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Abstract

An adaptive optimizer is designed for control o f multi-variable processes where the 

operating characteristics o f the plant are time varying. Based on the original sequential 

method for static applications, the modified direct search method is made adaptive by 

allowing only limited expansion and contraction and by re-measuring all points o f a 

simplex when improvement of the simplex position is not possible by reflection o f  the 

vertices, and when expansion or contraction occurs. In one method, suitable for 

performance functions that have a known optimum value, i.e., sums o f squares o f errors 

from target values, expansion and contraction is determined by a threshold value o f the 

performance function. In a second method, expansion and contraction is determined by 

ranking the newest measurement against the historical measurement values in the 

simplex, similar to the Nelder-Mead method.

The optimizer was tested on simulated two by two multi-input multi-output first order 

plus delay processes. It worked best in the absence of dynamics, but could give 

acceptable performance where the delay and time constants were less than five 

measurement sample times.

The adaptive optimizer is applied also to a simulated model o f a thermo-mechanical 

pulping screening room to control the accepts fibre distribution, using the main line and 

reject screen volumetric rejects ratios. Two types of screens are modeled: screens with 

smooth holed apertures in the screening baskets, and screens with slotted apertures. The 

adaptive optimizer is capable of controlling the accepts fibre distribution over limited 

ranges of disturbances in mean fibre length. The control range o f the slotted screen is 

narrower than that of the holed screen because of its flatter fractionation profile. 

Transport and capacity lags do not have a great impact because most of the fibre flow 

follows the main accepts line.
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Chapter One: Introduction

1.1 Overview

This work develops an optimization method to be applied on-line as the controller in a 

control system that will attempt to maintain a process at an optimal operating point. The 

optimal operating point is determined as being a function of the process output, or 

measured, variables, and possibly the process input, or manipulated, variables, which are 

adjusted by the optimizing controller. This function is specified as a calculated value to 

be minimized or maximized and is known as the objective function or the performance 

index. The optimizing controller has no process knowledge, other than the process output 

variables, and thus no process model is used in the controller. The optimization method is 

classed as a direct search method, and is based on the sequential simplex method 

developed by Spendley, Hext and Himsworth [1,19]. The optimizer is adaptive, in the 

sense that it must adapt to an optimal operating point that is expected to be time varying, 

and also because the plant may include process dynamics.

A simplified on-line multivariable process optimization schematic is shown in Figure 1.1. 

The process has multiple input and output variables. The process output variables may 

require conditioning by sophisticated measurement sensors for data simplification and 

reduction. These measured variables, and possibly the process input, or manipulated 

variables, are combined functionally into a performance measure or index, i.e., the 

objective function. The objective function calculation can also include targets, or

1
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setpoints, for any o f the measured variables. For example, the performance index may be 

a function o f errors, i.e. the difference between setpoint and measurement. The objective 

function produces one value, to be minimized or maximized. The optimizing controller 

moves the manipulated variables in attempting to produce an optimal objective function 

value, i.e., a minimum or a maximum. Since this is an on-line system to be applied to an 

industrial process, process dynamics, in the form of gain, bias, lags and delay, can be 

expected to affect the loop.

When the performance index function includes target, or setpoint variables, the adaptive 

optimizer can be seen to act as a conventional process controller. In this sense, it might be 

compared to Proportional -  Integral -  Derivative (PID) mode controllers, which are 

known to provide a minimum variance performance. The adaptive optimizer has not been 

directly compared to PID controllers in performance testing, since it is to be applied more 

generally to non-minimum variance performance functions. It will be noted in the 

adaptive optimizer testing in chapter two that, in general, the optimizer cannot provide 

the same performance as a conventional PID controller, when the performance index 

function is minimum variance.

A targeted industrial environment for the adaptive optimizer is shown in Figure 1.2. In a 

Thermo-Mechanical Pulping (TMP) screening room process, several pulp screens are 

manipulated by their rejects ratio, which is the volumetric ratio of one output flow, i.e., 

the rejects flow, to the screen input, or feed, flow. A second screen output flow is the 

accepts flow, not requiring further pulp refining, while the rejects stream requires further

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



refining. The accepts stream pulp quality is measured by Pulp Quality Monitoring (PQM) 

sensors, which provide data reduction to a small number of measurements in the form of 

statistical values for various pulp fibre length categories. These measured properties have 

a target value for each fibre length category and the performance index is a function of 

the errors for each fibre length category, i.e., the sum of error squares. This objective 

function value, or performance index, is to be minimized, where a zero error is ideal.

In manipulating the screen reject ratios towards producing a lower performance index 

value, the optimizer moves a number o f screen reject ratios at a time using a direct search 

method based on a short history of previous moves, which are stored in the form o f a 

geometric simplex. The adaptive optimizer uses a regular simplex, where each side is of 

equal length. In particular, where two screen ratios are manipulated, the simplex is 

formed as an equilateral triangle, being a history o f the last three best moves, ranked from 

worst to best. The adaptive optimizer attempts to improve the overall position o f the 

simplex by replacing the higher valued, or worst, of the previous positions o f the 

manipulated variables, as indicated by the history of performance function values for 

each move, which are stored in the simplex along with the manipulated variable 

positions. The general mechanism is by reflection of the non-best points towards the 

direction of the best point, as indicated by the corresponding performance function 

values. Thus the mechanism is direct search in nature.

Chapter one of this work introduces optimization techniques, including analytical 

optimization using derivatives and applied to deterministic models, and direct search

3
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methods, as applied to functions where the models are unknown. Chapter two introduces 

the design of the adaptive optimizer. The optimizer is best used where the performance 

index function has concavity or convexity, which result in global or local extrema. An 

example of such a performance index function is the unconstrained minimum of the sum 

of error squares from a series of performance index targets. The optimizer can be applied, 

as an alternative to other multiple-input and multiple-output process control schemes, to 

processes o f certain dynamic classes. Chapter three discusses an optimization problem for 

Thermo-Mechanical Pulp (TMP) screening processes in the pulp and paper industry. The 

screening room of a typical TMP plant is simulated according to recently developed 

models. Several performance index functions, which are suitable for use with the 

adaptive optimizer, are measured over the complete range of process input variable 

manipulation.

1.2 The Optimization Problem

An optimization problem, wherein the application of a manipulated or decision variable 

evaluation leads invariably to a specific outcome, is termed deterministic in nature. 

Deterministic models generally have the following characteristics:

1. Decision or manipulated variables -  controllable input variables to the 

system.

2. Objective function -  ranks the desirability of the results of decision 

variable applications to the system.

4
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3. Constraint functions -  conditions imposed on the decision variable in 

restriction application range.

4. Feasible solutions -  any solution to the model that satisfies the constraints 

but does not necessarily minimize or maximize the objective function.

5. Optimal solutions -  a feasible solution that satisfies the constraints and 

also minimizes or maximizes the objective function.

Optimization techniques can be characterized according to whether the physical plant or 

process is modeled by an equivalent mathematical function, or whether the model is not 

used or is unknown. Models may be linear or non-linear in nature.

Some important categories o f optimization techniques are as follows:

1. Unconstrained optimization -  analytical method of calculus.

2. Constrained optimization -  Lagrange multipliers.

3. Optimization of linear models — linear programming.

4. Dynamic programming - finding optimal paths in a multi-stage process.

5. Direct search methods.

The first category of optimization techniques, where a plant model is required, is 

reviewed in the next section for the purpose o f comparing analytical techniques to the 

methods of direct search. Principles of convexity are important in optimization methods 

that use analytical techniques and these same principles have a bearing on the success o f 

direct search methods. The other optimization categories are not directly relevant to this 

paper.

5
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1.3 Unconstrained Analytical Optimization Using Deterministic Models

Optimization methods for multiple variable functions have often used derivative 

functions in their search for local or global extrema. The concept o f a convex set o f  points 

is important for optimization since a local or global minimum can be found in such a 

region. A useful property arising from this concept is that a set of points satisfying the 

relation x TH{x)x  < 1 is convex, if  the Hessian matrix H(x) is a real symmetric positive- 

semidefmite matrix. H(x) is a symbol for V 2/ ( x ) ,  the matrix o f second partial derivative 

of f(x) with respect to each x ,, H{x) = V 2/ ( x ) . For a multiple variable function, the 

nature o f convexity can be evaluated by examining the eigenvalues o f H(x). For example, 

given a quadratic function in two variables, the geometric interpretation of the function 

using the eigenvalue characterization may be circular, elliptical, hyperbolic, linear or 

parabolic. The geometries may form a convex (or concave) region or they may form 

‘degenerate’ functions, for which no finite minimum or maximum or non-unique optima 

occurs.

For a positive-definite symmetric Hessian matrix, the eigenvectors form an orthonormal 

set (i.e. perpendicular to each other in two dimensions) and these eigenvectors correspond 

to the directions o f the principal axes o f the contours of f(x). An efficient minimum 

search routine selects a search direction that generally follows the axis of a valley. The 

valley lies in the direction of the eigenvector o f the Hessian matrix (the smaller o f the two 

eigenvalues in two dimensions).

6
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Using a Taylor series expansion about a presumed extremum x* of a given function f(x),

/ ( * )  = f ( x  *) + V Tf ( x  *)Ax + ^ ( A x T )? 2f ( x  *)Ax +... , it can be seen (from the second

term) that a necessary condition for a minimum or maximum of f(x) is that the gradient of 

f(x) equal 0 at x*, i.e. V 7 f ( x  *) = 0 , and therefore x* is a stationary point. The third term 

establishes the character o f the stationary point as a minimum, maximum or saddle point. 

Sufficient conditions to guarantee a unique minimum or maximum is that H(x*) be either 

positive-definite or negative-definite, respectively. Necessary conditions are that f(x) is 

twice differentiable at x*, that a stationary point exists at x* and that H(x) must also be 

defined at x = x* [2],

1.3.1 Unconstrained Analytical Optimization - One Dimensional Search 
Techniques

Numerical optimization demands a good technique for functions o f just one variable 

because techniques for unconstrained and constrained optimization problems usually 

make repeated use of one-dimensional searches.

An analytical method of finding x* at the minimum of f(x) is to set the gradient o f f(x) to 

zero and solving the resulting equation for x*. The value o f the second derivative 

function at x* can determine if x* is really a minimum (as opposed to a maximum).

The following are some prominent one-dimensional search techniques.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f ' \X k )Newton’s method [3] numerically solves / '( * )  = 0 as follows: x k+x = x k -  ^  k j . At

each iteration, / ( x i+1 )<  f { x k) must be true for a minimum. Under some conditions, 

including a poor initial estimate, the method may converge slowly or not at all.

The quasi-Newton (secant) method [3] approximates f ' { x )  as a straight line. It starts by 

using two points spanning the interval of x at which the first derivatives are o f opposite 

sign. At each iteration, the two new points are the calculated approximation o f x* and 

either of the previous points, whichever is required to maintain the oppositely signed 

bracket derivatives. Convergence is slightly slower than the original Newton’s method.

Another class of one-dimensional minimization attempts to locate x* by extrapolation 

and interpolation using polynomial approximations [3] as models o f f(x). Both 

quadratic and cubic approximations have been used using the approximation functions 

only or both the functions and derivatives. In functions where the first derivative is 

continuous, these methods are efficient.

1.3.2 Unconstrained Analytical Optimization - Multi-Dimensional Search 
T echniques

In minimizing a function of several variables, the general procedure is to calculate a

search direction and then reduce the value o f f(x) by taking one or more steps in that

search direction. Each step can be seen as extending a vector in the direction of the search

by a scalar. This constitutes a unidirectional or line search. The function minimum must

8
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be bracketed by this search and one o f the above one-dimensional methods can be used to 

find the scalar that provides the minimum function value for this search direction.

Conjugate search directions have proven to be more effective than orthogonal or 

univariate directions. Two directions s' and s J are said to be conjugate with respect to a

positive-definite matrix Q, if  (5 ' J Q ( s j )= 0 . Orthogonality is a special case of conjugacy,

where Q = I, the identity matrix, and (5 ' J  (s ' ) = 0.

The following are some prominent multi-dimensional search techniques.

The first derivative method [3] is as follows. A good search direction reduces (for 

minimization) the objective function so that f ( x k+1) < /(* * ). Such a search direction is 

called a descent direction and satisfies the following condition at any point: Vr /(x ) s  < 0.

The steepest descent method [3] is as follows. The gradient is the vector at a point x that 

gives the local direction of the greatest rate of increase in f(x). It is orthogonal to the 

contour of f(x) at x. For minimization, the search direction can be the negative o f the 

gradient or ‘steepest descent’, i.e. s k = - V f ( x k). In steepest descent the new point is 

given by: x k+x = x k + a ks k = x k -  a V f(x k), where a  is a scalar o f step length. The 

iterations are applied until the elements of the gradient vector approach zero. The step 

size at each iteration ( a k) is determined by a one-dimensional line search. The gradients,

and therefore the search directions, at points x k and x k+] are orthogonal. For functions

9
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that are not perfectly scaled, i.e., a quadratic function with interactive terms, large 

efficient steps are taken early in the search, but more smaller steps must be taken later.

The following are conjugate gradient methods.

The Fletcher-Reeves method [5] is as follows. The search directions are conjugate -  a 

major improvement over steepest descent without a large increase in computational 

effort. It combines current information about the gradient vector with that of gradient 

vectors from previous iterations to obtain a new search direction (a linear combination of 

the current gradient with the previous search direction). For a non-quadratic function, 

more cycles are required involving a re-initialization of the search direction every n 

cycles. The method will take longer and may not converge with severely non-quadratic 

functions.

Newton’s method [4] makes use of the second-order (quadratic) approximation of f(x) at 

x k and therefore employs information about the curvature of f(x) at x k to identify better 

search directions than can be obtained by the gradient method. By differentiating the 

Taylor series expansion of f(x) gives V /(x) = V/(x k)+ H (x k}7xk = 0  or

xi=l -  x k = Ax* = - \ h (x * ) ]" ' V /(x*). Both the direction and step are specified.

While Newton’s method usually requires few iterations, it has the disadvantages o f 

requiring the solution of a set of n symmetric linear equations and requiring both first and 

second partial derivatives.

10
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The Quasi-Newton (BFGS) method [4] is as follows. This method replaces H [xk) with

a positive-definite approximation H ks k = -V /(x * ), where H k is initialized as any 

positive-definite symmetric matrix (the identity or another diagonal matrix) and is 

updated after each line search using the changes in x and in V /(x) over the last two

points, as measured by the vectors d k = x k+] -  x k and y k = V f{xk+]) -  V /(x*).

