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ABSTRACT 

Reforestation programmes under changing climates requires an understanding of species 

adaptive patterns of variation. Such information is vital in identifying and matching 

uniquely adapted seed sources to areas of optimum growth, conserving the genetic 

variation of the species as well as reducing the risk of using maladapted sources. This 

study examined early growth responses of selected black spruce {Picea mariana (Mill.) 

B.S.P) seed sources identified for reforestation through the application of a portfolio 

theory model and planted at three climatically diverse sites in Ontario. Two sequential 

modeling approaches were applied; 1) the species range impact model which uses 

biological growth responses and climatic data to determine how well a seed source will 

grow at a given site under different climate change scenarios, and 2) the portfolio model 

which selects a set of seed sources that collectively reduce risk of maladaptation. 

Significant variations were found in the growth responses of black spruce seed sources 

growing at the three sites. Seed sources originating from the southerly portions of the test 

locations demonstrated superior growth. Principal components analysis of fall height, 

spring height, increment and survival showed that a high proportion of the variation 

among the seed sources can be explained by fall height growth. Among climate variables, 

minimum and maximum temperatures and precipitation in the spring, summer and fall 

growing seasons were identified as good predictors of black spruce growth. The results 

suggest that black spruce seed sources are adapted to their local climates and that future 

climate can result in maladaptation of the species within their current ranges. The 

capability of the applied models to identify well adapted seed sources and match the 

sources into required future climates is novel and invaluable. The results and model 

predictions have wide implications for biodiversity conservation efforts and may be 
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useful in seed transfer programmes under the changing climates. The early results suggest 

that the combination of species range impact model and portfolio decision support model 

identify an adaptive pattern of variation from multiple seed sources, and select a set of 

sources to succeed under a multiple climate change scenarios. Also, the result gives an 

indication that southern seed sources may well be suitable for future reforestation 

programmes in the Ontario Boreal Forest Region. 

Key words: black spruce, boreal forest, climate uncertainty, forest management 

maladaptation, planned adaptation, reforestation, seed sources. 
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INTRODUCTION 

Climate is the primary force that determines species composition and vegetation 

type of an area; and as such, the effects of climate change, specifically changes in 

temperature and precipitation, pose challenges to forest management (Jenny 1941; Davis 

1989; Rizzo and Wiken 1992; Iverson and Prasad 2001; Newton et al 2007). With 

increasing climate change events, forest managers will continue to face the challenge of 

maintaining ecological functions of forests and the sustainable production of wood and 

timber. Climate will continue to change (Harrington 1987; Trenberth et al. 2007; IPCC 

2007; IPCC 2013); however, depending on emission scenarios and climate feedbacks, 

there is no definitive prediction of the magnitude of change (Nakicenovic et al. 2000; 

Crowe and Parker 2008). For instance in North America, General Circulation Models 

(GCMs) have predicted average temperature increases between 2°C to 5°C, with warming 

expected to be higher in the northern latitudes (IPCC 2007). In Canada, McKenney et al 

(2009) predicted changes in annual temperature to be between 1.5°C to 4.2°C by 2040; 

4.5°C to 7.5°C by 2070; and 7.0°C to 10.3°C by 2100. Precipitation is also expected to 

decrease or increase in some regions. Historical data showed increased precipitation in 

the north and south western regions of Canada over the period 1950 to 2005, and it is 

projected to increase 20% to 30% by 2100. 

As climate change occurs, it is expected that plant growth and survival may be 

affected because current habitats where tree species grow may no longer provide adequate 

conditions for future growth (Papadopol 2000). In the boreal forest, for example, changes 

in the climate are related to frequent occurrences of forest fires, pest outbreaks and 

drought (Flannigan and Wagner 1991; Wotton et al. 2005; Lempriere et al. 2008; 



Michaelian et al 2011). Changes in tree phenology and species ranges have also been 

attributed to the changing climate (Parmesan and Yohe 2003; Parmesan 2006). It may be 

possible for tree species to survive and adapt in the changing climates because of their 

phenotypic plasticity (Jackson et al. 1997; St Clair and Howe 2007; Crowe and Parker 

2008; Wang and Morgenstem 2009); however, there is a limitation to adaptation, and 

extinction is possible in instances of rapid climate change (Peters 1990; Davis and Shaw 

2001; Nielson et al 2005; Nielson et al. 2009). In addition, trees migration may be 

restricted due to ecosystem fragmentation (Noss 2001; Fahrig 2002). 

With recent shifts in regional climate, maladaptation of tree species is expected to 

occur including most commercially traded wood species in boreal forests (Schmidtling 

1994; Rehfeldt et al. 2006). In Canada, about 400,000 ha of forest land are regenerated 

annually (McKenney et al. 2009), and black spruce is commonly used in reforestation 

programmes because of high utilisation of its products (Ladell 1970; Margolis and Brand 

1990; Wanger^^/. 1994). 

The black spruce species is widely distributed across Canada’s boreal forest, 

extending from Newfoundland to Alaska (Hoise 1967). Black spruce is found in a variety 

of habitats (Jeglum 1974) and regenerates naturally after fire disturbance or clearcutting. 

Fleming (1990) identifies moisture deficits, and low soil and air temperatures as 

constraints to black spruce regeneration. Although black spruce usually forms pure stands 

/ 

on shallow and poorly drained soils, yield is generally higher on nutrient rich sites 

(Heamden 1975). Black spruce populations are generally adapted to their local 

environment; however, as climates change, their responses to the climate differ 

significantly (Morgenstem 1978). The concern of climate change impacting on black 

spruce sustainability has resulted in several adaptation initiatives to conserve and increase 



the species productivity in Ontario boreal forest region. For example. Van Damme and 

Parker (1987) used plus-tree selection for superior growing space efficiency. Thomson et 

al. (2009) developed transfer functions of height growth. Also, Parker (1992), Parker and 

Van Niejenhuis (1996) developed a site-specific focal point seed sources approach to 

match seed sources to areas of similar adaptive traits. 

In many instances, several approaches have also been used as a planned 

adaptation strategy to climate change (IPCC 2007) including cost-benefit analysis, cost- 

effectiveness analysis and policy approach. However, Lempert et al. (2004) indicate that 

for planned adaptation to climate change the strategies that need to be employed must 

offer solutions that perform equally well against all considered climate scenarios. 

Because of the long rotation periods of trees and the inability to make a definitive 

prediction of future climate, the use of seed sources adapted to equally plausible future 

climates is important for planned adaptation in reforestation (Crowe and Parker 2008; 

Ukrainetz et al. 2011). Selection of adaptive seed sources for reforestation may prove to 

be vital in conserving the genetic variation of tree species and may also minimise risks of 

tree maladaptation and increase productivity (Ledig and Kitzmiller 1992; Eriksson et al. 

1993; Rehfeldt et al. 2006; St Clair and Howe 2007). The overall purpose of this study is 

to determine early growth responses of black spruce seed sources selected for 

reforestation through the applications of species range impact model and portfolio theory 

model and planted at three climatically diverse sites in Ontario. Specifically, the study is 

to conduct an early evaluation of black spruce seed sources predicted by portfolio theory 

to be potentially adaptable for reforestation at the selected sites in Northern and Central 

Ontario. 



LITERATURE REVIEW 

Climate uncertainty and planned adaptation 

There are several conceptual definitions of climate change. For example; United 

Nations Framework Convention on Climate Change (UNFCCC) defines it as a change of 

climate which is attributed directly or indirectly to human activity that alters the 

composition of the global atmosphere and which in addition to natural climate variability 

observed over comparable time periods (UNFCCC 2013). Intergovernmental Panel on 

Climate Change (IPCC 2001) also defines climate change as a statistically significant 

variation in the mean state of the climate or its variability, persisting for an extended 

period. Other studies (Hare and Francis 1995) conclude that climate change is the change 

in the average weather that a given area experiences over a long period of time. 

Ultimately, climate change is understood to be the likely result of natural processes and 

external forcing, as well as the continuous releases of anthropogenic gases into the 

atmosphere or land-use. 

The climate drivers of particular concerns are the future concentrations of 

atmospheric CO2, and the resulted changes in temperature and precipitation (Millennium 

Ecosystem Assessment 2005; Newton et al. 2007). Several predictions have been made 

from different geographic locations and depended on the emission scenarios and models 

(Prentice et al 2001; IPCC 2007; Trenberth 2010), climate will continue to change. 

However, the scenarios and models for future climates estimates are subject to 

uncertainty (Klein et al 2005). Compounding the uncertainty is recent use of advanced 

computer models for the climate estimates. The evaluation of many atmosphere-ocean 

general circulation models (AOGCMs) concluded that, although models are able to make 



credible climate stimulations for large scales; to some extend all the models have inherent 

errors since the models differ in their outputs (IPCC 2007; Solomon 2007; Trenberth 

2011). 

Scenarios Al, Bl, A2, and B2 have widely been used to make future climate 

estimates (IPCC’s Special Report on Emission Scenarios 2001 and 2007). In the Al 

scenario, future climate estimates depend on rapid economic growth, global population 

increases, and continual technological advancement. In contrast, the Bl scenario is based 

on cleaner resources and more efficient technologies, although there is doubt about 

whether the Bl scenario is realistic (Schneider 2001). In the A2 and B2 scenarios the 

projected rates of human population growth, deforestation, air pollution and CO2 

emission are considered to be three times higher than the current rates by the end of the 

century. However, irrespective of the emission scenario used, the atmospheric CO2 

emissions are projected to increase between 11.0 Gt C to 23.9 Gt C by 2050 (Prentice et 

al 2001), way beyond the 1990s emissions estimates of 6.3 Gt C per year from fossil 

fuels with an additional 1.7 Gt C from land use change (Schimel et al 2001). 

Similarly, the global temperature is projected to increase between l.l^C to 6.4°C 

by the year 2100 (Schneider and Lane 2006; IPCC 2007). Cubasch et al (2001) predict 

an increase in mean global temperature over next 100 years between 1.4°C and 5.8°C with 

different emission scenarios. Other studies employing more and comprehensive feedbacks 

also estimate future temperature increase of up to 8°C by year 2100 (Andreae et al 2005; 

Meinshausen et al 2009). 

In North America, temperature increase between 2°C to 5°C with warming more 

pronounced in the northern latitudes have been predicted (IPCC 2007), whereas 



McKenney et al. (2009) study found minimum temperature increase of 5°C tolO°C across 

the seed zones of British Columbia and Ontario provinces by 2100. 

Global precipitation is not projected to be constant in all regions. Precipitation 

was found to have increased by 10% to 40% over the past 100 years in the northern 

Europe, but has decreased by 20% in the southern Europe (Newton et al. 2007). In 

Ontario, the historical data of precipitation were found to be high in the southern and 

northwestern regions of the province, and it is estimated to increase 20 to 30% by 2100, 

particularly in the Central part of the province (McKenney et al 2009). 

The inconsistency and degree of climate uncertainty is due to the probability and 

magnitude of atmospheric CO2 that is predicted to occur under a given scenario (Read 

2004). Since the estimates are based on the patterns of economic development, population 

growth, and technological advancement and other feedback processes that are not easy to 

predict over long periods (Parry 2007; Rivington et al 2008; Smith et al 2009; Park and 

Talbot 2012). Atmosphere-Ocean Global Circulation Models that have been used to 

simulate climate change include: the Canadian GCM (CGCM2, Boer et al. 2000a), the 

UK-based Hadley GCM (HADCM3, Gordon et al. 2000), the Australian-based 

Commonwealth Scientific and Industrial Research Organisation GCM (CSIROMk2, 

Gordon and O’Farrell 1997), and the American-based National Centre for Atmospheric 

Research GCM (NCAR, Collins et al. 2006). 



