4.12: A logarithmic bivariate plot of TiO2 vs V, which has a positive linear correlation 

between TiO2 and V. However, some magnetite data are scattered, and the linear trend indicates a 

siliciclastic influence. 
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Figure 4.13: A logarithmic bivariate plot of Al2O3 vs U. This graph shows a somewhat positive 

scattered linear correlation and indicates U was partially derived from the siliciclastic phase. 

 

 

Figure 4.14: A logarithmic bivariate plot of TiO2 vs U. This graph shows a somewhat positive 

scattered linear correlation between TiO2 and U. The linear relationship indicates that U was 

somewhat immobile and at least partially derived from the siliciclastic phase. 

 

0.01

0.1

1

10

0.01 0.1 1 10 100

U
 (

p
p

m
)

Al₂O₃ (wt %)

Magnetite

Pyrite

Pyrrhotite

Black Slate

Carbonate

chert

0.01

0.1

1

10

0.001 0.01 0.1 1

U
 (

p
p

m
)

TiO₂ (wt %)

Magnetite

Pyrite

Pyrrhotite

Black Slate

Carbonate

chert



76 
 

In an attempt to further understand the enrichment of these elements in Red Lake chemical 

sediments, Cr/TiO2 vs. V/TiO2 ratios (Figure 4.15) and Mo/TiO2 vs. U/TiO2 (Figure 4.16) ratios 

were plotted. Both plots show that the majority of chemical sediments fall above and to the right 

of the siliciclastic black slate cluster, which indicates that the abundance of these elements is higher 

in the chemical sediments than would be expected if they were only derived from the siliciclastic 

phase contained in the samples of chemical sediment.  

In addition, redox-sensitive element concentrations in sedimentary rocks can be expressed 

in terms of enrichment factors (Wedepohl 1971, 1995; Tribovillard et al. 2008). The original 

formula is TM/Al EF = (TM/Al sample) (TM/Al average shale), where Al-normalized trace 

metal (TM) concentration is compared to the average shale value defined by Wedepohl (1971 and 

1991). When EF >1, it indicates trace metal enrichment relative to average shale (Wedepohl 1971, 

1995). Hence, to assess the relative enrichment of Cr, Mo, V, and U in Red Lake chemical 

sedimentary rocks compared to the siliciclastic black slate,  enrichment factors of Cr, Mo, V, and 

U are plotted in Figure 4.17. The enrichment factor plot of Cr (Figure 4.17-A) shows that most of 

the carbonate samples have Cr concentrations higher than the black slate. The Mo enrichment 

factor graph (Figure 4.17-B) reveals that almost all chemical sedimentary rocks have EF>1. The 

V and U enrichment plots (Figure 4.17-C and 4.17-D) show that most of the magnetite and pyrite-

pyrrhotite samples are rich in V, whereas carbonate samples are highly enriched in U along with 

most of the magnetite, pyrite-pyrrhotite and chert samples. Thus, the enrichment factors of these 

redox-sensitive elements might be an indication of slight oxidative weathering. 
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Figure 4.15: A logarithmic bivariate ratio plot of Cr/TiO2 vs. V/TiO2. If all elements are chemically 

immobile the samples will plot as a tight cluster (Fralick & Kronberg, 1997; Fralick, 2003), as 

most of the black slates do. However, if they have been chemically mobile, they will scatter. This 

type of ratio graph is more sensitive than those in Figures 4.7 to 4.14. The graph shows chemical 

sediments fall above the siliciclastic black slate cluster. This indicates that most magnetite, pyrite, 

and pyrrhotite samples contain more V than can be accounted for by their siliciclastic phase. Those 

plotting to the right of the slate cluster also contain more Cr than that present in their siliciclastic 

phase.    

 

 

Figure 4.16: A logarithmic bivariate ratio plot of Mo/TiO2 vs. U/TiO2. The graph shows chemical 

sediments mostly fall above and to the right of the siliciclastic black slate cluster. This indicates 

that the majority of magnetite, carbonate, pyrite, and pyrrhotite samples have excess Mo and U 

not in their siliciclastic phases. 
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Figure 4.17: Enrichment factors of Cr, Mo, V, and U were plotted for different chemical sediments. 

(A) The logarithmic plot of enrichment factors of Cr shows that some magnetite, and iron sulfide 

samples and most of the carbonate samples have Cr concentration >1. (B) The Mo enrichment 

factors plot shows most of the chemical sediments have a greater abundance of Mo than the black 

slate. (C) The enrichment factors plot of V indicates that most of the magnetite and sulfidic iron 

formation samples are enriched in V. (D) The U enrichment factors graph displays a higher 

abundance of U in carbonate samples. Most of the magnetite and chert samples have U enrichment.  

  

In conclusion, the redox-sensitive element graphs show that at least a portion of the V, Cr, 

Mo and U resides in the siliciclastic phases present in the samples. However, the ratio plots of Cr, 

Mo, V, and U show that the majority of Red Lake chemical sediments fall above and to the right 
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of the siliciclastic black slate cluster. The enrichment factors (EF) of Cr, Mo, V and U of different 

chemical sedimentary rocks clearly defines that if EF > 1, then it is enriched relative to siliciclastic 

black slate. Therefore, based on the above graphs it is suggested that chemical sedimentary rocks 

have enrichment of these elements to some degree beyond the siliciclastics they contain. The input 

of these elements was probably seawater, but the question is how did they reach the seawater. 

There are two possibilities, either they were derived from a high-temperature hydrothermal fluid, 

or they came from fluvial discharge due to mild oxidative weathering.  

4.3 Manganese Enrichment in the Offshore Deeper Water Chemical and Siliciclastic 

Deposits 

Sedimentary rock records from Precambrian to Recent indicate that manganese (Mn) 

minerals commonly precipitated from various sources (e.g., hydrothermal and hydro-genetic) 

(Ingri & Pontér, 1986; Beukes & Gutzmer, 1996; Gutzmer & Beukes, 1996; Gauthier-Lafaye & 

Weber, 2003). Manganese minerals associated with the iron formations of the Archean ocean 

generally precipitated from seawater where submarine volcanism induced hydrothermal venting 

was the major supplier of the Mn and Fe into the ocean (Roy, 1992; Holland, 2005). In contrast, 

significant deposition of Mn was initiated by the introduction of O2 after the Great Oxidation Event 

(GOE) which resulted in changes in the redox condition of the ancient ocean (Anbar & Holland, 

1992; Gauthier-Lafaye & Weber, 2003; Roy, 2006; Tsikos et al., 2010; Ossa et al., 2016). It is 

assumed that Mn and Fe emanated from high-temperature hydrothermal fluids and were retained 

in the anoxic seawater in dissolved form until they combined with free O2 to form Fe-Mn-

oxyhydroxide, hydroxides and oxides (Holland, 2005; Roy, 2006). In the Archean ocean, high-

temperature hydrothermal plumes were the main sources of Mn and Fe, and they remained 

dissolved in the anoxic seawater for lengthy time periods (Roy, 1992; Holland, 2005). Typically, 
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Mn does not form sulfides like iron, rather remains dissolved until it oxidizes (Van Cappellen et 

al., 1998; Maynard, 2010; Johnson et al., 2016).  

To be deposited in sedimentary rocks, Mn is oxidized from the Mn+2 state to either Mn+3 

or Mn+4 and forms an oxyhydroxide (Calvert & Pedersen, 1993; Armstrong, 2008; Johnson et al., 

2016). Presence of free O2, therefore, is the key to the precipitation of Mn oxide. Hence, manganese 

oxidation indicates the presence of free oxygen(O2) in the depositional environment, which is very 

significant evidence of partial or restricted oxygenation in the anoxic Archean world. In the 

Archean environment, the photosynthetic activity of cyanobacteria near the shoreline photic zones 

was the factory of O2 production (Kasting, 1993). Thus, Mn enrichment in the geologic record of 

the Archean provides insight into ancient oxygen availability and the paleo-ocean redox chemistry 

(Maynard, 2010).  

There are two hypotheses regarding Mn precipitation in the Archean which can be 

considered. According to Kasting (1993), free O2 derived from localized photosynthetic activity 

in the basin-margin photic zones was responsible for the precipitation of Mn. In this case, oxidation 

of aqueous Mn+2 to Mn+3 or Mn+4 happened. The other hypothesis, proposed by Johnson et al. 

(2013), focuses on Mn-based photosynthesis. It describes photo-oxidation of Mn2+ where 

anoxygenic photobiology used Mn as an electron donor. However, this hypothesis has very little 

substantive evidence. 

In the Red Lake carbonate platform, various degrees of Mn enrichment have been observed 

throughout the successions. Figure 4.18 illustrates the Mn and Fe oxide plots for different types of 

sedimentary rocks. As mentioned earlier, Mn and Fe can coexist from hydrothermal venting, which 

may explain in part the higher Mn enrichment observed in the magnetite (0.23-6.44% MnO) 
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samples. The carbonate samples overall have moderate Mn concentration (0.17-0.71% MnO). The 

variable concentration of Mn in these samples possibly indicates the inconstant availability of Mn 

in the carbonate depositional environment. Sulfide iron formation (0.02-0.84% MnO) and black 

slate (0.01-0.98% MnO) samples have very low to moderate Mn concentrations. Two of the black 

slate and sulfide samples with an elevated concentration of Mn were analyzed in the SEM to 

determine the detailed mineralogy of these samples. The black slate samples have spessartine, 

which is a Mn-bearing garnet. Similarly, the Mn-rich sulfide samples show the presence of Mn-

rich grunerite. 

 

Figure 4.18: MnO wt % vs Fe2O3 wt. % plot of magnetite-black slate-carbonate-sulfide samples 

showing higher Mn concentration in some magnetite samples. 

 

It is perplexing how Mn can occur in the black slate and the sulfide iron formations, which 

were the product of a pure anoxic environment. In an anoxic basin, dissolved Mn+2 can accumulate 

in the sulfidic bottom waters due to the reduction of Mn+4-oxide which forms in the oxic water 

column above the redox boundary (Spencer & Brewer, 1971; Calvert & Pedersen, 1993).  This 

0.01

0.1

1

10

0.2 2 20 200

M
n

O
  w

t 
%

Fe₂O₃  wt %

Magnetite

Black Slate

Carbonate

Pyrite

Pyrrhotite



82 
 

reaction should produce manganese sulfide (MnS), but in the Red Lake samples, the presence of 

MnS was not identified. However, higher Mn enrichments can denote short-term oxic and/or 

suboxic conditions in the depositional basin (Calvert & Pedersen, 1993; Dellwig et al., 2010; 

Planavsky et al., 2018). Thus, the hypothesis presumed here is that Mn was initially precipitated 

in a slightly oxygenated upper water level environment and then settled on top of the sediments 

deposited under reducing conditions in the bottom environment. The presence of spessartine, in 

the black shale sample, may align with this hypothesis and it can be said Mn was originally 

precipitated as Mn-oxyhydroxide from further up in the water column, landed on the anoxic 

bottom, and during metamorphism, it transformed into garnet or grunerite depending on the 

surrounding mineralogy.  

 

Figure 4.19: PAAS normalized ratios of Pr/Yb vs MnO, representing the slope of the REE pattern 

against MnO in magnetite-black slate-carbonate-sulfide facies. 
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In Figure 4.19, REE slopes vs MnO of black shale, sulfide iron formation, carbonate and, 

oxide iron formation facies are shown. Both the black shale and sulfide facies show a roughly flat 

negative trend, whereas the magnetite facies have positive slopes. The carbonate facies have 

slightly negative to positive slopes. This Figure indicates most HREE enriched magnetite samples 

have high Mn, while black shale and sulfide iron samples have low Mn and are HREE depleted. 

Most of the carbonate samples are HREE enriched although some are LREE enriched, and all have 

moderate concentrations of Mn.   

 

Figure 4.20: MnO and Mn/Fe ratio plots over the stratigraphic depth showing Mn concentration 

slightly increases towards the carbonate platform in the EBL-27 hole and Mn is more common in 

the oxide facies iron formation directly under the carbonate platform than that above it. 
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In Figure 4.20, EBL-27 and NGI-31 holes represent the MnO and Mn/Fe ratios of the oxide 

iron formation in successions above and below the carbonate platform. Magnetite samples have 

higher MnO (0.94 - 4.10) and Mn/Fe ratio (0.015 - 0.099). In the EBL-27 hole, it is possible that 

Mn enrichment in iron formation increased towards the carbonate platform, which is reasonable 

because near the shoreline O2 abundance should be higher if oxygenic photosynthesis was 

occurring. In the NGI-31-hole, iron formations overlie the carbonate platform where the Mn 

enrichment trend in the magnetite samples is low and chaotic. Such a stratigraphic position 

probably indicates a relative sea level change which inundated the carbonate platform and caused 

the shifting of the shoreline. Based on this assumption, it can be said that the precipitation of iron 

hydroxide post platform flooding occurred in a deeper water environment where O2 supply was 

very limited and probably Fe captured almost all the free O2 as it is more reactive with O2 than 

Mn. Another possible reason for having this irregular trend could be due to the inconsistent supply 

of Mn ions during the precipitation of iron oxyhydroxide. 

Overall, the Mn concentration in the Red Lake successions reveals the gradual enrichment 

of Mn towards the carbonate platform where O2 was possibly supplied by shoreline cyanobacteria. 

The anomalously high Mn enrichments in some samples probably indicate the short-term oxic 

and/or suboxic conditions of the depositional environment.  

4.4 Zr-Hf-Nb Systematics in the Archean Ocean 

 Elements such as Al, Ti, Zr, and Nb are derived primarily from igneous rocks.  They tend 

to be very resistant during weathering and diagenesis and do not go into solution; therefore, they 

are considered chemically immobile and insoluble (Sugitani et al., 1996). Hence, these elements 

can only be found in the siliciclastic phases of the sedimentary rocks and ideally should be absent 
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in pure chemical sediments. However, the dilemma arises when a significant concentration of a 

minor element like Zr is observed in pure iron formation. The concentrations of Zr, Hf, and Nb, 

Ta in pure iron formation are not well established yet, and what controls the distribution of these 

elements in iron formation is not clear. Not much study has been done so far to understand the 

source of these elements. However, Bau and Alexander (2009) attempted to figure out the 

dynamics of these elements in their work on 2.73 Ga old Temagami iron formation. In their study, 

they described the source of Zr, Hf, and Ta in magnetite as being significantly from seawater 

instead of a detrital origin.  

 A similar approach has been taken in this study to understand the dynamics of these 

elements in the 2.93 Ga IF of Red Lake. Instead of using Ta data, Nb, which has similar chemical 

behaviur the geochemical twin of Ta, has been used here because the geochemical data of Ta was 

not reliable.  

 Bivariate plots of Zr have been used here to find a correlation with other immobile elements 

such as Al and Ti (Figure 4.21 A & B) to determine whether they are sourced from a detrital origin, 

but no linear trend is present in these plots. Fe2O3/Al2O3 vs. Zr/Al2O3 ratios and Fe2O3/Al2O3 vs. 

Hf/Al2O3 ratios were plotted (Figure 4.21-C & D) to see whether Zr and Hf were co-precipitated 

with iron oxyhydroxides, and the data shows that iron oxyhydroxides have considerably higher 

ratios than the slates. Also, bivariate plots of Zr/Al2O3 vs. Hf/Al2O3, and Nb/Al2O3 vs. Hf/Al2O3 

(Figure 4.21 E & F) show magnetite samples have higher Zr, Hf, and Nb vs Al2O3 ratios than 

siliciclastic black slate, which may indicate that their association is related to the precipitation of 

iron formation.  
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Figure 4.21: Bivariate plots of A) Zr vs. Al2O3. B) Zr vs. TiO2.  C) Fe2O3/Al2O3 vs. Zr/Al2O3. D) 

Fe2O3/Al2O3 vs. Hf/Al2O3.  E) Hf/Al2O3 vs. Zr/Al2O3. F) Hf/Al2O3 vs. Nb/Al2O3. of Red Lake 

magnetite and black slate samples indicate that the source of Zr, Hf, and Nb in the magnetite is not 

entirely from their detrital component.  
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The behavior of Zr, Hf, and Nb in pure iron formation can be examined by the analysis of 

ratios of the geochemical twins Zr-Hf ( Goldschmidt, 1937; Bau & Alexander, 2009). The Zr/Hf 

ratios of igneous rocks and clastic sedimentary rocks group close to chondritic (Zr/Hf: 38) and 

upper continental crust (Zr/Hf: 41) ratios (Anders & Grevesse, 1989; Wedepohl, 1995). The Zr 

and Hf ratios in Red Lake iron formation are between 38 and 90, which, for the most part, is far 

more than the chondritic and upper continental crust ratios. The Red Lake black shale shows Zr/Hf 

ratios between 19 and 43, which is within the range of chondritic and upper continental crust ratios. 

If the Zr and Hf in the Red Lake iron formation samples were derived significantly from detrital 

sources, they should cluster close to the chondritic and upper continental crust ratios. In modern 

seawater, the Zr/Hf ratio is 147 to 370 (Firdaus et al., 2008), which tells us that it is highly 

fractionated compare with the chondrite ratios. Thus, the non-chondritic Zr/Hf ratios of Red Lake 

iron formation suggest that there is a considerable role of nondetrital Zr and Hf, which was 

probably derived from seawater, although the Archean seawater Zr/Hf ratio is not known. 

Furthermore, in modern oceans and estuaries, preferential scavenging of Zr and Hf is observed 

where Hf is scavenged over Zr and drives the seawater Zr/Hf ratio towards the superchondritic 

values (Firdaus et al., 2008). 

 A similar scenario is found when Nb is considered. In modern seawater, the Hf/Nb ratio is 

0.07 to 0.16 (Firdaus et al., 2008), whereas the Red Lake oxide iron formation samples shows a 

Hf/Nb ratio of 0.58 to 9.5, which is much higher than modern seawater. Also, the Hf/Nb ratios of 

chondrite and upper continental crust are 0.43 and 0.22 respectively, lower than the oxide iron 

formation of Red Lake. There is still uncertainty concerning the Archean seawater Hf/Nb ratio, 

but an assumption like that in the previous discussion can be adopted here, and it can be assumed 
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that Nb was preferentially scavenged from seawater rather than Hf during iron formation 

precipitation.  

 

Figure 4.22: Ratio plots of Zr/Hf and Hf/Nb showing magnetite samples plot above the upper 

continental crust, chondrite, and black slate. This indicates that Zr,  Hf, and Nb were dissolved in 

seawater and preferentially absorbed by iron oxyhydroxide with adsorption being Zr>Hf>Nb. 