The Broyden, Fletcher, Goldfarb and Shanno [10,11,12,13] update formula for H k is

H k+X = H k +
y k(ykJ  ( Hkd kJ ( H kd kj  _ . . .  , / ,ky  k . .—^ -2 —  -i—-—  Z_. If / /  is positive-definite and J y  > 0 , it
[dk) y k [dk) H kd k

can be shown that H k+] is positive-definite. The condition (dk J  y k > 0 is always satisfied

if f(x) is strictly convex. H k is not updated if this condition is not met. For non-quadratic 

functions, BFGS code usually requires more iterations than Newton’s method and may 

not be as accurate, but each iteration is faster because second derivatives are not required 

and the linear equation solver is not needed.

1.4 Direct Search Methods

The term direct search was coined by Hooke and Jeeves [7,19] as . .to describe 

sequential examination of trial solutions involving comparison of each trial solution with 

the best obtained up to that time together with a strategy for determining (as a function of 

earlier results) what the next trial solution will be.” They implied a preference to not 

employ traditional analysis techniques as outlined in sections 1.3, and as such, the direct

1 1
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search methods are generally derivative-free, i.e., being methods that neither compute 

nor approximate derivatives. Direct search methods can be characterized by the use of 

rank, or order, only when interpreting the performance or objective function, i.e., 

numerical values are not otherwise directly interpreted [7,19]. The performance index 

values are only compared against each other for the purpose of determining the next 

operation. The actual values o f the performance index are not used in computing the 

value of the next operational move.

1.5 Simplex Search Methods

Simplex search methods use a simple geometric device that guides the search. Spendley, 

Hext and Himsworth [1,19] proposed the original sequential simplex search method 

based on the observation that, for a performance function f(x), such that / :  R n —> 7?, it 

should take no more than n+1 values of the performance function to identify a downhill 

or uphill direction. Since n+1 points determine a simplex, and in the graph off(x) they 

also determine a plane, a non-degenerate simplex in R n provides a simple and frugal way 

to sample the performance function space in a sequential manner. Additionally, if  a 

vertex of the simplex is replaced by reflecting it through the centroid o f the opposite face, 

as shown in Figure 1.3, the result is also a simplex.

A single move in the sequential search method is always based on reflection. The pre

condition is that the vertex points must be ordered as to their respective values o f the 

performance function. After the reflection of the worst point, the new reflected point is
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either accepted as better than the previous worst point or, if  the new point is still the 

worst, the next worst point of the original simplex is reflected in an attempt to determine 

if a move in that direction will achieve a better than the previous worst point. The overall 

objective of the search is to continuously improve the best point o f the current simplex or 

to accept the convergence of the best point to within a certain tolerance limit of the 

optimal value.

The search may fail to replace any vertex o f the simplex. The size of the simplex may 

prevent further convergence to the optimum value. In this case, subsequent reflections 

that produce a circling sequence of simplices, as shown in Figure 1.4, can indicate that 

the simplex is in the neighbourhood of a stationary optimum value for the performance 

function. Under these conditions, Spendley, Hext and Himsworth suggested that the 

lengths of the edges adjacent to the best vertex be reduced to obtain faster local 

convergence to an optimum value, or secondly, higher order techniques be used.

Nelder and Mead [8,19] proposed, in a method that is well known and often used today, 

to optimize the sequential search method by creating additional move types that would 

accelerate the search. This method has been coded in many custom software applications, 

and has been included in popular programming packages such as Matlab ™ [14], GNU 

Scientific Library [15] and Numerical Recipes in C [16]. The latter two packages provide 

source code in the C programming language.

13
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The additional moves would supplement the original reflection move with options that 

deform the simplex to better adhere to the ‘landscape’ of the performance function. 

Nelder and Mead added expansion and contraction moves, as shown in Figure 1.5 

through Figure 1.7, where a two dimensional simplex is shown. Normal reflection of the 

worst point (xl W,x2W) would provide a new point for the simplex at (xlR,x2R), 

providing that that point was better than the next worst point. However, the expansion 

move provides acceleration, by increasing the length of the step from the centroid to the 

reflected point, as shown in Figure 1.5, so that the new point is (xlE,x2E). Expansion 

occurs under the conditions where the normal reflected point is better than the best point. 

Contraction moves de-accelerate, by decreasing the length of the step from the centroid to 

the reflected point, in a step known as outside contraction, or by decreasing the length of 

the step so that the new point is inside the original simplex. These moves are shown 

graphically in Figures 1.6 and 1.7, where the new points are (xlCO,x2CO) and 

(xlCI,x2CI), respectively. Inside contraction is performed if  the reflected point is worse 

than the worst point and outside contraction is performed if the reflected point is better 

than the worst point but not better than the next worst point. Nelder and Mead also 

proposed a shrink move, to be applied when all other moves fail, i.e., in anticipation of 

local convergence to an optimum value. This step is shown graphically in Figure 1.8, 

where it can be seen that the simplex shrinks to the new size, keeping the best point as a 

static vertex.

The Nelder-Mead algorithm enjoys wide use and can be very efficient, but its robustness 

has been questioned [9], with one potential drawback being that the deformation of the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



simplex may cause the search direction to become numerically orthogonal to the 

performance function gradient, resulting in very slow convergence or possible non

convergence.

1.6 Sequential Search Methods for Time Variant Systems

The sequential search may fail to replace any vertex of the simplex. However, should the 

system characteristics change over time and cause a performance function ‘landscape’ 

shift, the simplex point values may be out of date and this can cause the same effect o f no 

possible movement for the simplex. Previous optimization methods that use sequential 

search methods also assume that process measurements, manipulated variables and 

performance index are at steady state. This may not be true for on-line optimization of 

industrial plants. More recent work has provided sequential search type methods for 

adaptation to time variant system functions. However, this later work has not been 

applied to systems where the process contained dynamics, i.e., where the performance 

index is not necessarily at steady state when it is evaluated.

Jutan and Xiong [17] have recently provided a method for continuous optimization o f a 

time varying system using a dynamic simplex method. In this work, the Nelder-Mead 

simplex method has been modified and extended to allow tracking of a moving optimum 

where noise contaminated the measurement data. The algorithm was applied to linear and 

non-linear drifting optimal functions o f variables in two and three dimensions. Results

15
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are not shown for step changes in optimal function and the optimal functions are assumed 

to be at steady state.

Jutan and Xiong constructed an algorithm that re-applies and measures the best point to 

avoid data invalidation through time. The method uses a fixed size simplex to avoid 

sluggish movement in orthogonal to gradient directions of the performance function. The 

nominal simplex size is related to the maximum noise level, i.e., the difference in 

measurements between vertices of the simplex must be larger than the mean noise value. 

Completing an iteration of the algorithm consists o f making a set of successive 

reflections, as in the original sequential simplex sequence of reflections (Figure 1.4). 

However, the simplex for the next iteration, or set of reflections, is chosen as the simplex 

(from the previous successive reflection set) whose points produce the best average 

performance function value. From an on-line process optimization point of view, where 

feedback response time, i.e., the manipulated variable application and subsequent process 

measurement time, is critical, the measurements involving this set of reflections may be 

costly in terms of time. While the algorithm has been shown to follow a slower moving 

and drifting optimal value, it has not been shown to respond to a step change in the 

optimal value, or any system change that might include a step change and dynamics in 

the form of lag or delay.

Hennings [18], applying optimization to control of a single pulp screen process, also 

employs re-measurement of the best point in two distinct sequential search algorithms. 

One method is similar to Nelder-Mead, with limits on simplex sizes through expansion or
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contraction. This prevents the simplex from being deformed in such a way as to have its 

search direction to be orthogonal to the direction o f steepest descent. On contraction, the 

best point is replaced, for efficiency in re-application of the performance measure. The 

second method uses a variable size simplex, without simplex deformation, and where the 

best point is again rejected on contraction. Hennings applies his algorithm to step 

changing optimal functions only and does not include any drifting or ramping optimal 

function variations. Hennings suggests that noise remains a problem for his algorithms, 

which are only applied to steady state conditions.

In general terms, the work in this thesis is directed at the same on-line environment 

targeted by Jutan/Xiong and Hennings. However, the environment includes testing o f the 

adaptive optimizer, presented here in Chapter Two, with time varying optimal functions 

of both ramping and step changes. Measurement noise has been added, and system 

dynamics, in the form of first order lags, are included, where the process may have steady 

state gain and bias. The adaptive optimizer presented here is based largely on the original 

sequential simplex method proposed by Spendley, Hext and Himsworth. The simplex is 

not deformed, as per Nelder-Mead, and thus is a regular simplex, having equal length 

sides.

The simplex grows and shrinks, within limits, upon detection of ‘closeness’ to the 

optimal function value, through one o f two methods of determining this ‘closeness’ to the 

optimal value. One contraction and expansion method is based on a comparison o f the 

performance function value to a performance function value limit, or threshold. The
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second method o f contraction and expansion is based on ranking the newest performance 

function value relative to the performance function values held in the simplex, i.e., a 

method similar to the Nelder-Mead contraction method.

The optimal value is assumed to be capable of moving immediately in a drifting or a step- 

changing manner, and therefore a characteristic of the adaptive optimizer is the 

continuous re-measurement o f the simplex under steady state conditions, and when the 

simplex grows or shrinks. Tests in systems of low dimension have indicated that the 

adaptive optimizer is effective in tracking moving optimal values in a variety of 

conditions, as outlined above.

18
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Figure 1.1 On-Line Multivariable Process Optimization
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Figure 1.3 Reflection of One Vertex of a Simplex

Figure 1.4 A Sequence of Reflections Failing to Replace the Best Vertex
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Figure 1.5 Nelder-Mead Expansion Step
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Figure 1.7 Nelder-Mead Contraction Inside Step
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Chapter Two: Adaptive Optimizer

2.1 Introduction

A test environment for the adaptive optimizer is shown in Figure 2.1. The optimizer is 

configured here as a feedback controller in the sense that the performance, or objective, 

function is the sum of error squares o f the process output variables from the target values. 

The optimizer attempts to minimize this total error square value to zero by manipulating 

the process input variables that determine the value of the objective function, subsequent 

to the application of process dynamics and the measurement sensor functions. The 

objective function is:

ObjectiveFunction = (Target^ -  Measurement, )2 + (Target2 -  Measurement2 )2. (2.1)

The adaptive optimizer is intended primarily for use in a steady state environment, where 

measurement sample times are long compared to process lags and delays. However, in 

order to evaluate the adaptive optimizer’s potential use in an industrial plant setting, 

process dynamics have been added. The plant, or process, simulation provides dynamics 

in the form o f a First Order Process with Dead Time (FOPDT) for each manipulated 

variable and measurement pair, where both first order lag time and dead time are 

adjustable parameters. Noise, in the form of a random Gaussian normal distribution, 

within limits, is added in certain test conditions. Additionally, process gain and absolute 

offset values are adjusted in other test conditions. Process input and output variables are
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scaled to the range of 0 to 100 per cent. The block diagram of each individual FOPDT 

process is shown in Figure 2.2.

The complex frequency domain transfer function o f the FOPDT is standard, as follows: 

Y ( s )  K e

( 2 ' 2 )

where K  is the process gain, G is the delay time and t  is the process lag time.

Process bias is added as an absolute value, 0 to 100 per cent. Noise is added to the output 

y(t) in the form of Gaussian random numbers with a variance of 1.0 and a mean o f 0.0.

The noise value is then multiplied by a variable noise gain factor, typically in the range of 

1 to 10.

The manipulated variable is delayed by processing through a First In First Out (FIFO) 

memory buffer with variable delay 6 :

x { t ) - x ( t - d ) .  (2.4)

For the purpose o f further testing the adaptive optimizer towards application in a typical 

industrial environment, the process simulation includes a pair of cross-coupled FOPDT 

block functions to provide process interaction. The complete process block diagram is 

shown in Figure 2.3.
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The optimizer is intended primarily for use in situations where the optimal target function 

may change over time and steady state conditions are assumed for all measurements. 

Different from static function optimization, the adaptive optimizer provides continuous 

re-measurement of the simplex performance function values and it provides a contraction 

and expansion technique. It has been designed to provide efficient response to both step 

changes o f considerable magnitude and to drifting or ramping changes of smaller 

magnitude.

Initial testing of the optimizer provides a target function that is a function of time, 

specifically a square wave function or a triangular wave function, and a process without 

dynamics. Subsequent testing uses the same varying target functions, but having one or 

both of the processes include FOPDT dynamics. Later testing includes interactive cross

coupled FOPDT process dynamics, and a final test relates the adaptive optimizer to 

standard stability criteria.

2.2 Adaptive Optimizer Method

The adaptive optimizer uses a direct search method, based on sequential simplex moves, 

in attempting to minimize the performance function to zero. The adaptive optimizer uses 

an equilateral triangle (r 2 -»  R.)simplex and reflects the worst and next worst points in 

attempting to improve the performance value, as per the original sequential simplex 

method. If unable to improve the worst value or the next worst value by worst and next 

worst reflections, respectively, it re-measures the best point. An unchanged best point
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evaluation causes continuation o f the reflection cycles, while a change in the best point 

value forces a re-measurement o f the next best point and the worst point, which is then 

followed by a return to the reflection cycles. The re-measurement cycle is normally a re

measure o f the best point, followed by re-measurements o f the next best and the worst 

points. Re-measurement of at least the best point is critical to the adaptive optimization 

method, since the performance function value at that point may change in time. Some 

options were tested to change the sequence o f the re-measurement operations and to add 

additional reflection moves. These options and their use will be discussed later.

The size of the simplex is variable, expanding or contracting in response to performance 

function values or their ranking. Two methods for triggering expansion and contraction 

are used by the optimizer. One option uses a comparison of the current value of the 

performance function to a threshold value, while the other option uses the current and 

previous moves function values ranking, similar to the Nelder-Mead technique.

The threshold comparison method requires a ‘closeness to optimum’ threshold value, in 

terms of the performance function, for contraction and expansion decisions. If  the current 

performance function value is less than the threshold value, the optimizer contracts the 

simplex in anticipation of convergence. Otherwise, if the current performance function 

value is greater than the threshold parameter, the optimizer is free to expand. The 

threshold value may be difficult to specify for many performance functions. In the case of 

the sum of error squares from targets, where the optimum is zero, the threshold value 

may be more easily determined. While the adaptive optimizer only provides one
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threshold parameter level, which is likely suitable for most industrial control ranges, 

several threshold parameters and several contraction/expansion levels, giving a number 

simplex sizes, may be suitable for larger ranges of control. The threshold method, while 

requiring a parameter that qualifies the performance function value, has been shown to 

provide as good, and often better, control than the ranking method under all test 

conditions. Comparable test results, where total and average errors are calculated, are 

shown in later sections, for both methods of contraction and expansion.

The ranking method of contraction and expansion compares the performance function 

value from the newest reflection to two of the performance function values associated 

with the current simplex. If the newest performance function value is better (i.e., less 

than) the performance function value for the best point of the current simplex, the 

simplex is allowed to expand. If the newest performance function value is worse (i.e., 

greater than) the performance function value for the worst point o f the current simplex, 

the simplex is free to contract. The ranking method has the benefit of not requiring a 

threshold parameter, or any sense of the ‘quality’ of the performance function value, and 

as such, it is more suitable for situations where the performance function has a non-zero 

or unknown optimum value. This type o f performance function may be a cost type of 

function that is dependent on the different operating conditions o f the plant.