Climate change and Boreal forest tree species 

Evidence from paleoclimatic studies show the global, regional, and local climates 

are changing. Such forecasts are supported by studies from rocks, sediments, ice sheets, 

tree rings, corals and microfossils (Thomas et al 2004; Lovejoy 2006; IPCC 2013); 

although the fossil records are not as fine as the records from 1850s when direct 

measurement of temperature began. In any case, the global temperature and precipitation 

changes have empirical effects on the boreal forest. 

In Canada, the impacts of the changing climate on forests are generally related to 

frequent occurrences of wildfires (Flannigan and Wagner 1991; Stocks et al. 1998), pest 

outbreaks and drought (Kurz et al. 2008; Lempriere et al. 2008; Michaelian et al. 2011), 

large-scale shifting of forest vegetation (Rizzo and Wilken 1992; Smith and Shugart 

1993), species maladaptation (Schmidtling 1994; Rehfeldt et al. 2006). Effective 2004, 

about 1.7 million hectares of forest were burned in Yukon, and over 300,000m of timber 

was removed through salvage felling due to spruce bark beetle {Dendroctonus rujipennis) 

infestation. A study on these disturbances indicated an association to climate change 

impacts (Ogden and Innes 2008). 

Kremer et al. (2007) observed that evolutionary mechanisms contributing to 

species adaptation to climate change is acting at an individual, population and species 

levels. Studies on trees phenology and physiological changes have been observed under 

the changing climates, and the conclusion is that climate change is already affecting 

living systems (Parmesan and Yohe 2003; Parmesan 2006). For example acclimation was 

found to be a gradual response to increasing CO2 concentration. Tjoelker et al. (1999) and 

Bolstad et al. (2003) found that some trees increase their respiration when exposed to 

high temperatures and then partially adjust when temperature was reduced. This 



phenomenon was observed for jack pine {Pinus banksiana Lamb), white birch {Betula 

papyrifera Marshall), and black spruce seedlings. Muller-Starck (1989) isozyme study 

showed heterozygosity in individual tolerant beech trees was greater than the heterozysity 

of sensitive beech trees particularly in more polluted altitudes. Although, interpretation of 

heterozysity is controversial, some authors believe increased heterozysity is a mechanistic 

approach to eliminate inbred genotypes (Ledig 1986), whereas others believe it 

contributes to individual fitness towards extreme environmental changes (Mitton and 

Grant 1984; Mitton 2000). Similarly, Torti’s (2005) investigation in quantitative trait loci 

(QTL) detection found that the number and contributions of QTLs vary according to CO2 

concentration. Until then the gradual decrease of birch leaf stomatal density (Wagner et 

al 1997) was considered to be the plant physiological adaptation to the environmental 

change. In many instances (Nicotra et al. 2010) observed that temporal changes in the 

local climates, for example, year after year changes result in distinct responses in local 

genotypes such as flowering. 

Many tree species are genetically adapted to their local environment (Woodward 

1987), and as such species ranges are expected to change as the climate changes rapidly. 

Differentiation in tree populations throughout species ranges have been attributed to 

natural selection (Morgenstem 1978; Pollard and Logan 1974; Konig 2005). Crowe and 

Parker (2008) also showed black spruce seed sources respond differently with respect to 

particular climate scenarios. In addition, maladaptation is predicted to be possible if 

current climate change exceeds the rate trees can migrate to new areas (Schmidtling 1994; 

Rehfeldt et al 2006). 



To maintain forest health and productivity redistribution of tree species across the 

wider landscape or using adaptable seed sources in seed transfer programmes have been 

suggested to be useful (Ukrainetz et al, 2011; Rehfeldt et al. 1999). 

Planned adaptation in response to climate uncertainty 

Ecological niche approaches for predicting plants under future climate scenarios 

show that species’ ranges may shift from tens to hundreds kilometers over the next 50 to 

100 years, much faster than what has occurred in the last glacial period (Davis and 

Zabinski 1999; Malcom et al 2001; Davis et al 2005; Thomas et al 2004; Iverson et al 

2008), and that species that could not migrate at the rate of climate change might lose 

their ability to function or become extinct. Thus, the geographic range and habitats in 

which species grow and survive may reduce their adaptive capacity to respond to climate 

change (Neilson et al 2005; Skelly et al 2007). Although, some studies (Jackson et al 

1991 \ Thuiller et al 2006; Kremer et al 2007; Wang and Morgenstem 2009) consider 

that many trees have potential to migrate and adapt to the changing climate because of 

their high genetic variation and phenotypic plasticity, others show adaptation was limited 

when climate change occurred more rapidly (Davis and Shaw 2001; Aitken et al 2008). 

This mixed situation is because the immobility of trees coupled with their long rotation 

periods makes them less adaptable to faster rates of climate change (Peters 1990; Vitt et 

al 2010). 

The uncertainty associated with climate change and the ecosystem fragmentation 

requires planned adaptation that will prevent species extinction and extirpation, minimize 

economic loss and sustain ecosystem multiple functions and biodiversity (Millennium 

Ecosystem Assessment 2005). Adaptation is defined as adjustment that occurs in natural 



or human systems in response to actual or expected impacts of climate change, aimed at 

moderating harm or exploiting beneficial opportunities (Klein et al. 2005). Planned 

adaptation is undertaken to effectively manage potential risk associated with climate 

change. Decision for adaptation could be a short-term or long-term, and under spatial, 

temporal or sectorial scale (Howden et al. 2007). For example, local scale adaptation may 

be useful in the short-term if there is correlation between local climate trends and 

projected climate changes. However, in the long-term there will be limitation in their 

adaptation due to the high uncertainties at the finer scale climate projections. In contrast, 

long-term adaptation will be useful due to reliable climate projection at larger time and 

spatial scales. A significant benefit for an adaptation strategy may be how short-term 

strategies link to long-term options to ensure that an adaptation strategy can be effective 

over plausible climate change events. 

Many decision frameworks have been developed to guide adaptation to climate 

change (Ohlson et al 2005; Tschakert and Olsson 2005). IPCC’s Third Assessment 

Report (IPCC 2007) identifies some of the major frameworks applied in climate 

adaptation. These frameworks include: cost-benefit analysis, cost-effectiveness analysis, 

and the policy-exercise approach. In forestry, management practices such as changes in; i) 

forest management intensity, ii) harvesting patterns within and between regions, iii) 

rotation periods, iv) salvaging dead timber, and v) planting different species that can be 

productive under the new climatic conditions. Also landscape planning to minimize fire 

and insect damage has been identified as a climate adaptation strategy (Howden et al 

2007). Crowe and Parker (2008) used modem portfolio theory to reduce risk and 

maximize returns in reforestation programme under future climate uncertainty. The 

modem portfolio theory provides risk-return analysis under the environment of 
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uncertainty. Similarly, movement of seed sources and populations of trees within their 

current range (assisted population migration), or from their current range to suitable areas 

just outside their range (assisted range expansion), or to locations far outside their current 

(assisted species migration) have been suggested as an adaptation strategy in reforestation 

programmes (Aubin et al 2011; Winder et al. 2011; Williams and Dumroese 2013). Such 

management practices are currently underway for the tree species Florida torreya 

(Torreya taxifolia Arn.) in the United States (Gray and Hamann 2013; Torreya Guardians 

2012). 

Ultimately, climate adaptation programmes require integrated approaches to 

become more dynamic, to cope with the high level of uncertainty in the timing and 

magnitude of potential climate changes and the evolving knowledge. 

Black spruce ecology and silvics 

Black spruce is one of the most commercially important tree species in Canada. 

The species is widely distributed across the boreal forest in Ontario and the rest of 

Canada, extending from Newfoundland to Alaska (Hoise 1967). Black spruce is found in 

a variety of habitats (Jeglum 1974) and regenerates naturally after disturbance such as fire 

or by clearcutting; artificial regeneration is also possible through planting. The species 

usually grows on wet organic soils, but productive stands are found on a variety of soil 

types; deep humus, clays, loams, sands, coarse till, boulder pavements, and shallow soil 

mantles over bedrock (Viereck and Johnston 1990). Selection of site for regeneration is 

not only limited to biological factors, but considerable non-biological factors such as 

economics or methods for site preparation. Site preparation enhances the tree 

performance which includes high seed germination and seedlings survival. 



Fleming (1990) identifies several constraints to black spruce regeneration. Such 

constraints include near-surface and root zone moisture deficits, and low surface and soil 

subsurface temperatures. Other stresses also include extreme light, nutrients, soils and or 

atmospheric chemistry (Levitt 1980). Although black spruce usually forms pure stands on 

shallow, poorly drained, and cold soils, yield increment per hectare is dependent on site 

quality (Heamden 1975; Morgenstem 1978). 

Like many boreal forest conifer species, black spruce provenances, seed sources 

and populations exhibit large amount of genetic variation which is adaptive, and that the 

species adaptive characteristics are clinal, primarily along a north-south geographical 

gradient (Khalil 1975). Differentiation in photoperiod response, productivity, 

germination, cone and seed yield, height and survival rate has been shown to be related to 

the geographical area of seed origin (Morgenstem 1973). Introgressive hybridization 

between black spmce and red spmce has been reported in Nova Scotia, New Brunswick, 

and Quebec (Morgenstem and Farrar 1964; Gordon 1976). 

Commercially, black spruce is used extensively both in Canada and the United 

States for making high quality pulp with balanced strength properties. The species is also 

used for lumber, Christmas trees, and other products. Historically, black spmce exuded 

resin has been used as a healing salves, beverages from twigs and needles, aromatic 

distillations from needles, and binding material for canoes (Safford 1974). Many bird 

species also depend on black spmce stands as habitat, or feed on the seeds. 



METHODS 

Philosophical Background 

The background of the study was based on functional application of two useful 

modeling approaches: (1) the focal point seed zone method/the species-range impact 

model (Parker 1992, Parker and VanNiejenhuis 1996; Lesser and Parker 2004; Ukrainetz 

et al. 2011); and (2) the portfolio decision support model (Crowe and Parker 2008; Crowe 

and Parker 2011; Weng et al. 2013). The focal point seed zone method is a unique 

approach for matching a set of seed sources to a specific location based on the adaptive 

variation of the seed sources. This approach is proved to be vital for planned adaptation 

for genetically variable tree species. The method is based on the availability of two 

sources of data: (a) growth responses of multiple seed sources grown under different 

climate environment established in a common garden trial; and (b) high resolution 

climatic data for the seed sources origin. The output from focal point seed zone model is 

then used in the portfolio model. 

Five principal procedures are involved in the species-range impact model. First, 

biological growth responses of the seed sources are determined from common garden 

trials, and a statistical approach is used to estimate differences in the growth responses. 

Second, high resolution climate grids based on Global Circulations Models (GCMs) are 

used to determine whether the biological variation determined in growth responses among 

different seed sources grown in different geographic locations is influenced by climate 

variables. High resolution climate grid is preferential to using recorded climate values 

from the nearest meteorological stations in species-range impact model because it 

estimates climatic differences between seed sources within adjacent geographic locations 



(McKenney 2007). Third, principal component analysis (PCA) is used to summarize the 

growth responses variables into principal component axes. Fourth, standardized PC A axes 

scores are then used in multiple regressions against the climate variables of the seed 

sources locations to generate trend surfaces for each PCA axis representing adaptive 

variation of the seed sources. Finally, to produce focal point seed zone of any location, 

two or three contour maps, corresponding to the main axes of variation and standardized 

to the focal point values are overlaid with the interval set to a desired limit. 

The focal point seed zone represents a potentially unique procurement area for any 

specific seed source. Based on available empirical data, the species-range impact 

modeling approach is capable of predicting variation that is adaptive in nature among 

multiple seed sources and matching the seed sources to areas with similar adaptive traits. 