 

Figure 4.22 is a ratio plot of Hf/Nb vs. Zr/Hf of Red Lake iron formation and black shale 

with chondrite, upper continental crust, modern seawater and modern sulfide chimney data to 

illustrate the above discussion (Anders & Grevesse, 1989; Wedepohl, 1995; Firdaus et al., 2008; 

Paropkari et al., 2010). From this graph, it can be seen that the sulfide chimney samples have 

relatively low Zr/Hf and Hf/Nb ratios although some samples have plots close to the Red Lake 

black shale and sulfide iron formation samples, which indicates that those chimney samples are 

contaminated by siliciclastics. The plot of pure iron formation samples of Red Lake shows Zr/Hf 

and Hf/Nb ratios significantly higher than the chondrite and upper continental crust plots. A few 

detritus-mixed IF have their vicinity close to the black shale, and one sample plots near chondrite. 
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Detritus-poor sulfide iron samples show a trend similar to that of the iron formation samples, 

whereas the detritus-rich samples cluster around the black shale samples. The modern seawater 

samples have a higher Zr/Hf ratio but a lower Hf/Nb ratio. 

 

Figure 4.23: Schematic diagram of Zr, Hf sorption relative to the precipitation rate of iron 

oxyhydroxide. The slower the iron precipitation, the higher the Zr absorption. 

 

To explain the dynamics which are responsible for the scavenging of these elements, it is 

assumed that the slower the precipitation of iron hydroxide, the higher the Zr, Hf and Nb sorption 

and the lower Zr/Hf and Hf/Nb ratios (Schmidt et al., 2014). The precipitation of iron hydroxide 

depends on the availability of a ferruginous water mass and the supply of an oxygenated water 

mass. A hypothetical scenario is illustrated in Figure 4.23, where the deeper part of the ocean is a 

representation of an anoxic ferruginous ocean, while the shallower part represents an oxygen-rich 

environment. The iron hydroxide precipitation occurs predominantly near the boundary of an 

oxygenated water mass and an anoxic Fe+2 rich water mass. This boundary can shift on either side 

depending on the supply of both water masses and fluctuation of the water level. Rapid 

precipitation results mainly from the delivery of O2-rich water. On the other hand, slow deposition 

is caused by either insufficient supply of oxygenated water or iron deficiency in the water mass. 

The sorption of Zr, Hf, and Nd from seawater to iron hydroxide depends on the progress of 

precipitation (i.e., more rapid precipitation gives lower sorption and vice versa).  
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Figure 4.24: Ratio plots of Zr/Fe and Hf/Fe with depth showing a slight correlation with distance 

from the carbonate platform. 

 

Zr/Fe and Hf/Fe ratios of Red Lake magnetite samples (Figure 4.24) was plotted against 

depth to visualize if there is any depositional trend of Zr and Hf with depth. From the depth curve 

vs. ratio plot and stratigraphy of the EBL-27 and NGI-31 drill holes, it is somewhat evident that 

towards the carbonate platform the Zr/Fe and Hf/Fe ratios change. In the EBL-27 hole, from the 

approximately 10 m to 80 m interval the ratios of both Zr/Fe and Hf/Fe gradually increase, which 

indicates a slower growth rate of iron hydroxides. Close to the carbonate platform, about 125 m in 

depth in the drill-hole, both ratios decrease (i.e., faster growth rate), which is reasonable because 

near the shoreline O2 influx would have accelerated the precipitation of iron hydroxides if O2 was 



91 
 

produced in the shallows. The slight scattering of a few samples denotes the fluctuation of the rate 

of precipitation that causes the ratio shifts back and forth. In the NGI-31 hole, the ratio of Zr/Fe 

and Hf/Fe is higher near the contact with the carbonate platform but decreases away from it. Data 

that deviated from the linear trend represent an occasional change in the deposition rates. Thus, it 

can be said that in the NGI-31 hole, the precipitation rate of iron hydroxide was higher near the 

carbonate contact.  

 In summary, it is hard to validate the results of the analysis with others’ work as there is so 

little information available to help us understand the relation among Zr, Hf, and Nb in the iron 

formations of the Archean Eon.  However, the distribution of Zr, Hf, and Nb in 2.93 Ga Red Lake 

oxide iron formation yields Zr/Hf and Hf/Nb ratios that differ from chondrite, upper continental 

crust, modern seawater, and Red Lake black shale. This probably indicates these elements in oxide 

facies iron formation are derived significantly from seawater rather than totally from detrital 

sources. The sorption of these elements is interrelated with the growth rate of iron hydroxides, and 

slower precipitation favors higher sorption of these elements (Bau and Alexander, 2009). 

4.5 Sulfur and carbon isotopes 

In this study, sulfide iron formation and black slate samples from five drill holes were used 

for organic carbon and sulfur isotope analysis. For inorganic carbon (carbonate) isotope analysis, 

outcrop data and drill core data were used. Four of these drill holes, namely PB-32, PB-33, PB-34, 

and PB-35 are from the Pancake Bay area, and EBL-27 is located in the East Bridget Lake area.  

4.5.1 Sulfur isotopes 

Sulfur is the 10th most abundant element in the Earth’s crust and has five isotopes. Among 

the five isotopes, four are naturally occurring sulfur isotopes and stable (32S, 33S, 34S, and 36S) 
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while one (35S) is unstable, or radiogenic. The approximate terrestrial abundances of these stable 

isotopes are 32S: ~95.02, 33S: ~0.75, 34S: ~4.21, and 36S: ~0.02 % (Macnamara & Thode, 1950). 

Isotopic fractionation happens due to the variations in thermodynamic properties of molecules 

which is dependent on mass. However, non-mass-dependent fractionation or mass-independent 

fractionation (MIF) refers to the processes that cause variations in the abundances of isotopes that 

are independent of their masses. MIF of sulfur isotopes is noted for deposits older than 2.3 Ga 

while deposits younger than 2.0 Ga have no significant MIF in ∆33S values (Farquhar et al., 2000; 

Pavlov & Kasting, 2002; Farquhar & Wing, 2003; Mojzsis et al., 2003;  Ono et al., 2003; Bekker 

et al., 2004). This isotopic fractionation shift in the rock record indicates an important change in 

the Archean sulfur chemistry and/or cycling after the Neoarchean. Therefore, it can be said that 

the 2.93 Ga old Red Lake sulfides should show MIF of sulfur.   

Isotopic fractionation of elements is dependent on chemical variables such as oxidation 

state, atomic mass, electronic configuration of the isotopic elements and the elements to which 

they are bound (O’Neil, 1986). The oxidation state of sulfur is particularly important because the 

heavier isotopes of sulfur are enriched in the higher oxidation states relative to lower oxidation 

states and the 34S enrichment follows the trend SO4
2− > SO3

2− > Sx
0 > S2− (Sakai, 1968; Bachinski, 

1969; Seal, 2006). Mass-independent fractionation of sulfur indicates an anomalous enrichment or 

depletion of 33S/32S and 36S/32S isotope ratios compare to the associated 34S/32S ratios. According 

to Farquhar et al. (2001), photodissociation of sulfur dioxide (SO2) gas results in MIF of sulfur. 

Under ultraviolet radiation, the SO2 molecule dissociates to sulfur monoxide (SO) which 

ultimately produces elemental sulfur by the following reaction. Due to this reaction, the end 

product, elemental sulfur becomes anomalously enriched in 33S, and depleted in 36S, while vice 

versa for the residual SO2 (Farquhar et al., 2001). 
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SO2 → SO + O,   

SO  → S + O 

The multiple sulfur isotope analysis of Red Lake sulfides shows δ34SVCDT values ranging 

from -8.83 ‰ to +3.85 ‰, the Δ33SVCDT values ranging from -0.65 ‰ to +1.2 ‰ and the Δ36SVCDT 

values ranging from -2.44 ‰ to +0.22 ‰. The ∆33S vs. ∆36S plot (Figure 4.25) has a slope of -1 

which is typical for Archean mass-independent fractionation of sulfur and is similar to other 

Archean data (Farquhar et al., 2001, 2007; Ono et al., 2006). Since the slope is consistent with 

other Archean slopes, this trend infers similar mass-independent fractionation of sulfur was taking 

place during formation of the Mesoarchean Red Lake sulfides and is interpreted as evidence of 

mass-independent isotopic fractionations initiated in a gas-phase reaction (Farquhar et al., 2001, 

2007; Ono et al., 2006; Rodzinyak, 2012).  

 

Figure 4.25: Plot of ∆33S vs. ∆36S for mass independent data for 2.93 Ga. old Red Lake sulfide 

samples. The correlation between ∆33S and ∆36S is interpreted as evidence of mass-independent 

isotopic fractionations which has a characteristic slope of -1 
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Figure 4.26: Plot of δ34S vs. ∆33S for Red Lake sulfide samples. The diagonal array is interpreted 

as atmospheric reactions that produced mass independent fractionation. The horizontal distribution 

along the x-axis is attributed to microbial processes. 

 

In the δ34S vs. ∆33S plot of Figure 4.26, the diagonal array of samples is interpreted as the 

product of atmospheric photolysis reactions of mass-independent fractionation of sulfur whereas 

the horizontal trend of samples is suggestive of microbial processing (Ono et al., 2003; Rodzinyak, 

2012). Likewise, the δ34S vs. ∆33S plot (Figure 4.27) with literature data shows Red Lake data are 

compatible with other Archean deposits and follow the Archean array proposed by Ono et al. 

(2003), but also have similarities with samples from the 2.45 to 2.2 time period. 
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Figure 4.27: δ34S vs. ∆33S plot of Red Lake (~2.93 Ga) samples (red circle) along with data from 

the literature where white circles are samples older than 2.45 Ga, gray circles are samples younger 

than 2.45 Ga but older than 2.2 Ga, and black circles are samples younger than 2.2 Ga. The broad 

positive correlation between δ34S values and ∆33S values in samples older than 2.45 Ga is known 

as the ‘Archean Array’ (Ono et al., 2003). The Red Lake samples tend to follow this array, but 

also are similar to the samples from the 2.45 to 2.2 Ga time period (Modified after Johnston, 2011). 

 

Furthermore, the δ34S isotope analysis of Red lake sulfides and pyritiferous, organic-rich 

black slate samples show the isotopic abundance of 34S ranges from -8.83 ‰ to +7.29 ‰. The PB-

32 hole has δ34S values ranging from -1.38 ‰ to +2.81 ‰ for sulfides samples and +1.47 ‰ to 

+4.29 ‰ for pyritiferous black slate samples. The PB-33 hole has -8.83 ‰ to +0.1 ‰ values for 

sulfide samples, and one black slate sample is +0.11 ‰. The PB-34 drill-hole has pyritiferous 

black slate samples only which gave positive δ34S values ranging from +1.24 ‰ to +5.43 ‰. In 

the PB-35 hole, sulfides samples gave +1.03 ‰ to +6.24 ‰, and pyritiferous black slate samples 

gave +3.75 ‰ to +7.29 ‰. The EBL-27 hole sulfide samples have -7.63 ‰ to +3.45 ‰ values and 

black slate samples  

      2930 Ma Red Lake 

sulfides 
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Figure 4.28: Plot of δ34S ‰ VCDT vs. depth of the Red Lake sulfides and pyritiferous black slate 

samples from PB-32, PB-33, PB-34, PB-35, and EBL-27 holes. The plot shows sulfur isotope 

variability throughout the core log. 

 

have isotopic values from -1.47 ‰ to +5.41 ‰. The δ34S values of these samples were plotted 

against depth and displayed according to stratigraphic position in Figure 4.28. The deepest sulfidic 

deposits have S isotopic values that are quite variable, but above this zone, they cluster close to 0. 

Then as the carbonate platform is approached, they become positive. Further up stratigraphy 

sulfide-rich units interbedded with the carbonate platform have negative isotopic values, whereas 

pyritiferous shales and sulfide layers immediately above the platform have positive values.  

According to the previous studies of VMS deposits and their modern seafloor equivalents, 

the possible sources of sulfur can come from: (1) leaching of sulphur from igneous, and/or 

metamorphic rock; (2) bacterial sulphate reduction of seawater sulphate; or (3) seawater sulphate 

reduction due to thermochemical reaction  (Shanks et al., 1995; Watanabe et al., 1997; Hoefs, 
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1997; Seal, 2006; Alt & Shanks, 2006; Brueckner et al., 2015). The typical values of δ34S obtained 

from their studies are: (1) sulfur leached from igneous rocks and/or direct contributions from 

magmatic fluids are δ34S≈ -5 ‰ to +5 ‰; (2) sulfur from bacterial sulfate reduction due to 

microbial activity in reduced sediments are δ34S≈ -50 ‰ to +20 ‰ (Shanks et al., 1995; 

Goodfellow & Peter, 1996; Watanabe et al., 1997; Gemmell & Sharpe, 1998; Shanks III, 2001; 

Canfield, 2001; Seal, 2006) and (3) seawater sulfate present in sulfate minerals or reduced by 

thermochemical processes are δ34S≈ 4 ‰ to 33 ‰ (Claypool et al., 1980; Kampschulte & Strauss, 

2004; Paytan & Gray, 2012). However, according to Canfield and Poulton (1998, 2011), for a 

limited sulfate ocean like the Archean due to the lack of oxygen, the biological fractionation of 

sulfur would have a less fractionated ratio, i.e., the isotopic value would be close to the seawater 

value. Hence, sulfur derived from bacterial sulfate reduction could have a heavier δ34S value 

indicating a sulfate deficient environment while a lighter value of δ34S is an indication of 

biologically fractionated sulfur derived from a more extensive S pool (Shanks et al., 1995; 

Goodfellow & Peter, 1996; Watanabe et al., 1997; Canfield, 2001; Seal, 2006; Canfield 1998; 

Poulton & Canfield, 2011). 

The δ34S isotopic composition of Red Lake sulfides and black slates of different drill holes 

are compared in Figure 4.29, with the following: (1) and (2) a modern vent system of the Juan de 

Fuca Ridge (Shanks & Seyfried, 1987); Archean VMS deposits of (3) Kidd Creek (Jamieson et al, 

2006) and (4) Noranda camp (Sharman, 2011). It is known that sulfur of primary origin (i.e., 

meteorites and igneous rocks) have δ34S values close to zero (Thode et al., 1961; Ryznar et al., 

1967; Grinenko & Thode, 1970; Schwarcz & Burnie, 1973; Mitchell & Krouse, 1975; Thode et 

al., 1991). In addition to this, Ono et al. (2003) estimated that the δ34S of Archaean seawater sulfate 

ranged from 6 to 16 ‰ with a Δ33S of approximately -2 ‰.  
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Figure 4.29: Plot of δ34S ‰ VCDT data from different sulfur sources. EBL-27, PB-32, PB-33, PB-

34, and Pb-35 are sulfides and black slate data from this study; data in (1) and (2) are from Shanks 

and Seyfried (1987); (3) Jamieson (2006); (4) Sharman (2011). 

 

Based on the above information, it is presumed that the sulfur in the Red Lake sulfides and 

black slates were derived from multiple sources. δ34S values close to zero represents sulfur that 

was probably leached from igneous sources due to high-temperature hydrothermal fluids and 

vented on the seafloor. However, some of the Red Lake δ34S values (+5.43 ‰ to +7.29 ‰) roughly 

fall within the range of Archean seawater sulfate proposed by Ono et al., (2003). Additionally, the 

higher negative values (-8.83 ‰ to -7.63 ‰) are indicative of bacterial sulfate reduction in 

sediments. 

4.5.2 Carbon isotopes in the organic matter 

 Carbon is the essential element to form life, and it has three naturally occurring isotopes 

12C, 13C, and 14C. The 12C is lighter, 13C is heavier, and 14C is radiogenic. In nature, the proportion 

of 12C and 13C is approximately 93:1. Carbon isotope composition of the substance is expressed as 
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δ13CPDB which gives the deviation of the 13C/12C ratio of a sample relative to the conventional 

standard PDB. A positive value of δ13C in a sample indicates a higher 13C/12C ratio or 13C 

enrichment and a negative value represents a lower 13C/12C ratio with corresponding 13C depletion. 

Organic matter is preferentially composed of 12C and is removed from the hydrosphere-atmosphere 

system after burial, that subsequently causes the carbon on the surface to become heavier or 

enriched in 13C. Hence, the carbon isotopic composition of the organic matter can provide 

information about the biological activity and carbon intake by microorganism within a sedimentary 

basin. 

The carbonaceous black slates and sulfide iron formations of Red Lake contain organic 

carbon or kerogen as remnants of ancient organic matter representing life at that early stage of 

Earth history. The measured total organic carbon (TOC) content ranges from 0.1 to 5.4 wt. % in 

these sediments. The analysed δ13C values of PB-32, PB-33, PB-34, PB-35 and EBL-27 holes 

range from -27.61 ‰ to -21.20 ‰, -27.99 ‰ to -21.70 ‰, -21.41 ‰ to -18.98 ‰, -24.90 ‰ to -

22.64 ‰ and -30.15 ‰ to -17.76 ‰ respectively.  

A sedimentary profile with carbon isotopic compositions is given in Figure 4.30 that 

displays the isotopic change with elevation in the stratigraphic column. The Pancake Bay holes, 

except for PB-33, show δ13C gradually decreases away from the carbonate platform towards the 

overlying volcanics. Surprisingly, the EBL-27 hole has two distinct trends of δ13C: a clustering of  
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Figure 4.30: Plot of δ13Corg ‰ VPDB vs. depth of the Red Lake sulfides and black slates from 

PB-32, PB-33, PB-34, PB-35, and EBL-27 holes. This plot depicts the changes in organic δ13C 

through the core log. 

 

low δ13C values around -30 ‰ near the bottom of the hole and higher δ13C values of about -17 ‰ 

in the middle of the hole. The high negative δ13C value of organic matter implies a greater depletion 

of 13C or conversely an enrichment of 12C. Therefore, the bottom part of the hole has 12C enriched 

signature while the upper part of the hole has 13C enriched signature. However, Posth et al. (2017) 

documented that purple sulfur bacteria (PSB) and green sulfur bacteria (GSB) follow different 

enzymatic pathways to fix carbon and fractionate carbon isotopes differently. Thus, the dissimilar 

δ13C isotopic trend present in Red Lake organic matter might be indicative of different microbial 

communities living in the depositional basin. 

The δ13Corg VPDB isotopic ratios of organic matter in Red Lake samples are between -30 

to -17 ‰ which is similar to the values reported by Schidlowski et al. (1983). Their study revealed 
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that the average range of organic carbon δl3C variations through Earth's history is between -35 and 

-20 ‰. In addition, organic carbon δl3C values from the Sturgeon and Savant Lake Greenstone 

Terranes of Northwest Ontario, Wabigoon Belt of Superior Province of Canada, as well as other 

Archean deposits from different parts of the world, e.g., Fortescue Group of Western Australia and 

the Ventersdorp Supergroup of South Africa, indicate that the samples were characterized by 13C 

depleted organic matter and thus, might be suggestive of a global feature for the Archean 

(Shegelski, 1978; Schoell & Wellmer, 1981; Strauss, 1986; Hayes et al., 1989).  