For either of the above methods, the expansion and contraction factors are always 

inverses of each other, and the number of expansion or contraction steps is limited. 

Simplex sizes are therefore a prescribed set of values. This mechanism provides limits on
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the number o f contraction and expansion cycles, which take time to effect, due to the re

measurement cycles. In a typical industrial process control setting, convergence to a very 

small error may be counter-productive if  the simplex must quickly adapt to a higher

valued step change in the performance function. After an expansion or contraction, a 

simplex re-measure cycle is always forced. Figure 2.4 is the adaptive optimizer flowchart 

for the first option, i.e., with expansion and contraction based on a current performance 

function threshold value. Figure 2.5 is the adaptive optimizer flowchart that uses the 

second option, i.e., the performance values ranking method.

2.3 Sequential Simplex Method for the Two Dimensional Case

While the sequential simplex method is general enough for multi-variable control in 

higher dimensions, the adaptive optimizer is restricted to two dimensions as a 

conservative first step in potential application to an industrial process. Working in two 

dimensions has the advantage of intuitive graphs and, as will be seen, allows for less 

manipulation and re-measurement of the process for each translation o f the simplex. 

Simplex geometry is shown in Figure 2.6, where m is the length o f the side of the 

equilateral triangle. The distance from any vertex of the simplex to the opposite side is of 

length d. The simplex is initially oriented as shown in Figure 2.6, i.e., two sides are

equally centered by angle between the XI and X2 axes. The distances a, and b, in terms

of the length of the simplex side m, are calculated as:

V3 +1 na =  i=^m and (2.5)
2V2
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(2 .6)

These two values are used to calculate the position of the other two vertices, given one 

point of the simplex. For example, if  the worst point of the simplex is known as 

(xl W,x2W), the next best point is (xlN,x2N) and the best point is (xlB,x2B), then the best 

and next best point positions can be calculated from the worst point position as follows:

where U, a directional scalar factor, is either 1.0 or -1.0.

A simplex move is made by reflecting one vertex through the centroid of the opposite 

side, as is shown in Figure 2.6, where the worst point reflection is indicated. The length 

of the move has a vector length of two times d, where d  is

The worst point reflected position is then calculated as follows:

(x lRw -  x lB + xliV + xlW -  2.0 x x \W , x2R w = x2B + x2 N  + x2W  - 2 .0 x  x2W), (2.10) 

where ( x l i^ , x2Rw) is the reflection of the worst point.

The next best point reflected position is calculated as follows:

(xl Rn = x\B  + xl A + x\W  -  2.0 x xl A, x2R n = x2B + x2 N  + x2W  - 2 . 0 x  x2N).  (2.11)

Contraction of the simplex reduces the length o f the side of the triangle m by a given 

contraction factor, which is specified as a parameter. The best point position is

(xlN  = xlW  + Ua, x2N  = x2W  + Ub) (2.7)

(xlB = xlW + Ub, x2B  = x2W  + Ua) (2 .8)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



maintained, while the worst point and the next best point positions are recalculated from 

the best point position, using the same method as equations 2.7 and 2.8, such that the 

newly contracted simplex has the same orientation as the original. The simplex is thus 

contracted along the sides of the equilateral triangle adjacent to the best point position as 

shown in Figure 2.7. The next moves after contraction or expansion are always a simplex 

re-measurement cycle.

Expansion is the reverse process as contraction, which includes the use of the inverse of 

the contraction factor as the expansion factor. Thus, if one contraction/expansion level is 

provided, the simplex will only have two sizes, one larger and one smaller. Again the 

expansion occurs along the sides adjacent to the best point position.

The simplex re-measurement cycle is normally a re-measurement o f the performance 

function values for all points in the simplex, i.e., best, next best and worst. The re

measurement cycle occurs if the simplex position cannot be improved upon by any 

reflections, or immediately after a contraction or expansion step. Optionally, the 

optimizer can be configured to only re-measure the best point, or to just re-measure the 

best and next best points. While it may appear that re-measurement of fewer points is 

more efficient and should be sufficient for good control, particularly since reflection 

cycles will follow, it will be seen that re-measurement of all simplex points provides the 

lowest mean errors from targets for all o f the test conditions.
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In attempting to improve the current simplex position through reduction of the 

performance function values, the adaptive optimizer follows the sequential simplex 

method as shown in Figure 2.8. If the current simplex is as indicated by the solid line 

triangle, with best, next best and worst points being (xlB,x2B), (xlN,x2N) and 

(xl W,x2W) respectively, the first attempted improvement is by reflection of the worst 

point to (xlRW,x2RW). If this fails to improve upon the worst point’s performance 

function value, the next step is a reflection o f the next worst point to (xlRN,x2RN). If 

this fails to improve the performance function value over the next worst points value, a 

simplex re-measurement cycle is forced, followed by a return to the reflection steps.

An option has been added to the adaptive optimizer to allow further reflections around 

the best point space through the extension of worst and next worst points through the 

sides o f the simplex adjacent to these points. For example, the worst point can be 

extended to the point (xlXW,x2XW). Should the performance function fail to improve 

upon either of the worst or next worst points, and extension of the next worst point is 

allowed to the new point (xlXN,x2XN). A failure again to improve the performance 

function results in a simplex re-measurement cycle, followed by a return to the reflection 

cycles. This option was provided to help overcome directional inefficiencies for slow- 

moving or ramping performance functions or for processes with considerable lags. While 

this option does improve the control performance under some such limited conditions, it 

also degrades control performance under other testing conditions. This option is similar 

to a component of Jutan’s method [17], where the simplex for the next iteration, or set of
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reflections, is chosen as the simplex (from the previous successive reflection set) whose 

points produce the best average performance function value.

2.4 Adaptive Optim izer Performance Tests

The adaptive optimizer is tested through changing the targets performance function 

equation over time with either a square wave function or a triangular wave function. Each 

process variable target is changed by this perturbation function. The optimizer attempts to 

minimize the performance function, and in doing so, the process variables tend to 

converge to the changing target conditions. Test results are evaluated by reviewing time 

plots of the process variables and their targets, and by noting the Average Sum o f Error 

Squares (ASES), i.e., the performance function values, for all sampled iterations o f the 

test. This average performance function value is calculated as:

ASES = -*-------------------------------------------------, . (2.12)
N

where N  is the number of iterations in the sampling time domain, X } is the process 

variable one target, X 2 is the process variable two target, and X i, X 2 are the process 

variables.

Performance tests are categorized into the following general cases:

1. Basic tests with no process dynamics, process interaction or noise; and with no 

simplex contraction or expansion.
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2. Tests that compare the simplex contraction and expansion methods using a 

process having no dynamics, process interaction or noise.

3. Basic tests with process dynamics in the form of lags, but no process interaction 

or noise, and with no simplex contraction or expansion.

4. Tests that compare the simplex contraction and expansion methods using a 

process having dynamics in the form of lags, but with no process interaction or 

noise.

5. Basic tests with process noise, but no process interaction Or dynamics, and with 

no simplex contraction or expansion.

6. Tests that compare the simplex contraction and expansion methods using a 

process with noise, but no process interaction or dynamics.

7. Basic tests with process interaction, but no process noise or dynamics, and with 

no simplex contraction or expansion.

8. Tests that compare the simplex contraction and expansion methods using a 

process with process interaction, but no process noise or dynamics.

9. Tests that compare the re-measurement cycle options for the adaptive optimizer.

10. Tests that compare the simplex extension options.

11. Basic tests with process delay, but no process noise or dynamics, and with no 

simplex contraction or expansion.

12. Basic tests indicating adaptive optimizer stability issues.

13. Basic tests indicating adaptive optimizer tuning issues.
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2.5 Case Test Conditions and Results

In all cases, the process variables and targets have been scaled to the range of 0.0 to 100 

percent. Each point on the plots represents one sample time, i.e., an iteration of the 

simplex controller, where one move of the controller outputs is affected and one 

measurement o f the process variables is achieved. For example, in the application to the 

screen room control in chapter three, this sample time would be ten minutes, which is the 

sampling time of the pulp quality measurement system. The initial simplex size is 

specified in percentage and represents the length o f the side o f the equilateral triangle. 

The simplex size may be contracted by a factor of 0.5 and later expanded, after 

contraction, to the original initial size. As a measure o f controller performance, the 

Average Sum of Error Squares (ASES) is calculated and noted. In all cases, initial 

conditions for the process variables are 50.0 percent. Evenly numbered cases use a square 

wave target function perturbation, while odd numbered cases use a triangular wave target 

function perturbation. Except for special test category 9, the simplex re-measurement 

cycle includes a re-measurement of all three simplex points. Except for special test 

category 10, the simplex extension option is not included.

2.5.1 Category 1 Tests

Category 1 tests are basic tests with no process dynamics, process interaction or noise; 

and with no simplex contraction or expansion.

•  F ig u re  2 .9 , C ase  1.0 -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  s im p le x  co n trac tio n  o r  

ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  295
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•  F ig u re  2 .1 0 , C a se  1.1 -  N o  p ro cess d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  sim p lex  co n trac tio n  o r 

ex p an s io n ; In itia l s im p lex  size  =  10.0; R a m p  ta rg e t ch an g es ; A S E S  =  139

•  F ig u re  2 .1 1 , C ase  1.2 -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  sim p lex  c o n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size =  5 .0 ; S tep  ta rg e t c h an g es ; A S E S  =  2 6 4

•  F ig u re  2 .1 2 , C a se  1.3 -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  s im p lex  co n trac tio n  o r 

ex p an s io n ; In itia l s im p lex  size  =  5 .0 ; R a m p  ta rg e t ch a n g e s ; A S E S  =  116

Simplex size is important for best performance. A smaller simplex size allows closer 

convergence to the optimum. However, under step changes, a smaller simplex size 

requires a longer time to converge to the new optimum, thus introducing a further lag in 

the system. A compromise must be achieved between an optimal simplex size for step 

changing and ramp changing performance functions.

2.5.2 Category 2 Tests

Category 2 tests compare the simplex contraction and expansion methods using a process 

having no dynamics, process interaction or noise.

•  F ig u re  2 .1 3 , C ase  2 .0  -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  m e th o d  s im p lex  

co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10 .0 ; S tep  ta rg e t ch an g es ; A S E S  =  230

•  F igu re  2 .1 4 , C a se  2.1 -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; T h resh o ld  m e th o d  sim p lex  

co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10 .0 ; R a m p  ta rg e t ch a n g e s ; A S E S  =  94

•  F igu re  2 .1 5 , C ase  2 .2 -  N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; R a n k in g  m e th o d  sim p lex  

co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10 .0 ; S tep  ta rg e t ch an g es ; A S E S  =  283

•  F ig u re  2 .1 6 , C ase  2.3 -  N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; R an k in g  m eth o d  sim p lex  

c o n trac tio n  o r  ex p an sio n ; In itia l s im p lex  size  =  10 .0 ; R am p  ta rg e t ch an g es ; A S E S  = 1 1 8
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The control performance of the adaptive optimizer for these tests is compared to the 

control performance of Category 1 tests, as measured by the ASES values. A dynamic 

simplex size can improve control performance over a static simplex size and can improve 

control under both step changing and ramp changing performance functions. The 

threshold method of contraction and expansion can be ‘tuned’, by setting an appropriate 

threshold value, to have better control performance than the ranking method. In the above 

cases, the threshold is set at a value of 50.0, through trial and error, for best performance 

using the threshold method of contraction and expansion. However, in the 

experimentation, it was noted that a threshold value that was too small, i.e., in 

approaching the size of the initial simplex, prevented the simplex from contracting. The 

ranking method of contraction and expansion is a more general device, for use with any 

type of performance function, but in the testing of this method the performance results 

were usually worse than the threshold method’s results.

2.5.3 Category 3 Tests

Category 3 tests are basic tests with process dynamics in the form of lags, but no process 

interaction or noise, and with no simplex contraction or expansion.

•  F ig u re  2 .17 , C ase  3 .0  -  P ro c ess  L ag s  =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r n o ise ; N o  sim p lex  co n tra c tio n  o r 

ex pansion ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t ch a n g e s ; A S E S  =  362

•  F ig u re  2 .18 , C ase  3 . 1 -  P ro c ess  L a g s  =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r n o ise ; N o  sim p lex  c o n tra c tio n  o r 

ex p an sio n ; In itia l s im p lex  size =  10.0; R a m p  ta rg e t c h an g es ; A S E S  =  166

•  F igu re  2 .19 , C ase  3 .2 -  P ro c ess  L ag s  =  6 .0 , N o  p ro cess  in te rac tio n  o r n o ise ; N o  sim p lex  co n tra c tio n  o r 

ex p an sio n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t ch a n g e s ; A S E S  =  737

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Control of processes with smaller amounts of lag time can be handled by the adaptive 

optimizer. Once the lag time increases to be beyond the immediate history horizon o f the 

simplex method, i.e., beyond three sample times, control performance deteriorates 

significantly. The sequential simplex method, and the re-measurement cycles designed 

into the adaptive optimizer, provide an effective delay in the system of as many as five to 

eight sample times, as indicated by the process variable response to step changes in the 

performance function.

2.5.4 Category 4 Tests

Category 4 tests compare the simplex contraction and expansion methods using a process 

having dynamics in the form of lags, but with no process interaction or noise. These tests 

allow for one level o f contraction, using a contraction factor o f 0.5 for the length o f the 

side of the simplex. The following cases can be compared to Cases 3.0 and 3.2, 

respectively.

•  F ig u re  2 .20 , C a se  4 .0  -  P ro c e ss  L ag s  =  3 .0 ; N o  p ro cess  in te rac tio n  o r  no ise ; T h re sh o ld  m e th o d  s im p le x  

co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  s iz e  =  10.0; S tep  ta rg e t ch an g es; A S E S  =  260

•  F ig u re  2 .2 1 , C a se  4 .2  -  P ro c e ss  L ag s =  3 .0 , N o  p ro cess in te rac tio n  o r  no ise ; R a n k in g  m eth o d  sim p lex  

co n trac tio n  o r  ex p an s io n ; In itia l sim p lex  size  =  10.0; S tep  ta rg e t ch an g es; A S E S  =  607

The threshold method of contraction and expansion is able to improve control 

performance in comparison to the use of a static simplex size, as in Case 3.0, for a step 

changing performance function, and with processes of smaller lags. The ranking method 

of contraction and expansion is not able to improve the control performance under the
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same conditions as in Case 3.2, and in fact, the control performance suffers somewhat

more.