The usefulness of this model over other conventional species distribution models is that it 

makes it possible to estimate how well a species, adapted to its current/present day 

climate, will perform when moved into a different geographic location under a specified 

future climate scenario. The output from the focal point seed zones model is used to 

generate the portfolio decision support model. The original preposition of the portfolio 

optimization model is to consider the desirability of assets diversification under 

uncertainties. Crowe and Parker (2008) applied portfolio theory for selecting multiple 

seed sources of white spruce for reforestation under future climate uncertainties. Their 

study showed that the seed sources are not selected to perform equally well across all 

plausible futures but rather the sources are selected to specialise in equally probable 

climate change scenarios. Weng et al (2013) also demonstrated the application of 

portfolio theory to improve yield and reduce risk in black spruce family reforestation. 

Their results indicated that portfolio theory model searches for the combination of yield 
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and stability and produces family portfolios that maximize yield at a given stability or 

minimizes yield instability at a given yield, and that portfolio model is useful to improve 

yield over the conventional truncation-deployment family forestry method. Specifically, 

the principle of portfolio theory model is to select a set of seed sources for reforestation 

that collectively reduces risk of maladaptation and increases return under future climate 

uncertainties. Crowe and Parker (2008) illustrated the analogy for applying portfolio 

theory model to support decision-making in planned adaptation to climate change in 

reforestation. Just as the market, over time, can value assets differently, so too can climate 

under different forecast scenarios create an environment in which different seed sources 

are adapted differently to a given site. Thus, the market and the climate both create 

uncertainty. Just as portfolio theory is useful in reducing risk under market uncertainties, 

so too it can be applied to guide reforestation under future climate uncertainty. The 

conceptual framework for the model is presented in Figure 1 below: 
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The Case Study 

The present study applied the focal point seed zone method and a simplified version of 

portfolio modeling approach to select 18 black spruce seed sources that may be suitable 

for reforestation under future climate uncertainty for three selected sites in Northern and 

Central Ontario. 

Study area 

Canada’s boreal forest covers a large vegetation zone of the northern latitudes. It 

stretches across the country, from Yukon in the north, and northern British Columbia in 

the west to Newfoundland and Labrador in the east. In Ontario, the boreal forest stretches 

up to the tree line in the far north and into the south of Great Lakes forest of mixed 

hardwoods and conifers. The average annual temperature within the study area ranges 

between 2 to -4°C and the average annual precipitation ranges from 600mm - 900mm. 

The study was conducted in three selected sites across Northern and Central Ontario 

generally located near Dryden (Lat. 49.92^, Long. -92.97 ^W, Elev. 371m), Kakabeka 

(Lat. 48.38^, Long. -89.58 °W, Elev. 270m), and Sault Ste. Marie (Lat. 46.54^ Long. - 

84.45^W, Elev. 219m) (Fig. 2, Table land Table 2). 

Test Establishment 

A total of 18 black spruce seed sources predicted to be adapted to future climates 

were collected from a variety of sources to establish the three field trials. A randomized 

complete block design was used to establish the tests at each site. Each plot was clearly 

marked with an aluminum pole at the comer, and tagged with the plot and the seed source 

numbers. 
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Seeds were sown in a Plug Styroblock PSB 309 (60ml plug volume) at the 

beginning of March 2012, and seedlings were hardened-off before outplanted in the field. 

Pegging and planting of the seedlings were completed between August and September 

2012 at all the test sites. Site preparation was done by spraying and no tending occurred 

after the planting. Due to scarcity of seed sources and selection procedure not all seed 

sources predicted to be adaptable for planting equally occurred in all the test locations. 

The number of seed sources planted at each test location varied but a set of 6 seed sources 

(6, 8, 9, 17, 18 and 20) were represented at all the test locations (Table 1). 



Legerici 
"ttf TestlocafIcMJ 

# seedsoyrceo^te 

Bfacfc spruce rarige 

Figure 2: Geographic origin of black spruce seed sources and the test locations 
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Table 1: Geographic parameters of black spruce seed sources and the planting sites 
Planted Locations 

Agency 
seed 
sources 

Seed source 
Origin Longitude Latitude Dryden Kakabeka 

Sault Ste 
Marie 

CFS 1 

CFS 2 

CFS 3 

CFS 

CFS 

Clergue 6 

GreenForest 7 

USFS 8 

USFS 9 

Greenmantle 10 

USFS 

USFS 

MNDNR 

Lakehead 

MNDNR 

MNDNR 

MNDNR 

USFS 

12 

13 

14 

15 

16 

17 

18 

20 

St Michel des 
Saints, QC 
North Bay area 

Espanola area 
Cochrane 
Uplands 2 
Chapleau 
Highlands 
Algoma Forest 

Aster Lake 
Upper Peninsula 
Michigan 
Northeast 
Wisconsin 
Lakehead Forest 
Northwest 
Wisconsin 
Northeast 
Minnesota 
Cloquet, MN 
Rosamond Lake 

Tamarack, MN 

Nashwauk, MN 

Big Falls, MN 

Bemidji, MN 

-73.880 46.633 

-79.450 

-81.770 

-84.380 

-86.660 

-88.430 

-89.720 

-91.370 

-92.470 

-93.070 

-93.120 

-93.170 

-93.800 

-94.880 

46.350 

46.267 

-80.470 49.267 

-83.170 47.867 

46.617 

49.328 

-87.500 46.133 

45.367 

48.317 

45.983 

-93.870 48.100 

46.700 

49.933 

46.633 

47.383 

48.183 

47.467 

V 

V 

Table 2: Geographic coordinates of test sites 

Test Lat.(dd) Long, (dd) Elev. (M) 
Dryden 
Kakabeka 
Sault Ste. Marie 

49.92 

48.38 

46.54 

-92.97 

-89.58 

-84.45 

371 

270 

219 
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Dryden test 

The Dryden test was established with 9 blocks planted with the 12 seed sources in 

each block as 16 trees per plot (4x4 trees). The local seed source (15) was replicated 

twice in each block. In addition, two mixed plots containing a random mixture of all the 

seed sources were planted in each block (Fig. 3). The mixed plots were established to 

compare the growth responses of the selected seed sources in a single seed source plot 

compared to a mixed plot. A spacing of Im x Im was used as a planting distance 

between each tree. Two border rows were established as buffer along the perimeter of the 

9 blocks. This was done to create a more uniform growing environment for the trees, and 

to minimize edge effects. In total, 2160 trees were planted. 
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Figure 3: Dryden test plot design 
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Kakabeka test 

The Kakabeka test was established with 9 blocks planted with the 11 selected seed 

sources in each block as 16 trees per plot (4x4 trees). Each block also contained a single 

random mixed plot of all the seed sources (Fig. 4). A spacing of Im x Im was used as a 

planting distance between each tree. Two border rows were established as buffer along 

the perimeter of the blocks to minimize edge effects. Seed source (10) is the local source 

within this test. The total number of trees planted at the test site was 1728. 

80fl BLK2 BLK3 
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Sault St. Marie test 

The Sault Ste Marie test was established with 9 blocks planted with the 10 

selected seed sources in each block as 16 trees per plot (4x4 trees). The local seed source 

(6) is also replicated twice in each block. In addition, each block contained a single 

random mixed plot of all the seed sources (Fig. 5). A spacing of Im x Im was used as a 

planting distance for the seed sources. A border row was established as buffer along the 

perimeter of the blocks. In total, 1728 trees were planted. 
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Figure 5: Sault Ste Marie test plot design 
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Climate data 

Regional climate grids (from 1970 to 2000) with a spatial resolution of 10km for 

the seed sources origin were provided by Dr. Dan McKenney of the Canadian Forestry 

Service, Great Lakes Forestry Centre (GLFC), Sault Ste. Marie, Ontario. Point values for 

each seed source origin were determined from the grids. The climate data consisted of 36 

climate variables including mean maximum and mean minimum monthly temperatures, 

and monthly precipitation. ArcGIS 10.1 was used to extract the climate data for 

individual point locations of the seed sources (Appendix 1). 

Data Collection 

Field data were collected in the spring and fall field seasons in 2013. Spring 

heights were measured from May to June, 2013 before bud flush); whereas, fall heights 

were measured in October, 2013. Spring and fall heights were measured with a measuring 

pole calibrated in centimeters. Height increments were determined by subtracting spring 

height from the fall height. Survival was calculated as number of live trees and converted 

into percentages. The growth variables included were: 2013 fall height, 2013 spring 

height, and survival. 
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Statistical Analysis 

Since different seed sources were represented at each test location, the analysis was 

computed separately for each location. 

Single Random and Mixed Random Plots Analysis 

Prior to analysis, Shapiro and Bartlett tests were performed to check for normality and 

homogeneity of variance, respectively. All the data met the assumptions (homogeneity and 

normality), hence there was no transformation. Analysis of variance (ANOVA) in the form of 

Randomized Complete Block Design (Sokal and Rohlf 1981) was performed to test for statistical 

differences in growth and survival among seed sources, using a linear model of the form: 

Yijk = p + Bi + 6i + Pj■ + E(ij)k Eq. 1 

Where; = the response of seedling measured fromseed source in block, 

fj, = the overall mean, 

Bi = the random effect of block. 

Si = the restriction effect of the randomisation of the seed sources treatments within block, 

Pj = the random effect of seed source origin, 

E(ij)k - the random error effect of replicates ofseed source in block. 

Intraclass Correlation Coefficient (ICC) Analysis 

The ICC package in R was used to estimate intraclass correlation coefficient (ICC) 

(Wolak et al. 2012). The ICC estimates the fraction of variation expressed among seed sources 

(Parker and Van Niejenhuis 1996; Lessser and Parker 2004). 

The mathematical formula for ICC is expressed as: 

ICC = ( 
6^provenance 

8^ Provenance-i-8^Block+ 6^ProvX Block + S^error 
xl00%.... ...Eq.2 
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Regressions and Principal Component Analysis 

Simple linear regressions were used to estimate the relationship between the measured 

growth variables and all the 36 climate variables. This procedure was used to determine whether 

the variation expressed among seed sources could be predicted by climatic factors. Only climate 

variables that showed significant values (p < 0.05) were retained for further analysis. To be used 

in determining seed zones, the measured growth responses must be adaptive in nature; thus, the 

adaptive variation expressed should show correlation with the local climate of the seed source 

origin (Parker and Van Niejenhuis 1996). 

The mean values for the growth responses (spring height, fall height, increment and 

survival) were analysed using principal component analysis (PCA). Vegan package in “R” was 

used for the PCA (Jari et al 2013). PCA was used to summarize the main components of 

adaptive variation in growth responses. Normalized factor scores were calculated for the first 

three main component axes, and used as new variables to perform multiple regressions against 

climate variables. The normalized factor scores were estimated by using a weighted average of 

least significance difference (LSD) values of the original variables (Crowe and Parker 2005). The 

raw LSD values ( a = 0.05) for each original variable were determined from the ANOVA output 

and divided by the standard deviation of the variables to express the LSD as a number of 

standard deviations. Standardized LSD values for each original variable were then multiplied by 

the respective variable PCA loadings (absolute value of eigenvectors), summed, and divided by 

the sum of the absolute loadings again to produce a weighted average LSD. The weighted LSD 

values were then multiplied by principal components scores to covert the standard deviation 

values to LSD values (Crowe and Parker 2008). 

Using multiple linear regression method, the normalized factors score for each principal 

component axis were then regressed against the climate variables to determine the combinations 

of climate variables that best explained the variation in each PCA axis. The regressions equations 
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were generated for each PCA axis (Crowe and Parker 2008). All statistical analysis was 

performed using R-statistical package. 