4.5.3 Carbon isotopes in the carbonate rocks 

In Archean seawater, the isotopic composition of δl3CVPDB carbon is +1.5 ‰ ± 1.5‰ 

(Veizer et al., 1989a; Veizer et al., 1989b and references therein). The δl3C values of bulk 

Precambrian carbonates are around 0‰, which is similar to the marine carbonate values for the 

Phanerozoic (Schidlowski et al., 1983). Primary isotope compositions of carbon and oxygen of 

carbonate rocks may change due to post-depositional alteration. Different diagenetic processes 

(e.g., meteoric diagenesis or metamorphism) may reduce both the δ13C and δ18O composition of 

carbonate rocks and dolomitization can also lower the δ18O value (Quinn & Matthews, 1990; 

Kaufman & Knoll, 1995; Singh et al., 1998; Melezhik et al., 2003; Fairchild & Kennedy, 2007; 

Bristow & Kennedy, 2008).  
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Figure 4.31: Plot of δ13CVPDB‰ vs. δ18OVPDB‰ of the Red Lake carbonate samples show most 

carbon and oxygen isotope values are within the range commonly recorded for Archean shallow-

water carbonates. 

 

The δl3C values for Red Lake carbonate range from -3.53 ‰ to +1.16 ‰ and are somewhat 

compatible with Archean seawater. The dolomite, calcite, and calcite-rich dolostone samples show 

δl3C values of -0.66 ‰ to +0.62 ‰, -2.7 ‰ to +1.07 ‰, and -3.53 ‰ to -1.06 ‰ respectively 

(Figure 4.31). The carbonate associated with oxide iron formation has values of +0.51 ‰ and 

+1.16 ‰. The shale-hosted slumped carbonate samples, and magnetite hosted slumped carbonate 

samples have δl3C values of -2.7 ‰ to -0.07 ‰ and +1.07 ‰ to +0.25 ‰ respectively.  

With the exception of one of McIntyre and Fralick’s (2017) samples, the carbonate 

associated with oxide facies iron formation has positive δl3C values, whereas the δl3C values of 

shale-hosted carbonate slumped material change gradually from positive to negative (Figure 4.32). 

Low δl3C values of samples from the shale-hosted carbonate slump facies indicates the presence 

of CO2 derived from organic carbon as it’s high TOC content with substantial negative isotopic 
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ratios can alter the slumped in carbonate. Hence, post-depositional alteration played a role here. 

Moreover, lower δl3C values were identified for deeper water carbonates in other Archean 

carbonate platforms such as the Hamersley (Becker & Clayton, 1972; Kaufman et al., 1990), 

Transvaal Supergroup (Beukes et al., 1990; Schneiderhan et al., 2006; Fischer et al., 2009) and 

Steep Rock (Fralick & Riding, 2015). According to Kaufman et al. (1990), deep Archean seawater 

had a δl3C value of -5%0 but during diagenesis, organic carbon reacted with iron oxyhydroxide and 

further lowered the δl3C values. Fralick and Riding (2015) also observed a lower -5.5%0 δ
l3C value 

for deeper seawater siderite. Therefore, the more negative δl3C values of Mesoarchean Red Lake 

carbonates represent an enrichment of δl2C or depletion of δl3C, which probably resulted from 

deposition in a setting where CO2 was derived from the recycling of organic matter enriched in 12C 

(Thode & Goodwin, 1983; Schidlowski et al., 1983; Schidlowski, 1988; Baur et al., 1985).  

 

Figure 4.32: A hypothetical scenario of δ13C isotope distribution in slumped carbonate. Slate 

hosted carbonate slumps have low δ13C values relative to magnetite hosted carbonate slumps 

because of biological recycling of CO2 in areas of high TOC.  

 

The δ18OVPDB ‰ value of Red Lake carbonates is -9.3 ‰ to -15.4 ‰, which is similar to the 

δ18O value of Archean carbonates ranging from -9 ‰ to -15 ‰ (Kaufman et al., 1990; Beukes et 

al., 1990; Fischer et al., 2009 and Heimann et al., 2010). McIntyre and Fralick, (2017) reported 
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that Red Lake calcite samples have δ18O isotope values similar to other Archean carbonate 

samples, but dolomite samples have a lower δ18O value compare with other Archean carbonate 

samples. Furthermore, Mg/Ca ratio verses δ18O plots depict dolomite content increasing with 

decreasing δ18O value (Figure 4.33), which is opposite to data from Phanerozoic carbonates 

(Jaffrés et al., 2007). The Red Lake dolomite samples have low δ18O values ranging from -15.4‰ 

to -13.6‰. Negative oxygen isotope ratios in dolomites are often referred to as the presence of 

isotopically light waters during dolomitization (Wright & Tucker, 1990). Dolomite commonly 

forms in restricted settings, giving higher δ18O values. Nevertheless, dolomitization can happen in 

many different ways in nature. It is often associated with hypersaline, evaporative settings 

(Friedman, 1980), which give an elevated δ18O composition (i.e., enriched with the heavier O2 

isotope). Alternatively, increased influx of meteoric water into evaporite basins or mixing of 

marine and meteoric waters can lower the δ18O composition during dolomitization. Due to this 

process, dolomites become enriched in the lighter oxygen isotope (i.e., depleted δ18O 

composition). It is likely that dolomitization of Red Lake carbonates was caused by the mixing of 

saline water and meteoric water, thus, a lighter 16O or depleted 18O signature was preserved. The 

isotopic signature of δ18O in dolomite is different than the isotopic signature of calcite, which 

further suggests diagenetic alteration of the composition of δ18O in dolomite. Red Lake calcite and 

dolomite occur together, and they were metamorphosed simultaneously thus alteration during 

metamorphism resetting the oxygen isotopic signature in case of dolomite is ruled out.  
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Figure 4.33: Mg/Ca vs. δ18O plots showing dolomite content increasing with decreasing the δ18O 

value in Red Lake area but literature data has an opposite trend (Jaffrés et al., 2007). This trend 

suggests dolomite in the Red Lake area were formed differently. 

 

Regarding the behavior of strontium (Sr) isotopes in Red Lake carbonates, Satkoski et al., 

(2017) mentioned that Red Lake dolomite did not preserve the primary Sr signature of seawater 

due to diagenesis, but calcite samples preserved the seawater Sr isotopic composition. Generally, 

seawater Sr is enriched in the light isotope while Sr derived from the radiogenic decay of rubidium 

(Rb) is enriched in the heavy isotopic composition. The calcite samples have lower 87Sr/86Sr ratios, 

whereas the dolomite samples have higher 87Sr/86Sr ratios, suggesting that during diagenesis 

dolomite was enriched in the heavier Sr isotope (Satkoski et al., 2017). Multiple lines of evidence 

suggest that Red Lake dolomites were modified diagenetically while the limestone has an unaltered 

seawater composition. 
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Chapter 5: Depositional Environment of Lithofacies 

Chemical sedimentary rocks are chemical precipitates, which settle from the water column 

and reflect the composition of seawater. Any variability in the composition of water chemistry is 

related to different physicochemical factors including fluctuations in ionic concentrations, Eh, pH, 

and temperature. All these are key controls of the variety of chemical sedimentary rocks. 

Therefore, to delineate the depositional environment of Red Lake chemical and siliciclastic 

sedimentary rocks, observation from outcrop, core data, and geochemical analysis of various 

lithofacies must be considered. The order described here is similar to that used in Chapter 3. 

Carbonate 

 In the Archean ocean, there are many examples where carbonate was deposited in shallow 

water while chert, magnetite, and sulfide were deposited in the deeper water of the basin (Fischer 

et al., 2009; Heimann et al., 2010; Fralick & Riding, 2015). In the Red Lake carbonate platform, 

carbonates deposited in the peritidal environment are composed of ferronian dolomite while 

carbonates deposited in the deep subtidal to upper slope settings are composed of calcite (McIntyre 

& Fralick, 2017). The geochemical analysis of carbonate samples shows calcite-rich carbonate 

present above and below the peritidal ferronian dolomite which indicates probable relative sea 

level change. The REE patterns of carbonate samples have no La and Ce anomalies, but they have 

high Eu anomalies, high Y/Ho ratios, and HREE enrichment. The lack of negative Ce anomalies 

in all but two samples indicates that the water column was not oxic and high Eu anomalies suggest 

deposition occurred in a marine environment with good interchange with the world ocean.  

The depositional environment of carbonate associated with magnetite and slumped 

carbonate are described below. 
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Carbonate associated with oxide facies IF 

In the Red Lake carbonate platform, other than normal oxide iron formation, carbonate 

associated oxide iron formation has been observed in outcrop. The alternating deposition of 

carbonate and magnetite layers is certainly interesting. However, to explain the deposition of 

alternating iron and carbonate layers, it is hypothesized that upwelling of Fe+2-rich deeper water 

to the shallow ocean caused precipitation of iron oxyhydroxides when carbonate precipitation was 

dormant. The formation of thin laminae of magnetite was probably due to very dilute hydrothermal 

input, or intermittent supply of Fe+2-rich water, or intermittent supply of oxygen. After the 

deposition of iron hydroxides, when the seawater became supersaturated with bicarbonate ions the 

next phase of carbonate deposition occurred. The SEM-EDS analysis of carbonate associated with 

magnetite shows a very thin layer of mud accumulated between carbonate and magnetite layers, 

which indicates the depositional time gap between carbonate and magnetite precipitation was 

longer. It’s presence also indicates that carbonate precipitation was not simply overwhelmed 

periodically by short bursts of iron hydroxide precipitation but must have been shut off to allow 

the clay to accumulate. The carbonate associated oxide iron formation is present stratigraphically 

below the stromatolitic carbonate, which confirms their presence near the shallow water 

environment. Therefore, it is very likely a transitional facies between deeper water oxide iron 

formation and shallow water carbonate facies. 

Slumped carbonate 

The carbonate slump facies is present stratigraphically below the laminated carbonate 

facies. The laminated carbonate facies was deposited in peritidal settings (McIntyre & Fralick, 

2017). Two types of carbonate slumps occur in the Red Lake carbonate platform: magnetite hosted 
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slumps and shale-hosted slumps. The carbonate slump landed below the photic zone where no 

carbonate was being deposited and the settling of slumped carbonate was variable depending on 

the condition of in situ environments, e.g., they were deposited when chert and Fe oxide 

precipitation were shut off, and mud accumulation was active as background sediment or vice 

versa. Furthermore, the inorganic δ13C carbon isotope analysis suggests that shale-hosted 

carbonate slumps have a range of values from positive to negative δ13C. The low δl3C values result 

from the biological recycling of CO2 in areas of high TOC. In contrast, magnetite hosted slumps 

have positive δ13C values. 

The REE signature of both magnetite and shale-hosted slumps have REE patterns similar 

to the shallow water carbonate, although they were deposited in the upper slope environment.  

Chert 

Biologically mediated silica precipitation is common in the modern ocean, but for the 

Archean ocean, the origin of silica is controversial due to the lack of silica-secreting organisms 

(Cloud, 1973; Holland, 1974; Delvigne et al., 2012). In the modern ocean, silicon concentrations 

in hydrothermal fluids range from ~450 to ~650 ppm, whereas in the Archaean ocean, silicon 

concentrations in hydrothermal fluids were probably ~1680 ppm to ~3000 ppm, which is 4 to 7 

times greater than modern hydrothermal fluids (Mortlock et al., 1993; Van den Boorn, 2008; 

Shibuya et al., 2010; Wang et al., 2011). For ancient oceans, therefore, the generally accepted 

source of silica is hydrothermal, and the ancient ocean was saturated with silicic acid (H4SiO4), 

which caused the deposition of silica (Siever, 1957; Cloud, 1973; Holland, 1973; Barrett, 1982; 

Gross & Zajac, 1983; Barrett et al., 1987; Siever, 1992; Maliva et al., 2005; Van den Boorn, 2008). 

However, there are several hypotheses regarding the formation of Archean chert including: (1) 
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cherts formed by direct precipitation of hydrothermal fluids and/or silica-saturated seawater, (2) 

silicification of precursor rock by interaction with hydrothermal-fluid and/or silica-saturated 

seawater, and (3) post-depositional alteration by diagenetic or metamorphic-metasomatic 

processes (Delvigne et al., 2012; Van den Boorn, 2008). 

In the Red Lake carbonate platform, primary chert mostly occurs interbedded with 

magnetite, and as massive to laminated chert. In other examples, primary chert tends to occur 

associated with oxide iron formation in a deep-water setting, rather than that in a shallow water 

setting (Fralick & Burton, 2008). At Red Lake, massive chert and laminated chert also occur in 

association with oxide iron formation. Thus, Red Lake chert is considered a deeper water facies 

due to its occurrence with deeper water iron formation. Massive chert deposition may result from 

rapid precipitation of low-temperature silica-rich hydrothermal fluids while the regular, flat, 

laterally continuous chert laminae are probably indicative of precipitation in a low energy 

environment from silica-saturated seawater. Chert associated with oxide iron formation represents 

variable ocean chemistry from a silica-saturated water mass to a ferruginous water mass. The 

alternating accumulation of chert and magnetite layers denotes periods of inactive hydrothermal 

input and Fe-poor sedimentation and vice versa (Morris, 1993; Steinhoefel et al., 2009). 

Even though the crystal structure of chert cannot accept REEs inclusions contained within 

it give PAAS normalized REE patterns that include positive La and Eu anomalies and high Y/Ho 

ratio reflecting the Archean seawater-like REE signature.  Particularly, the positive Eu anomaly is 

suggestive of precipitation from Archean seawater. 

Oxide Iron Formation 

There is a lack of a well-accepted theory for banded iron formation deposition in the 
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Archean ocean, and the depositional mechanism of iron formation is still controversial due to the 

absence of good modern analogs (Fralick, 1995; Delvigne et al., 2012). Factors responsible for the 

deposition of iron formation are iron and silica sources, transport mechanisms, and depositional 

controls. Additionally, clastic influx should be minimal for the accumulation of iron formation, so 

that chemical sediments can dominate in the depositional environment. Possible sources of iron in 

the Archean ocean were subaerial or subaqueous weathering of iron-bearing rocks and iron-rich 

hydrothermal input (Goodwin, 1956; Huber, 1959; Drever, 1974; Garrels et al., 1973; Barrett et 

al., 1987; Fralick, 1995). However, it is generally accepted that hydrothermal alteration of oceanic 

crust was the primary source of iron in the Archean ocean (Jacobsen & Pimentel-Klose, 1988; 

Derry & Jacobsen, 1990; Bau & Möller, 1993). Several models have been proposed for the 

depositional mechanism of banded iron formation. The oxidation of ferrous iron (Fe+2) by oxygen 

model states mixing of upwelled Fe+2 rich, high-temperature hydrothermal plumes or reduced iron-

rich deep water with the near-shore cyanobacterial produced O2-rich shallow water causes the 

oxidation of Fe+2 (Cloud, 1973; Klein & Beukes, 1989; Beukes et al., 1990; Beukes & Klein, 1990; 

Isley, 1995; Hamade et al., 2003; Beukes & Gutzmer, 2008; Steinhoefel et al., 2009). The oxidized 

ferric iron is insoluble in seawater and sinks to the bottom as ferric oxyhydroxide or hydroxide. 

Alternatively, according to Konhauser et al. (2002) anoxygenic bacterial iron oxidation was 

responsible for the deposition of iron formation. The UV induced photo-oxidation of ferrous iron 

is another model for the deposition of iron formation (Cairns-Smith, 1978; Braterman et al, 1983).  

The oxide facies iron formation in the Red Lake area is characterized by mm to cm-scale 

magnetite bands alternating with chert bands. The overall flat, regular, laterally continuous 

magnetite bands in oxide iron formation indicate that precipitation occurred in a low energy 

environment. The absence of carbonate, slumped rock and presence of volcanic rocks above the 
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iron formations in the NGI-31 hole suggest that Red Lake iron formation formed distal from the 

carbonate platform, possibly, in the deep water of an upper slope setting. Thickness variations in 

magnetite and chert bands were probably caused by the effect of changes in discrete hydrothermal 

venting as well as the composition and temperature of hydrothermal fluids (Barrett et al., 1987; 

Fralick et al., 1989). Chemical sedimentation and controlling physical factors on outer shelves and 

slope environments are not well described in the literature. However, quiescence of siliciclastic 

supply is undoubtedly a significant control, which in other examples was triggered by sea-level 

rise (Fralick, 1995). Hydrothermal venting probably created a zone of saturation and precipitation 

may have occurred away from the vents, even up to tens to hundreds of kilometers (Barrett et al., 

1987). 

The ferrous iron-rich water mass was probably reacting with a somewhat oxygenated water 

mass along a redox boundary in the water column with the result that ferric oxyhydroxides or 

hydroxides settled to the bottom and eventually altered to magnetite during diagenesis. The mixing 

of an anoxic ferruginous water column and a somewhat oxic water column was possibly due to 

intense upwelling of hydrothermal plumes or storm surge induced shuttle of oxygenated water, or 

both. 

The geochemistry of REEs in Red Lake oxide iron formation samples reflects mostly no 

La anomaly to a positive La anomaly in some samples. Most samples have weak positive Ce 

anomalies and all samples have positive Gd anomalies. They also have pronounced Eu anomalies 

and high Y/Ho ratios. The Pr/Yb ratio is <1 which indicated that iron formations are HREE 

enriched. However, significant Eu anomalies are suggestive of precipitation from seawater 

influenced by high-temperature hydrothermal fluids.  
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Sulfide Iron Formation 

 Sulfide iron formation formed in a completely anoxic environment. Proximity to the source 

of hydrothermal venting often controls the formation of iron facies. The deposition of sulfide iron 

formation facies commonly occurs close to the vent site in a reducing environment (Goodwin, 

1973). Black smokers may transform into white smokers with cooling of magma chambers or the 

country rock through which the fluid passes, and vice versa with recharge of the magma chamber 

or gradual heating of the country rock to the vein system (Haymon et al., 1991; Wilcock & 

Delaney, 1996). With low Eh conditions, sulfide iron formation deposition occurs near vents, or 

in low relief areas nearby on the ocean floor.  

The occurrence of fine-grained carbonaceous shales with sulfide iron formation represents 

slow deposition below storm wave-base (Fralick et al., 1989). Each pyritic lamination probably 

reflects an individual hydrothermal pulse. However, the thick massive pyrite layers are indicative 

of rapid precipitation near the vent site.  It is assumed that the Red Lake sulfides were precipitated 

from a bottom anoxic water layer in a deeper part of the platform environment. Some of the sulfide-

facies iron formations are characterized by irregularly laminated to nodular pyrite associated with 

carbonaceous shale. This co-occurrence reflects the presence of microbial communities and 

therefore proximity to a relatively low-temperature diffuse hydrothermal venting. Moreover, sulfur 

isotope analysis confirms the presence of bacterial sulfate reduction. Intermittent emanations of 

iron-rich solutions into a euxinic bottom water layer is directly or indirectly related to the mm- to 

cm-scale banding in the pyrite and pyrrhotite.  