2.5.5 Category 5 Tests

Category 5 tests are basic tests with process noise, but no process interaction or 

dynamics, and with no simplex contraction or expansion. The noise levels have a 

standard deviation of 2.0 per cent, while the length of the simplex side is 5.0 per cent. At 

steady state, the process variables have a deviation of approximately 5.0 per cent for one 

variable and 10.0 per cent for the other variable, due to the reflection and re-measurement 

cycles o f the adaptive optimizer. On average, the noise to signal ratio is then 

2.0
approximately — ------------ r = 0.2666, which is a fairly severe test.

0.5(5.0 + 10.0)

•  F igu re  2 .2 2 , C a se  5 .0  -  N o ise  =  2 .0 , N o  p ro cess  in te rac tio n  o r p ro cess  d y n a m ic s ; N o  sim p lex  c o n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size =  5 .0 ; S tep  ta rg e t ch an g es; A S E S  =  4 0 7

•  F ig u re  2 .2 3 , C a se  5 . 1 -  N o ise  =  2 .0 , N o  p ro cess in te rac tio n  o r p ro cess  d y n a m ic s ; N o  sim p lex  co n tra c tio n  o r

ex p an s io n ; In itia l s im p lex  size  =  5 .0 ; R am p  ta rg e t ch an g es; A S E S  =  123

•  F ig u re  2 .2 4 , C ase  5 .2  -  N o ise  =  4 .0 , N o  p ro cess in te rac tio n  o r p ro cess  d y n a m ic s ; N o  sim p lex  co n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size =  5 .0 ; S tep  ta rg e t ch an g es; A S E S  =  524

Within a limit, system noise can be handled by the adaptive optimizer. Once the noise 

level reaches a size where it is able to mask the effects of simplex movements, control 

performance degrades significantly. With a process gain of one, the adaptive optimizer is 

able to work with noise levels that, on statistical average, are in the range o f one-quarter 

to one third o f the simplex size, as measured by the length o f the regular simplex side.
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2.5.6 Category 6 Tests

Category 6 tests compare against Case 5 tests by implementing the simplex contraction 

and expansion methods using a process with noise, but no process interaction or 

dynamics. The final steady state simplex size is 5.0 per cent through contraction.

•  F ig u re  2 .2 5 , C a se  6 .0  -  N o ise  =  2 .0 , N o  p ro c e ss  in te rac tio n  o r  p ro cess d y n a m ic s ; T h re sh o ld  m e th o d  sim p lex

co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t chan g es; A S E S  =  2 8 0

•  F ig u re  2 .2 6 , C a se  6 .2  -  N o ise  =  2 .0 , N o  p ro c e ss  in te rac tio n  o r p ro cess d y n am ics ; R a n k in g  m e th o d  sim p lex  

co n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t chan g es; A S E S  =  3 9 9

Smaller amounts of system noise cause the control performance to degrade when 

contraction and expansion methods are used by the adaptive optimizer, as shown by a 

comparison of Cases 2.0 and 2.2 with Cases 6.0 and 6.2. Higher levels of noise create the 

same problem as noted in Category 5 tests -  control degrades significantly if noise levels 

approach the measurement levels produced by simplex moves.

2.5.7 Category 7 Tests

Category 7 tests are basic tests with process interaction, but no process noise or 

dynamics, and with no simplex contraction or expansion.

For the following tests, a quantitative measure o f control loop interaction, known as 

Bristol’s relative gain array [20], is used to specify the level of process interaction in the
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manner of the cross-coupled FOPDT block diagram of Figure 2.3. The relative gain array 

is a matrix composed of elements defined as ratios of open-loop to closed-loop gains 

according to the following equation, which relates the ith process input variable to the jth  

process output variable:

/  \  ex r d x ^
dY,

\  J s  Yk -c o n s t,k* j

(  \  f dx'
dY,

V  J J  other loops open
/  \  

dX.
dY,

V  J /  X k =const ,k*i

(2.13)

dY,
V J  /  other loops closed

where Y  is the process output variable and X  is the process input, or manipulated, 

variable. The relative gain array elements can be calculated from the open loop gain 

matrix of the individual FOPDT blocks in the interactive process as follows:

X  = K..K' j‘ > (2.14)

where K  is the open loop gain matrix of the FOPDT blocks, and K~] is the inverse o f this 

open loop gain matrix. For the two by two process example in this application, the first 

element in the relative gain array is:

1
4 , = L 0 _ K n K 2l

(2.15)

K uK 21

Since the rows and columns of the relative gain array sum to 1.0, the relative gain array is

/In 1 A,,

1-/1,, A,,
(2.16)

For the following tests, a difficult case interaction is proposed as A,, = 0.5 . Letting the

open loop gains K u = K 22 = K 2] =1 .0 , then K n = -1 .0 . Also, for the following test,
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process dynamics are the same for all FODPT blocks, i.e., the process lag is 3.0 sample 

times.

The category 7 tests are as follows.

•  F ig u re  2 .2 7 , C a se  7 .0  -  P ro c ess  in te rac tio n ; N o  n o ise  o r  p ro cess  d y n am ics ; N o  s im p lex  co n tra c tio n  o r 

e x p an s io n ; In itia l s im p lex  size =  5 .0 ; S tep  ta rg e t ch an g es; A S E S  =  2 3 8

•  F ig u re  2 .2 8 , C a se  7.1 -  P ro c ess  in te rac tio n ; N o  n o ise  o r  p ro cess d y n am ics ; N o  s im p lex  co n trac tio n  or 

e x p an s io n ; In itia l s im p lex  size =  5 .0 ; R a m p  ta rg e t ch an g es ; A S E S  =  124

The control performance of the adaptive optimizer, under severely interactive conditions 

for the process variables, is comparable to non-interactive conditions, as per Cases 1.2 

and 1.3. These tests also show that the adaptive optimizer is able to cope with levels of 

bias in the process variables. The adaptive optimizer has an inherent integral mode of 

operation.

2.5.8 Category 8 Tests

Category 8 tests compare the simplex contraction and expansion methods using a process 

with process interaction, but no process noise or dynamics.

The following tests use the same conditions as the Category 7 tests, except that in Case 

8.0, where the threshold method of contraction and expansion is used, the threshold 

parameter value has been raised to a value of 100.

•  F ig u re  2 .2 9 , C a se  8 .0  -  P ro c e ss  in te rac tio n ; N o  n o ise  o r  p rocess d y n am ics; T h re sh o ld  m e th o d  sim p lex  

c o n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  target ch an g es ; A S E S  =  211
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•  C a se  8 .2  -  P ro c e ss  in te rac tio n ; N o  n o ise  o r p ro c e ss  d y n am ics; R a n k in g  m e th o d  s im p lex  co n tra c tio n  o r  

ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t chan g es; A S E S  =  277

Both methods of contraction and expansion provided effective control comparable to 

Cases 2.0 and 2.2. However, it was necessary to increase the threshold parameter in the 

first case, since the simplex did not contract, due to the fact that the effects of the 

interactive process variables increased the average performance function values. This is a 

case where the ranking method of contraction and expansion has the advantage of 

simplicity and generality.

2.5.9 Category 9 Tests

Category 9 tests compare the re-measurement cycle options for the adaptive optimizer. 

For a number of the previous tests, as shown in first column o f Table 2.1, the test was 

repeated under two different re-measurement options for the adaptive optimizer. The 

normal re-measurement cycle option is to measure all three points o f the simplex when 

reflections fail to improve the simplex position, or when a contraction or expansion takes 

place. A second option is to re-measure only the best and next best points, and leave the 

re-measurement o f the third point to a reflection move. The third option is to measure 

only the best point. For all tests, the Average Sum of Error Squares is shown for each re

measurement cycle option, for comparison purposes, in Table 2.1.

In every case, it is shown that re-measurement of all three points is the best option, i.e.,

the one leading to the best control performance, as measured by the ASES. Likewise, it is
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seen from virtually every case that re-measuring only the best point is the worst option 

for best control performance. This is a finding that distinguishes the adaptive optimizer 

from previous work, in that Jutan [17] and Hennings [18] both required re-measurement 

of the best point only.

2.5.10 Category 10 Tests

Category 10 tests compare the simplex extension options.

The adaptive optimizer provides an extension option, where, if  after the worst point and 

next best point reflections fail to improve the simplex position, the worst and next best 

point are extended to provide a more complete sampling of the space around the best 

point. All of the previous tests were completed with the extension option enabled and the 

results were compared to the original test without the extension option enabled.

Two test results are notable.

F igu re  2 .3 1 , C ase  10.1 -  P ro c ess  L ag s  =  3 .0 ; N o  p ro cess in te rac tio n  o r n o ise ; R a n k in g  m e th o d  s im p lex  co n trac tio n  o r 

ex p an sio n ; N o  ex ten s io n  o p tio n ; In itia l s im p lex  size =  10.0; R a m p  ta rg e t ch an g es ; A S E S  =  2 7 6  

F igu re  2 .3 2 , C a se  10.3 -  P ro c e ss  L ag s  =  3 .0 ; N o  p ro cess  in te rac tio n  o r no ise ; R a n k in g  m e th o d  sim p lex  co n trac tio n  o r 

ex p an sio n ; E x te n sio n  o p tio n ; In itia l s im p lex  size  =  10.0; R am p ta rg e t chan g es; A S E S  =  2 0 4

While in most cases, the ASES value while using the extension option was comparable to 

the same test not using this option, there was one test set where the extension option 

provided a noticeably better control performance, as measured by the ASES. For a 

ramping performance function and the ranking method of contraction and expansion, the
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use of the extension option, as in Case 10.3, provided a measured difference in control 

performance, as noted in Cases 10.1 and 10.3, where a process exhibiting lag is 

implemented. While the extension option may provide some benefit to the ranking 

method in helping to find direction with a slow moving target and some process lag, there 

is limited value in this option to the adaptive optimizer.

2.5.11 Category 11 Tests

Category 11 tests are basic tests with process delay, but no process noise or dynamics, 

and with no simplex contraction or expansion.

Many different tests were completed using process delays. Any delay more than one 

sample time caused problems for the adaptive optimizer. An example of case using delay 

is shown as Case 11.0, Figure 2.33. It should be noted that the extension option was 

enabled in this case and it provided a measure of control performance improvement.

•  F ig u re  2 .3 3 , C a se  11.0 -  P ro c ess  L ag s =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r  no ise , N o  s im p lex  c o n tra c tio n  o r  

ex p an s io n ; E x ten sio n  o p tio n ; In itia l s im p lex  size  =  10 .0 ; S tep  ta rg e t ch an g es; A S E S  =  9 4 6

The adaptive optimizer depends on a short history of measurements for correct 

orientation and movement. Should these measurements be continually out o f date by 

process delay, the simplex decisions are made ineffective and the simplex wanders. The 

cycling period of the adaptive optimizer at steady state is five sample times, i.e., two 

reflections and three re-measurements. Additional delays due to the process cause the
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optimizer to continually work with bad measurements and the simplex sense of direction 

is dependent on good measurements.

2.5.12 Category 12 Tests

Category 12 tests are basic tests indicating adaptive optimizer stability issues. W ith the 

addition o f process lag in previous tests, it has been seen that the control loop oscillation 

period changed substantially, which led to an investigation o f stability boundaries. For 

these tests the natural period o f the closed loop is observed from the time plots of the 

process variable response to a step change in the performance function targets.

Since the change in manipulated variable is fixed by the size of the simplex, which, 

however, may contract and expand in specific step sizes, it is difficult to compare the 

controller gain to a proportional type controller. However, on average, over a number of 

samples, the change in manipulated variable is calculated and the average change in 

measured variable is also noted. The average gain of the adaptive optimizer controller is 

calculated as follows:

Kc 1 (2.17)a v g  N

Z [ a* ,(0+ A x2(0]

where

Avi (0 = yi M - y2 (t - 0 and M= ( 0  - *i (* - 0 (2 .18)
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are the sampled time differences for the process output and process input variables, 

respectively, for the N  samples of the test.

By the Bode stability criteria, a closed loop linear system is stable when its amplitude 

ratio is less than 1.0 at its critical frequency, which is the frequency at which the feedback 

signal lags the input signal by 180 degrees, and is unstable if  its amplitude ratio is greater 

than 1.0 at its critical frequency. The total lagging phase angle in degrees is calculated 

from

(  ̂ 60^
<f> = tan~‘(-tf> r)-& y  -----  , (2.19)

V 2 k  )

where r  is the process lag time, 6 is the system delay time and co is the closed loop 

frequency in radians per second. The amplitude ratio is the open loop ratio of the output 

signal over the input signal,

K cK n
, ; /  (2.20) 

yJT 0) +1

where K p is the process gain and K c is the controller gain.

From the above equations, the expected controller gain K c can be calculated when the 

system exhibits oscillation, where the process gain K p = 1. The expected controller gain 

K c can be compared to the numerically calculated gain of the adaptive optimizer for the 

purpose of determining if the adaptive optimizer is violating the Bode stability criteria.

The following are the Category 12 tests.
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•  F ig u re  2 .3 4 , C ase  12.0 -  P ro c e ss  L ag s =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r  n o ise , N o  s im p le x  co n tra c tio n  o r

ex p an s io n ; In itia l s im p lex  size  =  15.0; S tep  ta rg e t ch an g es ; A S E S  =  307

•  F ig u re  2 .3 5 , C ase  12.2 -  P ro c e ss  L ag s =  5 .0 ; N o  p ro cess  in te rac tio n  o r  n o ise , N o  s im p le x  c o n tra c tio n  o r

ex p an s io n ; In itia l s im p lex  size  =  15.0; S tep  ta rg e t ch an g es ; A S E S  =  756

For the following calculations, it has been assumed that the adaptive optimizer presents 

an inherent average delay of six sample times, as observed in most response tests, to the 

control loop. This delay is due to reflections, re-measurements and contractions or 

expansions. Using this delay, and the process lags from the above tests, and the measured 

oscillation frequency from the test cases 12.0 and 12.2, the lagging phase angle is 

calculated from equation 2.19. If this lagging phase angle is close to 180 degrees, then the 

system may be at its critical frequency and the controller gain value may support the 

observed oscillations as instability. The expected controller gain is calculated from 

equation 2.20.

Results are shown in the following table.

Test Case co, frequency <f>, phase angle K c, gain

12.0 0.3925 -184.5 1.54

12.2 0.19625 -112.5 (Not Calculated)

In Case 12.0 the expected controller gain did not compare against the measured controller 

gain produced by the simulation software using Equation 2.17, which returned a value of
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0.30. Case 12.2 calculations did not indicate instability, even though the control loop 

exhibits some oscillation under those conditions. The conclusion is that the observed 

oscillations are a result of the properties o f the simplex and not the process dynamics, and 

that there is not a direct method of applying the Bode stability theory with the adaptive 

optimizer.

2.5.13 Category 13 Tests

Category 13 tests are basic tests indicating adaptive optimizer tuning issues.