Seed Source and Location Interaction Analysis 

Seed source and location interaction were analysed for a set of 6 seed sources (6, 8, 9, 17, 

18, and 20) planted across all three test locations using the linear model of the form; 

Yijk = g + Li + Pj + LPij + E(ij)k Eq. 3 

Where; Yijk= the height of seedling measured fromseed source in location, 

// = the overall mean, 

Li == the random effect of location, 

Pj = the random effect ofseed source origin, 

LPij = the random effect of the location with the seed source, 

E(ij)k = the random error effect of replicates ofseed source in location. 
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RESULTS 

Single random plots variation and Intraclass Correlation Coefficients 

The analysis of variance showed significant differences (P < 0.05) in each of the observed 

growth responses among the seed sources at all the test sites (Table 2 and 3). Overall, the 

Kakabeka test recorded the highest mean spring height of 14.55 cm, whereas, Sault Ste. Marie 

test had the lowest mean spring height of 12.22 cm. However, mean fall height, mean increment 

and percentage survival were higher at the Dryden test than the other tests. The Sault Ste. Marie 

test recorded the lowest in all the growth responses. 

Table 3: Grand mean of height, increment, percentage survival, P-value and Intraclass 
Correlation Coefficient (ICC) of seed sources in single random plots  

Mean Std. 
Dev 

Min Max Range P value 
ICC 

Dryden test 
Spring Height (cm) 14.27 
Fall Height (cm) 32.82 
Increment (cm) 18.55 

Survival (%) 97.00 

Kakabeka test 

Spring Height (cm) 14.55 

Fall Height (cm) 32.51 

Increment (cm) 17.96 

Survival (%) 95.00 

Sault Ste Marie test 

2.61 
6.63 
5.53 

0.17 

2.40 

7.20 

6.65 

0.23 

6.00 
11.00 
0.50 

91.00 

7.00 

10.00 

0.40 

90.00 

23.40 
55.00 
39.90 

100.00 

25.50 

55.00 

38.50 

98.00 

17.40 
44.00 
39.40 

9.00 

18.50 

45.00 

38.10 

8.00 

<0.001 
<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

0.010 

29.0 
18.0 
8.0 

2.0 

11.0 

3.0 

2.0 

0.7 

Spring Height (cm) 12.22 3.95 1.27 30.48 29.21 0.020 3.0 
Fall Height (cm) 24.14 5.56 7.62 50.80 43.18 0.010 4.0 
Increment (cm) 11.92 3.78 1.27 27.94 26.67 <0.001 1.0 

Survival (%) 81.00 0.52 76.00 85.00 9.00 0.050 0.1 
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Table 4: Ranking of individual seed source mean height, increment and percentage survival of 
seed sources in single random plots  

Seed 
source 

Mean 
Spring 

Ht (cm) 

Seed 
source 

Mean 
Fall Ht 

(cm) 

Seed Increment Seed Survival 
source (cm) source % 

Dryden test 

13 
18 

9 
17 
20 

4 
8 
7 
6 

10 
5 

15« 
Kakabeka test 

9 
8 

10^ 

20 
6 

12 
18 
17 

1 
2 

14 

16.53 
15.91 
15.01 
14.98 
14.79 
14.52 

14.50 

14.40 
14.26 
13.94 

13.52 

11.54 

15.58 
15.38 

15.17 

15.15 
14.89 
14.66 

14.53 
14.45 
13.62 
13.34 
13.28 

Sault Ste Marie test 

9 
8 

13 
3 

17 
18 
16 
14 
20 

13.34 

13.13 
12.72 
12.68 
12.38 
12.26 
12.25 
11.73 

11.49 

11.13 

9 
13 
17 

8 
18 
20 

7 
10 
4 
5 
6 

15 

9 
8 

12 

1 
6 

17 
18 
20 
10 
2 

14 

8 
9 
3 

17 
13 
18 
16 
14 
6 

20 

37.66 
36.03 
35.05 

34.07 
34.05 
33.97 

32.78 
32.47 

32.38 
31.36 
31.19 

27.53 

35.99 
34.01 

33.19 

32.70 
32.44 

31.85 

31.83 
31.77 

31.68 
31.47 
30.38 

26.52 
26.47 

26.36 
25.71 
25.69 
25.54 
25.11 
24.24 

23.62 

23.31 

9 
17 

8 
13 
20 
10 

7 
18 

4 
5 
6 

15 

9 
1 

8 

12 
2 
6 

17 
18 
14 
20 
10 

3 
8 

17 
18 

9 
13 
16 
14 

6 

20 

22.65 
20.07 
19.57 
19.50 
19.18 
18.53 
18.38 
18.14 
17.86 
17.84 
16.93 

15.99 

20.41 
19.08 

18.63 
18.53 
18.13 
17.55 
17.40 
17.30 
17.10 
16.62 
16.51 

13.68 
13.39 
X3.33 
13.28 
13.13 
12.97 
12.86 

12.51 
12.49 

11.82 

20 
4 
5 
7 

10 
8 

17 
6 
9 

13 
18 

15 

8 
1 

9 

20 
2 
6 

12 
14 
17 
10 
18 

8 
9 
6 
3 

14 
18 
13 
20 
16 

17 

100.00 
99.00 

99.00 
99.00 
99.00 
98.00 

98.00 

97.00 
97.00 
97.00 

97.00 

91.00 

98.00 
97.00 

97.00 

97.00 
96.00 
96.00 
94.00 
93.00 

93.00 
91.00 
90.00 

90.00 
85.00 
84.00 
81.00 
79.00 
79.00 
78.00 
77.00 

76.00 

76.00 

(41 = local sources) 
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The variation in seed source means (Table 3) indicated that the mean spring height of the 

Dryden test ranged from 11.54 cm to 16.53 cm. Mean fall height ranged from 27.53 cm to 37.66 

cm. Mean height increment ranged between 15.99 cm and 22.65 cm. The Dryden test recorded 

the highest survival rate compared to the other test sites. Survival across seed sources ranged 

from 91% to 100%. 

Overall, seed source 13 from Northeast Minnesota had the highest mean spring height of 

16.53 cm, and seed source 15 from Rosamond Lake (the local source) recorded the lowest height 

of 11.54 cm. Seed source 9 from Northeast Wisconsin recorded the highest mean fall height of 

37.66 cm, whereas seed source 15 recorded the lowest mean fall height of 27.53 cm. For growth 

increment, seed source 9 from Northeast Wisconsin had the highest increment of 22.65 cm 

during the growing season. Survival was generally good at the Dryden test. Seed source 20 from 

Bemidji Minnesota had the highest percentage survival of 100%, whereas seed source 15 

recorded the lowest percentage survival of 91%. 

Intraclass correlation coefficient (ICC) values presented in Table 3 above ranged from 

2% to 29% for the growth responses. The ICC value for spring height was 30%, fall height 18%, 

increment 8%, and survival 2%. 

At Kakabeka test the mean height ranged from 13.28 cm to 15.58 cm for spring height, 

and 30.38 cm to 35.99 cm for fall height. Mean height increment ranged from 16.51 cm to 20.41 

cm. Survival among sources ranged from 90% to 98%. Source 9 from Northeast Wisconsin had 

the highest spring mean height of 15.58 cm, whereas source 14 from Cloquet, Minnesota had the 

lowest mean spring height of 13.28 cm. Similarly, seed source 9 had the highest mean fall height 

of 35.99 cm, whereas seed source 14 recorded the lowest mean fall height of 30.38 cm. For 

height increment, source 9 recorded the highest growth increment of 20.41 cm, whereas source 

10 from Lakehead Forest (the local source) had the lowest increment of 16.51 cm. Seed source 8 



from Upper Peninsula Michigan had the highest percentage survival of 98%, and source 18 had 

the lowest percentage survival of 90% 

Intraclass correlation coefficient (ICC) values for Kakabeka test ranged from 0.7% to 

11%. The ICC for spring height was 11%, fall height 3%, increment 2%, and survival is 0.7%. 

The Sault Ste Marie test recorded mean spring height from 11.13 cm to 13.34 cm, 

whereas mean fall height ranged from 23.31 cm to 26.52 cm. Seed source 9 from Northeast 

Wisconsin had the highest mean spring height of 13.34 cm, whereas seed source 6 from Algoma 

Forest (the local source) recorded the lowest mean spring height of 11.13cm. Seed source 8 from 

Upper Peninsula Michigan recorded the highest fall height of 26.52 cm and seed source 20 from 

Bemidji, Minnesota had the lowest fall height of 23.31 cm. Height increment showed seed source 

3 from Espanola area had the highest growth increment of 13.68 cm and source 20 recorded the 

lowest height increment of 11.82 cm. Sault Ste Marie test had the lowest survival compared to 

other tests. Survival ranged from 76% to 90%. Seed source 8 had the highest percentage survival 

of 90%, whereas seed sources 16 and 17 recorded the lowest percentage survival of 76%. 

Intraclass correlation coefficients (ICC) were relatively lower in Sault St. Marie test than 

the other tests. The ICC values ranged from 0.1% to 4%. The ICC for spring height was 3%, fall 

height 4%, increment 1% and survival is 0.1%. 

32 



Mixed random plot variation 

Results corresponded fairly well for the mixed and separate plots (Table 2 and 4, and Table 3 and 

5). The smaller sample size for the mixed plots produced fewer significant differences in height 

and survival. The analysis of variance for seed sources in mixed random blocks showed 

significant differences at (P < 0.05) in some of the growth responses that were variable across the 

three (3) tests (Table 4). 

There were significant differences in spring height, fall height and increment but survival 

was non-significant for the Dryden test, however, the Kakabeka test did not show significant 

differences in any of the growth responses. The Sault Ste Marie test showed significant 

I 

differences for fall height and increment, but non-significant differences for spring height and 

survival. Overall, the Kakabeka test recorded the highest mean spring height of 15.24 cm, mean 

fall height of 33.78 cm and percentage survival of 99.39%, whereas, the Dryden test recorded 

the highest mean increment of 18.90 cm. The Sault Ste. Marie test recorded the lowest in all the 

growth responses with a mean increment of 16.63 cm. 



Table 5: Grand mean of height, increment, percentage survival and P value of seed sources in 
mixed random plots  

Mean Std. Dev Min Max Range P value 

Dryden test 

Spring Height (cm) 14.68 

Fall Height (cm) 33.58 

Increment (cm) 

Survival (%) 

18.90 

99.31 

Kakabeka test 

Spring Height (cm) 15.24 

Fall Height (cm) 33.78 

Increment (cm) 

Survival (%) 

Sault Ste Marie test 

18.54 

99.39 

2.66 

5.88 

5.23 

1.59 

2.87 

7.41 

7.04 

2.01 

Spring Height (cm) 12.24 3.70 

Fall Height (cm) 25.87 5.59 

Increment (cm) 13.63 4.09 

Survival (%) 93.30 3.66 

7.90 

18.00 

5.80 

95.65 

4.00 

15.00 

2.50 

93.33 

2.54 

11.43 

2.54 

90.00 

25.10 

52.00 

37.50 

100.00 

24.50 

53.50 

36.50 

22.86 

40.64 

25.40 

100.00 

17.20 

34.00 

31.70 

4.35 

20.50 

38.50 

34.00 

100.00 6.67 

20.32 

29.21 

22.86 

10.00 

<0.001 

<0.001 

<0.001 

NS 

NS 

NS 

NS 

NS 

NS 

0.006 

0.003 

NS 

NS (nonsignificant at p = 0.05) 
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Table 6: Ranking of individual seed source mean height, increment and percentage survival in 
mixed random plots  

Seed 
source 

Mean 
Spring 
Ht(cm) 

Seed 
source 

Mean 
Fall 

Ht(cm) 

Seed Increment Seed 
source (cm) source 

Survival % 

Dryden test 
8 

17 
4 

18 
10 

9 
13 

6 
20 

7 
5 

15 

17.41 
16.80 
15.97 
15.68 
14.84 
14.70 
14.70 
14.22 
13.94 
13.54 
13.44 
11.64 