The shale normalized REE patterns of sulfide iron formation show no La and Ce anomalies. 

Interestingly, pyrite samples mostly have low to no Eu anomalies and high Gd anomalies while 
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some pyrrhotite samples have typical Archean seawater Eu anomalies with smaller Gd anomalies. 

However, REEs do not fit into the iron sulfide lattice; therefore, the REE concentration in pure 

pyrite and pyrrhotite samples should be insignificant, and the REE pattern present in iron sulfides 

must come from either fluid and mineral inclusions or other materials associated with these rocks. 

Black slates 

 Organic-rich mud deposition, ideally, occurs in a low energy environment and indicates a 

slow rate of sedimentation. As mentioned earlier, black slates are metamorphosed carbon-rich 

shale, which is fine-grained, massive, and often contains different sulfidic minerals. The carbon 

content in black slates varies from 1.34 to 5.12 %. This carbon content indicates that there was a 

high supply of organic materials in the depositional basin. Rain-out deposition of mud would have 

occurred as background sedimentation in deeper water environments when the seawater 

composition remained undisturbed for long intervals of time. The deposition of Red Lake slate 

possibly begun with cessation of volcanic activity, less venting of hydrothermal fluids, and no 

coarse-grained clastic sedimentation.   

The Red Lake black slate has crustal Y/Ho ratios of ~25 which confirms their siliciclastic 

origin. The black slate has an overall flat REE pattern with moderate Eu anomaly. As the Archean 

ocean was heavily influenced by hydrothermal activity, therefore, during deposition of organic-

rich mud it gradually absorbed Eu and inherited the anomaly. 
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Chapter  6: Conclusion 

The Red Lake carbonate platform is part of the Red Lake Greenstone Belt which belongs 

to the Uchi Subprovince of the Archean Superior Province. This is the oldest known carbonate 

platform on earth and formed sometime between 2.94 Ga to 2.92 Ga (Corfu & Wallace, 1986). 

The 400 m thick Red Lake carbonate platform contains a variety of chemical sedimentary rocks 

including, carbonate, chert, oxide iron formation, sulfide iron formation, and siliciclastic black 

slate. The deeper water chemical sedimentary rocks and black slate were investigated using an 

array of different types of geochemical techniques, e.g., whole rock geochemical analysis, XRF 

scanning, SEM-EDS analysis, and isotope analyses, to interpret the depositional environment and 

sediment-water interaction of the 2.93 Ga Mesoarchean ocean. 

Rare earth element analysis outlines that the chemical sediments generally have typical 

Archean seawater-derived REE patterns, with HREE enrichment (Figure 4.1A and E), and 

insignificant siliciclastic influence (Figures 3.9, 3.15 and 3.19). The magnetite samples have 

pronounced positive Eu anomalies, slight Gd anomalies, super-chondritic Y/Ho ratios, HREE 

enrichment and some of the samples have positive Ce anomalies. Positive Ce anomalies in 

magnetite samples imply that there was a redox boundary in the depositional settings. Similarly, 

the carbonate rocks have positive Eu anomalies, slight Gd anomalies, super-chondritic Y/Ho ratios, 

HREE enriched patterns and no negative Ce anomaly, except one carbonate sample. Conversely, 

the REE signatures present in the chert and the sulfide iron formation samples do not result from 

pure chert or iron sulfide since REEs do not fit into the lattice framework of these minerals. Their 

patterns will reflect the presence of minerals, organic and/or fluid inclusions (Figure 4.1 B, D, and 

E). Siliciclastic carbonaceous slate has positive Eu anomalies indicating that the siliciclastic 

sediment inherited the REE seawater composition of the Archean ocean through adsorption, 
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probably onto the surface of clays. Overall, due to the omnipresence of Eu anomalies in chemical 

and siliciclastic rocks, it is suggested that the REE composition of the Mesoarchean ocean was 

influenced by high-temperature hydrothermal inputs (Barrett et al., 1987; Danielson et al., 1992; 

Bau & Dulski, 1996; Planavsky et al, 2010).  

Elemental concentrations in the chemical sediments provide information on the causes of 

precipitation and its rate. The zirconium and hafnium concentrations in oxide iron formations 

(Figure 4.20) denote that they were in part derived from a nondetrital source and were mobile in 

the Archean ocean and preferentially co-precipitated with iron hydroxide (Bau & Alexander, 

2009). Slower rates of deposition of iron hydroxide allowed higher sorption of Zr and Hf (Schmidt 

et al., 2014). Manganese oxide concentration in oxide iron formation increases up stratigraphy 

towards the shallow water carbonate platform (Figure 4.19), possibly indicating the presence of 

O2 produced by cyanobacteria. Redox-sensitive elements such as Cr, Mo, V, and U plotted against 

Al2O3 and TiO2 (Figures 4.7 to 4.14) and ratio plots of Cr/TiO2 vs. V/TiO2 and Mo/TiO2 vs. U/TiO2 

(Figures 4.15 and 4.16) show that a portion of the element’s concentration was derived from 

siliciclastic material in the chemical sedimentary rocks, but they have enrichment of these elements 

to some degree beyond the siliciclastics they contain. Either high-temperature hydrothermal fluid 

or fluvial discharge was the possible source of these elements in the seawater. In the former, the 

presence of oxygen is not necessary, but in the latter possibility, the presence of O2 in the 

weathering environment would promote these elements’ mobility. In summary, the presence of 

positive Ce anomalies and high Mn concentration in some of the oxide iron formation, as well as 

redox-sensitive element enrichment in the chemical sedimentary rocks, suggest that there was 

some oxygen present in this depositional setting.  
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Multiple sulfur isotope analysis (Figures 4.24 to 4.26) infers that bacterial fractionation of 

sulfur and mass-independent fractionations of sulfur both were active as well as the source of 

sulfur in the Red Lake sulfides was diverse (Figure 4.28). The organic carbon isotope plot (Figure 

4.29) shows two different trends; one group has lighter δ13C values at approximately - 30 ‰ and 

the other group has heavier δ13C values of -17 ‰. Such trends indicate purple sulfur bacteria might 

be present in the shallow water carbonate platform along with cyanobacteria as different bacteria 

fractionate carbon isotopes differently, with purple sulfur bacterial fractionating C less than 

oxygenic phototrophs (Posth et al., 2017). Analysis of inorganic carbon isotopes denotes that their 

values fall within the range typical of Archean carbonate. However, the carbonate associated with 

oxide facies iron formation has positive δl3C values, whereas the shale-hosted slumped carbonate 

has gradually changing positive to negative δl3C value due to diagenetic modification. In other 

Archean carbonate platforms such as the Hamersley, the deep Archean seawater had a δl3C value 

of -5‰ (Kaufman et al., 1990), and in the Steep Rock, a lower -5.5‰ δl3C value was observed for 

deeper seawater siderite (Fralick & Riding, 2015). During diagenesis organic carbon derived from 

the recycling of organic matter (12C enriched) (Schidlowski et al., 1983; Thode & Goodwin 1983; 

Buaret al, 1985) reacted with iron oxyhydroxide and lowered the δl3C values (Kaufman et al., 

1990). Additionally, the δ18O oxygen isotope value indicates that dolomitization of Red Lake 

dolomites did not occur in a restricted marine environment. The lighter oxygen isotope value in 

dolomites suggests that dolomitization occurred in an environment where there was an influx of 

fresh water.  

The lithofacies associations of the chemical sedimentary rocks and siliciclastic rocks 

indicate that ocean chemistry at the depositional sites was not consistent at ~2930 Ma, and also 

relative sea level fluctuated during deposition. Throughout the accumulation of different chemical 
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sediments, ocean chemistry changed depending on the intensity of low to high-temperature 

hydrothermal activity and other factors that are more difficult to identify. However, organic-rich 

mud was being deposited as background sediment, but the accumulation became prominent during 

cessation of chemical sedimentation. Carbonate precipitation was active in the shallow part of the 

platform in a prevailing warm, slightly oxic water environment. The chert and oxide iron had a 

variable precipitation rate and alternated in the banded iron formation indicating a change in the 

saturation of seawater caused by Fe+2, or by silicic acid or by O2. Depending on the presence or 

absence of O2, oxide iron formation or sulfide iron formation formed respectively from the 

ferruginous water column in this area of the Archean ocean. Also, H2S emission from the venting 

site and an organic-rich muddy bottom was favorable for maintaining euxinic conditions, which 

ultimately resulted in the precipitation of sulfide iron formation. In contrast, Fe-rich seawater 

and/or high-temperature hydrothermal venting fluid combined with O2 causing the precipitation 

of iron hydroxide. In summary, Red Lake sulfides were deposited in deeper water anoxic 

environments, while magnetite and chert were precipitated in suboxic environments and 

carbonates were deposited in what was probably a slightly oxic shallow water environment. 

This study focused mainly on the deep water chemical and siliciclastic rock sequences and 

these rocks are present above and below the shallow water stromatolitic carbonate unit. It is 

obvious from the drill-hole core logs that deeper water carbonates, chert, oxide iron formation, 

sulfide iron formation, and other siliciclastic rocks repeatedly interlayer with the shallow water 

stromatolitic carbonate successions, which suggest multiple events of carbonate platform flooding. 

Also, the δ13C organic carbon isotope value at the bottom of the succession is -30‰, towards the 

platform it reaches -20‰, through the stromatolitic unit it averages approximately -17‰, and the 

strata overlying the stromatolitic succession have upwardly decreasing δ13C values, down to - 
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25‰. This isotopic trend suggests that deposition of sequences underlying and overlying the 

stromatolite unit occurred in a similar organic carbon isotopic environment. A somewhat similar 

pattern was also observed for sulfur isotopes. However, further analysis needs to be done to 

comprehend the relative sea-level change dynamics through time and its control of degree of 

isotopic fractionation. 
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Appendix 1: Geochemistry 

Appendix 1.1: Whole-rock major & trace element geochemical data (bd=below detection) 

Carbonate 

Sample NGI 31-

34 

NGI 31-15 BL 38-1 BL 37-3 PB 32-1 PB 34-13 PB 34-27 PB 35-4 PB 36-8B PB 36-11 RL-18A-

C 

RL-18B-

C 

RL-23-C RL-24-C HB-5 LK-11 

Depth (m) 11 71 20 198 269 48 75 209 74 78 O/C O/C O/C O/C O/C O/C 

Al₂O₃ 

Wt. % 

0.01 0.03 0.04 0.05 0.02 0.47 0.11 0.12 0.18 0.05 0.05 0.03 0.15 0.10 0.06 0.09 

CaO 8.78 13.01 14.12 13.51 10.30 7.99 15.93 43.22 15.80 27.61 23.92 26.22 27.10 23.31 21.17 16.80 

MgO 5.85 8.09 8.84 8.51 6.25 1.12 0.10 0.34 2.34 0.22 0.22 0.23 0.43 0.51 0.25 0.33 

Na₂O 0.01 0.03 0.06 0.04 bd 0.01 0.05 0.21 0.03 0.05 0.06 0.02 0.05 0.13 0.07 0.04 

K₂O bd bd bd bd bd 0.11 bd bd 0.03 bd bd bd 0.01 bd bd bd 

Fe₂O₃ 0.74 1.99 2.46 2.65 0.89 1.53 0.51 0.45 0.85 0.30 0.98 1.17 2.19 1.59 1.31 1.99 

MnO 0.25 0.45 0.46 0.43 0.35 0.25 0.25 0.17 0.32 0.38 0.43 0.53 0.60 0.71 0.22 0.46 

P₂O₅ bd bd bd bd bd bd bd 0.01 0.01 0.02 bd bd bd bd 0.02 bd 

TiO₂ bd bd 0.000 0.000 0.000 0.005 0.001 0.001 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.002 

Ba 

ppm 

0.22 0.60 1.04 2.02 1.58 53.52 1.91 20.71 9.43 16.40 2.23 2.94 bd 16.19 4.31 3.60 

Cr 0.33 13.73 3.43 bd bd 13.03 bd 1.04 3.87 3.92 1.36 bd 0.49 3.65 0.00 bd 

Cu 1.11 bd bd bd bd bd bd bd bd bd bd bd 1.59 bd bd bd 

Li bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

Sr 5.34 17.33 13.19 17.28 14.93 19.08 39.68 186.01 64.42 185.14 35.75 36.68 58.15 57.33 68.02 39.62 

V bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

Y 0.81 2.59 2.94 4.20 0.44 5.00 2.25 0.85 2.13 1.27 6.18 5.91 8.11 3.89 1.58 12.43 

Zn 7.5 9.8 9.8 12.0 6.6 6.7 1.6 3.1 21.2 1.6 4.3 1.1 5.2 10.7 3.1 3.4 

Zr bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

As bd 125.02 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

B 127 338 667 464 16 11 488 2184 26 554 631 296 487 1255 706 434 

Be bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

Co 5.50 bd bd bd bd 6.92 bd bd 5.56 bd bd bd bd bd bd bd 

Mo 0.22 0.27 0.38 0.44 0.27 0.56 0.29 0.46 0.27 0.27 0.06 0.19 0.00 0.00 0.26 0.21 

Nb 0.03 0.06 0.04 0.04 0.04 0.13 0.08 0.07 0.03 0.04 0.04 0.03 0.09 0.10 0.06 0.11 

Ni 6.16 15.64 bd 6.92 bd 8.07 bd bd bd 7.74 bd bd bd 6.49 bd bd 

S bd bd bd 2632 183 1864 152 467 100 284 bd bd 91 bd bd 132 

Sb 0.18 0.32 0.18 1.04 1.11 0.45 1.08 0.60 0.47 0.61 0.11 0.24 0.46 0.35 0.37 0.36 

Sc bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 

Si 1632 3761 6665 4871 802 360 5221 22329 1652 6431 6529 3817 5554 12208 7303 4701 

Sn 0.84 0.88 0.89 0.91 0.94 0.91 1.13 0.78 0.79 0.90 0.95 1.35 0.86 0.89 1.15 1.31 

Cd 0.16 0.29 0.32 0.37 0.16 0.20 0.51 0.22 0.98 0.17 0.17 0.18 0.17 0.27 0.17 0.32 

Cs 0.01 0.03 0.03 0.06 0.06 0.52 0.11 0.03 0.05 0.04 0.44 0.45 0.16 0.28 0.36 0.40 
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Carbonate 

Sample NGI 31-

34 

NGI 31-15 BL 38-1 BL 37-3 PB 32-1 PB 34-13 PB 34-27 PB 35-4 PB 36-8B PB 36-11 RL-18A-

C 

RL-18B-

C 

RL-23-C RL-24-C HB-5 LK-11 

Pb 

ppm 

3.42 4.10 4.87 6.49 3.54 3.61 10.70 5.17 5.88 210.41 4.35 5.51 1.65 3.13 5.32 5.25 

Hf 0.07 0.17 0.19 0.27 0.03 0.24 0.39 0.20 0.07 0.11 0.25 0.12 0.17 0.50 0.33 0.57 

Rb 0.11 0.18 0.37 0.79 0.69 10.42 1.59 1.01 1.59 0.62 0.50 0.48 1.09 0.90 1.09 1.01 

Ta 0.04 0.08 0.05 0.08 0.15 0.07 0.07 0.20 0.45 0.08 0.04 0.06 0.04 0.11 0.05 0.07 

Th 0.01 0.04 0.07 0.07 0.03 0.48 0.19 bd 0.18 0.07 0.03 0.03 0.14 0.04 0.13 0.16 

U 0.04 0.10 0.07 0.56 0.04 0.73 0.19 0.13 0.07 0.10 0.32 0.26 0.19 0.16 0.10 0.24 

W 62.25 34.51 33.88 17.41 54.04 92.75 48.59 8.11 86.63 15.62 bd bd 0.12 3.23 5.54 6.10 

 

Chert 

Sample NGI 31-14 EBL 27-88 EBL 28-1 EBL 28-7 EBL 28-28 EBL 28-31 EBL 28-44 

Depth (m) 73 17 4 26 97 107 137 

Al₂O₃ 

Wt. % 

0.04 0.15 0.08 0.12 1.80 0.09 0.05 

CaO 2.49 0.01 0.07 0.50 0.39 0.18 0.04 

MgO 1.57 0.06 0.11 0.34 0.37 0.09 0.04 

Na₂O 0.00 bd 0.00 0.00 0.07 0.00 bd 

K₂O 0.00 0.00 0.01 0.00 0.02 0.02 0.01 

Fe₂O₃ 0.77 0.60 1.07 0.46 0.45 0.25 0.32 

MnO 0.06 0.02 0.18 0.04 0.01 0.01 0.00 

P₂O₅ bd 0.00 bd 0.00 0.00 bd 0.00 

TiO₂ 0.001 0.006 0.002 0.002 0.025 0.001 0.001 

Ba 

ppm 

0.18 0.20 1.19 0.40 2.53 3.67 1.69 

Cr 0.73 0.48 1.21 2.22 30.07 0.11 bd 

Cu 1.06 2.35 2.79 1.45 6.84 1.83 0.31 

Li 0.22 1.41 0.29 0.51 25.41 0.13 0.26 

Sr 3.12 0.22 0.97 0.84 15.62 1.08 0.18 

V bd 1.61 0.77 2.02 3.70 0.26 0.15 

Y 0.32 0.35 0.10 0.15 0.30 0.08 0.04 

Zn 3.2 1.9 5.3 2.7 4.3 0.4 0.8 

Zr 1.87 2.31 0.44 1.10 17.34 1.03 0.68 

As 2.64 2.97 bd bd 8.87 bd 3.23 

B 54 9 9 3 40 15 8 

Be bd bd bd bd bd bd bd 

Co bd bd bd bd bd bd bd 

Mo 0.02 0.39 0.19 0.65 0.22 0.24 0.22 

Nb 0.02 0.08 0.01 0.03 0.36 0.16 0.02 

Ni 3.65 2.22 3.52 5.57 67.58 5.90 13.18 

S 258 254 225 271 264 1206 79 
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Chert 