Tuning the adaptive optimizer consists of specifying an initial simplex size, selecting the 

contraction and expansion method and choosing a contraction factor. As previously 

stated, the selection o f the contraction and expansion method will likely depend on the 

type of performance function being used and whether a threshold parameter is easily 

specified. The initial simplex size and the contraction factor choices are determined 

somewhat by the expected nature of the performance function perturbations and the level 

of noise in the system. The contracted simplex size must be able to provide performance 

function value changes that are greater than the mean noise level. The initial simplex size 

must be of sufficient size to allow fast convergence under a step change in performance 

function, but not too large as to create significant oscillation deviations at steady state.
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The following tests all have a contraction factor o f 0.25, which provides a halving o f the 

contracted simplex size compared to the contraction factor o f 0.5 used in all of the 

previous tests.

•  F ig u re  2 .3 6 , C a se  13.0 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  s im p lex  c o n tra c tio n  or 

ex p an s io n ; In itia l s im p le x  size  =  10.0; S tep  ta rg e t ch an g es; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  190 

(C o m p a re d  to  A S E S  =  230 , C ase  2 .0 )

•  F ig u re  2 .3 7 , C a se  13.1 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  s im p lex  co n tra c tio n  or 

ex p an s io n ; In itia l s im p lex  size =  10.0; R a m p  ta rg e t ch an g es ; C o n tra c tio n  fa c to r  =  0 .2 5 ; A S E S  =  96 

(C o m p ared  to  A S E S  =  94 , C ase  2 .1 )

•  F ig u re  2 .3 8 , C ase  13.2 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; R a n k in g  s im p lex  co n tra c tio n  o r  

ex p an s io n ; In itia l s im p lex  size =  10.0; S tep  ta rg e t ch an g es; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  314  

(C o m p ared  to  A S E S  =  283 , C ase  2 .2 )

•  F ig u re  2 .39 , C a se  13.3 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; R a n k in g  s im p lex  co n tra c tio n  o r  

ex p an s io n ; In itia l s im p lex  size  =  10.0; R a m p  ta rg e t ch an g es ; C o n tra c tio n  fa c to r  =  0 .25 ; A S E S  =  125 

(C o m p ared  to  A S E S  = 1 1 8 ,  C ase  2 .3 )

•  F ig u re  2 .40 , C a se  13.4 -  P ro cess L ag s  =  3 .0 , N o  P ro c e ss  in te rac tio n  o r  N o ise , T h re sh o ld  s im p lex  c o n tra c tio n  

o r ex p an s io n ; In itia l s im p lex  size =  10 .0 ; S tep  ta rg e t ch an g es ; C o n tra c tio n  fa c to r  =  0 .2 5 ; A S E S  =  2 6 0  

(C o m p ared  to  A S E S  =  260 , C ase  4 .0 )

The ASES for both types of performance function perturbations improved slightly when

using the threshold method of contraction and expansion. The ASES for both types o f

performance function perturbations diminished slightly when using the ranking method

of contraction and expansion. In general, tuning o f the simplex size and contraction factor

with the threshold method of contraction and expansion can improve the control

performance by allowing closer convergence at steady state and faster convergence on a

step change. The last test plot, Case 13.4, compared to Case 4.0, indicates that by

decreasing the contraction factor, the control loop may become more oscillatory. Because
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of the simplex re-measurement cycle, any contraction or expansion step will add some 

delay to the system.

The following tests allow sequential contraction levels. The adaptive optimizer is able to 

contract more than one level. After the first contraction, a second level of contraction, 

using the same contraction factor, can be enabled if  the contraction criteria, i.e., using 

either contraction method, is met. This allows better convergence at steady state but 

requires a penalty of additional delay in responding to further step changes and often 

provides poorer control performance under ramping changes with the ranking method of 

contraction and expansion.

•  F ig u re  2 .4 1 , C ase  13.6 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  s im p lex  c o n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t ch an g es; C o n trac tio n  fa c to r  =  0 .5 ; T w o co n tra c tio n  levels; 

A S E S  =  2 6 7

•  F ig u re  2 .4 2 , C ase  13.7 -  N o  p ro cess d y n a m ic s , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  s im p le x  co n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size  =  10.0; R a m p  ta rg e t ch an g es; C o n trac tio n  fa c to r  =  0 .5 ; T w o  c o n tra c tio n  

levels; A S E S  =  91

•  F ig u re  2 .4 3 , C ase  13.8 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r  no ise ; R a n k in g  s im p lex  c o n tra c tio n  o r 

ex p an s io n ; In itia l s im p lex  size  =  10.0; S tep  ta rg e t ch an g es ; C o n tra c tio n  fa c to r  =  0 .5 ; T w o  c o n tra c tio n  levels; 

A S E S  =  353

•  F igu re  2 .4 4 , C ase  13.9 -  N o  p ro cess d y n a m ic s , p ro c e ss  in te rac tio n  o r  no ise ; R a n k in g  sim p lex  co n tra c tio n  o r 

ex p an sio n ; In itia l s im p lex  size  =  10.0; R a m p  ta rg e t ch an g es; C o n trac tio n  fac to r  =  0 .5 ; T w o  c o n tra c tio n  

levels; A S E S  = 1 1 7

2.6 General Conclusions
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The following are general conclusions on adaptive optimizer performance based on the 

system testing:

• Without the use of simplex expansion and contraction, the optimizer is capable of 

tracking step changing or ramping target functions.

• The size o f the simplex, as indicated by the length o f one side o f the simplex, is 

important in determining the average error offset from steady state conditions, and 

also in determining the average tracking error when ramping target functions are 

used.

• A larger simplex size means a larger average error under the condition where no 

simplex contraction is allowed.

• A simplex size that is too small causes additional system lag due to the limited 

size of the reflected moves, when no expansion is allowed.

• Contraction of the simplex, as provided by both expansion and contraction 

methods, will reduce the average steady state offset and ramping tracking error.

• The threshold and ranking methods o f expansion and contraction may allow 

further reduction of average offset error from steady state conditions with a 

smaller contraction factor.

• With prudent choices o f initial simplex size and performance function threshold 

value, the adaptive optimizer can track ramping target functions as effectively as 

the tracking of step changing target functions.

•  Process noise, at lower levels, can be accommodated with the adaptive optimizer, 

given both types of system perturbations, i.e., step changes or ramping functions.
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System control performance is not adversely affected, under lower levels o f added 

process noise, when optimizer contraction levels are allowed.

• Process bias or gain levels are not a problem for the adaptive optimizer, in the 

sense that longer term offset error is eliminated by the inherent integral nature of 

the direct search method.

• Re-measurement o f all simplex points, if reflection cycles fail to improve the 

simplex position and on a re-sizing of the simplex, is important for the best 

control performance. Partial re-measurement of the simplex degraded the control 

performance in all of the test conditions.

• The extended reflections surrounding the best point of the simplex are generally 

not useful in improving control performance.

• Process delay cannot be counteracted with the adaptive optimizer. Any delay of 

more than one time unit for either process variable causes continuous directional 

problems for the feedback control.

• There are costs in using the adaptive optimizer in the absence of a process model. 

Besides the problem of not being able to compensate for system dead-time, the 

adaptive optimizer must continually probe the process, and thus the process 

outputs will always be in active flux.
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Figure 2.9 Case 1.0
N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  s im p le x  co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10.0; 

S tep  ta rg e t chan g es; A S E S  =  295

100

80

~  60 c
CL0
01

a  40

20

0
0 50 100 150

T  i m o

Figure 2.10 Case 1.1
N o  p ro cess  d ynam ics, p ro cess  in te rac tio n  o r  no ise ; N o  s im p le x  co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  size  =  10.0; 

R a m p  ta rg e t chan g es; A S E S  =  139
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Figure 2.11 Case 1.2
N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; N o  s im p le x  co n trac tio n  o r  e x p a n s io n ; In itia l s im p le x  s iz e  =  5 .0 ; 

S tep  ta rg e t ch an g es; A S E S  =  264
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Figure 2.12 Case 1.3
N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r no ise ; N o  s im p lex  co n trac tio n  o r  e x p a n s io n ; In itia l s im p lex  size  =  5 .0 ; 

R a m p  target chan g es; A S E S  = 1 1 6
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Figure 2.13 Case 2.0
N o p ro cess  d y n a m ic s , p ro cess  in te rac tio n  o r  no ise ; T h re sh o ld  m e th o d  s im p lex  co n tra c tio n  o r  ex p an s io n ; In itia l sim p lex  

size =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  2 3 0
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Figure 2.14 Case 2.1
N o  p ro cess d y n am ics , p ro cess  in te rac tio n  o r  no ise ; T h re sh o ld  m e th o d  sim p lex  c o n tra c tio n  o r  ex p an sio n ; In itia l s im p lex  

size =  10.0; R a m p  ta rg e t ch a n g e s ; A S E S  =  94
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Figure 2.15 Case 2.2
N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r no ise ; R a n k in g  m e th o d  sim p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  

size =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  283
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Figure 2.16 Case 2.3
N o p ro cess  d y n a m ic s , p ro c e ss  in terac tio n  o r no ise ; R an k in g  m e th o d  sim p lex  co n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  

size =  10.0; R a m p  ta rg e t ch an g es; A S E S  = 1 1 8
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Figure 2.17 Case 3.0
P ro c ess  L ag s  =  3 .0 ; N o  p ro cess  in te rac tio n  o r  n o ise ; N o  s im p lex  co n trac tio n  o r  e x p a n s io n ; In itia l s im p lex  s iz e  =  10.0; 

S tep  ta rg e t ch a n g e s ; A S E S  =  362
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Figure 2.18 Case 3.1
P ro c ess  L ag s =  3 .0 ; N o  p ro cess  in terac tio n  o r n o ise ; N o  sim p lex  co n trac tio n  o r  e x p a n s io n ; In itia l s im p lex  s iz e  =  10.0; 

R a m p  ta rg e t ch an g es; A S E S  =  166
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Figure 2.19 Case 3.2
P ro c ess  L ag s  =  6 .0 , N o  p ro cess  in te ra c tio n  o r  n o ise ; N o  s im p lex  co n tra c tio n  o r  ex p an s io n ; In itia l s im p le x  s iz e  =  10.0; 

S tep  ta rg e t chan g es; A S E S  =  737
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Figure 2.20 Case 4.0
P ro c ess  L ag s =  3 .0 ; N o  p rocess in te rac tio n  o r  n o ise ; T h re sh o ld  m e th o d  s im p le x  co n trac tio n  o r  ex p an s io n ; In itia l 

s im p lex  size =  10.0; S tep  ta rg e t ch a n g e s ; A S E S  =  2 6 0
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Figure 2.21 Case 4.2
P ro c e ss  L ag s  =  3 .0 , N o  p ro c e ss  in te rac tio n  o r  no ise ; R a n k in g  m e th o d  sim p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  

size  =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  6 0 7
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Figure 2.22 Case 5.0
N o ise  =  2 .0 , N o  p ro cess  in te rac tio n  o r p ro c e ss  d y n am ics ; N o  sim p lex  co n trac tio n  o r  ex p an s io n ; In itia l s im p lex  s iz e  = 

5 .0 ; S tep  ta rg e t ch an g es; A S E S  =  407
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Figure 2.23 Case 5.1
N o ise  =  2 .0 , N o  p ro cess  in te rac tio n  o r p ro c e ss  d y n am ics ; N o  s im p le x  co n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  s iz e  =  

5 .0 ; R a m p  ta rg e t ch an g es; A S E S  = 1 2 3
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Figure 2.24 Case 5.2
N o ise  =  4.0 , N o  p ro cess  in te rac tio n  o r p ro cess  d y n am ics ; N o  s im p le x  co n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  size  = 

5 .0 ; S tep  ta rg e t ch an g es ; A S E S  =  524
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Figure 2.25 Case 6.0
N o ise  =  2.0 , N o  p ro cess  in te rac tio n  o r  p ro cess d y n am ics ; T h re sh o ld  m e th o d  s im p le x  co n tra c tio n  o r  ex p an s io n ; In itia l 

sim p lex  size  =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  280
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Figure 2.26 Case 6.2
N o ise  =  2 .0 , N o  p ro cess  in te rac tio n  o r p rocess d y n am ics ; R a n k in g  m e th o d  s im p lex  co n tra c tio n  o r expan sio n ; In itia l 

sim p lex  size  =  10.0; S tep  target chan g es; A S E S  =  399
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Figure 2.27 Case 7.0
P ro c ess  in te rac tio n ; N o  n o ise  o r  p ro cess  d y n am ics ; N o  s im p lex  co n tra c tio n  o r  ex p a n s io n ; In itia l s im p lex  s iz e  =  5 .0 ; 

S tep  ta rg e t ch an g es ; A S E S  =  238
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Figure 2.28 Case 7.1
P ro c ess  in te rac tio n ; N o  no ise  o r p ro cess d y n am ics ; N o  s im p lex  co n tra c tio n  o r  e x p a n s io n ; In itia l s im p lex  s iz e  =  5 .0 ; 

R a m p  ta rg e t chan g es; A S E S  =  124
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Figure 2.29 Case 8.0
P ro cess in te rac tio n ; N o  n o ise  o r  p ro cess  d y n a m ic s ; T h re sh o ld  m e th o d  sim p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  

size =  10 .0 ; S tep  ta rg e t ch an g es; A S E S  =  211

100

80

40

20

100 150500
Time

Figure 2.30 Case 8.2
P ro cess in te rac tio n ; N o  no ise  o r  p ro c e ss  d y n a m ic s ; R a n k in g  m e th o d  s im p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  

size  =  10.0; S tep  ta rg e t chan g es; A S E S  =  2 7 8
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Re-Measure All Points

Original Test

Re-Measure 

Best and Next 

Best Points Only

Re-Measure 

Best Point 

Only

F ig u re  2 .1 1 , C ase  1.2 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te ra c tio n  o r 

no ise ; N o  sim p lex  c o n tra c tio n  o r e x p a n s io n ; In itia l s im p le x  size  =  5 .0 ; 

S tep  ta rg e t ch an g es ; A S E S  =  2 6 4

ASES = 353 ASES =412

F igure  2 .1 2 , C a se  1.3 -  N o  p ro c e ss  d y n a m ic s , p ro c e ss  in te rac tio n  o r 

n o ise ; N o  sim p lex  c o n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  size  =  5 .0 ; 