Kakabeka Test 
20 
12 
2 
6 
10 
8 
9 
14 
18 
1 

17 

17.86 
16.31 
15.73 
15.54 
15.06 
14.85 
14.79 
14.74 
14.52 
14.50 
14.12 

Sault Ste Marie test 
16 
14 
8 
18 
3 
13 
20 
6 
9 
17 

13.83 
12.91 
12.62 
12.49 
12.42 
12.12 
12.12 
12.07 
12.01 
10.26 

17 
9 
8 

13 
18 
10 

4 
20 

5 
6 
7 

15 

12 
20 
2 
9 
10 
8 
6 
1 

14 
18 
17 

16 
8 
14 
13 
18 
9 
17 
6 
3 
20 

38.05 
37.88 
36.38 
34.64 
34.00 
33.85 
33.36 
32.45 
31.50 
31.35 
31.18 
28.94 

38.19 
36.09 
35.64 
34.78 
34.38 
34.08 
33.07 
32.18 
32.09 
30.83 
29.28 

28.93 
28.89 
28.58 
26.44 
25.4 

25.05 
24.52 
23.77 
23.42 
23.09 

9 
17 
13 
10 
8 

20 
18 

5 
7 
4 

15 
6 

12 
9 
2 

10 
8 

20 
1 
6 

14 
18 
17 

8 
14 
16 
13 
17 

9 
18 
6 
3 

20 

23.18 
21.25 
19.94 
19.01 
18.97 
18.51 
18.32 
18.06 
17.64 
17.39 
17.30 
17.13 

21.88 
19.99 
19.91 
19.32 
19.23 
18.23 
17.68 
17.53 
17.35 
16.31 
15.16 

16.27 
15.67 
15.10 
14.32 
14.26 
13.04 
12.91 
11.70 
11.00 
10.97 

4 
5 
6 
7 
8 
9 
10 
17 
18 
20 
15 
13 

1 
2 
8 
9 
10 
12 
14 
17 
18 
20 
6 

8 
18 
6 
17 
14 
9 
13 
20 
3 
16 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
96.15 
95.65 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
93.33 

100.00 
100.00 
92.86 
92.86 
92.31 
91.67 
91.67 
91.67 
90.00 
90.00 
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Individual seed source performance in the mixed random blocks (Table 5) showed, the 

mean spring height for Dryden test ranged from 11.64 cm to 17.41 cm, whereas mean fall height 

ranged from 28.94 cm to 38.05 cm. Seed source 8 from Upper Peninsula, Michigan had the 

highest mean spring height of 17.41 cm, whereas seed source 15 from Rosamond Lake recorded 

the lowest mean spring height of 11.64 cm. Seed source 17 from Nashwauk, Miimesota recorded 

the highest mean fall height of 38.05 cm, and seed source 15 had the lowest mean fall height of 

28.94 cm. Mean height increment ranged from 17.13 cm to 23.18 cm. Seed source 9 from 

Northeast Wisconsin had the highest mean increment of 23.18 cm, whereas seed source 6 from 

Algoma Forest had the lowest mean increment of 17.13 cm. Percentage survival from the 

Dryden test ranged from 95.65% to 100%. Generally, survival was not much different among 

seed sources growing in the Dryden test. Seed source 13 from Northeast Minnesota and 15 from 

Rosamond Lake recorded the lowest percentage survival of 95.65 % and 96.15% respectively. 

The Kakabeka test mean spring height ranged from 14.12 cm to 17.86 cm, whereas mean 

fall height ranged from 29.28 cm to 38.19 cm. Seed source 20 from Bemidji, Minnesota had the 

highest mean spring height of 17.86 cm, whereas seed source 17 from Nashwauk Minnesota 

recorded the lowest mean spring height of 14.12 cm. Seed source 12 from Northwest Wisconsin 

recorded the highest mean fall height of 38.19 cm and seed source 17 from Nashwauk, 

Miimesota had the lowest mean fall height of 29.28 cm. Mean height increment ranged from 

15.16 cm to 21.88 cm. Similarly, Seed source 12 from Northeast Wisconsin had the highest mean 

increment of 21.88 cm, and seed source 17 from Nashwauk, Minnesota had the lowest mean 

increment of 15.16 cm. Seed source 6 from Algoma Forest had the lowest percentage of 93.33%. 

The Sault Ste Marie test mean spring height ranged from 10.26 cm to 13.83 cm, whereas 

mean fall height ranged from 23.09 cm to 28.93 cm. Seed source 16 from Tamarack, Minnesota 

had the highest mean spring height of 13.83 cm, whereas seed source 17 from Nashwauk, 

Minnesota recorded the lowest mean spring height of 10.26 cm. Again, seed source 16 from 
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Tamarack, Minnesota recorded the highest mean fall height of 28.93 cm, whereas seed source 20 

from Bemidji Minnesota had the lowest mean fall height of 23.09 cm. For mean height 

increment, seed source 8 from Upper Peninsula Michigan had the highest mean increment of 

16.27 cm and source 20 from Bemidji Minnesota recorded the lowest height increment of 10.97 

cm. Survival was generally low in Sault Ste Marie test. Percentage survival ranged from 90 % to 

100%. Seed source 8 from Upper Peninsula, and 18 from Big Falls, Minnesota had the highest 

percentage survival of 100 %, whereas seed source 16 from Tamarack, Minnesota, and 3 from 

Espanola had the lowest percentage survival of 90%. 

Seed Sources and Location Interaction 

Seed source and location interaction was determined using a set of 6 seed sources (6, 8, 9, 

17, 18, and 20) planted across all three test locations. Analysis of variance indicated that sources 

of variation (seed source, location, source x location) were all significant at P < 0.05 for spring 

height and fall height. However, for survival, seed source variation, and seed source x location 

interaction were not significant (Table 6). 

Mean heights for individual seed sources ranged from 13.04 cm to 14.70 cm for spring 

heights and 28.13 cm to 33.69 cm for fall heights. Mean increment ranged from 15.09 cm to 

18.99 cm. Percentage survival among seed sources ranged from 88.66% to 95.60%. Overall, seed 

source 9 from Northeast Wisconsin recorded the highest mean spring height of 14.70 cm, mean 

fall height of 33.69 cm and mean increment of 18.99 cm, whereas seed source 6 from Algoma 

Forest had the lowest mean spring height of 13.04 cm, mean fall height of 28.13 cm, and mean 

increment of 15.09 cm. Seed source 8 from Upper Peninsula, Michigan had the highest 

percentage survival of 95.60%, whereas seed source 18 from Big Falls, Minnesota had the lowest 

percentage survival of 88.66% (Table 7). 



Table 7: ANOVA of the seed sources represented across all test locations 
Df Mean Sq P value 

Spring height 
Location 2 1974.80 <0.001 
Seed sources 5 155.00 <0.001 
Seed sources X Location 10 51.30 <0.001 

Fall height 
Location 2 19535.00 <0.001 
Seed sources 5 1501.00 <0.001 
Seed sources X Location 10 154.00 <0.001 
Survival 
Location 2 3962.00 <0.001 
Seed sources 5 179.00 0.161 
Seed sources X Location 10 91.00 0.613 

Table 8: Ranking of mean heights and percentage survival of seed sources represented across all 
test locations 

Seed 
sources 

Mean 
Spring 
Height 
(cm) 

Seed 
sources 

Mean 
Fall 
Height 
(cm) 

Seed 
sources 

Mean 
Increment 
(cm) 

Seed 
sources 

Survival 
^0/ 

9 
8 
18 
17 
20 
6 

14.70 
14.37 

14.37 
14.05 

13.98 
13.04 

9 
8 
17 
18 
20 
6 

33.69 
31.69 

31.27 
30.80 

30.20 
28.13 

9 
8 
17 
18 
20 
6 

18.99 

17.32 

17.22 

16.43 

16.22 

15.09 

8 
9 
6 
20 
17 
18 

95.60 
93.06 

92.01 
91.44 

89.12 
88.66 
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Simple linear regressions of growth responses on climate variables 

Simple linear regressions of growth responses that showed significant differences among 

seed sources at (P < 0.05) were performed against the 36 climate variables of the seed source 

origin (Table 8). Seed source means for each growth responses were used for the simple 

regressions. The independent variables were selected based on Maximal R-square method at 

significance (P < 0.05) but some climatic predictors were significant at (P < 0.10). For Dryden 

test, mean monthly temperatures were the highest predictor values for spring height, fall height 

and growth increment, whereas precipitation was the highest predictor for survival. 

However, for Kakabeka test the r values from the regressions showed mean monthly 

temperatures were the best predictors for spring height, fall height and survival, whereas 

precipitation was the best predictor for height increment. 

Some climatic predictors selected for Sault Ste Marie test were significant at (P < 0. 10). 

For spring height and survival the climatic predictors were mean monthly temperatures, whereas 

precipitation was the best predictor for fall height and increment. 
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Table 9: Simple linear regressions of growth responses on climate variables 

Response 

Dryden test Kakabeka test 

Predictor P value Response Predictor 

Sault Ste Marie test 

R^ P value Response Predictor R^ P value 
Spring 
height 

Fall 
height 

octmaxt 

sepmaxt 

octmaxt 

marmaxt 

sepmaxt 

febmaxt 

aprmaxt 

junmaxt 

maymaxt 

novmaxt 

augmaxt 

mayprec 

janmaxt 

Increment marmaxt 

febmaxt 

mayprec 

sepmaxt 

novmaxt 

aprmaxt 

junmaxt 

janmaxt 

octmaxt 

Survival mayprec 

julprec 

decmaxt 

janmaxt 

novmaxt 

aprprec 

decmint 

janmint 

0.32 0.050 

0.31 0.050 

0.51 0.010 

0.49 

0.46 

0.44 

0.40 

0.37 

0.34 

0.34 

0.33 

0.32 

0.31 

0.44 

0.42 

0.39 

0.39 

0.35 

0.33 

0.32 

0.31 

0.05 

0.55 

0.43 

0.38 

0.38 

0.31 

0.29 

0.28 

0.27 

0.010 

0.010 

0.010 

0.020 

0.030 

0.040 

0.040 

0.040 

0.050 

0.050 

0.010 

0.020 

0.020 

0.020 

0.040 

0.040 

0.050 

0.050 

0.010 

0.010 

0.020 

0.030 

0.030 

0.050 

0.050 

0.050 

0.050 

Spring 
height 

Fall height 

Increment 

Survival 

febmaxt 

julprec 

octmaxt 

janmaxt 

novmaxt 

decmaxt 

febmaxt 

aprprec 

marmaxt 

aprprec 

novmaxt 

janmaxt 

decmaxt 

mayprec 

marprec 

janmint 

aprprec 

decmint 

decmaxt 

novmaxt 

novmint 

janmint 

marprec 

junprec 

0.21 

0.18 

0.18 

0.48 

0.48 

0.42 

0.41 

0.32 

0.27 

0.66 

0.66 

0.60 

0.59 

0.56 

0.41 

0.37 

0.37 

0.34 

0.44 

0.39 

0.39 

0.33 

0.33 

0.30 

0.100 

0.100 

0.100 

0.010 

0.010 

0.030 

0.030 

0.050 

0.050 

0.001 

0.001 

0.010 

0.010 

0.010 

0.030 

0.040 

0.040 

0.050 

0.020 

0.030 

0.030 

0.050 

0.050 

0.050 

Spring 
height 

Fall 
height 

Increment 

Survival 

marmaxt 

febmaxt 

mayprec 

mayprec 

febmaxt 

aprmint 

marmaxt 

julprec 

janmint 

janmaxt 

febmint 

decmint 

decmaxt 

novmaxt 

octmint 

novmint 

sepmint 

marprec 

sepprec 

aprprec 

novprec 

febmaxt 

junprec 

julprec 

0.39 

0.38 

0.37 

0.28 

0.25 

0.21 

0.20 

0.26 

0.79 

0.76 

0.75 

0.74 

0.73 

0.65 

0.63 

0.60 

0.60 

0.58 

0.57 

0.56 

0.50 

0.44 

0.42 

0.37 

0.050 

0.050 

0.060 

0.100 

0.100 

0.100 

0.100 

0.100 

0.001 

0.001 

0.001 

0.001 

0.001 

0.004 

0.005 

0.008 

0.008 

0.010 

0.010 

0.010 

0.020 

0.030 

0.040 

0.060 
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Multiple linear regressions and Principal Components Analysis 

A combination of Principal Component Analysis (PC A) and multiple linear regressions 

were used to determine combinations of climate variables and regression models that suitably 

predicted adaptive variation of black spruce. 