Sample NGI 31-14 EBL 27-88 EBL 28-1 EBL 28-7 EBL 28-28 EBL 28-31 EBL 28-44 

Sb 

ppm 

0.25 0.11 0.15 0.10 0.09 0.52 0.13 

Sc 0.09 0.20 0.02 0.20 0.90 bd 0.07 

Si 591 105 156 103 543 143 308 

Sn 0.18 0.58 bd 0.02 0.18 0.02 0.15 

Cd bd bd 0.22 0.21 bd 0.19 bd 

Cs 0.01 0.03 0.01 0.03 0.12 0.02 0.05 

Pb bd bd bd bd 0.36 bd bd 

Hf bd 0.03 bd bd 0.42 bd bd 

Rb 0.10 0.22 0.30 0.08 0.97 0.34 0.52 

Ta 3.48 2.57 1.17 2.38 6.62 1.85 2.41 

Th bd 0.02 bd bd 0.84 bd bd 

U 0.02 0.06 0.02 0.03 0.13 0.09 0.01 

W 58.26 156.89 88.78 164.74 112.96 202.69 120.14 

 

Magnetite  

Sample EBL 

27-89 

NGI 

31-12 

NGI 

31-11 

NGI 

31-10 

NGI 

31-7 

NGI 

31-9 

NGI 

31-8 

NGI 

31-6 

NGI 

31-4 

NGI 

31-3 

NGI 

31-2 

EBL 

27-80 

EBL 

27-79 

EBL 

27-78 

EBL 

27-77 

EBL 

27-75 

EBL 

27-74 

EBL 

27-22 

EBL 

27-62 

EBL 

27-30 

EBL 

29-44 

Depth (m) 12 82 86 88 98 91 95 103 109 119 122 47 50 57 59 74 77 80 124 125 45 

Al₂O

₃ 

Wt. % 

0.19 0.92 0.98 1.41 1.21 1.31 0.62 0.99 0.22 0.41 0.50 0.75 1.35 0.86 0.45 0.76 0.23 3.86 1.99 0.30 0.29 

CaO 1.50 1.62 8.76 3.72 1.18 1.37 4.15 4.31 0.32 0.40 0.38 1.73 0.44 1.35 0.96 2.37 0.70 0.48 1.86 0.30 0.27 

MgO 4.61 2.71 7.71 6.34 2.50 2.09 6.49 6.97 3.91 2.68 4.82 6.04 1.64 5.56 4.99 5.36 3.21 4.53 0.99 4.75 4.23 

Na₂O 0.30 0.42 0.30 0.48 0.34 0.52 0.41 0.25 0.25 0.42 0.30 0.39 0.46 0.34 0.32 0.37 0.19 0.23 0.23 0.22 0.24 

K₂O 0.01 0.04 0.09 0.12 0.19 0.15 0.04 0.01 0.01 0.10 0.04 0.08 0.07 0.01 0.03 0.02 0.02 0.01 0.00 0.01 0.01 

Fe₂O

₃ 

34.68 49.76 38.35 46.49 65.69 70.44 43.66 52.91 68.62 64.66 51.95 49.48 62.10 48.30 46.75 35.53 40.55 41.18 60.19 43.23 58.63 

MnO 2.09 0.64 1.07 0.57 0.26 0.38 1.01 1.09 0.43 0.49 1.31 0.98 0.94 3.28 2.32 2.96 1.29 4.10 3.01 3.41 1.36 

P₂O₅ 0.01 0.02 0.13 0.06 0.04 0.03 0.11 0.14 0.21 0.20 0.13 0.06 0.01 0.03 0.02 0.04 0.06 0.13 0.01 0.01 0.01 

TiO₂ 0.001 0.045 0.022 0.032 0.094 0.023 0.013 0.025 0.003 0.005 0.013 0.014 0.072 0.021 0.015 0.026 0.005 0.099 0.048 0.007 0.007 

Ba 

ppm 

3.17 22.99 28.47 31.59 53.79 117.00 7.04 5.61 24.49 34.56 14.04 20.92 55.79 2.93 19.69 7.11 11.18 4.84 5.65 3.14 7.33 

Cr 0.40 19.52 8.40 8.78 76.22 13.17 6.47 8.60 0.97 0.62 7.83 4.16 34.42 12.08 21.65 7.37 1.55 56.89 101.26 10.53 0.37 

Cu 3.98 51.81 28.80 37.53 46.07 25.76 23.65 48.00 0.44 3.61 2.97 14.92 15.42 7.88 23.59 29.41 7.96 68.84 27.94 20.23 1.41 

Li 0.84 0.00 6.91 9.88 9.90 5.41 4.38 2.62 1.28 2.07 2.00 4.18 2.68 2.13 bd 3.74 bd 4.22 2.44 bd 1.65 

Sr 7.52 8.93 81.38 22.53 12.10 15.84 16.61 24.51 7.28 6.53 6.36 16.19 5.08 8.69 19.12 21.96 24.11 4.11 8.07 2.31 6.49 

V 2.66 26.21 14.45 21.87 48.22 28.84 13.71 16.46 5.02 6.69 28.01 20.53 110.66 21.58 16.70 9.64 6.71 26.18 190.34 25.44 6.71 

Y 1.96 8.17 12.23 10.58 4.95 5.57 10.96 5.07 8.50 7.26 10.55 8.64 8.62 9.09 11.40 10.43 2.93 16.60 16.17 3.43 1.56 
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Magnetite 

Sample EBL 

27-89 

NGI 

31-12 

NGI 

31-11 

NGI 

31-10 

NGI 

31-7 

NGI 

31-9 

NGI 

31-8 

NGI 

31-6 

NGI 

31-4 

NGI 

31-3 

NGI 

31-2 

EBL 

27-80 

EBL 

27-79 

EBL 

27-78 

EBL 

27-77 

EBL 

27-75 

EBL 

27-74 

EBL 

27-22 

EBL 

27-62 

EBL 

27-30 

EBL 

29-44 

Zn 

ppm 

57.2 69.0 273.1 136.9 179.2 93.1 436.8 124.6 153.4 153.3 182.9 196.6 103.8 137.9 169.3 108.0 80.1 186.5 95.2 210.7 120.9 

Zr 16.92 37.39 37.88 31.11 57.09 36.28 40.46 27.32 22.18 45.14 37.66 38.21 42.61 49.92 43.97 29.30 15.98 46.40 34.43 28.82 27.70 

As 99.11 0.00 13.75 55.79 26.00 17.95 222.8 33.68 6.82 bd 218.6 52.80 400.8 18.15 116.8 11.97 32.39 47.37 bd 24.26 8.47 

B 2901 3910 2635 4113 3039 4740 3845 2426 2511 4788 2850 3603 4212 3262 2916 3552 1916 2214 2006 1989 2349 

Be bd 0.00 bd bd 0.53 0.92 bd bd bd bd bd bd 0.57 bd bd bd bd bd bd bd bd 

Co bd 21.07 bd bd 33.29 19.47 bd bd bd bd bd bd 22.20 bd 12.99 bd 23.39 bd 51.79 27.93 bd 

Mo 0.41 0.53 0.73 1.02 0.75 0.61 0.52 0.93 0.15 0.38 0.31 0.72 3.19 2.41 1.62 0.94 0.23 1.83 2.76 0.69 0.20 

Nb 0.03 0.41 0.42 0.72 0.89 0.85 0.25 0.50 0.11 0.26 0.22 0.22 0.83 0.28 0.15 0.68 0.31 2.04 0.84 0.05 0.09 

Ni 10.49 32.15 8.54 32.52 48.62 23.80 24.09 13.29 4.33 4.20 9.46 16.06 30.14 11.31 47.68 9.39 3.97 76.23 232.10 59.75 6.91 

S 6794 70059 21069 13985 37071 18965 12148 14689 33 1769 1199 7746 22287 3441 15426 10259 5467 79794 101509 28144 1451 

Sb 0.44 5.16 7.30 10.53 10.42 9.89 20.76 9.83 6.23 9.70 6.00 3.49 4.21 1.45 2.71 2.49 2.25 3.45 2.33 1.92 3.42 

Sc 1.41 0.00 2.82 4.05 0.00 0.00 2.07 2.24 0.35 0.29 4.00 4.47 6.40 5.41 3.14 2.05 bd 4.51 17.09 10.66 0.53 

Si 24811 8 24481 37549 6 9 35173 22567 22171 42059 25559 32731 8 30113 26378 31081 17708 20684 4 18242 21621 

Sn 0.15 0.25 1.99 0.65 1.73 0.47 0.78 0.60 0.56 0.75 0.48 0.84 0.35 0.45 0.80 0.25 0.31 0.54 0.46 1.80 0.34 

Cd 0.01 bd 2.75 0.53 1.07 0.39 0.92 0.62 0.09 0.14 0.02 0.36 0.05 0.43 0.39 0.43 0.09 1.00 0.14 0.35 0.01 

Cs 0.09 0.68 0.88 0.94 1.62 1.30 0.35 0.12 0.18 1.28 1.43 1.03 1.59 0.12 0.33 0.07 0.33 0.19 0.15 0.09 0.57 

Pb 0.29 15.42 6.90 4.86 26.69 23.03 7.84 4.38 2.84 3.12 bd 1.33 5.11 0.66 3.47 2.56 3.77 5.61 4.06 1.67 bd 

Hf 0.29 0.79 0.58 0.42 1.38 0.92 0.56 0.34 0.14 0.75 0.57 0.56 1.12 1.02 0.98 0.68 0.36 1.20 0.84 0.46 0.50 

Rb 0.61 3.82 7.15 8.42 17.00 15.81 2.54 0.63 0.75 4.09 4.11 5.98 10.81 0.75 2.22 0.72 1.30 1.48 0.79 0.71 2.41 

Ta 2.14 0.04 4.05 3.00 0.14 0.11 2.91 11.63 2.68 2.87 2.57 3.07 0.09 3.05 0.05 2.32 0.14 8.13 0.09 0.16 1.95 

Th 0.03 0.33 0.35 0.28 0.73 0.71 0.15 0.27 0.02 0.30 0.30 0.18 0.55 0.30 0.14 0.53 0.18 1.89 0.76 0.03 0.03 

U 0.10 0.16 0.12 0.37 0.22 0.27 0.07 0.11 0.01 0.11 0.24 0.16 0.43 0.27 0.19 0.17 0.09 0.66 1.32 0.19 0.10 

W 22.98 bd 20.82 9.61 5.73 4.26 7.41 8.54 172.9 14.98 23.06 7.53 5.80 8.14 10.12 9.38 123.0 25.98 13.61 80.09 6.56 

 

Magnetite 

Sample EBL 

29-45 

EBL 

29-46 

EBL 

29-49 

PB 

 32-23 

PB 

32-18 

PB 

 34-3 

PB 

34-18 

PB 

34-21 

PB 

34-25 

PB 

34-

27A 

PB 

35-44 

PB 

35-43 

BL 

37-41 

BL 

37-40 

BL 

38-4 

RL 

18A-

M 

RL 

18B-M 

RL 

23-M 

RL 

24-M 

BLO 

1 

EBL  

28-4 

Depth (m) 46 48 52 138 168 14 63 66 72 75 32 40 10.5 11 14 O/C O/C O/C O/C O/C 17 

Al₂O₃ 

Wt. % 

0.39 0.40 0.51 0.09 0.38 0.03 1.41 0.78 0.65 1.06 0.34 0.83 0.27 0.07 0.11 0.83 0.07 3.35 0.73 1.05 6.83 

CaO 0.06 0.16 0.28 0.71 16.25 0.77 16.19 11.49 3.90 9.14 2.22 5.07 1.67 1.05 7.89 9.14 2.89 19.70 11.75 0.34 0.94 

MgO 3.44 4.16 5.80 5.24 9.41 0.12 5.81 3.20 0.84 2.58 0.56 1.19 2.10 0.67 5.20 1.37 0.48 3.13 3.09 4.54 2.95 
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Magnetite 

Sample EBL 

29-45 

EBL 

29-46 

EBL 

29-49 

PB 

 32-23 

PB 

32-18 

PB 

 34-3 

PB 

34-18 

PB 

34-21 

PB 

34-25 

PB 

34-

27A 

PB 

35-44 

PB 

35-43 

BL 

37-41 

BL 

37-40 

BL 

38-4 

RL 

18A-

M 

RL 

18B-M 

RL 

23-M 

RL 

24-M 

BLO 

1 

EBL  

28-4 

Na₂O 

Wt. % 

0.49 0.26 0.49 0.06 0.58 0.02 0.35 0.28 0.42 0.49 0.30 0.36 0.45 0.08 0.17 0.45 0.09 0.61 0.40 0.54 0.22 

K₂O 0.02 0.02 0.03 0.02 0.01 0.01 0.37 0.10 0.04 0.07 0.01 0.08 0.01 0.00 0.00 0.03 0.00 0.08 0.03 0.02 0.08 

Fe₂O₃ 53.39 61.91 55.02 41.23 33.84 68.08 38.55 52.61 64.97 55.88 77.21 69.23 61.62 53.08 25.70 56.04 67.95 30.29 52.27 55.78 31.48 

MnO 0.93 1.39 1.30 0.48 1.20 0.07 1.75 1.56 0.36 1.33 0.26 0.42 0.36 0.18 0.37 0.91 0.23 1.12 1.11 0.68 6.44 

P₂O₅ 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 bd 0.02 bd 0.03 0.02 0.13 0.01 

TiO₂ 0.006 0.019 0.023 0.002 0.005 0.002 0.037 0.029 0.035 0.034 0.014 0.084 0.006 0.003 0.001 0.044 0.003 0.122 0.026 0.037 0.067 

Ba 

ppm 

6.75 6.53 6.16 7.78 3.60 4.05 33.42 36.10 16.90 15.89 6.93 29.12 10.32 5.49 4.77 16.81 4.91 28.06 41.44 8.93 10.32 

Cr 2.88 12.83 3.59 0.96 2.44 0.34 13.54 6.78 35.12 10.16 2.49 29.84 6.16 0.46 1.92 4.64 0.15 13.52 6.00 11.01 20.46 

Cu 6.73 0.48 7.33 1.50 9.27 29.74 7.89 38.50 32.69 16.63 5.67 26.90 2.57 4.93 4.01 1.74 58.12 41.83 8.98 42.20 29.85 

Li 1.30 1.14 6.40 bd 3.07 bd 5.67 bd 5.02 5.32 bd bd 2.22 bd 2.81 6.21 bd 11.86 7.30 3.92 5.26 

Sr 1.10 4.75 10.56 3.71 25.03 4.16 57.29 73.44 94.16 55.11 8.61 48.88 15.27 107.93 27.47 30.17 12.88 99.08 436.11 7.02 4.42 

V 46.60 19.12 17.75 bd bd bd 15.22 20.67 51.17 27.99 13.65 57.92 19.12 bd bd bd bd 22.32 4.19 17.47 40.57 

Y 1.98 3.39 1.61 0.47 1.81 bd 2.61 5.47 0.00 4.36 0.72 2.56 1.25 0.45 0.52 4.17 0.56 13.82 2.24 8.67 19.34 

Zn 96.3 114.8 84.1 43.0 34.6 64.4 98.1 118.1 72.3 73.5 99.2 92.0 65.0 50.5 61.4 54.2 61.1 62.1 118.8 175.6 112.7 

Zr 44.15 31.55 50.84 bd 57.62 bd 26.71 40.98 68.11 68.47 47.11 38.35 47.76 bd bd 49.31 bd 56.53 31.26 44.68 65.98 

As 0.26 6.38 3.67 bd 11.53 bd bd bd 0.00 bd bd bd 4.99 19.45 274.68 bd bd bd bd 120.96 26.73 

B 4830 2505 4828 740 5404 279 3171 2236 3646 3773 2875 3573 4300 769 1584 4096 934 4920 3291 4720 2328 

Be bd bd bd bd bd bd 0.63 bd 0.00 bd bd bd bd bd 0.55 bd bd bd bd 0.53 bd 

Co bd bd bd 27.73 4.43 13.75 8.87 12.62 61.14 22.61 13.54 35.93 bd 81.29 2.40 7.24 13.49 8.07 6.28 16.10 bd 

Mo 0.09 0.21 0.20 0.10 0.38 2.19 0.29 1.33 0.43 0.59 0.77 0.93 0.30 0.15 0.05 0.41 2.70 0.02 0.50 0.64 6.08 

Nb 0.05 0.18 0.14 0.03 0.15 0.02 0.50 0.30 0.32 0.17 0.11 0.46 0.15 0.10 0.02 0.73 0.11 1.02 0.49 4.08 1.15 

Ni 6.58 13.95 26.77 bd 13.43 417.56 10.97 55.85 138.23 104.33 6.50 20.69 2.51 4.36 bd 3.71 399.16 5.97 6.91 17.09 231.68 

S 2600 969 462 1968 32547 336777 9099 47677 89475 68539 6760 16771 2917 4922 1752 368 343568 6791 467 12853 24948 

Sb 1.89 5.19 5.62 0.36 1.37 0.36 0.91 0.77 1.87 1.47 1.09 1.12 1.78 1.20 1.15 1.99 0.36 2.01 3.01 2.31 0.70 

Sc 10.49 2.62 1.12 bd bd 0.00 bd bd 0.00 bd bd bd 0.18 bd bd bd bd 3.36 bd 3.28 24.22 

Si 39903 22677 42565 6871 47698 1 30128 21440 7 33790 26422 31348 37439 7251 14933 36210 8003 44559 29626 9 24541 

Sn 0.23 0.51 0.36 0.15 0.18 0.13 0.57 0.35 0.69 0.48 0.45 0.41 0.22 0.31 0.32 0.66 0.07 0.47 0.40 0.36 0.33 

Cd bd 0.02 0.04 0.04 0.10 bd 0.29 0.81 bd 0.47 0.06 0.12 bd 0.07 0.13 0.08 0.03 0.15 0.12 0.70 0.38 

Cs 0.66 0.97 1.68 0.13 0.05 0.01 8.75 0.40 0.20 0.47 0.07 0.14 0.04 0.04 0.02 7.54 0.01 0.70 1.06 0.37 0.72 

Pb bd bd 0.35 6.74 4.31 12.61 4.09 6.90 3.58 4.02 4.44 6.61 bd 1.07 1.18 2.47 6.97 2.69 5.18 8.00 2.08 

Hf 0.49 0.49 1.04 0.11 0.99 0.09 0.49 0.75 1.78 1.15 0.73 0.72 0.67 0.17 0.31 1.16 0.13 1.17 0.56 1.13 1.62 
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Magnetite 

Sample  EBL 

29-45 

EBL 

29-46 

EBL 

29-49 

PB 

 32-23 

PB 

32-18 

PB 

 34-3 

PB 

34-18 

PB 

34-21 

PB 

34-25 

PB 

34-

27A 

PB 

35-44 

PB 

35-43 

BL 

37-41 

BL 

37-40 

BL 

38-4 

RL 

18A-

M 

RL 

18B-M 

RL 

23-M 

RL 

24-M 

BLO 

1 

EBL  

28-4 

Rb 

ppm 

2.50 4.49 5.85 0.57 0.32 0.31 88.27 6.38 3.47 3.79 0.92 2.03 0.75 0.40 0.18 5.02 0.12 5.30 2.47 2.32 6.22 