R am p  ta rg e t ch an g es; A S E S  = 1 1 6

ASES = 249 ASES = 265

F ig u re  2 .1 3 , C a se  2 .0  - N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r 

no ise ; T h resh o ld  m eth o d  sim p lex  c o n tra c tio n  o r  e x p a n s io n ; In itia l 

sim p lex  size  =  10.0; S tep  ta rg e t ch a n g e s ; A S E S  =  2 3 0

ASES = 239 ASES = 322

F igure  2 .1 4 , C ase  2.1 -  N o  p ro c e ss  d y n a m ic s , p ro c e ss  in te rac tio n  o r 

no ise ; T h resh o ld  m eth o d  sim p lex  co n tra c tio n  o r  ex p a n s io n ; In itia l 

sim p lex  size  =  10.0; R a m p  ta rg e t ch a n g e s ; A S E S  = 9 4

ASES = 157 ASES = 207

F ig u re  2 .1 5 , C ase  2 .2  -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r 

no ise ; R a n k in g  m e th o d  sim p lex  co n tra c tio n  o r  ex p a n s io n ; In itia l 

sim p lex  size  = 10.0; S tep  ta rg e t ch an g es ; A S E S  = 283

ASES = 388 ASES = 393

F igu re  2 .1 6 , C ase  2 .3 -  N o  p ro cess  d y n a m ic s , p ro c e ss  in te rac tio n  o r 

no ise ; R a n k in g  m e th o d  sim p lex  c o n tra c tio n  o r  ex p a n s io n ; In itia l 

s im p lex  size  = 10.0; R a m p  ta rg e t ch a n g e s ; A S E S  = 1 1 8

ASES = 230 ASES = 332

F ig u re  2 .1 7 , C ase  3 .0  -  P ro c ess  L ag s = 3 .0 ; N o  p ro c e ss  in te rac tio n  or 

no ise ; N o  sim p lex  co n trac tio n  o r  ex p an s io n ; In itia l s im p le x  size  = 

10.0; S tep  ta rg e t ch an g es ; A S E S  = 3 6 2

ASES =412 ASES = 572

F ig u re  2 .1 8 , C ase  3.1 -  P ro c ess  L ags =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r 

no ise ; N o  sim p lex  co n trac tio n  o r  e x p a n s io n ; In itia l s im p lex  size  =

ASES = 214 ASES = 264
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10.0; R am p  ta rg e t ch an g es ; A S E S  =  166

F ig u re  2 .2 0 , C a se  4 .0  -  P ro c ess  L ag s =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r 

n o ise ; T h re sh o ld  m e th o d  s im p le x  c o n tra c tio n  o r  ex p an s io n ; In itia l 

s im p lex  size  =  10 .0 ; S tep  ta rg e t ch a n g e s ; A S E S  =  2 6 0

ASES -  503 ASES = 499

F ig u re  2 .2 1 , C a se  4 .2  -  P ro c e ss  L ag s =  3 .0 , N o  p ro cess  in te rac tio n  o r 

n o ise ; R a n k in g  m e th o d  s im p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l 

s im p lex  size  =  10.0; S tep  ta rg e t ch an g es ; A S E S  =  607

ASES = 677 ASES = 622

F ig u re  2 .25 , C a se  6 .0  -  N o ise  =  2 .0 , N o  p ro c e ss  in te rac tio n  o r  p ro cess 

d y n am ics; T h re sh o ld  m e th o d  s im p lex  co n trac tio n  o r ex p an s io n ; In itial 

sim p lex  size  =  10 .0 ; S te p  ta rg e t ch an g es ; A S E S  =  280

ASES =  281 ASES =  349

F ig u re  2 .27 , C a se  7 .0  -  P ro c e ss  in te ra c tio n ; N o  n o ise  o r  p ro c e ss  

d y n am ics; N o  s im p le x  co n tra c tio n  o r ex p an s io n ; In itia l s im p le x  s iz e  =  

5 .0 ; S tep  ta rg e t ch an g es ; A S E S  =  1136

ASES =  1350 ASES = 1505

C ase 8 .2  -  P ro c e ss  in te rac tio n ; N o  n o ise  o r  p ro cess  d y n am ics ; R a n k in g  

m eth o d  sim p lex  co n tra c tio n  o r  ex p an s io n ; In itia l s im p lex  size =  10.0; 

S tep  ta rg e t ch an g es; A S E S  =  772

ASES = 1523 ASES = 1422

Table 2.1 Comparison of Adaptive Optimizer Re-Measurement Cycle Options
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Figure 2.31 Case 10.1
P ro c e ss  L ag s =  3 .0 ; N o  p ro cess  in te rac tio n  o r  n o ise ; R a n k in g  m eth o d  s im p lex  co n tra c tio n  o r  ex p an sio n ; N o  ex ten s io n  

o p tio n ; In itia l s im p lex  s iz e  =  10.0; R am p ta rg e t ch an g es ; A S E S  =  2 7 6
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Figure 2.32 Case 10.3
P ro c ess  L ag s =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r  no ise ; R a n k in g  m eth o d  sim p lex  c o n tra c tio n  o r  ex pansion ; E x te n s io n  

o p tio n ; In itia l s im p lex  size  =  10.0; R am p  ta rg e t ch an g es ; A S E S  =  204
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Figure 2.33 Case 11.0
P ro c e ss  L ag s =  3 .0 ; D elay  =  3 .0 ; N o  p ro c e ss  in te rac tio n  o r n o ise , N o  s im p lex  c o n tra c tio n  o r ex p an s io n ; E x te n sio n  

o p tio n ; In itia l s im p le x  size  =  10.0; S tep  ta rg e t ch an g es; A S E S  =  946
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Figure 2.34 Case 12.0
P ro cess L ags =  3 .0 ; N o  p ro cess  in te rac tio n  o r  n o ise , N o  sim p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p le x  s iz e  =  15.0; 

S tep  ta rg e t ch an g es ; A S E S  =  307
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Figure 2.35 Case 12.2
P ro c ess  L ag s  =  5 .0 ; N o  p ro c e ss  in te rac tio n  o r  no ise , N o  sim p lex  co n trac tio n  o r  ex p an s io n ; In itia l s im p le x  s iz e  =  15.0; 

S tep  ta rg e t ch an g es ; A S E S  =  756
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Figure 2.36 Case 13.0
N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r n o ise ; T h re sh o ld  s im p lex  co n trac tio n  o r  ex p an s io n ; In itia l s im p le x  size  : 

10.0; S tep  ta rg e t ch an g es ; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  190 (C o m p ared  to  A S E S  =  2 3 0 , C ase  2 .0 )
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Figure 2.37 Case 13.1
N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; T h re sh o ld  s im p lex  c o n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  size  

10.0; R a m p  ta rg e t ch an g es ; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  9 6  (C o m p ared  to  A S E S  =  121, C ase  2 .1 )
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Figure 2.38 Case 13.2
N o  p ro c e ss  d y n am ics , p ro c e ss  in te rac tio n  o r  no ise ; R a n k in g  s im p lex  c o n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  size  = 

10.0; S tep  target ch an g es; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  3 1 4  (C o m p ared  to  A S E S  =  2 8 3 , C ase  2 .1 )
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Figure 2.39 Case 13.3
N o  p ro c e ss  d y n am ics , p ro cess  in te rac tio n  o r  n o ise ; R a n k in g  sim p lex  co n trac tio n  o r  e x p a n s io n ; In itia l s im p lex  s i z e : 

10.0; R a m p  ta rg e t ch an g es; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  125 (C o m p ared  to  A S E S  = 1 1 8 ,  C a se  2 .2 )
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Figure 2.40 Case 13.4
P ro cess L ag s =  3 .0 , N o  P ro c e ss  in te rac tio n  o r  N o ise , T h re sh o ld  s im p lex  c o n tra c tio n  o r  ex p a n s io n ; In itia l s im p le x  s iz e  

10.0; S tep  ta rg e t ch an g es; C o n tra c tio n  fac to r  =  0 .2 5 ; A S E S  =  2 6 0  (C o m p ared  to  A S E S  =  2 6 0 , C a se  4 .0 )
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Figure 2.41, Case 13.6
N o  p ro cess  d y n a m ic s , p ro cess  in te rac tio n  o r  no ise ; T h re sh o ld  s im p lex  co n tra c tio n  o r  ex p an s io n ; In itia l s im p le x  size  

10.0; S tep  ta rg e t ch a n g e s ; C o n trac tio n  fac to r  =  0 .5 ; T w o  co n trac tio n  levels; A S E S  =  2 6 7
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Figure 2.42, Case 13.7
N o  p ro cess  d y n am ics , p ro cess  in te rac tio n  o r  no ise ; T h re sh o ld  sim p lex  c o n tra c tio n  o r  ex p an s io n ; In itia l s im p le x  size  

10.0; R am p ta rg e t ch an g es; C o n trac tio n  fac to r =  0 .5 ; T w o  co n trac tio n  levels; A S E S  =  91
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Figure 2.43, Case 13.8
N o  p ro cess  d y n am ics , p ro c e ss  in te rac tio n  o r  n o ise ; R a n k in g  s im p le x  c o n tra c tio n  o r  e x p a n s io n ; In itia l s im p le x  s iz e  

10.0; S tep  ta rg e t chan g es; C o n trac tio n  fac to r  =  0 .5 ; T w o  co n tra c tio n  levels; A S E S  =  353
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Figure 2.44, Case 13.9
N o  p ro cess  d y n am ics , p ro cess  in te rac tio n  o r  no ise ; R a n k in g  s im p le x  co n trac tio n  o r  e x p a n s io n ; In itia l s im p le x  s iz e  

10.0; R am p  ta rg e t ch an g es; C o n trac tio n  fa c to r  =  0 .5 ; T w o  co n trac tio n  levels; A S E S  = 1 1 7
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Chapter Three: Modeling The Plant -  A Thermo-Mechanical Pulping (TMP) 
Screening Room

3.1 Introduction

The targeted process for the adaptive optimizer, as described in chapter two, is the pulp 

screening system found in thermo-mechanical pulping mills. In particular, the screening 

room system of the Bowater TMP plant, Thunder Bay, Ontario, Canada, is modeled for 

the purpose of further investigation o f the adaptive optimizer as a controller. The pulp 

screens are the manipulated components of the system while pulp qualities, such as mean 

fibre length distributions, comprise the measured variables. Modeling of the pulp screens 

per fibre length distributions and other pulp properties is based on early work by Gooding 

and Kerekes [21] and on later work by Olson, Allison et. al [22,23,24,25],

3.2 TMP Screening Room

In a traditional system where the screen baskets have had smooth holed apertures, the 

screening process may be configured as in Figure 3.1, where flow feedback between the 

primary and secondary screening levels allows for re-screening and re-refming. A 

simplified schematic of the Bowater screening room is shown in Figure 3.2. With the use 

of slotted apertures in the main line screen baskets, flow feedback from the secondary 

screens to the main line screens is not used. The main line screens operate in parallel 

while their reject streams are thickened, re-refined and re-screened in the rejects system. 

Currently, the four main line screens use slotted aperture wedge wire baskets while the
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reject screens have smooth holed apertures. The aperture type determines the parameters 

for the screen models. The rejects stream flows from the rejects system screens are not 

recycled back to the main screens feed after reject refining, but are delivered to the 

cleaners.

3.3 Screen Operation

Figure 3.3, from Hautala et. al [28,26], shows a view of a modem pressure screen. Pulp 

enters the screen via the feed port and travels towards the reject port through the center of 

the basket. There is a foil-style rotor inside the basket that imparts a rotary motion to the 

pulp suspension inside the basket. The dominant velocity component is tangential to the 

basket surface, while at the apertures there is a radial velocity in proportion to the flow 

being taken off as accepts. The fibres that are accepted are those that are small enough or 

flexible enough to manage the momentum change from tangential to radial before they 

get swept past the aperture. Long stiff fibres and shives, which are incompletely 

separated fibre bundles, do not manage that transition, and so tend to remain inside the 

basket and exit with the rejects. Dilution water or shower water, as it has been 

traditionally called, is typically applied to the screen basket surface to wash smaller fibres 

through the screen and to help prevent plugging of the screen. The added dilution water 

counters the tendency of the screen to increase the consistency on the rejects side, 

internal to the basket. The rejects pulp stream is then passed to a refining system where 

the longer fibres are further processed into more flexible fibres with better bonding 

characteristics.
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Pulp screens have been traditionally used to separate wood impurities, such as shives, 

chop and coarse fibres, from the wood fibres that are usable in the paper making process 

[27]. Pressure screens can also be used to fractionate pulp streams according to other pulp 

properties such as fibre length. Fractionation according to fibre length occurs primarily as 

a probability function, dependent on the fibre characteristics and flexibility, as described 

in the previous paragraph, and screen operating conditions [22,27]. Slotted holed and 

smooth holed screen baskets fractionate according to fibre length in a similar way but 

with different probability functions for the separate fibre length fractions, i.e., fines, 

medium and longer [23,25].

In general, the probability of fibres o f a given length passing through the screen is 

determined by a number of factors in the operation o f the screen, including pulp and 

dilution flow rates, rotor speed and basket design. The usual way o f manipulating screen 

operation for control o f shive removal and mean fibre length o f the accepts pulp is to 

adjust the ratio of the rejects flow to the feed flow. An increased rejects ratio will cause a 

greater portion of the total pulp feed flow to be passed on to the rejects refining system. 

As well, the change in rejects ratio affects the probabilities o f individual fibre length 

fractions passing through the screen. Slotted holed screens and smooth holed screens 

different somewhat in the nature of this effect. The rejects ratio can therefore be used to 

manipulate the screen operation towards controlling optimum conditions involving fibre 

length distributions of the pulp flow to the paper machines.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Screen Controls

Figure 3.4 shows a graphic from a simulation of the control scheme for the main line 

screens. Both the shower flow and the rejects flow are proportioned volumetrically to the 

feed flow by ratio controllers. Typical ratio targets shown are for the main line screens, 

i.e., 9.2 % and 27.0 %, shower dilution and rejects respectively. All flows are shown in 

units of litres/min. and represent typical plant operating conditions. Normal operating 

pulp consistencies are shown in larger font text as 2.70 %, 2.16 % and 3.42 %, - feed 

flow, accepts flow and rejects flow respectively.

A differential pressure control scheme is used to maintain the accepts flow within 

reasonable limits, particularly to help prevent screen plugging. Should the differential 

pressure across the screen (feed to accepts) rise, indicating possible plugging, the 

controller will cause the accepts flow valve to close, further reducing the accepts flow. A 

momentary backwash effect should then clear the screen due to more feed and shower 

flow passing through to the rejects stream. Alternatively, if  the differential pressure 

across the screen decreases, the accepts valve will open and the screen can return to a 

better flow balance.

The rejects system screens are controlled in the same manner as the main line screens, but 

operating conditions, particularly the flow ratio targets, have different nominal operating 

points.
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3.5 Screen Modeling

Modeling o f screen operation as to the probability of fibre length fractions passing 

through the screen is quantified by ‘passage ratio’, a function specified in the work of

length /, has been defined as the ratio between the consistency o f the pulp passing 

through an aperture of the screen, cs(l), and the feed or upstream consistency cu(l), i.e.,

A constant coarseness is assumed for fibres of all lengths.

A plug flow model of the screen flows is based on a material balance as derived by 

Gooding and Kerekes, and as shown in Figure 3.5.

Assuming perfect radial mixing between the screen basket plate and the rotor and no 

axial mixing on the feed side o f the screen basket, the material balance in an annular 

element of thickness dz is:

where Q refers to volumetric flow  and c refers to consistency and the subscript z  is the 

axial direction, feed to rejects in the screening zone.