Results from principal component analysis for Dry den test (Table 9 and 10) showed, the 

first two Principal Component (PC) axes explained 90% of the total variation. Principal 

component axis 1 (PCI) explained 72% of the variation, and Principal component axis 2 (PC2) 

explained 18% of the total variation. All variable loadings showed strong positive contribution 

for PCI, while PC2 was positively correlated with survival. 

The multiple regression models and independent variables for Dryden test were selected 

at significant (P < 0.05) (Table 11). To avoid multicollinearity “VIF” function in R “car” package 

was used to estimate Variance inflation Factor (VIF) of the climate variables and Tolerance was 

calculated from the VIF (Dongyu 2012). Variables with tolerance less than O.I was removed 

(Lesser and Parker 2006). The first PC axis regressions against climate variables showed that 

October minimum temperature, September maximum temperature and October precipitation 

correspond to black spruce growth (r - 0.65). The second PC axis had an r value of 0.84 and 

was predicted by the combination of October minimum temperature and October and September 

precipitations. 



Table 10: Eigenvalue, proportion and cumulative of variation from principal components 
analysis of the Dryden test  

PCI PC2 PC3 

Eigenvalue 2.90 0.70 0.40 

Proportion of Variance 0.72 0.18 0.10 

Cumulative Proportion 0.72 0.90 1.00 

Table 11: Variable loadings, Eigen vectors. Standardised LSD calculations for the principal 
components axes of the Dryden test  

PCI PC2 

Eigen 
Vectors 

a = 

0.05 loadings loadings Loadings X LSD 
LSD ^ 

DrdFHt 0.23 0.97 0.22 -0.22 -0.05 
DrdSHt 0.20 0.87 0.17 0.04 0.01 
Drdinc 0.23 0.87 0.20 -0.34 -0.08 
DrdSuv 0.18 0.65 0.12 0.73 0.13 
Sum 3.37 0.71 0.21 0.01 
Weighted Average 0.21 0.03  

DrdFHt (Dryden fall height); DrdSHt (Dryden spring height); Drdinc (Dryden height increment); 
DrdSuv (Dryden survival). 

Table 12: Multiple regressions of Dryden PC axes seed source scores on climate variables 
Dependent Independent Std. 
variable variable Estimate Error P > t Tolerance P value R 

PCI 

PC2 

(Intercept) 

octmint 

octprec 

sepmaxt 

(Intercept) 

octmint 

octprec 

sepprec 

-6.257 

-0.343 

0.018 
0.292 

0.003 

-0.022 

0.003 

-0.002 

1.727 

0.138 

0.008 

0.076 

0.036 

0.005 

0.001 

0.001 

0.006 

0.037 

0.062 

0.004 

0.942 

0.002 
<0.001 

0.003 

0.020 0.65 

0.40 

0.59 

0.35 

0.89 

0.39 

0.39 

0.001 0.84 

Regression models 

PCI = —6.257 — 0.343octmint + O.OlSoctprec + 0.292sepmaxt 

PC2 = 0.003 — 0.022octmint + 0.003octprec — 0.002sepprec 

42 



The PCA for Kakabeka (Table 12 and 13) indicated the first two Principal Component 

axes explained 88% of the total variation of the adaptive variation in growth responses; PCI 

explained 63% and PC2 25%. All the variable loadings were positively correlated with PCI. In 

addition, fall and spring heights variable loadings showed positive correlation with PC2. The 

positive loadings and high coefficients are indication PCI and PC2 axes explained far more of the 

variation. 

The multiple regression models and independent variables for Kakabeka test (Table 14) 

were selected based on Maximal R-square method at significance (P < 0.05). The first PC axis 

regression with r value of 0.78 showed November maximum temperature, September minimum 

temperature and September precipitation were strong predictors for black spruce growth and 

survival. The second PC axis had an r^ value of 0.82 and was predicted by the combination of 

November maximum temperature, September minimum and maximum temperatures and May 

precipitation. 

Table 13: Eigenvalue, proportion and cumulative of variation from principal component analysis 
of the Kakabeka test  

 PCI PC2 PC3 

Eigenvalue 2.52 0.99 0.48 

Proportion of Variance 0.63 0.25 0.12 

Cumulative Proportion 0.63 0.88 1.00 

Table 14: Variable loadings. Eigen vectors. Standardised LSD calculation for the principal 
components axes of the Kakabeka test  

Eigen 
Vectors 

a - 0.05 
LSD 

PCI 

loadings 
Loadings 
XLSD 

PC2 

loadings 
Loadings 
XLSD 

KKFHt 0.23 0.61 0.14 0.18 0.04 
KKSHt 0.21 0.35 0.08 0.81 0.17 
KKInc 0.28 0.55 0.16 -0.35 -0.10 
KKSuv 0.29 0.46 0.13 -0.43 -0.13 
Sum 1.96 0.50 0.20 -0.01 
Weighted Average 0.26 -0.07 

KKFHt (Kakabeka fall height); KKSHt (Kakabeka spring height); KKInc (Kakabeka height increment); 
KKSuv (Kakabeka survival) 
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Table 15: Multiple regressions of Kakabeka PC axes seed source scores on climate variables 

Estimate 
Std. 
Error P > t Tolerance P value 

PCI 

PC2 

(Intercept) 

novmaxt 

sepmint 

sepprec 

(Intercept) 

mayprec 

novmaxt 

sepmaxt 

sepmint 

2.6559 

0.5976 

-0.2601 

-0.0247 

-0.2128 

0.0068 

-0.0340 

-0.0362 

0.0664 

1.2995 

0.1361 

0.1238 

0.0105 

0.2913 

0.0019 

0.0172 

0.0136 

0.0203 

0.080 

0.003 

0.073 

0.050 

0.492 

0.012 

0.090 

0.037 

0.017 

0.24 

0.42 

0.39 

0.63 

0.40 

0.67 

0.42 

0.009 0.78 

0.018 0.82 

Regressions model 

PCI = 2.65 + O.S9novmaxt — O.ISsepmint — O.OIsepprec 

PC2 = —0.21 + O.Olmayprec — O.OSnovnnaxt — O.OSsepmaxt 

For Sault Ste Marie test the Principal Component Analysis (PCA) showed the first two 

Principal component axes explained 94% of the total variation in growth responses (Table 15 and 

16). The first Principal component (PCI) explained 73% of the variation and the second Principal 

component (PC2) explained 20%. Principal component 1 (PCI) explained more of the growth 

potential as indicated by the positive loadings. Likewise, survival variable loading showed 

positive correlation on PC2. 

The first PC axis with r^ value of 0.95 showed April and August precipitations, February 

maximum and August maximum temperatures combine as strong predictors for black spruce 

growth and survival at the Sault Ste Marie test. The second PC axis had an r^ value of 0.56 and 

was predicted by the September minimum temperature (Table 17). 
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Table 16: Eigenvalue, proportion and cumulative of variation from principal component analysis 
of the Sault Ste Marie test 

PCI PC2 PC3 

Eigenvalue 2.93 0.82 0.26 

Proportion of Variance 0.73 0.20 0.06 

Cumulative Proportion 0.73 0.94 1.00 

Table 17: Variable loadings, Eigen vectors, standardised LSD calculation for the principal 
components axes of the Sault Ste Marie test  

Eigen 
Vectors 

a - 0.05 
LSD 

PCI PC2 
I j. Loadings , ,. Loadings 
loadings XLSD 

SMFHt 0.25 0.99 0.24 -0.16 -0.04 
SMSHt 0.25 0.94 0.23 -0.08 -0.02 
SMInc 0.25 0.90 0.22 -0.23 -0.06 
SMSuv 0.10 0.51 0.05 0.86 0.08 
Sum 3.34 0.75 0.39 -0.03 
Weighted Average 0.22 -0.09 

SMFHt (Sault St. Marie fall height); SMSHt (Sault St. Marie spring height); SMInc (Sault St. Marie 
increment); SMSuv (Sault St. Marie survival) 

Table 18: Multiple regressions of Sault Ste Marie PC axes seed source scores on climate 
variables 
Dependent Independent T- , Std. 

... . 1, Estimate 
variable variable Error 

P > t Tolerance P value K 

PCI 

PC2 

(Intercept) 
aprprec 
augmint 

augprec 
febmaxt 

(Intercept) 
sepmint 

17.6811 
-0.0215 
-0.5702 

-0.0740 
0.7910 

0.9141 

-0.1384 

2.4427 
0.0060 
0.1324 

0.0102 

0.0978 

0.2863 

0.0433 

<0.001 
0.015 
0.007 

<0.001 
<0.001 

0.012 

0.010 

0.001 0.95 
0.33 
0.50 

0.67 
0.24 

0.63 0.012 0.56 

Regression models 

PCI = 17.681 — 0.021aprprec — 0.S70 augmint — 0.074augprec + 0.791febmaxt 

PC2 = 0.914 — O.lSSsepmint 
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DISCUSSION 

The understanding of genetic patterns of variation in plant species is critical in moving 

seed sources across landscapes in the changing climates. This study tested an application of a 

functional modeling approach to observe early growth responses of black spruce populations 

predicted to be potentially adaptable for reforestation under future climate uncertainty. While it is 

too soon to properly evaluate the trial results at this level, the results prove significant variation 

exists in the growth responses of black spruce seed sources growing under different 

environmental conditions. 

This study found differentiation in fall height, spring height, height increment and 

survival among the black spruce seed sources. The results also showed that the variation existing 

among black spruce seed sources is strongly correlated with the climates of the seed sources 

origin as shown by the coefficient of determination. Similar patterns of variation have previously 

been reported for black spruce seed weight, germination rate, survival and height, phenology, 

cold hardiness, and growth (Dietrichson 1969; Morgenstem 1978; Fowler and Park 1982; 

Nienstadt 1984; Parker et al. 1994; Beaulieu et al. 2004). These tests were carried out in nursery 

and environments where site conditions are relatively uniform. The significant variation among 

populations in adaptive traits such as growth rate, phenology, form and cold hardiness suggests 

that there exist significant genetic differences among populations. If the pattern of genetic 

variation tracks the environment or climatic variables of the seed source origins, it provides 

evidence of natural selection and may be important for adaptation. 

Although, survival variation expressed among seed sources was found not to be as strong 

as for height variation, this result is consistent with the studies of (Nienstadt 1984; Wang et al. 

1994; 2006). These earlier studies acknowledge that many factors may contribute to plants 

survival in their early growth. It is probable that herbivorous damage, planting technique, young 

age of the plants, and insufficient hardening-off of the seedlings before planting all contributed to 
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the observed survival. Similar studies also found lack of strong survival differentiation in early 

growth of boreal conifer species; black spruce (Park and Fowler 1987), white spruce Picea 

glauca (Rweyongeza Qt al 2007). 

The low intraclass correlation coefficient found in this study may be that the seed sources 

planted have adaptive similarities. Generally, low intraclass correlation coefficient can be 

explained if there is large component of environmental variation. For instance height growth is 

highly influenced by the environmental conditions of the test locations rather than genetic (Zobel 

and Talbert 1984). 