Ta 1.39 3.87 2.34 0.09 0.43 0.02 0.09 0.37 0.07 0.05 0.07 0.09 4.30 0.24 0.04 0.14 0.49 0.13 0.06 0.10 9.22 

Th 0.03 0.20 0.17 0.13 0.06 0.02 0.09 0.16 0.27 0.13 0.08 0.50 0.01 bd 0.05 0.46 0.07 0.57 0.43 0.54 3.01 

U 0.55 0.44 0.18 0.02 0.14 0.15 0.38 0.63 0.32 0.38 0.11 0.50 0.15 0.07 0.06 0.78 0.09 0.68 0.48 0.17 1.88 

W 5.13 5.36 6.27 127.89 182.67 31.06 9.59 268.44 56.82 24.15 33.35 63.54 35.90 440.87 3.76 4.62 433.83 bd 8.63 12.40 92.68 

 

Pyrite Pyrrhotite 

Sample EBL 27-8 EBL 27-9 EBL 27-10 EBL 27-11 PB 32-4 PB 32-6 PB 33-17 EBL 27-7 EBL 27-31 PB 32-5 PB 32-5 PB 33-29 PB 33-20 

Depth (m) 25.5 26 28 34 254 239 107 25 124 247 247 95 104 

Al₂O₃ 

Wt. % 

0.36 0.37 0.30 2.73 0.77 0.96 0.35 1.18 0.62 1.32 1.42 0.86 1.63 

CaO 1.58 0.17 0.03 0.03 0.07 0.18 0.05 0.10 0.67 0.56 0.10 2.61 0.20 

MgO 2.05 0.11 0.14 0.22 0.94 0.46 0.11 0.39 0.56 0.28 0.18 2.36 0.36 

Na₂O 0.06 0.05 0.01 0.56 0.02 0.06 0.01 0.10 0.10 0.19 0.33 0.03 0.21 

K₂O 0.02 0.05 0.04 0.07 0.29 0.17 0.05 0.19 0.01 0.03 0.24 0.03 0.15 

Fe₂O₃ 47.15 52.54 56.22 37.09 45.09 50.56 58.11 65.48 64.15 50.38 65.03 49.24 69.27 

MnO 0.42 0.04 0.02 0.04 0.09 0.19 0.04 0.12 0.84 0.03 0.13 0.67 0.25 

P₂O₅ 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 

TiO₂ 0.011 0.007 0.004 0.067 0.016 0.022 0.006 0.024 0.010 0.023 0.037 0.015 0.020 

Ba 

ppm 

5.74 7.62 10.82 12.48 18.70 17.25 5.15 18.08 3.87 7.18 28.36 4.99 29.29 

Cr 8.30 2.59 1.55 21.34 15.87 9.96 4.50 26.01 5.84 16.10 18.69 18.22 19.82 

Cu 50.97 3098.72 139.06 198.10 187.97 184.03 332.68 414.52 568.96 168.40 85.65 46.80 66.06 

Li 3.10 2.48 2.77 8.76 13.11 7.06 2.44 8.49 bd 4.40 6.71 3.44 9.94 

Sr 3.10 3.38 2.29 1.70 1.67 4.91 1.85 5.01 3.37 8.18 6.16 7.39 11.95 

V 6.76 0.00 bd 30.66 10.30 18.46 0.00 0.00 10.71 7.68 13.05 11.10 11.23 

Y 4.41 0.00 bd 2.80 0.00 0.00 0.00 0.00 5.28 0.72 bd 3.30 0.00 

Zn 364.7 1724.2 236.7 41.0 720.3 940.3 210.3 73.0 87.4 54.6 98.7 149.4 92.4 

Zr 0.00 0.00 0.00 66.62 0.00 0.00 0.00 0.00 0.00 22.30 30.56 bd 0.00 

As 537.57 499.26 754.38 285.20 573.54 893.20 797.72 21.98 0.00 bd 13.24 503.14 2045.71 

B 72 32 0 5232 88 0 0 675 814 1529 2150 124 1327 

Be 0.00 0.00 0.00 bd 0.00 0.00 0.00 0.00 0.00 bd 0.00 bd 0.00 

Co 102.21 81.96 40.44 139.26 265.98 344.08 152.83 374.46 103.29 29.08 13.22 85.94 199.03 

Mo 3.33 2.50 4.15 2.30 2.26 2.00 3.32 2.86 2.03 1.15 3.23 3.20 0.75 

Nb 0.14 0.09 0.06 0.76 0.05 0.20 0.09 0.14 0.20 0.15 0.30 0.24 0.10 
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Pyrite Pyrrhotite 

Sample EBL 27-8 EBL 27-9 EBL 27-10 EBL 27-11 PB 32-4 PB 32-6 PB 33-17 EBL 27-7 EBL 27-31 PB 32-5 PB 32-5 PB 33-29 PB 33-20 

Ni 

ppm 

89.88 400.61 327.36 149.02 314.38 405.02 1559.58 1357.06 650.32 503.80 641.52 84.19 669.11 

S 450898 496908 535217 287000 371097 461297 473397 336066 327537 277800 325117 447772 349498 

Sb 26.19 33.04 35.06 17.43 32.19 57.71 120.74 8.99 0.67 10.65 32.61 17.14 26.50 

Sc 0.00 0.00 0.00 3.32 0.00 0.00 0.00 0.00 2.88 2.42 2.20 bd 0.00 

Si 0 0 0 46459 0 0 0 1 2 13341 4 647 3 

Sn 1.10 2.76 1.19 2.28 0.60 0.63 0.88 0.49 0.55 0.83 1.09 0.82 0.48 

Cd 3.56 20.80 1.38 0.24 4.68 3.82 0.98 0.19 0.19 0.13 0.19 1.26 0.15 

Cs 0.98 0.95 1.25 0.65 5.17 1.37 0.74 1.54 0.02 0.19 0.83 0.82 0.44 

Pb 287.83 297.75 272.75 98.78 165.29 195.00 344.59 88.17 7.38 47.96 106.68 153.40 34.27 

Hf 0.19 0.10 0.10 2.49 0.19 0.33 0.13 0.34 0.36 0.56 0.64 0.18 0.35 

Rb 2.10 4.43 5.02 5.17 47.41 14.06 3.78 10.84 0.47 2.11 11.65 2.29 6.09 

Ta 0.07 0.04 0.00 0.17 0.04 0.05 0.01 0.10 0.06 0.03 0.22 0.08 0.02 

Th 0.38 0.25 0.08 1.71 0.19 0.29 0.14 0.28 0.21 0.37 0.32 0.45 0.41 

U 0.30 0.08 0.03 0.51 0.09 0.10 0.05 0.10 0.26 0.13 0.11 0.45 0.13 

W 86.19 40.71 bd 52.32 bd bd bd 123.05 9.20 15.33 14.04 23.36 2.29 

 

Black slate  

Sample EBL 

27-6 

EBL 

27-16 

EBL 

27-32 

EBL 

27-33 

PB 32-

10 

PB 32-

6 

PB 32-

5 

PB 32-

4 

PB 33-

31 

PB 34-

29 

PB 34-

30 

PB 34-

33 

PB 34-

34 

PB 35-

29 

PB 35-

25 

PB 35-

21 

PB 35-

19 

PB 36-

8A 

PB 36-

10 

Depth (m) 24 43 128 136 210 239 247 254 91 79 80 88 92 93 101 110 114 74 75 

Al₂O₃ 

Wt. % 

17.63 8.83 16.86 15.89 14.98 8.67 15.47 14.45 16.46 6.56 14.47 13.89 19.92 20.09 18.72 17.88 20.67 11.75 24.71 

CaO 1.13 0.34 3.03 0.15 1.47 2.38 2.21 2.37 1.40 3.13 1.24 0.94 1.42 0.43 1.07 1.37 3.17 12.55 0.13 

MgO 2.00 0.78 2.14 1.23 1.59 1.73 1.17 1.23 1.25 0.43 1.54 0.84 1.04 0.80 1.88 1.12 0.66 3.59 1.52 

Na₂O 0.88 0.51 1.08 0.39 1.42 1.67 1.59 1.59 1.11 0.96 1.32 1.44 1.82 1.00 0.85 1.56 2.56 3.77 0.31 

K₂O 2.96 0.77 1.59 3.17 2.45 0.72 1.67 1.44 2.79 0.51 2.94 3.05 4.72 5.67 4.86 3.89 3.34 1.73 7.46 

Fe₂O₃ 3.69 15.71 3.91 2.55 7.02 10.46 17.75 6.81 2.78 1.63 3.48 2.36 3.62 3.52 4.80 3.52 5.98 4.49 4.10 

MnO 0.85 0.09 0.15 0.02 0.21 0.19 0.98 0.17 0.13 0.08 0.21 0.07 0.04 0.11 0.02 0.05 0.01 0.39 0.04 

P₂O₅ 0.05 0.04 0.06 0.05 0.05 0.03 0.05 0.06 0.04 0.02 0.04 0.04 0.05 0.07 0.02 0.05 0.03 0.19 0.07 

TiO₂ 0.393 0.294 0.205 0.373 0.374 0.160 0.284 0.365 0.401 0.085 0.289 0.248 0.556 0.525 0.270 0.291 0.308 0.223 0.435 

Ba 

ppm 

170.94 122.60 99.00 306.77 434.00 66.88 218.37 192.48 446.00 215.20 398.20 385.60 632.60 673.20 947.60 744.20 826.20 131.43 1444.43 

Cr 164.66 77.06 70.20 138.47 167.98 71.88 122.82 164.40 124.96 37.78 126.82 108.88 164.76 143.56 1339.80 106.20 188.78 132.29 175.87 

Cu 51.80 122.18 24.77 28.53 68.84 122.86 128.47 460.54 30.80 10.76 42.70 28.08 43.74 51.34 47.08 40.86 61.08 43.01 72.75 

Li 60.54 33.26 68.20 10.47 59.44 35.30 43.49 84.84 82.84 16.56 53.50 21.46 25.78 44.74 55.70 35.52 31.20 28.03 45.03 

Sr 80.96 73.08 123.79 35.24 136.18 83.04 99.45 135.72 125.56 93.26 126.90 221.80 234.40 90.66 144.38 354.60 523.20 243.50 51.96 

V 111.62 78.10 59.03 86.68 130.72 64.44 108.72 123.10 106.00 34.24 101.68 92.50 136.16 124.92 269.80 91.10 113.00 18.85 127.56 
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Black slate 

Sample EBL 

27-6 

EBL 

27-16 

EBL 

27-32 

EBL 

27-33 

PB 32-

10 

PB 32-

6 

PB 32-

5 

PB 32-

4 

PB 33-

31 

PB 34-

29 

PB 34-

30 

PB 34-

33 

PB 34-

34 

PB 35-

29 

PB 35-

25 

PB 35-

21 

PB 35-

19 

PB 36-

8A 

PB 36-

10 

Y 

ppm 

21.64 15.24 8.96 12.64 20.96 6.04 8.72 9.18 11.04 10.98 14.28 9.30 11.10 14.64 2.74 9.10 5.74 8.55 10.51 

Zn 37.8 431.6 48.8 20.7 74.1 873.2 539.4 46.0 29.8 13.1 47.4 30.9 85.2 46.4 141.1 74.2 42.2 85.4 51.0 

Zr 138.36 110.26 116.12 102.37 129.38 97.58 124.17 139.42 107.30 35.72 99.20 98.42 146.44 175.86 50.84 109.74 122.20 85.05 124.08 

As bd 28.98 137.74 47.43 39.90 156.30 bd 28.92 97.16 bd 109.50 48.00 42.14 13.58 100.68 bd 14.24 bd bd 

B 2384 1518 1366 4117 2856 4306 921 1835 2010 563 2086 3342 2364 4386 2906 2736 2442 2065 1719 

Be 0.00 bd bd bd 0.00 bd bd bd 0.00 bd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 bd bd 

Co 32.38 43.04 bd bd 50.36 51.14 8.04 16.08 19.60 12.26 24.34 20.74 33.32 30.16 72.68 22.86 36.90 bd bd 

Mo 2.06 3.69 1.16 2.18 3.41 6.04 13.86 4.70 3.77 0.74 2.83 1.61 2.83 1.76 1.52 1.67 5.56 1.81 2.85 

Nb 4.33 4.00 3.15 4.89 3.78 1.90 3.16 5.46 6.35 0.66 3.38 1.51 6.22 3.63 0.77 2.13 3.19 1.69 3.68 

Ni 130.82 70.66 69.56 114.38 218.60 190.96 143.23 106.60 109.76 35.48 127.90 107.82 146.78 144.56 323.80 105.24 241.40 78.63 193.64 

S 16162 67640 14098 7326 29660 80580 81815 30860 9142 4350 8788 6572 12380 14846 21780 15182 28480 11317 18482 

Sb 2.86 45.88 4.58 3.71 1.47 24.03 25.97 7.95 9.93 1.16 2.30 1.05 1.61 1.60 19.93 4.37 5.54 2.17 1.93 

Sc 15.12 14.74 10.49 12.39 16.74 12.26 21.97 14.18 13.70 3.42 13.34 12.02 17.36 17.58 52.06 13.50 16.06 6.12 18.15 

Si 21279 12907 11559 5990 23259 36559 8177 14643 17145 5323 17543 28979 20039 37659 26419 22979 22539 30877 11763 

Sn 1.76 3.65 0.83 1.87 2.28 2.29 5.57 2.66 3.35 1.02 2.24 1.47 2.61 1.41 2.25 1.00 2.22 0.53 2.35 

Cd 0.46 2.76 0.86 0.26 0.62 5.84 4.89 0.46 1.68 0.27 1.56 0.56 2.26 1.17 3.62 1.14 1.14 0.78 2.39 

Cs 11.41 8.41 3.77 3.19 4.26 7.39 7.09 5.74 10.36 1.69 14.07 5.35 8.35 8.03 14.88 8.30 8.07 4.34 11.79 

Pb 21.86 108.24 51.88 15.34 35.42 111.59 72.34 51.12 38.84 18.74 31.82 28.93 42.48 13.59 86.05 31.03 76.09 15.71 13.05 

Hf 4.35 3.24 2.69 2.53 4.39 3.84 3.59 4.82 5.62 1.21 4.43 2.69 5.04 4.57 2.40 3.20 5.13 2.19 3.54 

Rb 151.18 92.39 78.44 151.73 100.83 84.63 116.56 92.58 194.01 20.75 170.83 104.02 187.79 169.42 307.56 155.79 159.02 66.46 309.05 

Ta 0.52 0.45 13.97 20.08 0.50 0.29 0.35 0.64 0.96 0.14 0.45 0.23 0.73 0.46 0.10 0.31 0.43 9.48 14.64 

Th 8.42 7.18 5.48 4.74 10.54 6.07 6.42 8.21 11.44 1.79 9.99 5.75 10.89 6.78 2.10 6.13 10.44 3.83 6.89 

U 2.24 2.23 1.37 1.25 2.72 1.65 1.85 2.81 3.23 0.50 2.33 1.37 2.68 1.67 0.75 1.60 2.68 1.06 1.67 

W 18.46 70.07 39.79 41.00 17.22 8.84 19.36 11.01 26.94 56.09 15.54 17.12 29.14 3.50 4.13 11.44 11.97 24.57 21.80 

 

 

Siliciclastics – Sandstone and Siltstone 

Sample EBL 28-6 EBL 28-59 BL 37-2 BL 37-1 PB 32-9 PB 34-1 PB 34-22 PB 34-38 PB 35-35 PB 35-16 PB 36-6 PB 36-12 

Depth (m) 22 179 201 203 218 11 68 100 71 128 69 80 

Al₂O₃ 

Wt. % 

19.16 16.02 17.93 18.86 16.86 17.06 16.60 3.48 16.27 16.77 10.02 16.40 

CaO 0.16 0.92 8.54 5.70 4.52 4.45 2.41 5.45 5.68 1.50 0.11 8.08 

MgO 0.90 1.47 6.96 2.11 3.94 2.01 1.09 21.38 3.48 2.27 11.21 6.97 

Na₂O 0.86 0.32 1.59 2.13 1.25 2.35 2.58 0.47 2.30 0.29 0.21 3.72 

K₂O 3.18 4.14 1.45 2.30 2.20 1.62 3.43 0.01 3.37 4.39 1.60 0.43 

Fe₂O₃ 3.91 1.54 12.38 4.34 5.36 3.64 2.57 8.31 4.21 2.69 7.34 9.12 
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Siliciclastics – Sandstone and Siltstone 

Sample EBL 28-6 EBL 28-59 BL 37-2 BL 37-1 PB 32-9 PB 34-1 PB 34-22 PB 34-38 PB 35-35 PB 35-16 PB 36-6 PB 36-12 

MnO 

Wt. % 

0.15 0.05 0.17 0.06 0.08 0.05 0.05 0.17 0.11 0.07 0.05 0.21 

P₂O₅ 0.11 0.07 0.06 0.14 0.11 0.10 0.10 bd 0.12 0.10 0.06 0.46 

TiO₂ 0.486 0.141 0.831 0.353 0.373 0.357 0.235 0.155 0.362 0.179 0.238 0.820 

Ba 

ppm 

176.57 227.17 277.33 674.65 263.91 351.03 1034.57 5.94 748.57 221.23 160.38 191.40 

Cr 96.65 5.39 242.64 11.73 19.43 23.96 6.97 2130.46 81.40 10.19 2054.34 89.72 

Cu 10.45 5.39 210.10 9.57 19.84 4.95 7.19 10.05 17.95 0.95 0.68 28.78 

Li 37.11 15.47 55.73 51.26 75.90 47.83 28.45 5.32 48.11 29.74 56.23 21.19 

Sr 133.12 34.36 192.24 492.54 148.54 386.72 126.17 270.12 177.01 58.72 3.54 285.08 

V 87.38 15.25 294.23 51.17 59.84 42.68 28.89 95.63 71.21 23.45 82.63 198.24 

Y 5.52 4.25 16.55 5.73 5.54 4.65 6.36 2.73 5.53 4.10 2.42 15.98 

Zn 25.4 23.0 106.4 55.9 56.3 36.1 29.8 88.4 32.8 16.6 97.1 129.9 

Zr 129.29 120.91 65.41 125.99 106.30 118.21 126.21 45.45 122.19 100.43 52.03 114.25 