Assuming that dc,dQz approximates to zero, this equation can be rewritten as:

Integrating Equation (3.3) for the axial length of the screening zone, i.e., from feed to 

rejects, yields the following:

Gooding and Kerekes [21]. The passage ratio o f a pulp, Pp{l), as a function of fibre

(3.1)

Q z Cz =  (Q : ~  d Q : \ Cz -  dC,)+PpCtdQ, , (3.2)

(3.3)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- r (0  _
/  \^('H

(3.4)
x * f  )

where subscript/ refers toyfeed and subscript r refers to rejects. Since the volumetric 

reject ratio, RRV, is Q - ,  and the rejects thickening factor, RTF, is ° r̂ ( I , Equation 3.4
Qf cA l )

can be written as:

RTF(l) = { R R j p{‘h\  (3.5)

Equation (3.5) can be rewritten as

Following the work o f Olson et. al [22,23,24,25], screen passage ratios as a function of 

fibre length, Pp(l), have been determined experimentally for smooth holed and slotted

screen basket types. An ideal passage ratio function, assuming that fibres less than 2.0 

mm in length are to be accepted and fibres of length greater than 2.0 mm are to be 

rejected, would have a value of 1.0 for the shorter fraction and a value o f 0.0 for the 

longer fraction with a sharp cutoff point at 2.0 mm. Passage ratio functions for both 

screen category types, slotted and smooth holed, have been determined in many 

experimental trials by Olson [23,25], and later in a specific trial for the reject screen at 

the Bowater site, by Hennings [18].

Olson determined that typical screen fibre passage ratio functions take the following 

equation form:
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JLT
P , ( / ) = e U J , (3-7)

where / is fibre length in mm and X and /? are constants that shape the function. Olson 

further specifies that /? = 1.0 for smooth holed screens and that /? = 0.5 for slotted holed 

screens.

Given that passage ratio functions can be determined experimentally, a screen model can 

be formulated to calculate the fibre length distribution of the rejects pulp stream if  the 

input feed fibre length distribution is known, as follows:

cr(l) = cf ( l ) ( R R jA ,u . (3.8)

It follows then that the accepts stream fibre length distribution can be computed as the 

difference between the feed and rejects streams distributions.

For the Bowater screening room, the constant X was estimated for the rejects screens as 

having a value of 6.67, taking results from the experimental trial by Hennings [18]. The 

main line slotted screens X was estimated through interpolation from the experimental 

results by Olson [25] as being 32.4.

Importantly, Olson also determined that passage ratio functions for 2.0 mm length fibres 

are independent o f varying reject ratios for both smooth and slotted holed screens.

The Bowater main line screens currently have a slot width o f 0.255 mm. The slot velocity 

was estimated as 3.0 m/s. The 2.0 mm passage ratio was then interpolated from Olson’s 

work as being 0.78, and thus the X constant calculated to 32.4. This value was further
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vetted by interpolation o f the wedge wire slotted screen data, again from Olson’s trial 

work [25].

Figure 3.6 shows the passage ratio functions used in the modeling o f the Bowater plant 

screening room.

3.6 M odeling the P lant

The overall plant model was simplified to be as shown in Figure 3.7. Transport and 

mixing lags in the rejects system pulp storage chests can be introduced into the 

simulation depending on the mill configuration to be modeled. Each connecting line in 

Figure 3.7 is modeled as pulp flow having variable properties o f pulp consistency and 

pulp flow rate, symbolized by C and Q respectively. Consistency is defined as the total 

mass o f pulp fibrous content as a percentage o f the total mass o f pulp content and liquid 

content in the pulp stream.

C =  MassP-UJ l  x 100 . (3.11)
(Mass Pulp + MassLiquid)

For the purpose of plant simulation, each pulp flow contains mass concentration data

stored at discrete fibre length intervals and for a limited range o f fibre lengths. This data

storage mirrors that o f the instrumentation found at the Bowater mill, where the on-line

Pulp Quality Monitoring (PQM) systems measure various pulp quality properties at

discrete intervals of fibre length. These systems provide data over the fibre length range

of 0.05 mm to 7.0 mm in 140 discrete bins, where each bin interval is separated by a fibre
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length o f 0.05 mm. In the following equations, where fibre length / is a variable, it is 

assumed that this variable I refers to discrete data in the above format.

The consistency of each pulp flow is also recorded as a fibre length distribution by 

concentration, where the fibre length / ranges from 0.05 mm. to 7.0 mm, and the 

relationship between concentration c and the consistency C is as follows:

C = £ c ( / ) .  (3-12)
/=0.05

The concentration c(/)is the fraction by the percentage weight o f the fibrous material o f a 

given length / to the total weight of fibrous and liquid material in the pulp stream, i.e., for 

all fibre lengths in the measured range. The pulp flow Q is the pulp flow rate measured as 

a volumetric rate, typically litres/minute, including all fibrous material and liquids.

Pulp flows are also recorded as mass flow distributions by fibre length as follows: 

m(l) = pQ c(l), (3.13)

where p  is the density o f the pulp.

Pulp flows can be combined by addition or distributed by subtraction using mass flow 

distributions. For example, if  QTotal =Q] + Q2, then the total flow consistency CTotal can 

be computed as follows:

_ (C,g, + C2Q2)
^ T o ta l  ~  ( p .  \

\xZTotal )

The mass flow distribution is calculated as

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and fibre length concentration distribution is computed as

(3.16)
Total

Each pressure screen is modeled with three pulp flows, i.e. feed, accepts and rejects, and 

a shower flow. Other screen attributes are the volumetric rejects ratio, RRV and the

passage ratio lambda parameter as per Olson’s screen models, i.e., as per Equation 3.7. 

The main line screens passage ratio function is

A screen balance uses the passage ratio function and the current operating point 

(volumetric rejects ratio) in calculating the rejects flow concentration distribution as in

Equation 3.8 (i.e., cr(l) = cf (l){RRvYpi'l^]), where Pp is either Pm or Pr as above in 

Equations 3.17 or 3.18, and where cr is the rejects flow concentration and cf  is the feed 

flow concentration for a given fibre length /.

The accepts flow concentration distribution is calculated as follows:

(3.17)

while the rejects screen passage ratio function is

(3.18)

(3.19)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ca is the accepts flow concentration, Qa is the volumetric accepts flow rate, mf  is 

the feed mass flow and mr is the rejects mass flow.

Pulp storage time in the rejects system pulp chests is modeled as a simple delay. Typical 

delays in terms of PQM sample times have been determined from nominal mill 

production rates and tank sizes to be in the range o f five to nine PQM sample times, 

where a sample time is ten minutes, for each o f the two storage tanks.

A literature search failed to find any significant data regarding the effects of TMP refiner 

operation on pulp fibre distributions. Therefore, a simple model is proposed whereby the 

refiner reduces the longer length fibre fraction concentration distributions and increases 

the shorter length fraction concentrations by a given percentage factor, while maintaining 

a material balance on the refiner input and output flows. For the longer fraction (i.e., 2.0 

mm to 7.0 mm), each fibre length bin concentration is reduced by a given factor, typically 

0.1 to 0.5, as follows:

c(0 = ( l .O - /M 0 . (3.20)

w here/is  the concentration reduction factor. The finer fibre fractions are categorized as

the short fraction, i.e., up to 0.4 mm in length, and the medium fraction, i.e., between 0.4

mm and 2.0 mm in length. For the purpose of simulation, each discrete fibre length bin is

located at intervals of 0.05 mm. Since the ratio o f the number of bins in the longer fibre

fraction to the sum of number of short and medium fibre fraction bins is 100 bins to 40

bins, or a ratio of 5 to 2, the total concentration loss for each set o f five bins in the longer

fraction is distributed to two bins in the short and medium fibre length fractions. For
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example, the two shortest fibre length bins are increased in concentration as follows:

This operation is repeated twenty times, for each pair of consecutive short and medium 

fibre length concentration bins, i.e, for fibre length bins 0.05 to 1.95 mm. For example,

fibre counts, the summation does not double the number o f fibres in the shorter bins.

In terms o f the control scheme manipulated variables, i.e., the screen reject ratios, the 

plant model can be seen to be further simplified as shown in Figure 3.8. Since the 

optimizer has been restricted to two dimensions, the main screens are to be manipulated 

together in parallel as the first controller output, and with the reject screen manipulation 

as the second controller output. This is normal operating practice for the mill. However, 

given that the pulp sources for the two main line latency chests may be different, the 

main line screens could be manipulated (in pairs) separately as the two controller outputs.

3.7 Screen Simulation

Figure 3.4 shows typical operating and quality conditions for each o f the main line 

screens. All flows are in units o f litres per minute. The feed flow normally has an overall

C(0.05)= c ( 0 .0 5 ) + i y “ “ /c (;) , and

c(o.ioMo.io)+I y “ > (/).

(3.21)

(3.22)

the next pair o f bins are increased accordingly as c(0.15) = c(0.15) + ”  fc (I) and

c(0.20) = c(0.20) + ^ - ^ " 2  30 / c(0  • Since the bins contain mass concentrations and not 
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consistency o f about 2.7 %, which thickens to about 3.4 % in the rejects stream, if  the 

volumetric rejects to feed flow ratio is 27.0 % and the volumetric shower to feed flow 

ratio is 9.2 %, as shown.

Figure 3.9 plots operational pulp quality conditions involving the operation o f the main 

line screens. The plot shows typical pulp concentration fibre length distributions for the 

feed flow, as a percentage concentration, and the subsequent resultant concentrations for 

the rejects and accepts flows, again as percentages, given the same operating conditions 

as shown in Figure 3.4. Note that the rejects flow has the highest concentrations 

generally, while the accepts flow has the lowest concentrations. Figure 3.10 shows screen 

pulp (mass) flows by fibre length distribution, where the feed flow is the largest and the 

rejects flow is the smallest and where units are kg/min.

The feed flow concentration, as shown in Figure 3.9, follows a log normal distribution, in 

which the logarithm of a variable has a normal distribution. Disturbances will be 

introduced into the system in later tests by adjusting the mean value for the feed flow log 

normal distribution for the pulp mass concentration. The feed flow concentration 

distribution is calculated from the feed flow consistency C as follows:

( In  ( /  ) - q ) 2 

-> /? 2

(3.23)

where a  = In (mean) -  . The variable f3 is the variance o f the distribution.
2
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Removal efficiency [22,23,24,25] is defined as the mass flow rate o f the fibres in the 

reject stream divided by the mass flow rate of fibres in the feed stream, as follows:

‘ ® = t M i \ = r r ' S c v \- <3,24)Q f cA l ) cf  v )

It is a measure o f how well the screen rejects the fibres at each fibre length. An ideal 

screen would have a removal efficiency of 0.0 for the finer fibre fractions and a removal 

efficiency of 1.0 for the longer fibre fraction.

Figure 3.11 shows the removal efficiency by fibre length for the slotted main line screens 

under the same conditions as above, i.e., with the same feed distribution and a volumetric 

rejects ratio, RRV, set to 0.270. Figure 3.12 shows the removal efficiency function for the

slotted main line screens with the same feed fibre length distribution, but where the 

volumetric rejects ratio has been set to 0.178, which is a typical operating point for the 

rejects system screen. In general, the overall removal efficiency improves as the 

volumetric rejects ratio is increased.

Figures 3.13 and 3.14 offer the same removal efficiency functions and using the same 

operating conditions respectively as Figures 3.11 and 3.12, except that the screens have 

been configured as holed screens, instead of slotted screens. It can be seen that holed 

screens provide higher removal efficiencies at all fibre lengths, and particularly higher at 

the longer fibre lengths. As expected, given the passage ratio functions for each type o f 

screen, holed screens provide better fractionation of the feed pulp, i.e., a more efficient 

removal of the longer fibres.
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1.7 3.8 Plant Simulation for Optimization Using Performance Functions

Plant simulation for performance function optimization uses the screening room 

configuration, as shown in Figure 3.7, with two differences. First, the main screens and 

rejects screen are always configured as the same type, i.e., all screens use the slotted 

screen passage ratio, or all screens use the holed screen passage ratio. This was done to 

enable a fair comparison of the system fractionation ability for each type o f screen. 

Secondly, pulp storage delay in the rejects system was eliminated from the simulation. 

This was again done to provide a better fractionation picture and also because the 

adaptive optimizer is later applied to control the system fractionation, and delay is 

difficult for the optimizer to handle. One o f the objectives o f the later simulations is to 

compare the range-ability of fractionation control for each type of screen. Range-ability 

can be described as the range of manipulated variable values over which the manipulation 

causes a sufficient effect on the controlled variable. For example, control valves may 

saturate and provide no additional effect on the plant measured values even though the 

controller is asking for more.

For the performance function simulations, each of the manipulated variables, i.e., main 

line and reject screen volumetric reject ratios, are adjusted independently over a range of 

possible operating values. For each set o f operating values, a performance function index 

value is calculated at system steady state. This performance function is then plotted 

against the volumetric reject ratio operating values, with the volumetric reject ratios as
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independent variables. In the following cases, the manipulated variables are not 

functionally constrained within the limits o f the range o f possible reject ratio values. 

Therefore, the performance functions, for optimization purposes, are considered 

unconstrained.

The main line screen volumetric reject ratios are manipulated independently (in parallel) 

over a range from 0.20 to 0.35 while the reject screen volumetric reject ratio is 

manipulated independently over a range of 0.15 to 0.30.

In the first set of simulations involving the performance function simulations, all o f the 

screens are configured with holed baskets. The second set of performance function 

simulations repeat the conditions of the first set, but the screens are configured with 

slotted baskets.

3.8.1 Performance Function Simulations with Holed Screens

The first performance function, or performance index PI, is the sum of the longer fraction 

concentrations in the screening system out flow as a percentage o f the total sum o f all 

fibre length concentrations in the system out flow. This calculation is as follows:

(3.25)
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where C is the consistency o f the screening system accepts flow as per equation 3.12. 

This performance index ideally has a value o f 0.0 percent for complete fractionation, i.e., 

complete removal o f the longer fraction fibres.

Figure 3.15 shows the performance index PIX as the main line and rejects screens 

volumetric reject ratios are varied independently. As expected from the results o f the 

steady state simulations, a minimum value for the performance index occurs when both 

screens have a maximum volumetric rejects ratio RRV.

The second performance function simulation calculates the performance index as follows:

P I  2 =

y/=035 ( l ) 2
C o - ^ 0  05 100

s C

/=0.3 5 Y

(3.26)
/

where Cs is a target total concentration percentage for the short fibre length fraction and

has a value o f 8.17 per cent. This is the error square of the shorter fraction, and minimally 

should be zero. The target value is determined from operating conditions, and in this 

case, is chosen as being the average value o f the short fraction total concentration 

percentage for the whole range of reject ratio manipulation.