The general trend of differentiation in black spruce growth responses as shown by this 

study confirms many published studies (Morgenstem 1968; 1978; Pollard and Logan 1974; 

Khalil 1975; Park and Fowler 1987; Johnsen and Seiler 1996). These studies indicate, that, like 

many boreal forest conifer species, black spruce provenances, seed sources and populations 

exhibit large amount of adaptive genetic variation. Also, that the species’ adaptive characteristics 

strongly correspond to the latitude, longitude and local environmental conditions of the species’ 

ranges. Similarly, Parker and Van Niejenhuis (1992) observed differentiation in phenology and 

growth traits of black spruce seed sources. Their study also observed the correlation between the 

black spruce provenances’ variation and their local climates, a trend common among many 

boreal forest tree species. However, in other studies, (Fowler and Mullin 1977) found relatively 

little differentiation between upland and lowland black spruce. Thus, their study indicated 

variation in upland and lowland black spruce was not detectable as the seedlings age. Also, 

Morgenstem (1968) did not find edaphic differentiation in black spmce. 

A number of studies have shown existence of edaphic ecotypes in many boreal forest 

species. The presence of ecotypes were reported in lowland and upland white cedar {Thuja 

occidentalis L) (Habeck 1958), white clover {Trifolium repens L) (Snaydon 1962), and white 

spmce (Picea glauca (Moench) Voss) (Farar and Nicholson 1966). 
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The results from the present study show clinal differentiation although the patterns do not 

exactly follow geographic gradient expressed by the origins of the seed sources. Previous studies 

of black spruce and many boreal conifers species have shown similar irregular patterns of clinal 

variation (Morgenstem 1968; Rudolph and Yeatman 1982; Rehfeldt 1984; Campbell 1986; Park 

and Fowler 1988; Joyce 1988; Parker 1992; Parker and Van Niejenhuis 1996). Such patterns of 

clinal adaptation demonstrated by the seed sources may support the current seed deployment in 

some Canadian provinces such as Ontario based on the assumption that local sources are best 

adapted to their current prevailing environmental conditions and their use may prevent 

maladaptation. However, the projected future changes in temperature and precipitation, if it 

becomes reality, will not support the present local conditions for future growth (Ledig and 

Kitzmiller 1992; Papadopol 2000; Kramer and Havens 2009; Hamann et al, 2011). 

From the present study the local seed sources did not show the best growth in height and 

survival across the test locations. Consistently, seed sources 9 and 13 from Northeast Wisconsin 

and Northeast Minnesota respectively, originating from the southerly portions of the study areas 

showed higher growth across the test locations. This result does not support the inherent 

assumption that the use of local seed sources in reforestation programmes always reduces the risk 

of maladaptation, at least in terms of height growth (Rehfeldt 1983; Campbell 1986, Lindgren 

and Ying 2000;). The study, however, supports the studies of (Parker 1992; Parker et al. 1994; 

Parker and Van Niehenjuis 1996; Lesser and Parker 2006). Their studies showed that seed 

sources with higher growth were from southwest portion of their sampled area. In many 

instances, Reich and Oleksyn (2008) also showed that growth varied in the far north between 

local and other sources, with growth slower for the local sources. Their study found that local 

sources were only adapted for survival to local conditions, as no geographic pattern of survival 

was detected. 
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The scope of climate change and its associated impacts on boreal forest species are major 

concerns to future genetic resource conservation and reforestation programmes. Compounding 

the challenges is the uncertainty in future climate estimates. The scenarios for future climates 

estimates are subjected to many uncertainties as they are based on factors that are not easy to 

predict over long periods. As a result, the models and technologies to estimate future climates are 

rather provide conflicting predictions. Different models produce different possible outcomes 

(McKenney et al. 2009; Stankowski and Parker 2010; Stankowski and Parker 2011). For 

example, Crowe and Parker (2008; 2011) show how white spruce and red pine populations 

respond differently under different future climate projections in Ontario with the following 

models; the Canadian GCM (CGCM2), the UK-based Hadley GCM (HADCM3), the Australian- 

based Commonwealth Scientific and Industrial Research Organisation GCM (CSIROMk2), and 

the American-based National Centre for Atmospheric Research GCM (NCAR). Similarly, Davis 

and Zabinski (1991) also show differences among projected ranges of America beech under 

National Oceanic and Atmospheric Agency (NOAA) and National Aeronautics and Space 

Agency (NASA) climate models. Such complexity under which multiple seed sources and 

species respond differently under different future projections makes planned adaptation difficult. 

To overcome such problem in reforestation efforts, and conservation of genetic resources, 

traditional practices such as maintaining species suitable habitats and connecting landscape 

corridors, or using local seed sources for reforestation, and limiting seeds across zone boundaries 

have thus far been used as adaptive strategies to either reduce maladaptation, prevent species 

extinction or extirpation to the changing climates (Rudolph and Yeatman 1982; Park and Fowler 

1988; Krosby et al. 2010; Aubin et al. 2011; Hewitt et al. 2011). However, planned adaptation 

strategies to future climate uncertainty must be innovative, risk-tolerant and perform equally well 

against all considered future scenarios (Lempert et al. 2004; Heller and Zavalata 2009; Hunter et 

al. 2010). 
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Because many plant species have high genetic diversity, strategies employing 

diversification have been successful in coping with environmental changes and can be a hedge 

against future climate uncertainty (Kitzmiller 1976; Hamrick et al, 1979; Ledig and Kitzmiller 

1992; Crowe and Parker 2011). In reforestation programmes the best way to use diversity as an 

adaptive strategy is to mix a set of seed sources (Ledig and Kitzmiller 1992). In such practice at 

least one or more of the seed sources would be expected to act as a buffer under all plausible 

future scenarios. 

The combination of species range impact model and portfolio optimization model were 

used in this study to select a set of adaptable seed sources for reforestation in future climate 

uncertainty. The species-range impact model uses growth responses data to summarise adaptive 

variation among multiples seed sources growing from different environmental conditions, and 

make a best match to particular geographic area for optimum growth. This procedure reduces the 

risk of using maladapted seed sources for regeneration. This approach can be useful for 

reforestation programmes in many Canadian Provinces where the selection of seed sources for 

reforestation programmes largely depends on the traditional site region frameworks represented 

by checker-board pattern of polygons such as (Hills 1961) site region classification in Ontario. 

These site regions were divided based on administrative districts, geology and soils. This 

conventional practice of seed transfer has been criticised as it is not based on genecological 

studies (Rehfeldt 1984; Parker 1992; Lesser and Parker 2006). 

Robust solutions are required for planned adaptation to future climate change and that the 

application of species range impact model, and portfolio optimization model may be a decision 

tool in selecting adaptable seed sources that can withstand any plausible future climate scenarios. 

However, caution should be exercised when applying these models. First, the results 

from the current study are too early to make any definitive conclusions on the model validity. In 

addition, like any empirical model they are based on present and future climatic condition 
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(precipitation and temperature), however plant growth and survival may also be affected by other 

factors such as physiological, biochemical and biogeographical characteristics of the species 

range or ecosystem. The other caution to be wary in the use of portfolio model is the biological 

interpretation of the “risk (the variance and covariance). The only biological interpretation of 

covariance is that sources that perform well across all scenarios have lower covariance which is 

difficult to quantify biologically. 
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FUTURE DEVELOPMENT 

The black spruce portfolio trials established across Ontario (Dryden, Kakabeka and Sault 

Ste. Marie) will serve as long-term tests to study black spruce responses to climate change, and 

the validity of the species-range impact model and the portfolio optimization model as decision- 

making tools in planned adaptation to future climate change uncertainty. The presented results 

are early growth responses of black spruce seed sources growing under different environmental 

conditions. Therefore, the models will continue to be refined as the tests age. The results from the 

study will be enhanced by periodic measurement of the tests over time. And as such, it is 

recommended that in the immediate future, other traits of black spruce including phenology and 

the root collar diameter should be studied to complement the early growth responses from this 

study. There was no intent to plant every single source across all test locations; hence, comparing 

individual seed sources performance across all test locations as well as seed source by location 

interaction was not possible. Instead, only 6 seed sources (6, 8, 9, 17, 18 and 20) that occurred 

across all test locations were analysed across planting sites. 
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CONCLUSION 

Challenges associated with climate change have significant impacts on future forest 

management with far reaching consequences on boreal tree species such as black spruce 

(Johnston and Williamson 2007; Aitken et al, 2008; McKenney et al, 2009). The objective of the 

study was to test the application of a model approach that could provide a robust solution to the 

anticipated plausible future climate scenarios: the species range impact model and portfolio 

decision support model. The study finds differentiation in fall height, spring height, height 

increment and survival among black spruce seed sources growing under the three (3) different 

environmental conditions. The adaptive variation demonstrated by black spruce corresponds to 

the present climatic conditions of the seed sources origin. Among climate variables, minimum 

and maximum temperatures and precipitation in the spring, summer and fall growing seasons 

were identified as good predictors of black spruce growth at all the test locations. Southern 

sources originating from Northeast Wisconsin and Northeast Minnesota demonstrated high 

growth performance across the test locations. This trend gives an indication that southern sources 

may well be suitable for future reforestation programmes in the Ontario Boreal Forest Region. 

These early results suggest that the combination of species range impact model portfolio decision 

support model identify an adaptive pattern of variation from multiple seed sources, and can be 

used to select a set of sources to succeed under a multiple climate change scenarios and that 

potentially reduce risk of maladaptation in future climate uncertainty. 
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APPENDICES 

Appendix 1: Climate values, Latitudes and Longitudes of seed sources origin 

seed 
sources 

Longitude Latitude aprmaxt aprmint aprprec augmaxt augmint 

1 -73.8833 
2 -79.4500 
3 -81.7667 
4 -80.4667 
5 -83.1667 
6 -84.3833 
7 -86.6603 
8 -87.5000 
9 -88.4333 
10 -89.7167 
11 -91.2167 
12 -91.3667 
13 -93.8667 
14 -92.4667 
15 -93.0667 
16 -93.1167 
17 -93.1667 
18 -93.8000 
19 -93.9167 
20 -94.8833 

46.6333 8.1295 
46.3500 9.0804 
46.2667 9.4379 
49.2667 6.3233 
47.8667 7.3054 
46.6167 8.1216 
49.3278 6.2268 
46.1333 9.2597 
45.3667 11.7578 
48.3167 8.7319 
49.2000 8.2873 
45.9833 11.5672 
48.1000 11.5127 
46.7000 10.5998 
49.9333 8.6655 
46.6333 11.5585 
47.3833 10.9627 
48.1833 11.6229 
49.4167 9.6200 
47.4667 10.9519 

-3.7994 71.6900 
-2.1628 65.4592 
-2.2319 65.3567 
-6.6728 45.7791 
-5.5139 53.1798 
-3.0991 65.7587 
-6.0573 41.0486 
-2.0399 60.6615 
-1.9576 69.9758 
-4.7128 49.9553 
-4.6334 34.1780 
-1.8241 58.4504 
-2.1798 41.4672 
-2.0923 49.7437 
-3.8527 34.8273 
-1.8851 48.8956 
-2.6915 44.5432 
-2.2265 41.8443 
-2.9816 33.8043 
-2.2999 39.7085 

22.0140 9.5851 
22.6881 11.5171 
23.7180 11.1534 
21.5870 8.6144 
21.9413 9.3092 
22.3563 10.7507 
20.2808 9.0566 
23.7067 11.8860 
24.5776 11.5892 
22.8510 8.8503 
22.1765 10.2629 
24.9188 11.7783 
24.8739 11.3356 
24.1299 11.7306 
22.7315 11.2374 
24.6986 11.7199 
24.1761 10.9468 
24.9861 11.2000 
23.5595 11.7836 
24.8540 12.0471 
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Appendix 1 Continued 
seed 
sources 

janmaxt janmint janprec julmaxt julmint julprec 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-8.2384 
-7.7003 
-6.0960 