As bd bd bd bd bd bd bd 370.04 bd bd 970.42 bd 

B 1602 954 3584 2508 2759 1299 1264 4875 1686 1377 2124 2579 

Be bd bd bd bd bd bd bd bd bd bd bd bd 

Co bd bd bd bd bd bd bd bd bd bd bd bd 

Mo 0.21 0.40 0.15 0.21 0.41 0.28 0.13 0.44 0.21 0.17 0.32 0.14 

Nb 2.20 2.40 1.85 3.27 2.45 2.93 3.53 0.48 2.15 1.72 1.28 3.44 

Ni 50.56 16.83 137.76 7.94 19.23 24.16 5.79 1037.32 46.35 27.57 919.18 92.82 

S 247 666 6211 1003 4000 1391 4420 712 2574 1751 375 3263 

Sb 1.01 0.62 6.56 2.42 0.59 1.54 0.76 1.73 1.66 1.57 2.59 0.56 

Sc 10.54 2.53 46.49 4.77 6.62 4.69 2.75 10.34 8.80 2.51 15.99 20.53 

Si 16082 10201 37829 26301 28545 18212 22803 52679 18504 15099 23111 33803 

Sn 0.76 0.65 0.47 0.60 0.53 0.55 0.48 0.19 1.51 0.52 0.18 0.62 

Cd 0.08 0.25 0.27 0.15 0.11 0.28 0.15 0.20 0.24 0.11 0.16 0.39 

Cs 3.65 5.34 5.60 8.58 7.29 10.11 9.00 0.12 8.84 5.95 16.10 5.37 

Pb 12.45 6.34 11.53 26.60 9.64 17.98 17.38 3.35 30.85 10.05 bd 17.26 

Hf 3.28 3.29 1.52 3.42 2.64 3.31 2.94 1.23 3.05 2.76 1.33 2.89 

Rb 160.54 251.84 85.23 133.10 132.67 103.59 161.85 0.61 159.23 208.01 105.43 23.27 

Ta 7.59 12.74 5.10 10.86 8.57 11.07 11.80 2.30 7.03 5.98 4.47 7.83 

Th 8.21 8.80 0.14 3.62 3.19 3.38 9.30 0.07 4.59 3.41 2.01 13.81 

U 1.74 2.42 0.09 1.24 0.99 1.01 3.04 0.07 0.99 0.92 0.47 2.36 

W 42.59 76.10 58.40 93.57 88.79 103.81 77.05 6.03 57.78 50.56 49.60 38.70 
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Komatiite Basalt Dyke 

Sample PB 35-2 PB 36-1 PB 36-3 PB 35-1 BL 37-34 NGI 31-13 

Depth (m) 219 50 61 233 32   

Al₂O₃ 

Wt. % 

2.54 2.91 6.05 14.32 15.54 16.58 

CaO 
6.45 3.83 7.65 6.65 8.85 8.82 

MgO 
22.29 29.18 20.91 9.51 5.40 6.61 

Na₂O 
0.22 0.64 0.59 3.20 1.18 1.06 

K₂O 
0.01 0.01 0.02 0.35 2.92 0.74 

Fe₂O₃ 
7.48 10.26 9.83 10.44 3.72 8.11 

MnO 
0.16 0.14 0.21 0.20 0.21 0.22 

P₂O₅ 
bd 0.01 0.02 0.03 0.36 0.60 

TiO₂ 
0.098 0.082 0.150 0.359 0.375 0.694 

Ba 

ppm 

14.81 12.69 2.02 58.83 602.93 103.96 

Cr 
1143.32 3280.62 2077.22 196.59 54.30 166.57 

Cu 
9.24 19.40 1.91 19.84 3.81 74.47 

Li 
3.52 5.10 4.82 23.28 41.16 33.35 

Sr 
79.18 38.76 9.17 64.28 356.14 189.86 

V 
52.80 61.67 105.69 226.25 127.38 127.84 

Y 
2.63 2.39 10.46 9.35 14.82 13.99 

Zn 
54.3 51.5 63.4 517.1 27.9 64.2 

Zr 
9.22 55.00 86.37 45.89 115.96 190.12 

As 
bd 29.52 bd bd bd 11.75 

B 
2356 6336 5843 2508 1434 3479 

Be 
bd bd bd bd bd bd 

Co 
bd bd bd bd bd 40.33 

Mo 
0.10 1.00 0.37 0.16 0.65 0.92 

Nb 
0.26 0.21 0.35 0.91 0.97 2.95 

Ni 
1090.56 1523.52 501.40 103.53 40.77 133.15 

S 
797 602 55 38 109 31109 

Sb 
0.77 13.32 1.28 0.36 1.47 0.62 



146 
 

  Komatiite Basalt Dyke 

Sample PB 35-2 PB 36-1 PB 36-3 PB 35-1 BL 37-34 NGI 31-13 

Sc 

ppm 

10.71 15.18 24.07 47.81 19.05 16.07 

Si 
34265 68321 69311 28105 15928 31981 

Sn 
0.15 0.23 0.25 0.46 0.52 0.95 

Cd 
0.23 0.07 0.22 3.15 0.35 0.23 

Cs 
0.14 1.63 0.17 3.23 3.79 10.72 

Pb 
6.08 2.41 0.91 13.34 28.79 20.10 

Hf 
0.19 1.27 2.02 0.93 3.00 4.59 

Rb 
0.76 1.08 0.65 21.00 178.58 70.38 

Ta 
2.17 1.88 2.65 3.53 4.43 0.26 

Th 
0.00 0.01 0.06 0.20 15.41 19.26 

U 
0.03 0.06 0.08 0.09 1.98 4.21 

W 
11.46 8.80 10.69 34.93 86.25 51.56 

 

 

Appendix 1.2: Whole rock rare earth element geochemical data 

Carbonate (unit - ppb) 

Sample NGI 31-34 NGI 31-15 BL 38-1 BL 37-3 PB 32-1 PB 34-13 PB 34-27 PB 35-4 PB 36-8B PB 36-11 RL-18A-C RL-18B-C RL-23-C RL-24-C HB-5 LK-11 

Depth (m) 11 71 20 198 269 48 75 209 74 78 O/C O/C O/C O/C O/C O/C 

La 0.32 0.99 1.27 1.66 0.58 1.17 2.04 0.35 9.37 0.54 3.21 3.70 2.18 2.09 1.87 7.37 

Ce 0.65 1.85 1.73 2.67 0.81 1.85 3.98 0.38 14.51 0.79 4.19 5.05 3.92 2.75 3.01 13.03 

Pr 0.09 0.23 0.20 0.31 0.06 0.22 0.47 0.05 1.52 0.09 0.52 0.54 0.50 0.29 0.32 1.57 

Nd 0.41 0.98 0.81 1.27 0.19 0.92 1.82 0.22 5.62 0.40 2.06 2.14 2.21 1.08 1.09 6.35 

Sm 0.12 0.21 0.16 0.25 0.03 0.21 0.30 0.04 0.77 0.10 0.40 0.41 0.63 0.19 0.18 1.45 

Eu 0.03 0.10 0.12 0.15 0.02 0.13 0.25 0.02 0.27 0.04 0.25 0.28 0.30 0.15 0.07 0.51 

Gd 0.14 0.27 0.28 0.40 0.05 0.32 0.33 0.05 0.86 0.13 0.63 0.63 0.96 0.29 0.22 1.97 

Tb 0.02 0.04 0.04 0.06 0.01 0.05 0.04 0.01 0.09 0.02 0.09 0.09 0.16 0.04 0.03 0.30 

Dy 0.11 0.25 0.25 0.36 0.04 0.33 0.20 0.04 0.35 0.12 0.56 0.53 0.96 0.24 0.14 1.82 

Ho 0.02 0.05 0.06 0.09 0.01 0.09 0.04 0.01 0.05 0.03 0.13 0.13 0.22 0.06 0.03 0.38 
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Carbonate (unit - ppb) 

Sample NGI 31-34 NGI 31-15 BL 38-1 BL 37-3 PB 32-1 PB 34-13 PB 34-27 PB 35-4 PB 36-8B PB 36-11 RL-18A-C RL-18B-C RL-23-C RL-24-C HB-5 LK-11 

Er 0.06 0.16 0.17 0.28 0.03 0.31 0.13 0.04 0.14 0.07 0.41 0.40 0.71 0.20 0.08 1.18 

Tm 0.01 0.02 0.03 0.04 0.00 0.04 0.02 0.01 0.02 0.01 0.06 0.05 0.10 0.03 0.01 0.17 

Yb 0.06 0.14 0.13 0.23 0.02 0.30 0.11 0.03 0.09 0.07 0.33 0.34 0.65 0.17 0.07 1.12 

Lu 0.01 0.02 0.02 0.04 0.00 0.06 0.02 0.01 0.01 0.01 0.05 0.06 0.11 0.03 0.01 0.18 

 

 

Partial carbonate (unit - ppb) 

Sample RL-18A-C HB-1 RL-

18B-C 

PB 

36-

11_ 

PB 

35-4 

RL-LI HB-5 RL-

24-C 

PB 

34-27 

RL-

23-C 

LK-11 PB 36-

8 

NGI 

31-15 

BL 

38-7 

RL2 -

10 

BL 

38-1 

BL 

37-3 

PB 

32-1 

PB 

34-13 

BL 

38-7 

NGI 

31-34 

TB -2 

Depth 

(m) 

O/C O/C O/C O/C O/C O/C O/C O/C 75 bd bd 74 71 3 O/C 20 198 269 48 3 11 O/C 

La 4.85 10.86 5.02 0.50 0.41 7.80 3.53 4.81 2.16 4.01 8.33 14.28 1.40 0.65 1.15 1.55 1.67 0.63 2.01 0.69 0.21 0.90 

Ce 6.99 19.60 6.91 0.37 0.23 12.20 5.58 6.38 4.39 7.69 15.20 22.09 2.17 1.07 1.62 2.09 2.70 0.74 3.20 0.94 0.34 1.66 

Pr 0.77 2.06 0.75 0.04 0.03 1.26 0.57 0.64 0.52 0.95 1.76 2.31 0.26 0.12 0.17 0.24 0.31 0.08 0.41 0.10 0.04 0.19 

Nd 3.18 7.48 2.96 0.14 0.12 4.51 2.03 2.42 1.97 4.32 7.28 8.20 1.06 0.44 0.64 1.00 1.25 0.28 1.75 0.38 0.16 0.76 

Sm 0.62 1.51 0.57 0.02 0.02 0.83 0.32 0.42 0.32 1.27 1.91 1.12 0.21 0.08 0.09 0.19 0.24 0.05 0.40 0.07 0.03 0.20 

Eu 0.36 0.49 0.40 0.02 0.02 0.24 0.14 0.37 0.29 0.66 0.78 0.38 0.15 0.07 0.04 0.16 0.15 0.03 0.22 0.07 0.02 0.07 

Gd 1.00 2.37 0.92 0.05 0.06 1.30 0.41 0.72 0.38 2.15 2.97 1.23 0.30 0.12 0.16 0.32 0.38 0.08 0.67 0.11 0.05 0.26 

Tb 0.14 0.47 0.13 0.01 0.01 0.22 0.05 0.10 0.05 0.36 0.48 0.12 0.05 0.02 0.02 0.04 0.06 0.01 0.11 0.01 0.01 0.04 

Dy 0.87 3.60 0.80 0.04 0.05 1.48 0.26 0.59 0.22 2.32 3.02 0.46 0.27 0.10 0.14 0.26 0.32 0.06 0.70 0.08 0.04 0.29 

Ho 0.19 0.99 0.19 0.01 0.01 0.36 0.05 0.15 0.05 0.52 0.66 0.06 0.06 0.02 0.03 0.06 0.08 0.01 0.19 0.02 0.01 0.06 

Er 0.60 3.48 0.60 0.05 0.04 1.25 0.14 0.46 0.13 1.57 2.02 0.18 0.17 0.06 0.13 0.18 0.24 0.04 0.61 0.06 0.03 0.18 

Tm 0.08 0.58 0.08 0.01 0.01 0.21 0.02 0.06 0.02 0.23 0.29 0.02 0.02 0.01 0.02 0.03 0.03 0.01 0.09 0.01 0.00 0.03 

Yb 0.50 4.34 0.51 0.03 0.04 1.41 0.11 0.39 0.09 1.48 1.96 0.11 0.13 0.05 0.13 0.14 0.21 0.03 0.60 0.05 0.02 0.19 

Lu 0.08 0.76 0.08 0.01 0.01 0.23 0.02 0.07 0.02 0.24 0.31 0.02 0.02 0.01 0.02 0.02 0.03 0.01 0.11 0.01 0.00 0.03 

 

 

Chert (unit - ppb) 

Sample NGI 31-14 EBL 27-88 EBL 28-1 EBL 28-7 EBL 28-28 EBL 28-31 EBL 28-44 

Depth (m) 73 17 4 26 97 107 137 

La 0.20 0.94 0.04 0.32 1.91 bd 0.01 

Ce 0.29 1.18 0.15 0.80 3.12 bd 0.00 
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Chert (unit - ppb) 

Sample NGI 31-14 EBL 27-88 EBL 28-1 EBL 28-7 EBL 28-28 EBL 28-31 EBL 28-44 

Pr 0.03 0.11 bd 0.07 0.28 bd bd 

Nd 0.14 0.44 0.00 0.25 0.90 bd 0.01 

Sm 0.03 0.06 0.01 0.03 0.13 bd 0.00 

Eu 0.01 0.02 0.01 0.01 0.10 bd bd 

Gd 0.04 0.07 0.01 0.04 0.16 bd 0.00 

Tb 0.01 0.01 0.00 0.01 0.02 bd 0.00 

Dy 0.03 0.05 0.01 0.02 0.06 0.00 0.00 

Ho 0.01 0.01 0.00 0.00 0.01 0.00 bd 

Er 0.02 0.03 0.01 0.01 0.03 0.01 0.00 

Tm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Yb 0.02 0.03 0.01 0.01 0.02 0.01 0.00 

Lu 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

 

 

Magnetite (unit - ppb) 

Sample  NGI 31-

12 

NGI 31-

11 

NGI 

31-10 

NGI 

31-7 

NGI 

31-9 

NGI 

31-8 

NGI 

31-6 

NGI 

31-4 

NGI 

31-3 

NGI 

31-2 

EBL 

27-89 

EBL 

27-80 

EBL 

27-79 

EBL 

27-78 

EBL 

27-77 

EBL 

27-75 

EBL 

27-74 

EBL 

27-22 

EBL 

27-62 

EBL 

27-30 

EBL 

29-44 

Depth (m) 82 86 88 98 91 95 103 109 119 122 12 47 50 57 59 74 77 80 124 125 45 

La 0.30 4.93 2.49 1.53 2.50 3.73 4.47 0.63 1.86 6.19 0.90 3.04 2.14 3.54 2.16 6.00 2.61 8.99 2.50 0.19 0.26 

Ce 0.63 9.99 5.02 3.08 5.36 6.74 9.48 1.39 3.81 12.79 1.54 5.62 4.22 6.98 4.27 9.29 4.69 17.02 4.41 0.41 0.43 

Pr 0.08 1.21 0.62 0.38 0.63 0.77 1.20 0.19 0.46 1.55 0.19 0.66 0.51 0.83 0.54 1.06 0.55 2.07 0.54 0.05 0.04 

Nd 0.40 5.03 2.66 1.58 2.62 3.17 4.92 1.06 2.07 6.36 0.91 2.74 2.31 3.40 2.33 4.41 2.26 8.71 2.70 0.27 0.22 

Sm 0.17 1.16 0.63 0.40 0.56 0.71 1.03 0.30 0.55 1.43 0.21 0.58 0.65 0.70 0.49 0.93 0.48 2.09 1.10 0.11 0.06 

Eu 0.11 0.82 0.43 0.23 0.36 0.50 0.40 0.19 0.26 1.03 0.14 0.30 0.38 0.34 0.30 0.55 0.23 1.23 0.74 0.04 0.03 

Gd 0.39 1.74 1.00 0.57 0.75 1.09 1.20 0.57 0.98 1.82 0.26 0.82 1.01 0.93 0.88 1.36 0.62 2.95 1.76 0.22 0.10 

Tb 0.08 0.28 0.18 0.09 0.11 0.17 0.16 0.09 0.17 0.27 0.04 0.13 0.16 0.15 0.17 0.19 0.08 0.43 0.30 0.05 0.02 

Dy 0.68 1.72 1.17 0.57 0.67 1.12 0.77 0.61 1.03 1.50 0.20 0.81 1.05 0.94 1.21 1.14 0.42 2.36 1.88 0.33 0.13 

Ho 0.18 0.39 0.28 0.13 0.15 0.26 0.15 0.15 0.22 0.33 0.04 0.19 0.24 0.22 0.31 0.26 0.08 0.49 0.41 0.07 0.03 

Er 0.57 1.20 0.91 0.46 0.53 0.84 0.46 0.50 0.69 1.09 0.13 0.62 0.83 0.72 1.05 0.82 0.26 1.46 1.27 0.20 0.11 

Tm 0.09 0.20 0.15 0.07 0.08 0.13 0.07 0.08 0.10 0.19 0.02 0.09 0.14 0.11 0.17 0.12 0.04 0.21 0.18 0.03 0.02 

Yb 0.59 1.26 1.02 0.45 0.62 0.86 0.58 0.53 0.65 1.39 0.15 0.64 0.96 0.81 1.09 0.80 0.30 1.48 1.12 0.23 0.12 

Lu 0.10 0.21 0.18 0.08 0.11 0.15 0.11 0.09 0.11 0.24 0.03 0.11 0.17 0.15 0.18 0.14 0.05 0.25 0.19 0.04 0.02 
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Magnetite (unit - ppb) 

Sample EBL 

29-45 

EBL 

29-46 

EBL 

29-49 

PB 

32-23 

PB 

32-18 

PB 

34-3 

PB 

34-18 

PB 

34-21 

PB 

34-25 

PB 34-

27A 

PB 35-

44 

PB 35-

43 

BL 37-

41 

BL 

37-40 

BL 

38-4 

EBL 

28-4 

RL-

18A-

M 

RL-

18B-M 

RL-

23-M 

RL-

24-M 

BLO-1 

Depth (m) 46 48 52 138 168 14 63 66 72 75 32 40 10.5 11 14 17 O/C O/C O/C O/C O/C 

La 0.82 2.69 0.48 0.29 1.64 0.25 1.34 3.11 0.39 1.37 0.38 3.20 0.85 0.22 0.34 5.96 2.47 0.49 4.95 1.21 3.79 

Ce 1.11 3.55 1.02 0.40 1.61 0.42 2.01 5.11 0.55 2.30 0.58 5.50 1.19 0.23 0.34 11.15 3.32 0.73 9.58 1.50 7.76 

Pr 0.11 0.37 0.11 0.04 0.15 0.04 0.25 0.58 0.06 0.26 0.07 0.59 0.12 0.03 0.03 1.33 0.34 0.08 1.18 0.16 0.92 

Nd 0.50 1.60 0.49 0.14 0.52 0.17 1.04 2.36 0.24 1.07 0.26 2.13 0.55 0.12 0.12 5.54 1.33 0.29 4.84 0.65 3.99 