The simulation results are shown in Figure 3.16. Minimum performance index values 

occur when the main screens are operated with a volumetric rejects ratio in the mid-range 

from about 0.24 to 0.30. It is noted that as the main line screens reject ratio is increased, 

the rejects system reject ratio is decreased, in order to achieve a minimum performance
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index value. The main screens play the primary role in fractionation and shive removal 

since the rejects system handles less fibre overall.

The third performance function simulation calculates the performance index as follows:

(3.27)PI 3 =

y / = 1 9 5  /  \  \ 2

q  _ Z >/-0.40CV l1Q0
c

where CM is a target total concentration percentage, for the medium fibre length fraction, 

and it is chosen similarly to the short fraction target, having a value o f 80.57 per cent. 

The simulation results are shown in Figure 3.17 and the landscape o f the performance 

function is similar to the short fraction performance function.

The fourth performance function simulation calculates the performance index as follows:

i/=6.95 \ 2

PI  4 = (3.28)

where CL is a target total concentration percentage, for the long fibre length fraction, and 

it is chosen similarly to the short fraction target, having a value of 11.25 per cent. The 

simulation results are shown in Figure 3.18 and the landscape o f the performance 

function is similar to the short and medium fraction performance function.

The fifth performance function simulation calculates the performance index as follows: 

P I ^ W ,P I ,+ P I „  (3.29)
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where W3 is a weighting factor used to balance the individual medium and long fibre 

fraction error square values. In this case, this weighting factor is arbitrarily set to 10.0 to 

provide an even weighting of each fraction error square value. In practice, mill operations 

may have a different weighting factor. The simulation results are shown in Figure 3.19 

and the landscape o f this sum of error squares performance function is similar to previous 

error square performance functions.

3.8.2 Performance Function Simulations with Slotted Screens

The performance function simulations for the second set are identical to the first set 

except that the screens, both main line and rejects system, are configured as screens with 

slotted basket types. The results are shown in Figures 3.20 through 3.25 and these can be 

compared with the results from Figures 3.15 through 3.19 respectively, which are the 

results for the holed screens.

In general, the results for either screen types are similar. Comparing Figures 3.15 and 

3.20 it can be seen that the holed screens can reduce the longer fraction total 

concentration percentage from the range of 10.8 % to 11.8 % produced by the slotted 

screens, to an approximate range o f 10.4 to 11.4 %. The holed screens have some 

increased measure o f longer fibre removal and thus provide better fractionation o f the 

pulp. In both cases, the feed flow longer fraction total concentration percentage has a 

value of 12.9 per cent.
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Also, it can be seen by comparing the individual fibre fraction performance function 

results, i.e., the short, medium and long fractions, for each screen type, that the 

performance function landscapes for the slotted screens are shallower than the 

corresponding landscapes for the holed screens. The holed screen performance function 

landscapes for the individual fibre fractions, as shown in Figures 3.16 through 3.18, show 

larger values at the extremes of the manipulated rejects ratios than for the slotted screen 

results as per Figures 3.21 through 3.23. This indicates that the errors are higher in value 

at these extremes and therefore the holed screens have a wider range o f control than the 

slotted screens. Again, this is expected from the passage ratio effects for each screen 

type.

3.9 Fractionation Control of the Screening System with the Adaptive Optimizer

The adaptive optimizer is applied to fibre fractionation control in the screening system in 

the following simulation cases where the performance function is P I5, as per Equation 

3.29, i.e., the performance index is the sum of error squares for the total concentration 

percentages for the medium and long fibre fractions. In all cases, all screens are either 

holed or slotted, as indicated in each individual case, and the rejects system delay is 

removed for all but the last two cases. In all cases, the system feed flow fibre length 

distribution initially has a mean value of 0.600 mm, and is step changed sequentially to 

values of 0.595, 0.605 and 0.600 mm, for the purpose of providing disturbances to the 

system.
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For each simulation case, the figure showing the results of the disturbance changes is a 

set of three time series plots, where each time unit is one PQM sample time, which is 

typically ten minutes in an industrial application. The upper plot shows the manipulated 

variables, i.e., the main line screens and the rejects system screen volumetric rejects 

ratios (Main RR and Reject RR), and the performance index {Perf. Index), plotted as a 

function o f time. The performance index value has been scaled up, i.e., multiplied by a 

factor of 50.0, simply to make it significantly more visible on the same vertical axis scale. 

The middle plot shows the medium fraction total concentration percentage value {Med. 

Frac.), along with the medium fraction total concentration percentage target value 

{Target), plotted as a function of time. The lower plot shows the long fraction total 

concentration percentage value {Long Frac.), along with the long fraction total 

concentration percentage target value {Target), plotted as a function of time. The actual 

time of each respective disturbance change can be seen from the performance index chart, 

or either o f the fraction target and measurement charts. When the disturbance is applied, 

the performance index immediately becomes non-zero and there is an immediate 

measurement deviation for each fraction total concentration percentage. For example, in 

Figure 3.25, the approximate times of each respective disturbance is at 60, 150 and 290 

time units.

The adaptive optimizer always has an initial simplex size of 10.0 percent of the 

manipulated variable range, which is the volumetric rejects ratio range of 0.15 to 0.35. 

The refining factor is set to a value o f 0.25, but is changed in one case, for comparison, to 

0.5. Later simulation cases provide simplex contraction and expansion, using both
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adaptive optimizer methods for contraction and expansion. The last pair o f simulation 

cases add delay to the rejects system.

The first simulation case results are shown in Figure 3.25. The main line and reject 

screens are all holed types. There is no simplex contraction or expansion. The adaptive 

optimizer is able to respond to the disturbances and maintain the fibre fraction measured 

variables on target in a repeatable manner.

The second simulation case results are shown in Figure 3.26. The main line and reject 

screens are all slotted types. There is no simplex contraction or expansion. For each 

disturbance step change, the resulting change in manipulated variable, i.e., the volumetric 

rejects ration for each screen, is somewhat larger than the corresponding manipulated 

variable changes for the holed screens, as shown in Figure 3.25. Again, this is evidence 

of a lower control range for the slotted screens, as compared to the holed screens.

From an operating point where the system feed flow fibre length distribution has a mean 

value of 0.600 mm, the system was first disturbed to a lower mean value and then to a 

higher mean value for both types of screens in order to ascertain the range over which 

control can be effected. For holed screens, the lower limit for control is a mean value of 

0.585, where the rejects screen rejects ratio saturated near a value o f zero. The higher 

limit for control is a mean value of 0.615, where the main line screens rejects ratio 

leveled out at a value of 0.40 and the medium fraction sustained an offset error. For
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slotted screens, the respective limits in mean disturbances are 0.590 and 0.610, which 

constitutes a smaller control range than for holed screens.

The third simulation case results are shown in Figure 3.27. The main line and reject 

screens are all holed types. There is no simplex contraction or expansion. The refining 

factor is changed from a value of 0.25 to a value of 0.50. The refining system is able to 

convert more o f the longer fraction fibre to the shorter fractions, and the fraction targets 

have changed somewhat. The longer fraction target has decreased in value, while the 

medium fraction target has increased in value, indicating this extra conversion. The 

volumetric rejects ratio manipulated variable excursions have decreased in value under 

these conditions, since less of the longer fibre fraction is passed to the rejects system and 

more o f the longer fibre fraction is converted to the shorter fractions in the rejects system.

The fourth simulation case results are shown in Figure 3.28. The main line and reject 

screens are all holed types. The method o f simplex contraction or expansion is the 

threshold method and the performance index threshold value for contraction or expansion 

is 0.001. If the threshold value is smaller than this value, the simplex is not able to 

contract from its initial size, since all simplex point reflections around the optimum point 

produce performance index values that are greater than this threshold value.

The refining factor is 0.25. Comparing Figure 3.28 to Figure 3.25, it can be seen that 

simplex contraction and expansion, using the threshold method, has lowered the rise time 

of the step response of the control system to the disturbances. It is also noted in this case
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that the rejects screen manipulation is more aggressive under these conditions, and as a 

result, on larger disturbances, i.e., when the feed distribution mean changed from 0.595 to 

0.605, the manipulated variables settled to a different position than for the case without 

simplex contraction or expansion, as shown in Figure 3.25. This result is not unexpected, 

since the general landscape o f the performance function, as shown in Figure 3.19, is a flat 

valley where similar minimal values can be found at various combinations of the 

manipulated variable positions.

The fifth simulation case results are shown in Figure 3.29. The main line and reject 

screens are all holed types. The method o f simplex contraction or expansion is the 

ranking method. On the first disturbance, i.e., a change in fibre length distribution mean 

of 0.600 to 0.595, there is more overshoot than seen with the threshold method in Figure 

3.28. In the larger disturbance, i.e., a change in fibre length distribution mean of 0.595 to

0.605, the optimizer simplex tends to drift more in the performance function valley than 

for the previous case, since the ranking method of contraction and expansion, as outlined 

in Chapter 2, does not provide the same tracking ability as the threshold method.

The last simulation case results are shown in Figures 3.30 and 3.31 where delays are 

introduced in the rejects system in the form of the pulp storage chests. In the former o f 

these two cases, the delay amounts to four sample periods, while in the latter case the 

delay is eight sample periods. The other conditions are the same as the first case in this 

series, i.e., with holed screens, no simplex contraction and the same step changes in 

disturbances. The delay in the rejects system causes some drifting o f the manipulated
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variables and the errors are larger at each step change in disturbance. However, most of 

the fibre is still processed by the main line screens, where there is no delay in the path, 

and the fractionation is sufficiently controlled.

3.10 General Conclusions

• With a screening room configured as per the scheme at the Bowater Mill, Thunder 

Bay, the main line screens and the rejects system screen volumetric rejects ratios 

can be manipulated together to provide control o f fibre length fractionation in the 

screening room outflow, as measured by the total concentration percentages o f the 

medium and long fibre fractions.

• The volumetric rejects ratios manipulation for the screens have limited ranges, 

since a lower value restricts rejects system refining and a higher value may cause 

screen plugging.

• Fibre length fractionation control can be achieved with screens having baskets 

with apertures of either the holed or slotted types. However, the holed type screen 

baskets provides better fractionation, i.e., removal o f the longer fibre fraction, 

than the slotted screen type. Thus, the holed screen type has more control range 

than the slotted screen type.

• In the rejects system refining, a better conversion rate of longer fibre fraction to 

the shorter fibre fractions will increase the control range of the fibre length 

fractionation for the screens.
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• The adaptive optimizer can be effectively applied in controlling the screening 

system outflow fibre length fractionation using a performance function that is the 

sum of weighted error squares for the total concentration percentages for the 

medium and long fibre fractions.

• Using the contraction and expansion methods with the adaptive optimizer can 

improve the speed of response to step changes in disturbances. For a performance 

function o f the type having error squares from targets, the threshold method of 

contraction and expansion provides more effective control than the ranking 

method of contraction and expansion. The choice o f threshold value is critical in 

that it must be large enough to allow contraction after a normal simplex reflection 

and small enough to allow expansion after a contraction. The use o f the ranking 

method o f contraction and expansion for this system gives larger steady state 

errors and thus causes the simplex to drift in the performance function valley.

• For a performance function of the type having error squares from targets, the 

volumetric rejects ratios may settle at different steady state values for similar 

disturbances. This is due to the nature o f the flat performance function landscape, 

which is a valley of similar values for a range o f main screen and rejects system 

screen volumetric rejects ratio values. Therefore, the rate at which one measured 

variable changes, or the rate at which one manipulated variable is applied, affects 

the final position of both manipulated variables at steady state.

• Delay within the system, in the form of pulp storage chests in the rejects system, 

provides some difficulty for the adaptive optimizer. However, the optimizer is 

still able to control the outflow fractionation in a system having significant delays

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o f these types. This may be attributed to the fact that the main line screen 

processing has no delay and the majority of fibre passes to the system outflow ' 

this manner.
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Holed Screens, No

Simplex Contraction or Expansion, Refining Factor = 0.25
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Slotted Screens, No 

Simplex Contraction or Expansion, Refining Factor = 0.25
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Holed Screens, No

Simplex Contraction or Expansion, Refining Factor = 0.5
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Holed Screens,

Threshold Method of Simplex Contraction or Expansion, Refining Factor = 0.25
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Holed Screens,

Ranking Method of Simplex Contraction or Expansion, Refining Factor = 0.25
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Holed Screens, No

Simplex Contraction or Expansion, Refining Factor = 0.25, Rejects System Delay = 4
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Adaptive Optimizer, Fibre Length Distribution Mean Step Changes, Floled Screens, No

Simplex Contraction or Expansion, Refining Factor = 0.25, Rejects System Delay = 8
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Recommendations

1. Delay in the control loop presents a difficulty for the adaptive optimizer. It is 

recommended that further study be done in applying the adaptive optimizer to 

systems with dead time. As a starting point, the adaptive optimizer techniques 

could be tested with a discrete Smith Predictor control structure. While a model of 

the plant, including delay time, is required for the Smith Predictor, and this need 

o f a model is contrary to the reasons for using the direct search method o f the 

adaptive optimizer, insight into the possibility o f dead time compensation for the 

adaptive optimizer may be gained. Another control structure, which may have 

promise in combination with the adaptive optimizer and system delay, is Model 

Predictive Control (MPC). Many different types o f models are possible for 

calculating the predicted values of the process outputs with MPC, and discrete 

models can be used, where adaptive updating o f the models is possible. Dead time 

compensation could be added to this discrete controller.

2. While the adaptive optimizer is able to control the pulp fractionation properties in 

the screening room simulations, the manipulated variables, i.e., the volumetric 

rejects ratios for the screens, have limited operational range. Studies on incoming 

variations in screening room feed flow fibre length distributions would be useful 

in determining if this method of control is able to counter typical feed flow fibre 

length distribution disturbances. Screen baskets with holed type apertures have 

more control range than screen baskets with slotted type apertures, and the former

are preferred if  pulp fractionation is a desired objective.
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3. The effects of refining on pulp fibre length distributions is another facet o f the 

screening room operation that is important to the control scheme outlined in this 

work. Further study in this area could help determine if refining could be used for 

fractionation control, and would also determine the role that the rejects system 

refining plays in the changes in fibre length distribution in the screening room.

4. The adaptive optimizer can be used as a controller in many other situations. It is 

recommended that a test trial o f the adaptive optimizer be made with a physical 

process, such as a distillation column, in a laboratory environment, for the 

purpose o f determining if the adaptive optimizer, with its inherent simplex 

reflection and re-measurement delays, can provide effective control wdth other 

processes and other objective functions. Control performance comparisons against 

traditional Proportional, Integral and Derivative (PID) controllers would also be 

important, in this regard.

5. Finally, some work in the area o f optimization o f the contraction and expansion 

methods for the adaptive optimizer would be useful. The adaptive optimizer 

always implements a regular simplex that only moves by reflection. Elongation of 

the simplex, or a complete translation of the simplex, may be effective in response 

to step changing disturbances or targets.
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