-12.4423 
-9.9749 
-6.2280 

-10.9863 
-5.1624 
-5.5560 
-9.3608 

-12.5154 
-6.9669 
-9.2384 
-7.7045 

-12.8371 
-8.1522 
-9.0485 
-9.1552 

-11.8500 
-9.5171 

-21.4378 
-18.5823 
-17.3774 
-25.5129 
-22.9338 
-16.4153 
-23.6721 
-15.3009 
-17.4734 
-22.2121 
-24.5774 
-19.3207 
-21.7774 
-19.4586 
-23.8569 
-20.3485 
-21.5940 
-21.7162 
-23.1506 
-22.0389 

67.1692 
69.8478 
63.4649 
59.4932 
56.3744 
80.6125 
49.1570 
46.3724 
33.1300 
50.9685 
33.4545 
29.1859 
26.7518 
25.7323 
29.7176 
23.0955 
23.4746 
28.4813 
27.3865 
19.1003 

23.6607 
24.4290 
25.3158 
23.2869 
23.4998 
23.4713 
20.9756 
24.9098 
26.0003 
24.1744 
24.0782 
26.2966 
25.9930 
25.4634 
24.2605 
25.9660 
25.3809 
26.0982 
24.9766 
25.8672 

10.6669 
12.4779 
11.9542 
9.6579 

10.2809 
10.6782 
9.2603 

12.3695 
12.4838 
10.0151 
11.7659 
12.9212 
12.5640 
12.3186 
12.5607 
12.7221 
12.0835 
12.4204 
13.0326 
13.2416 

100.0070 
98.5683 
64.0027 

102.7320 
81.0710 
84.2837 
94.5702 
84.6135 
91.6727 
99.1893 

100.0290 
118.4060 
97.5985 

114.8330 
97.4510 

113.9880 
111.3450 
94.8625 
91.9032 

106.9810 
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Appendix 1 continued 

seed augprec decmaxt decmint decprec febmaxt febmint febprec 
sources 
1 107.7300 
2 96.9446 
3 84.5513 
4 89.7873 
5 81.2311 
6 94.6126 
7 81.2642 
8 92.1735 
9 96.7629 
10 80.6135 
11 92.4744 
12 116.5020 
13 89.6198 
14 100.7590 
15 90.9219 
16 97.9814 
17 93.3527 
18 88.7550 
19 85.6844 
20 91.1449 

-5.1172 -16.6859 
-4.6402 -14.1694 
-3.2212 -12.8305 
-9.4515 -20.5983 
-6.7038 -17.4262 
-3.2670 -11.5447 
-8.1336 -18.9776 
-2.6519 -11.1866 
-3.2427 -13.4685 
-6.5347 -17.7161 
-9.4410 -20.0992 
-4.5879 -14.9353 
-6.9306 -17.5604 
-5.3285 -15.3465 

-10.2999 -19.7694 
-5.7499 -16.0155 
-6.6415 -17.2144 
-6.9068 -17.5744 
-9.3741 -19.0624 
-6.8778 -17.4895 

74.7003 -5.6533 
71.3886 -5.5064 
78.8516 -4.3229 
62.7853 -9.2559 
62.2719 -6.9931 
91.3317 -4.4481 
49.0428 -8.0801 
48.2621 -2.8116 
38.8057 -2.3987 
51.8003 -5.3635 
29.9978 -7.8840 
27.3833 -3.0175 
25.5990 -4.6279 
22.4670 -3.6312 
30.5097 -8.0760 
19.9640 -3.7055 
19.9516 -4.4747 
27.5580 -4.5829 
26.2177 -7.0582 
16.1732 -4.8357 

-20.1238 53.8845 
-17.0470 56.2758 
-16.1199 47.7495 
-23.7384 36.1546 
-20.7700 41.9116 
-15.6794 49.8794 
-21.8480 36.8414 
-13.9124 31.4389 
-15.2716 24.8233 
-18.9200 30.8693 
-20.7708 28.8661 
-15.9354 22.3948 
-17.7475 20.2740 
-15.8168 18.0724 
-20.1341 22.6801 
-16.4621 15.5657 
-17.6738 15.8746 
-17.7202 21.8015 
-19.2726 20.0978 
-18.0527 13.3541 
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Appendix 1 Continued 
seed 
sources 

janmaxt janmint janprec julmaxt julmint julprec 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-8.2384 
-7.7003 
-6.0960 

-12.4423 
-9.9749 
-6.2280 

-10.9863 
-5.1624 
-5.5560 
-9.3608 

-12.5154 
-6.9669 
-9.2384 
-7.7045 

-12.8371 
-8.1522 
-9.0485 
-9.1552 

-11.8500 
-9.5171 

-21.4378 
-18.5823 
-17.3774 
-25.5129 
-22.9338 
-16.4153 
-23.6721 
-15.3009 
-17.4734 
-22.2121 
-24.5774 
-19.3207 
-21.7774 
-19.4586 
-23.8569 
-20.3485 
-21.5940 
-21.7162 
-23.1506 
-22.0389 

67.1692 
69.8478 
63.4649 
59.4932 
56.3744 
80.6125 
49.1570 
46.3724 
33.1300 
50.9685 
33.4545 
29.1859 
26.7518 
25.7323 
29.7176 
23.0955 
23.4746 
28.4813 
27.3865 
19.1003 

23.6607 
24.4290 
25.3158 
23.2869 
23.4998 
23.4713 
20.9756 
24.9098 
26.0003 
24.1744 
24.0782 
26.2966 
□ 5.9930 
25.4634 
24.2605 
25.9660 
25.3809 
26.0982 
24.9766 
25.8672 

10.6669 
12.4779 
11.9542 
9.6579 

10.2809 
10.6782 
9.2603 

12.3695 
12.4838 
10.0151 
11.7659 
12.9212 
12.5640 
12.3186 
12.5607 
12.7221 
12.0835 
12.4204 
13.0326 
13.2416 

100.0070 
98.5683 
64.0027 

102.7320 
81.0710 
84.2837 
94.5702 
84.6135 
91.6727 
99.1893 

100.0290 
118.4060 
97.5985 

114.8330 
97.4510 

113.9880 
111.3450 
94.8625 
91.9032 

106.9810 
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Appendix 1 Continued 
seed 
sources 

junmaxt junmint junprec marmaxt marmint marprec 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21.2330 
21.8372 
21.9681 
20.7161 
20.8530 
20.6529 
18.6746 
22.1885 
23.9587 
21.2352 
21.0062 
24.0099 
23.6461 
22.8625 
21.5732 
23.7864 
23.2550 
23.7037 
22.1802 
23.5068 

8.0154 
9.7387 
8.7108 
6.4951 
7.3770 
7.6441 
6.4487 
9.3756 
9.6518 
6.7955 
8.6091 
9.8402 
9.9224 
8.7888 
9.6384 
9.7634 
9.3657 
9.7780 

10.1275 
10.6631 

105.1910 
89.7108 
66.3129 
88.9034 
85.9375 
85.4747 
88.3175 
83.1942 
94.6711 
91.1905 
99.6738 

101.7650 
113.4830 
108.6000 
102.5870 
111.0670 
113.0870 
115.5150 
104.2490 
102.0420 

0.8088 
0.8300 
1.1959 

-2.2940 
-0.7503 
0.7173 

-1.6810 
2.2402 
3.5292 
0.5496 

-0.6852 
3.0738 
2.3433 
2.2462 

-0.6345 
2.6814 
2.1031 
2.4086 
0.2316 
1.8327 

-12.9991 
-10.6575 
-10.3894 
-16.5411 
-14.3458 
-10.5168 
-15.1490 
-8.6070 
-8.9592 

-12.4899 
-13.7536 

-8.9203 
-10.2388 

-9.0895 
-12.9551 

-9.2893 
-10.4104 
-10.2191 
-11.8105 
-10.3902 

64.6734 
66.7794 
66.1008 
53.6585 
57.6795 
61.2611 
42.0009 
56.7314 
53.8003 
44.6624 
33.6914 
44.3840 
29.1624 
37.7334 
31.3657 
34.1642 
29.1519 
29.8377 
27.5178 
27.9023 
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Appendix 1 Continued 
seed 
sources 

maymaxt may mint mayprec novmaxt novmint novprec 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

16.9202 
17.5020 
17.5051 
15.2417 
16.5533 
16.2755 
14.3807 
17.2996 
19.7719 
17.0207 
17.1756 
19.6832 
19.6844 
18.2992 
17.3121 
19.3722 
18.9866 
19.8443 
17.8803 
19.1134 

2.9791 
4.8873 
4.1305 
1.2591 
2.4743 
3.1799 
1.6281 
4.2166 
4.4396 
1.8019 
3.2410 
4.6870 
5.0270 
3.9102 
4.1293 
4.6793 
4.2043 
4.9495 
4.7064 
5.2749 

91.8658 
86.5061 
75.6889 
69.1173 
82.7024 
72.8926 
69.4803 
74.8860 
85.5363 
69.8288 
65.8995 
84.9779 
71.6007 
74.2982 
61.2952 
75.9537 
72.1085 
71.7983 
60.5562 
69.3243 

1.9614 
2.5614 
3.6111 

-0.7537 
0.4596 
2.9339 

-0.7281 
3.7639 
3.7632 
1.0450 

-1.3398 
2.9033 
0.8361 
2.1044 

-1.7735 
2.0094 
1.0063 
0.8608 

-0.7354 
0.8495 

-6.6036 
-4.8089 
-3.9763 
-8.6756 
-7.4308 
-4.3183 
-8.8895 
-4.3300 
-5.7991 
-8.2963 
-9.3352 
-6.2646 
-7.9206 
-6.6516 
-8.9716 
-7.0007 
-7.9767 
-7.9403 
-8.2692 
-8.2250 

84.7567 
83.0887 
80.0259 
63.6631 
63.5609 
88.8086 
63.7337 
68.3277 
59.5735 
62.5853 
42.0063 
53.3347 
42.2864 
47.6082 
41.8104 
42.3782 
38.4249 
44.3765 
42.0637 
31.1231 
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Appendix 1 Continued 
seed 
sources 

octmaxt octmint octprec sepmaxt sepmint sepprec 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

9.3232 
10.3543 
11.2084 
7.8433 
8.8717 

10.5956 
7.4553 

12.1366 
12.9474 
10.2538 
8.4484 

12.9545 
11.6072 
12.0239 
8.3566 

12.3307 
11.3719 
11.6340 
9.5823 

11.7564 

-0.3116 
1.3728 
1.6893 

-0.8509 
-0.4013 
1.4875 

-0.7390 
1.9737 
0.7900 

-0.8353 
-0.2250 
0.8190 
0.4892 
0.9765 
0.1345 
0.6663 
0.0808 
0.4552 
0.7046 
0.2965 

89.7127 
90.8534 
95.8845 
78.0402 
75.3494 
97.5238 
84.1394 
79.4521 
66.2700 
74.0196 
69.3538 
74.3343 
60.6856 
61.4666 
55.3102 
62.5320 
62.7909 
60.0012 
53.8096 
63.1266 

16.3450 
17.1130 
18.0987 
15.0760 
15.5891 
17.2384 
14.3391 
18.7832 
19.4021 
17.0890 
15.5176 
19.6223 
18.7047 
18.8427 
15.8497 
19.2350 
18.4026 
18.7709 
16.9264 
18.8462 

5.1321 
7.0140 
6.9285 
4.2215 
4.6554 
6.8112 
4.5241 
7.4702 
6.7040 
4.2829 
4.9097 
6.7419 
6.2024 
6.8262 
5.7480 
6.6335 
5.8990 
6.1024 
6.2817 
6.4598 

100.4970 
107.6350 
93.3668 

105.4840 
93.3094 

104.3380 
101.1840 
94.8310 
97.5033 
95.6742 
95.5034 

103.9790 
79.7019 
89.1313 
89.7495 
81.4200 
82.7915 
80.7930 
80.8336 
71.3783 
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