Sm 0.10 0.27 0.11 0.03 0.07 0.03 0.20 0.46 0.05 0.25 0.05 0.32 0.10 0.03 0.02 1.36 0.25 0.06 1.21 0.12 0.88 

Eu 0.04 0.10 0.04 0.01 0.03 0.02 0.10 0.30 0.02 0.16 0.02 0.13 0.05 0.01 0.02 0.60 0.14 0.03 0.53 0.06 0.53 

Gd 0.15 0.36 0.14 0.04 0.12 0.04 0.30 0.62 0.06 0.37 0.07 0.38 0.14 0.04 0.03 2.00 0.38 0.07 1.68 0.18 1.13 

Tb 0.03 0.05 0.02 0.01 0.02 0.01 0.05 0.09 0.01 0.06 0.01 0.05 0.02 0.01 0.01 0.35 0.06 0.01 0.29 0.03 0.18 

Dy 0.16 0.31 0.15 0.03 0.10 0.03 0.29 0.54 0.07 0.40 0.07 0.26 0.10 0.04 0.03 2.24 0.39 0.07 1.79 0.16 1.11 

Ho 0.04 0.07 0.03 0.01 0.03 0.01 0.07 0.13 0.02 0.10 0.02 0.06 0.02 0.01 0.01 0.50 0.10 0.02 0.39 0.04 0.26 

Er 0.14 0.24 0.13 0.03 0.09 0.03 0.23 0.42 0.07 0.34 0.06 0.18 0.09 0.03 0.02 1.52 0.35 0.05 1.21 0.13 0.89 

Tm 0.02 0.04 0.02 0.00 0.01 0.01 0.03 0.06 0.02 0.05 0.01 0.03 0.01 0.01 0.00 0.21 0.06 0.01 0.17 0.02 0.15 

Yb 0.16 0.27 0.13 0.03 0.08 0.04 0.20 0.44 0.08 0.37 0.07 0.17 0.10 0.03 0.02 1.38 0.38 0.06 1.07 0.13 1.07 

Lu 0.03 0.04 0.03 0.01 0.02 0.01 0.03 0.08 0.02 0.07 0.01 0.03 0.02 0.01 0.01 0.23 0.07 0.01 0.15 0.02 0.19 

 

 

Pyrite (unit - ppb) Pyrrhotite (unit - ppb) 

Sample EBL 27-8 EBL 27-9 EBL 27-10 EBL 27-11 PB 32-4 PB 32-6 PB 33-17 EBL 27-7 EBL 27-31 PB 32-5 PB 32-5 PB 33-29 PB 33-20 

La 6.21 1.28 1.13 4.89 1.46 1.79 0.84 1.94 4.27 0.87 1.31 5.48 0.97 

Ce 12.57 2.41 2.31 10.10 2.86 3.32 1.54 3.71 6.59 1.83 2.57 10.59 1.94 

Pr 1.39 0.27 0.24 1.22 0.32 0.36 0.16 0.40 0.72 0.22 0.29 1.15 0.22 

Nd 5.22 1.05 0.85 5.11 1.14 1.39 0.56 1.48 2.88 0.85 1.11 4.18 0.90 

Sm 1.07 0.20 0.11 1.10 0.22 0.28 0.08 0.29 0.51 0.18 0.22 0.84 0.18 

Eu 0.21 0.06 0.03 0.29 0.03 0.06 0.02 0.07 0.23 0.07 0.05 0.20 0.08 

Gd 1.16 0.25 0.11 1.05 0.22 0.32 0.10 0.34 0.67 0.23 0.23 0.86 0.20 

Tb 0.15 0.03 0.01 0.13 0.02 0.04 0.01 0.05 0.09 0.03 0.03 0.11 0.02 

Dy 0.84 0.17 0.05 0.62 0.11 0.19 0.05 0.27 0.48 0.17 0.13 0.54 0.12 

Ho 0.17 0.03 0.01 0.12 0.02 0.03 0.01 0.05 0.10 0.03 0.02 0.10 0.02 

Er 0.49 0.09 0.03 0.46 0.05 0.09 0.03 0.16 0.28 0.10 0.07 0.27 0.07 

Tm 0.07 0.01 0.01 0.07 0.01 0.01 0.00 0.03 0.04 0.01 0.01 0.04 0.01 

Yb 0.37 0.07 0.03 0.60 0.06 0.10 0.03 0.15 0.27 0.11 0.09 0.22 0.07 

Lu 0.05 0.01 0.00 0.11 0.01 0.02 0.01 0.02 0.04 0.02 0.02 0.04 0.01 
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Black slate (unit - ppb) 

Sample EBL 

27-6 

EBL 

27-16 

EBL 

27-32 

EBL 

27-33 

PB 32-

10 

PB 32-

6 

PB 

32-5 

PB 

32-4 

PB 33-

31 

PB 34-

29 

PB 34-

30 

PB 34-

33 

PB 34-

34 

PB 35-

29 

PB 35-

25 

PB 35-

21 

PB 35-

19 

PB 36-

8A 

PB 36-

10 

Depth 

(m) 

24 43 128 136 210 239 247 254 91 79 80 88 92 93 101 110 114 74 75 

La 19.92 35.19 10.49 40.15 18.27 13.99 14.58 13.93 22.72 2.46 13.16 16.16 21.25 21.54 7.45 13.88 23.89 12.74 25.24 

Ce 39.51 72.57 20.10 72.75 38.08 26.96 29.01 28.22 46.39 4.96 27.93 32.02 42.49 43.77 14.16 27.89 45.74 25.22 52.02 

Pr 4.49 8.56 2.21 8.29 4.50 3.12 3.30 3.21 5.41 0.55 3.33 3.69 4.88 4.99 1.61 3.20 5.10 2.77 5.86 

Nd 16.88 32.66 8.06 30.72 17.47 11.88 12.79 12.24 20.63 1.98 12.96 13.72 18.30 18.86 6.19 12.22 18.81 10.23 22.30 

Sm 3.50 6.60 1.67 4.86 3.75 2.31 2.59 2.41 4.33 0.37 2.94 2.58 3.48 3.51 1.14 2.39 3.28 1.78 4.04 

Eu 1.22 1.84 0.73 0.76 1.13 0.74 0.99 1.18 1.45 0.20 1.01 0.80 1.04 0.87 0.65 0.78 1.38 0.54 1.25 

Gd 4.51 6.69 1.96 5.05 4.49 2.45 2.81 2.65 4.89 0.38 3.58 2.69 3.62 3.66 1.16 2.49 3.03 1.99 3.98 

Tb 0.68 0.79 0.27 0.55 0.70 0.30 0.34 0.35 0.69 0.05 0.60 0.34 0.48 0.49 0.15 0.32 0.34 0.27 0.50 

Dy 3.94 3.74 1.51 2.45 4.10 1.52 1.67 1.94 3.70 0.29 3.72 1.69 2.50 2.52 0.72 1.63 1.52 1.49 2.35 

Ho 0.80 0.68 0.30 0.43 0.82 0.28 0.31 0.38 0.70 0.06 0.77 0.31 0.45 0.47 0.14 0.32 0.28 0.30 0.44 

Er 2.41 2.12 0.87 1.25 2.54 0.86 0.94 1.23 2.11 0.20 2.27 0.94 1.44 1.48 0.48 0.97 0.91 0.89 1.29 

Tm 0.35 0.31 0.12 0.17 0.36 0.13 0.14 0.20 0.31 0.03 0.32 0.14 0.22 0.22 0.08 0.15 0.15 0.13 0.18 

Yb 2.28 2.18 0.85 1.14 2.56 0.98 1.14 1.49 2.08 0.22 2.14 0.97 1.54 1.46 0.53 1.03 1.10 0.89 1.32 

Lu 0.36 0.35 0.13 0.17 0.43 0.18 0.21 0.26 0.33 0.04 0.34 0.16 0.26 0.24 0.09 0.17 0.19 0.14 0.22 

 

 

Siliciclastics-Sandstone and Siltstone (unit - ppb) 

Sample EBL 28-6 EBL 28-59 BL 37-2 BL 37-1 PB 32-9 PB 34-1 PB 34-22 PB 34-38 PB 35-35 PB 35-16 PB 36-6 PB 36-12 

Depth (m) 22 179 201 203 218 11 68 100 71 128 69 80 

La 16.59 21.86 2.22 17.35 10.36 15.38 14.80 1.34 13.98 18.62 5.89 71.01 

Ce 33.94 36.31 6.54 35.26 21.31 29.85 27.19 2.99 28.39 40.20 12.50 144.69 

Pr 3.91 3.47 1.01 4.15 2.47 3.24 2.87 0.37 3.17 4.61 1.38 17.04 

Nd 14.94 11.47 5.35 16.02 9.41 11.86 10.32 1.72 11.76 16.96 5.12 64.45 

Sm 2.53 1.73 1.79 2.75 1.65 1.96 1.73 0.44 1.98 2.46 0.86 9.14 

Eu 0.68 0.53 0.63 1.10 0.62 0.69 0.80 0.17 0.86 0.69 0.21 2.61 

Gd 2.25 1.79 2.56 2.61 1.73 2.01 1.78 0.59 2.03 2.17 0.84 8.24 

Tb 0.25 0.19 0.46 0.30 0.22 0.24 0.22 0.10 0.25 0.23 0.10 0.87 

Dy 1.11 0.83 2.98 1.38 1.11 1.06 1.15 0.63 1.22 0.96 0.48 3.67 

Ho 0.20 0.14 0.61 0.22 0.20 0.19 0.21 0.13 0.21 0.16 0.09 0.61 

Er 0.58 0.39 1.71 0.64 0.58 0.51 0.64 0.41 0.61 0.47 0.27 1.82 
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Siliciclastics-Sandstone and Siltstone (unit - ppb) 

Sample EBL 28-6 EBL 28-59 BL 37-2 BL 37-1 PB 32-9 PB 34-1 PB 34-22 PB 34-38 PB 35-35 PB 35-16 PB 36-6 PB 36-12 

Tm 0.08 0.05 0.25 0.08 0.08 0.07 0.10 0.07 0.09 0.06 0.04 0.23 

Yb 0.54 0.35 1.56 0.57 0.53 0.44 0.65 0.43 0.56 0.42 0.29 1.55 

Lu 0.09 0.06 0.24 0.09 0.08 0.07 0.11 0.07 0.08 0.06 0.05 0.23 

 

 

  Komatiite (unit - ppb) 
Basalt (unit 

- ppb) 
Dyke (unit - ppb) 

Sample PB 35-2 PB 36-1 PB 36-3 PB 35-1 BL 37-34 NGI 31-13 

Depth (m) 219 50 61 233 32 
  

La 0.64 0.53 0.69 1.77 81.04 60.17 

Ce 1.57 1.08 2.22 4.05 164.39 127.33 

Pr 0.22 0.15 0.44 0.56 20.23 16.04 

Nd 1.10 0.69 2.67 2.71 77.67 62.22 

Sm 0.35 0.21 1.15 0.84 10.80 9.23 

Eu 0.14 0.09 0.14 0.32 2.56 2.13 

Gd 0.49 0.33 1.64 1.19 9.31 7.99 

Tb 0.09 0.06 0.29 0.22 0.93 0.84 

Dy 0.57 0.43 1.90 1.52 3.49 3.28 

Ho 0.12 0.10 0.40 0.34 0.53 0.52 

Er 0.34 0.30 1.15 1.07 1.54 1.55 

Tm 0.05 0.05 0.18 0.16 0.18 0.19 

Yb 0.34 0.30 1.16 1.13 1.17 1.24 

Lu 0.05 0.05 0.18 0.18 0.18 0.19 

 

 

 



152 
 

Appendix 1.3: δ34S isotope and multiple sulfur isotopes data 

δ34S isotope analysis ( G.G.Hatch Lab, Ottawa) 

Sample ID δ34S vcdt ‰ S % 

EBL 27-6 5.3 1.3 

EBL 27-7 3.0 17.6 

EBL 27-8 -1.1 42.6 

EBL 27-9 2.5 27.4 

EBL 27-10 -1.2 46.6 

EBL 27-11 -7.5 31.8 

EBL 27-12 0.4 32.5 

EBL 27-18 1.1 11.6 

EBL 27-19 0.6 13.7 

EBL 27-22 1.1 7.6 

EBL 27-24 0.6 11.1 

EBL 27-30 2.6 2.2 

EBL 27-32 -1.5 1.2 

EBL 27-33 5.4 0.7 

PB 32- 3 -1.4 24.8 

PB 32- 4 -0.6 2.9 

PB 32- 5 0.2 30.3 

PB 32- 6 2.8 10.1 

PB 32- 10 4.3 2.8 

PB 33-17 -4.5 13.9 

PB 33-18 -3.9 12.4 

PB 33-25 0.1 24.5 

PB 33-31 0.1 1.0 

PB 34-29 1.2 0.5 

PB 34-30 3.6 1.1 

PB 34-33 4.1 0.8 
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δ34S isotope analysis ( G.G.Hatch Lab, Ottawa) 

Sample ID δ34S vcdt ‰ S % 

PB 34-34 5.4 1.3 

PB 35-9 1.0 27.9 

PB 35-19 5.8 3.1 

PB 35-21 3.8 1.5 

PB 35-25 7.3 2.4 

PB 35-28 6.2 15.4 

PB 35-29 4.8 1.5 

 

 

Multiple sulfur isotopes analysis (European Institute for Marine Studies, France) 

Sample name ∆33S ‰ ∆36S ‰ δ34S vs CDT ‰ 

27-8-Py-CRS -0.061 -0.60 -1.69 

27-9-Py-CRS 1.200 -2.44 3.45 

27-10-Py-CRS -0.652 -0.10 -2.82 

27-11-Py-CRS -0.353 -0.16 -7.63 

27-16-Py-CRS 0.441 -1.07 -0.52 

32-4-Py-CRS 0.332 -0.74 1.47 

33-17-Py-CRS -0.417 -0.30 -8.83 

33-29-Py-CRS -0.332 0.22 -3.49 

27-31-Po-AVS -0.033 -0.22 3.85 

32-5-Po-AVS 0.137 -0.56 0.36 
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Appendix 1.4: Organic carbon isotope data - European Institute for Marine Studies, France 

Sample ID δ 13C ‰ VPDB TOC % 

PB32-03 -27.61 0.07 

PB32-04 -25.08 5.38 

PB32-06 -24.44 4.93 

PB32-10 -21.20 4.35 

PB33-17 -21.70 2.40 

PB33-25 -27.99 0.16 

PB33-31 -22.42 3.55 

PB34-29 -19.15 1.30 

PB34-30 -18.98 3.71 

PB34-33 -21.19 2.34 

PB34-34 -21.41 3.16 

PB35-09 -24.90 0.15 

PB35-19 -23.47 2.31 

PB35-21 -23.93 2.81 

PB35-25 -23.40 1.57 

PB35-28 -22.64 1.61 

PB35-29 -22.95 2.72 

EBL27-06 -28.91 3.35 

EBL27-07 -29.37 2.54 

EBL27-09 -30.15 3.24 

EBL27-12 -30.03 0.64 

EBL27-16 -26.70 4.65 

EBL27-18 -18.77 1.37 

EBL27-19 -17.76 2.66 

EBL27-24 -21.15 1.88 

EBL27-32 -20.39 1.69 

EBL27-33 -19.78 2.57 
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Appendix 1.5: Inorganic carbon and oxygen isotopes data – European Institute for Marine Studies, France and G.G.Hatch Lab, Ottawa 

Inorganic carbon isotope analysis (European Institute for Marine Studies, France) 

Sample ID δ13C VPDB ‰ δ 18O VPDB ‰ 

BL 37-3 -0.03 -15.36 

BL 38-1 -0.24 -15.11 

BL 38-7 -0.61 -14.21 

PB 32-1 -0.29 -14.83 

NGI 31-15 -0.66 -14.96 

NGI 31-34 0.62 -13.63 

PB 34-13 -1.06 -11.38 

PB 36-8B -3.53 -9.36 

PB 34-27B -0.70 -13.24 

PB 35-4 0.60 -10.85 

PB 36-11 -0.03 -14.25 

RL-Li 0.67 -11.99 

LK-11 0.51 -13.15 

MRL-18A 0.95 -12.27 

MRL-23 0.69 -13.55 

RL2-10 -2.43 -13.66 

HB-5 -0.14 -13.54 

TB-2 -2.70 -14.19 
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Inorganic carbon isotope analysis (G.G. Hatch Lab, Ottawa)  

Sample ID  δ13C VPDB ‰ δ 18O VPDB ‰ 

MRL-18B 1.1 -11.0 

MRL-21 -0.1 -13.4 

MRL-23A 1.2 -12.2 

MRL-24 0.7 -13.2 

MRL-S 0.3 -13.3 

MRL-S1 -0.8 -13.7 

HB-1 0.2 -13.5 

LK-6A 0.9 -11.6 

 

Appendix 1.6: CNS analysis- Lakehead university instrumentation lab 

Sample N% C% S% 

EBL27-6 0.06 3.47 1.60 

EBL27-7 0.08 1.51 17.34 

EBL27-8 0.06 1.24 42.30 

EBL27-9 0.07 3.30 28.22 

EBL27-10 0.06 0.48 48.15 

EBL27-11 0.05 0.16 35.55 

EBL27-12 0.07 0.33 37.39 

EBL27-16 0.05 4.02 7.04 

EBL27-18 0.07 1.55 12.16 

EBL27-19 0.02 1.71 14.64 

EBL27-22 0.03 0.06 7.76 

EBL27-24 0.05 1.60 11.93 

EBL27-30 0.06 0.25 2.68 

EBL27-32 0.07 1.38 1.41 

EBL27-33 0.05 2.08 0.80 

EBL27-81 0.06 4.65 17.64 

EBL28-4 0.06 0.14 2.66 

PB32-3 0.04 0.07 25.69 

PB32-4 0.04 4.97 3.29 
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Sample N% C% S% 

PB32-5 0.06 0.56 33.47 

PB32-6 0.07 5.12 11.08 

PB32-10 0.05 4.44 3.23 

PB33-17 0.04 2.34 13.99 

PB33-18 0.05 0.58 12.11 

PB33-25 0.04 1.74 24.87 

PB33-29 0.03 0.18 26.83 

PB33-31 0.04 3.66 1.79 

PB34-29 0.04 1.50 0.67 

PB34-30 0.05 4.09 1.22 

PB34-33 0.07 2.44 1.00 

PB34-34 0.05 3.33 1.32 

PB35-9 0.07 0.23 25.35 

PB35-19 0.03 2.22 5.02 

PB35-21 0.05 2.87 2.19 

PB35-25 0.06 1.89 2.73 

PB35-28 0.06 2.73 15.37 

PB35-29 0.06 2.62 1.92 

PB36-8 0.06 4.06 1.13 

PB36-10 0.06 1.34 1.76 

 


